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SPORTS PERFORMANCE

The tactics of successful attacks in professional association football: large-scale 
spatiotemporal analysis of dynamic subgroups using position tracking data
Floris R. Goes , Michel S. Brink , Marije T. Elferink-Gemser, Matthias Kempe and Koen A.P.M. Lemmink

Department of Human Movement Sciences, University of Groningen, University Medical Center Groningen, Center for Human Movement Sciences, 
Groningen, The Netherlands

ABSTRACT
Association football teams can be considered complex dynamical systems of individuals grouped in 
subgroups (defenders, midfielders and attackers), coordinating their behaviour to achieve a shared goal. 
As research often focusses on collective behaviour, or on static subgroups, the current study aims to 
analyse spatiotemporal behaviour of dynamic subgroups in relation to successful attacks. We collected 
position tracking data of 118 Dutch Eredivisie matches, containing 12424 attacks. Attacks were classified 
as successful (N = 1237) or non-successful (N = 11187) based on the potential of creating a scoring 
opportunity. Using unsupervised machine learning, we automatically identified dynamic formations 
based on position tracking data, and identified dynamic subgroups for every timeframe in a match. We 
then compared the subgroup centroids to assess the intra- and inter-team spatiotemporal synchronisa
tion during successful and non-successful attacks, using circular statistics. Our results indicated sub
group-level variables provided more information, and were more sensitive to disruption, in comparison 
to team-level variables. When comparing successful and non-successful attacks, we found decreases 
(p < .01) in longitudinal inter- and intra-team synchrony of interactions involving the defenders of the 
attacking team during successful attacks. This study provides the first large-scale dynamic subgroup 
analysis and reveals additional insights to team-level analyses.
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Introduction

An association football team is considered a complex (i.e. many 
degrees of freedom) dynamical system, of which all moving 
parts (players) coordinate their spatial positioning over time in 
order to achieve a common goal (Balague et al., 2013; Davids et 
al., 2005) (i.e. winning the game). In doing so, the team interacts 
with the opponent and constantly adapts to the changing 
constraints of the game (i.e., score-line, attacking vs. defending) 
(Balague et al., 2013; Davids et al., 2005; J. F. Gréhaigne et al., 
1997). A team itself consists of 11 individuals, grouped together 
in subgroups (i.e. attackers, midfielders and defenders) who 
together constitute the system as a whole (Balague et al., 
2013; J. F. Gréhaigne et al., 1997). The observed spatiotemporal 
behaviour resulting from the inter-team interaction and sub
groups within both teams is considered tactical behaviour (J.-F. 
Gréhaigne et al., 1999; Rein & Memmert, 2016).

Association football is a low scoring sport in which scoring 
opportunities are sparse. When in possession of the ball, teams 
aim to create scoring opportunities by moving the ball into a 
scoring position (Goes et al., 2019). To achieve this, teams try to 
space the field by increasing their covered area, create depth 
through movement without the ball in the longitudinal direc
tion, try to achieve numerical superiority in key areas of the 
field like the final 3rd, to ultimately disrupt the opposing team’s 
organization by creating space (Fernandez & Bornn, 2018) 
between the lines and moving opposing players out of position 
(Clemente & Fernando Manuel Lourenço, 2014; Costa et al., 

2009, F. R. Goes et al., 2019). Previous work using tracking 
data from a full season of >300 Dutch Eredivisie matches has 
shown that, although only a minority of the attacks result in 
scoring opportunities, winning teams create significantly more 
opportunities compared to losing teams (Goes et al., 2019; F. 
Goes et al., 2020). Therefore, understanding the tactical beha
viour that characterizes attacks resulting in scoring opportu
nities is highly relevant, and can be considered key for 
improving performance.

Previous research has shown that association football is an 
in-phase sport, in which teams tend to move up and down the 
field as well as side to side in synchrony and in the same 
direction (Bartlett et al., 2012; Coutinho et al., 2017; Duarte et 
al., 2012; Frencken et al., 2012, 2011; Gonçalves et al., 2014; 
Memmert et al., 2017; Siegle & Lames, 2013). Analysis of vari
ables like the mean team position (team centroid) has demon
strated that inter-team interaction is strongly synchronized, 
especially in the longitudinal direction (Bartlett et al., 2012; 
Coutinho et al., 2017; Frencken et al., 2012; 2011; Memmert et 
al., 2017; Rein et al., 2017). It is assumed that in order to create 
scoring opportunities, teams try to disrupt this inter-team syn
chrony (Bartlett et al., 2012; Frencken et al., 2012; Memmert et 
al., 2017; Rein et al., 2017), and winning teams have proven to 
cause more defensive disruption through passing than losing 
teams over a full season of Dutch Eredivisie matches (F. Goes et 
al., 2020; Kempe & Goes, 2019). However, research with team- 
level variables like the team centroid failed to find evidence of 
the inter-team synchrony disruption in the moments before key 
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events like goals or shots (Bartlett et al., 2012; Frencken et al., 
2012; Memmert et al., 2017). One might argue that team-level 
variables are not specific enough to study the tactical beha
viour that characterizes successful and non-successful attacks, 
and the use of subgroup-level variables is recommended 
(Bartlett et al., 2012; Memmert et al., 2017).

In a systematic review on the topic of tactical behaviour 
analysis in football using position tracking data, Low et al. 
(2019) reviewed 77 studies on tactical behaviour, and specifi
cally discussed the non-linear dynamics of behaviour that are 
also the topic of the current work. They found that in general, 
tactical behaviour of a team is considered to be characterized 
by the concept of self-similarity: behaviour of parts of the team 
(subgroups) follows behaviour of the global system (the team), 
as all players on the team share a common goal (Low et al., 
2019). This synchronisation between team-members or sub
groups, but also between teams, seems to be stronger in elite 
teams compared to lower tier teams, as well as in defenders 
compared to attacking players (Low et al., 2019). In line with 
this argumentation, previous research has shown that in 4 
English Premier League matches, winning teams display higher 
levels of intra-team movement synchronization in comparison 
to losing teams, as all possible pairings of outfield teammates 
(dyads) showed more frequent (near) in-phase behaviour 
(Memmert et al., 2017). Therefore, as attacking teams try to 
disrupt the subgroup synchrony within the opposing team, 
they face the following task: disrupting the subgroup syn
chrony of the opponent while maintaining synchronous sub
group behaviour themselves. Only a few studies have actually 
looked into the spatiotemporal behaviour of subgroups before 
(Gonçalves et al., 2014; Memmert et al., 2017; Siegle & Lames, 
2013). The results show that generally, subgroups on one team 
(intra-team) tend to move in synchrony with each other. 
Furthermore, on the inter-team level it was reported that 
directly opposing subgroups (i.e. defenders of one team in 
relation to attackers of the other team), most frequently move 
in in-phase synchrony too (Gonçalves et al., 2014; Memmert et 
al., 2017; Siegle & Lames, 2013), in line with the teams as whole 
(Frencken et al., 2012). However, it was also concluded that in 
comparison to the whole team, subgroups show more varia
bility in their spatiotemporal behaviour, and are more sensitive 
to disruptions (Memmert et al., 2017; Siegle & Lames, 2013).

All current studies on subgroup behaviour are characterized 
by two important limitations. First of all, these studies typically 
use one static traditional formation descriptor (i.e. 4-3-3), and 
assign player-roles based on this formation that remain fixed 
for the entire match (Gonçalves et al., 2014; Memmert et al., 
2017; Siegle & Lames, 2013). However, as possession continu
ously changes from one team to another, and tactical objec
tives depend on possession status (Clemente & Fernando 
Manuel Lourenço, 2014; Shaw & Glickman, 2019), one could 
argue that one would require at least two formation descriptors 
to capture the behaviour during the different phases of the 
game (attacking vs defending). Furthermore, as association 
football is a highly dynamic game, players frequently swap 
positions and roles as a result of interaction (Memmert et al., 
2017). Accordingly, player roles should be deemed dynamic 
rather than static as well. For example, in possession of the 
ball, many wingbacks go over the midfielder, and in some parts 

of the game function as a winger. Therefore, contrary to exist
ing methods, one could argue capturing the complex dynamics 
of association football requires a formation descriptor that is 
specific to a certain subphase of the game, and allows for 
dynamic assignment of player roles.

The second prominent limitation of the current studies on 
subgroup behaviour is their dependence on notational analy
sis. All studies construct their formation descriptor based on 
manually labelled formations and player roles. There are two 
major downsides to notational analysis: one it is (very) time- 
consuming, and two it provides a possible source of observer 
bias, as reported, for example, in the work of (Chawla et al., 
2017). The authors showed that there is relatively poor agree
ment between two expert observers when it comes to, for 
example, rating passes on a 3-point scale. As the intention of 
sports science work is often to translate research findings to the 
field, one has to take into account that the time-consuming 
nature of notational analysis, whereas not necessarily a pro
blem for research, can be detrimental in a practical situation 
where resources are limited and a game is played every 3– 
7 days. Therefore, utilizing an automated subgroup identifica
tion method would both be more robust as well as much more 
scalable in practice.

To date, only a limited number of studies that automatically 
detect formations, and therefore enable subgroup identifica
tion, exist. (Bialkowski et al., 2014; 2014), proposed a method in 
which a formation descriptor was identified automatically from 
the heat-map of the team over the entire match, resulting in 11 
unique roles that were distributed dynamically over all players 
during the entire match. In this approach, players were allowed 
to swap roles, as roles were dynamically distributed over all 
players utilizing a Hungarian algorithm that uses the log prob
ability of a position belonging to a specific role on a given 
timeframe (Bialkowski et al., 2014). As the emphasis in the 
works by Bialkowski et al. (2014) was on differentiating 
between various styles of play, they only constructed one for
mation descriptor per game, and used that to categorize styles 
of play and compare home and away performance. In another 
study, Shaw and Glickman (2019) proposed a method that 
classifies the formation per game state, to be able to detect 
tactical changes during the game (Shaw & Glickman, 2019). 
They utilized an agglomerative hierarchical clustering techni
que to identify 20 different formation types, and used these 
formations to study offensive and defensive strategies and 
tactical changes over a match. Both studies are great examples 
of interesting new methods that quantify formations automa
tically using position tracking data. In contrast with the current 
work, however, they were focussed more on team style and 
strategy, and did not apply their methods to study the interac
tions between players or subgroups on a micro-level.

With the current study, we aim to analyse the spatiotemporal 
behaviour of dynamic subgroups, to determine the tactical beha
viour that characterizes successful attacks. To achieve this, we 
aim to answer two research questions: First, can we automatically 
and adequately identify subgroups based solely on player posi
tion tracking data? Second, does the dynamic coupling of sub
groups hold more information than dynamic coupling of teams? 
In order to investigate our second question, we will analyse the 
spatiotemporal behaviour on a team and subgroup level for 
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successful and non-successful attacking sequences of both 
teams. Furthermore, we will analyse the coupling of subgroups 
on an inter- and intra-team level to investigate their importance 
for success. This approach should allow further insight in what 
might be the spatiotemporal characteristics of successful attack
ing and defending.

Our hypothesis in relation to the first question is that we can 
adequately cluster subgroups based only on position tracking 
data and that subgroups hold more information and are more 
sensitive to change as a result of inter-team interaction than 
team-level variables. Our hypothesis for the second question is 
that as teams try to create scoring opportunities by creating 
space, we expect successful attacks are characterized by main
tenance of intra-team subgroup synchrony in the attacking 
team. Furthermore, we expect a decreased intra-team sub
group synchrony in the defending team, and a decreased 
inter-team synchrony between opposing subgroups. As our 
study will be one of the first studies to investigate successful 
attacks vs. non-successful attacks in a dataset of professional 
competitive data, we expect that answering our research ques
tions could result in an increased understanding of the tactical 
characteristics of successful attacks. As competitive circum
stances in an 11v11 game are hard to replicate in an experi
mental setup, especially on a large scale, real-world 
observational studies are especially valuable in the context of 
professional sports. Despite the limited ability of drawing cau
sal inferences from such studies, we expect that our work can 
be a valuable addition to the body of experimental research on 
this topic.

Methods

Data

We utilized an observational design in which we collected a 
convenience sample of position tracking data of 118 Dutch 
Eredivisie matches between 26 teams during 4 seasons 
through our research partners in the field of professional 
sports. Data had been generated through a semi-automatic 
optical tracking system (SportsVU; STATS LLC, Chicago) that 
captures the X and Y coordinates of all players and the ball in 
metres at 10 Hz. Before analysis, the raw position tracking files 
were first pre-processed with ImoClient software (Inmotiotec 
Object Tracking B.V., The Netherlands). Pre-processing con
sisted of filtering with a weighted Gaussian algorithm (85% 
sensitivity), which is the recommended filter provided by the 
software manufacturer for our specific data source, and auto
matic detection of ball possession and ball events based on 
the position tracking data. All data was mapped to the same 
standard field size (105 m x 68 m) where the X-axis runs 
longitudinally from goal to goal (−52.5 m to +52.5 m), and 
the Y-axis runs horizontally along the midline (−32 m to 
+32 m), excluding out-of-bounds regions. All further proces
sing and analysis were conducted using custom routines pro
grammed in Python 3.6.

Next, all attacks in the dataset were identified using the 
automatically generated event data. An attack started at the 
moment a team first gained control over the ball, and ended 
whenever the opponent gained control over the ball or when 

there was a stoppage of play. We then selected all attacks with 
a minimal duration of 5 seconds, that started in the first or 
second 3rd of the field. We set these criteria because we were 
interested in deliberate attacks only. Exploratory analysis and 
visual observation of 18 matches in our dataset revealed that 
possessions starting inside the final 3rd are very often the result 
of standard-situations (free-kicks, corners, etc.), and can there
fore not be considered elaborate attacks. Furthermore, we also 
found that possessions lasting shorter than 5 seconds typically 
contain only one failed pass or dribble, and cannot be consid
ered elaborate attacks either. This cut-off value is largely in line 
with previous research that states that “sustained threats” (ela
borate attacks) last at least 6 seconds (Fernandez-Navarro et al., 
2018). We further validated the 5-second cut-off value by asses
sing the impact of different cut-off values on our dataset. 
Furthermore, we conducted a sensitivity analysis by assessing 
the impact of different cut-off values on the results regarding 
inter-team synchronisation.

Dynamic subgroup identification

To identify subgroups, we first defined two formation 
descriptors for every team, for being either in possession 
of the ball or not: One attacking formation descriptor (FA) 
based on timeframes in possession, and one defending 
formation descriptor (FD) based on timeframes not in pos
session. To construct a formation descriptor that follows the 
structure of traditional formation descriptors commonly 
employed by association football coaches (i.e. 4-4-2, 4-3-3), 
we computed the mean X positions of all outfield players 
(excluding the goalkeeper) during time in possession [X1A, 
X2A, . . . X10A], and time not in possession [X1D, X2D, . . . X10D], 
using position tracking data of the first half. As tactical 
changes can occur during the game (especially in the 2nd 
half) as a result of game events, substitutions and strategic 
decisions by the coach, we deliberately choose to use data 
for the first half only. As we were aiming to replicate the 
structure of a traditional pre-game formation descriptor, to 
be able to identify subgroups based on data instead of the 
starting formation on paper, we choose to omit the 2nd half 
data as the high variance in the 2nd half would decrease 
the performance of our clustering method. Mean player 
positions represented the average (attacking or defending) 
longitudinal organisation of all players on a team, similar to 
a traditional formation descriptor. We subsequently used a 
KMeans unsupervised clustering algorithm, as the KMeans 
algorithm has proven to be a robust, easy to interpret, and 
scalable model, that works well with a small number of 
clusters (David & Vassilvitskii, 2007). To follow the structure 
of traditional formation descriptors we instructed the algo
rithm to identify 3 clusters, and subsequently detected the 
number of players in every subgroup, and used this to 
construct FA and FD. Using the relevant formation descriptor 
in combination with possession status, we then dynamically 
identified defenders, midfielders and attackers on both 
teams for every timeframe, resulting in a dynamic role dis
tribution and a constant (possession dependent) formation 
(Table 1).
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Feature construction

To assess the spatiotemporal behaviour of subgroups, we iden
tified subgroups for every timeframe in a match, and first 
computed the centroid (average position) for the given sub
group on timeframe t based on the X and Y positions of all 
subgroup members of a given subgroup on t. Furthermore, to 
validate the assumption that subgroup variables provide addi
tional insight to team-level variables, we computed the team 
centroids and inter-team distance in longitudinal (CX) and lat
eral (CY) direction.

Success of attacks

Every attack was classified as successful or unsuccessful to 
allow comparison. A successful attack was defined as an attack 
that resulted in control over the ball in an area that would allow 
the potential creation of a scoring opportunity. To operationa
lize this, we computed a zone (Z) value for every ball reception 
during an attack. Every reception is awarded a score between 0 
and 1 based on the location of the reception in relation to the 
goal, using a grid similar to that in Link’s work on dangerousity 
(Link et al., 2016), from which we deduce points for the defen
sive pressure on the ball receiver. Any score above 0 indicates 
the ball possessing player is within a 30 m range of the goal, 
without (sufficient) defensive pressure, and thereby has the 
potential to create an opportunity. This concept has been 
validated in work by (Goes et al., 2019; F. Goes et al., 2020) 
using large sets of Eredivisie data, and has been found to have a 
strong relationship with success. If peak zone during an attack 
was >0, an attack was classified as successful as it allows the 
direct creation of a scoring opportunity, otherwise it was clas
sified as non-successful.

Statistical analysis

To formulate an answer on our first research question, we 
evaluated the accuracy of our clustering approach by comput
ing the silhouette score of the attacking and defending forma
tion descriptor of every match. The silhouette score ranges 
from −1 to 1, in which negative scores indicate poor clustering, 
scores around 0 indicate a large overlap in clusters, and positive 
scores indicate good clustering.

To answer our second research question, we compared the 
spatiotemporal characteristics of successful and non-successful 
attacks. To assess the coupling of subgroup behaviour, we 

computed the longitudinal and lateral synchrony between sub
groups on intra- and inter-team levels using the relative phase 
(⁰) of two subgroup centroid time-series, computed using a 
Hilbert transform (Palut & Zanone, 2005). On an inter-team 
level we took the subgroup centroids of opposing subgroups 
(i.e., attackers team A – defenders team B), while on an intra- 
team level, we did this based on the subgroup centroids of 
neighbouring subgroups (i.e. defenders – midfielders). To vali
date our assumption about subgroup versus team-level vari
ables, we studied the inter-team synchrony during successful 
and non-successful attacks using team-centroids as well.

Given the circular nature and wrapping property (i.e., 
370⁰ = = 10⁰) of the relative phase data, we utilized circular 
statistics to compare subgroup synchrony between successful 
and non-successful attacks. For every inter- and intra-team 
relative phase variable, we first computed the mean direction 
θ, the mean resultant vector length R, the circular variance Vm 

and the circular standard deviation SD. We then statistically 
compared successful and non-successful attacks for every vari
able using a Watson-Williams test (Watson & Williams, 1956), 
with the significance level � adjusted following a Bonferroni- 
correction with m = 18. Subsequent effect sizes were computed 
using Cohen’s d. To further assess the differences between 
subgroup synchrony in successful and non-successful attacks, 
we visually assessed the distribution of relative phase values 
using rose plots (Cremers & Klugkist, 2018) and statistically 
compared distributions between successful and non-successful 
attacks using Kuiper’s test adapted to circular data (Paltani, 
2004). This test assesses if there are any differences in mean 
direction θ or mean resultant length R, and computes a False 
Positive Probability (FPP) of falsely rejection the null hypothesis 
that both datasets could have been drawn from the same 
distribution. A relative phase close to 0⁰ represents in-phase 
synchronous behaviour, while a relative phase close to 180⁰ 
represents anti-phase synchronous behaviour, and other values 
represent a-synchronous behaviour (Gonçalves et al., 2014).

Results

We included 12.424 attacks in our analysis, of which 1.237 were 
classified as successful, and 11.187 as non-successful. This 
means that less than 10% of all observed attacks were consid
ered successful.

Sensitivity analysis cut-off values

We found that changing the cut-off value within the range of 
4–6 seconds would only result in marginal changes in the size 
of the dataset, with a 9.0% increase in dataset size when chan
ging the cut-off to 4 seconds and a 7.9% decrease when chan
ging it to 6 seconds (Figure 1). We also found that this would 
lead to neglectable changes in the properties of the dataset, as 
the average number of passes would hardly change (± 0.14 
passes) when changing the cut-off value between 4 and 6 sec
onds, as would the average starting location of the attacks (± 
1.0 m) and the average total duration (± 1.5 seconds). Our 
analysis also further confirmed our hypotheses regarding ela
borate attacks, as 75% of possessions with a duration < 3.5 sec
onds contained less than 1 successful pass. In addition, our 

Table 1. Illustrative example of dynamic role distribution of players based on 
clustering.

Timestamp (ms) Subgroupa Subgroup Members

t = 100 Defence (4) Player 2, Player 3, Player 4, Player 5
Midfield (3) Player 6, Player 7, Player 8
Attack (3) Player 9, Player 10, Player 11

t = 200 Defence (4) Player 2, Player 7, Player 4, Player 8
Midfield (3) Player 6, Player 3, Player 5
Attack (3) Player 9, Player 10, Player 11

t = 300 Defence (4) Player 2, Player 3, Player 8, Player 7
Midfield (3) Player 9, Player 4, Player 11
Attack (3) Player 6, Player 10, Player 5

asubgroups are based on an example formation descriptor FA = [4,3,3]. Data in 
this table are dummy data and do not represent actual results.
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sensitivity analysis revealed that changing our cut-off value in 
the range of 4.0–6 seconds only changes the mean θ of the 
inter-team synchrony on the x- and y-axis with <0.1 degrees, 
and the standard deviation with <0.3 degrees. Even at a cut-off 
value as low as 2 seconds the mean θ of the inter-team syn
chrony between team-centroids on the longitudinal (x) axis 
would be 7.00⁰ ± 34.10⁰ in successful attacks and 4.16⁰ ± 
40.91⁰ in non-successful attacks, which is comparable to the 
7.06⁰ ± 34.13⁰ in successful attacks and 4.28⁰ ± 40.66⁰ in non- 
successful attacks found with the current cut-off value of 5 sec
onds (Table 2).

Dynamic subgroup identification

To answer our first research question, we first looked at the 
accuracy of our clustering approach. Our dynamic subgroup 
clustering resulted in an average silhouette score of 0.63 ± 0.07 
for the attacking formation descriptor, and an average silhou
ette score of 0.63 ± 0.07 for the defending formation descriptor.

Subgroup synchronisation

To answer our second research question, we first looked at 
inter-team synchrony on a team-level and between opposing 
subgroups. Then, we present the intra-team subgroup syn
chrony in both teams. For each step, synchrony of the teams 
is related to success of the attacking sequence.

Inter-team subgroup synchronisation
On an inter-team level, all variables except for the lateral syn
chrony between attackers of the attacking team and the defen
ders of the defending team, and the longitudinal synchrony 

between midfielders of both teams had significantly different 
mean directions θ (Table 2). Most differences were deemed 
small to trivial, but we found a medium effect size (d = −0.41, 
95% CI: [−0.42, −0.41]) on the difference in longitudinal syn
chronization between defenders on the attacking team and 
attackers on the defending team (Table 2).

The distribution of (a-)synchronous inter-team behaviour 
(Figure 2) shows significant differences in mean direction θ or 
mean resultant length R on all variables. According to Kuiper’s 
test, there is a 0.0% change that samples were drawn from the 
same distribution for all inter-team variables. Based on visual 
inspection, the most pronounced effects were found in the 
longitudinal synchrony between defenders on the attacking 
team, and attackers on the defending team (Figure 2: Long. 
DEF-ATT). Both successful and non-successful attacks were 
characterized by comparably more frequent occurrences of 
anti-phase behaviour compared to the interactions between 
other subgroups, and successful attacks seemed to be charac
terized by more frequent a-synchronous behaviour. What also 
stands out is the longitudinal synchrony between attackers on 
the attacking team and defenders on the defending team 
(Figure 2: Long. ATT-DEF). Successful attacks seemed to be 
characterized by an increased occurrence of in-phase synchro
nous behaviour. Finally, we also found that team-level variables 
(Figure 2: Long. Cx-Cx & Lat. Cy-Cy) are characterized by a more 
directed distribution and a lower spread in comparison to 
subgroup-level variables.

Intra-team subgroup synchronisation
On the intra-team level, we found significant differences in 
subgroup synchrony for all variables on the attacking team 
(Table 3). All effect sizes were deemed trivial to small, except 

Figure 1. Assessment of how changing our possession duration cut-off value would impact the size and properties of our dataset.
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for the longitudinal synchrony between the defenders and 
midfielders, which had a medium effect size (d = 0.25, 95% CI: 
[0.25, 0.25]). For the defending team, only the lateral synchrony 
between defenders and midfielders, and the longitudinal 

synchrony between midfielders and attackers was significantly 
different between successful and non-successful attacks, but 
both effect sizes were considered to be small (Table 3).

Table 2. Inter-team synchrony between directly opposing subgroups of both 
teams.

Mean θ
Mean 

R Vm SD Between-Group Comparison

Def – Att X

Success 159.81⁰ 0.17 0.83 52.07⁰ F (1980043) = 9462.90, 
p < .0001 
d = −0.41 (95% CI: [−0.42, 
−0.41])

No-Success 178.65⁰ 0.45 0.55 42.64⁰

Def – Att Y
Success 4.00⁰ 0.36 0.64 46.01⁰ F (1980043) = 272.4, p < .0001 

d = 0.05 (95% CI: [0.05, 0.06])No-Success 1.53⁰ 0.33 0.67 47.06⁰
Mid – Mid 

X
Success 5.07⁰ 0.67 0.33 32.84⁰ F (1980043) = 4.5, ns 

d = −0.01 (95% CI: [−0.01, 
0.00])

No-Success 5.28⁰ 0.51 0.49 40.21⁰

Mid – Mid 
Y

Success 0.01⁰ 0.48 0.53 41.64⁰ F (1980043) = 51.1, p < .0001 
d = 0.02 (95% CI: [0.02, 0.02])No-Success −0.89⁰ 0.41 0.59 43.86⁰

Att – Def X
Success −9.32⁰ 0.46 0.54 42.11⁰ F (1980043) = 648.0, p < .0001 

d = 0.08 (95% CI: [0.07, 0.08])No-Success −13.09⁰ 0.21 0.79 50.85⁰
Att – Def Y
Success 0.89⁰ 0.35 0.65 46.18⁰ F (1,980,043) = 1.1, ns 

d = 0.00 (95% CI: [−0.01, 
0.00])

No-Success 1.05⁰ 0.31 0.69 47.67⁰

Cx – Cx
Success 7.06⁰ 0.64 0.36 34.31⁰ F (1980043) = 2017.8, p < .0001 

d = 0.07 (95% CI: [0.07, 0.07])No-Success 4.28⁰ 0.50 0.50 40.66⁰
Cy – Cy
Success 0.84⁰ 0.74 0.26 29.03⁰ F (1980043) = 20923.3, 

p < .0001 
d = 0.04 (95% CI: [0.03, 0.04])

No-Success −0.29⁰ 0.69 0.31 31.66⁰

Def, Mid & Att refer to the subgroups involved, in which the first subgroup 
mentioned always refers to the team in possession. Cx and Cy refer to the mean 
team position in X and Y directions, and serves as a comparison for subgroup 
variables to team-level variables. X refers to the longitudinal direction of the 
field and Y to the lateral direction of the field.

Figure 2. Rose plots of relative phase distributions for inter-team variables. Data is grouped in 22.5⁰ bins, in which de radius of the bin represents the relative 
occurrence. Grey bins with no edges represent non-successful attacks, while white bins with black edges represent successful attacks. Black dotted lines with circular 
markers represent the mean direction θ and mean resultant length R of the non-successful distributions, while black solid lines with diamond markers represent those 
of the successful distributions.

Table 3. Intra-team subgroup synchrony.

Mean 
θ

Mean 
R Vm SD Between-Group Comparison

Attacking Team

Def – Mid 
X

Success 14.70⁰ 0.39 0.61 44.89⁰ F (1980043) = 8894.8, p < 0.0001 
d = 0.25 (95% CI: [0.25, 0.25])No-Success 3.55⁰ 0.40 0.60 44.35⁰

Def – Mid 
Y

Success 2.31⁰ 0.37 0.63 45.64⁰ F (1980043) = 449.16, p < 0.0001 
d = 0.06 (95% CI: [0.05, 0.06])No-Success −0.35⁰ 0.33 0.67 47.03⁰

Mid – Att 
X

Success 6.20⁰ 0.59 0.41 36.64⁰ F (1980043) = 70.8, p < 0.0001 
d = −0.02 (95% CI: [−0.02, 
−0.02])

No-Success 7.04⁰ 0.39 0.61 44.91⁰

Mid – Att 
Y

Success −0.45⁰ 0.32 0.68 47.18⁰ F (1980043) = 23.0, p < 0.0001 
d = 0.02 (95% CI: [0.01, 0.02])No-Success −1.18⁰ 0.30 0.70 48.04⁰

Defending Team
Def – Mid 

X
Success 7.69⁰ 0.57 0.43 37.56⁰ F (1980043) = 4.3, ns 

d = 0.00 (95% CI: [−0.01, 0.00])No-Success 7.90⁰ 0.38 0.62 45.27⁰
Def – Mid 

Y
Success 2.30⁰ 0.42 0.58 43.70⁰ F (1980043) = 209.0, p < 0.0001 

d = 0.04 (95% CI: [0.03, 0.04])No-Success 0.65⁰ 0.37 0.63 45.45⁰
Mid – Att 

X
Success 2.43⁰ 0.68 0.32 32.45⁰ F (1980043) = 1665.8, p < 0.0001 

d = −0.09 (95% CI: [−0.09, 
−0.09])

No-Success 6.28⁰ 0.37 0.63 45.64⁰

Mid – Att 
Y

Success 1.32⁰ 0.34 0.66 46.61⁰ F (1980043) = 1.7, ns 
d = 0.01 (95% CI: [−0.01, 0.00])No-Success −1.49⁰ 0.32 0.68 47.27⁰

Def, Mid & Att refer to the subgroups involved, X refers to the longitudinal 
direction of the field and Y to the lateral direction of the field.
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The distribution of (a-)synchronous intra-team behaviour 
(Figure 3) shows significant differences in mean direction θ or 
mean resultant length R on all variables. According to Kuiper’s 
test, there is a 0.0% change that samples were drawn from the 
same distribution for all intra-team variables. Based on visual 
inspection, the most pronounced effects were found in the 
longitudinal direction, especially for the defenders and mid
fielders on the attacking team, who display more frequent a- 
synchronous behaviour during successful attacks (Figure 3: 
Long. DEF-MID – Offence), as well as the midfielders and attack
ers on the attacking team, who displayed more frequent syn
chronous in-phase behaviour during successful attacks (Figure 
3: Long. MID-ATT – Offence). On the defending team, we found 
similar effects for both the defenders and midfielders (Figure 3: 
Long. DEF-MID – Defence), and midfielders and attackers 
(Figure 3: Long. MID-ATT – Defence).

Discussion

The current study aimed to analyse the spatiotemporal beha
viour of dynamic subgroups in relation to successful attacks. To 
achieve this, we aimed to build an algorithm to automatically 
and adequately identify subgroups in association football teams 
based on position tracking data, and to use these subgroups to 
explore if their spatiotemporal behaviour provides more infor
mation compared to team-level analysis, in relation to successful 
attacks. Our results indicate that we could adequately identify 
subgroups, and that analysis of these subgroups provides more 
information in comparison to team-level variables. The main 
findings with regards to these subgroups were that the defen
ders on the attacking team and attackers on the defending team 
showed a decreased inter-team synchronisation. Furthermore, 
the defenders and midfielders on the attacking team also 
showed a decreased intra-team synchronisation.

Using a new approach for automated dynamic subgroup 
identification, we have shown that we can adequately cluster 
dynamic subgroups using only position tracking data. By 

means of the presented silhouette scores, we showed that 
our clustering approach provides a valid subgroup identifier, 
with little overlap between clusters. This is a very promising 
result as this is the first study that uses a dynamic, context 
dependent, method for automated subgroup identification in 
association football. Previous contributions to the field of sub
group behaviour in association football either used an 
approach in which subgroups were identified based on manual 
labelling (Gonçalves et al., 2014; Memmert et al., 2017; Siegle & 
Lames, 2013), or an approach that dynamically distributed roles 
but used a static formation irrespective of context (Bialkowski 
et al., 2014; 2016). Our approach provides three advantages 
over existing methods. First, as our approach automatically 
identifies the formation and the subgroups, it is both more 
scalable as well as more reliable than approaches that require 
manual labelling. Given the time-consuming nature of nota
tional analysis, its limited inter-rater reliability (Chawla et al., 
2017), and the increased use of data in professional association 
football (Rein & Memmert, 2016), scalability should be a key 
consideration in every future analysis, especially when that 
analysis is intended to serve practical purposes. Second, as 
association football is a highly dynamic game, and players 
frequently swap positions as a result of interaction (Bialkowski 
et al., 2014), our dynamic approach provides a more realistic 
perspective on tactical behaviour than approaches that employ 
static player roles or formations. Finally, as tactical behaviour is 
context-dependent (Balague et al., 2013), and team strategy 
changes with possession status (Clemente & Fernando Manuel 
Lourenço, 2014), using a formation descriptor that changes 
with possession status can be seen as a more valid approach 
compared to static formation descriptors. As a result of these 
advantages, our dynamic subgroup analysis seems capable of 
advancing our understanding of team tactics, specifically inter- 
and intra-team subgroup interactions.

While our dynamic subgroup identification has proven to be 
adequate as well as to be able to provide interesting insights in 
tactical behaviour, several concerns should also be mentioned. 

Figure 3. Rose plots of relative phase distributions for intra-team variables. Data is grouped in 22.5⁰ bins, in which de radius of the bin represents the relative 
occurrence. Grey bins with no edges represent non-successful attacks, while white bins with black edges represent successful attacks. Black dotted lines with circular 
markers represent the mean direction θ and mean resultant length R of the non-successful distributions, while black solid lines with diamond markers represent those 
of the successful distributions.
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In the current work, we aimed to construct a formation descrip
tor that follows the structure of a traditional 3-line formation 
descriptor (i.e., 4-3-3) as is typically used in practice. 
Furthermore, we deliberately choose to only differentiate 
between attacking and defending phases of play, as our main 
goal was to do an innovative subgroup analysis focussing on 
successful attacking. However, one has to acknowledge that 
formations can change throughout the game, especially as 
coaches react on match events like goals, and substitutions 
occur. For that reason, we choose to only use data from the 
first half for our formation descriptor. This stopping criterion is 
somewhat arbitrary, and different choices could have been 
made here, like using data up to the first substitution. 
However, other stopping criteria would be more random, as 
events like substitutions can happen at any time during the 
game, for a number of reasons. Regardless, identifying the most 
valid stopping criteria, or even re-constructing the formation 
descriptor multiple times a game would be an interesting topic 
for future research. One interesting work to look at in that 
regard is the study by (Shaw & Glickman, 2019) who con
structed a formation descriptor similar to ours, but analysed 
formations over multiple time-windows during the match. 
Another interesting point of discussion is the fact that players 
can be grouped in many different ways other than their long
itudinal positional role (i.e., defender, midfielder or attacker). 
One could argue, for example, that subgroups can also be 
formed based on dynamic interactions with and without the 
ball, by clustering running trajectories and passing interactions 
of different players throughout various phases of the game. 
Finally, we deliberately choose to utilize a KMeans algorithm, 
because of its simplicity, scalability, and goodness of fit towards 
our problem. However, as both the work of (Shaw & Glickman, 
2019), as well as the work of (Bialkowski et al., 2014) illustrate, 
there are different solutions to the same problem. Comparing 
the different methods could help to advance the current state 
of the art in this aspect. In conclusion, we propose that optimiz
ing the dynamic subgroup identification approach can be per
formed in different ways, but would require a separate study 
that is solely focussed on this aspect.

To display the relevance of the subgroup identifier we stu
died the hypothesis that the analysis of subgroup-level vari
ables would be more informative in comparison to team-level 
variables. As we assumed based on previous work, behaviour 
on the team as well as subgroup level was generally character
ized by in-phase behaviour (Frencken et al., 2012; 2011). 
However, in line with our hypothesis, subgroup-level variables 
did provide more in-depth information on this aspect in com
parison to team-level variables. On the inter-team level, we 
found a pronounced anti-phase synchronous behaviour pat
tern between defenders on the attacking team and attackers 
on the defending team. This would not have been uncovered 
based on team-level analysis. Furthermore, inspection of the 
rose plots as well as comparison of the circular variance (Vm) 
revealed that although both subgroup and team level variables 
typically follow the characteristics of unimodal directed distri
butions, subgroup variables have a much larger spread. 
Therefore, we confirm the assumption that subgroups are 
more sensitive to disruptions (Memmert et al., 2017; Siegle & 
Lames, 2013), and we argue that subgroup-level variables can 

provide more detailed information compared to team-level 
variables.

Our results revealed that in general, inter-team subgroup 
interactions were characterized by in-phase synchronous beha
viour. These findings are in line with previous work on smaller 
sample sizes, in which analyses of subgroups in one World Cup 
match (Siegle & Lames, 2013), one Champions League match 
(Memmert et al., 2017), and one exhibition youth game 
(Gonçalves et al., 2014) have demonstrated that inter-team 
subgroup synchrony is characterized by synchronous in-phase 
behaviour. Additionally, we hypothesized that successful 
attacks would be characterized by a decreased inter-team syn
chrony, as the attacking team tries to create space for an attack. 
Our results could only partially confirm this hypothesis. We 
found that during successful attacks on a team-level, a-synchro
nous behaviour especially in the longitudinal direction was 
marginally increased. On a subgroup-level, our main finding 
was that longitudinal and lateral synchrony between defenders 
on the attacking team and attackers on the defending team 
was decreased in successful attacks. In addition, we found a 
(marginally) increased synchrony between attackers on the 
attacking team and defenders on the defending team. 
Perturbations of the equilibrium in inter-team synchrony in 
association football are known to occur infrequently and only 
last for a short time (Frencken et al., 2012), and top tier teams 
are able to adjust their behaviour quickly and will only a small 
delay, while already showing more regular and synchronized 
behaviour patterns to begin with (Low et al., 2019). Therefore, 
the significant inter-team findings, especially the decreased 
inter-team synchrony between the defenders on the attacking 
team and attackers on the defending team can be considered 
to be essential findings. As our results also yielded a decreased 
intra-team synchrony between defenders and midfielders on 
the attacking team during successful attacks, one could argue 
that the attackers on the defending team have to choose 
between falling back to aid the defence, or keeping pressure 
on the build-up, which seems to disrupt the inter-team 
synchrony.

We assumed that on an intra-team level, teams behave like 
complex systems, and subgroup behaviour is characterized by 
self-similarity (Davids et al., 2005). Our results confirmed the 
self-similarity assumption, as subgroups on both the attacking 
team as well as the defending team spent the majority of the 
time moving in longitudinal and – to a lesser extent – lateral in- 
phase synchrony. These results are in line with previous work 
that found a strong synchrony between subgroup members 
and their subgroup centroid (Gonçalves et al., 2014), and a 
strong synchrony between combinations of team-mates 
(dyads) (Folgado et al., 2018). Based on the assumption that 
self-similarity is related to performance, we hypothesized that 
successful attacks would be characterized by an increased 
intra-team synchrony on the attacking team, and a decreased 
intra-team synchrony on the defending team. Our results indi
cated that this hypothesis should be rejected. Our main finding 
on the intra-team level conflicted with our hypothesis, but 
matches our inter-team findings discussed above, as we 
found a decreased longitudinal synchrony between the defen
ders and midfielders on the attacking team during successful 
attacks. The changes in longitudinal synchrony could be 
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explained by the strong coupling of inter-team interactions 
(Frencken et al., 2012; 2011), and the strategy typical for the 
build-up of an attack in association football. It seems as if the 
midfielders and attackers of the attacking team form an offen
sive unit that moves in longitudinal synchrony, while the defen
ders move asynchronous to space the field. As behaviour of 
teams is directly coupled (Bartlett et al., 2012; Frencken et al., 
2011), the changes in intra-team synchrony in the attacking 
team are mirrored by the defending team. In conclusion, it 
seems as if self-similarity of intra-team behaviour is not directly 
linked to success, and that this could be explained by the 
coupling of inter-team behaviour.

Despite most effect sizes were relatively small, the practical 
implications of those effects could be considerable. Within asso
ciation football, the focal point of tactical analysis of attacking 
play are often the attackers, and we tend to give credit for a 
successful attack to those players directly involved in key passes 
and assists (Kempe et al., 2020), as well as assign blame to the 
defenders for not preventing those attacks from happening. 
However, in addition to the key role that is obviously played 
by attackers during any attack, our results underline the impor
tance of the defenders on the attacking team, as they seem to 
be ones responsible for creating space. On the other hand, our 
results also indicate that suffering successful attacks should – at 
least partially – be attributed to the attackers on the defending 
team, as this is typically where the organization seems to break 
down. Therefore, our results could trigger practitioners to redir
ect their attention to different parts of the attack, and could 
potentially impact tactical exercises.

In conclusion, this has been the first study to automatically 
identify dynamic subgroups, and assessed interactions on both 
inter- and intra-team levels. By utilizing this approach in the 
analysis of a large-scale dataset of professional matches, we 
provided new insights in the dynamical coordination and inter
action of subgroups in relation to successful attacking. 
However, several questions that could be addressed by future 
research remain. First of all, tactical behaviour seems to be 
impacted by playing style (Kempe et al., 2014), and therefore 
determinants of success could be team or style specific. 
Although we already studied a heterogeneous sample of 
teams with various playing style, our study is limited by the 
fact that all teams played in the Dutch competition. Therefore, 
it might be interesting to study a dataset that contains matches 
played in different countries and competitions to see how a 
nation’s association football philosophy or competition level 
affects behaviour and determinants of success. In addition, as 
were focussed more on subgroup interactions and less on style, 
we assumed formations remain constant over the course of a 
match. However, as illustrated by Shaw and Glickman (2019), 
tactical changes result in changing formations over the course 
of a match (Shaw & Glickman, 2019). Accounting for these 
changing formations would add an extra dimension to our 
analysis, which would be very interesting for future work. 
Furthermore, in the current study, we aggregated temporal 
findings into means per attack and looked at relative occur
rences of (a-) synchronous behaviour. As this limits the practical 
interpretability, it could be interesting for future work to con
duct time-series analysis of an attack, thereby enabling the 
exact identification and study of the moments during an attack 

and its’ determinants. Finally, in the current study, we limited 
our analysis to attacks longer than 5 seconds starting outside of 
the final 3rd. Albeit somewhat arbitrary, these thresholds do 
occur more often in similar work (Shaw & Glickman, 2019). 
Furthermore, we assessed the validity of this decision by con
ducting a sensitivity analysis and found that marginal changes 
to the cut-off value would not impact our dataset nor our 
results in a significant manner. However, future work could 
further improve these criteria by systematically validating our 
approach with expert analysts, and setting additional criteria to 
further improve our inclusion of elaborate attacks only.

Conclusion

We have shown that we can automatically identify dynamic 
subgroups based only on position data, and that these sub
groups hold more information, and are more sensitive to 
change, in comparison with team-level variables. During suc
cessful attacks, we found decreases in the synchrony of intra- 
team and inter-team subgroup interactions, that seem related 
to the creation of space during a successful attack. Practical 
implications of our findings imply that successful attacks are 
strongly dependent on the defenders creating space for the 
attackers by moving in an a-synchronous anti-phase fashion, 
thereby challenging the attackers on the defending team.
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