
Old Dominion University

ODU Digital Commons

Computer Science Theses & Dissertations Computer Science

Winter 2014

Enhancing Understanding of Discrete Event
Simulation Models Through Analysis
Kara Ann Olson
Old Dominion University

Follow this and additional works at: https://digitalcommons.odu.edu/computerscience_etds

Part of the Computer Sciences Commons

This Dissertation is brought to you for free and open access by the Computer Science at ODU Digital Commons. It has been accepted for inclusion in

Computer Science Theses & Dissertations by an authorized administrator of ODU Digital Commons. For more information, please contact

digitalcommons@odu.edu.

Recommended Citation
Olson, Kara A.. "Enhancing Understanding of Discrete Event Simulation Models Through Analysis" (2014). Doctor of Philosophy
(PhD), dissertation, Computer Science, Old Dominion University, DOI: 10.25777/jcfw-cz63
https://digitalcommons.odu.edu/computerscience_etds/60

https://digitalcommons.odu.edu?utm_source=digitalcommons.odu.edu%2Fcomputerscience_etds%2F60&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/computerscience_etds?utm_source=digitalcommons.odu.edu%2Fcomputerscience_etds%2F60&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/computerscience?utm_source=digitalcommons.odu.edu%2Fcomputerscience_etds%2F60&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/computerscience_etds?utm_source=digitalcommons.odu.edu%2Fcomputerscience_etds%2F60&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.odu.edu%2Fcomputerscience_etds%2F60&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/computerscience_etds/60?utm_source=digitalcommons.odu.edu%2Fcomputerscience_etds%2F60&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@odu.edu

ENHANCING UNDERSTANDING OF DISCRETE

EVENT SIMULATION MODELS THROUGH ANALYSIS

by

Kara Ann Olson
B.S.C.S. May 1997, Old Dominion University

B.S. May 1997, Old Dominion University
M.S. May 2007, Old Dominion University

A Dissertation Submitted to the Faculty of
Old Dominion University in Partial Fulfillment of the

Requirements for the Degree of

DOCTOR OF PHILOSOPHY

COMPUTER SCIENCE

OLD DOMINION UNIVERSITY
December 2014

Approved by:

Irwin B. Levinstei:

Roland R. Mielke (Member)

UMI Number: 3662429

All rights reserved

INFORMATION TO ALL USERS
The quality o f this reproduction is dependent upon the quality o f the copy submitted.

In the unlikely event that the author did not send a complete m anuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

Di!ss0?t&Ciori P iiblist’Mlg

UMI 3662429
Published by ProQuest LLC 2015. Copyright in the Dissertation held by the Author.

Microform Edition © ProQuest LLC.
All rights reserved. This w ork is protected against

unauthorized copying under Title 17, United States Code.

ProQuest LLC
789 East E isenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106-1346

ABSTRACT

ENHANCING UNDERSTANDING OF DISCRETE EVENT
SIMULATION MODELS THROUGH ANALYSIS

Kara Ann Olson
Old Dominion University, 2014

Director: Dr. C. Michael Overstreet

Simulation is used increasingly throughout research, development, and planning
for many purposes. While model output is often the primary interest, insights gained
through the simulation process can also be valuable. Insights can come from build
ing and validating the model as well as analyzing its behaviors and output; however,
much that could be informative may not be easily discernible through these existing
traditional approaches, particularly as models continue to increase in complexity.

This research extends current work in model analysis and program understanding
to assist modelers in obtaining more insight into their models and the systems they
represent. A primary technique for model understanding is analysis of model output;
this research has developed new, complementary techniques.

A significant point of this research is that the created tools do not necessitate that
a modeler or model user be able to encode the model or have any coding expertise.
Some of the information presented here could be produced by existing software devel
opment tools; however, most modelers today do not have the technical background
to use such tools or to make use of the reports they can produce.

Additionally, one of the significant details of this research is the focus on model
aspects rather than simulation aspects: the tools developed here detail the model em
bedded in implementation code, not the code necessary for implementation. Source
code tends to involve many issues unrelated to the model itself, such as data collec
tion, animation, and tricks for efficient run-time behavior. Even when the modeler
is an expert programmer, this other code often can obscure features of the model as
implemented.

Results indicate these tools and techniques, when applied to even modest simula
tion models, can reveal aspects of those models not readily apparent to the builders
or users of the models. This work provides both model builders and model users with
additional techniques that can give them improved understanding of their models.

Copyright, 2014, by Kara Ann Olson, All Rights Reserved.

iv

To $H

V

TABLE OF CONTENTS

Page

LIST OF FIGURES.. ix

Chapter

1. PROBLEM DEFINITION, MOTIVATION... 1

2. PRIOR RESEARCH... 3
2.1 COMPILER/OPTIMIZATION TECHNIQUES..................................... 3
2.2 MODELING & SIMULATION.. 3
2.3 PROGRAM VISUALIZATION.. 9
2.4 FEATURE LOCATION.. 10
2.5 PROGRAM UNDERSTANDING.. 11

3. SOLUTION MOTIVATION, FRAMEWORK.. 12
3.1 THE CONDITION SPECIFICATION... 12
3.2 ACTION CLUSTERS, INTERACTION GRAPHS............................... 14
3.3 DIRECT EXECUTION OF ACTION CLUSTERS............................... 14
3.4 THREE MODELS.. 15

4. TOOLS FOR ENHANCING UNDERSTANDING... IT
4.1 LIMITS OF ANALYSIS.. 18
4.2 TOOL(S) OVERVIEW.. 18
4.3 SIMULATION L O G .. 19
4.4 TRIP LINES .. 27
4.5 SCHEDULED AND TRIGGERED EVENTS 33
4.6 EVENT SUMMARIES.. 36
4.7 STATIC ACTION CLUSTER INTERACTION GRAPH..................... 42
4.8 TALLIED DYNAMIC ACTION CLUSTER INTERACTION GRAPH 47
4.9 DYNAMIC ACTION CLUSTER INTERACTION GRAPH FLIP

BO O K .. 52

5. EVALUATION... 78
5.1 SIMULATION L O G .. 78
5.2 TRIP LINES .. 80
5.3 SCHEDULED AND TRIGGERED EVENTS 81
5.4 EVENT SUMMARIES.. 81
5.5 STATIC ACTION CLUSTER INTERACTION GRAPH..................... 82
5.6 TALLIED DYNAMIC ACTION CLUSTER INTERACTION GRAPH 82
5.7 DYNAMIC ACTION CLUSTER INTERACTION GRAPH FLIP

BO O K .. 83

6. FUTURE RESEARCH DIRECTIONS.. 84
6.1 CONDITION SPECIFICATION TO DIRECTION EXECUTION OF

ACTION CLUSTERS... 84
6.2 USE IN DETERMINING APPROPRIATENESS OF MODELS 84
6.3 IDENTIFICATION OF POSSIBLE RACE CONDITIONS.................. 84
6.4 ADDITIONAL GRAPHICS... 85

7. SUMMARY.. 86

REFERENCES.. 89

VITA... 94

LIST OF FIGURES

Figure Page

1. A GPSS model segment [36] .. 5

2. An Arena model [41]... 6

3. A Simio model [40] ... 7

4. A sample Petri net [42]... 8

5. A sample event graph [37] ... 8

6. Component interactions of the tool .. 19

7. Generated graph: traveling repairman static action cluster interaction graph 44

8. Generated graph: harbor static action cluster interaction graph 46

9. Generated graph: single server queue static action cluster interaction graph 47

10. Generated graph: traveling repairman tallied dynamic action cluster in
teraction graph.. 50

11. Generated graph: harbor tallied dynamic action cluster interaction graph 51

12. Generated graph: single server queue tallied dynamic action cluster in
teraction graph.. 52

13. Generated graph: traveling repairman dynamic action cluster interaction
graph flip book, page 1 of 369 ... 54

14. Generated graph: traveling repairman dynamic action cluster interaction
graph flip book, page 2 of 369 ... 56

15. Generated graph: traveling repairman dynamic action cluster interaction
graph flip book, page 3 of 369 ... 57

16. Generated graph: traveling repairman dynamic action cluster interaction
graph flip book, page 4 of 369 ... 59

17. Generated graph: traveling repairman dynamic action cluster interaction
graph flip book, page 5 of 369 ... 60

viii

18. Generated graph: traveling repairman dynamic action cluster interaction
graph flip book, page 368 of 369 ... 62

19. Generated graph: traveling repairman dynamic action cluster interaction
graph flip book, page 369 of 369 ... 64

20. Generated graph: harbor dynamic action cluster interaction graph flip
book, page 1 of 212 ... 65

21. Generated graph: harbor dynamic action cluster interaction graph flip
book, page 2 of 212 ... 66

22. Generated graph: harbor dynamic action cluster interaction graph flip
book, page 3 of 21 2 ... 67

23. Generated graph: harbor dynamic action cluster interaction graph flip
book, page 4 of 212 ... 68

24. Generated graph: harbor dynamic action cluster interaction graph flip
book, page 5 of 212 ... 69

25. Generated graph: harbor dynamic action cluster interaction graph flip
book, page 6 of 212 ... 70

26. Generated graph: harbor dynamic action cluster interaction graph flip
book, page 7 of 212 ... 71

27. Generated graph: harbor dynamic action cluster interaction graph flip
book, page 211 of 212 ... 72

28. Generated graph: harbor dynamic action cluster interaction graph flip
book, page 212 of 212 ... 73

29. Generated graph: single server queue dynamic action cluster interaction
graph flip book, page 1 of 4 2 ... 74

30. Generated graph: single server queue dynamic action cluster interaction
graph flip book, page 2 of 4 2 ... 74

31. Generated graph: single server queue dynamic action cluster interaction
graph flip book, page 3 of 4 2 ... 75

32. Generated graph: single server queue dynamic action cluster interaction
graph flip book, page 4 of 4 2 ... 75

33. Generated graph: single server queue dynamic action cluster interaction
graph flip book, page 5 of 4 2 ... 76

ix

34. Generated graph: single server queue dynamic action cluster interaction
graph flip book, page 6 of 4 2 ... 76

35. Generated graph: single server queue dynamic action cluster interaction
graph flip book, page 41 of 4 2 ... 77

36. Generated graph: single server queue dynamic action cluster interaction
graph flip book, page 42 of 4 2 ... 77

1

CHAPTER 1

PROBLEM DEFINITION, MOTIVATION

It is often stated by users of simulation that its primary benefit is not necessarily
the data produced, but the insight that building the model provides. Paul et al. dis
cuss this in [28], noting that “[simulation is usually resorted to because the problem
is not well understood.”

Simulation is used increasingly throughout research, development, and planning
for many purposes. While model output is often the primary interest, insights into
the system gained through the simulation process can also be valuable. These insights
can come from building and validating the model as well as analyzing its behaviors
and output; however, much that could be informative may not be easily discernible
through these traditional approaches, particularly as models continue to increase in
complexity.

A prime problem with model descriptions, whether in textual or graphical no
tations, is that even in simple models, embedded descriptions are often difficult to
fully comprehend. Source code involves many issues unrelated to the model itself,
such as data collection, animation, and tricks for efficient run-time behavior; coupled
with difficulties in programming language, model details can be particularly opaque
to most modelers.

Researchers have long demarcated the conceptual model and the implemented
model [5, 3]; indeed, the model as realized in source code is the only true specification
of the model as executed. Paul and Kuljis accurately state [29]:

Even when we think we know what we are modeling there are many prob
lems: we do not have the software skills to know if the software is doing
the right thing; we cannot be certain that the logic of the problem is faith
fully represented in the model; we cannot be sure that the assumptions
built into the model, the uses it was designed to be put to and not put
to, will be adhered to by future users etc. And then with the passage of
time, and probably with some model updates, corrections, and possible
changes of logic, we cannot be sure of the way the model works at all.

2

Accordingly, the simulation code itself is the basis for the analyses developed here.
For some systems and the models that represent them, recognizing interactions

among components provides useful information about the systems. Often these in
teractions occur indirectly and usually with time delays between cause and effect.
These interactions might not be easily noticed when observing animations of the
simulations and are often not captured by the data typically collected and reported
at the conclusion of simulations. Understanding the reasons for behaviors is an often
unstated goal of simulation activities. This additional insight may also reveal mod
eling errors and implementation errors (the implemented model is inconsistent with
the conceptual model), though these are not a focus of this research.

Insights can arise from many sources. One can be surprised to discover relation
ships among seemingly unrelated events. One can also gain insight when something
that is expected to happen does not occur. Sometimes events can happen with
regularity or in groupings that may not be noticed by a modeler and may reveal
important aspects of the simulated system. Often these facts are not immediately
obvious, particularly in large simulations [24, 23]. Anecdotal reports from modelers
support the frequent difficulty of detecting important aspects of their models which
when pointed out are quite useful.

This research extends current work in model analysis and program understanding
to assist modelers in obtaining more insights into their models. A primary technique
for model understanding is analysis of model output; this research has developed
new, complementary techniques. Some of the techniques are known but have not
been applied to modeling issues in the simulation community.

Results indicate these code analysis techniques, when applied to even modest
simulation models, can reveal aspects of those models not readily apparent to the
builders or users of the models. These analyses can often reveal important aspects of
systems that are not readily observable in model-driven animations or even in exam
ining data produced during simulation execution. This work has provided both model
builders and model users with additional techniques that can give them improved
understanding of their models.

3

CHAPTER 2

PRIOR RESEARCH

Several communities seem to have started in this direction, but none has quite
brought these concepts all together in one place for use by the simulation community.

2.1 COMPILER/OPTIMIZATION TECHNIQUES

In compiler optimization, several techniques are used routinely that could poten
tially provide useful insights to the modeler.

Data flow analysis is used to help identify data dependencies - relationships
among different paxts of the code. This analysis also can help determine interac
tions among variables in different model components, unrealized relationships, both
causal and coincidental, relationships among different code modules, and relation
ships among different simulation components. Explicit identification of these inter
actions can help modelers identify causes and influences of system behaviors.

Control flow analysis can be used to help determine which variables control which
behaviors. It is especially useful for parallelization, something being done more often
due to the size and complexity of newer models (and which has its own body of
research).

Program slicing [45] analyzes both the data flow and control flow of a given
program to produce a reduced program that yields the same specified behaviors
at a given point in time. Slices of model code can reveal causal chains of model
behaviors. Many types of slicing have since been developed, including backward,
forward, dynamic, static, and quasi-static, among others. A recent survey of these
and additional slicing techniques can be found in [35].

2.2 MODELING & SIMULATION

Simulation has a long history of trying to visualize models, as “graphical models
usually provide a better understanding of conceptual models with less effort than
the other types of representation” [34]. Most graphical modeling languages and their
corresponding analysis techniques are motivated by and have emphasis on making

4

the model easier to build and mistakes easier to identify. Our objectives are similar:

again, to help modelers and model users better understand the models they are
creating or using. While there is overlap in these approaches, the goals and techniques
used can differ.

Some of the goals of this research were identified early on by the simulation
community. GPSS - General Purpose Simulation System - was among the first sim
ulation programming languages. While GPSS has an Assembly-like syntax, it models
a system as a block diagram, not unlike an extended, specialized flow chart [Figure
1]. It was intended as a graphical representation for simulation. Each action in GPSS
has an iconic graphic and its inventor, Gordon, intended that modelers would con
struct their models on paper using these graphics, “making the simulation directly
accessible to system analysts rather than through programmers” [13]. Gordon aptly
noted some of the same arguments for a graphical tool: “The relative ease of learning
GPSS made it attractive ... in particular, to people without a technical background.”
“[I]f it were properly organized and documented, engineers and analysts would be
able to use the program themselves, even if they were not trained in programming.”
“The block diagram language enhanced . . . that the user was . . . describing a system.”
“Block diagrams were also an asset in improving understanding between the various
people who needed to know about the system” [13]. Several modern rapid proto
typing simulation systems (such as Arena [Figure 2] and Simio [Figure 3]) take this
approach as well, where programming is done using a graphical interface. While some
models can be represented naturally using these methods, others require significant
contortion and creativity on the part of the model programmer.

Petri nets are another graphical means to describe a discrete event simulation.
Petri nets use a mathematical language to describe a simulation in terms of places,
transitions and directed arcs [46] [Figure 4]. Much of the work around Petri nets
concerns process analysis [46]; an excellent survey of Petri net analysis can be found
in [21]. These techniques, though, require that a Petri net model be constructed:
many simulations do not lend themselves to this representational form and Petri
nets are not easily understood by many modelers. Timed Petri nets are an exten
sion created in order to accommodate “real-world systems” [31]. A timed Petri net
consists of a Petri net and a function that assigns a real, non-negative time to each
transition in the net. No efforts have been made or analysis discussed to help model
ers enhance understanding their models other than the presentation of the graphical

CUSTOMERS
ARRIVE

\ j a , e

\ i

QUEUE

0
\ 1

SEIZE

A
\ t

DEPART

0
> f

ADVANCE

X6,4

\ f

RELEASE V

ENTER THE
LINE

CAPTURE TH E
BARBER

LEAVE TH E

USE THE
BARBER

FREE THE
BARBER

LEAVE THE
SHOP

Figure 1. A GPSS model segment [36].

Supply

|~»ji

vmdJM
CoirM^ •<UKA«fy

Exam Rooms

t ft -a Sues** i

4?fCompScabom

rot/lab Roam

✓“*- ~*S
p sw *»o«? ►—

g , -E
! r 1 '

f n i *!«<> * » — ■

Doctors
Operating Rooms

Figure 2. An Arena model [41]-

Figure 3. A Simio model [40].

8

But
waiting ' ? 3

Bus stop*

Otwpai
gets on

Figure 4. A sample Petri net [42].

(Q>0?)

Service
time

RUN ENTER START

{S = S+ 1}<Q = 0,S = s) { Q -Q + 1)
S = S - 1)

Figure 5. A sample event graph [37].

representation itself.
Schruben created the event graph modeling formalism since “[established graph

ical techniques for visualizing event-oriented structures [were] lacking” [38]. Event
graphs define a simulation through specifications of the system state, event logic,
and relationships between events [14] [Figure 5]. Event graphs can be used as a basis
for model analysis, though as our objectives differ from Schruben’s, the informa
tion in our graphs differs. Schruben also created simulation graphs, an extension of
event graphs. A simulation graph is a mathematical structure that defines a simu
lation through a vertex set, sets of scheduling and canceling edges, and an incidence
function. Schruben states that “[a]ny simulation, indeed any computer program,
can be modeled using a Simulation Graph” [39]. While this may be the case, some
representations are much more amenable to the kinds of analysis of interest.

Kranzlmiiller also formulated a graph formalism called an event graph. This
event graph is a “directed global communication graph . . . partially ordered in time,
[showing] the interprocess dependencies between processes” [20]. A point crucial to

9

our research, Kranzlmuller notes that as the number of processes increases, the visu
alization becomes “significantly more complicated and decreases the understanding
of the user for the displayed information” [20]. Rather than using a graphical lan
guage to code a model - the result of which still becomes large and obfuscating - the
created tools present selective, graphical representations of potentially useful aspects

of these models.
Zeigler’s Discrete Event System Specification (DEVS) formalism [48] has been

the basis of significant analysis work. DEVS was heavily influenced by general sys
tems theory and model formulations using mathematical notations. A simulation is
represented through a structure consisting of sets of input and output values; a set
of states; internal and external transition functions; an output function; and a set of
time values [49]. Behavior of the simulation can be reasoned about mathematically,
similar in notion to how one might argue about linear algebra. However, the focus
of much of this work concerns model verification - for example, [15] - as well as con
nectivity and reachability; the intent has not been and consequently does not lend
itself to support a modeler in gaining understanding about a model.

2.3 PROGRAM VISUALIZATION

Some work has been done specifically on the “visuality” of programs. Program
visualization (which is distinct from visual programming - “the body of techniques
through which algorithms are expressed using various two-dimensional, graphic, or
diagrammatic notations” [2]) has similarly stated goals, in part: “to facilitate a clear
and correct expression of the mental images of the producers (writers) of computer
programs, and to communicate these mental images to the consumers (readers) of
programs” [2]. The approach of program visualization to doing so, though, “focuses
on output, on the display of programs, their code, documentation, and behavior” [2].

One such example, an information mural [18] is a technique for displaying and
navigating large information spaces. The goal of the mural is to visualize a particular
information space, displaying what the user wants to see and allowing the user to
focus quickly on areas of interest. As Jerding and Stasko aptly state, “A textual
display of such voluminous information is difficult to read and understand. A graph
ical view . . . could better help a software developer understand what occurs during a
program’s execution.”

10

Program visualization focuses primarily on code; our interest is in depicting in
teractions of model behaviors. While program visualization techniques are indeed
beneficial, additional insights can potentially be revealed through additional tech
niques, especially as models continue to increase in complexity.

2.4 FEATURE LOCATION

Feature location [11] is part of the software maintenance community and deals
with finding “features” or “functionalities” [47] in the code - code that causes a given
behavior - usually with the goal of change, extension, or removal. Feature location
work is classified by its community as a software engineering reverse engineering task.
The problem “is a hard problem in software engineering because it is an inherently
human activity” [32].

Software reconnaissance [47] compares traces of test runs exhibiting a feature and
test runs not exhibiting the feature to determine which pieces of code are related to
the feature. Wilde and Scully note that their techniques cannot be used with features
that are always present in the program - that is, in the case that the program cannot
be run in such a way that they are not exhibited. They reasonably conclude that
their method “complements other sources of information in providing places to start
looking at code” - our goal as well. Program slicing, mentioned above, can assist
with both feature location and software reconnaissance.

Chen and Rajlich [8] present a case study of locating features with “computer-
assisted search of [a] software dependence graph.” They note, however, “extensive
knowledge is required, including domain knowledge, programming knowledge, knowl
edge of algorithms and data structures, knowledge of the software components and
their interactions, etc.” If a user had that knowledge, s/he wouldn’t need such tools
- a sentiment stated too by Koschke and Quante [19]: “The scenario for feature
location is that we do not know the system in all details - otherwise feature location
would not be an issue in the first place.”

Bohnet and Dollner [6] use a combination of static and dynamic analysis tech
niques as well as call run times and a ‘̂ -dimensional” “graph visualization” tech
nique. Their tool relies initially on the user to extract the system architecture and
identify feature-executing scenarios. Similar to the aforementioned feature location
approaches, this approach may be considered reasonable for someone with a computer
science or programming background, but not for the many non-computer scientist

11

researchers using modeling and simulation in their work.

2.5 PROGRAM UNDERSTANDING

Programming understanding concerns understanding a given computer program

and the relationships among its components [7]. This seems like a good match to
our goals: while we are not trying to understand programs themselves per se, we are
trying to understand the model as expressed in a given piece of code, as the source
code is the true specification of the model as executed.

IBM’s Research Division began working on tools to assist specifically with pro
gram understanding as early as 1986 [9]. The program comprehension community
considers program comprehension “a vital software engineering and maintenance ac
tivity . . . necessary to facilitate reuse, inspection, maintenance, reverse engineering,
reengineering, migration, and extension of existing software systems” [16]. While our
reasons are different, our focuses axe not so.

Cognitive theories have long been established in the field of program comprehen
sion; tool needs have been documented and researched [43]. However, no one seems
to have yet applied this knowledge to the field of modeling and simulation. This
leads to the crux of the research.

12

CHAPTER 3

SOLUTION MOTIVATION, FRAMEWORK

It is often difficult to separate code that defines the model - and hence is likely
of primary interest to a modeler - from code that is present in order to run a model
- for example, the details of adding events to lists. A modeler, as defined here, is
the curator of the model; s/he may or may not be the programmer who realizes the
model into the computer, and may or may not have programming expertise. A model
user is one who uses the simulation to meet some objective, perhaps such as trying
to better understand the system at hand, designing, training, or evaluating different
scenarios.

A significant point of this research is that the created tools do not necessitate that
a modeler or model user be able to encode the model or have any coding expertise,
but simply supply the original model definition file and execute a command. Some of
the information presented here could be produced by existing software development
tools but most modelers today do not have the technical background to use these
tools or to make use of the reports such tools can produce.

These tools - detailed extensively, below - can help modelers, model builders, and
model users better understand their models by showing what causes what as well as
producing concise summaries of key model structures that allow modelers to direct
their attention to aspects not generally discernible from current simulation output.

Prior research initiated by Derrick (which formed the basis of my Master’s work)
involved using Extensible Markup Language (XML) to create a service-oriented ar
chitecture to enable automated diagnostic techniques, and was described by Roeder
and Schruben, the creator of Simulation Graphs (Section 2.2, above), as “interest
ing new work” [33]. Condition Specifications - described in the next section - and
Simulation Graphs are among the few specification formalisms that have demon
strated promise and amenability to automated diagnostic techniques. Of the two,
the condition specification (CS) was the more natural choice for the research due
to the accessibility of the CS: again, the goal of this research is to explore analysis
approaches to help non-programmers better understand their models.

13

3.1 THE CONDITION SPECIFICATION

As mentioned above, different ways of describing a model lend themselves more
easily to different types of analyses. The condition specification is a way of describing
a model that lends itself to and is the basis for many model analyses [22, 27]. It was
created to facilitate automated transformation among the classical world views of
event scheduling, activity scanning, and process interaction. Serendipitously, sup
porting these transformations requires a representation that also enables several
forms of useful diagnostic and informative analysis. The diagnostic capabilities of
the condition specification are detailed in [25, 23]; an overview of its structure is
described herein.

In a condition specification, a model consists of a set of objects. The state of
each object is captured in a set of object attributes. Model execution consists of a
sequence of changes to object attributes. While a complete condition specification
has several components, the transition specification is of immediate interest here. A
transition specification describes what triggers attribute changes and how new values
for them are assigned. The triggers are called conditions and the changes are called

actions. Table 1 illustrates, in conceptual form, a transition specification for a CS.

Condition Actions
Condition 1 Action cluster 1
Condition 2 Action cluster 2

; ;

Condition n Action cluster n

TABLE 1. Structure of transition specification.

For example, consider the classical traveling repairman problem (described be
low). Examples of objects would be the repairman and facilities. One object at
tribute for the repairman might include whether he is busy or idle. An example of a
transition in a transition specification might be:

Condition: the repairman arrives at a facility in need of repair

Action cluster: begin_repair - set repairman status to busy; schedule

14

end_repair.

There are different types of conditions. Those that only depend on the value
of simulation time are called time-based, or alarms. Those that depend on object
attributes not including simulation time (e.g., based on conditions) are called state-
based.

Each transition specification must have an initialization action cluster and a ter
mination action cluster. At (exactly) the beginning of a simulation, the special
boolean condition initialization is true. Consequently, the initialization action clus
ter occurs only once, at start-up. It may schedule one or more alarms for future times
or it may change the values of object attributes so that some condition becomes true.
The simulation proceeds accordingly with actions causing varying conditions to be
come true, either in the same instant as the action occurrence or at a future value of
simulation time using alarms.

3.2 ACTION CLUSTERS, INTERACTION GRAPHS

An action cluster (AC) is a collection of model actions that must always occur
atomically. Continuing the traveling repairman example, whenever begin_repair oc
curs, setting the repairman status to busy and scheduling end_repair occur as an
indivisible unit.

Action clusters can be studied to create action cluster interaction graphs (ACIGs).
The main purpose of this type of graph, derived from source code, is to show which
events can cause which events. When given an unfamiliar model to modify or use,
modelers and model users traditionally examine text output, source code, and per
haps animations if available. Animations aside, most analyses are not particularly
visual, a shame since pictures can help us build mental models [12] - in this context,
a mental model of the encoded model.

In an action cluster interaction graph, nodes represent action clusters (events)
and directed edges represent the ability of one action cluster to directly cause the
occurrence of another action cluster - that is, an edge leads from AC 1 to AC 2 if
the actions of AC 1 can cause the condition of AC 2 to become true either at the
same instant as AC 1 or at a future instant (through scheduling an alarm). If an
action cluster can schedule an action cluster, that is represented by a dashed line; if
an action cluster could trigger an action cluster at the same simulation time, that is
represented by a solid line.

15

3.3 DIRECT EXECUTION OF ACTION CLUSTERS

A discrete event simulation can be written in a way that embodies the condition
specification, called direct execution of action clusters. This style has been described
in [27] and continues to be used successfully.

One such algorithm (similar to those suggested in [27]) involves the creation of a
routine for each action cluster in the condition specification. Model execution starts
by executing the initialization action cluster routine and its state-based successors,
if any. Thereafter, execution consists of a simple loop:

1. Update the simulation time to the next scheduled event.

2. Execute the events that have been scheduled for the current simulation time.
If one of these events is the termination action cluster, it executes and the
simulation terminates.

3. Scan, in turn, the condition of each action cluster. If a condition is true, execute
the appropriate routine. Repeat this step until no action clusters are triggered.

If one of these events is the termination action cluster, it executes and the
simulation terminates.

4. Return to step 1.

To improve run-time efficiency, some have presented techniques in step 3 so that
only a minimum number of conditions are scanned (e.g., [26]). The created tools
assume this direct execution of action clusters style.

3.4 THREE MODELS

Three C DEAC simulations of classical models are used to demonstrate the cre
ated tools.

3.4.1 TRAVELING REPAIRMAN

In the traveling repairman model from Cox and Smith [10], a repairman tends to a
number of machines which fail over time and need repair. This model can be used to
study how many machines or repairmen are needed, effects of machine modifications,
and production rates.

16

3.4.2 HARBOR

In the harbor model from Schriber [36], ships arrive at a harbor and wait for both
a berth and a tugboat to become available. A ship is then escorted by the tugboat
to a berth, unloaded, and escorted back to sea. This model can be used to study
tugboat utilization and ship in-harbor time.

3.4.3 SINGLE SERVER QUEUE

A single server serves customers one at a time from the front of the queue (first-
come, first-served). When the service is complete the customer leaves the queue.
This model is often used to estimate long-term average queue length.

17

CHAPTER 4

TOOLS FOR ENHANCING UNDERSTANDING

Observing and analyzing the behaviors produced by a simulation are the usual
techniques for improving understanding of a system being simulated. Different kinds
of approaches yield different potential discoveries. Some analyses can tell the mod
eler about the model; others can uncover potential errors in the model (coding or
otherwise).

Static analysis involves analyzing an object (such as code or a list of specifications)
without executing it.

Dynamic analysis involves collecting data during execution of the object of inter
est (usually code). Dynamic analysis often requires inclusion of additional statements
into the code to enable data collection during code execution, such as output or pro
filing statements.

Static analysis can often reveal characteristics of a model not readily apparent
from observing only its run-time behavior. Dynamic analysis can miss causal rela
tionships because they did not occur during a particular run or set of runs, as no
finite number of runs can necessarily discover all things that are possible in a sim
ulation. (Indeed, there is research within the simulation community that focuses
exclusively on rare event simulation.) However, from static analysis, one can reveal
the possibility of infrequent situations.

Static code analysis has limitations. Prom static analysis, one may discover that
event A can appear to cause event B, but dynamic analysis often can reveal specif
ically which events caused which events, which cannot always be determined prior
to run-time. In combination, if static analysis suggests that event A can cause event
B, but dynamic analysis reveals this combination is not observed, this may be of
interest to a modeler or user of the simulation.

These analyses also can help determine interactions among variables in differ
ent model components, unrealized relationships, both causal and coincidental, rela
tionships among different code modules, or relationships among different simulation
components - relationships of which the modeler might not be so aware.

18

These techniques have a long history of use in the computer science community
and software engineering community. Code optimization, automated generation of
some types of documentation, checking that an implementation conforms to a de
sign, and reverse engineering all use a combination of these techniques, as does this
research.

Both static and dynamic analysis techniques can assist in the goals of this re
search: “Ultimately, it will be a combination of tools and techniques that help an
analyst [understand] programs” [17]. As both types of analysis offer different and
complementary insights, the created tools use both static and dynamic techniques.

4.1 LIMITS OF ANALYSIS

Many questions one might like to answer are unsolvable, such as whether or not
a particular simulation always terminates, the classical halting problem. Likewise,
static analysis cannot determine whether a particular event causes another. Similar
observations can be made about the use of dynamic analysis. For example, in the
testing community, it is known that in general no amount of testing can show a piece
of code is without error; however, testing is still helpful and insightful. We feel that
the techniques presented here still can assist modelers to better understand their
models.

4.2 TOOL(S) OVERVIEW

A tool/suite of tools has been created to address these needs. There are seven
functionalities:

• Simulation log

• Trip lines

• Scheduled and triggered events

• Event summaries

• Static action cluster interaction graph

• Tallied dynamic action cluster interaction graph

• Dynamic action cluster interaction graph flip book.

19

These axe implemented in six components.
Some components use the results of other components. Specifically, neither cre

ation of the simulation log (which also implements trip lines - these occur as a single
component) nor creation of the static ACIG uses any other component. Creation of
scheduled and triggered events; event summaries; and the dynamic ACIG flip book
each also create the simulation log for their use. Creation of the tallied dynamic
ACIG also creates the simulation log and static ACIG for its use.

static AGG

event summaries tallied dynamic ACIGdynamic ACIG flip book

simulation log + trip lines

scheduled and triggered events

Figure 6. Component interactions of the tool.

No original supplied files are ever modified; working copies are made. Similarly,
simulation output (stdout) is never modified or supplemented; separate files are
created by the tools.

Each functionality is discussed in detail below.

4.3 SIMULATION LOG

Using dynamic analysis, a simulation log is generated that notes each action and
the simulation time.

Many simulations are programmed to print final usage statistics, utilization, etc.;
however, this log is generated without any user action or programming effort (such
as including output print statements).

In the tool, parameters for the tool (such as file locations) and for the simulation
(such as number of runs) are read in from a file. The original simulation files are
moved and copies are made; the originals are kept untouched and unmodified. The
(copies of the) simulation code files are run through asty le , an open-source auto
matic formatter for C (and other programming language) files, so that the format
styling of the files is known.

20

For simplicity, the tool makes four passes on the simulation code files. The first
pass injects the file pointer declaration, file open, run number, simulation log header,
and file close statements. First, the tool scans for the main procedure and injects
the file pointer declaration immediately before it. Next, the tool looks for main’s
error checking of its arguments and immediately thereafter, injects the file open
and accompanying error-handling statements. Continuing, the tool looks for the
i n i t i a l i z e call and injects simulation log print statements noting the run number

and adding the log header immediately before the call. Finally, the tool looks for the
end of main and injects the file close statement immediately before it.

The second pass looks for AC procedure calls and scheduled alarms. If an AC
procedure is found, immediately after the procedure opening, a simulation log print
statement is injected noting the simulation time and the AC being executed. When
ever an addAlarmList statement is detected, a simulation log print statement is
injected noting the simulation time, the AC that is scheduling, and the AC sched
uled.

The third pass looks for the stateA cL ist and its switch statement. Each case
of this switch statement corresponds to a particular AC that can be triggered; the
first statement of a case is an if statement laying out the conditions for the AC to
be triggered. For each case in the switch statement, immediately after the triggering
if statement, a simulation log print statement is injected that notes the simulation
time, the condition that became true, and the AC triggered.

The fourth pass implements trip lines, discussed below.
The enhanced files are run through a s ty le again to align the added lines for ease

of readability by the modeler, if so inclined. The simulation is compiled using the
simulation makefile and run the specified number of times, generating the simulation
log.

While one line corresponding to one time/action is best for searching data sets
with tools such as grep, this may not be the best format for reading on a screen or
for printing; an additional printer-friendly version is also generated.

The created simulation log is parsed to create a screen- and printer-friendly ver
sion of the log. Whenever a line exceeds 80 characters (not anticipated to change but
easily modified in one place in the code), the line is broken at the last space before
or at the 80th+1 character. The remainder of the line is indented the appropriate
number of spaces, and the process is repeated as necessary until the remainder of the

21

line (including indent) has 80 or fewer characters.

Examples are provided below.

4.3.1 EXAMPLE: TRAVELING REPAIRMAN

Simulation output (stdout):

Run 1

Frequency count of AC executions

AC procld Frequency

0 1

1 1
2 2001
3 2000
4 2000

5 1351
6 1351
7 2000

Termination! System time: 73612.47
Repairman u t il iz a t io n : 39.72
Repairman to ta l work time: 16203.31
Repairman to ta l tra v e l time: 13035.50
Number of repairs: 2000
Run 2

Frequency count of AC executions

AC procld Frequency
0 1
1 1
2 2000

3 2000
4 2000

5 1363
6 1363
7 2000

22

Some sample lines of injected code:

/* sim ulation log * /

FILE *fpl406944336;

/* in i t i a l i z e sim ulation log * /

i f ((fpl406944336 = fopen(" ./patrepsim ulatio n lo g .tx t" , "w")) ==
NULL) {

fp r in tf(s td e r r , "Could not open p atrep sim u lation log .txt\n ");

exit(EXIT-FAILURE);

}

fp r in tf (fpl406944336, "Run‘/,d\n", arun);
fprintf(fp l406944336, "time: d escr ip tio n \n ");

/* note AC in sim ulation log * /
fp r in tf (fp 1406944336, "7,f: in it ia l iz a t io n \n " , clock);

/* note added alarm in sim ulation log * /
fp r in tf (fpl406944336, "°/,f: in i t ia l iz a t io n scheduled fa ilu r e for time

%f\n", clock , bact->alarmTime);

/* note condition and triggered AC in sim ulation log * /
fprintf(fp l406944336, "7,f: (repairman.num_repairs >= mrp.max_repairs)

triggered term ination\n", c lo c k);

/* c lo se sim ulation log * /

fclose(fp !406944336);

Part of the generated printer-friendly log:

23

Run 0

time: d escrip tion
0.000000: in i t ia l iz a t io n

0.000000: in i t ia l iz a t io n scheduled fa ilu r e for time 375.411933

0.000000: in i t ia l iz a t io n scheduled fa ilu r e for time 175.502268

0.000000: in i t ia l iz a t io n scheduled fa ilu r e for time 641.226639

0.000000: in i t ia l iz a t io n scheduled fa ilu r e for time 217.206273

0.000000: in i t ia l iz a t io n scheduled fa ilu r e for time 72.688235

0.000000: in i t ia l iz a t io n scheduled fa ilu r e for time 178.309819
0.000000: in i t ia l iz a t io n scheduled fa ilu r e for time 0.004378

0.000000: in i t ia l iz a t io n scheduled fa ilu r e for time 80.682566

0.000000: in i t ia l iz a t io n scheduled fa ilu r e for time 151.559682
0.000000: in i t ia l iz a t io n scheduled fa ilu r e for time 299.116456
0.000000: in i t ia l iz a t io n scheduled fa ilu r e for time 1374.016025

0.000000: in i t ia l iz a t io n scheduled fa ilu r e for time 2139.786424
0.004378: fa ilu r e

0.004378: (repairm an.status == IDLE && SomeFailedO) triggered

tra v e l_ to _ fa c ility

0.004378: tra v e l_ to _ fa c ility
0.004378: tra v e l_ to _ fa c ility scheduled begin_repair for time 3.504378

3.504378: begin_repair
3.504378: begin_repair scheduled end_repair for time 8.913395

8.913395: end_repair
8.913395: end_repair scheduled fa ilu r e for time 251.966998

8.913395: (m rp.num _failed_facilities == 0 && repairm an.status == IDLE
&& repairm an.location != idleJLoc) triggered travel_to_id le

8.913395: travel_to_id le
8.913395: travel_to_id le scheduled arrive_at_idle for time 12.413395

12.413395: arrive_at_idle

72.688235: fa ilu r e
72.688235: (repairm an.status == IDLE && SomeFailedO) triggered

travel_to_f a c i l i t y

72.688235: tra v e l_ to _ fa c ility

24

72.688235: tr a v e l_ to _ fa c ility scheduled begin_repair for time

75.188235

75.188235: begin_repair

75.188235: begin_repair scheduled end_repair for time 75.715220

75.715220: end_repair

75.715220: end_repair scheduled fa ilu r e for time 499.740800

75.715220: (m rp.num_failedJEacilities == 0 && repairm an.status == IDLE

&& repairm an.location != id le_ loc) triggered travel_to_id le

75.715220: travel_to_id le
75.715220: travel_to_id le scheduled arrive_at_idle for time 78.215220

73612.466229: end_repair

73612.466229: end_repair scheduled fa ilu r e for time 74336.614565

73612.466229: (repairman.num_repairs >= mrp.max_repairs) triggered

term ination

73612.466229: term ination

Run 1
time: d escrip tion

0.000000: in i t i a l iz a t i on

By examining the simulation log, a modeler might learn that the simulation starts
by scheduling the first machine failures, or that the repairman traveled to the idle
location only a few times, observations that are not readily apparent from the simu
lation output.

4.3.2 EXAMPLE: HARBOR

Simulation output (stdout):

Run 1
Frequency count of AC executions

AC procld Frequency
0 1

25

1 1

2 1000

3 1000

4 1000

5 1000

6 1000
7 1000

8 14

9 14

10 19
11 19

Termination! System time: 99536.71
Tug u t il iz a t io n : 18.25
Max number ships w aiting at arr iva l area: 2

From the generated printer-friendly simulation log:

Run 0
time: d escrip tion

0.000000: in i t ia l iz a t io n
0.000000: in i t ia l iz a t io n scheduled arr iv a l for time 86.301594

86.301594: arr iva l
86.301594: arr iva l scheduled arr iva l for time 126.646943

86.301594: ((num_arr_tugs + tug_to_ocean_ct < num_arr_q) &&

num_pier_tugs > 0 && num_free_berths > 0) triggered

move_tug_to_ocean
86.301594: move_tug_to_ocean

86.301594: move_tug_to_ocean scheduled tug_arrive_at_ocean for time
111.301594

111. 301594: tug_arrive_at_ocean
111.301594: (num_arr_q > 0 && num_arr_tugs > 0 && num_free_berths >

0) triggered enter

26

111.301594: enter

111.301594: enter scheduled unload for time 156.301594

99458.706118

99458.706118

99491.710185

99491.710185

99491.710185
99491.710185
99536.710185

99536.710185

99536.710185

unload
unload scheduled end_unload for time 99491.710185

end_unload

(num_depart_q > 0 && num_pier_tugs > 0 &&

(num_free_berths == 0 I I (num_arr_tugs + tug_to_ocean_ct
>= num_arr_q))) tr iggered deberth

deberth
deberth scheduled end_deberth for time 99536.710185

end.deberth
(exit.count >= maxBerths) triggered term ination

term ination

4.3.3 EXAM PLE: SINGLE SERVER QUEUE

Simulation output (stdout):
Run 1
Frequency count of AC executions

AC procld Frequency
0 1
1 1

2 22

3 21
4 20

Termination! System time: 567.25
Number served: 20
Maximum number waiting:

From the generated printer-friendly simulation log:

27

Run 0

time: d escrip tion
0.000000: in i t ia l iz a t io n

0.000000: in i t ia l iz a t io n scheduled arr iv a l for time 0.000000

0.000000: arriva l

0.000000: arr iv a l scheduled arr iva l for time 22.006906

0.000000: (parts.num_waiting > 0 && serv er . sta tu s == IDLE) triggered

begin_service

0.000000: begin_service

0.000000: begin_service scheduled end_service for time 9.610396
9.610396: end_service

22.006906: arriva l
22.006906: arr iva l scheduled arr iva l for time 32.294970
22.006906: (parts.num_waiting > 0 && serv er . sta tu s == IDLE) triggered

begin_service

22.006906: begin_service
22.006906: begin_service scheduled end_service for time 38.772976

567.251057: begin_service
567.251057: begin_service scheduled end_service for time 579.549980
567.251057: (server.num_served >= mrp. stop_num) triggered term ination

567.251057: term ination

4.4 TRIP LINES

A “trip line” concerns any boolean expression of model variables of which the
modeler wants to be notified the first time it is passed - for example, if a queue
length becomes greater than 10 or a wait time becomes greater than one hour. This
could also be used to note other user-defined criteria.

In SIMSCRIPT, modelers could provide different routines, one to be invoked
whenever a variable was referenced and another whenever it was modified. This was
often used to separate statistical analysis code from model code but could serve any
purpose of interest to a creative programmer (such as validity or range checking of
variables) as well as remove the burden of finding every place in the code where a

28

variable was referenced or changed.
Similarly, the modeler can add a special line (or lines) to the simulation code indi

cating what variable(s) and/or condition(s) s/he would like to be noted. Two options
are available: trip_when(condition) or trip_when(condition, reset-condition) . In
the first case, if the condition becomes true, that is noted in the simulation log; this
trip line can be tripped exactly once. In the second case, if the condition becomes
true, that is noted in the simulation log; if the reset condition becomes true, that

is also noted in the simulation log, the trip line is reset and can be tripped again.
Conditions and reset conditions should pertain to the same variable(s).

Trip lines are an optional addition of one, simple line of code per request that
requires no knowledge of output, output formatting, or finding everywhere a change
might occur and allows a modeler to easily check whether situations that may be of
interest actually occur.

Continuing the implementation discussion of Section 4.3 above, the fourth pass
makes two passes. The first looks for trip_when statements. If the tool finds a
trip.when, the number of trips is incremented; the trip.w hen variable is noted; and
a corresponding if statement and statement block is created. The statement block
includes a simulation log print statement noting the simulation time and which trip
was tripped, as well as a trip flag (so that the trip line can only trip once). If
the trip.w hen has a reset condition, an if statement is also included for the reset
condition, again with a statement block that includes a simulation log print statement
noting the simulation time and which trip was reset, and a statement resetting the
trip flag.

The second pass injects the trip flag initializers at the beginning of the main
simulation code file immediately after any comments and #includes. Then, wher
ever one of the trip.w hen variables is changed, the above lines of code are injected
immediately thereafter. The trip.w hen lines (not standard C) are removed.

Examples are provided below.

4.4.1 EXAMPLE: TRAVELING REPAIRMAN

From the simulation code:

repairman. work_time = 0.0 ;

29

/* 10,000 hours to become an expert myth * /

trip_when(repairman.work_time >= 10000.0);

Injected code:

/* booleans for tr ip l in e s * /

in t tripO = 0;

/* user request: trip.when (repairman. work_time >= 10000.0) * /
/* f i r s t time tr ip l in e i s tripped, note i t in the sim ulation log * /
i f ((repairman.work_time > - 10000.0) && (tripO = = 0)) {

fp r in tf (fpl408484027, "’/,f: ! tr ip l in e tripped:
(repairman.work_time >= 10000.0)\n" , clock);

tripO = 1;

}

From the generated simulation log:

44072.318287: begin_repair
44072.318287: begin_repair scheduled end_repair for time 44097.771914

44072.318287: ! tr ip l in e tripped: (repairman.work_time >= 10000.0)

4.4.2 EXAMPLE: HARBOR

From the simulation code:

num_berths = 5;
num_free_berths = num_berths;

30

trip.when (num_free_berths == 1, num_free_berths >= 3);

exit.count = 0;

trip.when (e x it .count == 10);

Injected code:

/* booleans for tr ip l in e s * /
in t tripO = 0;

in t t r ip l = 0;

/* user request: trip.when(num_free_berths == 1, num_free_berths >=

3) * /
/* f i r s t time tr ip l in e i s tripped, note i t in the sim ulation log * /

i f ((num_f ree.berths == 1) && (tripO = = 0)) {
fp r in tf (fpl408484050, "°/,f: ! tr ip l in e tripped: (num_free_berths

== l) \n " , clock);
tripO = 1;

}
/* i f tr ip l in e i s r e se t , note i t in the sim ulation log * /

i f ((num_free_berths >= 3) && (tripO = = 1)) {
fp r in tf (fp 1408484050, "7,f: ! tr ip l in e reset: (num_free_berths

>= 3)\n" , clock);

tripO = 0;

}

/* user request: trip .w hen(exit.count == 10) * /
/ * f i r s t time tr ip l in e i s tripped, note i t in the sim ulation log * /
i f ((ex it.co u n t == 10) && (tr ip l = = 0)) {

fprin tf(fp l408484050, "7,f: ! tr ip l in e tripped: (ex it.cou n t ==

10)\n " , clock);

31

t r ip l = 1;

From the generated simulation log:

406.689551: tug_arrive_at_ocean
406.689551: (num_arr_q > 0 && num_arr_tugs > 0 && num_free.berths >

0) triggered enter

406.689551: enter
406.689551: enter scheduled unload for time 451.689551
406.689551: ! tr ip l in e tripped: (num_free_berths == 1)

478.321643: end_unload
478.321643: (num_depart_q > 0 fe& num_pier_tugs > 0 && (num_free.berths

== 0 I I (num_arr_tugs + tug_to_ocean_ct >= num_arr_q)))

triggered deberth

478.321643: deberth
478.321643: deberth scheduled end_deberth for time 523.321643
478.321643: ! t r ip l in e reset: (num_free.berths >= 3)

608.983167: end_unload
608.983167: (num_depart_q > 0 && num_pier_tugs > 0 && (num_free.berths

== 0 I I (num_arr_tugs + tug_to_ocean_ct >= num.arr.q)))

triggered deberth

608.983167: deberth
608.983167: deberth scheduled end.deberth for time 653.983167
653.983167: end_deberth
653.983167: ! tr ip l in e tripped: (ex it.cou n t == 10)

4.4.3 EXAMPLE: SINGLE SERVER QUEUE

From the simulation code:

32

parts. num_waiting = 0;
trip.when (parts .num_waiting > 4 , parts.num_waiting == 0);

serv er .num_served = 0;
trip_when(server .num_served == 6);

trip_when(server .num_served == 12);

Prom the generated simulation log:

69.884118: begin_service
69.884118: begin_service scheduled end_service for time 133.241050

82.616900: arr iva l
82.616900: arr iva l scheduled a rr iva l for time 86.877934

86.877934: arriva l
86.877934: arr iva l scheduled a rr iva l for time 97.330579

97.330579: arriva l
97.330579: arr iva l scheduled arr iv a l for time 97.330835

97.330835: arriva l
97.330835: arr iva l scheduled arr iv a l for time 102.060503

102.060503: arr iva l
102.060503: ! t r ip lin e tripped: (parts.num_waiting > 4)

102.060503: arr iv a l scheduled arr iva l for time 110.945036

148.019685: end_service
148.019685: (parts.num_waiting > 0 && serv er . sta tu s == IDLE)

triggered begin_service
148.019685: begin_service
148.019685: begin_service scheduled end_service for time 156.415883

156.415883: end_service
156.415883: ! tr ip l in e tripped: (server.num_served == 6)

33

156.415883: (parts.num_waiting > 0 && serv er . sta tu s == IDLE)

triggered begin_service

156.415883: begin_service

156.415883: begin_service scheduled end_service for time 169.503654

226.292220: end_service
226.292220: (parts.num_waiting > 0 && serv er . sta tu s == IDLE)

triggered begin_service

226.292220: begin_service

226.292220: ! tr ip l in e reset: (parts.num_waiting == 0)
226.292220: begin_service scheduled end_service for time 266.078875

266.078875
266.078875
266.078875

end_service
end_service
! tr ip l in e tripped: (server.num_served == 12)

4.5 SCHEDULED AND TRIGGERED EVENTS

While there are plenty of code coverage tools that can aid programmers in detect
ing unexecuted components, a significant point of this research is to assist modelers
and model users that may not be interested or comfortable in learning to use or
exploit such tools. In addition, the results of such tools often include much that is
not pertinent to the model itself, but rather its implementation - not likely to be
of interest to the modeler and worse, might obfuscate information that is of inter
est. Combining this with interest in model analysis rather than simulation analysis
yields a tool that creates a list of all scheduled, unscheduled, triggered, and untrig
gered events.

This list can be informative by possibly identifying unanticipated effects previ
ously unrecognized by the modeler. They can also serve a diagnostic purpose if a list
omits events the modeler knows should be included, or includes events the modeler
knows should not be included.

In the DEAC implementation (as with any implementation), only certain parts of
the code correspond to the conceptual model; because of the DEAC structure, these
sections of the code can be known and noted. In the simulate routine, there are two

34

main sections that correspond to the conceptual model: the execution of scheduled
ACs (phase B), and the repeated scanning of conditions (and possible execution) of
triggered ACs (phase D).

The tool first creates the simulation log. It then creates a modified makefile to
support gcov, makes the simulation, runs the simulation, and runs gcov. Next, it
considers the .gcov file and the main simulation file. The phase B section of the
code is considered; for each case in the switch statement, the tool checks if the case
statement was executed. If it was, the AC is noted as scheduled; if not, it is noted as
not scheduled. Similarly, the phase D section of the code is considered; for each case
in the switch statement, the tool checks if the case statement was executed. If it was,
the AC is noted as triggered; if not, it is noted as not triggered. These notes are then
sorted into scheduled events, unscheduled events, triggered events, and untriggered
events.

Examples are provided below.

4.5.1 EXAMPLE: TRAVELING REPAIRMAN

during the sim ulation run:

scheduled events:
arrive_at_ id le
begin_repair
end_repair
f a i lu re

unscheduled events:
term ination
travel_to_f a c i l i t y
travel_ to_ id le

trig g e red events:
term ination
travel_to_f a c i l i ty
travel_ to_ id le

untriggered events:

~ none ~

4.5.2 EXAMPLE: HARBOR

during the sim ulation run:

scheduled events:

arriva l

end_deberth
end_unload

t ug_ar r i ve _at _o c ean

tug_arrive_at_pier

unload

unscheduled events:
~ none ~

triggered events:

deberth

enter

move_tug_to_ocean
move_tug_to_pier
term ination

untriggered events:
~ none ~

4.5.3 EXAMPLE: SINGLE SERVER QUEUE

during the sim ulation run:

scheduled events:

arriva l

end_service

36

unscheduled events:

~ none ~

triggered events:

begin_service

term ination

untriggered events:

~ none ~

4.6 EVENT SUMMARIES

In a simulation, different types of statistics can be of interest: some are general -
for example, how often an event occurs; some are model-specific - for example, how
often a particular machine is in use; and still others are implementation-specific - for
example, how often a condition queue is empty.

Using dynamic analysis, total simulation time and a summary with respect to
each event are tallied and presented for each simulation run. For each event in the
run, its number of occurrences, events scheduled, number of times scheduled, events
triggered, and number of times triggered are presented.

In one past local simulation study, a modeler was studying trace data produced
during simulation executions. It happened to be noticed that the events that occurred
could be divided into a small number of groups based on the number of times each
event occurred; every event in each group occurred the same number of times. This
observation revealed a structure of the model (and the system it represented) that
had not been previously recognized - a fundamental insight revealable through these
created tools.

The tool first creates the simulation log. For each simulation run, a tally is cre
ated, counting each event, each event scheduled and by which event it was scheduled,
and each event triggered and by which event it was triggered. The tally is then sorted,
with initialization first, termination last, and the remaining events in between.

Examples are provided below.

4.6.1 EXAMPLE: TRAVELING REPAIRMAN

Rim 0

37

Total sim ulation time: 73612.466229

Events:

in i t ia l iz a t io n

occurrences: 1

events scheduled:

fa ilu r e : 12 times

events triggered:

H0318 'S/

arrive_at_idle

occurrences: 1351

events scheduled:
~ none ~

events triggered:

tra v e l_ to _ fa c ility : 117 times
beginjrepair

occurrences: 2000
events scheduled:

end_repair: 2000 times
events triggered:

~ none ~

end_repair
occurrences: 2000

events scheduled:
fa ilu r e : 2000 times

events triggered:

termination: 1 time
tra v e l_ to _ fa c ility : 648 tim es

travel_ to_ id le: 1351 times
fa ilu r e

occurrences: 2001
events scheduled:

~ none ~

events triggered:

tra v e l_ to _ fa c ility : 1235 times

travel_to_f a c i l i t y

occurrences: 2000

events scheduled:

begin_repair: 2000 times

events triggered:

none

travel_to_id le

occurrences: 1351

events scheduled:

arrive_at_ id le: 1351 tim es

events triggered:
~ none ~

term ination

occurrences: 1
events scheduled:

~ none ~

events triggered:

~ none ~

Run 1

Total sim ulation time: 74386.284534

Events:

in i t ia l iz a t io n
occurrences: 1
events scheduled:

fa ilu r e : 12 times
events triggered:

~ none ~

4.6.2 EXAMPLE: HARBOR

Run 0

Total sim ulation time: 99536.710185

Events:

in i t ia l iz a t io n

occurrences: 1
events scheduled:

a r r iv a l: 1 time

events triggered:

~ none ~
arriva l

occurrences: 1000
events scheduled:

a r r iv a l: 1000 times
events triggered:

enter: 978 times

move_tug_to_ocean: 15 times

deberth
occurrences: 1000
events scheduled:

end_deberth: 1000 times

events triggered:
move_tug_to_ocean: 2 times

end_deberth
occurrences: 1000
events scheduled:

~ none ~
events triggered:

enter: 10 times
move_tug_to_pier: 1 time

termination: 1 time

40

encLunload

occurrences: 1000

events scheduled:

~ none ~

events triggered:

deberth: 979 times

move_tug_to_pier: 13

enter

occurrences: 1000

events scheduled:
unload: 1000 times

events triggered:

~ none ~

move_tug_to_ocean

occurrences: 19

events scheduled:
tug_arrive_at .ocean:

events triggered:

none ~

move_tug_to_pier
occurrences: 14

events scheduled:
tug_arrive_at_pier:

events triggered:
~ none ~

tug_arrive_at_ocean

occurrences: 19

events scheduled:
~ none ~

events triggered:
enter: 12 times

tug_ar r i ve _at _p i er

occurrences: 14
events scheduled:

times

19 times

14 times

41

~ none ~

events triggered:

deberth: 9 times

unload

occurrences: 1000

events scheduled:

end_unload: 1000 times

events triggered:

deberth: 12 times

move_tug_to_ocean: 2 tim es

term ination
occurrences: 1

events scheduled:

~ none

events triggered:

~ none ~

4.6.3 EXAMPLE: SINGLE SERVER QUEUE

Run 0

Total sim ulation time: 567.251057

Events:
in i t ia l iz a t io n

occurrences: 1
events scheduled:

a r r iv a l: 1 time

events triggered:
~ none ~

arriva l

occurrences: 22
events scheduled:

a r r iv a l: 22 times

42

events trig g e red :
begin_service: 6 times

begin_service
occurrences: 21
events scheduled:

end_service: 21 times
events trig g e red :

term ination: 1 time
end_service

occurrences: 20
events scheduled:

~ none ~
events trig g e red :

begin_service: 15 times
term ination

occurrences: 1
events scheduled:

none ~
events trig g e red :

~ none ~

4.7 STATIC ACTION CLUSTER INTERACTION GRAPH

Using static analysis, the action cluster interaction graph is automatically gener

ated.
In a precursor to this automation effort, part of my research focused on using a

now-commercial tool (CodeSurfer [1]) to generate the ACIG. Although the goal was
to explore what kind of tools might be able to reproduce information garnered by
hand, I discovered unrealized errors in graphs in a reviewed, published paper, [23].
Research on how visualization can assist understanding coupled with how easily one
can miss interactions - in [23], among only 12 action clusters - again demonstrates
the usefulness of automating these analyses.

In the DEAC implementation, a file contains the possible successors of each AC
in the model. Puthoff [30] presents a way to identify such successors (though this

43

list may not be minimal since creation of such a list is unsolvable). The tool first
creates a list of all ACs by scanning the main simulation file. Next, the tool parses
the successors file to determine which, if any, successors each AC could have. Using
this information, the tool creates a DOT graph description language file. Positions
for each AC are calculated and added to the DOT file so that the ACIG is always
circular. Recall a solid line in the ACIG means a given action cluster could trigger
an action cluster. A line in the DOT file is created for each solid edge for the graph:
a solid line is created between an AC and each of its possible successors. Recall also
that a dashed line in the ACIG means that an action cluster can schedule an action
cluster. A line in the DOT file is created for each dashed line for the graph: the
main simulation file is scanned; a dashed line is created between an AC and each
AC it can schedule. Finally, the DOT file is processed by neato to create a portable
document file containing the static action cluster interaction graph.

Examples are provided below.

4.7.1 EXAMPLE: TRAVELING REPAIRMAN

Generated DOT file:

digraph patrep {
in i t ia l iz a t io n [pos="4.0 ,0 .0 !"];

term ination [pos="2.82842712475,2.82842712475!"];
fa ilu r e [pos="2.44929359829e-16,4.0!"];

begin_repair tpos="-2.82842712475,2.82842712475!"];

end_repair [pos="-4.0,4.89858719659e-16!"];

travel_to_id le [pos="-2.82842712475,-2.82842712475! "] ;
arrive_at_idle [pos="-7.34788079488e-16,-4.0!"] ;

tra v e l.to _ f a c i l i t y [pos="2.82842712475, -2.82842712475!"] ;

failure -> travel_to_facility;
endjrepair -> termination;
end_repair -> travel_to_facility;
endjrepair -> travel jto .id le;
arrive_at_idle -> traveljtojfacility;
in itia lization -> failure [style = dashed];

44

travel_to_f a c i l i t y -> begin_repair [s ty le = dashed];

begin_repair -> end_repair [s ty le = dashed];
end_repair -> fa ilu r e [s ty le = dashed];

travel_to_id le -> arrive_at_idle [s ty le = dashed];

}

failure

term ination

in itia liz a tio nend_repair

Figure 7. Generated graph: traveling repairman static action cluster interaction
graph.

4.7.2 EXAMPLE: HARBOR

Generated DOT file:

digraph harbor {

in i t ia l iz a t io n [pos="6.0 ,0 .0 !"];

term ination [pos="5.19615242271,3.0!"];

a rriv a l [pos="3.0,5.19615242271!"];

enter [pos="3.67394039744e-16,6.0!"];
unload [p o s= " -3 .0 ,5 .19615242271!"];
end_unload [pos="-5.19615242271,3.0!"];

deberth [pos="-6.0,7.34788079488e-16!"];
end_deberth Cpos="-5.19615242271,-3 .0!"];

move_tug_to_pier [pos= "-3.0,-5.19615242271!"];

tug_arrive_at_pier [pos="-l. 10218211923e-15,-6

move_tug_to_ocean [pos="3.0,-5.19615242271!"];
tug_arrive_at_ocean [pos="5.19615242271,-3.0!"

a rriva l -> enter;

arriv a l -> move_tug_to_ocean;
enter -> deberth;

enter -> move_tug_to_pier;
enter -> move_tug_to_ocean;
unload -> deberth;

unload -> move_tug_to_ocean;
end_unload -> deberth;

end_unload -> move_tug_to_pier;
deberth -> enter;
deberth -> move_tug_to_pier;
deberth -> move_tug_to_ocean;
end_deberth -> termination;

end_deberth -> enter;
end_deberth -> move_tug_to_pier;

tug_arrive_at_pier -> deberth;
tug_arrive_at_pier -> move_tug_to_ocean;

46

tug_arrive_at_ocean -> enter;

tug_arrive_at_ocean -> move_tug_to_pier;

in i t ia l iz a t io n -> arr iva l [s ty le = dashed];

arriva l -> a rr iva l [s ty le = dashed];
enter -> unload [s ty le = dashed];

unload -> end.unload [s ty le = dashed];

deberth -> end_deberth [s ty le = dashed];

move_tug_to_pier -> tug_arrive_at_pier [s ty le = dashed];

move_tug_to_ocean -> tug_arrive_at_ocean [s ty le = dashed];

}

en te r

unload arrival

term inationend unload

initializationdeberth

end_deberth

Figure 8. Generated graph: harbor static action cluster interaction graph.

47

4.7.3 EXAMPLE: SINGLE SERVER QUEUE

Generated DOT file:

digraph mml {

in i t ia l iz a t io n [p os= " 2 .5 ,0 .0 !"];
term ination [pos="0.772542485937,2.37764129074!"];

arriva l [pos="-2.02254248594,1.46946313073!"];

begin_service [pos="-2.02254248594,-1.46946313073!"] ;

end_service [pos="0.772542485937,-2.37764129074!"];

arriv a l -> begin_service;
end_service -> begin_service;
end_service -> termination;
in i t ia l iz a t io n -> arr iva l [s ty le = dashed];

a rriv a l -> arr iv a l [s ty le = dashed];
begin_service -> end_service [s ty le = dashed];

}

term ination

arrival

initialization

end service

Figure 9. Generated graph: single server queue static action cluster interaction graph.

48

4.8 TALLIED DYNAMIC ACTION CLUSTER INTERACTION
GRAPH

Using both static and dynamic analysis, the action cluster interaction graph is
automatically generated, with edges labeled according to event frequency during a
given run.

Prom static analysis, one may discover that event A can cause event B, but
dynamic analysis often can reveal specifics of which events caused which events -
that is, which event caused a particular event, and which event(s) a particular event

caused - which cannot always be determined prior to run-time. In combination, if
static analysis suggests that event A can cause event B, but dynamic analysis reveals
this is not observed, this may be of interest to a modeler or user of the simulation.

The tool first creates the static action cluster interaction graph, forming the basis
of the DOT file, and the simulation log. For each simulation run, the graph is labeled
with the run; a tally is created, counting each time an AC schedules an AC, and each
time an AC triggers an AC. These are then added as labels for each line in the DOT
file. If an edge is not in the tally, it is labeled “0.” Finally, the DOT file is processed
by neato to create a portable document file containing the dynamic action cluster
interaction graph.

Given an arbitrary condition specification, the automatic creation of a static
ACIG with no redundant or unnecessary edges is unsolvable [23]; these superfluous
edges are misleading as they suggest a false causal relationship between events. Edges
labeled “0” in the tallied dynamic ACIG can guide modelers to consider if these edges
are superfluous - perhaps through additional, non-automated analysis of the model
- or if this interaction just did not occur during this particular run.

Examples are provided below.

4.8.1 EXAMPLE: TRAVELING REPAIRMAN

Generated DOT file:

digraph patrep {
lab e l = "rim 0";
in i t i a l i z a t io n [pos="4.0 ,0 .0 !"] ;
term ination [pos="2.82842712475,2.82842712475!"];
f a i lu re [pos="2.44929359829e-16,4.0!"];

49

begin_repair [pos="-2.82842712475,2.82842712475!"];
endjrepair [pos="-4.0,4.89858719659e-16!"];
travel_to_idle [pos="-2.82842712475,-2.82842712475!"] ;
arrive_at_idle [pos="-7.34788079488e-16,-4.0!"];
travel_to_facility [pos="2.82842712475,-2.82842712475!"];

arrive_at_idle -> travel_to_f a c i l i t y [la b el = " 7 "] ;

begin_repair -> endjrepair [s ty le = dashed] [la b e l = " 100 "];

end_repair -> fa ilu r e [s ty le = dashed] [la b e l = " 100 "];

endjrepair -> term ination [la b el = " 1 "];
endjrepair -> tr a v e l_ to _ fa c ility [la b e l = " 31 "];

endjrepair -> travel_to_id le [la b el = " 68 "];

fa ilu r e -> tra v e l_ to _ fa c ility [lab el = " 62 "];
in i t ia l iz a t io n -> fa ilu r e [s ty le = dashed] [la b el = " 12 "];
tr a v e l_ to _ fa c ility -> beginjrepair [s ty le = dashed] [la b el =

" 100 "] ;

travel_to_idle -> arrive_at_idle [style = dashed] [label = " 68 "];

}

50

failure

term ination

lOB, initialization

<^ t̂^el_to_facility^^>travel to idle

'-68^

run 0

Figure 10. Generated graph: traveling repairman tallied dynamic action cluster in
teraction graph.

51

4.8.2 EXAMPLE: HARBOR

en ter

arrival jL", 52unload

term inationend.unioad

50

end_deberth

move_tug_to_ocean

run 0

Figure 11. Generated graph: harbor tallied dynamic action cluster interaction graph.

52

4.8.3 EXAMPLE: SINGLE SERVER QUEUE

term ination

arrival

initialization

(^"b e g in _ se rv ice

end service

run 0

Figure 12. Generated graph: single server queue tallied dynamic action cluster in
teraction graph.

4.9 DYNAMIC ACTION CLUSTER INTERACTION GRAPH FLIP
BOOK

A dynamic ACIG is created for every time step of the simulation run; these
are then combined into a multi-page document that can be flipped through. This
provides a visual representation of the entire simulation run.

The tool first creates the simulation log. Next, the tool creates a list of all ACs by
scanning the main simulation file. Positions for each AC are calculated so that the
ACIG is always circular and each AC is in the same location for each page in the flip
book. The tool parses the simulation log. For each simulation run and simulation
time step, one ACIG is created. The graph is labeled with the run and simulation
time. The first thing to occur during any simulation time step is the execution of an
AC; this AC is given a bold circle. A line in the DOT file is created for each solid
edge for the graph: a solid line is created between an AC and any ACs it triggered.
A line in the DOT file is created for each dashed line for the graph: a dashed line
is created between an AC and any ACs it scheduled, and is labeled with the time

53

for when it is scheduled. After the current time step is complete, the DOT file is
processed by neato to create a portable document file. Each graph is then appended
to the end of the flip book using pdfunite.

Partial examples are provided below.

4.9.1 EXAMPLE: TRAVELING REPAIRMAN

Generated DOT file:

digraph patrep {
label = "run 0, time 0.000000";
in itia lization [pos="4.0,0.0!"];
termination [pos="2.82842712475,2.82842712475!"];
failure [pos="2.44929359829e-16,4.0!"];
beginjrepair [pos="-2.82842712475,2.82842712475!"];
end_repair [pos="-4.0,4.89858719659e-16!"];
travel_to_idle [pos="-2.82842712475,-2.82842712475!"3;
arrive_at_idle [pos="-7.34788079488e-16,-4.0!"];
travel_to_facility [pos="2.82842712475,-2.82842712475!"];

in i t ia l iz a t io n [sty le= b o ld];
in i t ia l iz a t io n -> fa ilu r e [style=dashed, label=

" for time 375.411933 "];
in i t ia l iz a t io n -> fa ilu r e [style=dashed, label=

" for time 175.502268 "] ;

in i t ia l iz a t io n -> fa ilu r e [style=dashed, label=
" for time 641.226639 "3;

in i t ia l iz a t io n -> fa ilu r e [style=dashed, label=

" for time 217.206273 "3;
in i t ia l iz a t io n -> fa ilu r e [style=dashed, label=

" for time 72.688235 "3;
in i t ia l iz a t io n -> fa ilu r e [style=dashed, label=

" for time 178.309819 "];
in i t ia l iz a t io n -> fa ilu r e [style=dashed, label=

" for time 0.004378 "] ;

54

in i t ia l iz a t io n -> fa ilu r e [style=dashed, label*

" for time 80.682566 "];

in i t ia l iz a t io n -> fa ilu r e [style=dashed, label=

" for time 151.559682 "];

in i t ia l iz a t io n -> fa ilu r e [style=dashed, label*

" for time 299.116456 "];

in i t ia l iz a t io n -> fa ilu r e [style=dashed, label*

" for time 1374.016025 "];

in i t ia l iz a t io n -> fa ilu r e [style=dashed, label*

" for time 2139.786424 ;

failure

for t im e 3 7 ^ 4 .1 1 ^ 3 J ' ' v' ' v
for t im e l 'Z 5 .$ 0 2 2 6 $ \ \

f o r ' / " v tCbegin repair } for tim «^'41s22'663il' '< < t ^ r t a in a t i o n ' }
 — — — for tl(rt ̂-2 V? i --------

fprtfmV7'2.-6.d8235\\ \ ' '
\fgirWep8^be8l'9v\ ' \

\ ' fbr tijhe U ,b o 4 3 7 ^ '
\ \ \ s ̂ tft-iimVsQ'ca f̂ee

\ \ \ v\fartifnel'5iN3̂ 8682
' ' \ ' f o Y vferrt<> 2 9 5 ^ .1 6 4 5 6

' ' ' ' ' v ' ' ' fg>iin1edd74.016025
' v' v ' ; ' '̂«m'lB>&i39.78642

(^j^_repah^) " •^^Tnitializatiorr^

(^ ^ t r a v e l t o i d l e ^) < ^ t r a v e l _ t o _ f a c i l i t y ^)

(^ ^ a rri ve_at_i d l e ^ }

run 0, tim e 0.000000

Figure 13. Generated graph: traveling repairman dynamic action cluster interaction
graph flip book, page 1 of 369.

55

Generated DOT file:

digraph patrep {
la b e l = "run 0, time 0.000000";
in i t ia l iz a t io n [pos="4.0 ,0 .0 !"];

term ination [pos="2.82842712475,2.82842712475!"];

fa ilu r e [pos="2.44929359829e-16,4.0!"];

begin_repair [pos="-2.82842712475,2.82842712475!"];

endjrepair [pos="-4.0,4.89858719659e-16!"];

travel_to_id le [pos="-2.82842712475,-2.82842712475!"];

arrive_at_idle [pos="-7.34788079488e-16,-4.0!"];

tr a v e l_ to jfa c ility [pos="2.82842712475,-2.82842712475!"];

failure [style=bold];
failure -> travel_tojfacility;
travel_to_facility -> begin_repair [style=dashed, label=

" for time 3.504378 "];

}

56

failure

term ination

\

for tim e 3 .5 0 4 3 7 8 , initialization

t r a v e l to id le

< ^ a r r iv e _ a t_ id le ^)

run 0, tim e 0 .0 0 4 3 7 8

Figure 14. Generated graph: traveling repairman dynamic action cluster interaction
graph flip book, page 2 of 369.

Generated DOT file:

digraph patrep {
la b e l = "run 0, time 0.000000";
in i t ia l iz a t io n [pos="4.0 ,0 .0 !"];
term ination [pos="2.82842712475,2.82842712475!"];

fa ilu r e [pos="2.44929359829e-16,4.0!"];
begin_repair [pos="-2.82842712475,2.82842712475!"];
endjrepair [pos="-4.0,4.89858719659e-16!"];

travel_to_id le [pos="-2.82842712475,-2.82842712475!"] ;

57

arrive_at_idle [pos="-7.34788079488e-16,-4.0!"];

travel_to_f a c i l i t y [pos="2.82842712475,-2.82842712475! "];

begin_repair [sty le= b o ld];

begin_repair -> end_repair [style=dashed, label=

" for time 8.913395 "];

C E ? in _ r e p a ir ^ (^ te r m in a t io n ^)

for time 8 .9 13395 '

(̂ end_repaiT)̂ (înitialization)̂

(^ tr a v e l_ to _ id le ^) (^ tr a v e l-tO -fa c ility ^ ^

(^ a n iv e _ a t_ id te ^ >

run 0, time 3 .504378

Figure 15. Generated graph: traveling repairman dynamic action cluster interaction

graph flip book, page 3 of 369.

58

Generated DOT file:

digraph patrep {

la b e l = "run 0, time 0.000000";

in i t ia l iz a t io n [pos="4.0 ,0 .0 !"];

term ination [pos="2.82842712475,2.82842712475!"];

fa ilu r e [pos="2.44929359829e-16,4.0!"];

beginjrepair [pos="-2.82842712475,2.82842712475!"];

end_repair [pos="-4.0,4.89858719659e-16!"];

travel_to_id le [pos="-2.82842712475,-2.82842712475!"];
arrive_at_idle [pos="-7.34788079488e-16,-4.0!"];

travel_to_f a c i l i t y [pos="2.82842712475, -2.82842712475!"] ;

end_repair [sty le= b o ld];
end_repair -> fa ilu r e [style=dashed, label=

" for time 251.966998 "];
end_repair -> travel_ to_ id le;
travel_to_id le -> arrive_at_idle [style=dashed, label=

" for time 12.413395 "];

}

59

failure

(^teginrepair^ /
/

for tim e 2 5 1 ,9 6 6 9 9 8 / '

(j e r m in a t io r P ^)

end_repair

for tim e 1 2 .4 1 3 3 9 5

(^^rive_at_idle^)
run 0 , tim e 8 .9 1 3 3 9 5

(initialization^)

(itravel_to_facility^>

Figure 16. Generated graph: traveling repairman dynamic action cluster interaction
graph flip book, page 4 of 369.

Generated DOT file:

digraph patrep {
la b e l = "run 0, time 0.000000";
in i t ia l iz a t io n [pos="4.0 ,0 .0 !"];

term ination [pos="2.82842712475,2.82842712475!"];
fa ilu r e [pos="2.44929359829e-16,4.0!"];
begin_repair [pos="-2.82842712475,2.82842712475!"];

end_repair [pos="-4 .0 ,4 .89858719659e-16!"];

travel_to_id le [pos="-2.82842712475, -2.82842712475! "];

60

arrive_at_idle [pos="-7.34788079488e-16,-4.0!"] ;

tr a v e l_ to _ fa c ility [pos="2.82842712475,-2.82842712475!"];

arrive_at_idle [sty le= b o ld];

}

failure

(^be9in_repair^) ^termination^^

(^end_repair^) (^initialization^)

(^travel_to_idle^) <^7r3vel_to_facility^)

^arrive_atjdle^
run 0 , tim e 1 2 .4 1 3 3 9 5

Figure 17. Generated graph: traveling repairman dynamic action cluster interaction

graph flip book, page 5 of 369.

Generated DOT file:

digraph patrep {

la b e l = "run 0, time 0.000000";
in i t ia l iz a t io n [p os= " 4 .0 ,0 .0 !"];

term ination [pos="2.82842712475,2.82842712475!"];

fa ilu r e [pos="2.44929359829e-16,4.0!"];

begin_repair [pos="-2.82842712475,2.82842712475!"];

endjrepair [pos="-4.0,4.89858719659e-16!"];

travel_to_id le [pos="-2.82842712475,-2.82842712475! "]
arrive_at_idle [pos="-7.34788079488e-16,-4.0!"] ;

tr a v e l_ to _ fa c ility [pos="2.82842712475,-2.82842712475

beginjrepair [sty le= b o ld];
beginjrepair -> endjrepair [style=dashed, label=

" for time 3698.025941 "];

62

begin_repajr

for time 3698.025941 /

w
repaiT^)

(t̂errriination)̂

< ^ tr a v e l_ to _ id le ^ <^ travel_to__facility^)

(^ a rriv e_ a t_ id ie^)

run 0, time 3692.781261

Figure 18. Generated graph: traveling repairman dynamic action cluster interaction
graph flip book, page 368 of 369.

63

Generated DOT file:

digraph patrep {
la b e l = "run 0, time 0.000000";
in i t ia l iz a t io n [pos="4.0 ,0 .0 !"];

term ination [pos="2.82842712475,2.82842712475!"];

fa ilu r e [pos="2.44929359829e-16,4.0!"];

begin_repair [pos="-2.82842712475,2.82842712475!"3;

end_repair [pos="-4.0,4.89858719659e-16!"];
travel_to_id le [pos="-2.82842712475,-2.82842712475!"];

arrive_at_idle [pos="-7.34788079488e-16,-4.0!"];

tr a v e l_ to _ fa c ility [pos="2.82842712475,-2.82842712475!"];

end_repair [style=bold];
endjrepair -> failure [style=dashed, label=

" for time 3945.487127 "];
endjrepair -> termination;

}

64

failure

term ination

for tim e 3 9 4 5 .4 8 7 1 2 7

^ J n it ia I iz at i o n ^)end_repair

^^travel_to_idle^^ <^^avel_to_facility^^)

(^ a r r iv e _ a t_ id lT ^)

run 0 , tim e 3 6 9 8 .0 2 5 9 4 1

Figure 19. Generated graph: traveling repairman dynamic action cluster interaction
graph flip book, page 369 of 369.

65

4.9.2 EXAMPLE: HARBOR

ûnload̂ ârrivaî

end.unload term ination

deberth initialization

^ e n d _ d e b e r t h ^) tU9_arrive_at_ocean '~ ^>

(^ f m o v e _ t u g _ t o _ p i e r ^ < ^ ~ m w e_ tu fl_ to _ o o ea n ~ ~ ^)

^̂ ug_arrive_at_pier"~̂
run 0, tim e 0.000000

Figure 20. Generated graph: harbor dynamic action cluster interaction graph flip
book, page 1 of 212.

6 6

ûnloacT̂)

ĵend.deberttT̂

(̂ 'nicve-tua.to.piw

arrival JL'^ for tim e 126.646943

t̂ermination*̂

Ĵnltializatloir̂

tug_arrive_at_ocean
— --- sr— ---------------

for tiprre 111.301594

^ J move_tug_to_ocean̂

< ^ tug_arrtve_at_pier

run 0, tim e 86.301594

Figure 21. Generated graph: harbor dynamic action cluster interaction graph flip
book, page 2 of 212.

67

en ter

arrivalunload

term inationend.unload

deberth

C^move_tug_to_piwJ^i ^^movc_tua_to_ocean^^^

tug_arrive_at_pier

run 0, tim e 111.301594

Figure 22. Generated graph: harbor dynamic action cluster interaction graph flip

book, page 3 of 212.

6 8

ûntoad̂ arrival for tim e 274.055365

termination

tug_arrive_at_ocean

fortigra 151.646943

^̂ ug_arrive_at_pier~̂ 5
run 0. tim e 126.646943

Figure 23. Generated graph: harbor dynamic action cluster interaction graph flip

book, page 4 of 212.

69

enter

unload arrival

end unload

deberth

C ^^v e ju g L to .o cean ^?

^ ^ t u fl_arrive_at.pier^>

run 0. tim e 151.646943

Figure 24. Generated graph: harbor dynamic action cluster interaction graph flip

book, page 5 of 212.

70

for tim e 175.86V631

^enter^

^̂ end_unload̂)

(d̂ebeftiT̂ ^̂ nitializatiOT̂)

(̂ end_debertĥ) < ^ t u 9_arrive_at_ocean

^̂ move_tufl_to_pier~~̂) (̂ ™move_tug_to_ocean~̂)

Oufl.atrive.atj^O
run 0, tim e 156.301594

Figure 25. Generated graph: harbor dynamic action cluster interaction graph flip

book, page 6 of 212.

71

unload arrival

end unload termination

deberth initialization

< ^ tu g [_ a rriv e _ a t,o c e a n

^*^moveJug_to_pieT^> ^^ j^ejiug^to jK ean™ *'^

tu g_arrive_at_pier~’̂ ^

run 0. tim e 175.857631

Figure 26. Generated graph: harbor dynamic action cluster interaction graph flip

book, page 7 of 212.

72

arrival

terminationend unload

deberth

for tim e 54581407591

C ^T ug_arrive_a t_oceanend deberth

^ ^ m o v e _ t u g _ to _ p ie r ^ ^ n o v e _ tu g ,to _ o c e a n ^ ^

:uq_arrive_at_pier

run 0. tim e 5413.407591

Figure 27. Generated graph: harbor dynamic action cluster interaction graph flip

book, page 211 of 212.

73

unload arrival

end_unload

deberth

<̂rrov<;_tua_to_pier̂) <^^>°ve-tuâto-oc«n~^>

Ĉ t̂û arrivê at̂ pler™̂ ̂
run 0, tim e 5435.553041

Figure 28. Generated graph: harbor dynamic action cluster interaction graph flip

book, page 212 o f 212.

74

4.9.3 EXAMPLE: SINGLE SERVER QUEUE

(^termination^)

arrival for tim e 22.006906

for time 0.000000

initialization

:i[ne 9 .610396

end service

run 0, time 0.000000

Figure 29. Generated graph: single server queue dynamic action cluster interaction
graph flip book, page 1 of 42.

(^termination^)

([̂ îtialization~̂

(^"begi n_service~^

(̂ end_5ervice^)
run 0, tim e 9 .610396

Figure 30. Generated graph: single server queue dynamic action cluster interaction

graph flip book, page 2 of 42.

75

term ination

arrival for tim e 32.294970

(̂ Jnjtialization)̂

(ff begin_service J[)
 - ■fortjmiIm e 38.772976

end_serv i c e ^)

run 0, tim e 22 .006906

Figure 31. Generated graph: single server queue dynamic action cluster interaction
graph flip book, page 3 of 4-2.

([[^"term ination"^)

arrival i ' y for tim e 69 .884118

(^JnitializatiofT^)

(^ b e g in se rv ice

([̂ end_servicê [[)
run 0, tim e 32.294970

Figure 32. Generated graph: single server queue dynamic action cluster interaction

graph flip book, page 4 of 42.

76

^ t̂ermination)̂

^Jnitializatior^^

(̂ begin_service~̂)

for tim e
end service

run 0, tim e 38 .772976

Figure 33. Generated graph: single server queue dynamic action cluster interaction
graph flip book, page 5 of 42.

^Termination^)

"̂initialization"̂)

(^begin_service^^

^̂ end_service^)
run 0, tim e 40.190924

Figure 34. Generated graph: single server queue dynamic action cluster interaction

graph flip book, page 6 of 42.

77

(^termination^)

arrival for tim e 593.266261

([̂ Initialization̂)

([[t̂egin_servia)̂

^ ênd_servicê ^
run 0, tim e 566.941701

Figure 35. Generated graph: single server queue dynamic action cluster interaction
graph flip book, page 41 of 42.

arrival

end service

run 0, tim e 567.251057

Figure 36. Generated graph: single server queue dynamic action cluster interaction

graph flip book, page 42 of 42.

78

CHAPTER 5

EVALUATION

The crux of this research was to create and present automatically-derived ob
servations that could potentially enhance a modeler or model user’s understanding,
that would not necessitate that s/he have programming expertise or even a technical
background. As modeling and simulation continues to be used increasingly often in
research and as models continue to increase in complexity, these types of analyses
and tools will continue to be an important contribution.

Some of the most recent written reviews of this research, from the 2012 Winter
Simulation Conference, included, “[i]nteresting work in terms of both the problem
assessed and the method proposed,” and, “[t]he work promises great practical value.”

One of the significant aspects of this is the focus on model aspects rather than
simulation aspects. Source code tends to involve many issues unrelated to the model
itself, such as data collection, animation, and tricks for efficient run-time behavior.
Even when the modeler is an expert programmer, this other code often can obscure
features of the model as implemented.

5.1 SIMULATION LOG

Many simulations are programmed to generate execution traces, final usage statis
tics, perhaps animations, etc.; however, the first contribution of this log is its gen
eration with no user action or programming effort. The amount and kinds of detail
provided in the log are a helpful contribution in and of themselves - possibly pro
viding a modeler with additional insights into the behavior of the model they have
created or are using - as well as an additional resource for the other created tools.

For example, consider the simulation output (stdout) of the repairman model in
the first part of Section 4.3.1: as with most simulations, it is designed to answer a
few specific questions based on modeling objectives. Even if one recompiles to enable
this particular simulation’s generously verbose debugging/trace output - chosen by
the simulation coder (unlikely to be the current model user) for his or her interests,
and not always a pre-coded available option anyway - the results still do not help in
understanding some key aspects of the model embedded in the simulation code.

79

Simulation output with trace output enabled:

Run 1

in i t i a l i z a t io n AC. clock:

I n i t i a l f a c i l i t y fa i lu r e times

fac time

1 375.4
2 175.5

3 641.2

4 217.2
5 72.7

6 178.3

7 0.0

8 80.7
9 151.6

10 299.1
11 1374.0

12 2139.8
fa i lu r e AC, f a c i l i t y : 7, clock:
trave l to f a c i l i t y AC, clock:

traveling to f a c i l i t y number: 7

begin repair scheduled for 3 .5
begin repair AC, f a c i l i t y : 7, clock:

end repair scheduled for 8.9
end repair AC, f a c i l i t y : 7, clock:

fa i lu r e scheduled for 252.0
trave l to id le AC, clock:

arrive id le scheduled for 12.4
arrive id le AC, clock:
fa i lu r e AC, f a c i l i t y : 5, clock:

trave l to f a c i l i t y AC, clock:
trave ling to f a c i l i t y number: 5
begin repair scheduled for 75.2

0.0

0.0

3.5

8.9

8 .9

12.4
72.7

72.7

80

Events and their scheduling are indeed noted and the output fidelity could be
increased easily enough by a programmer (e.g., the first failure actually occurs at
time 0.004378, which is not the same as time 0.0 - initialization - indicated above).
However, considering the simulation log, one can see that immediately after the fail
ure at time 0.004378, (repairm an .sta tus == IDLE && SomeFailedO) triggered
travel_to_facility, information that is not available otherwise.

Similarly, at the end of the simulation:

fa i lu re AC, f a c i l i ty : 1, clock: 73611.8
end re p a ir AC, f a c i l i ty : 11, clock: 73612.5

f a i lu re scheduled fo r 74336.6
term ination AC. clock: 73612.5

Why did the simulation terminate? Considering the simulation log, one can deter
mine that the maximum number of repairs was reached: (repairman.num re p a irs

>= mrp.max rep a irs) triggered termination.
Additionally, for someone with expertise, the simulation log is more readily search

able with regular expressions than most standard simulation output.

5.2 TRIP LINES

Trip lines are an optional addition of one, simple fine of code per request that
requires no knowledge of output, output formatting, or finding everywhere a change
might occur, allowing a modeler to easily check whether situations that may be of
interest actually occur.

The benefits of using a trip line over, say, a general print statement include clarity
and integration with the simulation log, and the aforementioned non-requirement of
programming expertise. Trip lines can be simply configured to trip exactly once or
tripped and reset, neither of which can be accomplished with only a (set of) print
statement(s).

Additionally, consider the output of the harbor simulation of Section 4.3.2: tug
utilization and the maximum number of ships waiting at the arrival area. The tug
utilization percentage might seem low - the tugs are mostly idle - and the number of

81

ships waiting at a given time seems reasonable: perhaps one might keep fewer tugs
to decrease expenses.

However, adding trip lines (such as those in Section 4.4.2) can reveal that in this
simulation, there is a dearth of berths: rather than try to decrease expenses, a more
informed choice might be to add an additional berth, thus increasing tug utilization,
decreasing ship wait time, and increasing overall profits.

The availability of trip lines can increase understanding of the embedded model

and more importantly, the system it represents.

5.3 SCHEDULED AND TRIGGERED EVENTS

These lists can be informative by possibly identifying unanticipated effects previ
ously unrecognized by the modeler. They can also serve a diagnostic purpose if a list
omits events the modeler knows should be included, or includes events the modeler
knows should not be included. While existing software tools, such as gcov, can be
used to provide some of the information, this output omits much from gcov-like tools
that is unlikely to be of interest to a modeler and instead focuses on model behavior.

Similarly, consider Section 4.5.1, scheduled and triggered events with respect
to the traveling repairman: one can note that termination can be either sched
uled or triggered. Perhaps in the batch of runs under consideration, the simula
tion always terminates after a certain number of repairs ((repairman. num_repairs
>= mrp.max_repairs) tr ig g e red term ination, from the simulation log in Section
4.3.1) - that is, termination is always triggered. However, it could be insightful to
know that the simulation also could be scheduled to end (perhaps the machines fail
less often, causing the repairman to make fewer repairs) - something not necessarily
discernible from any arbitrary batch of runs but now obvious.

5.4 EVENT SUMMARIES

Having concise, useful summary information about model components has already
revealed model structure in some models that had not been previously recognized.

In a past local simulation study, a modeler was studying trace data produced
during simulation executions. It was noticed that the events that occurred could
be divided into a small number of groups based on the number of times each event
occurred; every event in each group occurred the same number of times. This ob
servation revealed a structure of the model - and more importantly, aspects of the

82

system it represented - that had not been previously recognized: a fundamental
insight now easily discernible through these created tools.

5.5 STATIC ACTION CLUSTER INTERACTION GRAPH

Being able to follow how model components can interact is a significant part of
understanding the model itself. The static ACIG presents these possible interactions
in a clear, visual way that is not easily discernible from text-based output. This
additional information about model properties is unlikely to be detected by executing
the simulations and contributes to the insights gained by modeling a complex system.
These graphs have been discussed previously but were created manually; more than
one of the manually created graphs, though presented in reviewed, published research,
contained errors.

Additionally, while not exemplified in this document, some analyses can be based
on visual inspection of the static ACIG that are not easily noticed otherwise. For
example, the only event that has no successors is termination. If visual inspection
reveals that another event has no possible successors, this may warrant additional
consideration: it may be included in anticipation of future development or a result
of code reuse; or could indicate an error in either coding or specification rather than
a characteristic of the system represented.

5.6 TALLIED DYNAMIC ACTION CLUSTER INTERACTION
GRAPH

Being able to follow how model components do interact during a particular sim
ulation run can also enhance model understanding. The tallied dynamic ACIG com
bines the insights of the static ACIG with those of each event summary during the
simulation run, again, in a clear, visual way.

Not obvious from the only the text-based event summaries or the static ACIG,
though, is the possibility of superfluous edges and which edges may be such. Given
an arbitrary condition specification, the automatic creation of a static ACIG with no
redundant or unnecessary edges is unsolvable [23]; these superfluous edges are mis
leading as they suggest a false causal relationship between events. Edges labeled “0”
in the tallied dynamic ACIG can guide modelers to consider if these edges are extra
neous or if this interaction just did not occur during this particular run, enhancing
understanding of the model and the system it represents.

83

5.7 DYNAMIC ACTION CLUSTER INTERACTION GRAPH FLIP
BOOK

The dynamic ACIG flip book provides a visual representation of the entire simu
lation run. Again, being able to study specific run interactions in a clear, visual way
contributes additional possibilities for insight that are not as easily discernible from
text-based output. The flip book provides a first cut at animating this output and
the ability for a modeler to focus on particular periods of time or particular event
sequences.

For example, consider the combination of the flip book with trip lines: when a
line is tripped, exploring the flip book can give a clear picture of the preceding events.
Often, animations in and of themselves are not particularly useful if they are without
navigation tools to enable exploration: dealing with the wealth of data available
(graphically or otherwise) can often overwhelm and obscure useful information. Being
able to choose a particular time or event - say, when a trip line tripped - and being
able to consider specifically the surrounding simulation events can contribute to
better understanding.

84

CHAPTER 6

FUTURE RESEARCH DIRECTIONS

A prime problem with model descriptions, whether in textual or graphical nota
tions, is that even for simple models, descriptions are often difficult to fully compre
hend. Even in relatively simple cases, the wealth of data available can easily obscure
(other) useful information. The overarching goal of this research is to create new
possibilities for modelers and model users to understand more about their models
and consequently the systems they represent. Any additional ways to filter the infor
mation produced by the simulation or obtained about the model that furthers this
goal would be useful and encouraged directions.

6.1 CONDITION SPECIFICATION TO DIRECTION EXECUTION
OF ACTION CLUSTERS

As mentioned, the tools here assume a direct execution of action clusters style
(Section 3.3). A compiler to translate a given condition specification into this C
DEAC implementation would be a straightforward and welcome addition to this
research, as this would ensure that the simulation code analyzed is of the expected
structure for these analysis tools.

6.2 USE IN DETERMINING APPROPRIATENESS OF MODELS

Over the course of many research discussions at conferences, there is a strong
interest in using tools such as those created here to determine model or simulation
re-use or integration appropriateness. It has been demonstrated that automated
model diagnosis supports model verification and validation in the early stages of the
model development process, thereby leading to savings in project development time
and costs and yielding improvements to overall process quality [4, 30].

6.3 IDENTIFICATION OF POSSIBLE RACE CONDITIONS

A race condition in this context refers to the possibility of different model behav
iors occurring if event orders are an accident of implementation technique rather than

85

determined by the model specification. In a common implementation of a discrete

event simulation, an events list is checked before the clock is advanced. Generally, if
implemented properly, the order in which events that are scheduled to occur at the
same time are posted to the list should not matter to the simulation results; however,
analysis can flag this possibility - a potential surprise to modeler.

Note that this is not necessarily a modeling or implementation error but could
reflect a property of the system being simulated. While exact identification of race
conditions is certainly unsolvable, a reasonable set of possible race conditions could
be helpful.

6.4 ADDITIONAL GRAPHICS

Many visuals lend themselves as future extensions to this work for the researcher
with a background or interest in graphical programming.

Rather than a flip book, one could create an animated version of the dynamic
action cluster interaction graphs, or a version that progresses through the graphs
using scroll bars rather than having a multi-page document.

Weinberg identified the importance of program locality [44], the property obtained
when all relevant parts of a program are found in the same place. He noted that
“when we are not able to find a bug, it is usually because we are looking in the wrong
place” [44]. Since issues of concern vary widely, no single organization of a program
can exhibit locality for all such concerns. Additionally, as the problem of interest
changes, the information considered relevant might also change.

Consider if there were multiple model “views,” where one could see only the
aspects of (current) interest, and as the aspects of interest changed, so could what
was shown to the modeler or model user. Perhaps these “slices,” not unlike Weiser’s
aforementioned program slices, could aid in allowing model characteristics to be more
easily understood.

Similarly, “zoomable” action cluster interaction graphs could be insightful. Large
simulations can have hundreds or even thousands of action clusters. Zoomable ver
sions of the action cluster interaction graphs presented here - where one could see
only a desired portion of the ACIG - could allow the interactive exploration of a
model so that only relevant information is presented. Exploring this graph interac
tively - perhaps as the simulation progresses, perhaps as the curiosity of the moment
changes - also could be insightful.

8 6

CHAPTER 7

SUMMARY

The automated analysis of model specifications is an area that historically has
received little attention in the simulation research community but which can offer sig
nificant benefits. This is particularly true for analysis intended to provide modelers
and model users additional information about their models. A usual goal in simu
lation is enhanced understanding of a system; model analysis can provide insights
not otherwise available. This work developed new approaches for the simulation
community to complement current methods used to gain insights into models, their
behaviors, and the systems they represent.

Different analysis techniques can yield different potential discoveries. With static
analysis, an object (such as code or a list of specifications) is analyzed without
executing it; with dynamic analysis, data is collected during execution of the object
of interest (usually code).

Static analysis can often reveal characteristics of a model not readily apparent
from observing merely its run-time behavior. No finite number of runs can necessarily
discover what is possible; however, from static analysis, one can reveal the possibility
of infrequent situations.

Prom static analysis, one may discover that event A can appear to cause event B,
but dynamic analysis often can reveal specifically which events caused which events,
which cannot always be determined prior to run-time. In combination, if static
analysis suggests that event A can cause event B, but dynamic analysis reveals that
this does not happen, this may be of interest.

Results indicate these code analysis techniques, when applied to even modest
simulation models, can reveal aspects of those models not readily apparent to the
builders or users of the models. These analyses can often reveal important aspects of
systems that are not readily observable in model-driven animations or in examining
data produced by simulations during execution. This work has provided both model
builders and model users with additional techniques that can give them improved
understanding of their models not otherwise available.

87

The contribution of this research is the creation and presentation of automatically-
derived observations that could potentially enhance a modeler or model user’s under
standing, that does not necessitate that the modeler have programming expertise or
even a technical background. A significant point of this research is that the created
tools do not necessitate that a modeler or model user be able to encode the model or
have any coding expertise. While some of the information presented here could be
produced by existing software development tools, most modelers today do not have
the technical background to use these tools or to make use of the reports such tools
can produce. Continuing, one of the key aspects here is the focus on model aspects
rather than simulation aspects. As modeling and simulation continues to be used
increasingly often in research and as models continue to increase in complexity, these
types of tools will continue to increase in contribution.

Automatic tools have been created and demonstrated to reveal new insights into
models and the systems they represent.

A simulation log is generated, without any user action or programming effort, that
notes each action and the simulation time; an additional printer-friendly version is
also created.

“Trip lines” concern any boolean expression of model variables of which the mod
eler wants to be notified the first time it is passed. Two options are available: a trip
line that can be tripped exactly once or one that can be tripped and reset under
specified conditions.

A list is generated of all scheduled, unscheduled, triggered, and untriggered events.
Total simulation time and a summary with respect to each event are tallied and

presented for each simulation run. For each event in the run, its number of occur
rences, events scheduled, number of times scheduled, events triggered, and number
of times triggered, are presented.

The static action cluster interaction graph is generated, showing which events can
cause which events.

The dynamic action cluster interaction graph is generated, with edges labeled
according to event frequency during a given run.

And, a dynamic action cluster interaction graph is created for every time step of
the simulation run and combined in to a flip book, providing a visual representation
of the entire simulation run.

8 8

The work described here provides modelers with new views of their models; sig
nificantly, these views can be generated without additional work or knowledge on the
modelers’ part. In the simulation community, little work had been done on explor
ing automatic generation of different views and representations of existing models,
especially to the extent presented here. These new techniques can provide additional
insights into models and the systems they represent.

89

REFERENCES

[1] P. A n d e r s o n , T. W. R e p s , T. T e i t e lb a u m , a n d M. Z a r n is , Tool support
for fine-grained software inspection, IEEE Software, 20 (2003), pp. 42-50.

[2] R . B a e c k e r , Enhancing program readability and comprehensibility with tools
for program visualization, in Proceedings of the 10th International Conference

on Software Engineering, 1988, pp. 356-366.

[3] O. B a l c i , Verification, validation, and certification of modeling and simulation
applications, in Proceedings of the 2003 Winter Simulation Conference, S. E.
Chick, P. J. Sanchez, D. Ferrin, and D. J. Morrice, eds., December 2003, pp. ISO-
158.

[4] O. B a l c i a n d R. E. N a n c e , Simulation model development environments: A
research prototype, J. Opl Res. Soc., 38 (1987), pp. 753-763.

[5] K . W. B a u e r , B . K o c h a r , a n d J. J. T a la v a g e , Simulation model de
composition by factor analysis, in Proceedings of the 1985 Winter Simulation
Conference, D. T. Gantz, G. C. Blais, and S. L. Solomon, eds., December 1985,
pp. 185-188.

[6] J. B o h n e t a n d J. D o l l n e r , Visual exploration of function call graphs for
feature location in complex software systems, in SoftVis ’06 Proceedings of the
2006 ACM Symposium on Software Visualization, 2006, pp. 95-104.

[7] R . B r o o k s , Towards a theory of the comprehension of computer programs, Int.
J. Man-Mach. Stud., 18 (1983), pp. 543-554.

[8] K. C h e n a n d V. R a j l i c h , Case study of feature location using dependence
graph, in Proceedings of ICSM 2000, 2000, pp. 241-249.

[9] T. A. C o r b i, Program understanding: Challenge for the 1990s, IBM Syst. J.,
28 (1989), pp. 294-306.

[10] D. R. Cox a n d W. L. S m ith , Queues, Methuen & Co., London, 1961.

[11] T. E is e n b a r t h , R. K o s c h k e , a n d D. S im on , Locating features in source
code, IEEE Trans. Softw. Eng., 29 (2003), pp. 210-224.

90

[12] A. M. G le n b e r g a n d W. E. L a n g s t o n , Comprehension of illustrated text:
Pictures help to build mental models, J. Mem. Lang., 31 (1992), pp. 129-151.

[13] G. G o r d o n , The development of the General Purpose Simulation System
(GPSS), ACM SIGPLAN Notices, 13 (1978), pp. 183-198.

[14] K. J. H e a ly , The use of event graphs in simulation modeling instruction, in
Proceedings of the 1993 Winter Simulation Conference, G. W. Evans, M. Mol-
laghasemi, E. C. Russell, and W. E. Biles, eds., December 1993, pp. 1131-1134.

[15] M. H. H w a n g a n d B. P. Z e i g l e r , A modular verification framework based
on finite & deterministic DEVS, in Proceedings of the 2006 DEVS Integrative
M&S Symposium, 2006, pp. 57-65.

[16] IEEE I n t e r n a t i o n a l C o n f e r e n c e o n P r o g r a m C o m p r e h e n s io n , h ttp :
/ / www.program-comprehension. org.

[17] D . F . J e r d in g a n d S. R u g a b e r , Using visualization for architectural local
ization and extraction, in Proceedings of the Fourth Working Conference on
Reverse Engineering, 1997, pp. 56-65.

[18] D. F . J e r d in g a n d J. T. S t a s k o , The information mural: A technique for
displaying and navigating large information spaces, IEEE Trans. Vis. Comput.
Graph., 4 (1998), pp. 257-271.

[19] R. K o s c h k e a n d J. Q u a n t e , On dynamic feature location, in ASE ’05 Pro
ceedings of the 20th IEEE/ACM International Conference on Automated Soft
ware Engineering, 2005, pp. 86-95.

[20] D. K r a n z l m u l l e r , S. G r a b n e r , a n d J. V o l k e r t , Event graph visualiza
tion for debugging large applications, in Proceedings of the SIGMETRICS Sym
posium on Parallel and Distributed Tools (SPDT96), J. Francioni and D. Reed,
eds., 1996, pp. 108-117.

[21] T. M u r a ta , Petri nets: Properties, analysis and applications, Proc. IEEE, 77
(1989), pp. 541-580.

[22] R . E . N a n c e a n d C . M . O v e r s t r e e t , Exploring the forms of a model diag
nosis in a simulation support environment, in Proceedings of the 1987 Winter

http://www.program-comprehension.org

91

Simulation Conference, A. Thesen, H. Grant, and W. D. Kelton, eds., December

1987, pp. 590-596.

[23] R. E. N a n c e , C. M. O v e r s t r e e t , a n d E. H. P a g e , Redundancy in model
specifications for discrete event simulation, ACM Trans. Model. Comput. Simul.,

9 (1999), pp. 254-281.

[24] C. M. O v e r s t r e e t a n d I. B. L e v in s t e in , Enhancing understanding of
model behavior through collaborative interactions, in Operational Research So
ciety (UK) Simulation Study Group Two Day Workshop Proceedings, S. C.
Brailsford, L. Oakshott, S. Robinson, and S. J. E. Taylor, eds., March 2004,
pp. 11-17.

[25] C. M. O v e r s t r e e t , E. H. P a g e , a n d R. E. N a n c e , Model diagnosis us
ing the condition specification: From conceptualization to implementation, in
Proceedings of the 1994 Winter Simulation Conference, J. D. Tew, M. S. Mani-
vannan, D. A. Sadowski, and A. F. Seila, eds., December 1994, pp. 566-573.

[26] E . H. PAGE, The condition specification: Revisiting its role within a hierarchy
of simulation model specifications, SIGSIM Simul. Dig., 22 (1993), pp. 11-33.

[27] E. H. P a g e a n d R. E. N a n c e , Incorporating support for model execution
within the condition specification, Trans. Soc. Comput. Simul. Int., 16 (1999),
pp. 47-62.

[28] R. J. P a u l , T . E ld a b i , J. K u lj i s , a n d S. J. E. T a y l o r , Is problem solving,
or simulation model solving, mission critical?, in Proceedings of the 2005 Winter
Simulation Conference, M. E. Kuhl, N. M. Steiger, F. B. Armstrong, and J. A.
Joines, eds., December 2005, pp. 547-554.

[29] R. J. P a u l a n d J. K u lj i s , Problem solving, model solving, or what?, in Pro
ceedings of the 2010 Winter Simulation Conference, B. Johansson, S. Jain, J. R.
Montoya-Torres, J. C. Hugan, and E. Yiicesan, eds., December 2010, pp. 353-
358.

[30] F. A. P u t h o f f , The model analyzer: prototyping the diagnosis of discrete-event
simulation model specifications, Master’s thesis, Virginia Polytechnic Institute
and State University, September 1991.

92

[31] C. RAMCHANDANI, Analysis of Asynchronous Concurrent Systems by Timed
Petri Nets, PhD thesis, Massachusetts Institute of Technology, Cambridge, MA,
September 1973.

[32] M. P. R o b i l l a r d , Automatic generation of suggestions for program investiga
tion, ACM SIGSOFT, 30 (2005), pp. 11-20.

[33] T. M. R o e d e r a n d L. W. S c h r u b e n , Information models for queueing sys
tem simulation, ACM Trans. Model. Comput. Simul., 20 (2010), pp. 8:1-8:34.

[34] R. G. SARGENT, The use of graphical models in model validation, in Proceedings
of the 1986 Winter Simulation Conference, J. R. Wilson, J. O. Henriksen, and
S. D. Roberts, eds., December 1986, pp. 237-241.

[35] N. S a s ir e k h a , A. E. R o b e r t , a n d M. H e m a la t h a , Program slicing tech
niques and its applications, Int. J. Softw. Eng. Appl., 2 (2011), pp. 50-64.

[36] T. J. S c h r ib e r , Simulation Using GPSS, John Wiley & Sons, New York, NY,
1974.

[37] L. W. S c h r u b e n , Industrial Engineering & Operations Research, University
of California, Berkeley. h ttp ://ie o r .b e rk e le y .e d u /R e se a rc h /P ro je c ts /

sim ulationGroup.htm.

[38] ----- , Simulation modeling with event graphs, Commun. ACM, 26 (1983),
pp. 957-963.

[39] L. W. S c h r u b e n a n d E. Y u c e s a n , Simulation graphs, in Proceedings of
the 1988 Winter Simulation Conference, M. A. Abrams, P. L. Haigh, and J. C.
Comfort, eds., December 1988, pp. 504-508.

[40] SlMiO, Newsroom: Simio chosen for Naval Postgraduate School project, h t tp :
/ / www. sim io . com/case-studies/NPS.

[41] P. B. S o u t h a r d , C . C h a n d r a , a n d S. K u m a r , RFID in healthcare: A Six
Sigma DMAIC and simulation case study, Int. J. Health Care Qual. Assur., 25
(2012), pp. 291-321.

[42] J. F. S o w a , Processes and causality, http://w ww.jfsow a.com /ontology/
c a u sa l.htm.

http://ieor.berkeley.edu/Research/Projects/
http://www.simio.com/case-studies/NPS
http://www.jfsowa.com/ontology/

93

[43] M.-A. S t o r e y , Theories, methods and tools in program comprehension: Past,
present and future, in Proceedings of the 13th International Workshop on Pro
gram Comprehension (IWPC’05), 2005, pp. 181-191.

[44] G. M. W e in b e r g , The Psychology of Computer Programming, Computer Sci
ence Series, Van Nostrand Reinhold Company, New York, NY, 1971.

[45] M. W e is e r , Program slicing, IEEE Trans. Softw. Eng., SE-10 (1984), pp. 352-

357.

[46] W ik ip e d ia . Petri net, h t t p : / / e n .w ik ip e d i a .o r g /w ik i / P e t r i _ n e t s .

[47] N. W i ld e a n d M. C. S c u l l y , Software reconnaissance: Mapping program
features to code, J. Softw. Maint.: Res. Pract., 7 (1995), pp. 49-62.

[48] B. P. Z e i g l e r , Theory of Modeling and Simulation, John Wiley & Sons, New
York, NY, 1976.

[49] B. P. Z e i g l e r , H. P r a e h o f e r , a n d T. G. K im , Theory of Modeling and
Simulation, Academic Press, San Diego, CA, second ed., 2000.

http://en.wikipedia.org/wiki/Petri_nets

94

VITA

Kara Ann Olson
Department of Computer Science
Old Dominion University
Norfolk, VA 23529

Old Dominion University, Norfolk, VA

> Master of Science, Computer Science, May 2007
> Bachelor of Science in Computer Science with Honors Distinction, Minor in English,

Magna Cum Laude, May 1997

> Bachelor of Science, Mathematics, Magna Cum Laude, May 1997

Selected Related Presentations

> “Enhancing Understanding of Discrete Event Simulation Models Through Analysis,”
2014 Winter Simulation Conference, Savannah, GA, December 7-10, 2014; with C.
Michael Overstreet

> “A Forthcoming Useful Tool: Enhancing Understanding of Models Through Analy
sis,” ACM SIGSIM Conference on Principles of Advanced Discrete Simulation, Mon
treal, Canada, May 19-22, 2013; and 2012 Winter Simulation Conference, Berlin,

Germany, December 9-12, 2012; with C. Michael Overstreet

t> “Enhancing Understanding of Models Through Analysis,” 1st International Confer
ence on Simulation and Modeling Methodologies, Technologies and Applications,
Noordwijkerhout, The Netherlands, July 29-31, 2011; with C. Michael Overstreet;
with publication

> “Enhancing System Understanding Through Model Analysis,” Culture and Com
puter Science VII - Serious Games, Berlin, Germany, May 14-15, 2009; with C.
Michael Overstreet and E. Joseph Derrick; with publication

> “Enhancing Model Understanding Using CS-XML,” Operational Research Society
4th Simulation Workshop, Worcestershire, England, April 1-2, 2008; with C. Michael
Overstreet and E. Joseph Derrick; with publication

t> “Code Analysis and CS-XML,” 2007 Winter Simulation Conference, Washington,
DC, December 9-12, 2007; with C. Michael Overstreet and E. Joseph Derrick; with
publication

	Old Dominion University
	ODU Digital Commons
	Winter 2014

	Enhancing Understanding of Discrete Event Simulation Models Through Analysis
	Kara Ann Olson
	Recommended Citation

	00001.tif

