
Old Dominion University

ODU Digital Commons

Computer Science Theses & Dissertations Computer Science

Spring 2015

Avoiding Spoilers on Mediawiki Fan Sites Using
Memento
Shawn M. Jones
Old Dominion University, jones.shawn.m@gmail.com

Follow this and additional works at: https://digitalcommons.odu.edu/computerscience_etds

Part of the Computer Sciences Commons

This Thesis is brought to you for free and open access by the Computer Science at ODU Digital Commons. It has been accepted for inclusion in

Computer Science Theses & Dissertations by an authorized administrator of ODU Digital Commons. For more information, please contact

digitalcommons@odu.edu.

Recommended Citation
Jones, Shawn M.. "Avoiding Spoilers on Mediawiki Fan Sites Using Memento" (2015). Master of Science (MS), thesis, Computer
Science, Old Dominion University, DOI: 10.25777/d8hw-b984
https://digitalcommons.odu.edu/computerscience_etds/1

https://digitalcommons.odu.edu?utm_source=digitalcommons.odu.edu%2Fcomputerscience_etds%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/computerscience_etds?utm_source=digitalcommons.odu.edu%2Fcomputerscience_etds%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/computerscience?utm_source=digitalcommons.odu.edu%2Fcomputerscience_etds%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/computerscience_etds?utm_source=digitalcommons.odu.edu%2Fcomputerscience_etds%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.odu.edu%2Fcomputerscience_etds%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/computerscience_etds/1?utm_source=digitalcommons.odu.edu%2Fcomputerscience_etds%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@odu.edu

AVOIDING SPOILERS ON MEDIAWIKI FAN SITES

USING MEMENTO

by

Shawn M. Jones
B.S. May 1999, Old Dominion University

A Thesis Submitted to the Faculty of
Old Dominion University in Partial Fulfillment of the

Requirements for the Degree of

MASTER OF SCIENCE

COMPUTER SCIENCE

OLD DOMINION UNIVERSITY
May 2015

Approved by:

Michael L. Nelson (Director)

Michele C. Weigle (Member)

Irwin Levinstein (Member)

ABSTRACT

AVOIDING SPOILERS ON MEDIAWIKI FAN SITES USING
MEMENTO

Shawn M. Jones
Old Dominion University, 2015
Director: Dr. Michael L. Nelson

A variety of fan-based wikis about episodic fiction (e.g., television shows, novels,

movies) exist on the World Wide Web. These wikis provide a wealth of information

about complex stories, but if readers are behind in their viewing they run the risk

of encountering “spoilers” – information that gives away key plot points before the

intended time of the show’s writers. Enterprising readers might browse the wiki in a

web archive so as to view the page prior to a specific episode date and thereby avoid

spoilers. Unfortunately, due to how web archives choose the “best” page, it is still

possible to see spoilers (especially in sparse archives).

In this paper we discuss how to use Memento to avoid spoilers. Memento uses

TimeGates to determine which best archived page to give back to the user, currently

using a minimum distance heuristic. We quantify how this heuristic is inadequate for

avoiding spoilers, analyzing data collected from fan wikis and the Internet Archive.

We create an algorithm for calculating the probability of encountering a spoiler in a

given wiki article. We conduct an experiment with 16 wiki sites for popular television

shows. We find that 38% of those pages are unavailable in the Internet Archive. We

find that when accessing fan wiki pages in the Internet Archive there is as much as

a 66% chance of encountering a spoiler. Using sample access logs from the Internet

Archive, we find that 19% of actual requests to the Wayback Machine for wikia.

com pages ended in spoilers. We suggest the use of a different minimum distance

heuristic, minpast, for wikis, using the desired datetime as an upper bound.

Finally, we highlight the use of an extension for MediaWiki that utilizes this new

heuristic and can be used to avoid spoilers. An unexpected revelation about Memento

comes from the development of this extension. It turns out that an optimized two

request-response Memento pattern for interacting with TimeGates does not perform

well with MediaWiki, leading us to fall back to the original Memento pattern of three

request-response pairs. We also conduct performance testing on the extension and

show that it has a minimal impact on MediaWiki’s performance.

wikia.com
wikia.com

iii

Copyright, 2015, by Shawn M. Jones, All Rights Reserved.

iv

ACKNOWLEDGEMENTS

This thesis would not have been possible without the assistance and care of my

loving wife, Valentina Neblitt-Jones. She tolerated many hours of separation in

order to ensure I accomplished this goal. She also endured many hours of discussion

whereby I refined the explanation of the concepts within this document. Without

her continued input and reinforcement my faith would have certainly faltered and I

would not have finished. Our love of fiction and the hours of discussion it produced

brought me special insight into this topic. To settle conflicts and promote these

discussions, we discovered fan-based wikis such as Lostpedia, where I began to notice

people updating fan wikis while television show episodes aired.

I would like to thank the hard work of Michael L. Nelson in listening to me come

up with ideas, both good and bad, about how best to move this along. He was

instrumental in ensuring that I was not only on track, but also helped me develop

the visualizations that best describe the data and conclusions from the thesis. If it

hadn’t been for his hard work putting together a curriculum studying Web Science

and Digital Libraries, I would not have found this topic of interest. His course,

Introduction to Digital Libraries, forced me to further process data from Lostpedia,

where I started to see the trends in wiki usage that led me to propose hypotheses

that led to this thesis.

Very important to this work were both Herbert Van de Sompel and Harihar

Shankar at Los Alamos National Laboratory, without whom I would have not had

the opportunity to work with Wikipedia and find such an interesting intersection of

concerns to research. Both provided support on the technical aspects of wikis as well

as providing feedback on the technical report that became Chapter 8 of this thesis.

Without the sponsorship and assistance of Irwin Levinstein, Ravi Mukkamala,

Michele Weigle, Mohammad Zubair, and Scott Ainsworth, I would not have been able

to get through the process of not only entering the graduate program at Old Dominion

University, but also the process of successfully finishing a Master’s Degree. Levinstein

and Ainsworth wrote my recommendation letters for entrance and encouraged me

to enter the program. Mukkamala, Weigle, and Zubair provided the guidance and

legwork necessary to ensure that I was able to stay on top of the university paperwork

needed to remain a student and also finish this degree. Mukkamala’s course on

data mining was key to examining the data collected as well as understanding the

v

techniques used in many of the references I read. Weigle’s course on networking was

key to discussing the networking concepts in Chapter 8.

This thesis, and my entire Master’s Degree, would not have been possible without

the assistance of the management from SPAWAR Systems Center Norfolk, who were

nice enough to allow me to use my leave and take time off from work to complete

my academic work.

The encouragement of my friends Michael Olson, Kara Olson, and Richard

Hughes were appreciated as they withstood my hours explanation on these concepts,

providing feedback while also ensuring that I did not waver in my commitment to

complete this work.

The work would not have been possible without the Old Dominion University

Perry Library and its staff. I utilized not only their collection, but also their facilities

as an exceptional work area surrounded by resources important to bringing this

document to life.

Finally, the input and encouragement of the ODU Computer Science WS-DL

team was crucial to my success; including Justin Brunelle, Hany SalahEldeen, Yasmin

AlNoamany, Ahmed AlSum, Mat Kelly, and Sawood Alam.

This work would not have been possible without funding by the Andrew Mellon

Foundation.

vi

TABLE OF CONTENTS

Page

LIST OF TABLES . ix

LIST OF FIGURES . xvii

Chapter

1. MOTIVATION - WARNING, THIS THESIS MAY CONTAIN SPOILERS . 1

2. BACKGROUND . 10
2.1 HYPERTEXT MARKUP LANGUAGE (HTML) 10
2.2 THE WORLD WIDE WEB . 12
2.3 MEMENTO . 20
2.4 WEB ARCHIVING AND THE WAYBACK MACHINE 26
2.5 WIKIS, WEB ARCHIVES, AND MEMENTO 30
2.6 THE NAÏVE SPOILER CONCEPT AND BRINGING IT ALL TO-

GETHER . 35

3. RELATED WORK. 39
3.1 EXISTING STUDIES ON SPOILERS 39
3.2 NOTICES, BLURRING TEXT, AND OTHER TECHNICAL AT-

TEMPTS AT SPOILER MANAGEMENT 42
3.3 EXISTING SOFTWARE THAT ATTEMPTS TO HELP USERS

AVOID SPOILERS . 46
3.4 EXISTING STUDIES OF WIKIS . 53
3.5 EXISTING SOFTWARE THAT PROVIDES PAST VERSIONS OF

MEDIAWIKI PAGES . 54
3.6 SUMMARY . 57

4. SURVEY OF TIMEGATE HEURISTICS . 60
4.1 GENERIC TIMEGATE HEURISTIC CONSIDERATIONS 60
4.2 TIMEGATE HEURISTICS UNDER CONSIDERATION 62
4.3 CONCLUSIONS FOR AVOIDING SPOILERS 72

5. SPOILER AREAS CREATED BY MINDIST . 76
5.1 SPOILER AREAS CREATED BY MINDIST HEURISTICS 76
5.2 CONSIDERATIONS FOR MULTIPLE EVENTS AND AGGRE-

GATING SPOILER AREAS . 87
5.3 SUMMARY . 88

vii

6. MEASURING SPOILER PROBABILITY IN POPULAR WIKIS. 90
6.1 STRUCTURE OF THE EXPERIMENT 90
6.2 RESULTS . 91
6.3 CONCLUSIONS . 105

7. MEASURING ACTUAL SPOILERS IN WAYBACK MACHINE LOGS 107
7.1 OUR METHOD FOR ANALYZING THE LOGS 107
7.2 SUMMARY . 111

8. PREVENTING SPOILERS WITH THE MEMENTOMEDIAWIKI EXTEN-
SION . 112
8.1 DESIGN AND ARCHITECTURE 112
8.2 PERFORMANCE IMPACT ON MEDIAWIKI INSTALLATIONS . . 129
8.3 ATTEMPTS AT TEMPORAL COHERENCE 133
8.4 SUMMARY . 141

9. FUTURE WORK . 143

10. CONCLUSIONS . 145

REFERENCES. 147

APPENDICES

A. SPOILER AREA VISUALIZATIONS . 158

B. SPOILER PROBABILITY HISTOGRAMS . 167

C. SPOILER PROBABILITY CUMULATIVE DISTRIBUTION FUNCTION . 183

VITA. 199

viii

LIST OF TABLES

Table Page

1 Some example HTTP request methods . 15

2 Some example HTTP response status codes . 16

3 Dimensions of content negotiation . 19

4 Memento Resource Types . 20

5 Some examples of wikitext compared to HTML . 30

6 Notation used in this thesis . 38

7 Summary of TimeGate Heuristics . 74

8 Conditions for relationships between episodes denoted by e, revisions de-
noted by r, mementos denoted by m, and a midpoint between mementos
denoted by h. Mementos m1 and mn denote first and last mementos,
respectively. 89

9 Fan wikis used in the spoiler areas experiment . 91

10 Information required to determine if spoilers can be encountered if mindist
is used . 92

11 Spoiler probabilities for most popular pages within each fan wiki 100

12 Statistics for each fan wiki . 103

13 Specifications of the Test Machine Used to Process the Wayback Machine
Logs . 111

14 Version 2.0 Memento MediaWiki Extension MementoResource Class
Family Members Mapped To Their Memento Resource Type 118

15 Examples of TimeMap URIs From the Memento MediaWiki
Extension . 119

16 Examples of Memento Resources From the Memento MediaWiki
Extension . 120

17 Specifications of the Test Machine Used to Compare Pattern 1.1 vs. Pat-
tern 2.1 URI-G Performance . 122

ix

18 Statistics on Pattern 1.1 vs. Pattern 2.1 TimeGate testing results 127

19 Status of full temporal coherence among MediaWiki Entities 133

x

LIST OF FIGURES

Figure Page

1 Kumar hesitates to use the wiki for Once Upon A Time because he has
not seen the latest episode . 2

2 Maurice finds that he cannot avoid information on
A Dance With Dragons . 3

3 Kim finds out that character James Novak from Scandal is dead 4

4 Spoiler notice for Downton Abbey Wiki . 4

5 Demonstration of Spoiler Shield blocking Facebook posts about the TV
series Game of Thrones . 5

6 Example of a wiki history page for the article on Abraham Lincoln 6

7 A screen shot of a specific memento in the Wayback Machine of
http://lostpedia.wikia.com from February 14, 2014 . 6

8 Rendering of HTML from Listing 2.1 . 11

9 Relationship between URIs, Resources, and Representations 13

10 Example of HTTP request-response process . 13

11 An example of a web browser, the most common user agent type for the
World Wide Web . 14

12 HTTP request-response examples . 17

13 Visualization of mementos captured for a given resource at times t1, t2,
t3, and t4 . 23

14 General Memento pattern . 25

15 Screenshot of the Memento Time Travel Chrome Extension, a Memento
client . 26

16 Architecture for a simple web crawler . 27

17 Wayback Machine Screenshots . 29

18 Example Wiki Page . 31

xi

19 Example Edit Page for a Wiki Article . 32

20 Example History Page for a Wiki Article . 32

21 Example of viewing an earlier revision of a Wiki Article 33

22 Example of a revision notice, present at the top of old revisions
in MediaWiki . 33

23 Example of a wiki page viewed from the Wayback Machine 33

24 Example Timeline Showing Captured Mementos of Wiki Edits 34

25 Each event can inspire a new wiki revision which may be captured as a
memento by a web archive . 36

26 Representation of a Näıve Spoiler Concept . 37

27 Results of Leavitt and Christenfeld’s spoilers research, indicating a slight
preference for spoiled stories over unspoiled stories. (Error bars represent
standard errors) . 40

28 Examples of Spoiler Notices on the Web . 43

29 Guidance for wiki editors for the site A Wiki of Ice and Fire, indicating
that they should not include plot details for an upcoming book, avoiding
the addition of spoilers to existing pages . 44

30 TV Tropes web site examples of spoiler text shown as white text on white
background for the television show The Office . 44

31 Demonstration web page for the Spoiler Alert JavaScript library, showing
blurred text and images instead of spoiler information 45

32 Examples of Tumblr Savior . 47

33 Examples of configuration screens for social media filter programs that
can be used to block spoilers entirely . 48

34 Spoiler Shield For Chrome posts about Game of Thrones on Facebook . . . 49

35 Screenshots of Spoiler Shield configuration screens . 50

36 Screenshots of the TweetDeck application . 51

37 Screenshots of two Spoiler Foiler web applications created by Netflix 52

38 High level process for the use of the Memento Wikipedia Proxy 55

xii

39 The operations screen for the MediaWiki Time Machine extension 56

40 Conception Diagram of the Parsoid MediaWiki application (image created
by J. D. Forrester, Gabriel Wicke, and Trevor Parscal) 57

41 The use and products of the MediaWiki Collection extension 59

42 Demonstration of the mindist heuristic, in this case m2@t7 is chosen be-
cause it is closest to ta . 63

43 Demonstration of the mindist heuristic; in this case m3@t10 is chosen
because it is closest to ta . 63

44 Demonstration of the minpast heuristic, in this case m2@t7 is chosen
because it is closest, but not greater than,ta . 65

45 Demonstration of the minpast heuristic, in this case m2@t7 is still chosen
because it is closest, but not greater than, ta, even through m3@t10 has
the minimum distance . 65

46 Demonstration of the minfutr heuristic, in this case m3@t10 is chosen
because it is closest, but not less than, ta . 67

47 Demonstration of the minfutr heuristic, in this case m3@t10 is still chosen
because it is closest, but not less than, ta, even through m3@t7 has the
minimum distance . 67

48 Example of pre-archive spoiler areas (shown in light red) created using
the mindist heuristic; the overlap of the spoiler areas for episodes e3 and
e2 is shown in darker red. 77

49 Example of a archive-extant spoiler area (shown in light red) created by
using the mindist heuristic, h is the midpoint between mk−1 and mk 79

50 Example of the condition: Archive-Extant Safe HRE for event ei 81

51 Example of the condition: Archive-Extant Safe RHE for episode ei 81

52 Example of the condition: Archive-Extant Safe EHR for event ei 82

53 Example of the condition: Archive-Extant Safe ERH for event ei 82

54 Example of the condition: Archive-Extant Safe REH for event ei 84

55 Example of the condition: Pre-Archive Safe for event e3; spoiler area
exists for event e2, but not e3 . 84

xiii

56 Example of the condition: Post-Archive Safe ER for event ei 85

57 Example of the condition: Post-Archive Safe RE for event ei 85

58 Example of a potential spoiler zone, stretching from te1 to ten 86

59 Example of a spoiler area (light red area) for episode ei inside potential
spoiler zone (dotted red rectangle), stretching from te1 to ten 86

60 Example export page for a MediaWiki installation1 92

61 Timelines for the wiki sites used in this experiment: top timeline repre-
sents the length of the episode run, middle timeline represents the life of
the wiki, bottom timeline represents the span of time the Internet Archive
has operated on the site . 94

62 Spoiler areas for the most popular page in Lostpedia (3,531 revisions)2 . . . 98

63 Spoiler areas for the most popular page in the Game of Thrones Wiki
(768 revisions)3 . 98

64 Spoiler areas for the most popular page in the House of Cards Wiki (380
revisions)4 . 99

65 Histogram of spoiler probabilities for Lostpedia . 101

66 Histogram of spoiler probabilities for Game of Thrones Wiki 102

67 Histogram of spoiler probabilities for House of Cards Wiki 102

68 Histogram of spoiler probabilities for all pages in study 104

69 Graph of the cumulative distribution function of spoiler probabilities for
all 16 wiki sites . 104

70 Plot of missed updates for 16 wiki sites over time, lighter colors indicate
few to no missed updates, darker colors indicate many missed updates . . . 106

71 Plot of redundant mementos for 16 wiki sites over time, lighter colors
indicate few to no redundant mementos, darker colors indicate many re-
dundant mementos . 106

72 URI-M pattern for the Wayback Machine and Internet Archive 108

73 Memento MediaWiki Extension Class Hierarchy Diagram 113

xiv

74 Memento Pattern 2.1 Overview with Only Salient Headers, Methods, and
Responses . 115

75 Memento Pattern 1.1 Overview with Only Salient Headers, Methods, and
Responses . 121

76 Differences in URI-G performance between Pattern 1.1 and 2.1 123

77 Histogram showing Pattern 1.1 values . 124

78 Histogram showing Pattern 2.1 values . 125

79 Plot showing the difference in times for URI-Rs between a MediaWiki
installation containing our extension vs one without it installed 130

80 Plot showing the difference in times for URI-Ms between a MediaWiki
installation containing our extension vs one without it installed 131

81 Plot showing the difference in size between MediaWiki history pages and
TimeMaps for the same article . 132

82 Example Wikipedia page5 with an embedded image that has been changed
as the page content changes . 134

83 June 5, 2013 version of the example MediaWiki page6 with an embedded
image that is changed as the page content changes (note that the map is
the same as in Figure 82, which does not match the article text) 135

84 June 5, 2013 version of the example MediaWiki page should show this
map7 instead if it is to be consistent with the article content 136

85 MediaWiki Page8 showing the map’s file history . 137

86 Example of CSS history9 in MediaWiki . 140

87 Example of JavaScript history in MediaWiki10 . 141

88 Example of the current CSS not agreeing with an previous revision of a
MediaWiki page . 142

89 Spoiler areas for the most popular page in Lostpedia
(3,531 revisions)11 . 158

90 Spoiler areas for the page in the Big Bang Theory Wiki that contains the
most revisions12 . 159

xv

91 Spoiler areas for the page in the Boardwalk Emprire Wiki that contains
the most revisions13 . 159

92 Spoiler areas for the page in the Breaking Bad Wiki that contains the
most revisions14 . 160

93 Spoiler areas for the page in the Continuum Wiki that contains the most
revisions15 . 160

94 Spoiler areas for the page in the Downton Abbey Wiki that contains the
most revisions16 . 161

95 Spoiler areas for the most popular page in the Game of Thrones Wiki
(768 revisions)17 . 161

96 Spoiler areas for the page in the Grimm Wiki that contains the most
revisions18 . 162

97 Spoiler areas for the most popular page in the House of Cards Wiki (380
revisions)19 . 162

98 Spoiler areas for the page in the How I Met Your Mother Wiki that
contains the most revisions20 . 163

99 Spoiler areas for the page in the Mad Men Wiki that contains the most
revisions21 . 163

100 Spoiler areas for the page in the NCIS Database that contains the most
revisions22 . 164

101 Spoiler areas for the page in the Once Upon A Time Wiki that contains
the most revisions23 . 164

102 Spoiler areas for the page in the Scandal Wiki that contains the most
revisions24 . 165

103 Spoiler areas for the page in the True Blood Wiki that contains the most
revisions25 . 165

104 Spoiler areas for the page in the White Collar Wiki that contains the
most revisions26 . 166

105 Big Bang Theory Wiki . 167

106 Boardwalk Empire Wiki . 168

107 Breaking Bad Wiki . 169

xvi

108 Continuum Wiki . 170

109 Downton Abbey Wiki . 171

110 Game of Thrones Wiki . 172

111 Grimm Wiki . 173

112 House of Cards Wiki . 174

113 How I Met Your Mother Wiki . 175

114 Lostpedia . 176

115 Mad Men Wiki . 177

116 NCIS Database . 178

117 Once Upon A Time Wiki . 179

118 Scandal Wiki . 180

119 True Blood Wiki . 181

120 White Collar Wiki . 182

121 Big Bang Theory . 183

122 Boardwalk Empire . 184

123 Breaking Bad . 185

124 Continuum . 186

125 Downton Abbey . 187

126 Game of Thrones . 188

127 Grimm . 189

128 House of Cards . 190

129 How I Met Your Mother . 191

130 Lostpedia . 192

131 Mad Men . 193

xvii

132 NCIS . 194

133 Once Upon A Time . 195

134 Scandal . 196

135 True Blood . 197

136 White Collar . 198

1

CHAPTER 1

MOTIVATION - WARNING, THIS THESIS MAY

CONTAIN SPOILERS

Introducing Pramiti, a young woman who enjoys a variety of fiction. Pramiti does

not merely watch or read her fiction. She also engages more directly in review and

discussion with her friends and colleagues. One day, she is discussing information

about Once Upon a Time, a popular television show, with her coworkers, and they

wish to settle a dispute about a character using the fan-created Once Upon a Time

Wiki [108] resource on the World Wide Web.

Unfortunately, her coworker Kumar has not yet watched the most recent episode.

Kumar wants to access the information about the character in order to continue the

conversation, using a resource as shown in Figure 1, but does not wish to encounter

any information that will ruin the episode he has not seen.

How can Kumar avoid these spoilers while still acquiring useful information for

the conversation from this resource?

Consider the case of Maurice, a long time fan of the book series A Song of Ice and

Fire. He finished the fourth book years ago, and is about to read the fifth, A Dance

with Dragons, released in 2011. Maurice wants to use the fan wiki site A Wiki of Ice

and Fire [30] to review information about some of the characters so he can prepare

himself for the next book. Unfortunately, it will be difficult to access this resource

without encountering information from the fifth book, as shown in Figure 2.

How does Maurice improve his knowledge of this fictional world without encoun-

tering the spoilers on the current version of this wiki site?

Kim watches the television show Scandal. Her mother has been ill, so she has

not had a chance to watch the full third season of the show. She uses her tablet

to visit the fan wiki [109] for the television show Scandal, looking up information

about the character James Novak. Without even reading the article, she sees in the

information box to the right that this character has died. Now her experience with

the show is ruined. She cannot unlearn the information she sees in Figure 3.

2

FIG. 1: Kumar hesitates to use the wiki for Once Upon A Time because he has not

seen the latest episode

Finally, David lives in the United States and enjoys the show Downton Abbey.

This show premiers first in the United Kingdom and is later exported to the United

States. David would like to use the Downton Abbey Wiki [107] to settle a dispute

among his friends. Unfortunately for David, he cannot use this wiki in its current

form, because the current season of Downton Abbey is showing in the United King-

dom, and fans in that country are updating it with current information from the

show. David is warned about using the web site by the large notice shown in Figure

4.

All four of these individuals want to avoid spoilers on the Web. Spoilers are

defined as pieces of information that user wants to control the time and place of

their consumption, preferring to consume them in the order that the author (or

director) intended. If these pieces of information are delivered in the wrong order,

enjoyment about a movie or television program is destroyed [42].

This issue is not something merely affecting a small segment of the population.

CNN recently reported the growing issue of spoilers in social media [33]. The New

York Times reported that Wikipedia has given up trying to protect its visitors from

3

FIG. 2: Maurice finds that he cannot avoid information on

A Dance With Dragons

spoilers, despite public outcry [15].

Using examples from Lost and Battlestar Galactica, Wired discusses the War of

the Spoilers, emphasizing how fans of many television prefer to view their content as

the creators intended, rather than having it ruined by parts of the Web [34].

Spoilers are also controversial, as Wired again discusses in a poll attempting to

determine the definition of spoilers as well as the etiquette surrounding them. The

late Roger Ebert implored fellow movie critics to not share spoilers in their reviews,

seeing as many moviegoers read reviews to determine if a movie is worth watching

[19].

An academic study undertaken by the University of California, San Diego deter-

mined that there is a perceived, if not actual, harm to the enjoyment of fiction if

spoilers are known [54].

Spoilers are such a problem in social media, that Boyd-Graber [14] evaluated

machine learning algorithms to detect spoilers so people can avoid social media posts

containing them, resulting in improvements over text-only searches. Golbeck [32]

attempted to target just Twitter, in an attempt to remove all Tweets on a particular

4

FIG. 3: Kim finds out that character James Novak from Scandal is dead

FIG. 4: Spoiler notice for Downton Abbey Wiki

5

FIG. 5: Demonstration of Spoiler Shield blocking Facebook posts about the TV

series Game of Thrones

topic, with a rate of false positives that may be unacceptable to users. Commercially,

apps now exist on the market to prevent users from viewing spoilers in Twitter feeds,

Facebook walls, and Tumblr dashboards [40]. One example is Spoiler Shield, shown

in action in Figure 5.

Kumar, Maurice, Kim, and David all used fan-based wikis, which are on the rise

on the Web [70]. In addition to Wikipedia, Wikia exists as the largest fan-based

wiki site containing over 400,000 communities creating information about a variety

of topics, focusing on entertainment [106]. Wikis, as shown in Figure 6, have access

to the past revision of every page. We show, that in the case of wikis, spoilers can be

avoided altogether, without resorting to simple text-matching algorithms or machine

learning.

An academic study by Boyd-Graber, Glasgow, and Zajac indicated that spoilers

refer to events “later than the viewer’s knowledge of the current work” [14]. If the

viewer’s knowledge has not caught up to the present, what if they could view a page

at the time of their knowledge. What if Kumar, Maurice, Kim, and David could

6

FIG. 6: Example of a wiki history page for the article on Abraham Lincoln

FIG. 7: A screen shot of a specific memento in the Wayback Machine of

http://lostpedia.wikia.com from February 14, 2014

7

browse the web (and their chosen fan wiki), at a time prior to the episode containing

the spoilers? They would be able to view the information they wanted without the

information that could ruin the enjoyment of their fiction.

Memento [101], a protocol used to view past versions of web pages, holds the

answer. Memento uses special web resources named TimeGates to provide these

past versions of web pages, called mementos, an example of which is shown in

Figure 7. The Memento protocol is an extension to the Hypertext Transfer Protocol

(HTTP) that allows a user to specify a web site and a time and then redirects the

user to the best past version of that page based on the time given by the user. It

provides seamless access to all places where previous versions of web pages are stored,

from web archives to content management systems.

For example, if we, like Maurice above, had not read the book A Dance With

Dragons, and wanted to avoid spoilers in the web site A Wiki of Ice and Fire, then

we could use Memento to avoid spoilers on that web site. We could determine the

release date of A Dance With Dragons. Then we select a time prior to that date and

use a Memento-enabled client, such as Memento for Chrome [75] or Mink [49], to

browse the web site as it looked on the date prior to the release of the novel, avoiding

spoilers.

TheWayback Machine exists as an alternative, allowing users to visit past versions

of web pages, but we will show how it is not sufficient to solve the spoiler problem.

An analysis of the Wayback Machine algorithm and its logs reveals an impor-

tant implication for pop culture enthusiasts: the Wayback Machine and standard

Memento TimeGates are insufficient for reliably avoiding spoilers in wikis, and a

better solution exists in the wiki’s own history function combined with an improved

Memento TimeGate algorithm.

In this thesis we discuss a method to avoid spoilers on the Web, specifically fo-

cusing on fan-based wikis. We show that Memento can be used to successfully, but

not reliably, avoid spoilers in general web pages. We also show that the current

heuristic used by the Wayback Machine, which we label mindist for minimum dis-

tance, is insufficient for reliably avoiding spoilers, with evidence that users can and

are getting spoilers with this heuristic. We offer a solution for wikis, using a different

heuristic, which we call minpast because it provides the memento with the minimum

distance without going over the datetime specified by the user. Finally, we detail an

implementation using this new heuristic in the form of an extension to MediaWiki.

8

This thesis has 10 chapters. In Chapter 2, we explore the technologies and con-

cepts required to not only understand the spoiler problem, but also solve it for fan-

based wikis. We provide an overview of HTML, HTTP, Memento, web archiving,

the Wayback Machine, and how we are using these all to avoid spoilers.

In Chapter 3, we discuss what others have done to address the spoiler problem.

We will discover what issues have existed and how they can be addressed as well as

reaffirming the boundary of our thesis to just focus on wikis. We briefly discuss what

other work has been done on wikis and how our contribution is different.

In Chapter 4, we survey heuristics for Memento TimeGates, the resources used

to bring us past versions of web pages. We will see how, out of all of the heuristics

discussed, the minpast heuristic is best for avoiding spoilers. Unfortunately, mindist

is the one used by most TimeGates and web archives. Mindist delivers the past web

page that is closest to the datetime we have requested, where minpast will not go

over that datetime.

In Chapter 5, we compare wiki revisions to web archive mementos and show just

how, even while using mindist, it is probable to get a spoiler even if one chooses a

datetime prior to that spoiler.

In Chapter 6, a series of experiments were conducted on actual wikis to determine

the probability of acquiring a spoiler if one used Memento with the mindist heuristic.

In Chapter 7, we use logs from the Wayback Machine to show that the mindist

heuristic is actually bringing users to pages from dates in the future of what they

had originally specified.

In Chapter 8, we outline a solution to the problem in the form of a MediaWiki

Extension that uses the minpast heuristic to deliver previous revisions of web pages

to users, safely allowing them to avoid spoilers. We also show how this tool has

a minimal impact on performance in MediaWiki installations and can also be used

to partially solve the problem of temporal coherence, where embedded images

and other web page resources do not match the content of the web page they are

embedded in due to web archiving issues.

In Chapter 9, we discuss future work for this analysis of algorithms, indicating

that mindist and minpast can be explored in other ways. We also discuss how some

of the other algorithms discussed in Chapter 4 can be used for future research.

In Chapter 10, we conclude by tying all of these concepts together to show that

minpast is the best algorithm for avoiding spoilers and that solutions for wikis are

9

the best utilization of this algorithm to date.

10

CHAPTER 2

BACKGROUND

In this section, we discuss which tools and concepts may be combined and im-

proved to address the spoiler problem, specifically for wikis on the World Wide Web.

We will discuss Hypertext Markup Language (HTML), the principal document

format of the Web. HTML documents link to each other, forming much of the web,

including our fan-based spoiler web sites. From here we will transition to the larger

World Wide Web, discussing how HTML web pages and other documents refer to

one another. During that discussion we will also briefly cover HTTP, the network

protocol used to move web pages from web servers to users, which is necessary to

understand Memento, a form of web time travel. We will show how Memento can be

used to view past versions of web pages, most of which are stored in web archives.

Then we move on to discuss wikis and how web archives and Memento currently

work with wikis. Finally, we tie it all together by showing that Memento can be used

to view the past versions of wiki pages on fan sites, thus helping fans avoid spoilers

on wiki web sites.

2.1 HYPERTEXT MARKUP LANGUAGE (HTML)

The documentation format used by the fan wikis we are interested in (as well

as most of the web) is Hypertext Markup Language (HTML). A document

constructed of HTML is referred to as a web page. A collection of web pages (and

other supporting files) is called a web site.

HTML is important to our research because it is one of the ways the Web is linked

together. Listing 2.1 shows an example web page. In this example we see a series of

tags which start with the symbol < and end with > (which are typically referred to

as angle brackets) [8]. Using these angle brackets, the actual text of the page can

be separated from the organization of the page. Tags contain text, like the <p> tag

in our example displays all text between <p> and </p>. The trailing slash indicates

when the paragraph has ended. The same situation exists for <html> indicating

the start of the web page and </html> indicating the end of the web page. All

11

Listing 2.1: An example Web Page

1 <html>

2 <head>

3 <title>Example Web Page</title>

4 </head>

5 <body>

6 <p>

7 Here is an example web page, with a link to <a href="http://en.wikipedia.org/

wiki">Wikipedia.

8 </p>

9 <p>

10 The symbol for Wikipedia is <img src="https://upload.wikimedia.org/wikipedia/en

/bc/bc/Wiki.png" >/

11 </body>

12 </html>

FIG. 8: Rendering of HTML from Listing 2.1

text contained within <html> and </html> is included in the web page. Tags can

appear inside other tags, like <p> appears inside <html>. Some tags also do not

necessarily need an end tag, such as the tag on line 10. Tags can also have

attributes such as the src attribute on line 10. This way the behavior of a tag can

be influenced by the attribute. There are many tags for defining the structure and

content of a web page. Only a few are of interest to our thesis.

The <a> tag, shown in action on line 7, wraps the text Wikipedia and makes it

blue. This makes the text Wikipedia a hyperlink, allowing one to follow the text to

another document, referred to by the href attribute of <a>. This is how web pages

are able to refer to other web pages. The tag, shown on line 10, embeds an

12

external image resource in the page.

The web sites that we visit to read information on our favorite characters are

sent to the user as web pages, but to understand the solution to the spoiler problem

further, we must understand the overall World Wide Web.

2.2 THE WORLD WIDE WEB

On the World Wide Web, there exist items of interest which are referred to as

resources [11]. The concept of resources is intentially flexible to allow for new

technologies, but for the sake of this discussion, we will define a resource as anything

that can be identified by a Uniform Resource Identifier (URI) [12], such as

http://buffy.wikia.com/wiki/.

Many are familiar with Uniform Resource Locators (URLs), which are a subset of

URIs. URLs specify a location identifying where a resource may be found. URIs are

a more generic identifier, not necessarily requiring a location or any infrastructure.

Conceivably, URIs may also be used for the identification of objects in the real world

(such as “non-information resources” like people, monuments, etc.) [10]. For this

discussion, we will just refer to the use of URIs to identify web pages or information

resources.

URIs only identify distinct resources. A single URI cannot refer to more than one

resource. For example, http://lostpedia.wikia.com/ refers to the resource,

and only the resource, that is an online encyclopedia about the television series Lost.

Resources are not the end of the chain. Each resource may have one or more

representations. Each representation varies in several dimensions. For example,

a resource consisting of a document about cats may contain both an English and

Telugu representation of the same resource. Additionally, the same resource may

have an PDF representation and an HTML representation.

To recap, as Figure 9 shows, URIs refer to resources which can have one or

more representations. The act of acquiring a representation from a URI is referred

to as dereferencing.

The Hypertext Transfer Protocol (HTTP) is the most common protocol used by

the World Wide Web to dereference URIs into representations. HTTP is not the

only way to acquire representations, alternatives, such as the File Transfer Protocol

(FTP), exist, but HTTP is the most widely used and will be the only protocol

discussed here. The http at the beginning of most URIs, referred to as the scheme,

13

http://www.example.com/buffy/

Article about the character

Buffy the Vampire Slayer
Metadata:
Content-Language: en
Content-Type:
application/xhtml+xml
--
<!DOCTYPE html PUBLIC "...
<html xmlns="http://www....
<head>
<title>Character: Buffy</title>
...
</html>

URI
Resource

Metadata:
Content-Language: es
Content-Type:
text/html
--
<!DOCTYPE html PUBLIC "...
<html>
<head>
<title>Carácter: Buffy</title>
...
</html>

identifies

represents

English XHTML

Representation

Spanish HTML

Representation

Metadata:
Content-Language: zh
Content-Type:
application/pdf
--
%PDF-1.4
%?쏢
5 0 obj
<</Length 6 0 R/Filter /
FlateDecode>>
stream
...

Chinese PDF

Representation

represents
represents

FIG. 9: Relationship between URIs, Resources, and Representations

User Agent

Origin Server

HTTP request

HTTP response

(HTTP version) (status code)
(headers)
(required blank line)
(entity - optional)

(method) URI (HTTP version)
(headers)
(required blank line)
(entity - optional)

FIG. 10: Example of HTTP request-response process

indicates the use of this protocol. HTTPS [85] is similar to HTTP, but wraps all

HTTP traffic in transport layer security providing authentication and encryption.

We only discuss HTTP in this thesis, as what can be provided over HTTP can also

be provided over HTTPS.

14

FIG. 11: An example of a web browser, the most common user agent type for the

World Wide Web

HTTP acquires representations using a system of requests and responses, as

shown in Figure 10. Requests are issued from a user agent and responses are sent

back by the origin server [22].

Requests are typically initiated by the user, typically from a client user agent

tool called a browser, an example of which is shown in Figure 11. Requests use

one of have several available methods and Table 1 shows some examples. Only

the GET and HEAD methods are useful for our thesis. The typical form of the

start of a request is method URI HTTP-version, followed by headers supplying

additional information about the request. Each header in the request is separated

by a newline. The request is terminated by a blank line only containing a newline.

Responses are initiated by the origin server. Responses use one of several available

15

TABLE 1: Some example HTTP request methods

Method Description Example uses

GET Dereference a URI to acquire a

representation

Acquire the front page of a news-

paper web site

HEAD Dereference a URI to acquire just

the response headers for a repre-

sentation

Acquire the headers associated

with a page to retrieve informa-

tion about a newspaper web site’s

front page to see if it has changed

since last time

POST Request that the origin server ac-

cept the enclosed entity as new

information for the URI

Change the contents of a message

board or online document

PUT Request that the origin server

create or update the existing en-

tity at this URI with the enclosed

entity

Upload a file to the origin server

at the given URI

DELETE Remove the resource identified by

the URI

Delete a file on the origin server

referenced by the given URI

TRACE Mirror what has been submitted

in the request to the given URI

Diagnosis of web proxy services

to ensure that the correct headers

are being placed on requests

OPTIONS Provide information about which

methods are available for the

given URI

Clients can determine if the

server supports PUT, DELETE,

or other methods at the given

URI prior to initiating additional

requests

status codes. Table 2 shows some example response codes used by origin servers.

Of these, 200, 302, 400, and 404 are useful for our thesis. The typical form of

the start of a response is HTTP-version status-code message. Just like

the request, the response separates each header by a newline. After the response

headers, a blank line containing a newline signifies the end of the headers and start

of the message body, which is typically the content of the web page the user was

looking for to begin with.

16

TABLE 2: Some example HTTP response status codes

Response

Code

Description Example Uses

200 The request has succeeded Returning the web page corre-

sponding to the given URI

301 The resource at this URI has a

new permanent URI, use the new

given URI in the future

A web site or page has been

moved to a new server or di-

rectory location, but the owner

wants old users to use the new

URI

302 The resource at this URI can be

found temporarily at a different

URI, continue to use the URI in

the request

A web site or page has been

moved temporarily, or the re-

quested resource performs some

function to locate URIs for you

400 Something is wrong with the re-

quest, such as a bad header or

other data; do not reissue this re-

quest with the same data, fix the

request

A server does not want to accept

poorly formed headers to ensure

that a web application does not

get corrupted

403 The server will not successfully

respond to your request, do not

reissue the request

A client asked for a file or direc-

tory known to, but not accessible

to the origin server. Perhaps the

file or directory permissions pre-

vent the origin server’s software

from accessing it.

404 The resource requested cannot be

found

A client asks for a web page that

does not exist at the origin server

500 Something happened on the

server while it tried to respond

to the request and the server

cannot recover

A web application is broken or

has been broken by bad data from

the client

Listing 12a shows a capture of the actual headers that are sent across the network

to dereference the URI http://en.wikipedia.org/wiki/The_Hunger_

Games using the Google Chrome browser. Line number 1 shows the GET method

requesting the path /wiki/The Hunger Games using HTTP version 1.1; GET is

the method used to request the transfer of a representation of a resource [23]. Line 2

tells the receiving server that we are interested in only acquiring this path from the

http://en.wikipedia.org/wiki/The_Hunger_Games
http://en.wikipedia.org/wiki/The_Hunger_Games

17

1 GET /wiki/The_Hunger_Games HTTP/1.1

2 Host: en.wikipedia.org

3 Accept: image/webp,*/*;q=0.8

4 Accept-Encoding: gzip,deflate,sdch

5 Accept-Language: en-US,en;q=0.8

6 Referer: https://plus.google.com/

7 User-Agent: Mozilla/5.0 (Macintosh; Intel Mac OS X 10_9_4) AppleWebKit/537.36 (

KHTML, like Gecko) Chrome/36.0.1985.143 Safari/537.36

(a) Example HTTP Request

1 HTTP/1.1 200 OK

2 Accept-Ranges: bytes

3 Age: 352057

4 Cache-Control: private, s-maxage=0, max-age=0, must-revalidate

5 Connection: keep-alive

6 Content-Encoding: gzip

7 Content-language: en

8 Content-Length: 13769

9 Content-Type: text/html; charset=UTF-8

10 Date: Fri, 15 Aug 2014 13:43:03 GMT

11 Last-Modified: Mon, 11 Aug 2014 11:55:18 GMT

12 Server: Apache

13 Set-Cookie: GeoIP=US:Norfolk:36.9312:-76.2397:v4; Path=/; Domain=.wikipedia.org

14 Vary: Accept-Encoding,Cookie

15 Via: 1.1 varnish, 1.1 varnish

16 X-Cache: cp1052 hit (4), cp1065 frontend hit (906)

17 X-Content-Type-Options: nosniff

18 X-UA-Compatible: IE=Edge

19 X-Varnish: 350285837 350035840, 1753471343 1233627904

20

21 ... entity begins here

(b) Example HTTP response

FIG. 12: HTTP request-response examples

18

host en.wikipedia.org. We also see how the browser desires an appropriate

representation of this resource. On line 3, the request uses the Accept header to in-

dicate the user’s desire for the image/webp file format, if possible. Line 4, using the

Accept-Encoding header, indicates which encoding methods the browser prefers,

and in what order of preference. Finally, line 5 shows the Accept-Language

header, indicating which language the user prefers. Using these Accept headers, the

web client specifies in the web request what representation will best suit the end

user. The use of these headers to find the best representation from among multiple

representations for a single resource is called content negotiation.

Listing 12b shows the response headers that are returned prior to submitting the

actual representation. From this response, on line 1, we see the 200 status code,

which indicates that the server can successfully return what was requested. Line

11 shows the Last-Modified header, indicating when this web page was last

modified [24], which may not be present in all cases. Line 6 indicates to the user

agent the Content-Encoding that the origin server is using for this entity, corre-

sponding to the Accept-Encoding header in the request. In this case, the server

was able to use gzip just like the request specified. Line 7 indicates to the user

agent the Content-Language of the entity being returned, corresponding to the

Accept-Language header in the request. In this case, the server was able to again

find a representation using the language en. Line 9 indicates to the user agent the

Content-Type of the entity being returned, corresponding to the Accept header

in the request. This time, the server could not find the requested image/webp rep-

resentation for this resource, instead returning text/html; charset=UTF-8.

These Accept* headers in the request and their corresponding Content* headers

from the response are what allow content negotiation to happen seamlessly to the

end user.

To discuss spoilers, we need to consider that another dimension upon which we

can perform content negotiation is time.

19

TABLE 3: Dimensions of content negotiation

Request

Header

Response

Header

Dimension Examples Source

Accept Content- content-type of text/html RFC 7231

Type the text/plain RFC 2616

representation image/png

application/pdf

Accept- Content- language of the en RFC 7231

Language Language representation en-US RFC 2616

cz

es

Accept- Content- medium, compress RFC 7231

Encoding Encoding typically gzip RFC 2616

compression,

that the entity

has been

deflate

processed with

and also what

will need to be

done by the user

agent to return

the entity to its

original form

Accept- Content- the character set iso-8859-5 RFC 7231

Charset Type used by the web

page

unicode-1-1 RFC 2616

Accept- Memento- time of the Fri, 15 Aug 2014 13:43:03

GMT

RFC 7089

Datetime Datetime representation Wed, 30 May 2007 18:47:52

GMT

Tue, 20 Mar 2001 20:35:00

GMT

20

TABLE 4: Memento Resource Types

Resource Designation Request Headers Response Headers

Required Required

Original

Resource

URI-R none none

Memento

Resource

URI-M none Memento-Datetime

TimeGate URI-G Accept-Datetime
Link

Vary

TimeMap URI-T none none

2.3 MEMENTO

Tim Berners-Lee, one of the architects of the World Wide Web, originally defined

four dimensions in which a resource could generate different representations. They

are target medium, content-type, language, and time [9]. The first three of these

evolved into four separate dimensions of HTTP content negotiation [37]. Memento

finally introduces time as a fifth dimension in which a user can request a specific

representation of a resource [73]. These dimensions are listed in Table 3.

Memento uses the existing content negotiation concept, allowing a user to specify

a datetime for a given URI, also called datetime negotiation [101]. Combining

these concepts together, one can browse the web as it looked on any given date and

time.

Memento defines certain types of resources, summarized in Table 4 but detailed

below.

First is the original resource, denoted as URI-R. This is the URI of a given

resource as it is on the web at the current time. It is what we normally think of as

a URI for a given resource.

Next is the memento resource, denoted as URI-M. A memento is a fixed

representation of the original resource at a specific point in time, fulfilling Tim

Berners-Lee’s final dimension of content negotiation. This resource is from where the

Memento Protocol gets its name. There are one or more mementos for each original

resource on the web. Consider the resource identified by http://www.cnn.com,

21

Listing 2.2: Example Response Headers for the URI-M https://web.archive.

org/web/20010601045129/http://www.cnn.com/

HTTP/1.1 200 OK

Server: Tengine/2.0.3

Date: Fri, 22 Aug 2014 17:23:11 GMT

Content-Type: text/html;charset=utf-8

Content-Length: 80824

Connection: keep-alive

set-cookie: wayback_server=6; Domain=archive.org; Path=/; Expires=Sun, 21-Sep

-14 17:23:10 GMT;

Memento-Datetime: Fri, 01 Jun 2001 04:51:29 GMT

Link: <http://www.cnn.com/>; rel="original", <http://web.archive.org/web/

timemap/link/http://www.cnn.com/>; rel="timemap"; type="application/link-

format", <http://web.archive.org/web/http://www.cnn.com/>; rel="timegate",

<http://web.archive.org/web/20000620180259/http://www.cnn.com/>; rel="first

memento"; datetime="Tue, 20 Jun 2000 18:02:59 GMT", <http://web.archive.

org/web/20010601045124/http://www.cnn.com/>; rel="prev memento"; datetime="

Fri, 01 Jun 2001 04:51:24 GMT", <http://web.archive.org/web/20010601045129/

http://www.cnn.com/>; rel="memento"; datetime="Fri, 01 Jun 2001 04:51:29

GMT", <http://web.archive.org/web/20010601050038/http://www.cnn.com/>; rel

="next memento"; datetime="Fri, 01 Jun 2001 05:00:38 GMT", <http://web.

archive.org/web/20140822104304/http://www.cnn.com/>; rel="last memento";

datetime="Fri, 22 Aug 2014 10:43:04 GMT"

X-Archive-Guessed-Charset: UTF-8

X-Archive-Orig-server: Netscape-Enterprise/4.1

X-Archive-Orig-expires: Fri, 01 Jun 2001 04:52:29 GMT

X-Archive-Orig-set-cookie: CNNid=cf3013e6-11244-991371089-9; expires=Wednesday,

30-Dec-2037 16:00:00 GMT; path=/; domain=.cnn.com

X-Archive-Orig-date: Fri, 01 Jun 2001 04:51:29 GMT

X-Archive-Orig-content-type: text/html

X-Archive-Orig-last-modified: Fri, 01 Jun 2001 04:51:29 GMT

X-Archive-Orig-connection: close

X-Archive-Wayback-Perf: [IndexLoad: 677, IndexQueryTotal: 677, RobotsFetchTotal

: 3, RobotsRedis: 3, RobotsTotal: 3, Total: 974, WArcResource: 139]

Set-Cookie: wb_total_perf=974; Expires=Fri, 22-Aug-2014 17:24:11 GMT; Path=/web

/20010601045129/http://www.cnn.com/

X-Archive-Playback: 1

X-Page-Cache: MISS

https://web.archive.org/web/20010601045129/http://www.cnn.com/
https://web.archive.org/web/20010601045129/http://www.cnn.com/

22

Listing 2.3: Example Request Headers for interacting with a Memento TimeGate

GET /web/http://www.cnn.com/ HTTP/1.1

Host: web.archive.org

Accept: image/webp,*/*;q=0.8

Accept-Datetime: Wed, 19 Mar 2003 01:25:35 GMT

Accept-Encoding: gzip,deflate,sdch

Accept-Language: en-US,en;q=0.8

Referer: http://www.cnn.com/

User-Agent: Mozilla/5.0 (Macintosh; Intel Mac OS X 10_9_4) AppleWebKit/537.36 (

KHTML, like Gecko) Chrome/36.0.1985.143 Safari/537.36

Listing 2.4: Example Response Headers from a Memento TimeGate, corresponding

to the request from Listing 2.3

HTTP/1.1 302 Moved Temporarily

Connection: keep-alive

Content-Type: text/html

Date: Fri, 22 Aug 2014 17:27:57 GMT

Link: <http://www.cnn.com></http:>; rel="original", <http://web.archive.org/web

/timemap/link/http://www.cnn.com></http:>; rel="timemap"; type="application

/link-format", <http://web.archive.org/web/20000620180259/http://www.cnn.

com></http:>; rel="first memento"; datetime="Tue, 20 Jun 2000 18:02:59 GMT

", <http://web.archive.org/web/20030215012445/http://www.cnn.com></http:>;

rel="prev memento"; datetime="Sat, 15 Feb 2003 01:24:45 GMT", <http://web.

archive.org/web/20030320060210/http://www.cnn.com></http:>; rel="memento";

datetime="Thu, 20 Mar 2003 06:02:10 GMT", <http://web.archive.org/web

/20030321181645/http://www.cnn.com></http:>; rel="next memento"; datetime="

Fri, 21 Mar 2003 18:16:45 GMT", <http://web.archive.org/web/20140822104304/

http://www.cnn.com></http:>; rel="last memento"; datetime="Fri, 22 Aug 2014

10:43:04 GMT"

Location: http://web.archive.org/web/20030320060210/http://www4.cnn.com/

Server: Tengine/2.0.3

Set-Cookie: wb_total_perf=7554; Expires=Fri, 22-Aug-2014 17:28:57 GMT; Path=/

web/http://www.cnn.com/

Transfer-Encoding: chunked

Vary: accept-datetime

X-Archive-Playback: 0

X-Archive-Wayback-Perf: [IndexLoad: 4184, IndexQueryTotal: 4184,

RobotsFetchTotal: 1, RobotsRedis: 1, RobotsTotal: 1, Total: 7554]

X-Link-JSON: {"closest":{"wb_url":"http://web.archive.org/web/20030320060210/

http://www.cnn.com/","timestamp":"20030320060210","status":"200"}}

X-Page-Cache: MISS

23

FIG. 13: Visualization of mementos captured for a given resource at times t1, t2,

t3, and t4

the homepage of CNN, which changes more than once per hour. As shown in Fig-

ure 13, mementos can be captured at times t1 through t4 for each change to a

given resource, and then each memento is given a different URI-M for identifica-

tion. Dereferencing a URI-M returns a typical HTTP response containing an addi-

tional Memento-Datetime header indicating the datetime that the memento was

captured, as shown in Listing 2.2.

A TimeGate, denoted as URI-G, accepts a given datetime from a user and

a URI-R, and produces the best URI-M for that datetime. TimeGate resources

typically use the HTTP 302 status code to redirect a user from the TimeGate to

the best URI-M. TimeGates do not really have a representation themselves, either

responding with a 302 if they can successfully redirect the user, a 404 if the given

URI-R is not known to the TimeGate, or 400 if the given Accept-Datetime is in

the wrong format or otherwise unusable. The specification states that a TimeGate

must be consistent in its decision on the best URI-M, but it does not prescribe which

heuristics or algorithm should be used. We will explore, in Chapter 4, the options

for this algorithm and which ones are not useful for avoiding spoilers. In Chapter

24

Listing 2.5: Example TimeMap

<http://lostpedia.wikia.com/wiki/The_Numbers>; rel="original",

<http://web.archive.org/web/timemap/link/http://lostpedia.wikia.com/wiki/

The_Numbers>; rel="self"; type="application/link-format"; from="Wed, 31 Dec

2008 03:44:05 GMT"; until="Tue, 01 Jul 2014 04:48:08 GMT",

<http://web.archive.org/web/http://lostpedia.wikia.com/wiki/The_Numbers>; rel="

timegate",

<http://web.archive.org/web/20081231034405/http://lostpedia.wikia.com/wiki/

The_Numbers>; rel="first memento"; datetime="Wed, 31 Dec 2008 03:44:05 GMT",

<http://web.archive.org/web/20090119183329/http://lostpedia.wikia.com/wiki/

The_Numbers>; rel="memento"; datetime="Mon, 19 Jan 2009 18:33:29 GMT",

<http://web.archive.org/web/20090203143759/http://lostpedia.wikia.com/wiki/

The_Numbers>; rel="memento"; datetime="Tue, 03 Feb 2009 14:37:59 GMT",

<http://web.archive.org/web/20090204193446/http://lostpedia.wikia.com/wiki/

The_numbers>; rel="memento"; datetime="Wed, 04 Feb 2009 19:34:46 GMT",

....deletia

5, we will show how one of these heuristics can result in spoilers being encountered

when users may not expect them.

Finally, a TimeMap, denoted as URI-T, is a list of mementos for a given URI-

R. TimeMaps are ultimately used, in some form, by the TimeGate in its decision

making process. For this reason, TimeMaps are meant to be machine-consumable.

An example TimeMap is shown in Listing 2.5. It is important to note that a single

TimeMap is not the only definitive listing of mementos for a given resource. The

resource at a URI-T is only aware of some of the mementos available. Even though

Memento is an attempt to aggregate the mementos at different archives, due to the

open-world [84] nature of the web, there may be archives with mementos that are

not represented in a given TimeMap.

To recap, Memento works using a form of content negotiation called datetime

negotiation. Figure 14 shows the one of the patterns used by Memento to perform

datetime negotiation. In step 1, the Memento client sends a HEAD request to the

server containing the original resource (URI-R) to determine if the server response

contains an entry in the HTTP Link header for the TimeGate (URI-G) to be used

for that specific URI-R. If no TimeGate entry exists in the HTTP Link header, then

the client chooses a predefined default URI-G. In step 2, the Memento client contacts

the URI-G with the Accept-Datetime request header, specifying the datetime

desired by the user. The URI-G then uses this information to find the best URI-M

25

Original

Resource

(URI-R)

TimeGate

(URI-G)

Memento

(URI-M)

User running

Memento Client

CLIENT:
HEAD <URI-R>
Accept-Datetime: DDDDD

CLIENT:
GET <URI-G>
Accept-Datetime: DDDDD

SERVER:
HTTP/1.1 200 OK
Link: <URI-G, rel=timegate>

SERVER:
HTTP/1.1 302 Found
Location: <URI-M>
Vary: Accept-Datetime

CLIENT:
GET <URI-M>

SERVER:
HTTP/1.1 200 OK
Memento-Datetime: DDDDD

1

2

3

FIG. 14: General Memento pattern

for that datetime. Once a URI-M is chosen, the URI-G includes a Location header

in the HTTP response, along with the 302 redirect status code to redirect the client

to the URI-M. Finally, the Memento client visits the URI-M.

These steps can all be automated for the end user, reducing the experience to

a few mouse clicks to choose the desired datetime and visit the appropriate URI-

R. Figure 15 shows a screenshot of a user engaging in datetime negotiation with

the Memento Time Travel Chrome Extension [93], introduced earlier, referred to

hereafter as Memento For Chrome.

Web site owners by default support URI-Rs, the Memento project provides in-

frastructure for URI-Gs, but who maintains the URI-Ms? Web archives have tradi-

tionally filled this role.

26

FIG. 15: Screenshot of the Memento Time Travel Chrome Extension, a Memento

client

2.4 WEB ARCHIVING AND THE WAYBACK MACHINE

The Internet Archive, founded in 1996 by Brewster Kahle, became the first widely

known public web archive [99]. It continued the process of digital preservation into

the realm of the web. Thanks to their enterprising work, Tim Berners-Lee’s idea

of content negotiation in time is now possible. Web archives are where URI-Ms are

traditionally stored.

Web archives work by using a special program called a crawler, which starts

with a set of URIs (referred to as the link heap or the frontier), dereferences those

URIs, and archives the representations [67]. Additionally, a parser exists to pro-

cess the representation and determine if additional URIs exist in the representation

(i.e., links to other resources). For example, if a page being archived is HTML and

contains a tag , then the parser would ex-

tract http://example.com from this tag for inclusion onto the link heap. If

those additional URIs exist, then those URIs are added to the heap so the crawl can

continue. This way a web archive can acquire much of the World Wide Web. Figure

16 shows the simple architecture for such a crawler.

27

Link heap

1. http://en.wikipedia.org/wiki/Spoiler_(media)
2. http://en.wikipedia.org/wiki/Spoiler_(comics)
3. http://en.wikipedia.org/wiki/Spoiler_(film)
4. http://en.wikipedia.org/wiki/Spoiler_(politics)
5. http://en.wikipedia.org/wiki/Spoiler_Alert
6. http://en.wikipedia.org/wiki/Spoiler_Shield

 ...

crawler

World Wide Web

parser

HTML

from page

HTTP GET
http://en.wikipedia.org/wiki/Spoiler_(media)

Pull from link heap
http://en.wikipedia.org/wiki/Spoiler_(media)

1

2

3

4

5
Put discovered link onto link heap
http://en.wikipedia.org/wiki/Spoiler_Alert_(How_I_Met_Your_Mother)

Save HTML from
fetched page

Pass HTML from page to parser
to search for embedded resources
(links, images, etc.)

FIG. 16: Architecture for a simple web crawler

One of the benefits of web archiving is that these crawlers only dereference URIs

at specific points in time, leading us to view web resources as they change over time.

Because web archive crawlers revisit the same resource at different points in time,

we have snapshots of what pages looked like at these particular points. Web archives

are intended to be permanent records, so these snapshots last far longer than they do

in search engine caches [2] and thus are the most reliable way to access the previous

versions of general web pages.

We refer to these snapshots as mementos. As mentioned above, the Memento

project uses the Memento protocol to make these snapshots available easily, with-

out relying on a specific web archive. Because these mementos are only observed

at a given time, and not all pages contain a reliable Last-Modified header, Me-

mento uses the Memento-Datetime header to indicate when the archived copy

was actually observed.

28

It is worth discussing the differences between the Last-Modified and

Memento-Datetime headers for a moment. Last-Modified was originally intended

to indicate when the given web pages was last altered by the author. Unfortunately,

in the current web, the content of a given page may stay the same, even though the

surrounding data may not. Consider the case where an article on a news website

stays the same, but the site itself has changed their company banner. Now that the

company banner has been changed, the HTML tag in the page must change,

thereby resulting in a change to the Last-Modified date, even though the actual

content of the article has stayed the same. Consider another case whereby you are

creating a web archive that crawls other web archives. Your crawl will detect the

Last-Modified time of the mementos it collects, not the actual time that the

memento was archived, thus the Last-Modified date applies to the representa-

tion, but not the content. For these reasons, the Memento-Datetime header was

created to indicate when that particular representation was observed [72].

The Wayback Machine is a graphical utility for browsing and playing back

these mementos in the Internet Archive [27]. Figure 17a shows the front page of the

Wayback Machine, allowing a visitor to enter a URI for a given resource. Figure 17b

shows the calendar view of the mementos for a given resource, allowing the user to

select a date containing a blue circle to see what the memento looks like for that

given date [78]. Figure 17c shows the interface for a given memento, as captured.

Additionally, if the user clicks links within the memento, then the Wayback Machine

tries to follow those links within the archive, arriving at a date closest to the one

originally chosen [71]. The Wayback Machine also has Memento support [74].

In Chapters 5, 6, and 7 we will show that while the Wayback Machine and the

Internet Archive can be useful to avoiding spoilers, the mindist heuristic of using the

closest date of the memento to the date provided by the user is not reliable enough

to avoid spoilers entirely.

29

(a) Main Page of the Wayback Machine

(b) Calendar view of Mementos for the URI

http://lostpedia.wikia.com

(c) Viewing the specific memento of

http://lostpedia.wikia.com from February 14,

2014

FIG. 17: Wayback Machine Screenshots

30

TABLE 5: Some examples of wikitext compared to HTML

MediaWiki Syntax HTML Rendered

<p>

New paragraph text New paragraph text New paragraph text

</p>

’’’bold’’’ bold bold

’’italics’’ italics italics

=heading= <h1>heading</h1> heading
==heading== <h2>heading</h2> heading
* unordered list item

* unordered list item

unordered list item

unordered list item

• unordered list item

• unordered list item

ordered list item

ordered list item

ordered list item

ordered list item

1. ordered list item

2. ordered list item

[http://www.example.com

Example link]

<a href=

"http://www.example.com">

Example link

Example link

2.5 WIKIS, WEB ARCHIVES, AND MEMENTO

In 1994, Ward Cunningham developed software for his company’s web site that

consisted of a series of interconnected web pages each providing an easy editing inter-

face while also keeping a history of all edits [55]. He named the software WikiWiki-

Web, but the name has since been shortened to just wiki. Much like Cunningham’s

original wiki, each wiki provides the ability to easily add or edit a new page while

keeping a record of every previous revision of the given page.

Wikipedia, established in 2001, as an online encyclopedia, quickly became one of

the most popular sites on the Internet. By 2005, a study had shown that Wikipedia

was as accurate as Encyclopædia Britannica [31]. Wikia, established in 2004, provides

fan-based wikis from everything from television shows to books to video games. Wikia

has more than 100,000 wikis on various topics [57]. Both of these sites use the popular

wiki software package MediaWiki.

Wikis are popular due to the use of wiki syntax, which requires typing fewer

characters than HTML. Table 5 shows some examples of wiki syntax when compared

to HTML. Wiki pages, like the example shown in Figure 18 allow the user to quickly

31

FIG. 18: Example Wiki Page

create or edit a page using this wiki syntax, as shown in Figure 19.

For avoiding spoilers, however, we are interested in the wiki’s ability to display

previous versions of pages. A history page, shown in Figure 20 shows the previous

revisions for a given page, allowing editors to revert edits and view previous content,

as we see in Figure 21. Previous revisions of MediaWiki articles contain notices, like

the one shown in Figure 22.

Web archives do archive wiki pages, and previous mementos of wiki pages can be

viewed in Memento and the Wayback Machine as can be seen in Figure 23.

Wikis, and other Content Management Systems, store the actual time each revi-

sion of a page was created, making them of special interest to those trying to view

past versions of pages on the web. Typical web sites, such as news sites, do change

frequently, but have no public way of viewing previous revisions. Wikis allow users

access to all previous revisions. This makes it possible to measure the effectiveness

of the capture rate of a web archive against wikis.

Wikis are also effectively their own archives. This is important, because it means

that the Last-Modified datetime of each wiki revision is the datetime that it

was archived into the wiki. This means that the Last-Modified datetime of a

wiki revision is the same as its Memento-Datetime, meaning that each wiki

32

FIG. 19: Example Edit Page for a Wiki Article

FIG. 20: Example History Page for a Wiki Article

33

FIG. 21: Example of viewing an earlier revision of a Wiki Article

FIG. 22: Example of a revision notice, present at the top of old revisions

in MediaWiki

FIG. 23: Example of a wiki page viewed from the Wayback Machine

34

FIG. 24: Example Timeline Showing Captured Mementos of Wiki Edits

revision is a memento. When we consider an external archive to a wiki, we can

then compare the Memento-Datetime of the external archive’s mementos to the

Memento-Datetime of each wiki revision.

To differentiate between the two in this thesis, we will refer to the mementos for

a given wiki page that are stored and referenced by the wiki as revisions and the

mementos in a web archive that captures these revisions as mementos.

Figure 24 shows two timelines. The top, in green, denotes a wiki revision time-

line for a single wiki page. The bottom, in black, denotes a web archive timeline,

containing mementos captured at certain times. The diagonal arrows show the cap-

ture relationship between each memento and its associated wiki revision. The times

t1 through t15 at the bottom show the memento-datetimes for each revision and/or

memento.

From this figure, we see that memento mk was archived by a web archive at

datetime t14. We denote this as mk@t14. Likewise, rj−4@t2 denotes that revision rj−4

was archived by the wiki at time t2.

Also from this figure, we see that memento mk is a capture of rj. We denote this

as mk ≡ rj. Likewise, using this same figure, we see that memento mk−1 is a capture

35

of rj−4, or mk−1 ≡ rj−4.

We use the notation ≡ rather than = because web archives can not always capture

web pages as faithfully as desired, resulting in pages that are not quite the same as the

originals. That problem is referred to as temporal coherence [4], and solving it for

web archives is outside the scope of this thesis. We mention it here for completeness,

and also because our solution in Chapter 8 is able to partially address the problem

for wikis.

Using this notation for Figure 24, we see that mk@t14 ≡ rj@t13 and mk−1@t4 ≡

rj−2@t2. What about rj−1@t12, rj−2@t10, and rj−3@t7? Where are those revisions’

mementos in the archive? They do not exist altogether in the archive. These missed

updates are one of the reasons that wikis, rather than web archives, can be used to

more reliably avoid spoilers. In essence, web archives do not crawl sites with enough

frequency to acquire all revisions, and currently have no way of knowing when wikis

update.

Seeing as each wiki page has a URI, like

http://en.wikipedia.org/wiki/Abraham_Lincoln, and each wiki re-

vision has its own URI, like https://en.wikipedia.org/w/index.php?

title=Abraham_Lincoln&oldid=345783631, it is possible to use Memento

directly on the wiki rather than going through the web archive. In this case the

wiki page URI becomes the URI-R and the revision page URI becomes a URI-M.

Unfortunately, wikis have no native TimeGate to perform datetime negotiation, so

not all of the pieces are present to fully support Memento. In Chapter 8 we describe

our solution for bringing this functionality to MediaWiki.

2.6 THE NAÏVE SPOILER CONCEPT AND BRINGING IT ALL

TOGETHER

Figure 25 formalizes the progression of events for a fan wiki article. Like we saw

in Figure 24, we have two timelines on the bottom, representing the mementos and

wikis as before. To understand the spoiler problem, we introduce a third timeline,

consisting of the times events occur. For our purposes, events represent a release

at a specific datetime of a single episode in a series of episodic fiction (e.g., a book,

movie, or television episode).

So, using Figure 25, an event, such as ei−2@t2 leads a fan to write revision rj−2@t3

which is eventually archived as memento mk−2@t4. The same goes for the other

http://en.wikipedia.org/wiki/Abraham_Lincoln
https://en.wikipedia.org/w/index.php?title=Abraham_Lincoln&oldid=345783631
https://en.wikipedia.org/w/index.php?title=Abraham_Lincoln&oldid=345783631

36

FIG. 25: Each event can inspire a new wiki revision which may be captured as a

memento by a web archive

events, revisions, and mementos. This pattern was first noticed by Steiner with

Wikipedia related to news [95], where a temporary increase in the number of wiki

edits (revisions) would follow world events. For the moment we are ignoring missed

updates.

Figure 26 shows a graphical form for the näıve definition of a spoiler. Using this

figure, we see that a resource has revisions rj and rj+1; if event ei occurs at time t8

then revision rj+1 of that resource altered at a time greater than t8 is a spoiler. Any

revision of resource r altered at a time less than t8 is considered safe.

We call this the näıve spoiler concept because we are only using the memento-

datetime of the resource for comparison. We are not analyzing the contents of rj

to determine if the information contained within is not desired. We are making

the assumption that revision rj, existing after the event ei intentionally

or unintentionally contains information about event ei, which someone

concerned about spoilers is attempting to avoid.

Using this concept, we can derive the following formal relationships for episode

37

FIG. 26: Representation of a Näıve Spoiler Concept

ei and wiki revision rj:

trj ≥ tei =⇒ spoiler (1)

trj < tei =⇒ safe (2)

where trj corresponds to the memento-datetime of revision rj and tei corresponds to

the time of event ei. Table 6 summarizes the notation that we will use for revisions,

mementos, events, and datetimes throughout this paper.

This relationship holds for wiki revisions because the revision that existed just

prior to episode ei@ti is the page that would have existed at the time desired.

For our solution to avoid spoilers, we will use Memento. We will allow an end user

to submit two pieces of information to a Memento TimeGate: a datetime ta < ei@ti,

where ei@ti is the episode they have not viewed yet, and the URI-R of the resource

they wish to view. From the Memento TimeGate they then get the revision back

that existed at the time ta requested.

Wikis also do not rewrite their links, so links between wiki pages always refer to

the current URI-R. A Memento client is needed to redirect users who wish to use

38

TABLE 6: Notation used in this thesis

Notation Meaning

ei the ith episode in a series

rj the jth revision from a wiki

mk the kth memento from a web archive

tp the pth datetime in a series of datetimes

rj@tp the jth revision at datetime tp

mk@tp the kth memento at datetime tp

ei@tp the ith episode at datetime tp

mk ≡ rj the kth memento in the archive is a capture of revision rj

rj ≡ mk the jth revision in the wiki was captured as memento mk

trj the memento-datetime of wiki revision rj

tmk
the memento-datetime of memento mk

tei the datetime that event ei occurred

web time travel to the URI-Ms corresponding to their chosen datetime. This way

they stay in the past. This is why just visiting the history pages for a given wiki

article is not enough, we want to use Memento to help users stay in the time period

prior to the spoilers.

As we will show in chapters 4, 5, 6, and 7, the mementos captured by web archives

are very sparse and the TimeGate heuristic used for choosing the best memento for

the given datetime sometimes produces spoilers.

First, we will see how others have tried to address the spoiler problem.

39

CHAPTER 3

RELATED WORK

This chapter discusses those previous attempts to analyze spoilers, solve the prob-

lem of spoilers, or allow web time travel for MediaWiki. It builds on the narrative in

the previous chapter, because it, too, lays the groundwork for those who have come

before and why their solutions are useful or are not useful to our thesis.

3.1 EXISTING STUDIES ON SPOILERS

In 2011, Leavitt and Christenfeld conducted a study where 819 participants took

part in three experiments [54]. They were given stories to read, and for each story,

the researcher created a spoiler paragraph describing the story and revealing the

“outcome in a way that seemed inadvertent”. If a subject had already read a story,

their data for that story was excluded from the experiment. Each version of each

story was rated on a 10-point scale, where 10 was considered best. Unexpectedly, as

shown in Figure 27, slightly more participants preferred spoiled stories over unspoiled

stories. The study also indicated that readers are unable to compare spoiled and

unspoiled experiences and thus those who preferred spoiled stories may just prefer

spoilers in general.

Schirra, Sun, and Bently conducted a study of live-tweeting while the televi-

sion show Downton Abbey was airing [89]. Live-tweeting is a process whereby those

watching a television show episode discuss the show on a social media web site, such

as Twitter, while the episode is airing. This study consisted of a sample of 2,234

participants who live-tweeted during the highly anticipated third season premier and

beyond. The intention of the study was to determine how long users continued to

engage in live tweeting after the first episode. They discovered a complex social

process with its own evolving rules and customs. Semi-structured interviews were

conducted among some of the participants.

Downton Abbey represents a global problem because it airs in the United King-

dom months prior to the United States. Some of the United Kingdom live-tweeters

would hold off revealing spoilers, but still live-tweet during the American air dates

40

FIG. 27: Results of Leavitt and Christenfeld’s spoilers research, indicating a slight

preference for spoiled stories over unspoiled stories. (Error bars represent standard

errors)

so that they could vicariously share in the story reveals and plot information as their

Americans friends experienced it. Others would concoct methods to communicate

major plot twists, such as using ambiguous pronouns, without spoiling the story for

their friends. Because the broadcast can experience propagation and transmission

delays, some live-tweeters had the show spoiled by others because their friends’ ex-

perience differed by a matter of a minute or less, resulting in tweets that arrived to

the tweeter before they actually got to experience what the topic of the tweet. Some

live-tweeters would avoid social media altogether, finding that their experience could

still be spoiled by others. In one case, a live-tweeter stopped watching the show once

another twitter user spoiled it for them.

This is also consistent with a study conducted by Johns, also using interviews in

a small group of participants who also engaged in two screen viewing, a more generic

name for live-tweeting [43]. In this study Johns discovered that those who used

digital video recording (DVR) devices, such as the TiVO, would avoid social media

until they had watched their show. Also, some would eschew DVRs because they

41

wanted to participate in live-tweeting. This kind of frustration with spoilers indicates

a social problem that Leavitt and Christenfeld’s study attempted to indicate was not

an issue.

Because of the phenomenon of spoilers in social media, Boyd-Graber, Glasgow,

and Zajac conducted an evaluation of machine learning approaches to find spoilers in

social media posts [14]. They used classifiers on multiple sources to determine which

posts should be blocked. They determined that spoilers are identified by transitive

words, such as “kill” that affect the outcome of a plot because they link characters to

each other. They also mention that spoilers refer to events “later than the viewer’s

knowledge of the current work”, suggesting that any machine learning technique used

for avoiding spoilers in social media must be smarter than just blocking all posts

about a particular topic [32, 42]. Their classifiers were trained by crowdsourcing

and pulling in data from the Internet Movie Database1, TV Tropes2, and Episode

Guides3 online resources. By utilizing these additional sources, they were able to use

machine learning techniques to identify spoilers better than their predecessors, who

relied primarily on term matching and small data sets.

Leaver wrote an essay about The Tyranny of Digital Distance, further emphasiz-

ing the issue of television shows airing in one country months before another [53].

Leaver discusses the same issue experienced by the American Downton Abbey fans,

but this time with the television show Battlestar Galactica. Leaver mentions how

Battlestar Galactica aired in the United States six months or longer prior to airing in

Australia. He argues that the Internet provides near instantaneous communications

between fans of a television show, but the broadcast and distribution networks for

television content do not engage in a simultaneous release of content, resulting in

fans experiencing spoilers because other fans live in a different time zone, or in a

country where legal issues are delaying the release of content. He even mentions that

using news sources, such as Google News4 can result in spoilers for those who live in

a different country than the one creating the content. He also refutes the argument,

put forth by Leavitt and Christenfeld, that spoilers do not affect the enjoyment of

fiction, by mentioning that plot leaks for the Harry Potter novels were disastrous for

fans, resulting in public outcry [17].

1http://imdb.com
2http://tvtropes.org
3http://epguides.com
4http://news.google.com

42

Of particular interest to advertisers are the cases where viewers abandon shows,

or online content, due to spoilers. For this reason, there is an actual financial benefit

to content producers to remedy these problems [100].

3.2 NOTICES, BLURRING TEXT, AND OTHER TECHNICAL

ATTEMPTS AT SPOILER MANAGEMENT

There have been several attempts to address spoilers on the Web. Historically,

the solution has been to display a large spoiler alert notice on the page [41]. It

is expected that this notice will indemnify the site of any harm caused by visitors

proceeding to other pages on the site. In practice, it may cause visitors to leave the

site, resulting in lost advertising revenue. Figures 28a, 28b, and 28c show example

screen captures of these spoiler alerts.

Wikipedia used to include spoiler alerts on pages about fiction, but decided in

2007 that such notices fell into their “No disclaimers in articles” guideline [111].

These warnings do not merely apply to web site visitors. As shown in Figure 29,

some wikis even want editors to refrain from adding spoiler content for upcoming

episodes so that the majority can enjoy the fictional work as it is released.

The TV Tropes web site, as shown in Figure 30, displays text containing spoilers

as white text on white background, which can be highlighted by visitors that want

to view the hidden content.

Figure 31 shows the demonstration page of the Spoiler Alert JavaScript library.

[39] As one can see in the figure, the text and images that may contain spoilers

can be blurred, preventing visitors from viewing the information. Visitors who have

already seen the episode, read the book, or otherwise consumed the fiction they want

to read about can just click on the blurred area to remove the blur from the text or

image and view the information contained. If a visitor accidentally clicks a section

of blurred text, they can click it again to reactivate the blur.

Artjom Kurapov has created a draft HTML microformat that extends HTML

so that individual links and images can be annotated for level of violence, nudity,

obscenity, and spoilers [50]. Using these microformats, as shown in Listing 3.1, one

can annotate links and images with a value from 0 to 100 to indicate these levels

which could then be consumed by a browser for action. For example, if a browser

sees a value of 100 for data-xrate-nudity and the user has specified that they

want to avoid nudity, then the browser could block the image. In the same way, the

43

(a) Spoiler Alert Notice from the Wiki for the show Downton Abbey, captured on December

18, 2013 from http://downtonabbey.wikia.com/wiki/Downton_Abbey_Wiki

(b) Spoiler Alert Notice from a Deadline Hollywood article about the TV show Scandal,

captured on September 1, 2014 from http://deadline.com/2014/04/scandal-

spoiler-season-finale-abc-shonda-rhimes-716318/

(c) Spoiler Alert Notice from a YouTube video page discussing the season finale of the TV

show Pretty Little Liars, captured on September 1, 2014 from https://www.youtube.

com/watch?v=LkR2FhcbMTE

FIG. 28: Examples of Spoiler Notices on the Web

http://downtonabbey.wikia.com/wiki/Downton_Abbey_Wiki
http://deadline.com/2014/04/scandal-spoiler-season-finale-abc-shonda-rhimes-716318/
http://deadline.com/2014/04/scandal-spoiler-season-finale-abc-shonda-rhimes-716318/
https://www.youtube.com/watch?v=LkR2FhcbMTE
https://www.youtube.com/watch?v=LkR2FhcbMTE

44

FIG. 29: Guidance for wiki editors for the site A Wiki of Ice and Fire, indicating

that they should not include plot details for an upcoming book, avoiding the addition

of spoilers to existing pages

(a) The spoiler text has appears white on white background, hiding it from view

(b) The spoiler text can be highlighted by the user, revealing it

FIG. 30: TV Tropes web site examples of spoiler text shown as white text on white

background for the television show The Office

browser could block access to a spoiler.

These attempts at warning the user, no matter how good-intentioned, do not

actually meet our goals. We want to be able to browse the version of the page without

the spoiler data at all, which is not possible with these notices or even the blurred

text provided by the JavaScript library. Even knowing that the spoilers are there

can be dangerous, as the surrounding text can offer clues as to what information is

contained within. For example, the blurred text may talk about a character’s death,

but the reader may infer that the character is dead due to the fact that non-blurred

text all refers to the character in the past tense.

45

FIG. 31: Demonstration web page for the Spoiler Alert JavaScript library, showing

blurred text and images instead of spoiler information

Listing 3.1: Examples of xrate microformats for avoiding spoilers, pornography, and

violence in links and images

<a href="http://www.example.com/who-my-character-fell

-in-love-with" data-xrate-spoiler="100" data-xrate-

sex="20">link on information about this episode

<img src="http://www.example.com/picture-of-character

-finally-dying" data-xrate-spoiler="100" data-xrate

-violence="60" />

46

3.3 EXISTING SOFTWARE THAT ATTEMPTS TO HELP USERS

AVOID SPOILERS

Apps such as Tumblr Savior, Facebook Posts Filter, Open Tweet Filter, and

TweetDeck all have features that prevent the viewing of spoilers. These applications

block content as the user views it.

Tumblr Savior is an extension to the Google Chrome Browser that blocks entries

in a Tumblr user’s feed [97]. Figure 32a shows what Tumblr posts look like when

blocked with this tool. A user can click on the text “click to show” in order to view

the content that has been blocked. Figure 32b shows the content that was blocked in

this example. The white box outlined in red on the left containing an italic capital

letter T shows that this post was blocked by Tumblr Savior.

Facebook Posts Filter is an extension to the Google Chrome Browser that takes

keywords to specify which Facebook posts should be blocked [104]. Unlike Tumblr

Savior, the Facebook Posts Filter tool prevents the Facebook post from displaying

in the Facebook feed entirely, meaning a user is completely unaware of the post’s

existence. Figure 33a shows the configuration window for Facebook Posts Filter.

Facebook Posts Filter is configured from the browser.

Open Tweet Filter is another extension to the Google Chrome Browser that

takes keywords which specify which Tweets should be blocked from a Twitter feed

[98]. Just like the Facebook Posts Filter, it prevents the tweets from showing in the

Twitter feed entirely. Figure 33b shows its configuration window, displayed on top

of a twitter feed. Open Tweet Filter embeds itself into the Twitter web site and is

configured based on a menu option chosen from one’s Twitter home page.

TweetDeck is an application that can be installed on mobile devices and can also

be accessed as a web application as shown in Figure 36a. It allows a user to specify

a series of strings as shown in Figure 36b. If any tweets exist in the user’s Twitter

feed that contain these strings, then those tweets will no longer appear in that user’s

twitter feed. The application is rather simplistic in its string matching, blocking

whole tweets based on a simple equality metric, rather than determining if the tweet

itself has anything to do with the television show or book trying to be avoided.

Spoiler Shield [81] works with Facebook and Twitter to block posts that contain

spoilers. Figure 34 shows Spoiler Shield blocking posts about Game of Thrones

on Facebook. Spoiler Shield allows a user to select certain television shows, sports

teams, and celebrities to avoid. Figure 35a shows the configuration screen indicating

47

(a) Demonstration of content blocked by Tumblr Savior on the Tumblr Web Site

(b) Demonstration of content that had been blocked by Tumblr Savior

FIG. 32: Examples of Tumblr Savior

48

(a) Demonstration of configuration page for Facebook Posts Filter

(b) Demonstration of configuration page for Open Tweet Filter

FIG. 33: Examples of configuration screens for social media filter programs that

can be used to block spoilers entirely

49

FIG. 34: Spoiler Shield For Chrome posts about Game of Thrones on Facebook

which categories can be chosen. Once a category is chosen, as shown in Figure 35b,

we can select specific items, like the television shows, to avoid. Even though spoiler

shield is still using some measure of text matching, it appears to be a little bit more

intelligent than the other blocking software discussed so far, providing coverage for

an entire television show’s terms, rather than forcing the user to specify them all

themselves.

The Netflix web site5 offers the Netflix Spoiler Foiler, which masks entries in a

user’s Twitter feed for the TV shows House of Cards [76] and Breaking Bad [77]. This

application, seen in Figure 37a, is heralded as an advancement in spoiler protection

[18], but does not always work. Figure 37b shows the application blocking a tweet

potentially containing a spoiler for the television show House of Cards, but as Figure

37c shows, the actual tweet contained nothing about the television show House of

Cards, instead espoused political commentary.

All of these applications provide the ability to block content from a user’s social

media feed. This is not really the problem we are trying to solve. We want to still

5http://www.netflix.com

50

(a)

(b)

FIG. 35: Screenshots of Spoiler Shield configuration screens

51

(a) The web interface for the TweetDeck web application

(b) The configuration screen for the TweetDeck web application, showing an attempt at

avoiding spoilers for Game of Thrones and Downton Abbey

FIG. 36: Screenshots of the TweetDeck application

52

(a) Main page of the Netflix House of Cards Spoiler Foiler web application

(b) Example of the Netflix House of Cards Spoiler Foiler web application blocking a tweet

containing a perceived spoiler

(c) Example of the tweet blocked by the House of Cards Spoiler Foiler web application,

which does not contain a spoiler for House of Cards

FIG. 37: Screenshots of two Spoiler Foiler web applications created by Netflix

53

allow users to read about their fiction without getting spoiler content. Using these

applications would prevent the user from getting any information about their fiction.

Also, we are focusing on wikis rather than social media.

3.4 EXISTING STUDIES OF WIKIS

With the introduction of Wikipedia, a lot of interest was generated on the use-

fulness of wikis. Most of the research has centered on Wikipedia, as it is the largest

wiki ever maintained.

Giles discusses an “expert-led investigation carried out by Nature” [31] in which

articles from both Wikipedia and Encyclopædia Britannica were peer reviewed by

experts. These experts were not told which source an article came from. Surprising

at the time, they found that Wikipedia’s accuracy rate was as high as the venerable

Britannica. Though there is controversy of the types of topics included in Wikipedia,

such as theories not fully explored or news stories that have not been resolved, this

type of currency is also deemed to be one of Wikipedia’s strengths. One of the rec-

ommendations that came out of this study was that experts contribute to Wikipedia,

rather than trying to dissuade others from using it. By 2011, the inclusion of experts

is still controversial [52].

This concern has spawned additional studies on the quality of articles in

Wikipedia. Hu, Lim, Sun, et al. came up with several metrics for automatically

evaluating Wikipedia articles, with the goal being to score each article in some way

for the consumer [38]. They discovered that article length is a metric of quality, but

better models exist, such as ProbReview, which assigns probabilities to each word

having been reviewed (and maintained) by previous editors.

Almedia, Mozafari, and Cho produced one of the first studies of the behavior of

contributors to Wikipedia [5]. The authors discover that there are distinct groups

of Wikipedia contributors. One group, consisting of about 5000 contributors, con-

tributes the majority of articles. They also determined that 70% of Wikipedia con-

tributors just revise articles rather than creating new ones, thus the burden of making

new articles falls to the other 30% of contributors. They suggest that as the num-

ber of articles increase, the contributors’ attention is split amongst more and more

content, resulting in the larger number of revising contributors rather than article

creators.

Vong, Lim, Sun, et al. have developed models of evaluating Wikipedia articles

54

so they can be flagged as controversial [105]. This way editors can focus their ef-

forts on resolving controversies in particular articles, but also allowing others to see

which controversial topics in Wikipedia are indicative of the real world controversies,

allowing for further areas of study.

In 2010, Lucassen and Schraggen again evaluated the “trustworthiness” of

Wikipedia articles [56]. They discuss how, by 2010, Wikipedia contains an Edi-

torial Team that evaluates article quality and flags those articles that are considered

to be of good quality and those that need work. Their contribution is a series of fea-

tures that indicate how Wikipedia users evaluate articles. These features can then

be used in the future for further evaluation by experts.

We highlight these studies to indicate that there has been a lot of study on what

Wikipedia can be. The fan-based wikis in which we are attempting to avoid spoilers

tend to be central hubs of activity for those seeking to find information on their

favorite fiction. Wikipedia has undergone an evolution from completely closed to

completely open to now having recommendations of articles by committee. The wiki

fan sites that we have reviewed are in various stages of this evolution, depending on

how large a user base they have.

Additionally, there has been some effort of preserving wiki pages outside of the

Internet Archive. Popitsch, Mosser, and Phillipp have created the UROBE project for

archiving wiki representations in a generic format that can then be reconstituted into

many other formats for data analysis [82]. Interestingly, they anticipate attaching

their process to Memento at some point later in their research so that past versions

of their archives can be accessed by datetime. As of the paper’s publication, they

were only preserving the content of wikis externally, albeit via a different method.

3.5 EXISTING SOFTWARE THAT PROVIDES PAST VERSIONS

OF MEDIAWIKI PAGES

The Memento Project has provided support for time travel capability with

Wikipedia [102], in the form of a Wikipedia Proxy. Figure 38 shows the use of

proxy providing TimeGate functionality because Wikipedia does not natively sup-

port it. A Memento client, such as the Memento for Chrome Extension, allows the

user to to query the proxy as a TimeGate. The proxy then queries Wikipedia’s web

Application Programming Interface (API) to find the best memento for a given date-

time. Even though this proxy exists, it is not optimal. It adds an additional HTTP

55

FIG. 38: High level process for the use of the Memento Wikipedia Proxy

request-response step. It also does not address our spoiler problem for all wikis. The

proxy is customized for Wikipedia. Additional proxies would need to be developed

for other wiki sites in order to use this solution.

Interest in time travel capability does exist in the MediaWiki community, as is

evidenced by the Time Machine Extension [88]. The Time Machine Extension, shown

in Figure 39 allows one to choose a date in the past to browse wiki pages. It stores

the date selected in a cookie and the user must delete the cookies from their web

browser in order to view the current version of wiki pages again. Though it could

be used to avoid spoilers in wikis, it only works within a single wiki and provides no

access to external sites or archives.

The BackwardsTimeTravelExtension provides similar capability, but is produced

by a different author [13]. This extension works by supplying the date as an extra

parameter to the URI. For example, if one wanted to browse the wiki on the date of

April 24, 2010 at 1:00 pm, one would add the text &epoch=20100424130000 to

the URI in the browser’s address bar. The goal of the BackwardsTimeTravelExten-

sion is to faithfully reproduce a previous version of a MediaWiki page, matching the

dates of the revisions of the images and other embedded content to the dates of the

revisions of the main page. This is a separate, but related area of study referred to

56

FIG. 39: The operations screen for the MediaWiki Time Machine extension

as temporal coherence. Like the Time Machine extension, it can be used to avoid

spoilers in wikis, but does not provide seamless transition between wikis and the rest

of the web.

Parsoid offers the ability to turn MediaWiki syntax into HTML documents while

also attempting to preserve images, stylesheets, and other embedded content [26].

Figure 40 is a design diagram for Parsoid. It does not provide real-time access to all

of the revisions of a MediaWiki page, but could conceivably be a way to archive and

preserve past revisions of MediaWiki pages for posterity.

The Collection extension, is used to preserve wiki pages, with the intent of ren-

dering them with the application mwlib [90] and preserving them in book form for

physical reproduction with a service like PediaPress [79]. Figure 41a shows the con-

figuration screen for the Collection extension, allowing a user to select certain articles

from a wiki for inclusion. Figure 41b shows examples of books printed from Pedi-

aPress after the Collection extension is used to curate a wiki. This extension only

works with the version of the page captured when the book is created by a user and

so does not offer real-time access to all of the revisions of a MediaWiki page. It

is designed as an archiving tool, but not does not provide a classification scheme,

cataloguing, or finding aids for acquiring these past revisions.

One could manually perform datetime negotiation using MediaWiki’s history

pages, but this is very time consuming for the individual.

As noted above, one could use the MediaWiki API to perform the functions of

Memento, but only a MediaWiki-aware client could construct URIs from the data

returned from the API, which would not allow a user to seamlessly avoid spoilers on

both their fan wiki and the web at large.

57

FIG. 40: Conception Diagram of the Parsoid MediaWiki application (image created

by J. D. Forrester, Gabriel Wicke, and Trevor Parscal)

It is not merely useful to stay within a wiki to avoid spoilers, hence we also want

the user to have the ability to utilize Memento for the rest of the web as well. Just

last year, the television show Big Bang Theory aired an episode that actually revealed

the ending to an episode of The Walking Dead [44]. If a user was a fan of both series,

they may want to walk between both fan wikis to avoid spoilers while still reading

about these shows. This is not possible with an extension that merely stays within

the wiki. A lower-level protocol must be invoked, like that provided by Memento, to

provide the seamless transition between both resources at the same datetime.

3.6 SUMMARY

In this section, we discussed others’ attempts at identifying, analyzing, and tack-

ling the spoiler problem. We have also looked at how others have studied wikis in

the past and how previous software for wikis could have been used to address the

spoiler problem. That said, we are looking for a more holistic solution that can

apply across wikis and the entire web, thus we come back to Memento and how it

can be used to select a specific datetime for avoiding spoilers. As we will see in the

58

next chapter, even Memento’s ability to provide us a spoiler-free page is not without

complications.

59

(a) The operations screen for the MediaWiki Collection extension

(b) Examples of books produced by PediaPress using the MediaWiki

Collection extension

FIG. 41: The use and products of the MediaWiki Collection extension

60

CHAPTER 4

SURVEY OF TIMEGATE HEURISTICS

When the user selects a desired datetime prior to the episode they have not yet

seen, the TimeGate is what determines which memento they are redirected to. In the

case of spoilers, the wrong heuristic can redirect the user to a spoiler even though

they requested a datetime prior to the event that would have caused the spoiler.

Because of this possibility, we identify here several possible heuristics for use with

Memento TimeGates and why some are preferred over others when avoiding spoilers.

4.1 GENERIC TIMEGATE HEURISTIC CONSIDERATIONS

Memento TimeGates accept two arguments from the user: desired datetime (spec-

ified in the Accept-Datetime header) and a URI-R; and they return the best URI-M

using some heuristic. If we let R represent a URI-R, M represent a URI-M and t

represent a desired datetime, then a TimeGate heuristic can be expressed mathe-

matically [4] as:

M = H(R, t) (3)

RFC 7089 leaves the heuristic of finding the best URI-M up to the implementor,

stating that “the exact nature of the selection algorithm is at the server’s discretion

but is intended to be consistent” [101]. For avoiding spoilers, we need to consider

the different heuristics and the cases where some are superior to others. For this, we

modify our mathematical nomenclature from (3) as follows:

M = Gh(R, ta) (4)

where h is the heuristic chosen for use, and we use the term ta as the desired datetime

to be consistent with the rest of this thesis.

Ideally, every URI-R has a corresponding URI-T referring to a TimeMap listing

every URI-M and associated datetime that has been captured for this URI-R. What-

ever the h chosen for use, a TimeMap is still involved in the decision making process,

even though the user is not aware of it. A simplistic generic algorithm for Gh from

Equation (4) is listed in Algorithm 1. The goal is to find the memento with the

61

Gh(R, ta)

1 T = GetTimeMap(R)

2 if T == NULL

3 error “no timeMap for R”

4 return NULL

5 m = GetNextMementoFromTimeMap(T)

6 mincost = ∞

7 bestm = “′′

8 while m 6= NULL

// loop through the TimeMap until we run out of mementos

9 m.cost = C(m, ta, bL, bu)

10 if m.cost < mincost

11 mincost = m.cost

12 bestm = m

13 m = GetNextMementoFromTimeMap(T)

14 return bestm

Algorithm 1: Generic algorithm for a TimeGate

lowest cost relationship to the desired datetime ta. The different heuristics h that we

will discuss in subsequent sections indicate the type of relationship that we prefer to

evaluate.

This algorithm is relatively simple. On line 1, it acquires the TimeMap for R.

In this case a TimeMap is the list of all mementos for a given URI-R. On line 2, it

checks for the existence of a TimeMap for R. If none exists, then it returns with

an error, continuing otherwise. On line 5, it acquires the first memento from a

generator function GetNextMementoFromTimeMap, it is assumed that Get-

NextMementoFromTimeMap returns each memento from a TimeMap in the

order of oldest to newest. On line 8, it begins the loop through all of the memen-

tos in the TimeMap. It uses the cost function C on line 9 to compute the cost of

memento m in comparison to desired datetime ta. We will discuss C below. The

comparison on line 10 just determines if we have found a minimum cost that is

62

C(m, ta, bL, bu) =















∞ if ¬(bL ≤ mT ≤ bu)

0 if (mT = ta) ∧ (bL ≤ mT ≤ bu)

|ta −mT | if (mT < ta ∨mT > t) ∧ (bL ≤ mT ≤ bu)

(5)

lower than a previously encountered minimum; if so, we store it as the new min-

imum. Line 13 gets a memento for the next run. By line 14, we have found the

memento with the minimum cost and will return it. The returned memento contains

attributes that can be accessed, such as bestm.uri for URI-M and bestm.datetime

for Memento-Datetime. Assuming C and GetNextMementoFromTimeMap can

run in constant time, this algorithm runs in O(n) time, where n is the number of

mementos in the TimeMap.

Our cost function C uses m as the memento to be evaluated, ta as the desired

datetime, bL as the lower bound datetime for the mementos under consideration,

and bu as the upper bound datetime for the mementos under consideration. It is the

values of each of these parameters that determines, in most cases, which Gh is used.

Also, under consideration in each case is also mT for the Memento-Datetime of

the memento, and mL as the Last-Modified datetime of the memento, if it exists.

Equation (5) shows this cost function. This equation has three cases.

In the first case, if the memento datetime mT exists outside the bounds of bL and

bu, then we do not want it to be considered, hence we make the cost ∞. Line 10 of

Algorithm 1 shows the comparison for this case.

The second case is simple. If, per chance, the desired datetime t matches the

memento-datetime mT under consideration, and we fall within the range of bL . . . bu,

return 0. It is a simple, no cost case because the user is getting exactly what they

asked for.

Finally, if all other cases have not been met, we use the absolute value of the

difference between the memento-datetime mT and the desired datetime ta as the

cost.

In the sections below, we discuss how the parameters of this cost function can

be altered for each TimeGate heuristic, producing different results. These heuristics

are important to avoiding spoilers because some heuristics do not reliably protect us

from spoilers.

63

FIG. 42: Demonstration of the mindist heuristic, in this case m2@t7 is chosen

because it is closest to ta

FIG. 43: Demonstration of the mindist heuristic; in this case m3@t10 is chosen

because it is closest to ta

4.2 TIMEGATE HEURISTICS UNDER CONSIDERATION

This section discusses those heuristics that determine the best memento to be

returned. This not a complete list, as new heuristics are being explored as new use

cases for Memento arise, but it provides us with a list of heuristics to compare and

contrast for use in avoiding spoilers.

Note that the choices made by these heuristics are based on structured metadata

as opposed to a review of content, quality of the memento, or other factors.

4.2.1 CLOSEST (MINDIST)

Closest, or mindist, finds the closest memento to the given desired datetime t.

Closest uses the cost function, as shown in Equation (6). We used the value of ∞

for the parameters bL and bu because we want to evaluate the cost across the entire

64

TimeMap.

C(m, ta,∞,∞) (6)

Figure 42 shows the selected memento from an example TimeMap of four me-

mentos. In this case t7 has the minimum distance from desired datetime ta@t8 and

hence Gmindist(R, t8) = m2@t7 is the memento returned using the mindist heuristic.

Alternatively, Figure 43 shows the selected memento using the same example

TimeMap. In this case ta ≡ t9. This results in Gmindist(R, t9) = m3 because m3@t10

is the closest memento to t9.

Mindist is best used for web archives, which are typically sparse, meaning they

may have missed many revisions of a page. In this case, a user would want the closest

memento they can get to the date they are requesting because the dates of capture

may be wildly distant from one another.

Consider the example where a memento was captured from a URI-R on September

23, 2004 and a second was captured on October 7, 2009. Now, let the user choose a

desired datetime of October 1, 2009. Because we do not have very many mementos

to choose from, the October 7, 2009 memento is best in this case because it is most

likely to represent the general time period the end user was looking for.

Because of the fact that it may choose mementos from a date after the desired

datetime, mindist is not a reliable heuristic for avoiding spoilers.

4.2.2 CLOSEST, BUT NOT AFTER (MINPAST)

Closest, but not after, which we will refer to as minpast, finds the closest me-

mento to the desired datetime ta, but without going over ta.

To achieve minpast, one alters the cost function C as shown in Equation (7). The

values of m and ta are unchanged, but we do provide the upper bound for value bu

as ta and leave the lower bound bL set to ∞ as in mindist.

C(m, ta,∞, ta) (7)

This forces the cost function to return ∞ for any memento evaluated with a datetime

after ta, meaning that even if a memento after ta has the minimum distance, it will

still not be considered.

Figure 44 shows an example TimeMap with four mementos. The value of ta

is set to t8. In this case m2@t7 is the closest memento that does exceed t8, so

Gminpast(R, t8) = m2@t7.

65

FIG. 44: Demonstration of the minpast heuristic, in this case m2@t7 is chosen

because it is closest, but not greater than,ta

FIG. 45: Demonstration of the minpast heuristic, in this case m2@t7 is still chosen

because it is closest, but not greater than, ta, even through m3@t10 has the minimum

distance

Figure 45 shows the same example TimeMap. In this case, the value of ta is set

to t9, resulting in a different effect than mindist. Here we get the same result as

the last example: Gminpast(R, t9) = m2@t7. Even though m3@t10 is closer to t9, t10

exceeds t9, so it cannot be considered by minpast.

Minpast is best used for archives that are abundant with mementos. Ideally,

minpast should be used if every revision of a resource has been archived, as with wikis.

For wikis, the value of desired datetime ta corresponds to a revision that actually

existed at the time of ta. For web archives that are not abundant, information may

be lost because they may not have captured all revisions.

Consider the example with the following mementos from a URI-R: April 20, 2010;

April 21, 2010; and April 24, 2010. With a wiki, let each of these mementos be a

page revision. If we let the value of the desired datetime be April 23, 2010, then we

know that the memento from April 21, 2010 is the actual revision of the page as it

66

looked on April 23, 2010, because there were no changes until April 24.

Now consider the same mementos, but the resource is not a wiki, so these memen-

tos are not page revisions, but captures in a web archive. If we still use our desired

datetime of April 23, 2010, and we use the minpast heuristic, then we will get the

memento from April 21, 2010; but we will not know if we missed a useful revision on

April 23 or April 22. It might be that April 24 is a better match depending on what

information the user was searching for.

Also, consider the case, as mentioned in the last section, where the distance

between ta and the closest memento produced by minpast is vast. Is minpast best

in that case? If we do not know the state of the resource at the time of ta, as in web

archives, then it is more likely that the user will benefit from mindist than minpast

because they will get a memento close to the time period they wish to view.

Minpast can be used to avoid spoilers. If we select a value for ta prior to the

event we want to avoid, then minpast will not find any mementos after ta. It is best

used for wikis where we have access to all revisions because we can definitively state

that the memento returned is the page as it existed at ta.

67

FIG. 46: Demonstration of the minfutr heuristic, in this case m3@t10 is chosen

because it is closest, but not less than, ta

FIG. 47: Demonstration of the minfutr heuristic, in this case m3@t10 is still chosen

because it is closest, but not less than, ta, even through m3@t7 has the minimum

distance

68

4.2.3 CLOSEST, BUT NOT BEFORE (MINFUTR)

Closest, but not before, which we refer to as minfutr, finds the closest memento

to the desired datetime t, but without considering any datetimes prior to t. It is the

opposite of minpast.

To achieve minfutr, the cost function is constructed as shown in Equation (8).

The values of m and ta are unchanged, but we provide a lower bound for the value

of bL as ta and leave the upper bound bu set to ∞ as in mindist.

C(m, ta, ta,∞) (8)

This forces the cost function to return ∞ or an undefined value for any memento

evaluated with a datetime before ta, meaning that even if a memento before ta has

the minimum distance, it will still not be considered.

Figure 46 shows which memento is chosen for ta = t9. In this case

Gminfutr(R, t9) = m3@t10 because m3 is the closest memento to ta that does not

precede ta. This result is no different than mindist.

Figure 47 shows what happens when we change the value of ta to t8. Here we

see Gminfutr(R, t8) = m3@t10 because, even though m2@t7 is closer to ta@t8, it comes

before t8 and thus cannot be considered by minfutr.

Like minpast, minfutr is best used with archives abundant in mementos. Minfutr

also works best with wikis because one can use it to find the first occurrence of an

article after a given date. Consider the opposite of the spoiler problem, where one

wants to find the first published representation of an article after the episode has

been released. In the case of the wiki, one can reliably answer this request. In the

case of a sparse web archive, one can possible get a memento that is years away from

the desired datetime, and not reliably find the first published representation.

Minfutr, in an abundant web archive, can also be used to determine the first

reported case of an event, such as a news story (e.g., first memento of a post-9/11

world) or a case of disease (e.g., first reported complaint of seasonal flu). Minfutr can

be used to backtrack an event to find the source of information, allowing researchers

to study the flow of information through the web over time. Of course, such research

is again only possible in an abundant archive, or a content management system that

preserves past representations, such as a wiki.

Minfutr, by its very nature, cannot be used to avoid spoilers. It is best for those

looking for the first incident of spoilers, or for the reaction after some event.

69

4.2.4 CLOSEST, BUT BOUNDED (MINNEAR)

Minnear is a generic use of the bounds provided by bL and bu. It is possible that

these bounds may be placed for machine performance reasons or due to connectivity

problems for certain URIs in the TimeMap. Whatever the reason, minnear merely

places bounds around the mementos to be considered, much like minpast and minfutr,

but for bounded values other than ta.

Minnear uses the cost function in its pure form, as shown in Equation (9).

C(m, ta, bL, bu) (9)

Depending on the values of bL and bu, minnear still falls back to the minimum

distance metric for determining the best memento, and hence may provide spoilers

for a given value of ta, making it unrealiable for avoiding them.

Minnear presents an opportunity for additional heuristics to be generated from

these parameters, each for special cases. For this reason, we will not go into more

detail with minnear at this time, because it is an opportunity for future work.

4.2.5 EQUAL, BUT NOT AFTER (EQPAST)

Equal, but not after, referred to as eqpast, is like minpast, but the exception is

that the content of the mementos is considered in the decision-making process.

If two mementos exist on either site of the desired datetime ta, then this heuristic

would compare their content, and, if equal, choose the one from the past.

An example algorithm for eqpast is shown in Algorithm 2. This heuristic uses

minpast and minfutr to find the mementos on either side of ta, then it determines

if their content matches. If their content is a match, then it returns the one given

by minpast. If they do not match, then it falls back to mindist. This algorithm

uses minpast and minfutr which utilize the cost function on all mementos in the

TimeMap and hence run in O(n) time, but we also need to perform equality on two

representations, consisting of c characters (or bytes); and must iterate through all of

those characters to determine equality. Thus, the running time is O(n+ c).

Eqpast is currently used for studies in evaluating temporal coherence, in which

archived pages contain embedded resources whose archived mementos must also

match the same time period as the memento that embedded them. If we know

that the representation on either side of t is the same, then one can improve the

performance of web archives by only storing one of each resource.

70

Geqpast(R, ta)

1 T = GetTimeMap(R)

2 if T == NULL

3 error “no timeMap for R”

4 return NULL

5 leftm = Hminpast(R,t)

6 rightm = Hminfutr(R,t)

7 if leftm.content == rightm.content

8 return leftm

9 return Hmindist(R, t)

Algorithm 2: Example eqpast algorithm for TimeGate

4.2.6 EQUAL, BUT NOT BEFORE (EQFUTR)

Equal, but not before, referred to as eqfutr is like eqpast, but it returns the

memento greater than the desired time t.

Algorithm 3 shows an example of how this heuristic might be implemented. Like

eqpast, it also uses minpast and minfutr to find the mementos on either side of t,

and then determines if their content matches. If they match, then it returns the

memento given by minfutr. If they do not, it falls back to mindist. The worst case

running time is still O(n+ c) just like eqpast.

Eqfutr is also used to evaluate temporal coherence and is also used to study

methods of improving the performance of web archives.

4.2.7 SIMILAR, BUT NOT AFTER (SIMPAST)

Similar, but not after, referred to as simpast, is like eqpast, but instead of

comparing the content of each memento for complete equality a similarity function is

used. The result of the similarity function is evaluated against some threshold value

indicating the level of acceptable similarity between the two mementos.

Algorithm 4 shows an example algorithm for simpast. The function Similarity

provides a similarity measure for both mementos on either site of the desired datetime

71

Geqfutr(R, t)

1 T = GetTimeMap(R)

2 if T == NULL

3 error “no timeMap for R”

4 return NULL

5 leftm = Hminpast(R,t)

6 rightm = Hminfutr(R,t)

7 if leftm.content == rightm.content

8 return rightm

9 return Hmindist(R, t)

Algorithm 3: Example eqfutr algorithm for TimeGate

t. If the similarity measure returned is less than or equal to the threshold value, then

the one with a datettime less than t is chosen. If the similarity measure returned is

greater, then we fall back to mindist.

It is difficult to determine specifically what the worst case running time is for

this algorithm, because it depends on the worst case running time of the similarity

function. The common similarity function shown in equation 10 is called cosine

similarity [16].

Cosine(D,Q) =

t
∑

j=1

dj · qj

√

√

√

√

t
∑

j=1

d2j ·

t
∑

j=1

q2j

(10)

Here, D and Q both represent the documents to be compared. The terms dj and

qj represent the corresponding features (such as the occurrence of each word) to

be compared between the two documents. If we consider f to be the number of

features compared between the documents, and we consider a computer program

executing this formula, then we would likely have a loop to calculate the numerator,

executing in time O(f) and another series of loops to calculate the denominator, also

executing in time O(f), leading to an overall worst case execution time of O(f) for

this similarity function.

72

Hsimpast(R, t)

1 T = GetTimeMap(R)

2 if T == NULL

3 error ”no timeMap for R”

4 return NULL

5 leftm = Hminpast(R,t)

6 rightm = Hminfutr(R,t)

7 if SIMILARITY(leftm.content ,rightm.content) ≤threshold

8 return left

9 return Hmindist(R, t)

Algorithm 4: Example simpast algorithm for TimeGate

So, if it takes O(n) to execute minpast and minfutr, and O(f) to execute the sim-

ilarity measure, then, if we use cosine similarity, then we get a worst-case execution

time of O(n + f). Furthermore, if each word in the document is a feature, then it

is possible that more words exist in the document than there are mementos in the

TimeMap, leading to O(f) as the worst case running time.

Using alternative similarity measures often use at least a subset of the words in

the document, still leading to a running time of O(n+ f) or O(f).

It is for this reason that running simpast is an expensive operation and is only

used in research applications.

4.2.8 SIMILAR, BUT NOT BEFORE (SIMFUTR)

Similar, but not before, referred to as simfutr is just like simpast, except that

the memento with a datetime greater than the desired datetime t is chosen if the two

mementos have a similarity score less than the threshold value.

Algorithm 5 shows an example algorithm for simfutr. It is just like simpast until

line 8, where the result of minfutr is used instead of the result of minpast. Because

we are using a similarity measure, just like with simpast, the best case running time

is O(f + n), making it just as expensive as simpast, and more expensive than any

other algorithm discussed.

73

Hsimfutr(R, t)

1 T = GetTimeMap(R)

2 if T == NULL

3 error ”no timeMap for R”

4 return NULL

5 leftm = Hminpast(R,t)

6 rightm = Hminfutr(R,t)

7 if SIMILARITY(leftm.content ,rightm.content) ≤threshold

8 return right

9 return Hmindist(R, t)

Algorithm 5: Example simfutr algorithm for TimeGate

4.3 CONCLUSIONS FOR AVOIDING SPOILERS

Now that we have evaluated the heuristics and example algorithms for TimeGates,

we can determine which are most useful for avoiding spoilers.

Table 7 shows a listing of each heuristic encountered and some of the information

we have discussed. Each heuristic has been listed for comparison. As we can see

eqfutr, eqpast, simfutr, and simpast all require the use of the content of the memento

before making a decision.

Those using algorithm 1 only have a running time of O(n). The eqfutr, eqpast,

simfutr, and simpast heuristics are more expensive because they require comparing

two documents. It is probable that eqfutr and eqpast have a slight edge over simfutr

and simpast because they compare equality of strings only, whereas simfutr and

simpast require a features comparison.

We have also evaluated them for their ability to reliably avoid spoilers. To reliably

avoid spoilers, a heuristic must never return a memento after the desired datetime

ta.

Mindist is not spoiler safe. As noted before, a user can request a memento

at desired datetime t and get a memento that exists after ta because the distance

between ta and its memento-datetime is shorter than that of a memento prior to ta.

74

TABLE 7: Summary of TimeGate Heuristics

Heuristic Uses

cost

metric

Uses

content

of mementos

Potential

running time

Reliably

avoids spoil-

ers?

mindist X O(n) no

minpast X O(n) yes

minfutr X O(n) no

minnear X O(n) no

eqfutr X X O(n+ c) no

eqpast X X O(n+ c) no

simfutr X X O(f + n) no

simpast X X O(f + n) no

It is possible that spoilers can be avoided, but this is largely dependent on how often

mementos are captured for the resource.

Minpast is spoiler safe. As noted above, minpast uses ta as an upper bound on

which mementos to consider when returning one. This means that any memento with

a datetime after ta will automatically receive a score of ∞ or undefined, removing

them from consideration.

Minfutr is not spoiler safe. By very definition, it uses ta as a lower bound on

which mementos to consider. This means any memento with a datetime before ta

will receive a score of ∞ or undefined, removing them from consideration. Seeing as

we are looking to avoid spoilers by finding mementos prior to ta and this uses ta as

a lower bound, there is no way to acquire a memento prior to ta, thus minfutr can

not be spoiler safe.

Minnear is not spoiler safe. Unless the upper bound of the cost function is set at

t, there is always a chance of acquiring a temporal revision after ta.

Eqfutr is not spoiler safe. It evaluates two temporal revisions of a given resource,

one before ta and one after ta. If they have the exact same content, then it returns

the one after ta. Because they have the exact same content, there is no probability

of the memento after ta containing information that occurred in the episode we are

trying to avoid. One would think that this means we could avoid spoilers, but eqfutr

falls back to using mindist if the two mementos on either side of ta do not have the

same content. Seeing as mindist is not spoiler safe, we cannot reliably avoid spoilers

75

with eqfutr.

Eqpast is not spoiler safe. It also evaluates two mementos of a given resource, one

before ta and one after ta. If they have the exact same content, then it returns the

one before ta. Like minpast, it effectively has an upper bound of ta. Unlike minpast,

however, it falls back to using mindist if the two mementos on either side of ta do

not have the same content. Seeing as mindist is not spoiler safe, we cannot reliably

avoid spoilers with eqpast.

Simfutr is not spoiler safe. Like eqfutr and eqpast, it evaluates two mementos on

either side of ta. The exception is that it uses a similarity metric on their content

rather than pure equality. Even though the two mementos may be similar enough for

the threshold desired, it is still possible that spoiler information may be contained in

the one chosen from the future of ta, thus it is not reliably spoiler safe. Also, simfutr

falls back to mindist, which is not spoiler safe.

Simpast is not spoiler safe. Like simfutr, simpast uses a similarity metric to

evaluate two mementos on either side of ta. Even though simpast effectively has

an upper bound of ta if both mementos have a similarity metric under the desired

threshold, it will still fall back to mindist if their similarity is above the desired

threshold. Seeing as mindist is not spoiler safe, we cannot reliably avoid spoilers

with simpast.

Conceivably, one could replace the fallback heuristic in eqpast, eqfutr, simfutr,

and simpast with minpast and make those heuristics spoiler safe. If we did that then

minpast would still be preferred because its algorithm runs in O(n) time while the

others are slower.

So, out of the heuristics considered, only minpast is reliably spoiler safe and effi-

cient enough for consideration. This discussion and evaluation is necessary because,

as we will see in the following chapters, TimeGates for wikis can use minpast whereas

TimeGates for web archives tend to use mindist because archives do not contain every

memento. This means that we can avoid spoilers in wikis if the TimeGate heuristic

used for them is minpast.

76

CHAPTER 5

SPOILER AREAS CREATED BY MINDIST

Now that we have a vocabulary of heuristics to work with, we can study the dif-

ferences between the minpast and mindist heuristics as they apply to wikis. As noted

in section 2.5, wikis, and some other content management systems, are effectively a

form of archive because they keep every revision of a page. As noted in section 4.2.1,

web archives use mindist because they are sparse in comparison to wikis and contain

missed updates for the pages they archived.

Remember, as noted in section 2.6, we want to allow the user to avoid spoilers in

episode ei by selecting a datetime ta < tei . How does the use of the mindist heuristic

in web archives impact our ability to avoid spoilers on the web?

By studying mindist using wiki revisions and the mementos corresponding to

them, we find out that it is not just possible but also probable that one can encounter

a spoiler for a given resource in web archives.

5.1 SPOILER AREAS CREATED BY MINDIST HEURISTICS

As noted before, the use of mindist can lead to cases where a memento containing

spoilers is returned to the user, even though the user selects a datetime prior to the

episode they have not seen yet. The set of datetimes where the user is redirected to

a memento after the episode, even though they chose a datetime prior to the episode

is defined as a spoiler area.

The set of datetimes where the user is directed to a spoiler, even though they

chose a datetime prior to the episode they are avoiding, and where the web archive

has not yet started archiving the resource, is referred to as a pre-archive spoiler

area. Figure 48 shows two pre-archive spoiler areas. This spoiler area is created if

the user tries to select a datetime prior to episode e3@t11, but the mindist heuristic

delivers them to m1@t14 ≡ rj@t13, which is after e3@t11. The user intended to avoid

spoilers for episode e3, but got them nonetheless.

Still referring to Figure 48, it should also be noted that the pre-archive spoiler

area for episode e3 stretches from the first episode e1 to just prior to e3. Also, the

77

FIG. 48: Example of pre-archive spoiler areas (shown in light red) created using

the mindist heuristic; the overlap of the spoiler areas for episodes e3 and e2 is shown

in darker red.

pre-archive spoiler area for episode e2 stretches from the first episode e1 to just prior

to e2. This means that the spoiler area for e3 includes the spoiler area for e2.

What makes this a pre-archive spoiler area?

Remember the cost calculation as part of mindist, covered in Chapter 4. If a user

picks a datetime prior to the first memento, then the cost between the first memento

and that datetime is the lowest out of all mementos in the TimeMap, leading them

to the first memento. Also, mementos are always created after wiki revisions, so

mementos in the web archive will always be late by comparison. Combine this with

missed updates, and the pre-archive spoiler area can be quite large.

So, for a pre-archive spoiler area to exist, the following conditions must be present:

1. The TimeGate for the resource uses the mindist heuristic

2. We have access to all revisions of a given resource

3. The memento-datetimes times for all revisions of a resource are defined and

known

4. Event e must occur prior to the first memento recorded in the archive

78

5. Event e must occur prior to revision ri corresponding to the first memento m1

(i.e., ri ≡ m1 ∧ te < trj)

Given episodes e1 to ei, which occur just prior to the first archived revision rj ≡

m1, this gives us the definition of a pre-archive spoiler area for episode ei defined

by function Sa over the interval ts and ending at finish datetime tf produced by

Equation (11).

[ts, tf] = Sa(ei) =

{

(te1 , tei) if tei < trj ∧ rj ≡ mk

(0, 0) otherwise
(11)

So, any datetimes prior to the first memento lead to a pre-archive spoiler area.

This is somewhat understandable, seeing as it takes time for the web archive to learn

about a resource and start archiving it. What about once archiving has occurred?

Figure 49 shows an archive-extant spoiler area. Let a user select a datetime

prior to ei@t11. To avoid spoilers, the user needs to be directed to memento mk−1

corresponding to revision rj−1.

Unfortunately, if the user selects a datetime in the area between t9 and ei@t11,

mindist will deliver them memento mj@t13, even though they chose a datetime prior

to t11. Memento mj@t13 ≡ rj@t12, which is after the datetime t11 that the user was

trying to avoid. Because the user chose a datetime prior to the episode containing

spoilers, but the user is redirected to a memento containing spoilers anyway.

Why is this a spoiler area? Remember that mindist finds the minimum distance

between the time ta specified by the user and any given memento. In Figure 49, we

have mementos mk−1@t5 and mk@t13. We denote the midpoint between mementos

as h (for halfway). The midpoint between mk−1@t5 and mk@t13 is h@t9, calculated

as shown in Equation (12). This means that any value ta such that t9 < ta < t13

will produce memento mj and any value ta such that ta < t9 will produce memento

mj−1.

th =
ti + tj

2
(12)

So, for a archive-extant spoiler area to exist, the following conditions must be

present:

1. The TimeGate for the resource uses the mindist heuristic

79

FIG. 49: Example of a archive-extant spoiler area (shown in light red) created by

using the mindist heuristic, h is the midpoint between mk−1 and mk

2. We have access to all revisions of a given resource

3. The memento-datetimes times for all revisions of a resource are defined and

known

4. Event e must occur between the memento-datetimes of two consecutive me-

mentos mk−1 and mk (i.e., tmk−1
< te < tmk

)

5. Event e must occur prior to revision ri corresponding to memento mj (i.e.,

rj ≡ mk ∧ te < trj)

6. The midpoint th, specified by (12), between mj−1 and mj must occur prior to

event e: (i.e., tmk−1
< th < te < tmk

)

Given consecutive mementos mk−1 and mk, the midpoint th between them, and

revision rj ≡ mk, this gives us the definition of a spoiler area defined by function

Sb over the interval beginning at start datetime ts and ending at finish datetime tf

80

produced by Equation (13).

[ts, tf] = Sb(e) =















(th, te) if th < te < tri ∧ rj ≡ mk ∧

th =
tmk−1

+tmk

2

(0, 0) otherwise

(13)

The return value of (0, 0) exists for conditions where this relationship fails to hold.

There are actually several conditions where there are no spoilers. These conditions

are named based on the order of the halfway mark h, revision that has been archived

r, and event e. For example, if a condition exists after archiving and the order of

occurrences is halfway mark h followed by revision r followed by event e, then the

condition is referred to as Archive-Extant Safe HRE.

Figure 50 shows the Archive-Extant Safe HRE condition where there is no

spoiler area. Many of the spoiler area conditions hold. For instance, mk@t13 ≡ rj@t10

and th < trj . The exception is that trj < tei . If the mindist heuristic directs a user

to mk, we do not get a spoiler because the revision rj occurred prior to the event ei

and the contents of that revision were not influenced by the information contained

in event ei.

Figure 51 showing the Archive-Extant Safe RHE condition also contains no

spoiler area. The user attempting to choose a time ta where th < ta < tei will be

directed to mk@t13, which is after ei@t11. What is different is that mk@t13 ≡ rj@t6

and rj@t6 is prior to the midpoint h@t9. Because trj < te, we have no spoiler area.

Figure 52 showing the Archive-Extant Safe EHR condition contains no spoiler

areas. If a user selects ta < tei , they will be directed to mk−1@t5. This is because

event ei@t7 occurs prior to midpoint h@t9. The first revision containing information

about ei@t7 is rj@t10, which is after h@t9.

Figure 53 shows the Archive-Extant Safe ERH condition where there is no

spoiler area. Just like Archive-Extant Safe EHR, Archive-Extant Safe ERH has the

conditions where ei@t6 occurs before h@t9. Additionally, rj@t8 occurs before h@t9.

A user selecting ta < tei will be directed to mk−1@t5, which was created from revision

rj−1@t3, prior to event ei@t6.

Figure 54 shows the Archive-Extant Safe REH condition containing no spoiler

areas. Just like Archive-Extant Safe ERH, Archive-Extant Safe REH has both rj@t6

and ei@t7 occurring prior to h@t9. This leads any user selecting ta < tei to memento

mk−1@t5. In this case, even mk@t13 fails to contain spoilers, because mk@t13 ≡ rj@t6

and rj@t6 takes place before event ei@t7.

81

FIG. 50: Example of the condition: Archive-Extant Safe HRE for event ei

FIG. 51: Example of the condition: Archive-Extant Safe RHE for episode ei

82

FIG. 52: Example of the condition: Archive-Extant Safe EHR for event ei

FIG. 53: Example of the condition: Archive-Extant Safe ERH for event ei

Figure 55 shows the Pre-Archive Safe condition for event e3. There is a spoiler

area for event e2@t6, but not for e3@t11. Why is this? After all m1@t13 is the first

memento, and any datetime ta prior to tm1
will result in the user being directed to

m1. The difference is that the revision m1@t13 ≡ rj@t10 and rj@t10 occurs prior to

e3@t11.

83

After the latest memento mn, there are no spoiler areas. Two conditions exist in

this case.

The first is the Post-Archive Safe ER condition. There are no spoiler areas

because, even though the event e occurred prior to revision r, there is no memento

corresponding to r yet, hence the user will be directed to a memento prior to r.

Figure 56 shows an example of this condition. Memento mn@t5 is the latest

memento and event ei@t6 comes after it, followed by rj@t8. Note that mn 6≡ rj,

because mn ≡ rj−1. There can be no spoiler area for ei because any datetime chosen

prior to t6 will bring the user to memento mn@t5, which already exists prior to t6.

Alternatively, there exists the Post-Archive Safe RE condition. There are no

spoiler areas in that situation because the event e occurred after revision r, meaning

it would fail one of our existing tests for an archive-extant spoiler area.

Figure 57 shows this condition. Memento mn@t5 is the latest memento and

revision rj@t8 comes after it. Event ei@t10 comes after rj@t8 as well. Just like

before, mn 6≡ rj, but even if they were equivalent, there would still be no spoiler area

because trj < tei .

Using these conditions we can find the datetimes where one might encounter a

spoiler for a given event, but what about for an entire series of events?

84

FIG. 54: Example of the condition: Archive-Extant Safe REH for event ei

FIG. 55: Example of the condition: Pre-Archive Safe for event e3; spoiler area

exists for event e2, but not e3

85

FIG. 56: Example of the condition: Post-Archive Safe ER for event ei

FIG. 57: Example of the condition: Post-Archive Safe RE for event ei

86

FIG. 58: Example of a potential spoiler zone, stretching from te1 to ten

FIG. 59: Example of a spoiler area (light red area) for episode ei inside potential

spoiler zone (dotted red rectangle), stretching from te1 to ten

87

5.2 CONSIDERATIONS FOR MULTIPLE EVENTS AND

AGGREGATING SPOILER AREAS

The spoilers we have been discussing are not for single events, but episodes of a

larger story. Our assumption is that single episode stories are revealed in

an instant, on a specific date, and anyone trying to avoid spoilers for such

a story can not be served by our method.

So, how does one handle multiple episodes? What does that mean for our spoiler

areas? For a given resource, using mindist, what is the chance of attempting web

time travel with Memento and getting a spoiler?

First we define a potential spoiler zone across the length of the series we are

looking at. The start datetime of the potential spoiler zone is te1 , the datetime of the

first episode. The end datetime of our potential spoiler zone is ten , the datetime of

the last (or latest) episode. We assume that a user searching for datetimes prior to

the first event e1 should get no spoilers, so that is the lower bound. We also assume

that no additional spoilers can be revealed after the last event en. This provides a

single area in which we can determine the probability of getting a spoiler for a single

episode in the series. Figure 58 shows an example of such a zone.

Figure 59 shows a spoiler area inside a potential spoiler zone. Consider randomly

choosing a desired datetime within this zone. What is the probability of landing

inside the spoiler area for given episode ei?

Probability is defined as the number of times something can occur divided by the

total number of outcomes [113]. The smallest unit of datetime on the web is the

second. We cannot gain more precision over time due to the fact that HTTP headers

(and hence Memento-Datetimes) use the second as the smallest unit. Therefore, if we

let s be the number of seconds between e1 and en in which one can encounter spoilers,

and we let c be the number of seconds between e1 and en, then the probability of

encountering a spoiler is shown by equation (14).

Pr(spoiler) =
s

c
(14)

Algorithm 6 shows how one would calculate the probability of encountering a

spoiler for a given resource.

Once we have determined the probability of encountering a spoiler for a resource

88

Spoiler-Probability(E,R,M)

1 A = Find-Spoiler-Areas(E,R,M)

2 c = 0

3 s = 0

4 for v = te1 to ten

5 c = c+ 1

6 if In-Spoiler-Area(A, v)

7 s = s+ 1

8 p = s
c

9 return p

Algorithm 6: Algorithm for finding the probability of spoilers between e1 and en for

a given resource, E is the list of datetimes for events, R is the list of datetimes for

revisions, and M is the list of datetimes for mementos

within the Internet Archive, we can then use that probability to compare that re-

source to others. In this way we can determine how safe a given URI is for users who

want to avoid spoilers using the Wayback Machine or a Memento TimeGate that

uses the mindist heuristic.

5.3 SUMMARY

In this chapter, we explored the existance of spoiler areas, which are defined as

the sets of datetimes where a user will be directed to a memento containing spoilers

even though they selected a desired datetime prior to the event they were trying to

avoid. These spoiler areas are defined based on the positions of revisions, events,

and mementos in the timeline for a given resource. Table 8 shows a summary of all

conditions involving event e, revision r, memento m ≡ r and midpoint h. In these

cases m1 and mn are the first and last mementos, respectively.

Also, we determined how to calculate the probability of a encountering a spoiler

for a given resource. This function can be used to examine a resource in the Internet

Archive and determine how safe that resource is to those attempting to avoid spoilers.

We will do this in the next chapter.

89

TABLE 8: Conditions for relationships between episodes denoted by e, revisions

denoted by r, mementos denoted by m, and a midpoint between mementos denoted

by h. Mementos m1 and mn denote first and last mementos, respectively.

Order of Condition Name Disposition Description

Occurrence

e, r,m1 Pre-archive Spoiler for e ∀ta : te1 < ta < te ∧m1 ≡ r

Spoiler Area in area between Gmindist(R, ta) = m1

e1 and e spoiler because tr > te

r, e,m1 Pre-Archive Safe for e ∀ta : te1 < ta < te ∧m1 ≡ r

Safe Gmindist(R, ta) = m1

not spoiler because tr < te

mk−1, h, e, r,mk Archive-Extant Spoiler for e ∀ta : ta < te ∧mk ≡ r

Spoiler Area in area between Gmindist(R, ta) = mk

h and e spoiler because tr > te

mk−1, h, r, e,mk Archive-Extant Safe for e ∀ta : ta < te ∧mk ≡ r

Safe HRE Gmindist(R, ta) = mk

not spoiler because tr < te

mk−1, r, h, e,mk Archive-Extant Safe for e ∀ta : th < ta < te ∧mk ≡ r

Safe RHE Gmindist(R, ta) = mk

not spoiler because tr < te

mk−1, r, e, h,mk Archive-Extant Safe for e ∀ta : ta < te ∧mk ≡ r

Safe REH Gmindist(R, ta) = mk−1

not spoiler because tr < te

mk−1, e, h, r,mk Archive-Extant Safe for e ∀ta : ta < te ∧mk ≡ r

Safe EHR Gmindist(R, ta) = mk−1

not spoiler because te < th

mk−1, e, r, h,mk Archive-Extant Safe for e ∀ta : ta < te ∧mk ≡ r

Safe ERH Gmindist(R, ta) = mk−1

not spoiler because te < th

mn, e, r Post-Archive Safe for e Gmindist(R, ta) = mn

Safe ER even though tr > te,

not spoiler because r 6≡ mn

mn, r, e Post-Archive Safe for e Gmindist(R, ta) = mn

Safe RE not spoiler because tr < te

90

CHAPTER 6

MEASURING SPOILER PROBABILITY IN POPULAR

WIKIS

In this chapter we use data from actual wiki pages and the Internet Archive to

show that spoiler areas do exist for wiki fan sites. Using the sources in Table 10 we

can fill in the values needed for Equations (11) and (13).

6.1 STRUCTURE OF THE EXPERIMENT

We selected 16 fan wikis based on television shows for our experiment. Table 9

shows some of the details for each fan wiki. Each television show selected has had at

least two seasons and a currently active wiki. House of Cards was chosen because an

entire season is released on Netflix in a single day, making it different from networked

television shows. Lost was chosen because its wiki, Lostpedia, has actually undergone

some academic study [69], and is the oldest and largest fan wiki under consideration.

The articles of each wiki were analyzed and processed to find spoiler areas using

a process simplified in Algorithm 7. The XML dumps for each wiki were acquired by

automating the submission to each wiki’s export page, an example of which is shown

in Figure 60. Utilizing this method, we computed additional statistics based on the

revisions, mementos, the memento-revision mapping, and the spoiler areas.

Out of the 40,868 wiki pages processed for this experiment, we discovered that

many of them were wiki redirects, which are a way to “forward users from one page

name to another” [35]. Redirects are often used to deal with articles that can be

referred to by multiple names. Sometimes wiki editors may not know the real name

of an introduced fictional character until much later, and will use a redirect from

the old name to the new. Sometimes wiki editors will create pages not knowing

that one already exists, leaving future editors to create a redirect now that they

know that a new page title was desired. Because of the number of redirects that

contained only a single revision and only a single memento, we removed the redirects

from consideration for calculation of spoiler areas and other statistics. This removed

16,394 pages from consideration, leaving us with 24,474 pages to process.

91

TABLE 9: Fan wikis used in the spoiler areas experiment

Television Show Wiki URI # tr1 te1 % of

(Network) .wikia.com of pages in

Pages Internet

Archive

the Big Bang Theory (CBS) bigbangtheory 1120 2007-12-14 2007-09-24 68.8%

Boardwalk Empire (HBO) boardwalkempire 2091 2010-03-18 2010-08-23 80.6%

Breaking Bad (A&E) breakingbad 998 2009-04-27 2008-01-20 76.0%

Continuum (Showcase) continuum 258 2012-11-13 2012-05-27 86.8%

Downton Abbey (BBC) downtonabbey 784 2010-10-04 2010-09-26 53.1%

Game of Thrones (HBO) gameofthrones 3144 2010-06-24 2011-04-17 75.8%

Grimm (NBC) grimm 1581 2010-04-14 2011-10-28 57.5%

House of Cards (Netflix) house-of-cards 251 2013-01-11 2013-02-01 97.2%

How I Met Your Mother

(CBS)

how-i-met-your-mother 1709 2008-07-21 2005-09-19 58.7%

Lost (ABC) lostpedia 18790 2005-09-22 2004-09-22 39.1%

Mad Men (AMC) madmen 652 2009-07-25 2007-06-03 85.0%

NCIS (CBS) ncis 5345 2006-09-25 2003-09-23 93.2%

Once Upon A Time (ABC) onceuponatime 1470 2011-08-09 2011-10-23 79.9%

Scandal (ABC) scandal 331 2011-06-07 2012-04-05 82.8%

True Blood (HBO) trueblood 1838 2008-10-06 2008-09-07 74.1%

White Collar (USA) whitecollar 506 2009-10-30 2009-10-23 79.1%

The wiki XML exports were downloaded at a different time than the TimeMaps

for those wiki pages. To overcome this inconsistency, any mementos in TimeMaps

that existed after the wiki page was downloaded were discarded. In the next section,

we discuss the results of this data gathering and analysis.

6.2 RESULTS

Of the 24,474 pages processed, only 15,119 pages actually had TimeMaps at

the Internet Archive at the time the wiki exports were extracted. This means that

roughly 38% of the pages under consideration were not available in the

Internet Archive. This presents a problem for episodic fiction fans trying to use

the Wayback Machine, or the Internet Archive through Memento, to avoid spoilers.

This further demonstrates that using Memento directly on wikis is better for avoiding

spoilers. The results have been broken up into three sections: data timelines, spoiler

areas and probabilities, and missed updates and redundant mementos.

1http://lostpedia.wikia.com/wiki/Special:Export

bigbangtheory
boardwalkempire
breakingbad
continuum
downtonabbey
gameofthrones
grimm
house-of-cards
how-i-met-your-mother
lostpedia
madmen
ncis
onceuponatime
scandal
trueblood
whitecollar
http://lostpedia.wikia.com/wiki/Special:Export

92

TABLE 10: Information required to determine if spoilers can be encountered if

mindist is used

Required Information Source of Information Part of S(e)

equation met

Memento datetimes of Memento TimeMap rj
?
≡ mk

mementos for article th =
tmk−1+tmk

2

tmk

Revision datetimes for XML Dump of Wiki Article rj
?
≡ mk

the wiki article trj

Episode datetimes List of episodes te

from http://epguides.com

FIG. 60: Example export page for a MediaWiki installation1

http://epguides.com

93

FindSpoilerAreasInWikis(episodeList, wikiURI)

1 episodeT imes = getEpisodeTimes(episodeList)

2 wikiT itles = getPageTitles(wikiURI)

3 for each title ∈ wikiT itles

4 wikidump = fetchXMLdump(title, wikiURI)

5 revisions = extractRevisionTimes(wikidump)

6 timemapURI = makeTMURI(wikiURI, title)

7 timemap = fetchTimeMap(timemapURI)

8 mementos = extractMementoTimes(timemap)

9 mementoRevisionMap =

mapRevsToMems(revisions,mementos)

10 for each episode ∈ episodeT imes

11 paSpoilerArea =

Sa(episode,mementoRevisionMap

12 aeSpoilerArea =

Sb(episode,mementoRevisionMap)

13 spoilerAreaList.append(paSpoilerArea)

14 spoilerAreaList.append(aeSpoilerArea)

15 mapPageToSpoilers(

wikipageSpoilerMap, title, spoilerAreaList)

16 return wikipageSpoilerMap

Algorithm 7: Algorithm for spoiler probability experiment

94

(a) Big Bang Theory (b) Boardwalk Empire

(c) Breaking Bad (d) Continuum

(e) Downton Abbey (f) Game of Thrones

(g) Grimm (h) House of Cards

FIG. 61: Timelines for the wiki sites used in this experiment: top timeline represents

the length of the episode run, middle timeline represents the life of the wiki, bottom

timeline represents the span of time the Internet Archive has operated on the site

95

(i) How I Met Your Mother (j) Lostpedia

(k) Mad Men (l) NCIS

(m) Once Upon A Time (n) Scandal

(o) True Blood (p) White Collar

96

6.2.1 DATA TIMELINES

We were able to process the data and determine the timelines for episodes, wiki

revisions, and mementos from the Internet Archive. Figure 61 shows the timelines

for each wiki, showing graphically how they evolved as the time progressed.

As we see, the 16 wikis have somewhat different histories. The top line, corre-

sponding to our events line from Chapter 5, shows the timeline of episodes from the

premier of the television show to the latest episode. The middle line shows the life of

the wiki up to the present, starting at the first revision of the first page. The bottom

line shows the life of the Internet Archive’s interest in the wiki, starting with the first

memento captured.

Even though the top line, representing episodes, stops while the wiki goes on, in

most cases only the season has ended for the show, not the show itself. The only

three shows in our data set that have truly gone off of the air by the time of this

study are Lost, How I Met Your Mother, and True Blood, so it is interesting to see

that these wikis continued to receive updates long after their shows were gone.

Most of the wikis follow the pattern discussed in section 2.6, where first the

television show started, then the wiki came into existence, and the Internet Archive

began to archive it. Others display a somewhat surprising characteristic, where the

wiki actually exists prior to the television show!

Some networks create enough publicity that fans will create a wiki containing

what little information has been released prior to the airing of the television show.

HBO spent a lot of time and money advertising Boardwalk Empire (Figure 61b)

in advance the series [20]. Game of Thrones (Figure 61f) already had a literary

fan following who immediately sought out information on the television show. The

writers of Grimm (Figure 61g) and Scandal (Figure 61n) already had fans [36, 94],

so the wiki was created prior to the show.

If we were to add the press releases and news reports to the top line, we would see

the line extend and reveal the expected pattern of event follows wiki revision follows

archive. Of course, we encountered no instances where the archive starts prior to the

site’s existence.

These timelines are useful because they demonstrate differences between these

sites and show that not all fan wikis have the same expected history.

97

6.2.2 SPOILER AREAS AND PROBABILITIES

We determined that there are three categories of page behavior with regards to

timelines:

1. normal - the television show started, then the wiki page was created, then the

web archive recorded the page

2. wiki-before-show - the wiki page was created with some type of foreknowledge

about the show before the show began to air; not spoilers per se, but based off

of press releases, interviews, etc.

3. season-in-a-day - an entire season of a show is released in one day, effectively

leading to n episodes all airing at the same time; the House of Cards show from

Netflix fits into this category

Figure 62 shows our spoiler area graph for the most popular page using the normal

behavior. In this case, a page on Lostpedia about a character named Kate Austen

was created after the show had aired. Each spoiler area is shown in red using an

alpha channel that gives it some degree of transparency. When these transparent red

areas stack up, of course the red gets darker, so we cannot reliably see all of the 86

pre-archive spoiler areas that exist prior to the first memento. Because this page only

has 4 mementos around 2009 and then no archiving by the Internet Archive until

2011, there are 8 archive-extant spoiler areas, also shown in red. The probability

of encountering a spoiler for Kate’s page is 67%, calculated by Equation (14) from

section 5.2.

Figure 63 shows the spoiler areas for the most popular page of the Game of

Thrones Wiki, for the character Daenerys Targaryen. We see no pre-archive spoiler

areas because the page is an example of the wiki-before-show behavior. Even though

29 mementos exist for this page, there are not enough to avoid the existence of the

24 archive-extant spoiler areas. Game of Thrones is a very popular series, and it

is likely that a popular page linked to this page, and the Internet Archive crawler

was led to this page earlier than many other pages we have seen. The probability of

encountering a spoiler in Daenerys Targaryen’s page is only 16%, even though there

are 24 small spoiler areas, likely due to this aggressive archiving.

Frank Underwood’s wiki page for House of Cards, seen in Figure 64 is an example

of the season-in-a-day behavior. This series has two seasons, but all 13 episodes for

98

FIG. 62: Spoiler areas for the most popular page in Lostpedia (3,531 revisions)2

FIG. 63: Spoiler areas for the most popular page in the Game of Thrones Wiki

(768 revisions)3

2http://lostpedia.wikia.com/wiki/Kate_Austen
3http://gameofthrones.wikia.com/wiki/Daenerys_Targaryen

http://lostpedia.wikia.com/wiki/Kate_Austen
http://gameofthrones.wikia.com/wiki/Daenerys_Targaryen

99

FIG. 64: Spoiler areas for the most popular page in the House of Cards Wiki (380

revisions)4

a single season are released on the same day, resulting in 13 stacked event points

for each season. This series was added to this experiment because of the limited

number of events and the unique release behavior for this show. This resulted in

13 pre-archive spoiler areas for this page, all at the beginning of the series. These

pre-archive spoiler areas have no size due to the fact that all of them begin and end at

the same time. This leads to a 0% chance of encountering a spoiler in this wiki page,

seeing as each season is released like a 13-hour movie rather than on a weekly basis.

In this case, time is not able to differentiate between individual episodes because

te1 = te2 = . . . te13 . We require a new dimension to order otherwise simultaneous

events. A different situation exists with another Netflix series, Arrested Development

Season 4, in which all episodes for a season are released at once, but the episodes do

not need to be viewed in any particular order, making it difficult to identify when

spoilers would occur.

Table 11 contains statistics for the most popular page in each of the wikis sur-

veyed, where popularity is determined by the number of page revisions generated.

4http://house-of-cards.wikia.com/wiki/Frank_Underwood

http://house-of-cards.wikia.com/wiki/Frank_Underwood

100

TABLE 11: Spoiler probabilities for most popular pages within each fan wiki

Wiki Page Name Probability # of # of # of

of Spoiler Spoiler Revisions Mementos

Areas

bigbangtheory Sheldon Cooper 0.31 69 1958 30

boardwalkempire Nucky Thompson 0.15 31 290 15

breakingbad Walter White 0.43 40 882 20

continuum Keira Cameron 0.54 21 104 5

downtonabbey Sybil Branson 0.42 23 580 3

gameofthrones Daenerys Targaryen 0.16 24 768 29

grimm Nick Burkhardt 0.39 30 795 5

house-of-cards Frank Underwood 0.0 13 380 3

how-i-met-your-mother Barney Stinson 0.55 120 588 13

lostpedia Kate Austen 0.67 94 3531 27

madmen Mad Men Wiki 0.22 36 250 85

ncis Abigail Sciuto 0.67 182 404 11

onceuponatime Emma Swan 0.36 34 1210 11

scandal Main Page 0.60 31 250 14

trueblood Eric Northman 0.28 47 931 14

whitecollar Neal Caffrey 0.29 38 199 8

Seeing as these wikis are authored by fans, readers familiar with many of these televi-

sion shows will not be surprised that most of the popular pages are main characters.

The table also lists the number of spoiler areas, revisions, and mementos, showing

how there is not a simple relationship between these values that indicate the proba-

bility of encountering a spoiler. Appendix A contains more visualizations of spoiler

areas from the most popular pages in each wiki.

From this we see the spoiler areas and hence spoiler probabilities for individual

pages, but what about entire sites? Again, let us consider our behavior categories,

this time applying them to an entire wiki. We have created a histogram showing the

spoiler probability for each wiki.

Figure 65 shows the histogram for the Lostpedia wiki with the normal episodes-

revisions-mementos behavior. We see several peaks in the histogram around 0.65,

0.82, and 0.99, but nothing resembling a standard normal distribution. Note that no

page has a spoiler probability of less than 0.26, because the wiki was created a year

after the show first started airing, giving each page a one season long pre-archive

spoiler area to begin with.

101

FIG. 65: Histogram of spoiler probabilities for Lostpedia

Figure 66 shows the histogram for the Game of Thrones Wiki observing a wiki-

before-show behavior. We see large peaks around 0.35, 0.64, and 0.99. Because there

are no pre-archive spoiler areas for any page, only archive-extant spoiler areas remain,

giving us a much broader distribution of probabilities than we saw for Lostpedia.

Our final category of season-in-a-day is observed by the House of Cards Wiki,

shown in Figure 67. There we see most pages have no spoiler probability at all and

the maximum spoiler probability is around 0.27. Again, this is where our model

breaks down, leading to a number of zero-length pre-archive spoiler areas because of

the release process for the television show.

Figure 68 shows the histogram of spoiler probabilities for all pages in this study.

In the histogram, we see the highest peak around 0.66, which corresponds to the

mean shown in Table 12. Also in Table 12, we see the number of revisions per day is

an order of magnitude lower than the number of mementos recorded per day. This

is concerning for those trying to avoid spoiler using the Wayback Machine, even if it

used the minpast heuristic, because there are many missed updates to these pages

102

FIG. 66: Histogram of spoiler probabilities for Game of Thrones Wiki

FIG. 67: Histogram of spoiler probabilities for House of Cards Wiki

103

TABLE 12: Statistics for each fan wiki

Wiki

Probability of Spoiler Revisions/Day Mementos/Day

Mean std Rel Mean std Rel Mean std Rel

dev Err dev Err dev Err

bigbangtheory 0.667 0.160 0.0116 0.0506 0.0668 0.0639 0.0033 0.0034 0.0488

boardwalkempire 0.417 0.170 0.0160 0.0102 0.0185 0.0718 0.0022 0.0026 0.0452

breakingbad 0.746 0.205 0.0127 0.0185 0.0351 0.0872 0.0032 0.0032 0.0459

continuum 0.394 0.177 0.0471 0.0317 0.0250 0.0829 0.0051 0.0023 0.0479

downtonabbey 0.585 0.174 0.0196 0.0374 0.0636 0.1124 0.0020 0.0013 0.0419

gameofthrones 0.473 0.248 0.0122 0.0425 0.0652 0.0356 0.0041 0.0049 0.0279

grimm 0.479 0.175 0.0201 0.0700 0.0857 0.0672 0.0027 0.0015 0.0305

house-of-cards 0.006 0.035 0.6705 0.0772 0.1364 0.2082 0.0075 0.0044 0.0687

how-i-met-your-mother 0.741 0.100 0.0046 0.0163 0.0220 0.0463 0.0014 0.0010 0.0263

lostpedia 0.768 0.163 0.0027 0.0391 0.1083 0.0348 0.0040 0.0055 0.0173

madmen 0.530 0.144 0.0133 0.0049 0.0076 0.0764 0.0014 0.0021 0.0755

ncis 0.818 0.107 0.0041 0.0073 0.0097 0.0413 0.0009 0.0008 0.0279

onceuponatime 0.516 0.163 0.0132 0.1271 0.1327 0.0437 0.0037 0.0025 0.0281

scandal 0.591 0.165 0.0269 0.0418 0.0484 0.1120 0.0030 0.0019 0.0608

trueblood 0.517 0.162 0.0106 0.0210 0.0410 0.0658 0.0016 0.0016 0.0345

whitecollar 0.390 0.250 0.0500 0.0117 0.0147 0.0986 0.0019 0.0015 0.0609

Overall

0.659 0.226 0.0029 0.0362 0.0871 0.0200 0.0032 0.0044 0.0114

each day.

Figure 69 shows the cumulative distribution function for spoiler probabilities for

all pages surveyed. From here we see the spoiler probability for pages rise at low

percentages of the whole, indicating that most pages in the study have probability

of encountering a spoiler.

Histograms for each wiki are available in Appendix B and cumulative distribution

function graphs for each wiki are available in Appendix C.

6.2.3 MISSED UPDATES AND REDUNDANT MEMENTOS

Possessing every last revision of a page put us in the unique position of being able

to study not only how often each page changed, but how often they get archived.

We took the Memento-Datetimes of each wiki revision and compared them to the

Memento-Datetimes of each archived memento in the Internet Archive. From here

we were able to determine how well each page was being archived at a given time

104

FIG. 68: Histogram of spoiler probabilities for all pages in study

FIG. 69: Graph of the cumulative distribution function of spoiler probabilities for

all 16 wiki sites

105

period.

In figure 70 we see the number of missed updates encountered over the history of

all pages in the study. The Y-axis represents each URI in the dataset. The X-axis

is time. Lighter colors indicate fewer missed updates on that day. Of interest are

the vertical lines seen throughout the visualization. The datetimes for these lines

correspond to changes in policy at the Internet Archive. In 2009 and in late 2011,

the Internet Archive reduced its quarantine period for archiving of new pages. In

October of 2013, the Internet Archive published the Save Page Now feature, leading

to fewer missed updates after that point. This graph shows that the more aggressive

archiving performed by the Internet Archive in more recent years are resulting in

fewer missed updates.

Alternatively, in Figure 71, we see the redundant mementos recorded by the web

archive over the history of all pages in this study. Again, the Y-axis represents each

URI in the dataset. The X-axis is time. Lighter colors indicate fewer redundant

mementos on that day. We see the same vertical lines as in Figure 70, except, in this

visualization, darker colors indicate that the Internet Archive is archiving when it

should not. The same more aggressive archiving shown in Figure 70 is also archiving

pages that have not updated. One could argue that this is a waste of resources, but

we also must consider that possessing redundant copies of the same page is a goal of

digital preservation, as seen in such projects as LOCKSS [86].

6.3 CONCLUSIONS

We have conducted a study showing that spoiler areas do indeed exist for fan wikis

for users that browse past versions of these resources using the mindist heuristic. We

have found that, for the wiki sites under consideration, that there is a mean 66%

probability that one will end up with a spoiler if they use TimeGates supporting the

mindist heuristic. We have also shown that wiki pages update at a rate that is an

order of magnitude faster than the Internet Archive records them. Finally, because we

have access to all revisions and all mementos we showed how many missed updates

exist for each page and how the number of missed updates has gone down as the

Internet Archive has gotten more aggressive.

106

FIG. 70: Plot of missed updates for 16 wiki sites over time, lighter colors indicate

few to no missed updates, darker colors indicate many missed updates

FIG. 71: Plot of redundant mementos for 16 wiki sites over time, lighter colors

indicate few to no redundant mementos, darker colors indicate many redundant me-

mentos

107

CHAPTER 7

MEASURING ACTUAL SPOILERS IN WAYBACK

MACHINE LOGS

The previous chapter addressed the probability of being redirected to spoilers if

the mindist heuristic is used. In this chapter, we will show that users are being

redirected to pages in the future. Fortunately, we have access to some of the logs

from the Wayback Machine in 2011 and 2012. The data in these logs has been

anonymized, but the URIs the users are attempting to visit and the URIs they came

from are available. Using this information we can determine which datetime they

intended to visit, and whether they ended up in the past or future.

Research has already been done by Ainsworth in how much drift exists within

the web archive [3]. That study indicates that the Wayback Machine uses a sliding

target policy. This means that each request is in some way based on the datetime

of the last request, resulting in a user ending up in a much different datetime than

they had originally started. The Wayback Machine still uses the mindist heuristic to

determine which memento to deliver to a user, but it changes the desired datetime

ta based on the datetime of the memento from the last request.

Contrary to this, Memento uses a sticky target policy, allowing a user to fix

the datetime ta throughout their browsing session. The study found that there is

still some small drift with the sticky target policy, but that it is constrained by the

datetime remaining constant in each request. That drift is introduced only by the

mindist heuristic, and the available mementos in the archive, rather than the sliding

behavior of the Wayback Machine.

We are concerned about whether or not the user ended up in the future of where

they intended. We want to know if they encountered a spoiler when using the Way-

back Machine.

7.1 OUR METHOD FOR ANALYZING THE LOGS

As shown in Lising 7.1, the logs from the Wayback Machine are a standard Apache

format. Each log entry corresponds to a single HTTP response to a request. Each

108

FIG. 72: URI-M pattern for the Wayback Machine and Internet Archive

line is also separated by spaces into several fields. As noted by the caption, the

datetime of the request is shown in bold black. The visited URI is in red italics.

The status code of the request is shown in bold orange. The referrer is in blue

italics.

The referrer is the URI that the user clicked on that brought them to the visited

URI. Using this, we can track where the user came from and determine where they

ended up. Fortunately for us, we can infer the desired datetime (referred to as ta

in previous chapters) and the memento-datetime from the URIs themselves. The

Internet Archive allows access to all mementos using a standard URI format. Figure

72 shows the URI pattern used by the Internet Archive and the Wayback Machine

to identify mementos. As we can see, the datetime is embedded in the URI. For

the URI visited by the user, this datetime indicates the memento-datetime. For the

referrer URI, this datetime indicates the desired datetime for the user.

Why do we say that we can infer the desired datetime? Without interviewing the

visitors to the Wayback Machine, it is impossible to determine intent. The fact that

the logs are anonymized makes this completely impossible. We are making the

assumption that some of the users receiving these responses intended to

receive responses on the date that they started at, not the date delivered

by the drift caused by the mindist heuristic.

Using Listing 7.1 as an example, on line 1 the anonymized IP address 0.247.222.86

directly visited the April 4, 2002 02:02:24 GMT memento of the URI-R http:

//www.example.com/page1.html on February 2, 2012 at 07:03:55 GMT and

http://www.example.com/page1.html
http://www.example.com/page1.html

109

Listing 7.1: Example log entries from the Wayback Machine

datetime of the request is shown in bold black

visited URIs are shown in red italics,

status code is shown in bold orange,

referrers are shown in blue italics

1 0.247.222.86 - - [02/Feb/2012:07:03:55 +0000] "GET

http://web.archive.org/web/20020404020224/http://www.example.com/page1.html

HTTP/1.1" 200 18875 "

http://wayback.archive.org/web/*/http://www.example.com/page1.html" "

Mozilla/5.0 (Macintosh; Intel Mac OS X 10_6_8) AppleWebKit/535.7 (KHTML,

like Gecko) Chrome/16.0.912.77 Safari/535.7"}

2 0.247.222.86 - - [02/Feb/2012:07:10:02 +0000] "GET

http://web.archive.org/web/20020405015622/http://www.example.com/page2.html

HTTP/1.1" 200 18875 "

http://wayback.archive.org/web/20020404020224/http://www.example.com/page1.html"

"Mozilla/5.0 (Macintosh; Intel Mac OS X 10_6_8) AppleWebKit/535.7 (KHTML,

like Gecko) Chrome/16.0.912.77 Safari/535.7"}

received a status code of 200 (meaning successful). Note the time of the memento

embedded in the URI-M. Also note that the datetime of the memento is April 4, 2002

and the datetime of the visit is February 2, 2012. That user arrived at that page

by clicking on a link from http://wayback.archive.org/web/*/http:

//www.example.com/page1.html, which is a Wayback Machine listing of all

available mementos for a given page, denoted by the * in the datetime part of the

URI.

Further on line 2, the anonymized IP address 0.247.222.86 continued their jour-

ney by visiting the April 5, 2002 01:56:22 GMT memento of the URI-R http:

//www.example.com/page2.html on February 2, 2012 at 07:10:02 GMT

and received a status code of 200 (meaning successful). That user arrived at

that page by clicking on a link from http://wayback.archive.org/web/

20020404020224/http://www.example.com/page1.html.

From these logs we can determine the inferred desired datetime from the referrer

URI and the memento-datetime from the visited URI. Using this information, we

can see how many requests end up in the future, meaning that those visitors are

being redirected to spoilers via the Wayback Machine. Remember that the Wayback

Machine uses the mindist TimeGate heuristic.

http://wayback.archive.org/web/*/http://www.example.com/page1.html
http://wayback.archive.org/web/*/http://www.example.com/page1.html
http://www.example.com/page2.html
http://www.example.com/page2.html
http://wayback.archive.org/web/20020404020224/http://www.example.com/page1.html
http://wayback.archive.org/web/20020404020224/http://www.example.com/page1.html

110

FindSpoilersInLogFile(logfile)

1 for each visitorID, visitedURI, referrer ∈ logfile

2 tm = getDate(visitedURI)

3 ta = getDate(referrer)

4 wikidump = fetchXMLdump(title, wikiURI)

5 revisions = extractRevisionTimes(wikidump)

6 tr = getRevMatchingMemento(tm, revisions)

7 spoiler = INDETERMINATE

8 if rev is not NULL

9 spoiler = (ta < tr)

10 print(visitorID + ” , ” + spoiler)

Algorithm 8: Algorithm for Detecting spoilers in Internet Archive Logs

All requests for archived pages from wikia.com were extracted from the logs,

resulting in 1,180,759 requests. Of those requests, we removed all requests for images,

JavaScript, style sheets, supporting wiki pages (such as Template, Category, and

Special pages), and advertisements. This left us with 62,227 requests to review.

For those remaining wikia.com pages, we downloaded the wiki export files, as

done in the previous experiment, mapped the visited URI to the request that it

had archived, and compared the datetime of that revision with the inferred desired

datetime. We use ta to represent the inferred desired datetime, and tr to represent

the datetime of the wiki revision matching the visited URI in the Wayback Machine.

Each response can be split into three categories in terms of spoilers: (1) spoiler

- ta < tr; (2) safe - ta ≥ tr; (3) indeterminate - either the datetime for the revision

or the referrer was not able to be determined, likely because the article or whole wiki

was moved or no longer exists, or because of 503 HTTP status codes due to the size

of the export file.

This process, shown in Algorithm 8 determines how many requests are either

spoiler, safe, or indeterminate for each log file. Indeterminate entries make up the

bulk of the data collected, but offer no meaningful insight into the spoiler problem,

and are thus discarded.

111

TABLE 13: Specifications of the Test Machine Used to Process the Wayback Machine

Logs

CPU Number 2

CPU Clock Speed 2.4 GHz

CPU Type Intel Xeon E7330

RAM 2 GB

Operating System Red Hat

Enterprise Linux 6.5

From this study we found that roughly 19% of these requests to the Wayback

Machine result in spoilers.

7.2 SUMMARY

Using this simple study of URIs, we have shown that spoilers have been encoun-

tered by users of the Wayback Machine.

Why are these results around 19% rather than 50% if the mindist heuristic is being

used? One would think that each request has an equal chance of being redirected

to the past or the future. The Wayback Machine, as it turns out, in an effort to

save space, engages in URL agnostic reduplication whereby the first item of content

with a particular URI-R is saved [83]. If another crawl to the same URI-R finds

the exact same content, then the Wayback Machine directs users to the earliest one

encountered. Due to this behavior, the Wayback Machine seems to favor the past,

but not enough for reliably protecting a user from spoilers.

112

CHAPTER 8

PREVENTING SPOILERS WITH THE MEMENTO

MEDIAWIKI EXTENSION

In Chapter 5 we showed that it is probable that people are getting spoilers through

mindist. In Chapter 6 we used data from actual wikis and the Internet Archive to

determine what the probabilities are for getting spoilers. In Chapter 7 we showed

that people are actually encountering spoilers via the Wayback Machine. Now we

document a solution to the issue.

We could change the TimeGates used for the web archives to all use the minpast

heuristic, thus allowing everyone to avoid spoilers, but not all users are trying to

avoid spoilers. Some users just want a memento that is close enough to their desired

datetime, and because web archives are sparse, we do not have confidence that min-

past will produce a memento that is a good representation of what the page looked

like at their desired datetime.

Alternatively, realizing that wikis have access to all revisions, we produced an

extension to MediaWiki that uses the minpast heuristic. Fortunately, Memento was

created with the intent of being used by both web archives and content management

systems (CMS) [103]. We chose MediaWiki because it is the wiki software used

by Wikipedia and Wikia, where most fans encounter spoilers. In this section, we

will discuss the design of this extension, performance testing that we conducted

to indicate that it has a minimal impact on existing MediaWiki installations, and

we also show how it can make some headway in solving the problem of temporal

coherence [4]. We care about temporal coherence because embedded images may

contain spoilers in their own right.

With this extension installed, a fan of fiction can avoid spoilers in the fan-based

wiki of their choice.

8.1 DESIGN AND ARCHITECTURE

We took great care in creating a MediaWiki extension that might actually be

113

FIG. 73: Memento MediaWiki Extension Class Hierarchy Diagram

desirable to MediaWiki [48]. We sought to ensure that the extension followed Me-

diaWiki’s coding conventions [58, 59, 112], followed MediaWiki’s security checklist

[91], and did not require changes to core MediaWiki code [87].

Figure 73 shows the architecture of the Memento MediaWiki extension as created

to address these concerns.

The Memento MediaWiki Extension partitions functionality into individual

classes so that MediaWiki’s objects and functions could be consumed and utilized

more efficiently, increasing performance while also allowing for extensibility.

The Memento class is the extension entry point for URI-R and URI-

M work, implementing a Mediator design pattern [29]. It uses the

BeforeParserFetchTempateAndtitle hook [62] to ensure that the revision

of an embedded article template matches the revision of the wiki article. It uses the

ImageBeforeProduceHTML hook [63] to ensure that the revision of an embedded

image matches the revision of the wiki article. It uses the ArticleViewHeader

hook [60] to insert Memento headers into the responses.

114

Listing 8.1: Memento MediaWiki Extension Example Response for step 1 (URI-R)

of Memento Pattern 2.1 (Memento headers in red)

HTTP/1.1 200 OK

Date: Sun, 25 May 2014 21:39:02 GMT

Server: Apache

X-Content-Type-Options: nosniff

Link: <http://ws-dl-05.cs.odu.edu/demo/index.php/Daenerys Targaryen>;

rel="original latest-version",

<http://ws-dl-05.cs.odu.edu/demo/index.php/Special:TimeGate/Daenerys Targaryen>;

rel="timegate",

<http://ws-dl-05.cs.odu.edu/demo/index.php/Special:TimeMap/Daenerys Targaryen>;

rel="timemap"; type="application/link-format"

Content-language: en

Vary: Accept-Encoding,Cookie

Cache-Control: s-maxage=18000, must-revalidate, max-age=0

Last-Modified: Sat, 17 May 2014 16:48:28 GMT

Connection: close

Content-Type: text/html; charset=UTF-8

MediaWiki provides a utility called a SpecialPage to perform specific func-

tions not covered otherwise. When creating an extension, one may use these

SpecialPages to centralize additional functionality, if necessary. Our extension

created new SpecialPages as entry points for clients looking for TimeGates and

TimeMaps.

Global variables are controlled using the Memento class. This way all extension

configuration options (controlled as globals, as is the MediaWiki convention) are

read and stored in one place in a controlled fashion. All other use of global variables

have been removed from the code by using MediaWiki’s native functions as much as

possible.

As shown in Table 14 the MementoResource family of classes imple-

ment the different resource types used in the Memento framework. This

architecture was chosen to improve code quality, while also supporting

code extension and reusability. These classes, with the exception of

TimeGateResourceFrom302TimeNegotiation, are selected based on the

HTTP request using a Factory Method. This Factory Method, combined with a

Strategy pattern, and utilizing Template Methods, makes sure the framework is eas-

ily extendable to include additional future patterns and resource types.

TimeMaps can be paged, allowing a machine client to follow one TimeMap to

115

FIG. 74: Memento Pattern 2.1 Overview with Only Salient Headers, Methods, and

Responses

another and another using the “follow your nose” principle of REST [25]. TimeMap

URIs are constructed by the Memento MediaWiki Extension as shown in the exam-

ples in Table 15. Arguments, specified as part of the URI, indicate which TimeMaps

should be returned. A /-1/ following a datetime in the URI indicates that a

TimeMap containing mementos prior to that datetime should be returned. A /1/

following a datetime in the URI indicates that a TimeMap containing mementos after

that datetime should be returned. A URI containing no datetime returns the latest

Mementos for the given wiki article and a link to the next TimeMap, if there are

more than 500 Mementos.

The TimeMap SpecialPage class also uses this same combination of design pat-

terns to act according to how it are called. For, example, if the TimeMap SpecialPage

is called using a /-1/ following a datetime in the URI, then a

116

Listing 8.2: Memento MediaWiki Extension Example Response for step 2 (URI-G)

of Memento Pattern 2.1 (Memento headers in red)

HTTP/1.1 302 Found

Date: Sun, 25 May 2014 21:43:08 GMT

Server: Apache

X-Content-Type-Options: nosniff

Vary: Accept-Encoding,Accept-Datetime

Location:

http://ws-dl-05.cs.odu.edu/demo/index.php?title=Daenerys Targaryen&oldid=1499

Link:

<http://ws-dl-05.cs.odu.edu/demo/index.php/Special:TimeMap/Daenerys Targaryen>;

rel="timemap"; type="application/link-format",

<http://ws-dl-05.cs.odu.edu/demo/index.php/Daenerys Targaryen>;

rel="original latest-version"

Connection: close

Content-Type: text/html; charset=UTF-8

TimeMapPivotDescendingResource object is instantiated to provide paged

TimeMaps below the given datetime. Likewise a /1/ following a datetime in

the URI instantiates a TimeMapPivotAscendingResource object, providing

paged TimeMaps above the given datetime. If no pivot is given in the URI, then

a TimeMapFullResource object is instantiated, giving the full first page of the

TimeMap from the current date.

The TimeNegotiator centralizes all time negotiation functionality. This way

time negotiation is performed using the same algorithm across the entire extension,

even if new classes are added for additional Memento patterns.

Table 16 provides example URIs that correspond to each of these resource types

once the Memento MediaWiki Extension is installed.

Once this architecture was in place, we were able to address lingering design

decisions.

8.1.1 TIMEGATE DESIGN DECISION

Two possible TimeGate design options were reviewed to determine which would

be best suited to be the default pattern in the Memento MediaWiki Extension [47].

We evaluated the use of Pattern 1.1 and Pattern 2.1 from RFC 7089. Both

patterns require a Memento client to find the URI-G from header information in the

URI-R response.

117

Listing 8.3: Memento MediaWiki Extension Example Response for step 3 (URI-M)

of Memento Pattern 2.1 (Memento headers in red)

HTTP/1.1 200 OK

Date: Sun, 25 May 2014 21:46:12 GMT

Server: Apache

X-Content-Type-Options: nosniff

Memento-Datetime: Sun, 22 Apr 2007 15:01:20 GMT

Link: <http://ws-dl-05.cs.odu.edu/demo/index.php/Daenerys Targaryen>;

rel="original latest-version",

<http://ws-dl-05.cs.odu.edu/demo/index.php/Special:TimeGate/Daenerys Targaryen>;

rel="timegate",

<http://ws-dl-05.cs.odu.edu/demo/index.php/Special:TimeMap/Daenerys Targaryen>;

rel="timemap"; type="application/link-format"

Content-language: en

Vary: Accept-Encoding,Cookie

Expires: Thu, 01 Jan 1970 00:00:00 GMT

Cache-Control: private, must-revalidate, max-age=0

Connection: close

Content-Type: text/html; charset=UTF-8

Pattern 2.1 uses distinct URIs for URI-R and URI-G. Figure 74 shows a simplified

diagram of a Pattern 2.1 exchange.

Pattern 1.1 uses the same URI for both URI-R and URI-G, allowing a resource to

function as its own TimeGate, meaning that the client can short-circuit the process

by one request.

Version 1.0 of the Memento MediaWiki Extension utilized Pattern 2.1, but Pat-

tern 1.1 was explored to save on network traffic and improve performance.

As can be seen in Figure 74, Pattern 2.1 requires three request-response pairs to

retrieve a Memento.

dp2.1 = a+RTTa + b+RTTb +M +RTTM (15)

Equation 15 calculates the duration of using Pattern 2.1, where a is time the Memento

MediaWiki Extension takes to generate the URI-R response in step 1, b is the time it

takes to generate the URI-G response in step 2, andM is the time it takes to generate

the URI-M response in step 3. RTTa, RTTb, and RTTM is defined as round-trip-time,

which is “the time it takes for a small packet to travel from client to server and then

back to the client” [51], for transmitting the data computed during a, b, and M .

118

TABLE 14: Version 2.0 Memento MediaWiki Extension MementoResource Class

Family Members Mapped To Their Memento Resource Type

Extension Class Memento

Resource

Type

MementoResourceDirectlyAccessed URI-M

OriginalResourceDirectlyAccessed URI-R

TimeGateResourceFrom302TimeNegotiation URI-G

TimeMapResource (class family): URI-T

TimeMapFullResource

TimeMapPivotAscendingResource

TimeMapPivotDescendingResource

Figure 75 shows a simplified diagram of Pattern 1.1, which requires two request-

response pairs to retrieve a Memento.

dp1.1 = B +RTTB +M +RTTM (16)

Equation 16 calculates the duration for using Pattern 1.1, where B is the time it

takes to generate the URI-G response in step 1. Just like in Equation 15, M and

RTTM are the same. The term RTTB is the round-trip time to receive and transmit

the results of the calculation done during B.

Our intuition was that Pattern 1.1 should be faster. It has fewer round trips to

make between the client and server.

For Pattern 1.1 to be the better choice for performance, dp1.1<dp1.2, which leads

to Equation 17.

dp1.1 < dp1.2

B +RTTB +❩❩M +❳❳❳❳RTTM < a+RTTa+

b+RTTb +❩❩M +❳❳❳❳RTTM

B +RTTB < a+RTTa + b+RTTb (17)

TimeGate responses consist of 302 status messages in response to a GET request.

The difference between the number of bytes in a request and response conversation

119

TABLE 15: Examples of TimeMap URIs From the Memento MediaWiki

Extension

Meaning Relative TimeMap URI

Get TimeMap for the /index.php/Special:TimeMap/Daenerys Targaryen

latest 500 Mementos

for the wiki article

“Daenerys Targaryen”

Get TimeMap for the /index.php/Special:TimeMap/20110630000000/-1/Daenerys Targaryen

500 Mementos (or less)

prior to June 30, 2011

at midnight

Get TimeMap for the /index.php/Special:TimeMap/20110630000000/1/Daenerys Targaryen

500 Mementos (or less)

after June 30, 2011

at midnight

should differ only by a few bytes at most between Pattern 1.1 and 2.1. If we consider

that a TimeGate response will be equivalent regardless of pattern implemented, then

RTTB ≃ RTTb. This brings us to Equation 18.

B +❳❳❳❳RTTB < a+RTTa + b+❳❳❳❳RTTb

B < a+RTTa + b

B < a+ b+RTTa (18)

Thus, to determine if Pattern 1.1 is actually better, we need to find values for

B (Pattern 1.1 duration for datetime negotiation), a (time to respond to the initial

HEAD request in Pattern 2.1), b (Pattern 2.1 duration for datetime negotiation), and

RTTa (the round trip time for the HEAD request during the first step in Pattern

2.1).

Caching Concerns

After review of the Wikimedia architecture, it also became apparent that caching

was an important aspect of our design and architecture plans. Because the initial

120

TABLE 16: Examples of Memento Resources From the Memento MediaWiki

Extension

Memento Memento Relative

Resource Resource URI

Type Notation Example

Original Resource URI-R /index.php/Daenerys Targaryen

Memento URI-M /index.php?title=Daenerys Targaryen&oldid=27870

TimeGate URI-G /index.php/Special:TimeGate/Daenerys Targaryen

TimeMap URI-T /index.php/Special:TimeMap/Daenerys Targaryen

architecture implemented Pattern 2.1 and 302 responses are not supposed to be

cached [21], caching was not of much concern. Now that we have decided to pursue

Pattern 1.1, it becomes even more important.

Experiments with Varnish (the caching server used by Wikimedia [110]) indicate

that the Vary header correctly indicates what representations of the resource are to

be cached. If the URI-R contains a Vary header with the value Accept-Datetime, this

indicates to Varnish that it should cache each URI-R representation in response to

an Accept-Datetime in the request for that URI-R. Other values of the Vary header

have a finite number of values, but Accept-Datetime can have a near-infinite number

of values (i.e., all datetimes in the past), making caching near useless for Pattern 1.1.

Those visitors of a URI-R that do not use Accept-Datetime in the request header

will be able to reap the benefits of caching readily. Memento users of system using

Pattern 1.1 will scarcely reap this benefit, because Memento clients send an initial

Accept-Datetime with every initial request.

Caching is important to our duration equations because a good caching server re-

turns a cached URI-R in a matter of milliseconds, meaning our value of a in Equation

18 is incredibly small, on the order of 0.1 seconds on average from our test server.

Pattern 1.1 vs. Pattern 2.1 URI-G Performance

The next step was to get a good set of values for b, URI-G performance for Pattern

2.1, and B, URI-G performance for Pattern 1.1.

To get a good range of values, we conducted testing using the benchmarking tool

121

Original

Resource

/TimeGate

(URI-R/

URI-G)

Memento

(URI-M)

User running

Memento Client

CLIENT:
HEAD <URI-R>
Accept-Datetime: DDDDD

Wiki running

Memento MediaWiki Extension

CLIENT:
GET <URI-M>

SERVER:
HTTP/1.1 200 OK
Memento-Datetime: DDDDD

1

2

SERVER:
HTTP/1.1 302 Found
Location: <URI-M>
Vary: Accept-Datetime

FIG. 75: Memento Pattern 1.1 Overview with Only Salient Headers, Methods, and

Responses

Siege [28] on our demonstration wiki. The test machine was a virtual machine with

the specifications listed in Table 17. The test machine consists of two installs of

MediaWiki containing the Memento MediaWiki Extension: one utilizing Pattern 2.1

and the second implemented using Pattern 1.1. The data used in the test wikis came

from A Wiki of Ice and Fire, consisting on many articles about the popular A Song

of Ice and Fire book series.

Both TimeGate implementations use the same TimeNegotiator class, as

shown in the architecture from Figure 73. They only differ in where this class is

called. The Pattern 1.1 implementation uses the ArticleViewHeader hook [60]

to instantiate this class and perform datetime negotiation. The Pattern 2.1 imple-

mentation utilizes a MediaWiki SpecialPage [66] at a separate URI to instantiate

this class and perform datetime negotiation.

122

TABLE 17: Specifications of the Test Machine Used to Compare Pattern 1.1 vs.

Pattern 2.1 URI-G Performance

CPU Number 2

CPU Clock Speed 2.4 GHz

CPU Type Intel Xeon E7330

RAM 2 GB

Operating System Red Hat

Enterprise Linux 6.5

Apache HTTP Server Version 2.2.15

PHP Version 5.3.3

Listing 8.4: Example of Siege output

HTTP/1.1 302 0.60 secs: 0 bytes ==> GET /demo-special/index.php/

Special:TimeGate/Daenerys

HTTP/1.1 200 3.10 secs: 95662 bytes ==> GET /demo-special/index.php?title=

Daenerys&oldid=27870

HTTP/1.1 302 3.41 secs: 0 bytes ==> GET /demo/index.php/Daenerys

HTTP/1.1 200 1.86 secs: 94558 bytes ==> GET /demo/index.php?title=Daenerys

&oldid=27870

Tests were performed against localhost to avoid the benefits of using the installed

Varnish caching server. By doing this, we see the true processing times from Medi-

aWiki for TimeGate response generation. Also, caching was disabled in MediaWiki

to avoid skewing the results.

Siege was run against 6304 different articles in the demonstration wiki. The date

of Mon, 30 Jun 2011 00:00:00 GMT was used for datetime negotiation. This date

corresponds to the release of the book A Dance With Dragons which came out after

the wiki had an established base of users. A flurry of activity should occur around

and after that date. All previous books in the A Song of Ice and Fire series were

released prior to the wiki’s creation.

Listing 8.4 gives an example of the output from Siege. This output was further

123

FIG. 76: Differences in URI-G performance between Pattern 1.1 and 2.1

processed using a Python script which extracted all of the 302 responses, which cor-

respond to those instances of datetime negotiation (the 200 responses are just Siege

dutifully following the 302 redirect). The URI then indicates which edition of the

Memento MediaWiki Extension is installed, differing only in their TimeGate imple-

mentation. URIs beginning with /demo-special use Pattern 2.1. URIs beginning

with /demo use Pattern 1.1. From these lines we can compare the amount of time it

takes to perform datetime negotiation using each design option.

Figure 76 shows the results of this analysis. The plot shows the difference between

the Pattern 1.1 and Pattern 2.1 processing times. Seeing as most values are above 0,

it appears that there is a marked benefit to using Pattern 2.1. The string of values

around 7 seconds difference are all Wiki redirect pages, leading one to infer that

redirection is especially expensive with Pattern 1.1.

Figure 77 contains a histogram with 12 buckets containing the range of processing

time values for Pattern 1.1.

124

FIG. 77: Histogram showing Pattern 1.1 values

Figure 78 contains another histogram with 12 buckets for comparison, showing

the range of processing time values for Pattern 2.1.

Table 18 shows the statistics from the testing. We now have values for b and B,

so 0.22 ≤ b ≤ 1.75 and 0.56 ≤ B ≤ 12.06 for Equation 18. Of course, the processing

time varies based on page size, number of revisions, and other factors.

The high side of the range of values shown for Pattern 1.1 from Table 18 and

Figure 77 exceed those acceptable to the MediaWiki performance guidelines [80].

This also leads one to infer that the cost of using Pattern 1.1 may not be acceptable

to the Wikimedia team.

Round Trip Time

Our final missing term from Equation 18 is RTTa. RTT is a combination of

transmission delay (dt), propagation delay (dp), queuing delay, and processing delay

[51]. For the purposes of this paper, we are ignoring queuing delay and processing

125

FIG. 78: Histogram showing Pattern 2.1 values

delay, as those are dependent of the router infrastructure of the Internet and are

typically negligible, thus we are reduced to Equation 19.

RTT = dt + dp (19)

And transmission delay is a function of the number of bits (N) divided by the rate

of transmission (R) [51], shown in Equation 20.

dt =
N

R
(20)

Listing 8.5 shows an example Pattern 2.1 HEAD request. Considering cookies and

other additional data, the average initial Pattern 2.1 HEAD request consists of the

700 Byte HTTP request + a 20 Byte TCP header [96] + a 20 Byte IP header [96].

This gives a total payload of 740 Bytes or 5920 bits. Thus our request transmission

delay is dtrq = 5920 b/R.

Listing 8.6 shows an example Pattern 2.1 200 status code reply. Considering

variability within the Link header relation entries, the average initial Pattern 2.1

126

Listing 8.5: Example HTTP Request for RTTa

HEAD /demo/index.php/Daenerys_Targaryen HTTP/1.1

Host: ws-dl-05.cs.odu.edu

Accept: */*

Accept-Encoding: gzip,deflate,sdch

Accept-Language: en-US,en;q=0.8

Cookie: __utma=99999999.9999999999.9999999999.9999999999.9999999999. 99;

__utmz=99999999.9999999999.9.9.utmcsr=example.com|utmccn=(referral)|utmcmd=

referral|utmcct=/; __utma

=999999999.9999999999.9999999999.9999999999.9999999999. 9; __utmz

=999999999.9999999999.9.9.utmcsr=example|utmccn=(organic)|utmcmd=organic|

utmctr=(not%20provided); __atuvc=99%7C99%2C99%7C99%2C9%7C99%2C0%7C99%2C99%7

C99

User-Agent: Mozilla/5.0 (Macintosh; Intel Mac OS X 10_9_2) AppleWebKit/537.36 (

KHTML, like Gecko) Chrome/34.0.1847.131 Safari/537.36

Listing 8.6: Example HTTP Response for RTTa

HTTP/1.1 200 OK

Age: 0

Cache-Control: s-maxage=18000, must-revalidate, max-age=0

Connection: keep-alive

Content-language: en

Content-Type: text/html; charset=UTF-8

Date: Tue, 06 May 2014 02:57:35 GMT

Last-Modified: Sat, 22 Mar 2014 02:47:30 GMT

Link: <http://ws-dl-05.cs.odu.edu/demo/index.php/Daenerys_Targaryen>; rel="

original latest-version",<http://ws-dl-05.cs.odu.edu/demo/index.php/Special

:TimeGate/Daenerys_Targaryen>; rel="timegate",<http://ws-dl-05.cs.odu.edu/

demo/index.php/Special:TimeMap/Daenerys_Targaryen>; rel="timemap"; type="

application/link-format"

Server: Apache/2.2.15 (Red Hat)

Vary: Accept-Encoding,Accept-Datetime,Cookie

Via: 1.1 varnish

X-Content-Type-Options: nosniff

X-Powered-By: PHP/5.3.3

X-Varnish: 2138031585

127

TABLE 18: Statistics on Pattern 1.1 vs. Pattern 2.1 TimeGate testing results

Pattern 1.1 Pattern 2.1

Min 0.56 0.22

Max 12.06 1.75

Mean 1.24 0.6

Median 0.77 0.59

response consists of a 700 Byte HTTP response + a 20 Byte TCP header + a 20

Byte IP header. This gives a total payload of 740 Bytes or 5920 bits. Thus our

response transmission delay dtrs = 5920 b/R.

Seeing as both share the same denominator, our total transmission delay dt =

dtrq + dtrs = 5920 b/R + 5920 b/R = 11840 b/R.

Assuming an average-to-worst case of 1G wireless telephony (28,800 bps), the

end user would experience a transmission delay of dt = 11840 b/28800 bps = 0.41 s.

Combining this with our average case for both TimeGate patterns from the previous

section, b = 0.6 s and B = 1.24 s, and using a = 0.1 from the caching results, we get

Equation 21.

B < RTTa + a+ b From (18)

B < dp + dt + a+ b From (19)

1.24 s < dp + dt + 0.1 s+ 0.6 s

1.24 s < dp + 0.41 s+ 0.1 s+ 0.6 s

1.24 < dp + 1.11 s (21)

So, an end user with 1G wireless telephony would need to experience an additional

0.13 s of propagation delay in order for Pattern 1.1 to be comparable to Pattern 2.1.

Propagation delay is a function of distance and propagation speed, as shown in

Equation 22.

dp =
d

sp
(22)

Seeing as wireless telephony travels at the speed of light, the distance one would need

to transmit a signal to make Pattern 1.1 viable becomes 80944 km = 50296.3 miles

128

as shown in Equation 23.

0.13 s =
d

299792458 m/s

(0.13 s)(299792458 m/s) = d

d = 38973019.54 m = 38973 km = 24216.7 miles (23)

This is almost the circumference of the Earth [92]. Even if we used copper wire (which

has a worse propagation delay) rather than radio waves, the order of magnitude is

the same. Considering the amount of redundancy on the Internet, the probability of

hitting this distance is quite low, meaning that propagation delay will likely be so

small that we will ignore it for the rest of this discussion.

That brings us back to transmission delay. At what transmission delay, and

essentially what bandwidth, does Pattern 1.1 win out over Pattern 2.1 using our

average values for b and B?

B < dt + a+ b From (18) and (19), removing dp

1.24 s < dt + 0.1 s+ 0.6 s

1.24 s < dt + 0.7 s

0.54 s < dt

dt =
N

R
From (20)

0.54 s =
11840 b

R

(0.54 s)(R) = 11840 b

R =
11840 b

0.54 s
= 21926 bps (24)

Thus, the bandwidth for which Pattern 1.1 would begin to be useful would be any-

thing at the speed less than 1G telephony, but would become produce increasingly

poorer performance for bandwidths higher than that.

TimeGate Design Conclusion

From the data gathered and the experiments run, used in Equations 18, 19, and

20, Pattern 1.1 takes too much processing time to be viable, in spite of the saved

RTT . It comes down to the values of b (processing time for Pattern 2.1) vs. B

(processing time for Pattern 1.1), and B is greater in many cases.

129

Why the big difference? It turns out that the ArticleViewHeader hook used

in the Pattern 1.1 implementation runs after MediaWiki has loaded all of the page

data. The Pattern 2.1 implementation extends a SpecialPage, which has loaded

nothing, and can start processing immediately.

Why not use a hook that is run before all of the page data is loaded? We need

a hook that provides MediaWiki’s WebRequest object for processing the Accept-

Datetime request header. It also needs to provide MediaWiki’s WebResponse

object for producing the 302 response. Hooks earlier in the processing chain do

not appear to provide this capability. We prototyped an implementation using the

BeforeInitialize hook [61] and it did not preserve the needed response headers,

nor did it perform better. Attempts to find earlier hooks by asking the MediaWiki

development team have met with no success [45].

If a MediaWiki hook were available that gave the same performance for Pattern

1.1 as for Pattern 2.1 then transmission delay would no longer matter, and Pattern

1.1 would clearly be the best choice, as we see from Equation 25, because transmission

delay would always be greater.

B < dt + a+ b From (18) and (19), removing dp

b < dt + 0.1 s+ b Replacing B with mean of b

b− b < dt + 0.1 s+ b− b

0 < dt + 0.1 s (25)

Of course, the processing time is not the only issue here; the use of Pattern 1.1 would

make caching useless for Memento users of URI-Rs, considering Memento clients send

an Accept-Datetime with each request, and there are a near infinite number of values

for Accept-Datetime.

8.2 PERFORMANCE IMPACT ON MEDIAWIKI INSTALLATIONS

Once we completed initial development on the Memento MediaWiki Extension,

we turned our focus to its impact on performance. We used Siege again, as in the

TimeGate design experiment. The same machine as shown in Table 17 was used

to run these performance tests, and the same demonstration wiki provided the test

data.

As URI-Gs were tested during the TimeGate design experiment, we focused our

attention on the other Memento resource types.

130

FIG. 79: Plot showing the difference in times for URI-Rs between a MediaWiki

installation containing our extension vs one without it installed

8.2.1 URI-R PERFORMANCE

First, we look at the results for URI-Rs. These are the base wiki article pages.

All the Memento MediaWiki Extension does is add Memento headers to these pages

for a Memento client’s benefit, informing the client of the URI for the TimeGate and

TimeMap, and, in the case where all headers are enabled, first and last mementos.

Figure 79 shows the difference in seconds between accessing a wiki page’s URI-R

with the Memento MediaWiki installed and accessing the same wiki page without

the extension loaded. Each point on the plot is one of 6480 different pages from

the test wiki, and again they are evenly arranged around the 0 mark. The plots are

evenly arranged around the 0 mark, with most of the points between 0.7 and -0.7.

This means that installing the extension has a negligible impact on performance of

URI-Rs. If the extension seriously impacted performance, then most of the plots

should be above the 0 mark.

131

FIG. 80: Plot showing the difference in times for URI-Ms between a MediaWiki

installation containing our extension vs one without it installed

8.2.2 URI-M PERFORMANCE

Secondly, we look at the results for URI-Ms, or oldid pages. This is the other

Memento resource type that MediaWiki natively implemented already. Just like with

URI-Rs, the Memento MediaWiki Extension adds Memento headers to these pages

for a Memento client’s benefit, informing the client of the URI for the TimeGate and

TimeMap, and, in the case where all headers are enabled, first and last mementos.

Figure 80 shows the difference in seconds between accessing a URI-M (or oldid

page in MediaWiki parlance) with only mandatory Memento headers enabled and

accessing the same page without the extension installed. Each point on the plot is

one of 10257 different oldid pages from the test wiki. These plots are also arranged

around the 0 mark, with most of the points between -0.25 and 0.25. This means that

installing the extension has a negligible impact on URI-Ms. Again, if the extension

seriously impacted performance, then most of the plots should be above the 0 mark.

132

FIG. 81: Plot showing the difference in size between MediaWiki history pages and

TimeMaps for the same article

8.2.3 URI-T PERFORMANCE

The closest thing to a Memento TimeMap (URI-T) in MediaWiki is a history

page, but they are not really the same thing. The audience for history pages are

humans, whereas the audience for TimeMaps are machine clients. Seeing as 80.8%

of requests for TimeMaps come from machine clients [6], and 95% of machine clients

download TimeMaps exclusively [7], there is interest in providing a machine readable

format of the history page. To use a history page, a machine client would need to

parse the HTML, performing unnecessary computation in order to get the same data

provided much more succinctly by a TimeMap.

Again, we used Siege to download 6252 sample history pages and TimeMaps from

our demonstration wiki. Figure 81 shows the difference in size between a MediaWiki

history page and the corresponding TimeMap for the same article across 6252 sample

pages. The mean in this sample is -34.7 kilobytes. This means, that if one were to

133

TABLE 19: Status of full temporal coherence among MediaWiki Entities

MediaWiki Entity Status of Solution for Memento

Wiki Article Complete in Extension

Template Page Complete in Extension

Embedded Images Complete as an Experimental Feature That Can Be Enabled

Embedded JavaScript Requires change to MediaWiki source

Embedded StyleSheets Requires change to MediaWiki source

solely rely upon a MediaWiki history page to acquire TimeMap data, they would

need to parse through an additional unnecessary 35 kilobytes. In addition, there

would be extra processing time given to stripping out the HTML and generating the

TimeMap, which is a waste when a standard format TimeMap exists already.

Of course, one could also use the MediaWiki API to generate the information

for TimeMaps, but TimeMaps provide URIs, whereas the MediaWiki API provides

revision identifiers, which would require one to construct URIs in addition to parsing

the API output in order to produce a TimeMap.

8.3 ATTEMPTS AT TEMPORAL COHERENCE

The Memento MediaWiki Extension is in a unique place to attempt to address

the concept of temporal coherence. Web archives process a web page and retrieve

the embedded resources at some point thereafter, which creates all kinds of problems

when attempting to reconstruct the page to resemble its past revision [1]. Medi-

aWiki has access to every revision of its embedded resources, therefore true temporal

coherence should, in theory, be achievable for wiki revisions. To realize this, each Me-

diaWiki URI-M must contain all of the correct revisions of those embedded images,

JavaScript, and stylesheets that existed at the time the URI-M was saved. Table 19

shows the status of this work.

Temporal coherence is important to our study of spoilers because embedded im-

ages and other content can sometimes contain spoilers themselves, even though the

article containing them does not.

As we show below, the temporal coherence of all Mementos served by MediaWiki

134

FIG. 82: Example Wikipedia page1 with an embedded image that has been changed

as the page content changes

is potentially a condition called prima facia violative, specifically the pattern Right

Newer Last-Modified. This means that past revisions of a MediaWiki page contain

the current revision of embedded resources.

The following sections highlight the issues of MediaWiki’s temporal coherence in

more detail.

8.3.1 EMBEDDED IMAGES

One of the problems we seek to address is the issue of embedded images [46].

MediaWiki allows one to store multiple versions of an embedded image under a

single page name in the File namespace.

Figure 82 shows a screenshot of a Wikipedia page containing a map showing

the legal status of Same-sex marriage law in the United States. The article content

is changed as this issue unfolds, and the map is updated also to reflect the article

content.

1https://en.wikipedia.org/w/index.php?title=Same-sex_marriage_law_

in_the_United_States_by_state&oldid=604205801

https://en.wikipedia.org/w/index.php?title=Same-sex_marriage_law_in_the_United_States_by_state&oldid=604205801
https://en.wikipedia.org/w/index.php?title=Same-sex_marriage_law_in_the_United_States_by_state&oldid=604205801

135

FIG. 83: June 5, 2013 version of the example MediaWiki page2 with an embedded

image that is changed as the page content changes (note that the map is the same

as in Figure 82, which does not match the article text)

If we access previous revisions of the MediaWiki page now, then it displays the

current revision of the map, not the one that goes with that revision of the article.

What should be shown is the image shown in Figure 84 because it accurately

reflects the content of the July 5, 2013 revision of the article.

2https://en.wikipedia.org/w/index.php?title=Same-sex_marriage_law_

in_the_United_States_by_state&oldid=558400004

https://en.wikipedia.org/w/index.php?title=Same-sex_marriage_law_in_the_United_States_by_state&oldid=558400004
https://en.wikipedia.org/w/index.php?title=Same-sex_marriage_law_in_the_United_States_by_state&oldid=558400004

136

FIG. 84: June 5, 2013 version of the example MediaWiki page should show this

map3 instead if it is to be consistent with the article content

3https://upload.wikimedia.org/wikipedia/commons/archive/7/7e/

20130612195416%21Samesex_marriage_in_USA.svg

https://upload.wikimedia.org/wikipedia/commons/archive/7/7e/20130612195416%21Samesex_marriage_in_USA.svg
https://upload.wikimedia.org/wikipedia/commons/archive/7/7e/20130612195416%21Samesex_marriage_in_USA.svg

137

FIG. 85: MediaWiki Page4 showing the map’s file history

Figure 85 shows that Wikipedia (and transitively, MediaWiki) has access to all of

the previous revisions of the map. The data is present in the system, but MediaWiki

does not present the previous version of the image with the previous version of the

page.

MediaWiki provides the ImageBeforeProduceHTML hook,which provides a

$file argument, giving access to the LocalFile object for the embedded im-

age. It also provides a $time argument that signifies the “Timestamp of file in

’YYYYMMDDHHIISS’ string form, or false for current” [63].

We wanted to use the $time argument, but were perplexed when the hook did

not perform as expected, so we examined the source of MediaWiki version 1.22.5.

Listing 8.7 shows the hook being called within the MediaWiki file Linker.php.

Listing 8.8 shows that the $time variable that we would set is passed to the

makeThumbLink2 function, also in the same file.

But, as shown in Listing 8.9, the value of $time is not really used. Instead, it is

used to create a boolean value before being passed on to makeBrokenLinkObj.

4https://en.wikipedia.org/wiki/File:Samesex_marriage_in_USA.svg

https://en.wikipedia.org/wiki/File:Samesex_marriage_in_USA.svg

138

Listing 8.7: Where the ImageBeforeProduceHTML hook is called in Linker.php

569 if (!wfRunHooks(’ImageBeforeProduceHTML’, array(&$dummy, &$title,&$file,

&$frameParams, &$handlerParams, &$time, &$res))) {

570 return $res;

571 }

Listing 8.8: Where the variable $time is passed after the hook is called

639 if (isset($fp[’thumbnail’]) || isset($fp[’manualthumb’]) || isset($fp[

’framed’])) {

640 # Create a thumbnail. Alignment depends on the writing direction of

641 # the page content language (right-aligned for LTR languages,

642 # left-aligned for RTL languages)

643 #

644 # If a thumbnail width has not been provided, it is set

645 # to the default user option as specified in Language*.php

646 if ($fp[’align’] == ’’) {

647 if ($parser instanceof Parser) {

648 $fp[’align’] = $parser->getTargetLanguage()->alignEnd();

649 } else {

650 # backwards compatibility, remove with makeImageLink2()

651 global $wgContLang;

652 $fp[’align’] = $wgContLang->alignEnd();

653 }

654 }

655 return $prefix . self::makeThumbLink2($title, $file, $fp, $hp, $time,

$query) . $postfix;

656 }

Listing 8.9: Where the variable $time is used to create a boolean value

861 if (!$exists) {

862 $s .= self::makeBrokenImageLinkObj($title, $fp[’title’], ’’, ’’, ’’, $time
== true);

863 $zoomIcon = ’’;

864 } elseif (!$thumb) {

Listing 8.10: Where the variable $time is again used to create a boolean value

674 if (!$thumb) {

675 $s = self::makeBrokenImageLinkObj($title, $fp[’title’], ’’, ’’, ’’, $time ==
true);

676 } else {

139

Back inside the makeImageLink function, we see a second use of the $time

value, as shown in Listing 8.10, but it is again used to create a boolean argument to

the same function as seen in Listing 8.9.

Note that its timestamp value of $time in ‘YYYYMMDDHHIISS’ string form

is never actually used as described. So, the documentation for the ImageBefore-

ProduceHTML hook is incorrect on the use of this $time argument. In fact, the

hook was introduced in MediaWiki version 1.13.0 and this code does not appear to

have changed much since that time. It is possible that the $time functionality is

intended to be implemented in a future version.

Finally, we discovered a possible solution by instead using the $file ob-

ject’s getHistory() function [68]. This function returns an array of the File

objects representing each revision of an image. Even better, it takes $start

and $end arguments, meaning that this function can do the datetime negoti-

ation itself. Seeing as the $file argument is passed in by reference to the

ImageBeforeProduceHTML, we can reassign the File object to the one in the

array with the desired datetime, thus loading the correct image.

Our final solution requires more review, as one needs to purge the MediaWiki

cache in order to view the correct revision of the image. We also need to determine

how to retrieve the correct datetime for the URI-M base page that loads the image.

For these reasons, images are not currently supported by the extension, but as noted

in Table 19, this capability has been prototyped for the next version of the Memento

MediaWiki Extension.

8.3.2 EMBEDDED JAVASCRIPT AND CSS

JavaScript and StyleSheets are the other embedded resources necessary to satisfy

temporal coherence. MediaWiki natively stores all versions of stylesheets for use [65],

as shown in Figure 86. MediaWiki also natively stores all versions of JavaScript to

use [64], as shown in Figure 87.

140

FIG. 86: Example of CSS history5 in MediaWiki

5http://awoiaf.westeros.org/index.php?title=MediaWiki:Common.

css&action=history

http://awoiaf.westeros.org/index.php?title=MediaWiki:Common.css&action=history
http://awoiaf.westeros.org/index.php?title=MediaWiki:Common.css&action=history

141

FIG. 87: Example of JavaScript history in MediaWiki6

Figure 88 shows an example where the CSS matters. The previous version of this

page is using the current CSS, which does not render the same way. As a result, the

shield image appears over the text on the left side of the page.

Unfortunately, we could find no hooks that allowed the MediaWiki Extension to

access these resources and change how the page is rendered. This is an item that

will require us to work with the MediaWiki Development team.

Once this is achieved, it could be made an optional setting. Some sites may not

want their present content displayed with previous styles or JavaScript code.

8.4 SUMMARY

In this chapter, we discussed the Memento MediaWiki Extension, a server-side

solution to the spoiler problem.

We have also experimented with the use of Memento Pattern 1.1 in an attempt to

improve performance, and have found that it would actually have a negative impact

on performance, due to idiosyncrasies in how it would need to be implemented within

MediaWiki. Thus, the Memento MediaWiki extension uses Memento Pattern 2.1 as

described in the rest of this thesis.

6http://awoiaf.westeros.org/index.php?title=MediaWiki:Common.

js&action=history

http://awoiaf.westeros.org/index.php?title=MediaWiki:Common.js&action=history
http://awoiaf.westeros.org/index.php?title=MediaWiki:Common.js&action=history

142

FIG. 88: Example of the current CSS not agreeing with an previous revision of a

MediaWiki page

We have also shown how merely installing the Memento MediaWiki Extension

has a negligible impact on performance for accessing MediaWiki pages, both current

and oldid.

Unfortunately, until work is done with the MediaWiki development team to

address embedded stylesheets and JavaScript, temporal coherence cannot be fully

achieved. Even though we have not achieved full temporal coherence, we believe we

have addressed the issue of spoilers. Because JavaScript is mostly used for producing

browser based effects and software functionality, it is unlikely to produce spoilers.

Also, CSS is used to control the rendering of web pages, not their content.

143

CHAPTER 9

FUTURE WORK

Our solution provides relief from spoilers for fan wikis, but there are still other

directions to take the discoveries from this research.

Research can be done on how to avoid spoilers for situations where entire series

are released at once. Now that we have identified a special case where Memento is

not the complete solution for avoiding spoilers in this case, what additional tools can

be used?

For resources without access to all page revisions, such as sparse web archives, one

can compare past and future mementos to determine if spoilers have been revealed.

This may require an actual review of the returned content to see if it contains spoilers,

but other factors, such as the amount of text different between mementos, may be

the key to providing some measure of this capability for sparse web archives.

It is possible to use our model not just for avoiding spoilers in television shows,

but potentially sporting events and news articles. Web archives are known to have

abundant mementos for news sites, meaning that minpast can conceivably be used

to avoid spoilers for sporting and current events. A study can be conducted as to

how well this will work for this use case.

Wikipedia itself may be a fascinating topic of study for those trying to avoid

information on emerging topics. Minpast can be used to discover historical data on

topics with evolving information such as same sex marriage or the United States

relations with Cuba. It is also possible to use minpast programmatically to extract

information from wiki edits, determining not only when a specific event occurred,

but what change happened.

One can look at the content of specific revisions to determine if specific seman-

tic classes of revisions may contain spoilers. Metrics, such as length of content or

number of revisions per hour, may be used to indicate that some revisions have a

higher probability of containing spoilers. Alternatively, one can use tools such as

Amazon’s Mechanical Turk to determine the effectiveness of avoiding spoilers using

these metrics.

144

There is the potential to create a system that would allow a user to select a

television show and episode, then present them only with web pages from the time

period prior to that episode. It would be a domain-specific front-end to the existing

Memento infrastructure.

The digital preservation community may benefit from further study on additional

TimeGate heuristics and their use cases, such as minfutr, where one provides a

datetime lower bound for the mementos returned. Using minfutr, adventurous fans

may be able to discover when spoilers were revealed on a given web page. It may

also be possible to use minfutr to find the first reported event after a given date.

One can use our wiki experiment on Wikipedia at large to determine the number

of missed updates and redundant mementos, possibly arriving at a statistically sig-

nificant sample that can be used to rate the effectiveness of web archiving.

145

CHAPTER 10

CONCLUSIONS

In this thesis we have examined the use of Memento to avoid spoilers. We have

reviewed the work of others, discovering that, though work has been done to avoid

spoilers in social media, little has been done for fan wikis. Memento provides an

opportunity to view past versions of a web page, and wikis contain every revision of

a page, allowing a user to visit a revision of a wiki page that was created prior to

spoiler knowledge being released by episodic fiction.

We have examined different TimeGate heuristics used to return mementos to

a user. We have discussed how the minpast heuristic would be best for avoiding

spoilers, but is problematic when used in archives that are sparse. Because most

web archives are sparse, the mindist heuristic is used instead. We indicated how the

mindist heuristic can return spoilers because it finds the closest memento, and may

return future versions of a page. When using mindist, we defined the term spoiler

area to be that set of datetimes that will direct a user to a future revision, even

though they chose a date in the past. We determined how one could calculate the

probability of encountering a spoiler for a given page.

We then conducted a study on 16 fan wikis, contrasting their revision datetimes

with Interent Archive memento datetimes and episode datetimes. We discovered that

only 38% of the pages selected for our study actually existed in the Internet Archive.

From this study, we showed that spoiler areas do exist and as pages get archived, they

will produce spoilers. We also calculated a mean 0.66 probability of encountering

a spoiler across all wikis in the study. Our study provided a unique opportunity

to highlight the problem of missed updates, where some updates to pages are not

recorded by web archives. We were able to show that the problem of missed updates

is getting better, for some of the pages in the study.

We also studied anonymized logs from the Wayback Machine, showing that users

are indeed being redirected to newer versions of pages, even though they came from

a date in the past. We found that 17% of requests from our logs end up in the future,

indicating that users of the Wayback Machine are experiencing spoilers.

146

Identifying that this problem can be solved for wikis by using minpast, we demon-

strated the development and analysis of the Memento MediaWiki Extension, which

can be used to avoid spoilers in fan wikis. We showed how the extension has a

negligible impact on performance. We also lightly touched on the topic of temporal

coherence, showing that parts of MediaWiki can help with the problem, even though

it is not structured in a way to completely solve it.

From these studies, we have shown that the spoiler problem can exist in fan wikis

and is being experienced by Wayback Machine users. We have also produced a solu-

tion in the Memento MediaWiki Extension. With this solution, the 0.66 probability

of encountering a spoiler can go to 0 and Memento users can be directed to the actual

version of a wiki page that existed at the time they desired, avoiding spoilers.

147

REFERENCES

[1] Ainsworth, S., and Nelson, M. L. Evaluating sliding and sticky target

policies by measuring temporal drift in acyclic walks through a web archive.

In Proceedings of the international ACM/IEEE Joint Conference on Digital

libraries (JCDL) (July 2013), pp. 39 – 48. (Also available as arXiv:1309:5503).

[2] Ainsworth, S. G., Alsum, A., SalahEldeen, H., Weigle, M. C., and

Nelson, M. L. How much of the web is archived? In Proceedings of the

international ACM/IEEE Joint Conference on Digital libraries (JCDL) (New

York, New York, USA, 2011), ACM Press, pp. 133–136.

[3] Ainsworth, S. G., and Nelson, M. L. Evaluating sliding and sticky target

policies by measuring temporal drift in acyclic walks through a web archive.

In Proceedings of the international ACM/IEEE Joint Conference on Digital

libraries (JCDL) (2013), pp. 39 – 48.

[4] Ainsworth, S. G., Nelson, M. L., and Van de Sompel, H. A Frame-

work for Evaluation of Composite Memento Temporal Coherence. Tech. Rep.

arXiv:1402.0928, Old Dominion University, Feb. 2014.

[5] Almeida, R., Mozafari, B., and Cho, J. On the Evolution of Wikipedia.

In International Conference on Weblogs and Social Media (2007).

[6] AlNoamany, Y., AlSum, A., Weigle, M. C., and Nelson, M. L. Who

and what links to the Internet Archive. In Proceedings of the Theory and

Practice of Digital Libaries (TPDL2013) (Sept. 2013), pp. 346 – 357.

[7] AlNoamany, Y. A., Weigle, M. C., and Nelson, M. L. Access patterns

for robots and humans in web archives. In Proceedings of the international

ACM/IEEE Joint Conference on Digital libraries (JCDL) (2013), pp. 339 –

348.

[8] Berjon, R., Faulkner, S., Leithead, T., O’Connor, E., Pfeiffer,

S., and Hickson, I. HTML 5: A vocabulary and associated APIs for HTML

and XHTML. http://www.w3.org/TR/html5/, 2014.

http://www.w3.org/TR/html5/

148

[9] Berners-Lee, T. Web Architecture: Generic Resources. http://www.

w3.org/DesignIssues/Generic.html, 1996.

[10] Berners-Lee, T. ISSUE-14: What is the range of the HTTP dereference

function? http://www.w3.org/2001/tag/group/track/issues/

14, March 2002.

[11] Berners-Lee, T., Bray, T., Connolly, D., Cotton, P., Fielding,

R., Jeckle, M., Lilley, C., Mendelsohn, N., Orchard, D., Walsh,

N., and Williams, S. Architecture of the World Wide Web, Volume One.

http://www.w3.org/TR/webarch/, 2004.

[12] Berners-Lee, T., Fielding, R., and Masinter, L. RFC 3986: Uniform

Resource Identifier (URI): Generic Syntax. http://www.ietf.org/rfc/

rfc3986.txt, January 2005. Accessed: 2013-10-05.

[13] Beyou, S. Extension:BackwardsTimeTravel. http://www.mediawiki.

org/wiki/Extension:BackwardsTimeTravel, Feb. 2014. Accessed:

2014-05-03.

[14] Boyd-Graber, J., Glasgow, K., and Zajac, J. S. Spoiler Alert : Ma-

chine Learning Approaches to Detect Social Media Posts with Revelatory In-

formation. In Proceedings of the American Society for Information Science and

Technology (Montreal, Quebec, Canada, 2013), vol. 50, Wiley Online Library,

pp. 1–9.

[15] Cohen, N. Spoiler Alert: Whodunit? Wikipedia Will Tell You.

http://www.nytimes.com/2010/09/18/business/media/

18spoiler.html?_r=2&adxnnl=1&adxnnlx=1284931453-

Cougj2fpRsBoD+tJX2gG5g&, Sept. 2003.

[16] Croft, W. B., Metzler, D., and Strohman, T. Search Engines: In-

formation Retrieval in Practice. Pearson Education, Boston, Massachusetts,

USA, 2010.

[17] Cuslidge, T., and Weiss, J. Potter fans’ new foe? The

Web. http://www.popmatters.com/article/potter-fans-

new-foe-the-web/, July 2007. Accessed: 2014-09-16.

http://www.w3.org/DesignIssues/Generic.html
http://www.w3.org/DesignIssues/Generic.html
http://www.w3.org/2001/tag/group/track/issues/14
http://www.w3.org/2001/tag/group/track/issues/14
http://www.w3.org/TR/webarch/
http://www.ietf.org/rfc/rfc3986.txt
http://www.ietf.org/rfc/rfc3986.txt
http://www.mediawiki.org/wiki/Extension:BackwardsTimeTravel
http://www.mediawiki.org/wiki/Extension:BackwardsTimeTravel
http://www.nytimes.com/2010/09/18/business/media/18spoiler.html?_r=2&adxnnl=1&adxnnlx=1284931453-Cougj2fpRsBoD+tJX2gG5g&
http://www.nytimes.com/2010/09/18/business/media/18spoiler.html?_r=2&adxnnl=1&adxnnlx=1284931453-Cougj2fpRsBoD+tJX2gG5g&
http://www.nytimes.com/2010/09/18/business/media/18spoiler.html?_r=2&adxnnl=1&adxnnlx=1284931453-Cougj2fpRsBoD+tJX2gG5g&
http://www.popmatters.com/article/potter-fans-new-foe-the-web/
http://www.popmatters.com/article/potter-fans-new-foe-the-web/

149

[18] Denham, J. Netflix releases House of Cards ‘Spoiler Foiler’ for Twitter users.

http://www.independent.co.uk/arts-entertainment/tv/

news/netflix-releases-house-of-cards-spoiler-foiler-

for-twitter-users-9136324.html, February 2014.

[19] Ebert, R. Critics have no right to play spoiler. http://www.

rogerebert.com/rogers-journal/critics-have-no-right-

to-play-spoiler, 2005.

[20] Elliott, S. A Big Splash for a Prohibition Drama. The New York Times

(Aug. 2010). Accessed: 2014-10-17.

[21] Fielding, R., Gettys, J., Mogul, J., Frystyk, H., Masinter,

L., Leach, P., and Berners-Lee, T. Hyptertext Transfer Protocol –

HTTP/1.1. http://www.ietf.org/rfc/rfc2616.txt, June 1999.

Accessed: 2013-10-05.

[22] Fielding, R., and Reschke, J. RFC 7230: Hypertext Transfer Protocol

(HTTP/1.1): Message Syntax and Routing. http://tools.ietf.org/

html/rfc7230, 2014.

[23] Fielding, R., and Reschke, J. RFC 7231: Hypertext Transfer Protocol

(HTTP/1.1): Semantics and Content. http://tools.ietf.org/html/

rfc7231, 2014.

[24] Fielding, R., and Reschke, J. RFC 7232: Hypertext Transfer Protocol

(HTTP/1.1): Conditional Requests. http://tools.ietf.org/html/

rfc7232, 2014.

[25] Fielding, R. T., and Taylor, R. N. Principled design of the modern

web architecture. ACM Transactions on Internet Technology 2, 2 (May 2002),

115–150.

[26] Forrester, J., Wicke, G., Ananian, C. S., Breault, A., i Llopis,

M. O., and Sastry, S. Extension:Parsoid. http://www.mediawiki.

org/wiki/Parsoid, May 2014.

[27] Fox, R. Turning back 10 billion (web) pages of time. Communications of the

ACM 44, 12 (2001), 10.

http://www.independent.co.uk/arts-entertainment/tv/news/netflix-releases-house-of-cards-spoiler-foiler-for-twitter-users-9136324.html
http://www.independent.co.uk/arts-entertainment/tv/news/netflix-releases-house-of-cards-spoiler-foiler-for-twitter-users-9136324.html
http://www.independent.co.uk/arts-entertainment/tv/news/netflix-releases-house-of-cards-spoiler-foiler-for-twitter-users-9136324.html
http://www.rogerebert.com/rogers-journal/critics-have-no-right-to-play-spoiler
http://www.rogerebert.com/rogers-journal/critics-have-no-right-to-play-spoiler
http://www.rogerebert.com/rogers-journal/critics-have-no-right-to-play-spoiler
http://www.ietf.org/rfc/rfc2616.txt
http://tools.ietf.org/html/rfc7230
http://tools.ietf.org/html/rfc7230
http://tools.ietf.org/html/rfc7231
http://tools.ietf.org/html/rfc7231
http://tools.ietf.org/html/rfc7232
http://tools.ietf.org/html/rfc7232
http://www.mediawiki.org/wiki/Parsoid
http://www.mediawiki.org/wiki/Parsoid

150

[28] Fulmer, J. JoeBlog Siege Home. http://www.joedog.org/siege-

home/, Jan. 2012. Access: 2014-02-05.

[29] Gamma, E., Helm, R., Johnson, R., and Vlissides, J. Design Patterns:

Elements of Reusable Object-Oriented Software. Addison Wesley, 1995.

[30] Garćıa, E. A Wiki of Ice and Fire. http://awoiaf.westeros.org/

index.php/Main_Page, 2014.

[31] Giles, J. Internet encyclopaedias go head to head. Nature 438, 7070 (Dec.

2005), 900–1.

[32] Golbeck, J. The Twitter Mute Button: A Web Filtering Challenge.

In SIGCHI Conference on Human Factors in Computing Systems (2012),

pp. 2755–2758.

[33] Gross, B. D. Spoiler alert! Negotiating social media in the DVR

age. http://www.cnn.com/2014/02/25/tech/social-media/

spoilers-social-media/index.html, Feb. 2014.

[34] Hart, H. Spoiler Wars Heat Up as Lost Returns. New York Times (Jan.

2009).

[35] Help:Redirects. http://www.mediawiki.org/wiki/Help:

Redirects, Oct. 2014. Accessed: 2014-10-05.

[36] Hibberd, J. ‘Buffy’ writers sell Grimm’s Fairy Tales pilot to NBC. Enter-

tainment Weekly (Jan. 2011). Accessed: 2014-10-17.

[37] Holtman, K., and Mutz, A. Transparent Content Negotiation in HTTP.

http://tools.ietf.org/pdf/rfc2295.pdf, 1998.

[38] Hu, M., Lim, E.-P., Sun, A., Lauw, H. W., and Vuong, B.-Q. Measur-

ing article quality in wikipedia. In Proceedings of the sixteenth ACM conference

on Conference on information and knowledge management - CIKM ’07 (April

2007), ACM Press, p. 243.

[39] Hull, J. SPOILER ALERT! http://joshbuddy.github.io/

spoiler-alert/.

http://www.joedog.org/siege-home/
http://www.joedog.org/siege-home/
http://awoiaf.westeros.org/index.php/Main_Page
http://awoiaf.westeros.org/index.php/Main_Page
http://www.cnn.com/2014/02/25/tech/social-media/spoilers-social-media/index.html
http://www.cnn.com/2014/02/25/tech/social-media/spoilers-social-media/index.html
http://www.mediawiki.org/wiki/Help:Redirects
http://www.mediawiki.org/wiki/Help:Redirects
http://tools.ietf.org/pdf/rfc2295.pdf
http://joshbuddy.github.io/spoiler-alert/
http://joshbuddy.github.io/spoiler-alert/

151

[40] Jaworski, M. How to stop the Internet from ruining ’ Game of Thrones ’ for

you. http://www.dailydot.com/technology/how-to-avoid-

spoilers-online/, Apr. 2014.

[41] Jenkins, H. Convergence Culture: Where Old And New Media Collide. New

York University Press, 2008.

[42] Jeon, S., Kim, S., and Yu, H. Don’t Be Spoiled by Your Friends: Spoiler

Detection in TV Program Tweets. In Seventh International AAAI Conference

on Weblogs and Social Media (2013), pp. 681–684.

[43] Johns, M. D. Two Screen Viewing and Social Relationships: Exploring the

invisible backchannel of TV viewing. In Cultural Attitudes Towards Technology

and Communication 2012 (Murdoch University, Australia, 2012), no. 1982,

Murdoch University, pp. 333–343.

[44] Johnson, S. The Big Bang Theory Comes Under Fire For Walking

Dead Spoiler. http://comicbook.com/blog/2013/02/08/the-

big-bang-theory-comes-under-fire-for-walking-dead-

spoiler/, 2013.

[45] Jones, S. [wikitech-l] Memento Extension for MediaWiki: Quick ques-

tion about hooks. http://lists.wikimedia.org/pipermail/

wikitech-l/2014-March/075018.html, Mar. 2014. Accessed: 2014-

05-03.

[46] Jones, S. M. 2014-04-01: Yesterday’s (Wiki) Page, Today’s Im-

age? http://ws-dl.blogspot.com/2014/04/2014-04-01-

yesterdays-wiki-page-todays.html, April 2014.

[47] Jones, S. M. 2014-04-17: TimeGate Design Options For Me-

diaWiki. http://ws-dl.blogspot.com/2014/04/2014-04-18-

timegate-design-options-for.html, April 2014.

[48] Jones, S. M., Nelson, M. L., Shankar, H., and Van de Sompel, H.

Bringing Web Time Travel to MediaWiki: An Assessment of the Memento

MediaWiki Extension. Tech. Rep. avXiv:1406.3, Old Dominion University,

June 2014.

http://www.dailydot.com/technology/how-to-avoid-spoilers-online/
http://www.dailydot.com/technology/how-to-avoid-spoilers-online/
http://comicbook.com/blog/2013/02/08/the-big-bang-theory-comes-under-fire-for-walking-dead-spoiler/
http://comicbook.com/blog/2013/02/08/the-big-bang-theory-comes-under-fire-for-walking-dead-spoiler/
http://comicbook.com/blog/2013/02/08/the-big-bang-theory-comes-under-fire-for-walking-dead-spoiler/
http://lists.wikimedia.org/pipermail/wikitech-l/2014-March/075018.html
http://lists.wikimedia.org/pipermail/wikitech-l/2014-March/075018.html
http://ws-dl.blogspot.com/2014/04/2014-04-01-yesterdays-wiki-page-todays.html
http://ws-dl.blogspot.com/2014/04/2014-04-01-yesterdays-wiki-page-todays.html
http://ws-dl.blogspot.com/2014/04/2014-04-18-timegate-design-options-for.html
http://ws-dl.blogspot.com/2014/04/2014-04-18-timegate-design-options-for.html

152

[49] Kelly, M., Nelson, M. L., and Weigle, M. C. Mink: Integrating the

Live and Archived Web Viewing Experience Using Web Browsers and Me-

mento. In Proceedings of the international ACM/IEEE Joint Conference on

Digital libraries (JCDL) (London, England, September 2014), pp. 469–470.

[50] Kurapov, A. xrate. http://microformats.org/wiki/xrate, 2012.

[51] Kurose, J., and Ross, K. Computer Networking: A Top Down Approach,

6th ed. Pearson, 2013.

[52] Lam, S., and Riedl, J. The past, present, and future of Wikipedia. Computer

44, 3 (March 2011), 87–90.

[53] Leaver, T. Watching Battlestar Galactica in Australia and the Tyranny

of Digital Distance. Media International Australia, Incorporating Culture &

Policy, 126 (2008), 145–154.

[54] Leavitt, J. D., and Christenfeld, N. J. S. Story spoilers don’t spoil

stories. Psychological science 22, 9 (Sept. 2011), 1152–4.

[55] Leuf, B., and Cunningham, W. The Wiki Way: Quick Collaboration on the

Web. Addison-Wesley Longman Publishing Co., Inc., Boston, Massachusetts,

USA, 2001.

[56] Lucassen, T., and Schraagen, J. M. Trust in Wikipedia: How Users Trust

Information from an Unknown Source. In Proceedings of the 4th Workshop

on Information Credibility (New York, NY, USA, 2010), WICOW ’10, ACM,

pp. 19–26.

[57] Manley, S. 100,000 wikis on Wikia. http://community.wikia.com/

wiki/User_blog:Sarah_Manley/100,000_wikis_on_Wikia,

2010.

[58] Manual:Coding conventions. http://www.mediawiki.org/wiki/

Manual:Coding_conventions, Oct. 2013. Accessed: 2013-10-15.

[59] Manual:Coding conventions/PHP. http://www.mediawiki.org/

wiki/Manual:Coding_conventions/PHP, Nov. 2013. Accessed: 2013-

10-15.

http://microformats.org/wiki/xrate
http://community.wikia.com/wiki/User_blog:Sarah_Manley/100,000_wikis_on_Wikia
http://community.wikia.com/wiki/User_blog:Sarah_Manley/100,000_wikis_on_Wikia
http://www.mediawiki.org/wiki/Manual:Coding_conventions
http://www.mediawiki.org/wiki/Manual:Coding_conventions
http://www.mediawiki.org/wiki/Manual:Coding_conventions/PHP
http://www.mediawiki.org/wiki/Manual:Coding_conventions/PHP

153

[60] Manual:Hooks/ArticleViewHeader. http://www.mediawiki.org/

wiki/Manual:Hooks/ArticleViewHeader, Dec. 2012. Accessed:

2013-10-05.

[61] Manual:hooks/BeforeInitialize. http://www.mediawiki.org/wiki/

Manual:Hooks/BeforeInitialize, December 2013.

[62] Manual:Hooks/BeforeParserFetchtemplateAndtitle. http://www.

mediawiki.org/w/index.php?title=Manual:Hooks/

BeforeParserFetchTemplateAndtitle&action=history, Oct.

2011. Accessed: 2013-10-05.

[63] Manual:Hooks/ImageBeforeProduceHTML. http://www.mediawiki.

org/wiki/Manual:Hooks/ImageBeforeProduceHTML, Mar. 2008.

Accessed: 2013-04-01.

[64] Manual:Interface/JavaScript. http://www.mediawiki.org/wiki/

Manual:Interface/JavaScript, Mar. 2014. Accessed: 2013-04-01.

[65] Manual:Interface/Stylesheets. http://www.mediawiki.org/wiki/

Manual:Interface/Stylesheets, Sept. 2013. Accessed: 2013-04-01.

[66] Manual:Special pages. http://www.mediawiki.org/wiki/Manual:

Special_pages, Oct. 2013. Accessed: 2013-10-05.

[67] Masanès, J. Web Archiving. Springer Berlin Heidelberg, Berlin, 2006.

[68] Mediawiki: File class reference. https://doc.wikimedia.

org/mediawiki-core/master/php/html/classFile.html#

a04bc50490d762a33a13169b1495d3361, May 2014.

[69] Mittell, J. Sites of participation: Wiki fandom and the case of Lostpedia.

In Transformative Works and Cultures (September 2009).

[70] Mittell, J. Wikis and Participatory Fandom. The Participatory Cultures

Handbook (2012), 35.

[71] Murphy, J., Hashim, N. H., and OConnor, P. Take Me Back: Validating

the Wayback Machine. Journal of Computer-Mediated Communication 13, 1

(Oct. 2007), 60–75.

http://www.mediawiki.org/wiki/Manual:Hooks/ArticleViewHeader
http://www.mediawiki.org/wiki/Manual:Hooks/ArticleViewHeader
http://www.mediawiki.org/wiki/Manual:Hooks/BeforeInitialize
http://www.mediawiki.org/wiki/Manual:Hooks/BeforeInitialize
http://www.mediawiki.org/w/index.php?title=Manual:Hooks/BeforeParserFetchTemplateAndtitle&action=history
http://www.mediawiki.org/w/index.php?title=Manual:Hooks/BeforeParserFetchTemplateAndtitle&action=history
http://www.mediawiki.org/w/index.php?title=Manual:Hooks/BeforeParserFetchTemplateAndtitle&action=history
http://www.mediawiki.org/wiki/Manual:Hooks/ImageBeforeProduceHTML
http://www.mediawiki.org/wiki/Manual:Hooks/ImageBeforeProduceHTML
http://www.mediawiki.org/wiki/Manual:Interface/JavaScript
http://www.mediawiki.org/wiki/Manual:Interface/JavaScript
http://www.mediawiki.org/wiki/Manual:Interface/Stylesheets
http://www.mediawiki.org/wiki/Manual:Interface/Stylesheets
http://www.mediawiki.org/wiki/Manual:Special_pages
http://www.mediawiki.org/wiki/Manual:Special_pages
https://doc.wikimedia.org/mediawiki-core/master/php/html/classFile.html#a04bc50490d762a33a13169b1495d3361
https://doc.wikimedia.org/mediawiki-core/master/php/html/classFile.html#a04bc50490d762a33a13169b1495d3361
https://doc.wikimedia.org/mediawiki-core/master/php/html/classFile.html#a04bc50490d762a33a13169b1495d3361

154

[72] Nelson, M. L. Memento-Datetime is not Last-Modified. http://ws-

dl.blogspot.com/2010/11/2010-11-05-memento-datetime-

is-not-last.html, 2010.

[73] Nelson, M. L. A Plan For Curating “Obsolete Data or Resources”. In

UNC/NSF Workshop “Curating for Quality: Ensuring Data Quality to Enable

New Science” (Arlington, VA, Sept. 2012), vol. abs/1209.2664.

[74] Nelson, M. L. 2013-07-15: Wayback Machine Upgrades Memento

Support. http://ws-dl.blogspot.com/2013/07/2013-07-15-

wayback-machine-upgrades.html, Jul 2013.

[75] Nelson, M. L. 2013-10-14: Right-Click to the Past – Memento for

Chrome. http://ws-dl.blogspot.com/2013/10/2013-10-14-

right-click-to-past-memento.html, Oct 2013.

[76] Netflix. Netflix spoiler foiler. http://www.spoilerfoiler.com.

[77] Netflix. Netflix spoiler foiler. http://breakingbad.

spoilerfoiler.com, 2014.

[78] Notess, G. R. The Wayback Machine: The Web’s Archive. ONLINE 26, 2

(2002), 59 – 61.

[79] Pediapress - Home. http://pediapress.com/.

[80] Performance guidelines. https://www.mediawiki.org/wiki/

Performance_guidelines, May 2014.

[81] Picking Carrots LLC. Spoiler Shield. http://www.spoilershield.

com, October 2014.

[82] Popitsch, N., Mosser, R., and Philipp, W. Urobe: A prototype for wiki

preservation. In International Conference on Preservation of Digital Objects

(September 2010).

[83] Reed, S., and LaCalle, M. What is the difference between All and

New Documents? https://webarchive.jira.com/wiki/pages/

viewpage.action?pageId=86573220, Oct. 2014.

http://ws-dl.blogspot.com/2010/11/2010-11-05-memento-datetime-is-not-last.html
http://ws-dl.blogspot.com/2010/11/2010-11-05-memento-datetime-is-not-last.html
http://ws-dl.blogspot.com/2010/11/2010-11-05-memento-datetime-is-not-last.html
http://ws-dl.blogspot.com/2013/07/2013-07-15-wayback-machine-upgrades.html
http://ws-dl.blogspot.com/2013/07/2013-07-15-wayback-machine-upgrades.html
http://ws-dl.blogspot.com/2013/10/2013-10-14-right-click-to-past-memento.html
http://ws-dl.blogspot.com/2013/10/2013-10-14-right-click-to-past-memento.html
http://www.spoilerfoiler.com
http://breakingbad.spoilerfoiler.com
http://breakingbad.spoilerfoiler.com
http://pediapress.com/
https://www.mediawiki.org/wiki/Performance_guidelines
https://www.mediawiki.org/wiki/Performance_guidelines
http://www.spoilershield.com
http://www.spoilershield.com
https://webarchive.jira.com/wiki/pages/viewpage.action?pageId=86573220
https://webarchive.jira.com/wiki/pages/viewpage.action?pageId=86573220

155

[84] Reiter, R. On closed world data bases. In Readings in Nonmonotonic Rea-

soning, M. L. Ginsberg, Ed. Morgan Kaufmann Publishers Inc., San Francisco,

CA, USA, 1987, pp. 300–310.

[85] Rescorla, E. RFC 2818: HTTP Over TLS. https://tools.ietf.

org/html/rfc2818, May 2000.

[86] Rosenthal, D. S., and Reich, V. Permanent web publishing. In USENIX

Annual Technical Conference, FREENIX Track (2000), pp. 129–140.

[87] Sanderson, R. Bug 34778: Deploy extension Memento on Wikipedia

sites. https://bugzilla.wikimedia.org/show_bug.cgi?id=

34778, Sept. 2013. Accessed: 2014-05-03.

[88] Schenone, L. F. Extension:TimeMachine. http://www.mediawiki.

org/wiki/Extension:TimeMachine, Feb. 2014. Accessed: 2014-05-03.

[89] Schirra, S., Sun, H., and Bentley, F. Together alone. In SIGCHI (2014),

pp. 2441–2450.

[90] Schmitt, R., Haas, V., Nothman, J., Nikolaev, A. V., Beigel, J.,

Amsüss, C., Zibarov, Z., Ward, N., Cipu, A., Müller, T., and

Cieślak, M. Welcome to mwlib’s documentation – mwlib 0.15 documenta-

tion. http://mwlib.readthedocs.org/en/latest/index.html,

Dec. 2011.

[91] Security checklist for developers. http://www.mediawiki.org/wiki/

Security_checklist_for_developers, June 2012. Accessed: 2013-

06-28.

[92] Seeds, M. A. Foundations of Astronomy, 3 ed. Wadsworth Publishing Com-

pany, Boston, Massachusetts, USA, 1992.

[93] Shankar, H. Memento Time Travel - Chrome Web Store. https:

//chrome.google.com/webstore/detail/memento-time-

travel/jgbfpjledahoajcppakbgilmojkaghgm?hl=en, 2014.

[94] Stanhope, K. ABC Picks Up Crisis Management Pilot From Grey’s Creator

Shonda Rhimes. TV Guide (Dec. 2010). Accessed: 2014-10-17.

https://tools.ietf.org/html/rfc2818
https://tools.ietf.org/html/rfc2818
https://bugzilla.wikimedia.org/show_bug.cgi?id=34778
https://bugzilla.wikimedia.org/show_bug.cgi?id=34778
http://www.mediawiki.org/wiki/Extension:TimeMachine
http://www.mediawiki.org/wiki/Extension:TimeMachine
http://mwlib.readthedocs.org/en/latest/index.html
http://www.mediawiki.org/wiki/Security_checklist_for_developers
http://www.mediawiki.org/wiki/Security_checklist_for_developers
https://chrome.google.com/webstore/detail/memento-time-travel/jgbfpjledahoajcppakbgilmojkaghgm?hl=en
https://chrome.google.com/webstore/detail/memento-time-travel/jgbfpjledahoajcppakbgilmojkaghgm?hl=en
https://chrome.google.com/webstore/detail/memento-time-travel/jgbfpjledahoajcppakbgilmojkaghgm?hl=en

156

[95] Steiner, T., van Hooland, S., and Summers, E. MJ No More: Using

Concurrent Wikipedia Edit Spikes with Social Network Plausibility Checks for

Breaking News Detection. In Proceedings of the 22Nd International Conference

on World Wide Web Companion (Republic and Canton of Geneva, Switzerland,

2013), WWW ’13 Companion, International World Wide Web Conferences

Steering Committee, pp. 791–794.

[96] Stevens, W. R. TCP/IP Illustrated, Volume 1. Addison Wesley, Boston,

Massachusetts, USA, 1994.

[97] Stromberg, B. Chrome Web Store - Tumblr Savior. http://bit.ly/

tumblr-savior, July 2014.

[98] Stuven, R. Chrome Web Store - Open Tweet Filter. http://bit.ly/

open-tweet-filter, July 2014.

[99] Toyoda, M., and Kitsuregawa, M. The History of Web Archiving. Pro-

ceedings of the IEEE 100, Special Centennial Issue (May 2012), 1441–1443.

[100] Tsang, A. S. L., and Yan, D. Reducing the Spoiler Effect in Experiential

Consumption. Advances in Consumer Research, 36 (2009), 708–709.

[101] Van de Sompel, H., Nelson, M. L., and Sanderson, R. RFC 7089:

HTTP Framework for Time-Based Access to Resource States – Memento.

http://tools.ietf.org/html/rfc7089, 2013.

[102] Van de Sompel, H., Nelson, M. L., Sanderson, R., Balakireva, L.,

Ainsworth, S., and Shankar, H. Memento: Time travel for the web. Tech.

Rep. arXiv:0911.1112, Los Alamos National Laboratories and Old Dominion

University, 2009.

[103] Van de Sompel, H., Sanderson, R., Nelson, M., Balakireva, L.,

Shankar, H., and Ainsworth, S. An HTTP-based versioning mechanism

for linked data. In Proceedings of Linked Data on the Web Workshop (April

2010).

[104] Vilar, S. Chrome Web Store - Facebook Posts Filter. http://bit.ly/

facebook-posts-filter, July 2014.

http://bit.ly/tumblr-savior
http://bit.ly/tumblr-savior
http://bit.ly/open-tweet-filter
http://bit.ly/open-tweet-filter
http://tools.ietf.org/html/rfc7089
http://bit.ly/facebook-posts-filter
http://bit.ly/facebook-posts-filter

157

[105] Vuong, B.-Q., Lim, E.-P., Sun, A., Le, M.-T., Lauw, H. W., and

Chang, K. On Ranking Controversies in Wikipedia: Models and Evaluation.

In Proceedings of the 2008 International Conference on Web Search and Data

Mining (New York, NY, USA, 2008), WSDM ’08, ACM, pp. 171–182.

[106] Wikia. About - Wikis from Wikia - Join the best wiki communities. http:

//www.wikia.com/About_Us, 2014.

[107] Wikia. Downton Abbey Wiki. http://downtonabbey.wikia.com/

wiki/Downton_Abbey_Wiki, 2014.

[108] Wikia. Once Upon A Time Wiki. http://onceuponatime.wikia.

com/wiki/Once_Upon_a_Time_Wiki, 2014.

[109] Wikia. Scandal Wiki. http://scandal.wikia.com/wiki/Main_

Page, 2014.

[110] Wikimedia servers. http://meta.wikimedia.org/wiki/

Wikimedia_servers, Feb. 2014. Accessed: 2014-04-07.

[111] Wikipedia. Wikipedia:Spoiler. http://en.wikipedia.org/wiki/

Wikipedia:Spoiler, 2014.

[112] Writing an extension for deployment. https://www.mediawiki.org/

wiki/Writing_an_extension_for_deployment, Oct. 2013. Ac-

cessed: 2013-10-15.

[113] Yaspan, A. Essentials of Probability. Prindle, Weber & Schmidt, Incorpo-

rated, Boston, Massachusetts, USA, 1968.

http://www.wikia.com/About_Us
http://www.wikia.com/About_Us
http://downtonabbey.wikia.com/wiki/Downton_Abbey_Wiki
http://downtonabbey.wikia.com/wiki/Downton_Abbey_Wiki
http://onceuponatime.wikia.com/wiki/Once_Upon_a_Time_Wiki
http://onceuponatime.wikia.com/wiki/Once_Upon_a_Time_Wiki
http://scandal.wikia.com/wiki/Main_Page
http://scandal.wikia.com/wiki/Main_Page
http://meta.wikimedia.org/wiki/Wikimedia_servers
http://meta.wikimedia.org/wiki/Wikimedia_servers
http://en.wikipedia.org/wiki/Wikipedia:Spoiler
http://en.wikipedia.org/wiki/Wikipedia:Spoiler
https://www.mediawiki.org/wiki/Writing_an_extension_for_deployment
https://www.mediawiki.org/wiki/Writing_an_extension_for_deployment

158

APPENDIX A

SPOILER AREA VISUALIZATIONS

FIG. 89: Spoiler areas for the most popular page in Lostpedia

(3,531 revisions)1

1http://lostpedia.wikia.com/wiki/Kate_Austen

http://lostpedia.wikia.com/wiki/Kate_Austen

159

FIG. 90: Spoiler areas for the page in the Big Bang Theory Wiki that contains the

most revisions2

FIG. 91: Spoiler areas for the page in the Boardwalk Emprire Wiki that contains

the most revisions3

2http://bigbangtheory.wikia.com/wiki/Sheldon_Cooper
3http://boardwalkempire.wikia.com/wiki/Nucky_Thompson

http://bigbangtheory.wikia.com/wiki/Sheldon_Cooper
http://boardwalkempire.wikia.com/wiki/Nucky_Thompson

160

FIG. 92: Spoiler areas for the page in the Breaking Bad Wiki that contains the

most revisions4

FIG. 93: Spoiler areas for the page in the Continuum Wiki that contains the most

revisions5

4http://breakingbad.wikia.com/wiki/Walter_White
5http://continuum.wikia.com/wiki/Kiera_Cameron

http://breakingbad.wikia.com/wiki/Walter_White
http://continuum.wikia.com/wiki/Kiera_Cameron

161

FIG. 94: Spoiler areas for the page in the Downton Abbey Wiki that contains the

most revisions6

FIG. 95: Spoiler areas for the most popular page in the Game of Thrones Wiki

(768 revisions)7

6http://downtonabbey.wikia.com/wiki/Sybil_Branson
7http://gameofthrones.wikia.com/wiki/Daenerys_Targaryen

http://downtonabbey.wikia.com/wiki/Sybil_Branson
http://gameofthrones.wikia.com/wiki/Daenerys_Targaryen

162

FIG. 96: Spoiler areas for the page in the Grimm Wiki that contains the most

revisions8

FIG. 97: Spoiler areas for the most popular page in the House of Cards Wiki (380

revisions)9

8http://grimm.wikia.com/wiki/Nick_Burkhardt
9http://house-of-cards.wikia.com/wiki/Frank_Underwood

http://grimm.wikia.com/wiki/Nick_Burkhardt
http://house-of-cards.wikia.com/wiki/Frank_Underwood

163

FIG. 98: Spoiler areas for the page in the How I Met Your Mother Wiki that

contains the most revisions10

FIG. 99: Spoiler areas for the page in the Mad Men Wiki that contains the most

revisions11

10http://how-i-met-your-mother.wikia.com/wiki/Barney_Stinson
11http://madmen.wikia.com/wiki/Mad_Men_Wiki

http://how-i-met-your-mother.wikia.com/wiki/Barney_Stinson
http://madmen.wikia.com/wiki/Mad_Men_Wiki

164

FIG. 100: Spoiler areas for the page in the NCIS Database that contains the most

revisions12

FIG. 101: Spoiler areas for the page in the Once Upon A Time Wiki that contains

the most revisions13

12http://ncis.wikia.com/wiki/Abigail_Sciuto
13http://onceuponatime.wikia.com/wiki/Emma_Swan/Gallery

http://ncis.wikia.com/wiki/Abigail_Sciuto
http://onceuponatime.wikia.com/wiki/Emma_Swan/Gallery

165

FIG. 102: Spoiler areas for the page in the Scandal Wiki that contains the most

revisions14

FIG. 103: Spoiler areas for the page in the True Blood Wiki that contains the most

revisions15

14http://scandal.wikia.com/wiki/Main_Page
15http://trueblood.wikia.com/wiki/Eric_Northman

http://scandal.wikia.com/wiki/Main_Page
http://trueblood.wikia.com/wiki/Eric_Northman

166

FIG. 104: Spoiler areas for the page in the White Collar Wiki that contains the

most revisions16

16http://whitecollar.wikia.com/wiki/Neal_Caffrey

http://whitecollar.wikia.com/wiki/Neal_Caffrey

167

APPENDIX B

SPOILER PROBABILITY HISTOGRAMS

FIG. 105: Big Bang Theory Wiki

168

FIG. 106: Boardwalk Empire Wiki

169

FIG. 107: Breaking Bad Wiki

170

FIG. 108: Continuum Wiki

171

FIG. 109: Downton Abbey Wiki

172

FIG. 110: Game of Thrones Wiki

173

FIG. 111: Grimm Wiki

174

FIG. 112: House of Cards Wiki

175

FIG. 113: How I Met Your Mother Wiki

176

FIG. 114: Lostpedia

177

FIG. 115: Mad Men Wiki

178

FIG. 116: NCIS Database

179

FIG. 117: Once Upon A Time Wiki

180

FIG. 118: Scandal Wiki

181

FIG. 119: True Blood Wiki

182

FIG. 120: White Collar Wiki

183

APPENDIX C

SPOILER PROBABILITY CUMULATIVE

DISTRIBUTION FUNCTION

FIG. 121: Big Bang Theory

184

FIG. 122: Boardwalk Empire

185

FIG. 123: Breaking Bad

186

FIG. 124: Continuum

187

FIG. 125: Downton Abbey

188

FIG. 126: Game of Thrones

189

FIG. 127: Grimm

190

FIG. 128: House of Cards

191

FIG. 129: How I Met Your Mother

192

FIG. 130: Lostpedia

193

FIG. 131: Mad Men

194

FIG. 132: NCIS

195

FIG. 133: Once Upon A Time

196

FIG. 134: Scandal

197

FIG. 135: True Blood

198

FIG. 136: White Collar

199

VITA

Shawn M. Jones

Department of Computer Science

Old Dominion University

Norfolk, VA 23529

EDUCATION

M.S. Computer Science, Old Dominion University, 2015

B.S. Computer Science, Old Dominion University, 1999

EMPLOYMENT

2005 – Computer Scientist, Space and Naval Warfare Systems Center

Atlantic

1997 – 2005 Information Technology Specialist, Space and Naval Warfare Sys-

tems Center Atlantic

PUBLICATIONS AND PRESENTATIONS

2015 Avoiding Spoilers on MediaWiki Fan Sites Using Memento

2014 Using the Memento MediaWiki Extension To Avoid Spoilers

2014 Reconstructing the Past With MediaWiki: Programmatic Issues

and Solutions

2013 Bringing Web Time Travel to MediaWiki: An Assessment of the

Memento MediaWiki Extension

AFFILIATIONS

Association for Computing Machinery

International Information System Security Certification Consortium, Inc.

CONTACT

Email sjone@cs.odu.edu jones.shawn.m@gmail.com

Homepage http://www.cs.odu.edu/˜sjone

Typeset using LATEX.

http://www.cs.odu.edu/~sjone

	Old Dominion University
	ODU Digital Commons
	Spring 2015

	Avoiding Spoilers on Mediawiki Fan Sites Using Memento
	Shawn M. Jones
	Recommended Citation

	tmp.1436367102.pdf.INcWn

