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ABSTRACT 

 The development of bladder cancer is known to have a strong association with 

environmental toxins.  This laboratory employs the human UROtsa cell line model to 

explore the relationship between As+3 and Cd+2 exposure and the development of 

urothelial cancer. 

 The parental UROtsa cells and their As+3 and Cd+2 transformed counterparts have 

been used to define the mechanism of cell death (apoptosis and/or necrosis).  A third 

mechanism of cell death, autophagy, has not yet been investigated.  The hypothesis for 

the current study is that the autophagy pathway involving beclin-1plays a role in UROtsa 

cell death mechanisms.  A combination of real time RT-PCR, western analysis, and 

immunohistochemistry showed that beclin-1 is expressed in the urothelium of normal 

human bladder, but large alterations in beclin-1 and its associated autophagy genes are 

not found in heavy metal induced bladder cancer cells.  

 SPARC, a glycoprotein with counter adhesive properties, has the ability to 

modulate cell-cell and cell-matrix interactions.  Microarray analysis indicated that 

SPARC gene expression was greatly decreased between parental and all transformed 

UROtsa cell lines.  The hypothesis for this study is that a reduction in SPARC expression 

is necessary for a malignant phenotype to develop.  SPARC expression was determined 

in human parental UROtsa cells, their Cd+2 and As+3 transformed counterparts, and in 

archival specimens of human bladder cancer using a combination of RT-PCR, western
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analysis, immunofluorescence localization, and immunohistochemical staining.  This 

study showed that exposure to As+3 or Cd+2 greatly reduced SPARC expression in 

UROtsa cells. 

 To further analyze SPARC expression, SPARC was stably transfected into select 

transformed UROtsa cell lines which were characterized based on growth rates, 

morphology, wound closure, migration, invasion, and tumorigenicity.  Tumors generated 

by injection of the SPARC-transfected cell lines into nude mice, showed an absence of 

SPARC expression within the epithelial tumor component, but were positive for the 

transfected vector.  This study suggests post-transcriptional down-regulation of SPARC 

expression in urothelial carcinoma cells within the mouse tumor environment.  Overall, 

results from this study show that autophagy does not play a large cell death role within 

the UROtsa system however, down-regulation of SPARC expression does strongly 

correlate with the malignant phenotype.   



 

1 

CHAPTER I 

INTRODUCTION 

Characterization of Bladder Carcinomas 

 Normal human bladder is histologically characterized by the transitional 

urothelium that protects the urogenital tract, starting at the renal pelvis and continuing to 

the urethra.  The mucosa of the urinary bladder consists of a stratified epithelium that is 

comprised of three to seven layers of cells in which three differing cell types have been 

identified, namely the basal cells, intermediate cells, and the superficial cells or 

“umbrella cells” (Castillo-Martin et al., 2010).  The basal cells form a layer of one cell in 

thickness with a cuboidal shape that rests on the basal membrane.  The intermediate cells 

constitute the majority of cells in the urothelium, with these cells being more columnar in 

nature.  The most superficial cells or umbrella cells protrude into the lumen of the bladder 

and have the unique ability to preserve the impermeability of the epithelium to urine, 

even when it is fully distended.  Deep to the urothelium, the lamina propria consists of 

connective tissue rich in capillary plexus.  Below the lamina propria, the muscularis 

propria contains three layers of smooth muscle which are organized into an inner 

longitudinal, outer circular, and outermost longitudinal orientation.  Surrounding the 

muscular wall is perivesical soft tissue containing blood vessels and lymphatic vessels. 

 Carcinoma of the bladder is the fourth most common cancer for men and the ninth 

most common cancer for women in the United States (Fajkovic et al., 2011), with 

occurrences found more frequently in men than women, at a ratio of 3:1 respectively
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 (Jacobs et al., 2010; Jemal et al., 2010; Tanaka and Sonpavde, 2011).  Cancer of the 

urinary bladder was responsible for approximately 14,680 deaths related to the disease in 

2010 with approximately 70,530 new cases also diagnosed (Jemal et al., 2010).  Usually 

recognized by microscopic or gross hematuria (~80% of cases), bladder cancer is 

relatively common in the elderly with an average diagnosis age of 70 years.  More than 

90% of bladder cancers in the United States are urothelial carcinomas that arise from the 

urothelium lining of the bladder.  In many developing countries, however, urothelial 

carcinomas show squamous cell differentiation, which is another type of histological 

presentation of the cancer.  Squamous cell carcinoma (SCC) of the bladder is thought to 

arise from a parasite known as Schistosoma haematobium, as seen in 75% of these cases.  

SCC does occur in Western countries, but accounts for only five percent of all bladder 

cancers and is usually associated with prolonged catheterization (Jacobs et al., 2010; 

Tanaka and Sonpavde, 2011).  In addition to urothelial carcinoma and SCC, several other 

histological forms of bladder cancer exist; however these forms are rare, but can include 

adenocarcinomas, sarcomas, and small cell carcinomas (Volanis et al., 2010).   

 The majority of malignant tumors arising in the urinary bladder are of epithelial 

origin.  A staging system for bladder cancer has been developed to uniformly describe the 

extent the cancer has spread. The TNM (tumor, node, metastasis) staging system 

classifies cancers based on three differing pieces of information.  The “T” category 

followed by a letter and/or number describes the extent of tumor growth through the 

bladder wall, with a higher T number indicating more extensive growth.  The “N” 

category followed by a number from 0 to 3 indicates if the cancer has spread to lymph 

nodes near the bladder and the “M” category followed by a 0 or 1 indicates if the cancer 
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has metastasized to a distant site (Jacobs et al., 2010).  Tumors of the bladder are 

classified into two different groups, non-muscle invasive and muscle invasive.  Non-

muscle invasive tumors account for nearly 80% of bladder tumors while the remaining 

20% are muscle-invasive bladder cancer and are usually associated with poor prognosis 

(Volanis et al., 2010).  Ta, carcinoma in situ (CIS or Tis), and T1 categories of tumors are 

grouped under non-muscle invasive, while T2, T3, and T4 are classified as muscle 

invasive tumors.  Non-muscle invasive tumors are either confined to the mucosa, as seen 

in Ta and CIS/Tis tumors, or invade into the lamina propria (T1), but do not invade into 

the muscularis propria (Figure I-1).  Stage Ta tumors typically have a low risk of 

progression over time; however, CIS or Tis is flat, high-grade bladder cancer that is 

difficult to detect, has a very high rate of reoccurrence, and has been shown to progress to 

 

Figure I-1.  An illustration depicting the extent of tumor invasion of primary bladder 
cancer. Adapted from Jacobs et al. (2010). 
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invasive bladder cancer in 60-80% of cases (Castillo-Martin et al., 2010).  Stage T1 

tumors have progressed through the transitional epithelium and have invaded into the 

lamina propria and frequently progress to the muscularly invasive T2 stage tumors.  The 

prognosis is improved when the tumor is confined to the organ (T2a and T2b), as 

opposed to when metastasis through the bladder wall and into the perivesical fat (T3) 

occurs.  Urothelial carcinomas can spread beyond the fatty tissue of the bladder and into 

nearby organs (T4) and usually seed on the stroma of the prostate, seminal vesicles, 

uterus, vagina, and pelvic or abdominal wall (Jacobs et al., 2010). 

 Despite current treatment and improved technology, bladder cancer still has an 

extremely high reoccurrence rate, usually reappearing within five years with higher grade 

tumors having an even greater risk for progression of the cancer (Goodison et al., 2009).  

Non-muscle invasive bladder tumors have been shown to reoccur 50-70% of the time and 

between 10-30% of those tumors will progress to muscle-invasive tumors (Soloway et al., 

2002).  With medical costs ranging between $99,000-120,000 per patient from time of 

diagnoses to the time of death, bladder cancer is the most expensive cancer per patient.  

Due to the high rate of reoccurrence, patients are usually kept under strict routine 

surveillance (Lokeshwar and Selzer, 2006).  Cystoscopy allows for visual examination of 

the bladder and resection of biopsies for histopathological analysis.  Biopsies are 

routinely preformed every three months for the first two years after removal of the tumor, 

then every six months for the following two years, and yearly thereafter (Goodison et al., 

2009).  High reoccurrence rates, escalating medical costs, increased diagnoses, and often 

poor prognosis makes identifying risk factors that directly cause or lead to the 

progression of bladder cancer an area of intense research. 
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 Many environmental factors have been clearly associated with bladder cancer, 

with the strongest risk factor being cigarette smoking (Zeegers et al., 2000).  Cigarette 

smokers are estimated to have a two to four times increased risk for bladder cancer than 

those who do not smoke and the risk is enhanced with increased number of cigarettes and 

longer duration of smoking (Negri and La Vecchia, 2001).  Interestingly, cessation of 

smoking has been attributed to a 40% reduction of bladder cancer within one year, but the 

risk remains appreciable for up to 25 years (Volanis et al., 2010).  After smoking, 

occupational exposure is the second greatest risk factor that can lead to bladder cancer 

(Kogevinas et al., 2003).  The link between occupational exposure and the development 

of bladder cancer was first noted by a German surgeon, Dr. Lugwig Rehn in the late 19th 

century (Rehn, 1895).  Dr. Rehn noted that factory workers exposed to aromatic amines 

had a greater propensity for this cancer.  Dr. Rehn’s keen observations paved the way for 

further investigation of other chemicals attributed to the development of bladder cancer.  

Autoworkers, truck drivers, metalworkers, paper and rubber manufacturers, dry cleaners, 

dental technicians, hairdressers, marine engineers, and individuals who are continuously 

exposed to paint and leather industrial byproducts have an increased probability of 

developing bladder cancer (Jacobs et al., 2010).  Bladder cancer due to occupational 

exposures often does not appear until 30 to 50 years following exposure to the 

aforementioned environmental conditions.   

Toxicology of Arsenic and Cadmium 

 Arsenic and cadmium have been classified by the International Agency for 

Research on Cancer as known human carcinogens (IARC (International Agency for 

Research on Cancer), 1980; IARC (International Agency for Research on Cancer), 1993) 
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and these heavy metals have also been associated with the formation of bladder cancer.  

Observations over time have determined that exposure to arsenic can cause extremely 

serious health effects such as neurological problems, cardiovascular diseases, skin 

lesions, and cancers, including  skin, liver, lung, kidney, and bladder cancer (Rahman et 

al., 2009; Smith et al., 1992).  There are many exogenous risk factors associated with the 

development of bladder cancer and individuals may be exposed to arsenic from many 

sources, such as ingested food, air, and drinking water.  One source of environmental 

exposure to arsenic is through contaminated drinking water, which has been documented 

in at least 30 different countries (Chakraborti et al., 2002).  Epidemiologic research has 

provided substantial evidence linking the ingestion of arsenic contaminated drinking 

water with the development of bladder cancer (Steinmaus et al., 2000); specifically, 

evidence from incidences in Taiwan (Chiou et al., 1995), Argentina (Hopenhayn-Rich et 

al., 1996), Chile (Smith et al., 1998), and Japan (Tsuda et al., 1995).   

 Arsenic is a ubiquitously expressed metalloid in the environment that can exist as 

a pure element or in combination with other metals (Guha Mazumder, 2008).  Arsenic is 

capable of forming both organic and inorganic compounds in the environment and in the 

human body (Orloff et al., 2009).  Inorganic arsenic, the most abundant form in nature, is 

formed by the combination of arsenic with other compounds, such as oxygen, iron, 

sulfur, and chlorine; which is toxic.  When arsenic binds with hydrogen or carbon, it is 

referred to as organic arsenic; which is not considered toxic.  Arsenic is capable of being 

metabolized, but the process of its metabolism is highly complex and gives rise to several 

species of arsenic.  The differing forms of arsenic each have varying toxicities, some that 

are extremely toxic to those that have a low order of toxicity (Carter et al., 2003).  When 



 

7 

arsenic enters the body (Figure I-2), it is usually in the form of trivalent inorganic As(III) 

or arsenite, while only a small amount of pentavalent inorganic form As(V), or arsenate, 

can enter and is then rapidly reduced to the trivalent arsenic (Cohen et al., 2006).  After 

ingestion, inorganic arsenic is absorbed into the blood stream and then taken up by cells 

in tissues, primarily the liver.  In the liver, arsenic undergoes a series of reductions and 

oxidative methylations to form pentavalent monomethylarsonic acid [MMA(V)] and 

dimethylarsinic acid [DMA(V)] (Le et al., 2000).  During the metabolism of inorganic 

arsenic, trivalent intermediates, monomethylarsonous acid [MMA(III)] and 

dimethylarsinous acid [DMA(III)] are generated.  The methylation reactions appear to 

facilitate the excretion of arsenic, thereby decreasing its toxic effects (Carter et al., 2003).   

 
 

Figure I-2.  Intracellular metabolism of inorganic arsenic.  Adapted from Cohen et al. 
(2006).  Abbreviations: Asi(III), inorganic arsenite; Asi(V), inorganic 
arsenate; DMA(III), trivalent dimethylarsinous acid; DMA(V), 
pentavalent dimethylarsinic acid; MMA(III), trivalent 
monomethylarsonous acid; MMA(V), pentavalent monomethylarsonic 
acid; TMA, trimethylarsine;  TMAO, trimethylarsine oxide. 
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However, the MMA(III) and DMA(III) intermediates are structurally distinct compounds 

from the pentavalent MMA(V) and DMA(V) compounds and these trivalent methylated 

arsenicals formed during the metabolism of inorganic arsenic are highly reactive and 

believed to be the most carcinogenic forms of arsenic (Cohen et al., 2006).  Therefore, 

methylated trivalent arsenic is more toxic than Asi(III), whereas methylated pentavalent 

arsenic is less toxic than Asi(III) in humans.  However, in general the trivalent arsenicals 

[arsenite, MMA(III), and DMA(III)] are more potent toxicants than the pentavalent 

arsenicals [arsenate, MMA(V), and DMA(V)].  While, MMA(III) was shown to be more 

toxic that DMA(III) (Carter et al., 2003).  It remains unknown which exact form of these 

arsenicals is responsible for arsenic-induced cancers in humans. 

 Interestingly, up to 70% of arsenic absorbed or taken in is excreted from the body 

via urine (Cohen et al., 2006).  In most animal species, including humans, the 

intracellular metabolism of inorganic arsenic involves extensive metabolism to DMA(V).  

Humans also excrete significant amounts of MMA(V).  However, the Rattus norvegicus 

(rat) however behaves differently than other mammals regarding the metabolism of 

arsenic and excretes a trimethylated form, trimethylarsine oxide (TMAO), which in turn 

alters its sensitivity to arsenic as a toxicant (Vahter, 1994).  To further complicate 

matters, some animals (marmoset monkey, tamarin, squirrel monkey, and chimpanzee) 

do not methylate inorganic arsenic at all.  Within animals that that cannot methylate 

arsenic, the most toxic arsenic species is Asi(III), while in animals that can methylate 

arsenic it is MMA(III) (Carter et al., 2003).  The efficiency of arsenic methylation to 

DMA(V) in most experimental animals may attribute as to why arsenic is less toxic in 

these animals and has proven difficult to study.  Animal studies have been used to show 
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that high doses of inorganic arsenic administered as sodium arsenite or sodium arsenate 

in the diet or in drinking water of mice lead to increased proliferation of the bladder 

urothelium and tumor development (Suzuki et al., 2008).  Cytotoxicity with extensive 

necrosis and exfoliation was also observed in the bladder epithelium of female mice 

treated with 50 or 100 μg/g Asi (III) with dietary supplication (Suzuki et al., 2008).  

Advances in generating knockout animals with greater sensitivity to arsenic 

carcinogenesis, led to the generation of an As3mt knockout mouse model.  Arsenic 

methyltransferase (As3mt) catalyzes reactions that convert inorganic arsenic to 

methylated metabolites.  The inhibition of arsenic methylation has been shown to result 

in the concentration of inorganic arsenic in the urinary bladder of As3mt knockout mice.  

After treatment with arsenate, a five-fold increase in the sum of all arsenicals was seen in 

the bladder of the As3mt knockout mice compared to wild-type mice (Yokohira et al., 

2010).  This study also indicated that inorganic arsenic, in the absence of metabolism to 

methylated trivalent species, is capable of causing cytotoxic damage and regenerative 

hyperplasia in the bladder (Yokohira et al., 2010).  If sustained, this increase in urothelial 

proliferation ultimately can result in bladder tumors (Waalkes et al., 2006).  

Consequently, the differences in metabolic characteristics, toxicity, and excretion of 

arsenic in humans and animal models have set limitations on determining arsenic 

carcinogenesis.   

 Cadmium is a ubiquitously expressed metal in the environment with no known 

health benefits or beneficial physiologic function in humans (Nzengue et al., 2011).  

Unlike arsenic, cadmium is not metabolized and is toxic at very low concentrations 

(Nzengue et al., 2011).  Cadmium also has a high rate of soil-to-plant transfer leading to 
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contamination of most foodstuffs, rendering the diet as one source of exposure (Satarug 

et al., 2011).  Cadmium is present in nearly all foods, but concentrations vary widely 

depending on food type and the level found naturally within the soil.  Bivalve mollusks 

and crustaceans have high levels of cadmium due to their filter feeding behavior that 

allows them to accumulate metals from their aquatic environment (Whyte et al., 2009).  

High cadmium levels are also found in offal products, such as the liver and kidney; this is 

especially seen in older animals.  Other sources of cadmium are in oilseeds, cocoa beans, 

and in certain wild mushrooms (Prankel et al., 2005; Prugarova and Kovac, 1987; Reeves 

and Vanderpool, 1997; Zhu et al., 2011).  Food from plants generally contains higher 

concentrations of cadmium than animal products (meat, milk, eggs, and dairy products).  

Wheat, rice, green leafy vegetables, potatoes, and carrots contain higher concentrations 

than other sources and accounts for more than 80% of cadmium consumption (Olsson et 

al., 2002).   

 In addition to dietary exposure, cadmium has been found to be generated in 

occupational environments, such as in battery manufacturing, metal soldering, and 

welding facilities (Siemiatycki et al., 1994).  At these facilities, cadmium exposure can 

occur by breathing in contaminated air.  Another avenue of cadmium exposure, like that 

of arsenic is through consumption of tobacco products (Waalkes, 2000).  Due to the 

ability of tobacco leaves to accumulate cadmium, each cigarette contains between 1-2 μg 

of cadmium and about 50% of cadmium inhaled from cigarette smoke can enter the 

systemic circulation (Matovic et al., 2011).  The elimination of cadmium from the body is 

very slow and therefore leads to its accumulation with age, predominantly within the 

kidney.    
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 Although the epidemiologic data on cadmium is less extensive than that of 

arsenic, environmental cadmium exposure has been linked to the development of cancers 

in the breast, kidney, pancreas, and urinary bladder (Huff et al., 2007).  The toxic effects 

of cadmium were first noted in 1950 with the outbreak of “Itai-itai” disease, or “ouch-

ouch” disease in Toyama Prefecture, Japan.  The naming of this ailment was due to the 

tortuous screams of patients that were suffering excruciating pain in their joints and 

spine; this condition was caused by the ingestion of cadmium contaminated runoff water, 

released from mining companies, that was used to irrigate crops, especially rice paddies.  

Itai-itai is characterized by multiple fractures and distortion of the long bones in the 

skeleton.  There was also decalcification and fractures of other bones including 

compression fractures of the spine (Jarup and Akesson, 2009).  The disease exhibits a 

mixed pattern of mainly osteomalacia but also osteoporosis in combination with kidney 

damage (Kagawa, 1994).  

 Cadmium has been shown to accumulate in the liver, kidney, and other tissues 

(primarily muscle, bone, and skin) and is usually found bound to metallothionein, a metal 

binding protein, which may serve to temporarily detoxify the metal (Waalkes, 2003).  

However, cadmium cannot be metabolized into a less toxic species and is poorly 

excreted; therefore, the body has a limited capacity to respond to cadmium exposure.  

With no specific entry into the cell, cadmium utilizes the routes that physiological metals 

use to pass through the cell membranes.  In particular, cadmium has been shown to 

interfere with many essential metals and metalloids including but not limited to, calcium, 

magnesium, sodium, potassium, zinc, copper, iron, and manganese (Moulis, 2010).  With 

a similar structure to zinc, cadmium is known to replace zinc in tissues and in enzyme 
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binding sites.  A recent study determined that cadmium could also enter cells through the 

ZIP8 family of zinc-dependent transporters and an increase in these proteins at the cell 

surface increases the influx of cadmium (He et al., 2006).  Additional analysis of ZIP8 

expression showed human bladder cells and normal human bladder tissue had a 

paranuclear localization of ZIP8 protein.  The association of ZIP8 with the nucleus could 

indicate a possible involvement in providing zinc to zinc-requiring transcription factors 

and potentially a route for cadmium to gain entry into the nucleus and induce DNA 

damage (Ajjimaporn et al., 2012).  Also, this study demonstrated that ZIP8 protein 

expression was variable in the normal human bladder cell line and in human bladder cells 

malignantly transformed by cadmium or arsenite depending on the time following 

feeding the cells with fresh growth media.  This indicates that ZIP8 expression can vary 

depending on nutritional status (Ajjimaporn et al., 2012).  Intestinal absorption of 

cadmium was also shown to be increased when the nutritional status of calcium, iron, or 

zinc was low.  This is caused by the up-regulation of the duodenal iron transporter during 

iron deficiency, leading to an increased cadmium absorption into the intestine (Menke et 

al., 2009).  This is primarily seen in women, whose prevalence of iron depletion is 

generally higher than that of men (Vahter et al., 2007).   

 Only a few studies have focused on the relationship between cadmium exposure 

and the development of bladder cancer.  A population-based study of the associations 

between various cancers and occupational exposures in Canada found some evidence, 

albeit weak, that cadmium compounds are a risk factor for bladder cancer (Siemiatycki et 

al., 1994).  Also it was determined from a patient set that included 10 individuals with 

bladder cancer, 60% had increased urinary cadmium content compared to the urinary 
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cadmium content in healthy individuals (Darewicz et al., 1998).  Kellen et al. (2007) 

conducted a case-control study in Belgium to assess the association between blood 

cadmium levels and the risk of urinary bladder cancer.  The risk for bladder cancer was 

enhanced with increasing levels of blood cadmium and the risk was eight times higher in 

the group of individuals with the highest blood cadmium concentrations, after taking sex, 

age, and occupational exposure into account (Kellen et al., 2007).  The results remained 

significant even after adjusting for smoking habits, indicating that other routes of 

cadmium exposure were significant and this study was not just an indicator of smoking 

behavior.  Taken together, these studies indicate an involvement of cadmium in 

promoting bladder carcinogenesis.   

 Although cadmium and arsenic have obvious differences in physical properties, 

transport, and metabolism, both metals have been implicated as environmental agents 

leading to bladder cancer.  Epidemiologically, bladder cancer represents one of the first 

cancers in which industrial carcinogens were shown to be a major factor in the causation 

of the disease (Zhou et al., 2006).  A majority of bladder cancers are believed to be a 

result of cigarette smoking, while the remaining cases are induced by industrial or 

agricultural exposure to carcinogens.   

Cell Death: Apoptosis, Necrosis, and Autophagy 

 Cell death occurs under a variety of physiological and pathological conditions and 

has been shown to be a critical process during development, homeostasis, and immune 

regulation of multicellular organisms.  The cell has several routes by which it can die, 

including apoptosis, necrosis, and autophagy.  Each of the cell death types is 

characterized by distinct morphological features and is regulated by differing signaling 
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pathways that eventually lead to irreversible physiological events.  Although these forms 

of cell death operate through differing mechanisms, their pathways are not mutually 

exclusive or even independent.  In fact, some of the pivotal regulatory factors originally 

characterized for apoptosis and autophagy appear to guide the induction of necrotic 

mechanisms of cell death.   

 Apoptosis is a highly conserved pathway that is found naturally in virtually all 

tissues and constitutes a default state that must be actively inhibited in most cell types.  

Apoptosis eliminates cells that have been intrinsically signaled that the cell is no longer 

useful or that it has become dangerous to the organism, by activating enzymes that 

degrade the cells’ own nuclear DNA and proteins.  Apoptosis is morphologically 

associated with cell shrinkage, membrane blebbing, and chromatin condensation 

(Figure I-3).  Within an apoptotic cell, the chromatin aggregates into highly condensed 

masses and the nucleus may also break up into fragments.  Apoptosis is characterized by 

plasma membrane integrity that persists until late in the process.  The plasma membrane 

of apoptotic cells acquires an altered structure, especially within the orientation of lipids 

(Kumar et al., 2010).  The membrane blebbing that occurs leads to the fragmentation of 

membrane-bound apoptotic bodies that contain cytoplasm and tightly packaged 

organelles.  Apoptotic bodies are generated by the controlled breakdown of cellular 

contents which are then targeted and engulfed by surrounding cells and phagocytes 

before the cell ruptures.  Since the cell is rapidly cleared before its contents leaks out, 

there is no inflammatory reaction in the host.   

 Apoptotic cells exhibit specific biochemical modifications that underlie the 

structural changes.  The breakdown of proteins involves the activation of several 
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Figure I-3. The sequential ultrastructural changes seen in necrosis (left) and apoptosis 
(right).  Adapted from Kumar et al. (2010). 

 

members of a family of cysteine proteases or caspases (Fuentes-Prior and Salvesen, 

2004).  Caspases are present in cells as an inactive pro-enzyme that need to be 

proteolytically cleaved in order to be activated.  Activated caspases cleave several vital 

cellular proteins, break down the cytoskeleton and nuclear scaffold, and can activate 

DNAses, leading to the degradation of nuclear DNA (Kumar et al., 2010).  Apoptotic 

cells also express phosphatidylserine on the outermost layers of the plasma membrane.  

This phospolipid is usually found on the inner membrane, or cytosolic side of the cell, but 

when a cell undergoes apoptosis phosphatidylserine is no longer restricted to the 

cytosolic part of the membrane and becomes exposed on the surface of the cell.  This 
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alteration allows for detection of an apoptotic cell by macrophages, leading to 

phagocytosis of the cell before the cell ruptures (Majno and Joris, 1995).   

 During embryological development, apoptotic cell death plays an important role 

in organogenesis and tissue remodeling; such as in the development of the eye, in shaping 

of the inner ear, in cardiac morphogenesis, in muscle development, and in removal of 

interdigital webs (Penaloza et al., 2006).  In adult organisms, apoptosis is critical in 

maintaining cellular homeostasis, as in post-lactational mammary gland regression, 

ovarian follicular atresia, and elimination of activated immune cells to terminate an 

immune response (Elmore, 2007).  Dysregulation or dysfunction of the apoptotic 

program is implicated in a variety of pathological conditions.  Defects in apoptosis can 

result in cancer, autoimmune diseases, and spreading of viral infections, while 

neurodegenerative disorders, AIDS, and ischemic diseases are caused or enhanced by 

excessive apoptosis (Fadeel et al., 1999). 

 Another form of cell death is necrosis.  Necrosis is mainly caused by physical or 

chemical trauma to the cell and begins with an impairment of the cell’s ability to 

maintain homeostasis, leading to an influx of water and extracellular ions 

(Vanlangenakker et al., 2008).  Morphologically, necrosis is associated with cellular 

swelling, membrane disruption, and profound nuclear changes (Figure I-3).  Necrotic 

cells do not fragment into discrete bodies as apoptotic cells do, rather the whole cell as 

well as intracellular organelles, most notably the mitochondria, swell rapidly and rupture.  

Due to organelle swelling, ribosomes disassociate from the endoplasmic reticulum, small 

amorphous densities appear within the mitochondria, and lysosomes rupture.  Nuclear 

changes within a necrotic cell may show several varying patterns caused by the 
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nonspecific breakdown of DNA, including, nuclear condensation, fragmentation, or 

dissolution of the nucleus (Kumar et al., 2010).  Laminated structures or myelin figures 

are usually present in a necrotic cell.  These structures are derived from damaged 

membranes of organelles and the plasma membrane.  They appear as large, whorled 

phospholipid masses.  Due to the ultimate breakdown of the plasma membrane, the 

cytoplasmic contents including lysosomal enzymes are released into the extracellular 

environment.  This type of cell death causes a potentially damaging inflammatory 

response and is often associated with extensive tissue damage.  Necrosis has traditionally 

been defined as an unregulated cell death process that lacks an energy (ATP) requirement 

that is related to the loss of regulation of ion homeostasis and later random digestion of 

DNA (Majno and Joris, 1995; Vanlangenakker et al., 2008).   

 Necrosis is also involved in physiologically relevant processes, such as ovulation, 

the death of chondrocytes associated with the longitudinal growth of bones, and cellular 

turnover in the small and large intestines (Festjens et al., 2006).  Reducing the number of 

T lymphocytes after an immune response is an important mechanism that involves 

necrotic cell death (Holler et al., 2000).  Pathological conditions have been associated 

with necrosis during ischemia/reperfusion, which can lead to the injury of organs, 

including the heart, brain, liver, kidney, and intestine (Neumar, 2000).  Necrotic cell 

death has also been shown to contribute to excitotoxicity, which may be involved in 

stoke, traumatic brain injury, and several neurodegenerative diseases (Ankarcrona et al., 

1995). 

 Autophagy, the process by which cells recycle cytoplasm and dispose of defective 

organelles (Shintani and Klionsky, 2004), plays a central role in maintaining homeostasis 
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within a cell.  Due to its pro-survival function, autophagy can be also induced by a 

change of environmental conditions or during stress, such as nutrient depletion.  Within 

autophagy, cells are protected from dying by the elimination of harmful organelles and 

aged cytoplasmic components.  In most cases, autophagy constitutes a protective 

response activated by dying cells in an attempt to cope with stress (Galluzzi et al., 2012).  

In most tissues, autophagy occurs at a basal level and allows for routine cytoplasmic and 

protein turnover.  The morphological hallmark of autophagy is the formation of the 

double or multi-membrane bound structures, called autophagosome or autophagic 

vacuole, in the cytoplasm of cells.  The autophagosome is formed de novo and sequesters 

the desired material to be removed, the vacuole then fuses with a lysosome or late 

endosome where the cellular contents are broken down and reutilized under conditions of 

resource deprivation (Bursch, 2001).  A distinguishing feature of autophagy that 

separates it from apoptosis is the source of lysosomal enzymes used for the dying cell’s 

degradation.  Apoptotic cells rely on being phagocytosed and then use the phagocytic 

cell’s lysosomes for degradation, but autophagic cells use their own lysosomal machinery 

(Shintani and Klionsky, 2004).   

 Autophagic signaling acts through the mTOR (mammalian target of rapamycin) 

signaling pathway, which is a protein kinase important in controlling cell-cycle 

progression, translation, and is an inhibitor of autophagy.  When mTOR is inhibited by 

starvation or with treatment of rapamycin, autophagy is induced and leads to activation of 

downstream effectors including the autophagy-related (Atg) genes which participate in 

the elongation and closure of the membrane associated with the autophagosome (Jung et 

al., 2009).  At least 30 Atg genes have been identified and have been suggested to 
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participate in autophagy at different steps throughout the process (He and Klionsky, 

2009).  The synthesis of autophagic vacuoles requires vesicular nucleation, which is 

initiated by another complex, the PI3KC3 (class 3 phosphatidylinositol 3-kinase) 

complex.  This complex includes beclin-1/Atg-6 and leads to the generation of PI3P 

which controls the membrane dynamics that are associated with autophagosome 

formation.  To mediate vesicle membrane elongation, other Atg proteins are recruited.  

Implicated in this process is the activation of two ubiquitin-like conjugation systems 

(Figure I-4), the Atg-5/Atg-12 and the light chain-3 (LC3) complexes (He and Klionsky, 

2009).  Briefly, activation of Atg-12 requires Atg-7 which catalyzes the covalent binding 

of Atg-5 with Atg-12.  Subsequent interactions between Atg-5/Atg-12 and Atg-16 recruit 

these molecules and attach them to the autophagophore (He and Klionsky, 2009).  At the 

same time, LC3 is lipidated by binding to phosphatidylethanolamine (PE).  In contrast to 

 

 

 
Figure I-4. Schematic diagram of beclin-1 and the Atg proteins within the autophagic 

pathway.  Activation of autophagy proteins leads to the generation of the 
autophagic vacuole in which cellular organelles are sequestered and then 
degraded following fusion of the vesicles with lysosomes.  The digested 
materials are recycled to provide nutrients for the cell.  Adapted from 
Pattingre et al. (2008).
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the cytoplasmic localization of LC3, LC3-PE or more commonly known as LC3-II, is 

localized to the autophagosome membrane and is generally used as an autophagic 

marker.  Finally, the autophagosome fuses with a lysosome, and releases its autophagic 

content into the lysosomal lumen for degradation by hydrolases (He and Klionsky, 2009)  

 Beclin-1 plays a central role in autophagy and appears to be an essential gene for 

this type of cell death.  Beclin-1 was first identified as a Bcl-2 interacting protein from a 

mouse brain library (Pattingre et al., 2008).  Interestingly, Bcl-2 as well as several other 

anti-apoptotic Bcl-2 family members down-regulate autophagy by binding to beclin-1 

and blocking its function.  However, during starvation or other environmental 

stresses,Bcl-2 becomes phosphorylated and therefore releases beclin-1 and promotes 

autophagy (Pattingre et al., 2008).  From studies done in yeast, beclin-1 was shown to be 

involved in the early steps of autophagosome formation (Figure I-4) and beclin-1 is 

responsible for the recruitment of the Atg proteins to the autophagosome leading to 

membrane elongation and closure of the of the autophagosome, therefore stimulating 

autophagy (Pattingre et al., 2008).  The beclin-1 gene has been shown to be deleted in up 

to 75% of ovarian, 50% of breast, and 40% of prostate cancers (Aita et al., 1999).  Other 

cancers have been shown to have decreased expression of beclin-1 including human brain 

tumors and cervical cell carcinoma (Aita et al., 1999).  Inhibition of beclin-1 expression 

is associated with protection against autophagic cell death and actually induces apoptosis 

(Boya et al., 2005).   

 Autophagic cell death has been primarily described in developmental processes 

that require extensive cell destruction and removal.  The development of the salivary 

gland cells has been associated with the induction of autophagy in Drosophila and mice 
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(Berry and Baehrecke, 2007).  Studies have shown that beclin-1 knockout mice die early 

in embryogenesis, while atg-5 and atg-7 knockout mice are born normally, but die soon 

after birth (Sinha and Levine, 2008; Yue et al., 2003).  The role of autophagy in cancer is 

highly debated as it can function to prevent accumulation of toxic cellular substances, 

some of which may be carcinogenic and allow for autophagy to act as a tumor 

suppressor, and it may also function to support cell survival in conditions of hypoxia 

aiding in the survival of tumors leading autophagy to be a tumor promoter. 

Matricellular Proteins of the Extracellular Matrix 

 The extracellular matrix (ECM) is an intricate arrangement of proteoglycans, 

collagens, glycoproteins, and growth factors that not only act as a physical scaffold for 

the attachment and organization of cellular structures, but also as a mediator of 

intracellular signaling through cell surface receptors that recognize these ECM 

molecules.  Most of the glycoproteins in the ECM promote cell adhesion and cause 

reorganization of the cytoskeleton that lead to signals directing differentiation and 

promotion of cell survival.  Examples of these structural glycoproteins include 

fibronectin, vitronectin, collagen, and laminin.  However, the ECM contains another 

group of proteins which can function as both soluble and insoluble proteins in the 

extracellular environment or matrix called “matricellular proteins.”  The term 

“matricellular protein” was first introduced by Bornstein in 1995 to classify a 

nonhomologous group of regulatory macromolecules which are not structural 

components of the ECM, but rather mediate interactions between cells and the ECM 

(Bornstein, 1995).  Matricellular proteins function to modulate cell-matrix interactions by 

binding to the structural matrix proteins, activating cell-surface receptors, and modulating 
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the activity of growth factors and cytokines.  This group of proteins includes 

thrombospondins (TSP) -1 and -2, tenascins (TN) -C and -X, CCN family (including 

connective tissue growth factor), and SPARC (secreted protein, acidic and rich in 

cysteine), naming a few.  Even though these proteins are structurally distinct, they appear 

to perform similar functions.  They have counter-adhesive effects that can lead to the 

rounding of cells and can disrupt cell-matrix interactions.  Expression of these proteins is 

often required for embryonic development, but their expression is generally low in 

steady-state conditions of adult tissue.  However, the expression of matricellular proteins 

is up-regulated in wound healing and tissue remodeling, and they contribute to several 

cellular processes such as cell adhesion, migration, cell survival, and proliferation.  The 

unusual expression pattern of these proteins is often associated with tumor development 

and progression.  The expression of several matricellular proteins has been found and 

characterized in many types of cancer (Podhajcer et al., 2008).  Within the tumor 

microenvironment, tumor epithelial cells and the surrounding stromal cells both secrete 

matricellular proteins.  The ability of matricellular proteins to have a close interaction 

with the ECM allows for their influence on each step of cancer progression. 

SPARC 

 SPARC, secreted protein rich in cysteine, also known as BM-40 or osteonectin, is 

an extracellular matrix associated glycoprotein.  First founded as the most abundant non-

collagenous component of bone by Termine et al. (1981), SPARC was found to bind to 

collagen fibrils, and specifically hydroxyapatite at distinct sites.  Later it was found to be 

secreted by endothelial cells in vitro (Sage et al., 1984), a product of fibroblasts in culture 

(Otsuka et al., 1984), and a protein secreted from mouse embryonic endoderm (Mason et 
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al., 1986).  The SPARC gene is located on chromosome 5q31.3-32 (Swaroop et al., 1988) 

and is highly conserved among different species, with the human gene having 92% 

homology with the mouse gene.  Containing ten exons separated by nine introns, the 

human gene spans 25.9 kb with the first non-coding exon followed by a large 10.6 kb 

intron.  The last exon contains the entire 3’ non-translated region (Villarreal et al., 1989).  

The 300 bp CpG island, spanning from exon 1, to the first intron has been shown to be 

methylated in several cancers (Sato et al., 2003).  The SPARC promoter lies between 

nucleotides -51 to -120 in the human gene and lacks a TATA or CAAT box, but is 

composed almost entirely of purines with a repetitive GGA motif, called a GGA box 

(Hafner et al., 1995).   

 The vertebrate SPARC gene encodes a 303 amino acid protein that contains an 

initial 17 hydrophobic amino acids signaling peptide and can be post-translationally 

modified by N-linked glycosylation.  The SPARC protein has a predicted molecular mass 

of 32,511 daltons, but the secreted form of the protein migrates at 43 kDa on sodium 

dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) most likely due to the 

addition of carbohydrates (Sage et al., 1984).  All members of the SPARC family of 

proteins, including testican-1, -2, and -3, SPARC-like 1 (hevin), and SPARC-related 

modular calcium binding (SMOC)-1 and -2 have three similar domains (Figure I-5): the 

N-terminus (NT), the follistatin- like (FS), and the extracellular calcium binding C-

terminus (EC) (Brekken and Sage, 2001).  The first of three modular domains in SPARC 

contains amino acids 1-52 and is encoded on exons 3 and 4.  This highly acidic NH2-

terminal domain is rich in glutamic acid, binds hydroxyapatite (Lane and Sage, 1994), 

and up to eight calcium ions with low affinity (Engel et al., 1987).  The N-terminal



 

24 

 
 

Figure I-5.   The structure of human SPARC protein.  A ribbon diagram was derived 
from the crystallographic data and indicates the three domains within the 
SPARC protein.  The acidic domain (domain one) is shown in black and 
contains amino acids 1-52.  The follistatin-like domain (domain two), 
amino acids 53-137, is shown in red, except for peptide 2.1, amino acids 
55-74, and peptide 2.3, amino acids 114-130, which are shown in green 
and black respectively.  The extracellular Ca2+-binding domain (domain 
three), amino acids 138-286, is shown in blue except for peptide 4.2, 
amino acids 255-274, which is shown in yellow.  Adapted from Brekken 
and Sage (2001). 

 

domain contains a sequence designated peptide 1.1, containing amino acids 4-23, is an 

efficient inhibitor of endothelial cell spreading (Lane and Sage, 1990) and increase 

matrix metalloproteinase (MMP)-2 activation (Gilles et al., 1998).  Also, this structural 

region of the SPARC protein is the most distinct when compared to the other members of 

the SPARC family. 

 The second domain (amino acids 53-137), also known as the follistatin-like 

domain, is encoded within exons 5 and 6 and is homologous to a repeated domain in 

follistatin (Clark and Sage, 2008).  This domain is stabilized and ridged due to its 

cysteine-rich region in which all the cysteine residues are disulfide-bonded.  The 
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follistatin domain in SPARC also contains bioactive peptides that exert differing effects 

on endothelial cells.  Peptide 2.1 (amino acids 55-74) stimulates proliferation of 

fibroblasts, but inhibits endothelial cell proliferation (Funk and Sage, 1993), and plays a 

role in the disassembly of focal adhesions on endothelial cells (Murphy-Ullrich et al., 

1995).  Peptide 2.3 (amino acids 113-130) which contains two copper binding sites and 

the copper binding sequence (K)GHK, has been determined to stimulate endothelial 

cellular proliferation (Funk and Sage, 1991; Funk and Sage, 1993) and angiogenesis 

(Lane and Sage, 1994).   

 The third domain encompasses amino acids 138-286, which is encoded within 

exons 7-9, and is the most conserved region of SPARC.  This domain has a calcium-

binding region that is folded into an α-helical globular structure (Sasaki et al., 1998) and 

contains two EF-hand motifs (Hohenester et al., 1997).  It is within this third domain that 

SPARC is capable of binding to fibrillar and basement membrane collagens (Sasaki et al., 

1998).  Peptide 4.2 (amino acids 254-273), which is within the second EF-hand domain, 

contains a sequence that has been shown to bind to endothelial cells and inhibit their 

proliferation and migration (Hasselaar and Sage, 1992; Kupprion et al., 1998; Motamed 

and Sage, 1998).  This peptide has also been shown to block the effects of VEGF 

(vascular endothelial growth factor) (Kupprion et al., 1998), bFGF (basic fibroblast 

growth factor) (Hasselaar and Sage, 1992; Motamed et al., 2003; Sage et al., 1995), and 

PDGF (platelet derived growth factor) (Motamed et al., 2003) in multiple cell types and 

participates in the disassembly of focal adhesions (Murphy-Ullrich et al., 1995).    

 With diverse functional domains, SPARC also plays a role in many physiological 

processes.  SPARC has three distinct functions, including de-adhesion, anti-proliferation, 
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and regulation of the extracellular matrix and several growth factors.  The de-adhesive 

properties of SPARC have shown it to impair cell attachment to the ECM by causing a 

restructuring in the focal adhesions and stress fibers (Murphy-Ullrich, 2001).  The 

exogenous addition of SPARC to cells in culture has been shown to induce rounding on 

confluent monolayers of endothelial cells, fibroblasts, and smooth muscle cells, and 

maintain the rounded morphology of newly plated fibroblast by inhibiting their spreading 

(Sage et al., 1989).  However, the established cell lines F9 embryonic carcinoma cells, 

PYS-2 parietal endoderm cells, and 3T3 fibroblast cells had normal cell morphology with 

the addition of exogenous SPARC (Sage et al., 1989).  The ability to disassemble focal 

adhesions and reorganize actin stress fibers to the periphery of cultured endothelial cells 

has been localized to peptide 2.1 of FS module and part of the EC module when SPARC 

is added exogenously (Murphy-Ullrich et al., 1995).  Exogenous addition of SPARC has 

also been shown to increase endothelial cell permeability leading to barrier dysfunction in 

pulmonary vascular endothelial cells.  These changes in cell shape were F-actin 

dependent and coincident with the appearance of intercellular gaps, that provided a 

paracellular pathway for extravasation of macromolecules (Goldblum et al., 1994).  The 

counter-adhesive properties may indicate SPARC plays a role in migration, a necessary 

process for the progression of metastatic tumors. 

 The anti-proliferative function of SPARC has been directly linked to the 

inhibition of bovine aortic endothelial cells into the S-phase of the cell cycle after 

exogenous addition of the protein (Funk and Sage, 1991).  Human umbilical vein 

endothelial cells, fetal bovine endothelial cells, and bovine capillary endothelial cells 

were also arrested from progressing from the G1 to S-phase in response to SPARC (Funk 
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and Sage, 1993).  In contrast to the growth inhibition, SPARC differentially influences 

the growth of fibroblasts.  Peptide 2.1 in the FS module of SPARC was shown to 

stimulate proliferation of fibroblast at concentrations of 0.1-0.4 mM; however, at higher 

concentrations of the peptide this effect was reversed.  While peptide 1.1 was shown to 

inhibit endothelial cell spreading, but did not affect cell-cycle progression in these cells 

(Funk and Sage, 1991).  Also of interest, fibroblasts, smooth muscle cells, and mesangial 

cells extracted from SPARC-null mice have a higher proliferation rate than cells from 

wild-type mice (Bradshaw et al., 1999).  Within injured tissue, SPARC is strongly 

expressed in endothelial cells, epithelial cells, macrophages, and fibroblasts (Framson 

and Sage, 2004).  Increased SPARC expression was also associated with an increased 

capacity for invasion in vitro in prostate cancer, gastric cancer, breast cancer, 

glioblastoma, and malignant melanoma (Tai and Tang, 2008).  SPARC was also 

significantly increased in the necrotic region of myocardial infarction in mice and 

promoted the migration of fibroblasts (Wu et al., 2006).  From this study, it was assumed 

that the enhanced SPARC expression modulate the interactions between cells and their 

surrounding matrix leading to the migration of fibroblasts into the injured area. (Wu et 

al., 2006).  The ability of SPARC to stop cell cycle progression and regulate proliferation 

of specific cells may also lead to the migratory characteristics found in tumor cells. 

 SPARC has been shown to bind to several ECM proteins and may regulate the 

structural integrity of the ECM.  SPARC has been shown to bind to several types of 

collagen, including, Types I, II, III, IV, V, and VIII , and influence collagen fibril 

assembly and morphology (Yan and Sage, 1999).  Since SPARC has the capacity to bind 

to both fibrillar and nonfibrillar collagens, SPARC can function to regulate the ECM 
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assembly in connective tissue and in the basal lamina.  However, SPARC’s interactions 

with collagen are dependent on the presence of glycosylation, calcium, and protease 

activation.  Therefore, tissue-specific alterations in the structure of SPARC can greatly 

affect its binding affinity to the ECM (Kaufmann et al., 2004).   

 The generation of SPARC-null mice has further provided a means to examine the 

role of SPARC in the ECM.  SPARC-deficient mice exhibit a wide range of phenotypes, 

including early cataract formation, accelerated dermal wound-closure, osteopenia, lax 

skin, and a kinked tail (Bradshaw et al., 2003b).  The development of premature cataracts 

is caused by disorganization of laminin and collagen IV in the lens epithelial basement 

membrane (Yan et al., 2003).  Deficiencies were also found in the connective tissues of 

the SPARC-null mice, including decreased collagen I levels in skin, adipose, heart, and 

bone (Bradshaw et al., 2003a; Bradshaw et al., 2003b).  Also collagen fibrils of the skin 

in SPARC knockout mice were uniformly smaller in diameter, showed a reduction in the 

collagen content to about half of the collagen content seen in wild type mice, and was 

reduced in terms of maturation and tensile strength (Bradshaw et al., 2003b).  The 

accelerated wound-healing in the dermis of SPARC-null mice was determined to be a 

result of the increase contractility of the skin (Bradshaw et al., 2003b).  Even though the 

deletion of SPARC led to a wide range of affected tissues in mouse tissue, the resulting 

aberrations in each tissue were due to altered production or assembly of the ECM 

(Framson and Sage, 2004).  Since SPARC is a primary mediator of collagen assembly 

and stability in several tissues, these studies show SPARC is required for proper collagen 

maturation and function within the ECM.  
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 SPARC has also been shown to modulate the formation of the ECM by increasing 

the activity (Gilles et al., 1998) and production of matrix metalloproteinases (MMP), 

specifically MMP-1, MMP-2, and MMP-3 (Tremble et al., 1993).  SPARC can also 

contribute to the reformation of the ECM by the induction of a type 1 plasminogen 

activator inhibitor (PAI-1), an protease inhibitor (Lane et al., 1992).  After the exogenous 

addition of SPARC to subconfluent endothelial cells, PAI-1 secretion was detected.  

However, PAI-1 was not secreted from contact-inhibited endothelial monolayers after 

exogenous treatment with SPARC, suggesting that SPARC may lead to the active 

remodeling of the ECM (Lane et al., 1992).  SPARC is also a known regulator of several 

growth factors and cytokines.  SPARC can sequester growth factors like VEGF or PDGF 

and has been shown to activate cytokines such as transforming growth factor (TGF)-β1 as 

well as insulin-like growth factor 1 (Bornstein and Sage, 2002; Chandrasekhar et al., 

1994). 

 While SPARC has an important role in the adhesion and proliferation of normal 

cells, much data suggests that SPARC affects the progression of several cancers.  The 

role of SPARC in cancer appears to depend on its diverse functions within specific 

tissues.  In some types of cancer, SPARC is expressed at high levels in tumor cells and 

correlates with disease progression and poor prognosis, while in others SPARC functions 

as a tumor suppressor.  Aberrant expression of SPARC has been proposed to contribute 

to malignancies such as breast cancer (Bellahcene and Castronovo, 1995; Gilles et al., 

1998), glioblastoma (Rempel et al., 1998), melanoma (Ledda et al., 1997a), ovarian 

cancer (Porter et al., 1995), and pancreatic cancer (Sato et al., 2003) to name just a few.  

Although low SPARC expression may be associated with some malignant tumors, 
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stromal tissue surrounding the tumor may be SPARC positive.  The expression and 

secretion of SPARC in ovarian cancer cells is reduced compared to normal ovarian 

epithelial cells, which express and secrete SPARC at high levels.  Also, forced expression 

or exogenous addition of SPARC inhibits in vitro and in vivo tumor growth in ovarian 

cancer cells (Socha et al., 2009).  Within breast cancer, over expression of SPARC 

inhibited tumor growth and reduced invasion of MDA-MB231 cells through Matrigel 

(Koblinski et al., 2005).  However, others have shown that SPARC increases invasion of 

breast cancer and prostate cancer cells (Jacob et al., 1999).  Increased expression of 

SPARC has been correlated with increased malignancy in other cancers as well.  In 

malignant melanoma, decreased SPARC expression by transfection using an antisense 

expression vector resulted in the loss of the ability for these cells to adhere and invade in 

vitro (Ledda et al., 1997b).  Knockdown of SPARC with siRNA also decreased glioma 

cell invasion (Shi et al., 2007).  Fibroblasts and/or inflammatory cells in the tumor 

microenvironment often express SPARC, which may contribute to metastasis in some 

cancers (Sangaletti and Colombo, 2008), or may be a type of wound healing response to 

the presence of the tumor.  These observations suggest that regulation and function of 

SPARC are dependent on cellular type.  An interesting study done by Haber et al. (2008), 

demonstrated that SPARC alters the proliferation of stromal cells but not melanoma cells.  

This raises the idea that the differential expression of SPARC may exist within a tumor 

and may also affect the progression of the tumor.   

 Studies on the growth of tumors in SPARC-null mice reveal alterations in the 

production and organization of the ECM components within and surrounding implanted 

tumors.  The tumor was poorly encapsulated, contained less collagen, collagen fibers 
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were smaller, and also exhibited a lack of macrophage recruitment (Brekken et al., 2003).  

These changes in the tumors of SPARC-deficient mice were believed to be due to the 

changes in the organization of the ECM that created a less restrictive microenvironment 

for tumor progression.  The formation of tumors by the injection of malignant cells into 

SPARC-null mice has led to controversial results.  Subcutaneous injection of lung cancer 

cells and T cell lymphoma cells showed larger tumor formation in SPARC-null mice 

compared to wild-type mice (Brekken et al., 2003), while breast cancer cells exhibited a 

reduced tumor growth in SPARC-null mice compared to wild-type mice (Sangaletti et al., 

2003).  The mixed results from tumorigenic studies in SPARC-null mice, furthers the 

evidence that SPARC’s role in tumorigenesis is context and cell-type dependent (Arnold 

et al., 2008; Brekken et al., 2003).   

 The importance of SPARC expression in human urothelial cancers has been the 

focus of a limited number of studies.  Hudson et al. (2005) was the first group to localize 

SPARC protein expression to the apical region of suprabasal cells in normal human 

bladder tissue.  Hudson et al. also showed primary urothelial cells to have inhibited cell 

spreading after addition of recombinant SPARC protein.  This inhibition was transient, as 

cultures were nearly comparable to controls at 6 h and fully recovered by 24 h.  The 

authors suggested urothelial cells may quickly secrete adhesive factors in response to 

SPARC activity or the recombinant SPARC was quickly degraded or rendered inactive 

by extracellular processes, as possible explanations to the recovery (Hudson et al., 2005).  

The anti-spreading ability of SPARC in human urothelial cells was attributed to the  

C-terminal portion of the third domain in the SPARC protein (Delostrinos et al., 2006).  



 

32 

Another group showed strong SPARC expression in tumor-associated myofibroblasts 

surrounding invasive urothelial carcinoma human tumors (Nimphius et al., 2007). 

 Since tumors are a heterogeneous mixture of several cell types, cross-talk is 

important between the tumor cells and the surrounding stroma to create an environment 

that is capable of tumor growth and invasion.  The tumor cells, their stromal components, 

and the extracellular matrix are important factors that influence the complex effects of 

SPARC.  Moreover, the location and concentration of SPARC and interactions between 

SPARC and other molecules, also contribute to the impact of SPARC on target cells.  

The ability of several cell types to actively produce and secrete SPARC within a tumor 

can lead to SPARC exerting its effect though a paracrine and autocrine fashion.  The 

expression of SPARC in cancer appears to be dependent on cell type and location, since 

SPARC has been shown to act as both a tumor suppressor and a tumor promoter; further 

adding to the complexity of SPARC’s influence during tumorigenesis.  The therapeutic 

approach to SPARC, either as a therapy or as a therapeutic target, will depend on the 

specific role for SPARC in each cell type (Bos et al., 2004).   

Characterization of the UROtsa Cell Lines 

 Although several urothelial bladder cell lines exist, many are not ideal for long-

term carcinogenesis studies.  The UROtsa cell line was derived from the urothelium 

lining the ureter of a twelve-year-old female and was immortalized with the simian virus 

40 (SV40) large T-antigen (Petzoldt et al., 1995).  After immortalization, these cells were 

non-tumorigenic, as characterized by the inability to form colonies in soft agar and grow 

tumors in nude mice.  The UROtsa cells, when grown in serum containing growth 

medium, formed a monolayer of cells that was not stratified and has features of basal 
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epithelial cells (Rossi et al., 2001).  However, when the UROtsa cells are adapted to grow 

in media that does not contain serum, these cells had an altered morphology.  Once the 

serum free cultures gain confluency, they continue to proliferate and form raised three-

dimensional structures that were determined by ultrastructural examination to be a 

stratified layer of cells that strongly resemble the intermediate layer of in situ bladder 

uroepithelium.  Numerous desmosomal connections between cells are present as well as 

abundant cytoplasmic intermediate filaments (Rossi et al., 2001).  These cells also 

retained the properties of immortality and non-tumorigenicity.  In order to determine if 

the process of immortalization altered the expression level of some stress response genes, 

several metallothioneins (MT) and heat-shock proteins were examined.  The expression 

patterns of MT-1E, MT-1X, and MT-2A genes and MT-1 and 2 proteins as well as 

Hsp 27, Hsp 60, Hsp 70, and Hsc 70 genes and protein in the UROtsa cells were in 

agreement with what was observed in the in situ human urothelium (Rossi et al., 2001). 

 Several studies have examined the ability of arsenic to cause toxicity in the 

UROtsa cells.  Rossi et al. (2002) showed that 100 μM of As+3 had no effect on the 

viability of UROtsa cells with an exposure of 4 h and a recovery of 48 h.  With a 16 day 

time-course, up to 4 μM As+3 had no effect on cell viability, while 8 μM of As+3 caused 

significant cell death after 8 days (Rossi et al., 2002).  Styblo et al. (2000) studied the 

effect of several different species of arsenic.  Exposure of the UROtsa cells to pentavalent 

arsenicals, arsenate (As+5); monomethylarsonic acid [MMA(V)]; and dimethylarsinic 

acid [DMA(V)], up to 20 μM for 24 h did not affect cell viability.  However, exposure to 

the trivalent arsenicals, arsenite (As+3), monomethylarsonous acid [MMA(III)], and 

dimethylarsinous acid [DMA(III)], caused an increase in toxicity in a time- and 
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concentration- dependent manner.  It was determined that trivalent, methylated species of 

arsenic were the most cytotoxic to UROtsa cells grown in 10% fetal calf serum, and also 

revealed that MMA(III) caused the greatest toxicity and was the most cytotoxic species 

of the trivalent arsenicals (Styblo et al., 2000).  Bredfeldt et al. (2006) determined that 

MMA(III) was 20 times more toxic than As+3 in UROtsa cells.  UROtsa cells had a very 

low tolerance to the exposure of MMA(III) since concentrations greater than 2 μM were 

cytotoxic; however, concentrations less than 2 μM induced cell proliferation (Bredfeldt et 

al., 2006). 

 Since the methylated arsenicals were determined to cause greater toxicity to 

UROtsa cells, Styblo and colleagues (2000) analyzed the ability of UROtsa cells to 

metabolize or methylate arsenic.  With culturing in growth media containing fetal calf 

serum, the UROtsa cells were unable to alter the methylation or metabolism of arsenicals 

in the cells (Styblo et al., 2000).  However, Bredfeldt et al. (2004) found that under serum 

free culturing conditions, UROtsa cells could methylate As+3 to MMA(III) at a low 

capacity. The differences in methylation when compared to Styblo and colleagues (2000) 

may be due to culturing the UROtsa cells in serum free growth media, as Rossi et al. 

(2001) found when UROtsa cells were grown in serum free conditions the cell layer 

became more stratified.  Additional experiments by Drobna et al. (2005) used cloned 

UROtsa cells expressing the rat arsenic (+3 oxidation state)-methyltransferase (rAS3MT), 

termed UROtsa/F35.  This cell line has the ability to methylate As+3 to MMA(V), 

MMA(III), DMA(V), and DMA(III), while the normal UROtsa cells cannot methylate 

As+3 when cultured in serum free growth media.  After acute treatment with As+3, 

UROtsa/F35 cells had a greater level of toxicity than the non-expressing parent UROtsa 
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cells.  Further analysis showed the UROtsa/F35 cells had actually retained less arsenic 

than the UROtsa cells, but a significant portion of the arsenic retained by the UROtsa/F35 

cells were methylated metabolites of As+3 and these metabolites were found to be absent 

from the parent UROtsa cells (Drobna et al., 2005).  Thus, the increased susceptibility of 

UROtsa/F35 cells to As+3 was associated with the production and cellular retention of 

methylated arsenicals (Hester et al., 2009).  Recently, Ren et al. (2011) translated their 

findings from yeast mutants to the UROtsa cells.  Over-expressing N-6 adenine-specific-

DNA methyltransferase 1 (N6AMT1), a methyltransferase, in UROtsa cells led to an 

increased resistance to the toxic effects of As+3 or MMA(III).  These cells were capable 

of converting MMA(III) to the less toxic forms MMA(V) and DMA(V) through 

methylation (Ren et al., 2011).   

 The stress induced response of the UROtsa cells to arsenic was analyzed by 

Bredfeldt et al. (2004), who described an increase in ubiquitin-conjugated proteins was a 

resulted from an acute, low-level As+3 exposure.  The increase in ubiquitin-conjugated 

proteins was also seen following exposure of UROtsa cells to buthionine sulfoximine, a 

compound that decreases the glutathione concentration, implying stressors may deplete 

the cells of antioxidants making them more susceptible to As+3 induced toxicity 

(Bredfeldt et al., 2004).  Since antioxidants play a role in protecting UROtsa cells from 

As+3 toxicity, the notion that As+3 may induce the formation of reactive oxygen species 

(ROS) was explored.  Eblin et al. (2006) reported that both As+3 and MMA(III) increased 

ROS in UROtsa cells and this induction was inhibited when cells were pretreated with 

antioxidants.  Wang and colleagues (2007a) established that Nrf2, a transcription factor 

which regulates cellular antioxidant response, provided protection of the UROtsa cells 
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from the toxicity of As+3 or MMA(III).  The cells were also more resistant to the toxicity 

of As+3 at concentrations ranging from 0-80 μM and MMA(III) concentrations ranging 

from 0-12 μM when Nrf2 was activated by known pathway inducers (Wang et al., 

2007a).  Similarly, UROtsa cells with Nrf2 knockdown were more sensitive to the toxic 

effects of As+3 and MMA(III) and had higher levels of ROS (Wang et al., 2007a). 

 Although the epidemiological evidence for the support of arsenic induced 

carcinogenesis is substantial, the ability of arsenic to malignantly transform urothelial 

cells had not yet been determined.  Bredfeldt et al. (2006) determined that the parental 

UROtsa cells were capable of transformation by the toxic, trivalent methylated species of 

arsenic, MMA(III).  It was demonstrated that parental UROtsa cells chronically exposed 

to 50 nM MMA(III) for a period of 52 weeks underwent phenotypic changes consistent 

with malignant transformation, i.e., increased rate of proliferation, anchorage independent 

growth, and formation of tumors in immune-compromised mice (Bredfeldt et al., 2006).  

The morphology of the MMA(III) transformed cells were similar in size to the non-

treated parents, but the transformed cells had a cell membrane that was less defined and 

an increase in the appearance of multinucleated cells that contained an abundance of 

cytoplasm.  The histology of the tumors that were generated by the heterotransplants of 

UROtsa cells transformed by MMA(III) into immune-compromised mice were 

characteristic of squamous cell carcinoma with moderate differentiation and contained 

numerous deposits of keratin (Bredfeldt et al., 2006).   

 Although Bredfelt et al. (2006) determined the transformation of UROtsa cells 

with 50 nM MMA(III) took 52 weeks (URO-MSC52),  Wnek et al. (2010) was able to 

observe the malignant changes Bredfelt et al. (2006) saw, in as early as 12 weeks of 
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exposure using the same concentration of MMA(III).  Interestingly, the UROtsa cells 

exposed for 12 weeks, were then also cultured for additional 12 or 24 weeks in the 

absence of MMA(III).  After 12 weeks of MMA(III) exposure (URO-MSC12), there was 

a 30% decrease in cell doubling time to 26 h as compared to the non-treated parent at 

38 h.  The doubling times were also decreased upon removal of MMA(III) as 

demonstrated in URO-MSC12+12(-) and URO-MSC12+24(-), cells cultured for 12 or 

24 weeks after the removal of the MMA(III), compared to parental UROtsa cells.  The 

morphology by confocal microscopy of the URO-MSC12 cells as well as the URO-

MSC12+12(-) and URO-MSC12+24(-) were similar to that of the URO-MSC52 cells 

(Wnek et al., 2010).  The only morphological difference was the URO-MSC12 cells had 

an increase in cell diameter compared to non-treated UROtsa and URO-MSC52 cells and 

the increased cell diameter held true for the cells cultured for additional 12 or 24 weeks 

without the MMA(III).  The assessment of these cells for tumorigenicity by growth in 

soft agar was first seen at 12 weeks of MMA(III) exposure.  When these cells were 

cultured after the removal of MMA(III) for an additional 12 or 24 weeks, there was an 

increase in colony formation in soft agar as compared to UROtsa controls or URO-

MSC12 cells.  An increase of tumorigenicity was also seen in the ability of these cells to 

form larger tumors in immunodeficient mice, with the largest tumors formed by the 

URO-MSC12+24(-) cells.   

 Several proinflammatory cytokines (IL-1β, IL-6 and IL-8) were significantly 

over-expressed in UROtsa cells acutely exposed (12 h) to MMA(III) and the cellular 

production of these cytokines was sustained in cells transformed by MMA(III) for 

12 weeks (Escudero-Lourdes et al., 2010).  IL-8 mRNA expression levels had a threefold 
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induction in URO-MSC12 cells compared to unexposed cells and IL-8 was also found to 

be secreted into the growth media at five times greater than was seen in controls 

(Escudero-Lourdes et al., 2012).  The receptor of IL-8, CXCR1, had a significantly 

enhanced internalization rate in URO-MSC12 cells.  Similarly, the production of IL-8 

was also found to be increased in the tumors derived from these cells compared to non-

exposed UROtsa heterotransplants.  Additionally the expression of MMP-9, cyclin D1, 

bcl-2, and VEGF were significantly up-regulated in the same cells that up-regulated IL-8 

expression; however, with IL-8 gene silencing these mitogen-activated kinases were 

significantly decreased.  Also affected with IL-8 gene silencing, was a decrease in 

cellular proliferation rate and a reduced ability to form colonies in soft agar.  These 

results suggest a relevant role of IL-8 in MMA(III) induced UROtsa cell transformation.   

 Since the human bladder is exposed to several different environmental 

carcinogens, Sens et al. (2004) determined if As+3 and/or Cd+2 could directly cause the 

malignant transformation of human urothelium cells.  This group was the first laboratory 

to develop transformed bladder cell lines using these metals.  A long-term in vitro 

exposure to a low dose of Cd+2 or As+3 on the non-tumorigenic UROtsa cell line was used 

to generate transformed UROtsa cell lines.  Using confluent cultures of serum free or 

serum containing UROtsa cells, 1 μM of either Cd+2 or As+3 was added to the growth 

media and thereafter cells were fed every three days with fresh growth media containing 

1 μM of Cd+2 or As+3.  During the first 30 days of exposure, no cell death was detected 

with only a slight increase in granular appearance.  However, between 30 and 48 days of 

exposure, over 95% of the cells in all four experimental groups died.  These cells were 

continually fed on the three day cycle with 1 μM of either Cd+2 or As+3 and within 15 to 
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30 days all four groups had multiple clones of proliferating cells, which were allowed to 

attain confluency and passaged at a 1:4 ratio.  With routine culturing of feeding and 

passaging, the four groups again experienced a round of over 95% cell death.  Again, 

clones developed and proliferated quickly overtime.  Once confluent cultures were 

attained and subcultured, the growth rates of all four experimental groups were 

determined to be much faster than the parental UROtsa cells.  The serum free cells were 

thereafter subcultured at a 1:10 ratio and the serum containing cultures at 1:20.  These 

cultures were subcultured an additional eight passages in the presence of 1 μM of Cd+2 or 

As+3 to guarantee no additional cell death occurred.  

 The morphology, as examined by phase microscopy, determined that all the 

cultures retained an epithelial morphology regardless of growth media or exposure to 

Cd+2 or As+3.  However, the previous differences that existed in the morphology of cells 

grown in serum free media were no longer apparent.  After exposure to Cd+2 or As+3, the 

cells lost their ability to stratify upon attaining confluence.  All four experimental groups 

were capable of forming colonies in soft agar and generated tumors when 

heterotransplanted into nude mice.  The Cd+2 or As+3 treated cells in serum containing 

growth media formed tumors in 9 of 10 mice.  As+3  exposed cells in serum free growth 

media formed tumors in 5 of 8 nude mice (with 2 dying of unknown causes) and the Cd+2 

exposed cell in serum free media formed tumors in 7 of 10 mice. The tumors that resulted 

from the injection of UROtsa cells transformed by Cd+2 were epithelial in nature and had 

features consistent with those found in urothelial carcinoma, with only modest evidence 

of squamous differentiation.  The As+3-transformed cells formed tumors that displayed 

dominant features of squamous differentiation, including concentrically laminated 
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deposits resembling keratin “pearls,” granules resembling the keratohyaline seen in the 

granular layer of the epidermis, and cells with prominent intercellular connections similar 

to the granulosa or spinous cells within the epidermis (Sens et al., 2004).  Within the 

general patient population, the majority of bladder cancers are urothelial carcinoma with 

little to no evidence of squamous differentiation.  However the presence of squamous 

differentiation within bladder tumors is usually associated with a more aggressive cancer 

and a poorer prognosis.   

 Next, an additional round of UROtsa cell line transformation with Cd+2 (Somji et 

al., 2010) or As+3 (Cao et al., 2010) was performed to determine if independent exposures 

of the UROtsa cells to the heavy metals would result in cell lines with similar phenotypic 

properties.  In total, seven Cd+2 and six As+3 isolates were established.  For the Cd+2 cell 

lines, each isolate had varying doubling times ranging from 16.4 ± 1.8 h to 27.8 ± 0.6 h 

while the UROtsa parent had a doubling time of 33.2 ± 0.8 h.  All seven Cd+2 

transformed cell lines had a similar epithelial morphology, formed colonies in soft agar, 

and formed tumors in nude mice with an urothelial carcinoma histological presentation 

with modest differences in the degree of squamous differentiation.  However, only one 

isolate, Cd#1, was effective at forming tumors when injected within the peritoneal cavity 

of immune-compromised mice (Somji et al., 2010).  The additional five isolates of As+3-

transformed urothelial cells had varying doubling times ranging from 14.1 ± 0.9 h to 

33.3 ± 1.4 h, had similar epithelial morphology, formed colonies in soft agar, and formed 

tumors in nude mice with each displaying prominent areas of squamous differentiation.  

Thus the additional As+3 isolates had similar phenotypic properties to the initial As+3-

transformed isolate (Cao et al., 2010).   Following intraperitoneal injection of each of the 
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six As+3-transformed isolates, As#1 and As#3 were able to form hundreds of tumor 

nodules within the peritoneal cavity of nude mice.  As#4 and As#6 isolates were only able 

to form a few tumor nodules, while As#2 and As#5 did not form any nodules after 

intraperitoneal infection.  It should be noted that the parental UROtsa cells do not form 

tumors when injected either subcutaneously or into the peritoneal cavity of nude mice.  

Since bladder cancer has been shown to spread locally within the human body after 

penetrating through the bladder wall, tumor cells are capable of colonizing multiple 

peritoneal organs.  Aggressive tumors extend into the bladder wall; while more advanced 

stages may invade the adjacent prostate and seminal vesicles in males, and the ureters and 

retroperitoneum in both males and females (Cao et al., 2010).  The ability of the Cd+2 and 

As+3-transformed UROtsa cell lines to likewise form intraperitoneal tumors further 

enhances the translational capacity of this cell line.   

 Since the expression of keratin 7 has been shown to be expressed in normal 

human urothelium and its expression can be altered after malignant transformation, Somji 

et al. (2010 and 2011a) characterized its expression in the UROtsa cell lines.  It was 

determined that keratin 7 was expressed in 6 of the 7 Cd+2-transformed UROtsa cell lines 

and in 4 of the 6 As+3-transformed cell lines (Somji et al. 2010 and 2011a).  Interestingly, 

the cell lines that did not express keratin 7 were the only cell lines that were capable of 

forming tumors when injected into the intraperitoneal cavity of immune-compromised 

mice.  The transformed cell lines that lacked keratin 7 expression, also lacked keratin 7 

expression in the subcutaneous tumors generated from these cell lines.  (Somji et al., 

2010; Somji et al., 2011a).  Therefore, it was determined that urothelial tumors produced 

through arsenite exposure can repress and gain keratin 7 expression depending on 
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transplantation site.  Further analysis determined that although keratin 7 expression levels 

varied within the Cd+2 and As+3-transformed cell lines, the expression of its keratin 19 

binding partner remained relatively constant (Somji et al., 2011a).  The expression of 

keratin 6, 16, and 17 was also examined for the localization of these proteins to areas of 

squamous differentiation within urothelial tumors, as areas of squamous differentiation in 

patients with bladder cancer have been associated with a more aggressive cancer and a 

poor prognosis.  Results showed the expression of keratin 6, 16, and 17 were very similar 

within the Cd+2 and As+3-transformed cell lines (Cao et al., 2010; Somji et al., 2008; 

Somji et al., 2011a).  A special emphasis was placed on keratin 6 expression, with 

keratin 6 having the potential to be a sensitive marker for squamous differentiation in 

Cd+2 and As+3 induced urothelial cancers.  The expression of keratin 6 was shown to be 

localized to areas of squamous differentiation within the subcutaneous tumors generated 

by the Cd+2 and As+3-transformed cell lines.  When the intraperitoneal tumors were 

analyzed for histological expression of keratin 6, areas of squamous differentiation were 

also positive for its expression (Cao et al., 2010; Somji et al., 2011a).  The expression 

patterns and localization of several keratin proteins within the UROtsa cell lines show the 

marked differences in keratin expression that exist between regions with and without 

squamous differentiation in urothelial carcinoma.   

 Since substantial evidence exists to support the ability of arsenic and cadmium to 

exert their carcinogenetic effect through the induction of epigenetic changes leading to 

aberrant gene expression, the UROtsa cell lines were analyzed for histone modifications 

after treatment with Cd+2, As+3, or MMA(III) or after malignant transformation by those 

heavy metals.  Chu et al. (2001) analyzed the UROtsa cells for histone modifications that 
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resulted after treatment with two forms of arsenic, As+3 or MMA(III).  Using the 

metabolic labeling technique called SILAC or Stable Isotope Labeling of Amino acid in 

Cell culture, it was determined there was a reduction in the acetylation levels on several 

histones (Chu et al., 2011).  Specifically, histones H3 and H4 lysine residues had 

decreased acetylation levels in UROtsa cells exposed to arsenic when compared to non-

treated UROtsa controls (Chu et al., 2011).  Jo and colleagues (2009) similarly treated 

UROtsa cells with both As+3 or MMA(III), and determined a reduction of acetylation at 

histone H4 lysine 16 (H4K16) using mass spectrometry.  When the expression of 

MYST1, an H4K16 acetyltransferase, was knocked down in the UROtsa cells, a 

reduction in the acetylation of H4K16 was seen that also correlated with an increased 

sensitivity to the toxic effects of As+3 or MMA(III) (Jo et al., 2009). 

 Epigenetic changes were also seen in the UROtsa cells transformed by 50 nM 

MMA(III).  In studies by Wnek et al. (2010), the DNA methylation patterns between the 

non-transformed and MMA(III) transformed UROtsa cells were analyzed.  An interesting 

finding was that the observed phenotypic changes that occurred during the transformation 

of the UROtsa cells by MMA(III), i.e. hyperproliferation, colony formation in soft agar, 

and tumor formation in immune-compromised mice, coincided with changes in the DNA 

methylation of gene promoter regions that are associated with malignant transformation.  

These changes include the expression of genes involved in an oxidative stress response, 

decreases in specific DNA repair genes, up-regulation of genes involved in proliferation, 

and the suppression of inflammatory components (Medeiros et al., 2012).  The UROtsa 

cells transformed by MMA(III) for 12 weeks showed no difference in the methylation of 

these promoter regions compared to the normal UROtsa parent cells.  However, an 
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increase in DNA methylation was seen in the 12 week MMA(III) transformed cells that 

were continually cultured after the MMA(III) was removed, with the highest frequency of 

DNA methylation seen in the URO-MSC12+24(-) cells (Wnek et al., 2010).   

 Another study by Somji et al. (2011b) examined the differences in epigenetic 

regulation of metallothionein 3 (MT-3) gene expression between the parental UROtsa 

cells and the Cd+2 and As+3-transformed UROtsa cell lines.  Since MT-3 in not expressed 

in normal urothelium or in the UROtsa cell lines, but MT-3 is expressed in urothelial 

cancer and in tumors generated from the UROtsa cells that have been transformed by 

Cd+2 or As+3; the role of the epigenetic regulation was analyzed (Somji et al., 2011b).  

Histone H4 acetylation was found to be increased in the MT-3 promoter of both the 

parental and transformed cell lines after treatment with the epigenetic regulator MS-275, 

indicating a state of transcriptional readiness.  The H4 antibody was not able to 

distinguish between the four potentially acetylated lysines 5, 8, 12, and 16.  Also, an 

increase in histone methylation was determined in histone H3 lysine 9 and 27 of the 

transformed cells, leading to a transcriptionally repressed state (Somji et al., 2011b).  It 

was therefore concluded that the MT-3 promoter in the Cd+2 and As+3-transformed 

UROtsa cell lines had gained bivalent chromatin structure, that is having elements of 

“transcriptionally repressed” and “transcriptionally ready,” when compared to the 

parental UROtsa cells (Somji et al., 2011b).  Taken together, these studies revealed 

posttranslational modifications on chromatin proteins, especially histones, modulate 

alterations in the accessibility of DNA in response to environmental exposures and heavy 

metals. 
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 The UROtsa cell lines were further characterized in terms of their mechanisms of 

cell death when exposed to Cd+2 or As+3.  The UROtsa parent cells when treated with 

Cd+2 or As+3 primarily had a route of cell death that was through apoptosis, however 

there was also a significant contribution of necrotic cell death (Somji et al., 2006).  The 

determination that both processes were responsible for cell death was made by both 

qualitative and quantitative measurements.  Approximately 30% of the parental UROtsa 

cells died by necrosis and it appeared that the remaining 70% died through apoptosis 

when exposed to either metal.  Interestingly, the Cd+2 or As+3 malignantly transformed 

UROtsa cells showed a differing route of cell death than the parental UROtsa cells.  The 

transformed UROtsa cells were more resistant to the effects of each metal and shifted 

away from apoptosis and more toward a mechanism of cell death by necrosis.  The 

transformed cells did show some signs of apoptosis by DAPI staining, DNA laddering, 

and caspase activation, but at reduced levels relative to the parental cells.  In contract, 

lactate dehydrogenase (LDH) release into the growth media was significantly up-

regulated in the transformed cells as compared to the parental cells.  Therefore, the 

UROtsa parental cells mainly die through the controlled cell death via apoptosis while the 

Cd+2 and As+3-transformed cells were found to predominatly die by necrosis when 

exposed to toxic levels of the metals.   

Rationales, Purposes, and Hypotheses 

 A previous paper by Chai et al. (2007) showed that normal human urothelial cells 

treated with arsenic had an increase in the expression of beclin-1 protein and also the 

appearance of double membrane-bound vacuoles in the cytoplasm of these cells.  The 

increase in autophagy markers was seen with increasing concentrations of arsenic 
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treatment.  Since the UROtsa cell lines have been previously characterized for the role of 

cell death by necrosis and apoptosis, the purpose of the first study outlined in chapter two 

is to determine the role autophagy plays within the UROtsa cell model for bladder 

carcinogenesis by extending the characterization of cell death mechanisms to include 

autophagy.  The hypothesis of this study is that autophagy will play a role within the cell 

death mechanisms of the UROtsa cell model and that the expression of beclin-1 as well 

as several autophagy associated gene products will increase after treatment of the UROtsa 

cells with Cd+2 or As+3.   

 The second study, outlined in chapter three, was motivated by the results of a 

microarray analysis that revealed SPARC to be the most repressed gene across all the 

cadmium and arsenic transformed UROtsa cell lines.  These results were surprising since 

no other gene has been shown to be down-regulated within all 13 of the transformed 

UROtsa cell lines.  The purpose of this study is to determine the gene expression of 

SPARC in the UROtsa cell model as well as in bladder cancer through the hypothesis that 

a reduction in SPARC expression is associated with a malignant phenotype.   

 The third study, outlined in chapter four, is an extension of the second study.  It 

was previously determined that SPARC expression was at the limit of detection in the 

Cd+2 or As+3 transformed cell lines, the malignant epithelial component of tumor 

heterotransplants derived from the transformed cell lines, and the tumor cells of archival 

specimens of human bladder cancer.  The purpose of this study is to determine if SPARC 

can be transfected into select transformed UROtsa cell lines and if the forced expression 

of SPARC alters the ability of these cells to be tumorigenic.  The hypothesis of the third 

study is that the SPARC transfected UROtsa cell lines will have a decrease in malignant 
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properties and that these cells are likely to have altered migration, invasion, and wound 

closing capabilities compared to low SPARC-expressing controls.   
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Abstract 

 The expression of beclin-1 in normal human bladder and in Cd+2 and As+3 

exposed and transformed urothelial cells (UROtsa) was examined in this study.  It was 

shown using a combination of real-time PCR, western analysis and 

immunohistochemistry that beclin-1 was expressed in the urothelial cells of the normal 

bladder.  It was also demonstrated that the parental UROtsa cell line expressed beclin-1 

mRNA and protein at levels similar to that of the in situ urothelium.  The level of  

beclin-1 expression underwent only modest alterations when the UROtsa cells were 

malignantly transformed by Cd+2 or As+3 or when the parental cells were exposed acutely 

to Cd+2 or As+3.  While there were instances of significant alterations at individual time 

points and within cell line-to-cell line comparisons there was no evidence of a dose-

response relationship or correlations to the phenotypic properties of the cell lines.  

Similar results were obtained for the expression of the Atg-5, Atg-7, Atg-12 and LC3B 

autophagy-related proteins.  The findings provide initial evidence for beclin-1 expression 

in normal bladder and that large alterations in the expression of beclin-1 and associated 

proteins do not occur when human urothelial cells are malignantly transformed with, or 

exposed to, either Cd+2 or As+3. 

Introduction 

 The UROtsa cells are an immortalized cell culture model of human urothelium 

that was developed through immortalization of a primary culture of human urothelial 

cells with the SV40 large T-antigen (Petzoldt et al., 1994; Petzoldt et al., 1995).  The 

UROtsa cells grow as a contact inhibited monolayer and are not tumorigenic as judged by 

the inability to form colonies in soft agar and tumors in nude mice.  When adapted for 
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growth in a serum free medium, they show enhanced differentiation with a stratified 

morphology consistent with the structural features associated with the intermediate layers 

of the urothelium (Rossi et al., 2001).  This laboratory has shown that exposure of the 

UROtsa cells to either Cd+2 or As+3 can directly cause malignant transformation of the 

cells (Sens et al., 2004).  The tumor heterotransplants produced by the Cd+2 and As+3 

transformed cells had histologic features consistent with human urothelial cell carcinoma 

of the bladder.  The parental UROtsa cells and their Cd+2 and As+3 transformed 

counterparts have been used to define the mechanism of cell death following exposure of 

the cells to cytotoxic levels of Cd+2 and As+3 (Somji et al., 2006).  In this study it was 

demonstrated that the parental UROtsa cells died by both apoptosis and necrosis when 

exposed to either metal.  It was also shown that apoptosis was the more prominent 

mechanism of cell death in the parental cells, accounting for over 50% of cell death.  For 

the transformed UROtsa cells, it was shown that they were more resistant to the toxic 

effects of both metals and that the apoptotic mechanism of cell death was decreased and 

necrosis increased compared to the parental UROtsa cells.  Subsequently, a third 

mechanism of cell death, called autophagic cell death, has been proposed in the literature 

that can operate separately or in concert with necrosis or apoptosis (Kroemer and Levine, 

2008; Maiuri et al., 2009; Sinha and Levine, 2008; Todde et al., 2009).  It has been 

suggested that arsenic salts can induce autophagic cell death in SV40 immortalized 

human urothelial cells (Chai et al., 2007). 

 Autophagic cell death has been characterized by the large scale sequestration of 

portions of the cellular cytoplasm in autophagosomes, which gives the cell a vacuolated 

appearance characteristic of autophagy (Kroemer and Levine, 2008).  Transmission 
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electron microscopy is used to identify autophagosomes as double-membrane vesicles 

that contain cytosol or morphologically identifiable cytoplasmic organelles.  

Autolysosomes arise from the fusion of autophagosomes and lysosomes which are 

characterized by a single membrane that contains degenerating organelles undergoing the 

process of digestion by lysosomal enzymes.  The autophagy pathway is conserved among 

all eukaryotes, is active under homeostatic conditions to remove aged organelles, and 

many autophagy effectors (Atg proteins) as well as other protein regulators have been 

identified in the last decade (Sinha and Levine, 2008).  Among these effectors, beclin-1, 

has been shown to be an essential effector of autophagy (Sinha and Levine, 2008).  Mice 

with a biallelic loss of beclin-1 are early embryonically lethal (Qu et al., 2003; Yue et al., 

2003). Mice with monoallelic loss of beclin-1 have an increased incidence of 

spontaneous tumor formation (Qu et al., 2003; Yue et al., 2003), have abnormal 

proliferation of mammary epithelial cells (Qu et al., 2003), increased susceptibility to 

neurodegeneration (Pickford et al., 2008) and cardiomyopathy (Tannous et al., 2008).  In 

humans, monoallelic deletions of beclin-1 are observed frequently in sporadic breast, 

ovarian and prostate cancer (Aita et al., 1999).  Due to the essential role of beclin-1 in 

effecting the autophagic process in cells, the present study examines its expression in 

normal urothelium and in urothelial cells exposed to, and transformed by, Cd+2 and As+3.  

The first goal was to determine if beclin-1 is expressed in normal bladder urothelium.  

The second goal was to determine if beclin-1 expression is altered by malignant 

transformation of urothelial cells by Cd+2 or As+3.  Lastly, to determine if beclin-1 

expression was altered by acute exposure of urothelial cells to Cd+2 or As+3. 
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Materials and Methods 

Human Bladder Specimen for Immunohistochemical and Molecular Analysis 

 Specimens of normal human bladder were obtained from five patients undergoing 

a cystectomy for bladder cancer. For molecular analysis, the samples were immediately 

snap-frozen in liquid nitrogen.  For immunohistochemical analysis, paraffin blocks were 

routinely fixed in neutral buffered formalin for 16-18 h.  All tissues were transferred to 

70% ethanol and dehydrated in 100% ethanol.  Dehydrated tissues were cleared in 

xylene, infiltrated, and embedded in paraffin.  All tissue acquisition was approved by the 

institutional review board (IRB) for human research. 

Immunohistochemistry 

 Serial sections were cut at 3-5 μm for use in immunohistochemical protocols.  

After depariffinization, sections were immersed in preheated Target Retrieval Solution 

(Dako, Carpinteria, CA) and heated in a steamer for 20 min.  The sections were allowed 

to cool for 30 min at room temperature and immersed into Tris Buffered Saline with 

Tween 20 (Dako) for 5-10 min.  Beclin-1 was detected using the Dako EnvisionTM+ kit 

(Dako) with an anti-beclin-1 rabbit polyclonal antibody (1:100) purchased from Cell 

Signaling (Cell Signaling Technology, Beverly, MA).  After antigen retrieval, the 

sections were treated with Peroxidase Blocking Reagent for 10 min at room temperature.  

The slides were incubated overnight with the primary antibody at 4°C after which they 

were rinsed with the wash buffer (Dako).  The slides were then incubated with the 

Peroxidase Labeled Polymer for 30 min at room temperature, rinsed and developed using 

liquid diaminobenzidine for visualization of the reaction product.  The slides were rinsed 

in distilled water, counterstained with hematoxylin, dehydrated in graded ethanol, cleared 
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in xylene and cover slipped.  Normal human breast and prostate tissues were used as 

positive controls, and a negative control consisted of omission of the primary antibody 

from the immunohistochemical sequence. 

RNA and Protein Isolation from Human Bladder 

 Frozen tissue was ground to a powder under liquid nitrogen.  Total cellular RNA 

was isolated from the frozen, powdered tissue using protocols supplied with TRI 

REAGENTTM (MRC, Cincinnati, OH) as previously described by this laboratory (Garrett 

et al., 1998).  Purity and concentration of each sample were determined by 

spectrophotometric assay.  All RNA samples utilized demonstrated no evidence of 

degradation as determined by intact bands of 18S and 28S ribosomal RNA following 

electrophoresis on 1.2% agarose gels.  Proteins were extracted from the powdered tissue 

by dissolving it in 2% SDS containing 50 mM Tris-HCl, pH 6.8, followed by boiling for 

10 min. DNA was sheared by passing the tissue extract through a 23-gauge needle.  

Protein concentration was determined by the bicinchoninic acid (BCA) protein assay 

(Pierce Chemical Co., Rockford, IL) before 100 mM dithiothreitol (DTT) was added to 

each sample. 

Cell Culture 

 Stock cultures of the parental UROtsa cell line and UROtsa cell lines malignantly 

transformed by Cd+2 and As+3 were maintained in 75 cm2 tissue culture flasks using 

Dulbecco’s modified Eagles’ medium (DMEM) containing 5% v/v fetal calf serum in a 

37°C, 5% CO2: 95% air atmosphere (Rossi et al., 2001).  Confluent flasks were sub-

cultured at a 1:4 ratio using trypsin-EDTA (0.05%, 0.02%) and the cells were fed fresh 

growth medium every 3 days. 
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Visualization of DAPI-Stained Cells 

 Toxic effects of Cd+2 and As +3 on the UROtsa cells was determined by 

visualization of 4’,6-diamidino-2-phenylindole (DAPI)-stained nuclei as described 

previously by this laboratory (Somji et al., 2004).  At the indicated time points, cell 

monolayers were washed twice with phosphate buffered saline (PBS), fixed for 10 min in 

70% ethanol, rehydrated in 1 mL PBS, and stained with 10 μL DAPI (10 μg/ml in 

distilled water).  For analysis, each well was examined under epifluorescent illumination 

at 40 x magnification on a Zeiss Axiovert 35 inverted microscope with SPOT RT Slider 

digital camera using Adobe Photoshop. 

Real Time Analysis of Beclin-1 mRNA Expression 

 The expression of beclin-1 mRNA was determined by real-time reverse 

transcription polymerase chain reaction (RT-PCR) using commercially available primers 

from Qiagen (Valencia, CA). Total RNA was purified from the cell lines as well as the 

tissue sample and 1 µg was subjected to cDNA synthesis using the iScript cDNA 

synthesis kit (Bio-Rad Laboratories, Hercules, CA) in a total volume of 20 µL.  

Amplification of the cDNA was performed using the SYBR Green kit (Bio-Rad 

Laboratories) with 2 µL cDNA and 0.2 μM primers in a total volume of 20 µL in an 

iCycler iQ real-time detection system (Bio-Rad Laboratories). Amplification was 

monitored by SYBR Green fluorescence. Cycling parameters consisted of denaturation at 

95°C for 15 sec, annealing at 55°C for 30 sec, and extension at 72°C for 30 sec, which 

gave optimal amplification efficiency.  The expression levels for the autophagy genes in 

the normal and transformed cell lines and human bladder tissue were determined relative 

to the UROtsa parental cells using serial dilutions of this sample for the standard curve.  
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The resulting relative levels were then normalized to the change in β-actin expression 

evaluated by the same assay using the primers, sense: CGACAACGGCTCCGGCATGT, 

and antisense: TGCCGTGCTCGATGGGGTACT, with cycling parameters of 

annealing/extension at 62°C for 45 sec and denaturing at 95°C for 15 sec. 

Western Analysis of Beclin-1, Atg-5, Atg-7, Atg-12 and LC3B Expression 

 Confluent cultures were harvested in 2% SDS and 50 mM Tris-HCl, pH 6.8, 

followed by boiling for 10 min and DNA shearing through a 23-gauge needle.  Protein 

concentration was determined by the BCA protein assay before 100 mM DTT was added 

to each sample.  Ten micrograms of total cellular protein was separated on a 12.5 % SDS-

PAGE gel and transferred to a hybond-P polyvinylidine difluoride (PVDF) membrane 

(Amersham Biosciences, Piscataway, NJ). Membranes were blocked in Tris buffered 

saline (TBS) containing 0.1% Tween-20 (TBS-T) and 5% (w/v) non-fat dry milk for 1 h 

at room temperature.  After blocking, the membranes were probed with the appropriate 

primary antibody diluted in blocking buffer overnight. The primary antibodies used were 

beclin-1 (1:2000), Atg-5 (1:2000), Atg-7 (1:1000), Atg-12 (1:1000) and LC3B (1:1000). 

All primary antibodies were purchased from Cell Signaling Technology. After washing 

three times in TBS-T, membranes were incubated with the anti-mouse or anti-rabbit 

secondary antibody (1:10,000) in antibody dilution buffer for one hour.  The blots were 

visualized using the Phototope-HRP Western blot detection system (Cell Signaling).  To 

determine equal loading of samples, membranes were stripped of bound proteins by 

incubating in 100mM 2-Mercaptoethanol, 2% SDS, 62.5 mM Tris HCl pH 6.7 at 50°C 

for 30 min.  Membranes were washed twice with PBS in 0.5% Tween-20 at room 

temperature and blocked following the previously mentioned protocol.  Membranes were 
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reprobed using 0.2 μg/ml of the anti β-actin antibody (Abcam, Cambridge, MA) followed 

by incubation with a 1:10,000 dilution of the anti-mouse secondary antibody.  The 

western blots were quantified using NIH Image J Software by determining the Integrated 

Optical Density (IOD) for each band and graphed relative to the UROtsa parent or 

control.  Statistical analysis consisted of ANOVA with Tukey posthoc testing using 

GraphPad PRISM 4 software with a level of significance of p < 0.001. 

Results 

Expression of Beclin-1 in Normal Urothelium 

 Five samples of human bladder obtained from a surgical procedure after 

completion of diagnostic needs were used to determine the expression and localization of 

beclin-1 protein (Figure II-1).  The results demonstrated that the urothelium was 

moderately immunoreactive for beclin-1, with the suggestion of a gradient of increasing 

expression from the basal cell layer to the apical urothelial cells.  The bladder stroma had 

limited expression of beclin-1, but there were scattered inflammatory and stromal cells 

throughout that were clearly immunoreactive for beclin-1.  The illustration presented is 

from a specimen where normal urothelium was well-removed geographically from tumor 

tissue, but all five samples gave similar staining patterns for beclin-1 in areas of normal 

urothelium.  Total RNA prepared from the sample used above to illustrate beclin-1 

staining was shown to contain beclin-1 specific mRNA using real time PCR and beclin-1 

specific primers (Figure II-2A).  A protein extract prepared from the same sample was 

shown to contain beclin-1 protein using western analysis and a beclin-1 specific antibody 

(Figure II-2B).  Lower molecular weight bands were noted on the western blot using 

beclin-1 and β-actin antibodies, respectively.  These bands presumably are degradation 
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products due to the length of time between surgical removal and preparation of the 

sample for research.  The other four samples also showed beclin-1 mRNA and protein 

expression, but due to the extent of tumor involvement they might contain some 

contamination from urothelial cancer cells.  

Basal Expression of Beclin-1 in Parental UROtsa Cells and UROtsa Cells  

Transformed by As
+3

 and Cd
+2 

 

 The laboratory has described the direct malignant transformation of the parental 

UROtsa cells by both As+3 and Cd+2 (Sens et al., 2004).  Recent studies have isolated 

additional independent isolates of As+3 and Cd+2 transformed UROtsa cells (Cao et al., 

2010; Somji et al., 2010).  The parental UROtsa cells, the 6 independent isolates of the 

As+3 transformed cells, and the 7 independent isolates of the Cd+2 transformed cells were 

all assessed for their basal expression of beclin-1 mRNA (Figure II-3) and protein 

(Figure II-4).  The expression of beclin-1 mRNA was similar between the parental 

UROtsa cells and 4 of the 6 isolates of the As+3, and 3 of the 7 isolates of Cd+2, 

transformed UROtsa cells (Figure II-3).  Two isolates of the As+3 transformed cells and 4 

isolates of the Cd+2 transformed cells had elevated expression of beclin-1 mRNA 

(Figure II-3).  The corresponding analysis of beclin-1 protein demonstrated that 4 of the 6 

As+3 transformed isolates had a reduced expression of beclin-1 compared to parental 

UROtsa cells (Figure II-4).  Beclin-1 expression in the other 2 isolates showed one to be 

identical to parental control and the other elevated compared to parent cells.  Beclin-1 

protein expression when compared to parent was elevated in 5 of the 7 isolates of Cd+2 

transformed cells and reduced in two isolates (Figure II-4).  A comparison of beclin-1 

mRNA and protein expression among the isolates demonstrates that there is only a very 

weak correlation between the level of mRNA and the corresponding expression of 
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beclin -1 protein.  For the As+3 transformed UROtsa cells, only isolate #6 shows an 

increase in both beclin-1 mRNA and protein.  For the Cd+2 transformed UROtsa cells, 4 

of 7 isolates show an agreement between an elevated level of mRNA and increased 

protein expression, but the magnitude of the increase in protein does not follow the 

pattern of mRNA expression.  The differences in the level of beclin-1 protein among all 

the isolates were modest, varying between a decrease of 50% and a 2-fold increase over 

control.   

Beclin-1 Expression in Parental UROtsa Cells Exposed to Cd
+2

 and As
+3

 

 The parental UROtsa cells were exposed to 1.0, 2.0 and 4.0 μM Cd+2 with extracts 

prepared at 8, 16, 24, 36 and 48 h of exposure for the analysis of beclin-1 protein.  

Similarly, to determine the effect of As+3, the cells were exposed to 2.5, 4.5 and 6.0 μM 

As+3 with extracts prepared at 4, 8, 16, 24, and 36 h of exposure for the analysis of 

beclin-1 protein.  The concentrations and times of exposure were chosen such that no loss 

of cell viability would occur at the lowest 2 concentrations over the time course, while 

the highest concentration would cause at least a 50% loss of cell viability at the final 

point in the respective time course.  The concentrations and times of exposure were based 

on data from previous studies from the laboratory (Somji et al., 2006) and cell viabilities 

were confirmed in the present study (data not shown).  The results of this analysis 

demonstrated that there was only a minimal alteration in the level of beclin-1 protein 

when UROtsa cells were exposed to concentrations of Cd+2 (Figure II-5) and As+3 

(Figure II-6) that elicited no loss of cell viability.  An interesting finding was that there 

did appear to be an effect on basal beclin-1 expression following addition of fresh growth 

medium to the cells.  When the parental UROtsa cells were fed fresh growth medium to 
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initiate the experiment, the beclin-1 protein levels in control cells increased for 24 h 

following the addition of fresh growth medium (Figure II-7). 

Beclin-1 Expression in Cultures of Cd
+2

 and As
+3

 Transformed  

UROtsa Cells Exposed to Cd
+2

 and As
+3

 

 

 Two isolates of the Cd+2 and As+3 transformed UROtsa cells were assessed for 

beclin-1 protein expression when re-exposed to Cd+2 and As+3.  The concentrations and 

times of exposure were chosen from past studies which showed transformation altered 

subsequent exposure to Cd+2 and As+3 (Somji et al., 2006).  The concentrations and times 

of exposure were chosen such that no loss of cell viability would occur at the lowest 2 

concentrations over the time course while the highest concentration would cause at least a 

50% loss of cell viability at the final point in the respective time course.  The isolates for 

testing were chosen based on the phenotypic property of the cells being able to colonize 

the organs of the peritoneal cavity, with one isolate able to colonize and the other unable 

to colonize the peritoneal cavity (Cao et al., 2010; Somji et al., 2010).  Specifically, 

UROtsa Cd#1 (Figure II-8), Cd#7 (Figure II-9), As#1 (Figure II-10), and As#6 (Figure II-

11) were analyzed.  The results showed that although there were modest alterations in 

beclin-1 expression at selected time points, there were no significant alterations that 

corresponded to a dose response at any given concentration (Figures II-8-11).   

Expression of Atg-5, Atg-7, Atg-12 and LC3B Proteins in Parental UROtsa  

Cells and UROtsa Cells Transformed by Cd
+2 

and As
+3

 

 

 Employing the protein extracts described above, the expression of the Atg-5,  

Atg-7, Atg-12 and LC3B proteins were determined in the parental UROtsa cells and their 

Cd+2 and As+3 transformed counterparts.  The Atg-5 protein expression was reduced 

between 10 and 85% in the Cd+2 transformed cells compared to control (Figure II-12A).  
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There was a marked reduction of the Atg-7 protein in all the Cd+2 transformed cell lines 

(Figure II-12B).  The Atg-12 protein was also reduced in 5 of the 7 Cd+2 transformed cell 

lines, with 2 being close to control levels (Figure II-13A).  The expression of the LC3B 

protein was similar to control in 4 of the 7 Cd+2 transformed cell lines, elevated in one 

isolate, and reduced in the other 2 isolates (Figure II-13B).  An examination of each 

protein among all the isolates failed to disclose any consistent relationship between the 

pattern of expression of any protein among the isolates.  There was also no consistent 

pattern of expression of the proteins among the isolates when the expression was judged 

examining the entire group of proteins.  For the As+3 transformed cell lines, the Atg-5 

protein was increased in 5 of the 6 isolates and was at control levels in the remaining 

isolate (Figure II-14A).  The Atg-7 protein was elevated in 2 isolates, reduced in 3 

isolates and unchanged from parental cells in the remaining isolate (Figure II-14B).  The 

Atg-12 protein was elevated in 2 isolates, reduced in an isolate and was unchanged in 3 

isolates (Figure II-15A).  The LC3B protein was elevated in all but one of the As+3 

transformed cell lines (Figure II-15B).  There was no consistent pattern of expression of 

the proteins within and among the isolates.  The mRNA expression of Atg-5, Atg-7, Atg-

12 and LC3B were also analyzed, but the expression patterns within the Cd+2 and As+3 

transformed UROtsa cell lines did not match that of the protein expression patterns 

(Figures II-16, 17, 18, 19).    

 The extracts from the two isolates of Cd+2 and As+3 transformed UROtsa cells that 

were re-exposed to Cd+2 and As+3 and analyzed for beclin-1 expression as described 

above, were also assessed for the expression of the Atg-5, Atg-7, Atg-12 and LC3B 

proteins (Figures II-20-35).  The results showed that although there were modest 
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alterations in the expression of each protein at selected time points, there were no 

significant alterations that corresponded to a dose response at any given concentration for 

any isolate.   

Discussion 

 The initial goal of the present study was to determine if beclin-1 was expressed in 

the normal human bladder.  A combination of real time PCR, western analysis and 

immunohistochemistry was used to show that beclin-1 is expressed in the urothelium of 

the bladder.  The profile of immunoreactivity suggested that staining increased from the 

basal cells to the umbrella cells of the stratified urothelium.  The staining with the  

beclin-1 antibody also showed that a few scattered stromal and inflammatory cells stained 

intensely for beclin-1 within the beclin-1 negative underlying muscular layer of the 

bladder.  It is not possible to quantify the absolute level of beclin-1 expression in the 

bladder, but the level was similar to that present in the UROtsa parental cell line as 

judged by western analysis.  The levels of beclin-1 are close between the tissue and cell 

line when one considers that the stromal layer of the tissue had minimal expression of 

beclin-1 as judged by immunostaining using the beclin-1 antibody.  To the author’s 

knowledge this is the first documentation of beclin-1 expression in human urothelium.   

 The two additional goals of the current study were motivated by the report which 

showed that beclin-1 expression was elevated in As+3 exposed human urothelial cells and 

that an increase in autophagy correlated with the increased expression of beclin-1 (Chai 

et al., 2007).  This observation was extended in the present report using the immortalized, 

but not tumorigenic, UROtsa cell line to examine the relationship between beclin-1 

expression and As+3 exposure.  The UROtsa cell line was chosen for analysis since it has 
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been directly malignantly transformed by exposure to both Cd+2 and As+3 and the 

resultant cell lines shown to form tumor heterotransplants with preservation of a 

histology consistent with human urothelial cancer (Sens et al., 2004).  In addition, 

multiple independently generated cell lines of both Cd+2 and As+3 transformed cells have 

been generated and characterized for some basic phenotypic properties (Cao et al., 2010; 

Somji et al., 2010).  An important feature of these additional cell lines was that all 

produced subcutaneous tumor heterotransplants, but only 2 of the 6 isolates of the As+3 

transformed cell lines and 1 of the 7 isolates of Cd+2 transformed cell lines were able to 

colonize organs of the peritoneal cavity following injection of tumor cells into the 

peritoneal cavity.  Thus, the employment of this cell system allowed the examination of 

beclin-1 expression: in parental UROtsa cells; in UROtsa cells transformed by Cd+2 or 

As+3; in Cd+2 and As+3 transformed cells having different potentials to colonize peritoneal 

organ sites; and in UROtsa cells exposed to Cd+2 or As+3.  The results did show some 

alterations in the expression of the beclin-1 protein that reached significance; however, 

these were very modest alterations in the level of the beclin-1 protein between parental 

UROtsa cells and their malignantly transformed counterparts and between and among the 

transformed cell lines themselves.  The small magnitude of these alterations would render 

it likely that they would lose significance if several identical experiments were performed 

at independent times of experiment initiation.  The study was also extended to include the 

expression of the Atg-5, Atg-7, Atg-12 and LC3B proteins associated with later stages of 

the autophagic process.  Similar to that found for beclin-1, there were only modest 

alterations in expression between parental UROtsa cells and their malignantly 

transformed counterparts, and between and among the transformed cell lines themselves.  
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This finding provides initial evidence that large alterations in the expression of beclin-1 

and associated proteins do not occur when human urothelial cells are malignantly 

transformed with either Cd+2 or As+3. 

 The acute exposure of the parental UROtsa cells to either Cd+2 or As+3 also 

resulted in only modest changes in beclin-1 protein expression and no alterations that 

could be viewed as a strong dose response relationship.  This was also true for the other 

proteins associated with the autophagic process.  However, these experiments did reveal 

what appeared to be an increase of beclin-1 protein expression in the parental UROtsa 

cells as a function of the cultures being fed fresh growth medium.  This observation could 

be important since many cultured cells are on a 3 day feeding cycle and it is likely that 

they may be deprived of nutrients on the day prior to receiving fresh growth medium.  

The present finding suggests that cultured cells, especially when confluent, could be 

activating and de-activating the pathway of autophagy as a function of the feeding 

schedule of the cells.  If true, this would complicate data interpretation in studies using 

cultured cells to explore the role of autophagy in cell death and survival.  This might be 

especially true for malignant cells that have elevated growth rates and therefore high rates 

of nutrient utilization.  The major reason for including Cd+2 in the proposed study was 

that it is a known carcinogen and its relationship with autophagy in the human bladder 

has not been examined previously.  The potential role cadmium may play in bladder 

cancer is related to the increased incidence of bladder cancer in smokers and the high 

level of cadmium accumulation in humans that is known to occur through tobacco smoke 

(Satarug et al., 2010). 
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 The present study does not rule out a role for beclin-1 in Cd+2 and As+3 exposed 

and transformed urothelial cells since it focuses solely on the level of expression.  The 

interaction of beclin-1 with its binding partners could still be altered by exposure to Cd+2 

and As+3 and this could have significant effects of cell survival and cell death.
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Figure II-1.   Expression of beclin-1 in human bladder tissue.  Immunohistochemical 
staining of beclin-1 in normal human urothelium.  The urothelium was 
moderately immunoreactive for beclin-1, with the staining of superficial 
layers stronger than the basal layer.  Some scattered inflammatory cells in 
the lamina propria were also positive for beclin-1(x 200).



 

69 

 
 

Figure II-2.   Expression of beclin-1 in human bladder tissue and the UROtsa cell lines.  
(A) Real time RT-PCR analysis of beclin-1 mRNA levels.  mRNA levels 
were normalized to β-actin and are shown as relative mRNA levels ±SE 
for the UROtsa parent cell line, human bladder tissue, and UROtsa cell 
lines transformed with arsenic (URO As+3) and cadmium (URO Cd+2).  
(B) Western blot analysis of beclin-1 protein levels from the same cell 
lines and tissue shown in (A).  Duplicate blots were stained for beclin-1 
and β-actin as a control.
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Figure II-3.   Baseline mRNA expression of beclin-1 in UROtsa cell lines.  Real time 
RT-PCR analysis of beclin-1 mRNA levels.  mRNA levels were 
normalized to β-actin and are shown as relative mRNA levels ±SE for the 
UROtsa parent cell line and UROtsa cell lines transformed with arsenic 
(As+3) and cadmium (Cd+2).  The #’s identify the independent cell lines 
isolated by the exposure of UROtsa cells to As+3 and Cd+2 as described by 
(Cao et al., 2010; Somji et al., 2010), respectively.  Statistically significant 
compared to UROtsa parent (*), p < 0.001.



 

71 

 
 

Figure II-4.   Baseline protein expression of beclin-1 in UROtsa cell lines.  Western blot 
analysis of beclin-1 protein levels relative to parent from the same cell 
lines shown in Figure II-3.  Duplicate blots were stained for beclin-1 and 
β-actin as a control.  Graph is representative of the integrated optical 
density (IOD) of the western blot below it.  Protein levels are shown as the 
mean ±SE.  Statistically significant compared to UROtsa parent (*),  
p < 0.001.
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Figure II-5.   Protein expression of beclin-1 in UROtsa parent cell line treated with 

cadmium.  Western blot analysis of beclin-1 protein expression relative to 
control at various time points with treatment of Cd+2.  Treatment with 
1 μM Cd+2, 2 μM Cd+2, and 4 μM Cd+2 are represented by circle, triangle, 
and star symbols respectively. 36 h and 48 h treatments with 4 μM Cd+2 
were omitted due to loss of cell viability.  Duplicate blots were stained for 
beclin-1 and β-actin as a control.  Graph is representative of the IOD of 
the western blot below it.  Protein levels are shown as the mean ±SE.
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Figure II-6.   Protein expression of beclin-1 in UROtsa parent cell line treated with 
arsenic.  Western blot analysis of beclin-1 protein expression relative to 
control at various time points with treatment of As+3.  Treatment with 
2.5 μM As+3, 4.5 μM As+3, and 6 μM As+3 are represented by circle, 
triangle, and star symbols respectively.  Duplicate blots were stained for 
beclin-1 and β-actin as a control.  Graph is representative of the IOD of 
the western blot below it.  Protein levels are shown as the mean ±SE.
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Figure II-7.   Growth effect on beclin-1 expression in UROtsa parent cells. IOD of 

beclin-1 protein is shown at various time points.  Protein levels are shown 
as the mean ±SE.
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Figure II-8.   Protein expression of beclin-1 in UROtsa Cd#1 cells.  Western blot 
analysis of beclin-1 protein expression relative to percent of control in 
UROtsa Cd#1 cells treated with Cd+2.  36 h treatment with 12 μM Cd+2 and 
16 μM Cd+2 were omitted due to loss of cell viability.  Duplicate blots 
were stained for beclin-1 and β-actin as a control.  Graph is representative 
of the IOD of the western blot below it.  Protein levels are shown as the 
mean ±SE.
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Figure II-9.   Protein expression of beclin-1 in UROtsa Cd#7 cells.  Western blot 
analysis of beclin-1 protein expression relative to percent of control in 
UROtsa Cd#7 cells treated with cadmium.  36 h treatment with 16 μM 
Cd+2 was omitted due to loss of cell viability.  Duplicate blots were stained 
for beclin-1 and β-actin as a control.  Graph is representative of the IOD of 
the western blot below it.  Protein levels are shown as the mean ±SE.
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Figure II-10.   Protein expression of beclin-1 in UROtsa As#1 cells.  Western blot 
analysis of beclin-1 protein expression relative to percent of control in 
UROtsa As#1 cells treated with As+3.  Duplicate blots were stained for 
beclin-1 and β-actin as a control.  Graph is representative of the IOD of 
the western blot below it.  Protein levels are shown as the mean ±SE.
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Figure II-11.   Protein expression of beclin-1 in UROtsa As#6 cells.  Western blot 
analysis of beclin-1 protein expression relative to percent of control in 
UROtsa As#6 cells treated with As+3.  36 h treatment of As#6 was omitted 
due to loss of cell viability.  Duplicate blots were stained for beclin-1 and 
β-actin as a control.  Graph is representative of the IOD of the western blot 
below it.  Protein levels are shown as the mean ±SE.
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Figure II-12.   Expression of autophagy proteins, Atg-5 and -7, in UROtsa parent and 
UROtsa Cd+2 transformed cell lines.  Western blot analysis of (A) Atg-5 
and (B) Atg-7 protein expression relative to the UROtsa parent cells.  
Duplicate blots were stained for each autophagy protein and β-actin as a 
control.  Graph is representative of the IOD of the western blot below it.  
Protein levels are shown as the mean ±SE.  Statistically significant 
compared to UROtsa parent (*), p < 0.001.
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Figure II-13.   Expression of autophagy proteins, Atg-12 and LC3B, in UROtsa parent 
and UROtsa Cd+2 transformed cell lines.  Western blot analysis of (A) 
Atg-12 and (B) LC3B protein expression relative to the UROtsa parent 
cells.  Duplicate blots were stained for each autophagy protein and β-actin 
as a control.  Graph is representative of the IOD of the western blot below 
it.  Protein levels are shown as the mean ±SE.  Statistically significant 
compared to UROtsa parent (*), p < 0.001.
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Figure II-14.   Expression of autophagy proteins, Atg-5 and -7, in UROtsa parent and 
UROtsa As+3 transformed cell lines.  Western blot analysis of (A) Atg-5 
and (B) Atg-7 protein expression relative to the UROtsa parent cells.  
Duplicate blots were stained for each autophagy protein and β-actin as a 
control.  Graph is representative of the IOD of the western blot below it.  
Protein levels are shown as the mean ±SE.  Statistically significant 
compared to UROtsa parent (*), p < 0.001.
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Figure II-15.   Expression of autophagy proteins, Atg-12 and LC3B, in UROtsa parent 
and UROtsa As+3 transformed cell lines.  Western blot analysis of (A) 
Atg-12 and (B) LC3B protein expression relative to the UROtsa parent 
cells.  Duplicate blots were stained for each autophagy protein and β-actin 
as a control.  Graph is representative of the IOD of the western blot below 
it.  Protein levels are shown as the mean ±SE.  Statistically significant 
compared to UROtsa parent (*), p < 0.001.
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Figure II-16.   Real time RT-PCR analysis of autophagy genes, Atg-5 and -7, in UROtsa 
parent and UROtsa Cd+2 transformed cell lines.  mRNA analysis of (A) 
Atg-5 and (B) Atg-7 gene expression relative to the UROtsa parent cells.  
mRNA levels were normalized to β-actin and are shown as relative mRNA 
levels ±SE for the UROtsa parent cell line and UROtsa cell lines 
transformed with Cd+2.  Statistically significant compared to UROtsa 
parent (*), p < 0.05.
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Figure II-17.   Real time RT-PCR analysis of autophagy genes, Atg-12 and LC3B, in 
UROtsa parent and UROtsa Cd+2 transformed cell lines.  mRNA analysis 
of (A) Atg-12 and (B) LC3B gene expression relative to the UROtsa 
parent cells.  mRNA levels were normalized to β-actin and are shown as 
relative mRNA levels ±SE for the UROtsa parent cell line and UROtsa 
cell lines transformed with Cd+2.  Statistically significant compared to 
UROtsa parent (*), p < 0.05.
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Figure II-18.   Real time RT-PCR analysis of autophagy genes, Atg-5 and -7, in UROtsa 
parent and UROtsa As+3 transformed cell lines.  mRNA analysis of (A) 
Atg-5 and (B) Atg-7 gene expression relative to the UROtsa parent cells.  
mRNA levels were normalized to β-actin and are shown as relative mRNA 
levels ±SE for the UROtsa parent cell line and UROtsa cell lines 
transformed with As+3.  Statistically significant compared to UROtsa 
parent (*), p < 0.05.
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Figure II-19.   Real time RT-PCR analysis of autophagy genes, Atg-12 and LC3B, in 
UROtsa parent and UROtsa As+3 transformed cell lines.  mRNA analysis 
of (A) Atg-12 and (B) LC3B gene expression relative to the UROtsa 
parent cells.  mRNA levels were normalized to β-actin and are shown as 
relative mRNA levels ±SE for the UROtsa parent cell line and UROtsa 
cell lines transformed with As+3.  Statistically significant compared to 
UROtsa parent (*), p < 0.05.
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Figure II-20.   Protein expression of Atg-5 in UROtsa Cd#1 cells.  Western blot analysis 
of Atg-5 protein expression relative to percent of control in UROtsa Cd#1 
cells treated with Cd+2.  36 h treatment with 12 μM Cd+2 and 16 μM Cd+2 
were omitted due to loss of cell viability.  Duplicate blots were stained for 
Atg-5 and β-actin as a control.  Graph is representative of the IOD of the 
western blot below it.  Protein levels are shown as the mean ±SE.
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Figure II-21.   Protein expression of Atg-7 in UROtsa Cd#1 cells.  Western blot analysis 
of Atg-7 protein expression relative to percent of control in UROtsa Cd#1 
cells treated with Cd+2.  36 h treatment with 12 μM Cd+2 and 16 μM Cd+2 
were omitted due to loss of cell viability.  Duplicate blots were stained for 
Atg-7 and β-actin as a control.  Graph is representative of the IOD of the 
western blot below it.  Protein levels are shown as the mean ±SE.
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Figure II-22. Protein expression of Atg-12 in UROtsa Cd#1 cells.  Western blot analysis 
of Atg-12 protein expression relative to percent of control in UROtsa Cd#1 
cells treated with Cd+2.  36 h treatment with 12 μM Cd+2 and 16 μM Cd+2 
were omitted due to loss of cell viability.  Duplicate blots were stained for 
Atg-12 and β-actin as a control.  Graph is representative of the IOD of the 
western blot below it.  Protein levels are shown as the mean ±SE.
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Figure II-23.   Protein expression of LC3B in UROtsa Cd#1 cells.  Western blot analysis 
of LC3B protein expression relative to percent of control in UROtsa Cd#1 
cells treated with Cd+2.  36 h treatment with 12 μM Cd+2 and 16 μM Cd+2 
were omitted due to loss of cell viability.  Duplicate blots were stained for 
LC3B and β-actin as a control.  Graph is representative of the IOD of the 
western blot below it.  Protein levels are shown as the mean ±SE.
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Figure II-24.   Protein expression of Atg-5 in UROtsa Cd#7 cells.  Western blot analysis 
of Atg-5 protein expression relative to percent of control in UROtsa Cd#7 
cells treated with cadmium.  36 h treatment with 12 μM Cd+2 and 16 μM 
Cd+2 was omitted due to loss of cell viability.  Duplicate blots were stained 
for Atg-5 and β-actin as a control.  Graph is representative of the IOD of 
the western blot below it.  Protein levels are shown as the mean ±SE.
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Figure II-25.   Protein expression of Atg-7 in UROtsa Cd#7 cells.  Western blot analysis 
of Atg-7 protein expression relative to percent of control in UROtsa Cd#7 
cells treated with cadmium.  36 h treatment was omitted due to loss of cell 
viability.  Duplicate blots were stained for Atg-7 and β-actin as a control. 
Graph is representative of the IOD of the western blot below it.  Protein 
levels are shown as the mean ±SE.
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Figure II-26.   Protein expression of Atg-12 in UROtsa Cd#7 cells.  Western blot analysis 
of Atg-12 protein expression relative to percent of control in UROtsa Cd#7 
cells treated with cadmium.  36 h treatment was omitted due to loss of cell 
viability.  Duplicate blots were stained for Atg-12 and β-actin as a control.  
Graph is representative of the IOD of the western blot below it.  Protein 
levels are shown as the mean ±SE.
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Figure II-27.   Protein expression of LC3B in UROtsa Cd#7 cells.  Western blot analysis 
of LC3B protein expression relative to percent of control in UROtsa Cd#7 
cells treated with cadmium.  36 h treatment was omitted due to loss of cell 
viability.  Duplicate blots were stained for LC3B and β-actin as a control.  
Graph is representative of the IOD of the western blot below it.  Protein 
levels are shown as the mean ±SE.
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Figure II-28.   Protein expression of Atg-5 in UROtsa As#1 cells.  Western blot analysis 
of Atg-5 protein expression relative to percent of control in UROtsa As#1 
cells treated with As+3.  Duplicate blots were stained for Atg-5 and β-actin 
as a control.  Graph is representative of the IOD of the western blot below 
it.  Protein levels are shown as the mean ±SE.
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Figure II-29.   Protein expression of Atg-7 in UROtsa As#1 cells.  Western blot analysis 
of Atg-7 protein expression relative to percent of control in UROtsa As#1 
cells treated with As+3.  36 h treatment was omitted due to loss of cell 
viability.  Duplicate blots were stained for Atg-7 and β-actin as a control.  
Graph is representative of the IOD of the western blot below it.  Protein 
levels are shown as the mean ±SE.
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Figure II-30.   Protein expression of Atg-12 in UROtsa As#1 cells.  Western blot analysis 
of Atg-12 protein expression relative to percent of control in UROtsa As#1 
cells treated with As+3.  Duplicate blots were stained for Atg-12 and  
β-actin as a control.  Graph is representative of the IOD of the western blot 
below it.  Protein levels are shown as the mean ±SE.
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Figure II-31.   Protein expression of LC3B in UROtsa As#1 cells.  Western blot analysis 
of LC3B protein expression relative to percent of control in UROtsa As#1 
cells treated with As+3.  Duplicate blots were stained for LC3B and β-actin 
as a control.  Graph is representative of the IOD of the western blot below 
it.  Protein levels are shown as the mean ±SE.
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Figure II-32.   Protein expression of Atg-5 in UROtsa As#6 cells.  Western blot analysis 
of Atg-5 protein expression relative to percent of control in UROtsa As#6 
cells treated with As+3.  Duplicate blots were stained for Atg-5 and β-actin 
as a control.  Graph is representative of the IOD of the western blot below 
it.  Protein levels are shown as the mean ±SE.



 

100 

 
 

Figure II-33.   Protein expression of Atg-7 in UROtsa As#6 cells.  Western blot analysis 
of Atg-7 protein expression relative to percent of control in UROtsa As#6 
cells treated with As+3.  Duplicate blots were stained for Atg-7 and β-actin 
as a control.  Graph is representative of the IOD of the western blot below 
it.  Protein levels are shown as the mean ±SE.
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Figure II-34.   Protein expression of Atg-12 in UROtsa As#6 cells.  Western blot analysis 
of Atg-12 protein expression relative to percent of control in UROtsa As#6 
cells treated with As+3.  Duplicate blots were stained for Atg-12 and  
β-actin as a control.  Graph is representative of the IOD of the western blot 
below it.  Protein levels are shown as the mean ±SE.
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Figure II-35.   Protein expression of LC3B in UROtsa As#6 cells.  Western blot analysis 
of LC3B protein expression relative to percent of control in UROtsa As#6 
cells treated with As+3.  Duplicate blots were stained for LC3B and β-actin 
as a control.  Graph is representative of the IOD of the western blot below 
it.  Protein levels are shown as the mean ±SE.
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Abstract 

 SPARC belongs to a class of extracellular matrix-associated proteins that have 

counteradhesive properties. The ability of SPARC to modulate cell-cell and cell-matrix 

interactions provides a strong rationale for studies designed to determine its expression in 

cancer.  The objective of this study was to determine if SPARC expression was altered in 

cadmium (Cd+2) and arsenite (As+3) induced bladder cancer and if these alterations were 

present in archival specimens of human bladder cancer.  The expression of SPARC was 

determined in human parental UROtsa cells, their Cd+2 and As+3 transformed 

counterparts and derived tumors, and in archival specimens of human bladder cancer 

using a combination of real time reverse transcriptase-polymerase chain reaction, western 

blotting, immunofluorescence localization, and immunohistochemical staining.  It was 

demonstrated that SPARC expression was down-regulated in Cd+2 and As+3 transformed 

UROtsa cells.  In addition, the malignant epithelial component of tumors derived from 

these cell lines were also down-regulated for SPARC expression, but the stromal cells 

recruited to these tumors was highly reactive for SPARC.  This finding was shown to 

translate to specimens of human bladder cancer where tumor cells were SPARC negative, 

but stromal cells were positive.  Acute exposure of UROtsa cells to both cadmium and 

arsenite reduced the expression of SPARC through a mechanism that did not involve 

changes in DNA methylation or histone acetylation. These studies suggest that 

environmental exposure to As+3 or Cd+2 can alter cell-cell and cell-matrix interactions in 

normal urothelial cells through a reduction in the expression of SPARC.  The SPARC 

associated loss of cell-cell and cell-matrix contacts may participate in the multi-step 

process of bladder carcinogenesis. 
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Introduction 

 SPARC (secreted protein acidic and rich in cysteine), also known as BM-40 and 

osteonectin, is a 43 kDa protein and a prototype for a class of extracellular matrix-

associated proteins with counteradhesive properties (Hudson et al., 2005; Lane and Sage, 

1994; Motamed et al., 1995; Sage and Bornstein, 1991).  This property includes the 

ability to dismantle focal adhesions (Motamed et al., 1995; Murphy-Ullrich et al., 1995; 

Murphy-Ullrich, 2001).  In association with thombospondin-1 and tenascin C, this class 

comprises a non-homologous functional group of secreted matricellular proteins that 

interact with cell surface receptors, growth factors, and the extracellular matrix 

(Bornstein, 1995; Chiquet-Ehrismann, 1993; Crossin, 1996; Erickson, 1993; Hudson et 

al., 2005).  The mechanism(s) that control the expression of the SPARC gene in 

individual cells and tissues are not known.  The ability of SPARC to modulate cell-cell 

and cell-matrix interactions and to have de-adhesive properties has led to many studies 

assessing its role in cancer (Tai and Tang, 2008).  SPARC has been shown to be 

associated with highly aggressive tumors in some cancers, while in others it appears to 

function as a tumor suppressor.  There have been limited studies of SPARC expression in 

human bladder cancer.  The level of SPARC mRNA has been shown to correlate with 

increased histological grade, pathological stage, and poor prognosis (Yamanaka et al., 

2001); however, the expression of SPARC protein has not been determined.  In normal 

bladder, the SPARC protein has been localized to basal urothelial cells in mice as discrete 

20-100 μm foci (Bassuk et al., 2000).  In humans, SPARC has been shown to be 

expressed at the luminal surface of normal urothelium (Alpers et al., 2002).  Primary 

cultures of human urothelial cells have been shown to express SPARC and secrete 
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SPARC into the conditioned growth medium (Delostrinos et al., 2006; Hudson et al., 

2005). 

 The development of bladder cancer is known to have a strong association with 

environmental exposures (Bischoff and Clark, 2009).  This laboratory employs the 

human UROtsa cell line as a model to explore the relationship between As+3 and Cd+2 

exposure and the development of urothelial cancer.  The UROtsa cell line is an 

immortalized, but not tumorigenic model that retains features of transitional urothelium 

when propagated on a serum free growth medium (Rossi et al., 2001).  This cell line has 

been used to show that both Cd+2 and As+3 can cause the malignant transformation of 

human urothelial cells (Sens et al., 2004).  The laboratory has subsequently isolated and 

characterized 6 additional Cd+2 transformed cell lines and 5 additional As+3 transformed 

cell lines (Cao et al., 2010; Somji et al., 2010b).  These cell lines were all shown to retain 

a morphology consistent with human urothelial cancer and to display phenotypic 

differences characteristic of tumor heterogeneity.  The histology of subcutaneous tumor 

heterotransplants produced by these transformed isolates displayed histologic features of 

human urothelial carcinoma with areas of squamous differentiation.  This observation is 

important since urothelial carcinoma is the most prominent type of bladder cancer in 

western countries and accounts for over 95% of all cases and is 5th in overall occurrence 

(Bischoff and Clark, 2009).  The association of bladder cancer with environmental 

exposure is particularly strong for arsenic and correlates to the same endemic areas of the 

world where populations were identified with arsenic-induced skin cancer (Cantor and 

Lubin, 2007; Chiou et al., 1995; Luster and Simeonova, 2004; Smith et al., 1998; 

Steinmaus et al., 2000; Tsuda et al., 1995).  The association of Cd+2 with urothelial 
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cancer is not as strong, but several epidemiological studies have implicated Cd+2 in the 

development of bladder cancer (Kellen et al., 2007; Siemiatycki et al., 1994; Waalkes, 

2000).  The high level of Cd+2 accumulation in individuals who smoke cigarettes, along 

with the strong association of bladder cancer and smoking, is the major factor indirectly 

implicating Cd+2 in the development of urothelial cancer (Satarug and Moore, 2004; 

Satarug et al., 2010).   

 The first goal of the present study was to show that SPARC expression is altered 

when UROtsa cells are exposed to, or malignantly transformed, by As+3 or Cd+2.  The 

second was to characterize SPARC expression in subcutaneous tumors generated from 

the Cd+2 and As+3 transformed cell lines.  The third goal was to implicate or eliminate 

DNA methylation and histone acetylation as potential regulatory mechanisms for control 

of SPARC gene expression and the final goal was to show translation of the findings to 

human bladder cancer by characterizing SPARC expression in archival samples of human 

urothelial cancer.   

Materials and Methods 

Cell Culture 

 The procedures for the culture of the parental UROtsa cell line and the Cd+2 and 

As+3 induced malignant transformants have been described previously (Cao et al., 2010; 

Sens et al., 2004; Somji et al., 2010b).  Briefly, stock cultures of the parental UROtsa cell 

line were maintained in 75 cm2 tissue culture flasks using Dulbecco’s modified Eagle’s 

medium (DMEM) containing 5% v/v fetal calf serum in a 37°C, 5% CO2: 95% air 

atmosphere (Rossi et al., 2001).  The Cd+2 and As+3 transformed UROtsa cell lines were 

grown and maintained using identical conditions.  Confluent flasks were subcultured at a 



 

109 

1:4 ratio using trypsin-EDTA (0.05%, 0.02%) and the cells were fed fresh growth 

medium every 3 days   

Basal Expression of SPARC in UROtsa Cells and Tumor Heterotransplants 

 The preparation of total RNA and protein from the parental UROtsa cell line and 

from the Cd+2 and As+3 transformed cell lines and their subcutaneous heterotransplants 

have been described previously (Cao et al., 2010; Sens et al., 2004; Somji et al., 2010b).  

Pre-existing samples from these studies were used to determine the basal expression of 

SPARC mRNA and protein in this study.  The expression of SPARC mRNA was 

determined using real time RT-PCR and SPARC specific primers obtained from Qiagen 

(Valencia, CA).  Briefly, 1 µg of purified RNA was subjected to complementary DNA 

(cDNA) synthesis using the iScript cDNA synthesis kit (Bio-Rad Laboratories, Hercules, 

CA) in a total volume of 20 µL.  Real-time PCR was performed utilizing the SYBR 

Green kit (Bio-Rad Laboratories) with 2 µL of cDNA, 0.2 µM primers in a total volume 

of 20 µL in an iCycler iQ real-time detection system (Bio-Rad Laboratories).  

Amplification was monitored by SYBR Green fluorescence.  The level of SPARC 

mRNA was determined relative to the UROtsa cells grown in serum containing medium 

using serial dilutions of this sample as the standard curve.  The resulting relative levels 

were then normalized to the fold change in β-actin expression assessed by the same assay 

using the primers, sense: CGACAACGGCTCCGGCATGT and antisense:  

TGCCGTGCTCGATGGGGTACT, giving a product size of 194 bp and with the cycling 

parameters of annealing/extension at 62°C for 45 sec and denaturation at 95°C for 15 sec.   

 The expression of SPARC protein was determined by western blotting using 

20 μg of total cellular protein.  After blocking, the membranes were probed with mouse 



 

110 

anti- human osteonectin primary antibody (5 µg/mL; Haematologic Technologies Inc., 

Essex Junction, VT) in blocking buffer for 1 h at room temperature.  After washing 

3 times with Tris buffered saline (TBS) containing 0.1% Tween 20 (TBS-T), the 

membranes were incubated with the anti-mouse secondary antibody (1:2000) in antibody 

dilution buffer for 1 h.  The blots were visualized using the Phototope-HP (horseradish 

peroxidase) western blot detection system (Cell Signaling Technology, Beverly, MA). 

Immunolocalization of SPARC in Parental UROtsa Cells 

 The UROtsa cell lines were grown in 24 well plates containing 12 mm glass 

coverslips at 37° C, 5% carbon dioxide.  Cells at a subconfluent density were then fixed 

and stained according to published protocols (Cao et al., 2010; Sens et al., 2004; Somji et 

al., 2010b).  Briefly, cells were fixed in 3.7% buffered paraformaldehyde for 10 min at 

room temperature.  Coverslips were then quenched of free aldehyde with 0.1 M 

ammonium chloride for 15 min, followed by permeabilization with 0.1% Igepal (NP-40) 

for 10 min.  Cells were stained for SPARC by incubation for 45-60 min at 37° C with a 

1:20 dilution of mouse anti-osteonectin antibody (Leica Microsystems Inc., 

Bannockburn, IL).  Primary antibody was detected by incubating cells with 4.0 μg/mL of 

Alexa Fluor 594 goat anti-mouse IgG (Invitrogen, Carlsbad, CA) for 45-60 min at 37° C.  

Controls consisted of coverslips treated with the appropriate secondary antibody only.  

Coverslips were then mounted in ProLong Gold anti-fade reagent with 4',6-diamidino-2-

phenylindole (DAPI) (Invitrogen) for nuclear counter staining.  Cells were observed and 

images captured using a Zeiss LSM 510 Meta Confocal Microscope with LSM 510 

software (Carl Zeiss MicroImaging Inc.).  Images were composed by capturing z-slices at 
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a depth of 0.5 μm, stacking the z-slices together, and merging with the DAPI image of the 

same field so all cells in the field could be identified. 

Immunohistochemical Localization of SPARC in Tumor Heterotransplants  

and Archival Specimens of Human Bladder Cancer 

 

 The production of subcutaneous nude mouse heterotransplants from the Cd+2 and 

As+3 transformed UROtsa cell lines has been previously described (Sens et al., 2004).  

Tumor tissues taken from these and related studies (Cao et al., 2010; Somji et al., 2010b) 

were utilized in the present study to determine the localization and expression of SPARC 

in tumor heterotransplants.  Tissue sections for the immunohistochemical analysis of 

SPARC expression in human bladder were obtained from archival paraffin blocks that 

originated from previously completed patient diagnostic procedures.  These archival 

specimens contained no patient identifiers and use was approved by the University of 

North Dakota Internal Review Board. Prior to immunostaining, after routine 

deparaffinization and rehydration, sections were immersed in preheated 10 mM sodium 

citrate buffer (pH 6.0) and heated in a steamer for 20 min. The sections were allowed to 

cool to room temperature for 30 min and then immersed into TSB-T (Dako, Carpinteria, 

CA) for 5 min.  Endogenous peroxidase was extinguished by incubating the sections in 

Peroxidase Blocking Reagent (Dako) for 10 min.  SPARC was localized by incubating 

the slides with mouse monoclonal anti-osteonectin antibody (Leica Microsystems Inc.) 

for 30 min at room temperature.  For archival human bladder specimens, the signal was 

detected using Dako EnVision + Dual Link System-HP (Dako).  For tumor 

heterotransplants, Dakocytomation ARK (Animal Research Kit) was used to visualize the 

signal, following manufacturer’s instruction.  For both human tissue and mouse tumor 

heterotransplants, liquid diaminobenzidine (Dako) was used as chromogen.  
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Expression of SPARC in UROtsa Cells Exposed to Cd
+2

 and As
+3

 

 Preliminary experiments were performed to determine the conditions of exposure 

to Cd+2 and As+3 that were near to, but below, a level that produced cell death in 

confluent cultures of the parental UROtsa cells over a 10 day period of exposure.  From 

these preliminary determinations, 3 concentrations of cadmium chloride (1.0, 2.0, and 

4.0 μM) and sodium arsenite (1.0, 3.0 and 6.0 μM) were then chosen for experimental use 

such that over the 10 day time course, one concentration would result in minimal cell 

death and another that would result in appreciable cell death early in the time course.  

Cell viability, as an indicator of cytotoxicity, was determined by measuring the capacity 

of the UROtsa cells to reduce MTT (3-(4, 5-dimethylthiazol-2-yl)-2, 5-

diphenyltetrazolium bromide) to formazan (Sens et al., 2002).  The determination of 

SPARC mRNA using real time RT-PCR and protein by western blotting was as described 

above.   

Treatment of Cd
+2

 and As
+3

 Transformed UROtsa Cells with 5-Aza-2'-deoxycytidine 

 (5-AZC) and Histone Deacetylase Inhibitor 

 

 The parental and transformed UROtsa cell lines were seeded at a ratio of 1:10 and 

the next day they were exposed to 0.5, 1.0 and 3.0 µM 5-AZC or the histone deacetylase 

inhibitor MS-275 at 0.5, 1.5, and 5.0 µM until the cells reached confluency (48 h).  Cells 

were then harvested to determine SPARC mRNA expression. 

Statistics 

 Statistical analysis consisted of ANOVA with Tukey post-hoc testing performed 

by Graphpad PRISM 4. All statistical significance is denoted at p < 0.05. 
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Results 

SPARC mRNA and Protein Expression in Parental UROtsa  

Cells and Cd
+2

 and As
+3

 Transformed Cell Lines 

 

 The expression and localization of SPARC was determined for the parental 

UROtsa cells and the 7 Cd+2 and 6 As+3 transformed cell lines.  The parental UROtsa 

cells expressed a moderate amount of SPARC mRNA when compared to the common 

transcript, β-actin (Figure III-1A).  In contrast, SPARC mRNA expression was at the 

limit of detection in the UROtsa cell lines malignantly transformed by either Cd+2 or As+3 

(Figure III-1A).  A corresponding analysis of SPARC protein expression by western 

blotting showed that only the parental UROtsa cell line had expression of the SPARC 

protein (Figure III-1B).  None of the 13 independent UROtsa cell lines transformed by 

either Cd+2 or As+3 showed any evidence of expression of the SPARC protein  

(Figure III-1B).  The localization of SPARC within the UROtsa cells was determined by 

immunofluorescence analysis.  The analysis showed that the majority of the parental 

UROtsa cells showed intracellular expression of the SPARC protein, with only very 

infrequent cell profiles showing no SPARC immunoreactivity (Figure III-2A).  In 

contrast, none of the 13 independent UROtsa cell lines transformed by either Cd+2 or As+3 

had cell profiles that were immunoreactive for the SPARC protein (Figure III-2B).  When 

present, SPARC was localized to the cytoplasm (Figure III-2C) and appeared as distinct 

vesicles (Figure III-2D).   

SPARC mRNA and Protein Expression in Tumor Heterotransplants Produced  

From Cd
+2

 and As
+3

 Transformed UROtsa Cell Lines 

 

 The expression of SPARC mRNA and protein was determined on extracts 

prepared from the subcutaneous tumors generated from the 7 Cd+2 and 6 As+3 



 

114 

transformed cell lines (Figure III-3).  For all the isolates, the expression of SPARC 

mRNA was at the limit of detection (Figure III-3A) and western blotting failed to 

demonstrate any expression of the SPARC protein (Figure III-3B).  The 

immunohistochemical analysis of SPARC expression in the heterotransplants showed no 

staining of SPARC in the urothelial cancer cells from any of the 7 Cd+2 and 6 As+3 

transformed cell lines (Figure III-4).  In contrast, the stromal components of the urothelial 

tumors generated from the cell lines were positive for the expression of the SPARC 

protein.  An example of this immunostaining pattern of SPARC is illustrated for one 

tumor generated from a Cd+2 transformed cell line (Figure III-4A) and one from a As+3 

transformed cell line (Figure III-4B) (Yasmin, 2009). 

SPARC mRNA Expression in Parental and As
+3

 and Cd
+2

 Transformed UROtsa Cells 

Following Treatment with Inhibitors of DNA Methylation and Acetylation 

 
 The parental cell line and single isolates of the As+3 and Cd+2 transformed 

UROtsa cells were treated with the histone deacetylase inhibitor, MS-275, and the 

methylation inhibitor, 5-AZC, to determine the possible role of epigenetic modifications 

on SPARC mRNA expression.  This analysis demonstrated that none of the cell lines, 

parental or transformed, treated with MS-275 (Figure III-5A) or 5-AZC (Figure III-6A) 

expressed increased levels of SPARC mRNA compared to the untreated controls.  

Additional experiments were performed where treatment of the cells with MS-275 or  

5-AZC was increased to 48 h and 72 h with no change in the results (Figures III-5B, C 

and Figure III-6B, C).  The treatment of the three cell lines with a combination of the two 

drugs also had no effect on SPARC mRNA expression (Figure III-7).  An identical 

protocol has been used by the laboratory to show that treatment of MCF-10 human breast 
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cells with 5-AZC and MS-275 induces the expression of MT-3 mRNA (Somji et al., 

2010a). 

SPARC Expression in Parental UROtsa Cells Exposed to Cd
+2

 and As
+3

 

 The expression of SPARC was determined in parental UROtsa cells following 

exposure to Cd+2 and As+3.  The results showed that the expression of SPARC mRNA 

was significantly reduced following a 24 h exposure to as little as 1 μM of Cd+2  

(Figure III-8A).  The expression of SPARC mRNA showed further reductions when 

either the level of Cd+2 was increased during a 24 h period of exposure or when the 

period of exposure to 1 μM Cd+2 was extended to 5 days.  The expression of SPARC 

protein was also reduced significantly following Cd+2 exposure and in general followed 

the pattern of SPARC mRNA, when an expected slower rate of SPARC protein 

degradation is taken into account (Figure III-8B).  The expression of SPARC was also 

shown to be reduced in parental UROtsa cells following exposure to As+3 (Figure III-9A, 

B).  The level of SPARC mRNA and protein was not reduced following a 24 h exposure 

of the cells to 1, 3 or 6 μM As+3.  In contrast, a reduction in SPARC mRNA and protein 

occurred when the parental UROtsa cells were exposed to 1, 3 or 6 μM As+3 for 3, 5 and 

7 days of exposure. 

 During the process of transforming the UROtsa cells with Cd+2 or As+3, cells were 

harvested and frozen down during the time course needed to fully transform these cells.  

The expression of SPARC was therefore determined in the UROtsa As#3 cell line at an 

early passage (P6) within the transformation process and also at a later passage (P26) 

within the transformation process.  The resulting mRNA and protein levels of SPARC 

were compared to the UROtsa parental cell line and the fully transformed As#3 cell line.  
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The mRNA and protein expression of SPARC decreased roughly by half in the As#3 P6 

cell line compared to the UROtsa parent and SPARC expression was further reduced in 

the As#3 P26.  The expression of SPARC mRNA and protein detected within the fully 

transformed As#3 cell line was very similar to that seen in the As#3 P26 cell line. 

Immunohistochemical Staining of SPARC in Normal Human Bladder,  

Cystitis, Noninvasive, and Invasive Urothelial Carcinoma 

 

 The immunohistochemical staining of SPARC was determined on 4 samples of 

non-cancerous “normal” urothelium, 5 cases of low grade urothelial cancer and 6 cases of 

high grade urothelial cancer.  Two cases of normal urothelium had no evidence of cystitis 

or inflammation.  In these two cases, SPARC was moderately expressed in the upper 

superficial cells of the urothelium (Figure III-10A).  In addition, SPARC was also 

expressed in a few small stromal cells located in the superficial lamina propria just 

beneath the urotheluim.  There was no SPARC staining of the blood vessels in the normal 

lamina propria.  One case of archived normal urothelium was accompanied by frozen 

tissue and total RNA and protein were prepared and shown to contain SPARC mRNA 

and protein (Figure III-10A, B).  The other 2 cases of normal urothelium were non-

cancerous, but did have prominent inflammation (cystitis).  The expression of SPARC in 

the urothelium of these two samples was identical to that of the above samples, with 

SPARC expression localized to the superficial layer of the urothelium.  However, in these 

samples with inflammation, there were more frequent profiles of SPARC expression 

localized to stromal cells and also for the endothelium of the blood vessels located in the 

lamina propria (Figure III-10B).  The stromal cells that express SPARC were usually 

spindle-shaped and could be located anywhere in the bladder where inflammation was 

present; not being limited in expression to the superficial laminar propria as that found in 
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normal bladder specimens with no inflammation.  In an area with granulation formation, 

the newly formed blood vessels with plump endothelial cells were strongly positive for 

SPARC, while the flat endothelial cells in mature blood vessels located deep in the 

lamina propria were only weakly positive or negative for SPARC (Figure III-10C).  

 In contrast to normal urothelium, all 5 cases of low grade bladder cancer were 

found to have no expression of SPARC in the tumor urothelium (Figure III-10D).  In 

cases where there was no tumor-associated inflammation or necrosis, only a few SPARC 

positive stromal cells were present in the papillary core, while more stromal cells 

expressing SPARC could be found in the basal area of the tumor, where the tumor 

connects to the wall of the bladder (data not shown).  The endothelial cells of the blood 

vessels in the papillary cores of the tumors were usually strongly stained for SPARC 

(Figure III-10D).  In some of the cases of low grade carcinoma, a band of inflammatory 

reaction could be identified in the interface between tumor and bladder wall; and in these 

instances there was an increase in the number of SPARC reactive stromal cells (data not 

shown).  In areas of necrosis, whether in the tumor or in a tumor free area, there was a 

large number of SPARC-positive stromal cells that surrounded the area of necrosis 

(Figure III-10E). 

 Identical to that found in low grade urothelial cancer, the tumor cells of high 

grade, invasive urothelial cancer were found to have no expression of SPARC protein 

(Figure III-10F).  The high grade urothelial cancers did have a prominent desmoplastic 

stromal reaction that was present in and around the invasive carcinoma.  These 

desmoplastic stromal cells were prominently stained for SPARC as were the endothelial 

cells of the blood vessels in or adjacent to the invasive carcinoma (Figure III-10F).  The 
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stromal cells that stained for SPARC were more prominent in areas surrounding the 

invasive carcinoma than the stromal cells located within the invasive carcinoma itself.  In 

areas of the invasive carcinomas that did not exhibit a prominent stromal reaction there 

were fewer SPARC reactive stromal cells, but the associated blood vessels, when present, 

had endothelium that was strongly positive for SPARC (data not shown).  The expression 

of SPARC in the stromal cells of the tumor free areas from the cases of invasive 

carcinoma was similar to that noted above for normal bladder, depending on the degree 

of inflammation (data not shown).   

Discussion 

 The present study is the first to show that the heavy metals, Cd+2 and As+3, may 

down-regulate the expression of SPARC during the development and progression of 

bladder cancer.  It is known from previous studies that SPARC is expressed in normal 

urothelium and urothelial cell cultures (Alpers et al., 2002; Bassuk et al., 2000; 

Delostrinos et al., 2006; Hudson et al., 2005).  The present study shows that SPARC is 

also expressed in the parental UROtsa cells and that SPARC expression is reduced to the 

limit of detection when the cells are malignantly transformed by both Cd+2 and As+3.  

Immunohistochemical analysis showed that the expression of SPARC was also down-

regulated to background levels in the epithelial component of the tumors produced from 

cells injected subcutaneously into nude mice.  In contrast, the stromal component of these 

tumors showed strong immunoreactivity for the SPARC protein.  The stromal component 

originates from the murine host and is likely recruited to the tumor site by secretions 

from the tumor cells.  The murine origin of the stromal component caused some minor 

difficulty in the interpretation of SPARC expression since the real time PCR primers and 
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antibody used to assess human SPARC expression were chosen to perform optimally on 

human cells and tissue.  While the human SPARC antibody was effective in the 

immunohistochemical localization of SPARC in murine stroma, it performed very poorly 

when used for western blotting.  The sequence of the primers used for real time analysis 

of SPARC mRNA in humans is not preserved in the murine sequence.  Despite these 

technical limitations, the results clearly show that SPARC expression is down-regulated 

when UROtsa cells are transformed by Cd+2 or As+3 and that the stroma recruited to 

tumors produced by the SPARC negative epithelial cells are strongly immunoreactive for 

SPARC.   

 Another significant finding is that the above alterations in SPARC expression 

found in tumors from Cd+2 and As+3 transformed UROtsa cells translates to human 

urothelial cancer.  The present study confirmed that SPARC is expressed in normal 

urothelium.  A new finding in this study using archival specimens of human bladder 

cancer was that SPARC expression is absent in the malignant urothelial cells comprising 

human urothelial cancer, but is highly expressed in the stromal component of these 

tumors.  The expression of SPARC was also noted in endothelial cells in areas of 

inflammation and in inflammatory cells at these sites.  These findings impact on the 

previous report that SPARC expression is increased in human urothelial cancer 

(Yamanaka et al., 2001).  In this study, SPARC expression was determined only at the 

level of mRNA expression with no determination of the SPARC protein by 

immunohistochemical localization.  It is highly likely that this study noted increased 

expression of SPARC in urothelial cancer due to SPARC expression in the tumor 

recruited stroma and not in the malignant urothelial cells themselves.  Using this 
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interpretation, the previous study would have actually correlated to increased expression 

of SPARC in the stromal component of urothelial cancer, and not to the cancer cells 

themselves, with increased histological grade, pathological stage, and poor prognosis.  A 

future retrospective study will need to be performed to determine if it is the amount of 

stroma that expresses SPARC or the level of SPARC expression in the stroma, or both, 

that correlated to these important clinical parameters. 

 It was also determined that acute exposure of the parental UROtsa cells to both 

Cd+2 and As+3 resulted in a reduction in the expression of SPARC mRNA and protein.  

The reduction was especially pronounced for Cd+2, but reductions by both agents 

occurred at concentrations routinely used to mimic the effects of environmental exposure 

to these pollutants.  To our knowledge, this is the first indication that exposure to Cd+2 or 

As+3 might cause a reduction in the expression of SPARC in human cells.  The study also 

showed that SPARC expression was not changed in the normal or transformed cells by 

treatment of the cells with either a histone deacetylase inhibitor or a demethylating agent.  

The possibility that SPARC expression might be influenced by histone modification or 

DNA methylation was suggested by studies showing aberrant methylation of the SPARC 

gene in human lung and ovarian cancers (Socha et al., 2009; Suzuki et al., 2005).  The 

finding that both Cd+2 and As+3 had similar effects on SPARC expression before and 

following malignant transformation suggests a similar mechanism of action once the 

agents are fully elaborated inside the cell.  The laboratory employs both agents in 

environmental bladder cancer research since each has distinctly different modes of 

cellular uptake and processing once inside the cell.  This is especially pronounced for 

cellular processing since Cd+2 remains chemically unaltered inside the cell and As+3 
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requires methylation to become active.  The present study implicates both Cd+2 and As+3 

as agents affecting SPARC expression in bladder cancer.
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Figure III-1.   Expression of SPARC mRNA and protein.  (A) Real time RT-PCR 
analysis of SPARC expression in parental UROtsa cells, UROtsa cells 
transformed by Cd+2 and As+3, and normal human urothelium.    The 
mRNA levels were normalized to the fold change in β-actin.  Real time 
data is plotted as the mean ± SEM of triplicate determinations. (B) 
Western analysis of SPARC protein in parental UROtsa cells, UROtsa 
cells transformed by Cd+2 and As+3, and normal human urothelium.  
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Figure III-2.   Localization of SPARC protein expression.  (A) SPARC (red) staining in 
the parent UROtsa cells.   (B) Staining for SPARC in UROtsa cells 
transformed by As+3.  (C) SPARC staining in UROtsa parental cells 
localized to small punctate structures throughout the cytoplasm.  (D) 
Higher magnification image from the boxed area in panel C showing 
SPARC localized to structures that resemble vesicles.  The DAPI 
counterstain (blue) was used to identify all the cells in the fields.  Bars in 
A-C = 20 μm, the bar in D = 5 μm.
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Figure III-3.   Expression of SPARC mRNA and protein in tumor heterotransplants.  (A) 
Real time RT-PCR analysis of SPARC expression in parental UROtsa 
cells and in Cd+2 or As+3 tumor heterotransplants.  The mRNA levels were 
normalized to the fold change in β-actin.  Real time data is plotted as the 
mean ± SEM of triplicate determinations.  (B) Western analysis of SPARC 
protein in tumor heterotransplants (Yasmin, 2009). 
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Figure III-4.   Expression of SPARC protein in tumor heterotransplants.  (A and B) 
Immunohistochemical analysis of SPARC protein in Cd+2 or As+3 tumor 
heterotransplants respectively. The brown color indicates SPARC positive 
cells.  The tumors were generated from the Cd#1 and the As#1 cell lines 
(Yasmin, 2009).  Images are taken at the magnification of X 200.  
Bar = 100 μM.  
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Figure III-5.   Real-time RT-PCR analysis of SPARC mRNA levels in parental UROtsa 
cells, and UROtsa cells transformed by Cd+2 and As+3 treated with the 
epigenetic regulator, MS-275.  The Cd#1 and the  As#1 transformed cell 
lines were used in these experiments.  Expression of SPARC mRNA after 
treatment with MS-275 for: (A) 24 h, (B) 48 h, and (C) 72 h.  The level of 
SPARC mRNA was determined relative to the UROtsa cells using serial 
dilutions of this sample as the standard curve.  The resulting relative levels 
were then normalized to the fold change in β-actin.  Real time data is 
plotted as the mean ± SEM of triplicate determinations. 
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Figure III-6.   Real-time RT-PCR analysis of SPARC mRNA levels in parental UROtsa 
cells, and UROtsa cells transformed by Cd+2 and As+3 treated with the 
epigenetic regulator, 5-AZC.  The Cd#1 and the As#1 transformed cell 
lines were used in these experiments.  Expression of SPARC mRNA after 
treatment with 5-AZC for (A) 24 h, (B) 48 h, and (C) 72 h.  The level of 
SPARC mRNA was determined relative to the UROtsa cells using serial 
dilutions of this sample as the standard curve.  The resulting relative levels 
were then normalized to the fold change in β-actin.  Real time data is 
plotted as the mean ± SEM of triplicate determinations.
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Figure III-7.   Real-time RT-PCR analysis of SPARC mRNA levels in parental UROtsa 
cells, and UROtsa cells transformed by Cd+2 and As+3 treated with a 
combination of epigenetic regulators.  The Cd#1 and the  As#1 transformed 
cell lines were used in these experiments.  Expression of SPARC mRNA 
after treatment with varying concentrations of both drugs, MS-275 and  
5-AZC, for 72 h.  The level of SPARC mRNA was determined relative to 
the UROtsa cells using serial dilutions of this sample as the standard 
curve.  The resulting relative levels were then normalized to the fold 
change in β-actin.  Real time data is plotted as the mean ± SEM of 
triplicate determinations.
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Figure III-8.   Expression of SPARC mRNA and protein in parental UROtsa cells 
exposed to Cd+2.  (A) Real time RT-PCR analysis of SPARC.  The level of 
SPARC mRNA was determined relative to the UROtsa cells using serial 
dilutions of this sample as the standard curve.  The resulting relative levels 
were then normalized to the fold change in β-actin.  * denotes a significant 
difference from untreated UROtsa cells (p < 0.05).  Real time data is 
plotted as the mean ± SEM of triplicate determinations.  (B) Western blot 
analysis of SPARC protein.
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Figure III-9.   Expression of SPARC mRNA and protein in parental UROtsa cells 
exposed to As+3.  (A) Real time RT-PCR analysis of SPARC.  The level of 
SPARC mRNA was determined relative to the UROtsa cells using serial 
dilutions of this sample as the standard curve.  The resulting relative levels 
were then normalized to the fold change in β-actin.  * denotes a significant 
difference from untreated UROtsa cells (p < 0.05).  Real time data is 
plotted as the mean ± SEM of triplicate determinations.  (B) Western blot 
analysis of SPARC protein.
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Figure III-10. Expression of SPARC mRNA and protein during the transformation 
process in UROtsa cells exposed to 1 μM As+3.  (A) Real time RT-PCR 
analysis of SPARC expression in the UROtsa parent, the fully transformed 
As#3 cell line, As#3 P6, and As#3 P26 cell lines.  The level of SPARC 
mRNA was determined relative to the UROtsa parent cells using serial 
dilutions of this sample as the standard curve.  The resulting relative levels 
were then normalized to the fold change in β-actin.  (B) Western blot 
analysis of SPARC protein in the UROtsa parent, the fully transformed 
As#3 cell line, As#3 P6, and As#3 P26 cell lines.  A duplicate blot was 
stained for β-actin as a control.  The early passage, As#3 P6, corresponded 
to 17 days into the transformation process, while the late passage, As#3 
P26, corresponded to 4.5 months. 
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Figure III-11. Immunohistochemical staining of SPARC in normal human bladder, 
cystitis, invasive, and noninvasive urothelial carcinoma.  (A) Localization 
of SPARC in normal human bladder tissue sample.  * indicates SPARC 
staining in the normal urothelium.  + indicates staining in the stromal 
cells.  Arrowheads indicate lack of staining in blood vessels.  (B) 
Localization of SPARC in a bladder tissue sample obtained from a patient 
with cystitis.  + indicates frequent staining of stromal cells.  Arrows 
indicate moderate staining in blood vessels.  (C) Localization of SPARC 
in blood vessels of bladder tissue obtained from a patient with cystitis.  
Arrows indicate strong staining in the newly formed blood vessels, 
whereas mature blood vessels in deep lamina propria are weakly positive 
or negative for SPARC (arrowheads).  (D) Localization of SPARC in low 
grade urothelial papillary carcinoma.  The tumor cells did not stain for 
SPARC whereas few stromal cells in the papillary core (+) stained for 
SPARC.  Arrow indicates strong staining in small blood vessels.  (E) 
Localization of SPARC in low grade urothelial papillary carcinoma 
containing areas of necrosis.  # indicates an area of necrosis, around which 
a large number of SPARC positive (+) stromal cells are present.  (F) 
Localization of SPARC in high grade invasive bladder cancer.  The tumor 
cells did not stain for SPARC whereas the desmoplastic stromal cells both 
in and around the invasive carcinoma stained strongly (+).  Arrows 
indicate positive staining of the endothelial cells of the blood vessels.  All 
images are at a magnification of X 200.  Bar = 100 μm.
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Abstract 

 SPARC, secreted protein acidic and rich in cysteine, is a member of the 

matricellular group of proteins that is known to modulate interactions between cells and 

the extracellular matrix.  Influencing tumor growth and migration, the expression of 

SPARC in human bladder cancer was found to be absent in the malignant urothelial cells, 

but highly expressed in the stromal component recruited to the tumor.  The purpose of 

this study is to examine the expression of SPARC and the role it plays in the formation 

and progression of bladder cancer in a model of heavy metal induced cell transformation.  

A previous study from this laboratory showed SPARC expression was significantly 

down-regulated to the level of detection in Cd+2 and As+3 transformed UROtsa cells.  To 

further investigate the role of SPARC expression in bladder cancer, a SPARC expression 

vector was stably transfected into two As3+ and two Cd2+ transformed UROtsa cell lines.  

The expression of SPARC in the transfected lines was characterized using real time 

reverse transcriptase-polymerase chain reaction to quantitate mRNA level, and western 

blotting, immunofluorescence, and immunohistochemistry to determine protein levels 

and localization.  The transfected cell lines were further analyzed by the ability to secrete 

SPARC into growth media, growth rates, migration, wound healing rates, invasion 

capabilities, and tumorigenicity.  This data showed that SPARC mRNA and protein 

expression was induced in the transfected cell lines, was localized to distinct vesicles 

within the cytoplasm by immunofluorescent staining, and was secreted into the growth 

medium.  However, after the successful generation of tumors in nude mice, 

immunohistochemistry analysis revealed the tumors generated from the SPARC-

transfected cell lines showed an absence of SPARC expression within the epithelial 
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component of the tumors, this staining pattern was mimicked in controls.  Further 

examination showed tumors generated from SPARC-transfected cells did contain the 

original transfection vector, and the mRNA expression of SPARC within the tumor from 

the SPARC-transfected cell line revealed the presence of SPARC message, albeit at a low 

level.  This study suggests that the down-regulation of SPARC expression in mouse 

tumors generated by the malignantly transformed UROtsa cells transfected with SPARC 

expression, is a tumor cell response to the mouse tumor environment and most likely due 

to post-transcriptional regulation.  

Introduction 

 SPARC, also known as BM-40 and osteonectin, is a 43 kDa glycoprotein that 

belongs to the matricellular group of proteins.  Matricellular proteins are secreted 

macromolecules that interact with the extracellular matrix, cell surface receptors, and 

growth factors and/or proteases but do not play a structural role in the extracellular matrix 

(Bornstein, 1995).  However, these proteins have the capacity to bind to components of 

the extracellular matrix.  SPARC expression has been shown to be up-regulated during 

embryological development and in various tissues modulating cell-cell and cell-matrix 

interactions such as in areas of cellular injury and remodeling (Lane and Sage, 1994; 

Sage and Bornstein, 1991).  SPARC expression is also altered in many cancers; however 

the role SPARC plays in the regulation of tumor growth and progression remains unclear.  

In some cancers, including melanomas and renal cell carcinomas, high levels of SPARC 

expression are found in the malignant epithelial cells comprising the tumor leading to the 

progression of the tumor and a poor outcome (Ledda et al., 1997; Rempel et al., 1998; 

Sakai et al., 2001).  While in other cancers, including ovarian, prostate, and pancreatic, 
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SPARC expression is absent from the epithelial component of the tumor leading to its 

association as a tumor suppressor (Sato et al., 2003; Socha et al., 2009; Thomas et al., 

2000).  However, in several of these cancers, the stroma directly surrounding the 

malignant epithelial component of the tumor is strongly reactive for SPARC expression.  

The expression of SPARC in the stroma is believed to promote migration and/or invasion 

of the tumor, even though the malignant component of the tumor is SPARC negative.  

Since SPARC can be expressed and secreted by both tumorigenic and stromal cells, 

SPARC can modulate the interactions between these cells through cell-stroma crosstalk 

during cancer progression.  This expression pattern is seen in several highly aggressive 

types of human cancer, including non-small cell lung carcinoma and pancreatic 

carcinoma. These aggressive cancers show a high level of SPARC expression in 

fibroblasts in close proximity to the malignant cells which lack SPARC expression 

(Koukourakis et al., 2003; Sato et al., 2003).  The role of SPARC in tumor progression, 

although complicated, appears to be dependent on the tissue, and specific cell type 

expressing SPARC.  

 This laboratory has previously shown SPARC is moderately expressed in normal 

human bladder tissue with SPARC expression localized to the upper superficial cells of 

the urothelium as well as some moderately light staining in the stroma (Larson et al., 

2010).  In contrast, archival specimens of human bladder cancer showed SPARC 

expression was absent in the malignant urothelial cells comprising the tumor, but highly 

expressed in the stromal components recruited to these tumors.  These findings were 

comparable to the human bladder cell cultures employed by this laboratory.  The UROtsa 

cell line is an immortalized, but non-tumorigenic cell line that displays features of 
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transitional urothelium when propagated on a serum free growth medium (Rossi et al., 

2001).  This cell line has been used to show that both As3+ and Cd2+ can cause the 

malignant transformation of human urothelial cells (Cao et al., 2010; Sens et al., 2004; 

Somji et al., 2010).  In total, 6 As+3- and 7 Cd+2- transformed cell lines have been isolated 

after long-term, low dose exposure of the parental cells to these heavy metals.  SPARC 

expression was detected in the parental UROtsa cells and its expression was reduced to 

the limit of detection when the cells were malignantly transformed by either As+3 or Cd+2.  

In addition, the malignant epithelial components of mouse tumors derived from these cell 

lines also down-regulated SPARC expression, but the stromal component of these tumors 

were highly reactive for SPARC (Larson et al., 2010).  These findings suggest that during 

malignant transformation by As3+ and Cd2+, urothelial cells turn off expression of SPARC 

mRNA and protein. 

 The first goal of the present study was to stably transfect SPARC into As+3 and 

Cd+2 -transformed UROtsa cell lines and determine SPARC expression at the mRNA and 

protein levels.  The second goal was to further characterize the growth, migration, and 

invasion capabilities of the SPARC-transfected cell lines as compared to UROtsa cell 

lines.  Finally the last goal was to show translation of the findings to mouse 

heterotransplants derived from the SPARC-transfected As+3 and Cd+2-transformed 

UROtsa cell lines by characterizing SPARC expression in the resulting tumors formed in 

the nude mice.  



 

144 

Materials and Methods 

Cell Culture 

 Stock cultures of the parental cell line were maintained in 75 cm2 tissue culture 

flasks using Dulbecco’s modified Eagle’s medium (DMEM) containing 5% v/v fetal calf 

serum (Rossi et al., 2001).  The isolation and growth of the seven isolates of the Cd+2-

transformed UROtsa cells and six isolates of the As+3-transformaned UROtsa cells have 

been described previously (Cao et al., 2010; Sens et al., 2004; Somji et al., 2010).  The 

Cd+2 and As+3 -transformed UROtsa cell lines were grown and maintained using identical 

conditions to the parental cell line.  MDA-MB-231 and Hs578T breast cancer cell lines 

were obtained from the American Type Culture Collection (Rockville, MD), grown in 

DMEM supplemented with 5% v/v fetal calf serum as described previously (Friedline et 

al., 1998; Gurel et al., 2003).  All cell cultures were incubated at 37°C in a 5% CO2: 95% 

air atmosphere, confluent flasks were routinely subcultured at a 1:4 ratio using trypsin-

EDTA (0.05%, 0.02%) upon attaining confluence, and fed fresh growth media every 

3 days.  Cell viability, as a measure of cytotoxicity, was determined by measuring the 

capacity of the cells to reduce MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-

diphenyltetrazolium bromide) to formazan (Rossi et al., 2002).  Cell growth rates were 

also determined using MTT assay following a 1:100 subculture of the cells.  Triplicate 

cultures were analyzed for each time point.   

Stable Transfection of Select Transformed UROtsa Cell Lines 

 Previously generated mouse heterotransplants as described by (Cao et al., 2010; 

Sens et al., 2004; Somji et al., 2010) were used in this study.  For the stable transfection 

of SPARC, the present study used two cell lines from the Cd+2-transformed cell lines and 
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two from the As+3-transformed cell lines.  One cell line from each the Cd+2 and As+3-

transformed UROtsa cell lines was chosen based on its ability to form intraperitoneal 

tumors while the remaining cell line from each group was randomly determined.  Select 

As+3-and Cd+2-transformed UROtsa cell lines (As#3, As#6, Cd#3, and Cd#4) were chosen 

for the stable transfection with the SPARC open reading frame (ORF) cloned into the 

pENTR221 vector obtained from Invitrogen (Carlsbad, CA).  This entry vector was 

transferred into the destination vector, pcDNA 6.2/V5-DEST vector (Invitrogen), by LR 

recombination reaction (Invitrogen).  The purified plasmid DNA constructs were 

quantified, custom sequenced (MWG Biotech, Inc., High point, NC), and analyzed to 

verify the sequence of SPARC.  The DNA constructs were linearized prior to 

transfection. The SPARC ORF in pcDNA 6.2/V5-DEST was linearized with Ssp I (New 

England BioLabs, Ipswich, MA) and the pcDNA 6.2/V5-DEST vector alone (blank 

vector) was linearized with Pst 1 (New England BioLabs)  The select As+3- and Cd+2- 

transformed UROtsa cells were transfected with the SPARC ORF in pcDNA 6.2/V5-

DEST or the blank vector using Effectene Transfection reagent (Qiagen, Valencia, CA) 

following the manufacturer’s protocol at a ratio of 1:10 plasmid to Effectene ratio.  The 

lipid complexes were added to the cells at 2 μg of DNA per 9.6 cm2 culture well.  Clones 

were selected using cloning rings and propagated in the growth medium containing 

4 μg/mL Blasticidin (BSD) (Invitrogen).  The morphology of the transfected cell lines 

were visualized by light microscopy and one clone from each cell line was selected to 

further analysis based on levels of SPARC expression.  Approximately 15 cones from 

each of the 4 cell lines were analyzed.  The select As+3- and Cd+2-transformed UROtsa 

cells stably transfected with SPARC ORF in pcDNA 6.2/V5-DEST are designated as 
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As#3-SPARC, As#6-SPARC, Cd#3-SPARC, and Cd#4-SPARC, while those stably 

transfected with the blank vector are designated as As#3-DEST, As#6- DEST, Cd#3- 

DEST, and Cd#4- DEST. 

mRNA and Protein Expression in Parental, As
+3

-and Cd
+2

-Transformed,  

SPARC-Transfected UROtsa Cell Lines, and Mouse Heterotransplants 

 

 Total RNA was isolated from the cells according to the protocol supplied with 

TRI REAGENT (Molecular Research Center, MRC, Cincinnati, OH)  and real time RT-

PCR was used to measure the expression level of human SPARC mRNA as previously 

described (Larson et al., 2010) as well as the expression of BSD (Blasticidin) and mouse 

specific SPARC.  Briefly, a human specific SPARC, mouse specific SPARC, and BSD 

specific primers were obtained from Qiagen and amplification was monitored by SYBR 

Green fluorescence (Bio-Rad Laboratories, Hercules, CA).  The level of human SPARC 

expression was determined relative to the UROtsa parent cell line using human SPARC 

standards to generate a standard curve, while the level of mouse specific SPARC and 

BSD were determined relative to the Cd#1 mouse tumor heterotransplant using serial 

dilutions of this sample as a standard curve.  The expression levels of all genes were 

normalized to β-actin expression.  The expression of human SPARC was determined by 

western blotting using 10 μg of total cellular protein and separated on a 12.5% SDS-

polyacrylamide gel.  After blocking, the membranes were probed using a 1:1000 dilution 

of a mouse monoclonal anti-osteonectin primary antibody (Leica Microsystems Inc., 

Bannockburn, IL) in blocking buffer for 1 h at room temperature.  After washing 3 times 

with Tris buffered saline (TBS) containing 0.1% Tween 20 (TBS-T), membranes were 

incubated with the anti-mouse secondary antibody (1:10,000) in antibody dilution buffer 

for 1 h.  Blots were visualized using the Phototope-HP (horseradish peroxidase) Western 
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blot detection system (Cell Signaling Technology, Beverly, MA) as previously described 

(Larson et al., 2010).  The expression of secreted SPARC protein was also determined by 

western analysis using slight modification in the protocol as previously described by Sage 

(2003).  Briefly, conditioned growth media from confluent cultures was collected, 

centrifuged, and filtered through a 0.22 μm filter.  With stirring at 4°C, solid ultrapure 

ammonium sulfate (Sigma Aldrich, St. Louis, MI) was added at 50% w/v of starting 

conditioned media volume over several hours in polypropylene containers.  Media was 

centrifuged at 40,000 x g, supernatant was discarded, and resulting pellet was dissolved 

in 2% SDS for analysis.  Equal total protein was loaded. 

Immunolocalization of SPARC in Parental, As
+3

-and Cd
+2

-Transformed,  

and SPARC-Transfected UROtsa Cell Lines  

 

 UROtsa parent, As+3-and Cd+2-transformed, and SPARC-transfected cells were 

grown in 24 well plates with 12 mm glass coverslips and processed while subconfluent.  

Cells were fixed and stained as described previously (Larson et al., 2010).  Briefly, cells 

were fixed in 3.7% paraformaldehyde, quenched of free aldehyde with 0.1 M ammonium 

chloride for 15 min, followed by permeabilization with 0.1% Igepal (NP-40) for 10 min.  

Cells were stained for SPARC by incubation for 45-60 min at 37° C with a 1:20 dilution 

of mouse anti-osteonectin antibody (Leica Microsystems Inc.).  Primary antibody was 

detected by incubating cells with 4.0 μg/mL of Alexa Fluor 594 goat anti-mouse IgG 

(Invitrogen) for 45-60 min at 37° C.  Controls consisted of coverslips treated with the 

secondary antibody only.  Coverslips were then mounted in ProLong Gold anti-fade 

reagent with 4',6-diamidino-2-phenylindole (DAPI) (Invitrogen) for nuclear counter 

staining.  Cells were observed and images were captured using a Zeiss LSM 510 Meta 

Confocal Microscope with LSM 510 software (Carl Zeiss MicroImaging Inc.).  Images 
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were composed by capturing z-slices at a depth of 0.5 μm, stacking the z-slices together, 

and merging with the DAPI image of the same field so all cells in the field could be 

identified.  

Cellular Migration and Invasion Assays 

 Migration of parental, As+3-and Cd+2-transformed, SPARC and DEST-transfected 

UROtsa cell lines, and MDA-MB-231 cells as a positive control were assessed.  Analysis 

of migration was conducted using two assays, a wound/scratch assay and a transwell 

migration assay.  For the wound assay, cells were grown to confluence and treated with 

Mitomycin C (MMC) (Sigma Aldrich) for 2 h, to inhibit cellular division.  Appropriate 

concentrations of MMC were specifically determined for each cell line by MTT analysis 

to insure inhibition of cellular proliferation while also insuring that levels were not toxic.  

A scratch was made within the cell monolayer using a sterile 200 μL pipette tip.  The 

monolayer was then washed with phosphate-buffered saline, fresh growth medium was 

added, and cells were allowed to migrate for 24 or 48 h.  Cells were photographed by 

light microscopy (using a 10 x magnification lens) at 0, 24, and 48 h to analyze the 

migration of the cells toward the “wounded” area. 

 Analysis of migration by chemokinesis was conducted using 24-well transwell 

inserts with an 8 μm pore size polycarbonate membrane (Cell Biolabs, San Diego, CA).  

300 μL of 2.4 x 105 cells/ml in serum free media was added to the upper chamber and 

cells were allowed to migrate for 8 h at 37°C, 5% CO2: 95% air atmosphere with 500 μL 

of media containing 1.5% fetal calf serum in the bottom chamber.  Cells were stained 

with the supplied staining solution and total cells were counted using light microscopy 

(using a 40 x magnification lens) with 20 fields per insert.  After counting the total 
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number of cells, the non-migratory cells were gently swabbed off the top insert 

membrane and the remaining migratory cells were counted, again with 20 fields per 

insert.   

 For analysis of cellular invasion, the parental, As+3-and Cd+2-transformed, 

SPARC and DEST-transfected UROtsa cell lines, and Hs578T cells as a positive control 

were assessed.  Cells were added onto a basement membrane coated layer on an 8 μm 

pore size polycarbonate membrane (Cell Biolabs).  Cells were pretreated with MMC for 

2 h before they were trypsinized and added to the upper chamber of the invasion insert.  

Appropriate concentrations of MMC were specifically determined for each cell line by 

MTT analysis and were the same concentrations used in the wound assay.  300 μL of 

2.2 x 105 cells/ml in serum free media was added to the upper chamber and allowed to 

invade for 24 h at 37°C, 5% CO2: 95% air atmosphere with 500 μL of media containing 

10% fetal calf serum in the bottom chamber.  Cells were stained and counted in the same 

manner as the chemotaxis migration assay.  Both the migration by chemotaxis and 

invasion assays were performed in duplicate and the percentage of cells migrated/invaded 

was determined.  

Mouse Heterotransplants: Tumorigenicity in Soft Agar and Nude Mice 

 Before the testing of tumor growth in nude mice, SPARC-transfected cells, blank 

vector transfected cells, and respective control cultures were tested for their ability to 

form colonies in soft agar using a slight modification of the procedure described by San 

and coworkers (San et al., 1979; Sens et al., 2004).  Briefly, 60 mm diameter dishes were 

prepared with a 5 mL underlay of 0.5% agar in DMEM containing 5% fetal calf serum.  

On top of the underlay layer was placed 2 x 104 or 2 x 105 cells in 1.5 mL of 0.25% agar 
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in DMEM containing 5% fetal calf serum.  The dishes were incubated at 37°C, 5% CO2: 

95% air atmosphere inside humidified plastic containers to prevent evaporation.  Cultures 

were examined microscopically 24 h after plating to confirm absence of large clumps of 

cells and thereafter at 7, 14, and 21 days after plating.  Since all cultures showed colony 

formation in soft agar, the cultures were inoculated subcutaneously at a dose of  

1 x 106 cells in the dorsal thoracic midline of 4 nude (NCr-nu/nu)  mice for the blank 

vector and non-transfected control cell lines or 5 nude  mice for the SPARC-transfected 

cell lines, as described previously (Sens et al., 2004).  Tumor formation and growth were 

assessed weekly.  All mice were sacrificed 8 weeks after injection or when clinical 

conditions dictated euthanasia.  All experimental procedures with the use of mice were 

approved by the University of North Dakota Institutional Animal Care and Use 

Committee and conform to the National Research Council’s Guide for the Care and Used 

Laboratory Animals.  Areas where cells were injected were used to determine the 

expression of SPARC mRNA and protein and the mRNA expression of BSD and mouse 

specific SPARC.  Tumor tissue was harvested for immunohistochemistry as well as 

mRNA and protein analysis.    

Immunohistochemical Localization of SPARC Expression in  

Mouse Heterotransplants and Archival Specimens of Human Bladder Cancer 

 

 The production of mouse heterotransplants from Cd+2 and As+3-transformed 

UROtsa cells has been previously described (Sens et al., 2004; Cao et al., 2010; Somji et 

al., 2010).  Tumor tissue from these studies was used for analyzing the specificity of two 

different SPARC antibodies.  The present study also used tumor tissue from mouse 

heterotransplants generated from SPARC-transfected cells, blank vector transfected cells, 

and respective control cultures.  Tissues sections of human bladder were obtained from 
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archival paraffin blocks that originated from previously completed patient diagnostic 

procedures.  These archival specimens contained no patient identifiers and use was 

approved by the University of North Dakota Internal Review Board.  Tissues were 

routinely fixed in 10% neutral-buffered formalin for 16-18 h.  The tissue was then 

transferred to 70% ethanol and dehydrated in 100% ethanol.  Dehydrated tissues were 

cleared in xylene, infiltrated, and embedded in paraffin.  Serial sections of the tissue 

blocks were cut at 3-5 μm and used in immunohistochemical protocols.  Prior to 

immunostaining, sections were immersed in preheated 10 mM sodium citrate buffer 

(pH 6.0) and heated in a steamer for 20 min. The sections were allowed to cool to room 

temperature for 30 min and then immersed into Tris buffered saline (TBS) containing 

0.1% Tween 20 (TBS-T) (Dako, Carpinteria, CA) for 5 min.  Endogenous peroxidase 

was extinguished by incubating the sections in Peroxidase Blocking Reagent (Dako) for 

10 min.  SPARC was localized by incubating the slides with mouse anti-human 

osteonectin antibody (Haematologic Technologies Inc., Essex Junction, VT) or mouse 

anti-human osteonectin antibody (Leica Microsystems Inc.) for 30 min at room 

temperature.  Liquid diaminobenzidine (Dako) was used as chromogen.   

Results 

SPARC mRNA and Protein Expression in SPARC-Transfected  

and Blank Vector UROtsa Cell Lines 

 

 The expression and localization of SPARC was determined for the SPARC-

transfected cells, blank vector and non-transfected controls lines, as well as the UROtsa 

parental cells.  The parental UROtsa cells expressed a moderate amount of SPARC 

mRNA when compared to the common transcript, β-actin (Figure IV-1A).  The SPARC-

transfected cell lines had variable SPARC mRNA expression levels.  All the SPARC-
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transfected cell lines had higher SPARC expression levels than the corresponding blank 

vector or the non-transfected cell lines (Figure IV-1A).  Two of the SPARC-transfected 

cell lines, Cd#1-SPARC and Cd#4-SPARC, had similar SPARC mRNA expression levels 

as that of the UROtsa parent, while the As#6-SPARC had approximately a 10 fold 

induction of SPARC expression as compared to the UROtsa parent.  As#3-SPARC only 

had a slight induction of SPARC mRNA expression compared to its non-transfected 

counterpart and a level considerably lower that the parent.  In contrast, SPARC mRNA 

expression was at the limit of detection in the non-transfected and blank vector UROtsa 

cell lines malignantly transformed by either Cd+2 or As+3 (Figure IV-1A).  A 

corresponding analysis of SPARC protein expression by western blotting showed that 

only the SPARC-transfected and parental UROtsa cell lines had detectable levels of 

SPARC protein expression (Figure IV-1B).  None of the blank vector or non-transfected 

UROtsa cell lines transformed by either Cd+2 or As+3 had any SPARC protein expression 

as expected based on the real time RT-PCR results (Figure IV-1B).  While As#3-SPARC 

had lower mRNA levels, its protein levels were as strong as the parent.  Conversely, the 

Cd#4-SPARC cell line had high mRNA levels, but low levels of SPARC protein.  Since 

SPARC is a secreted protein, the ability of the SPARC-transfected and control cell lines 

to secrete SPARC protein into the growth media was analyzed by western blotting 

(Figure IV-2).  The expression of SPARC protein was measured at 24 and 48 h by 

collecting the conditioned growth media (M) from the cells as well as the corresponding 

cell lysate (L) from each cell line at both time points.  The SPARC-transfected and 

UROtsa parental cell lines all secreted SPARC into the growth media to a much greater 

extent, with respect to levels of SPARC in total protein, than what was expressed in the 
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cell lysate (Figure IV-2).  The blank vector controls had no detection of SPARC 

expression in the cell lysate and an occasional detection of secreted SPARC was seen in 

the conditioned growth media (Figure IV-2).  Lower molecular weight bands were noted 

on the western blot of the conditioned media samples using the SPARC antibody, which 

are most likely degradation products due to the length of time needed to prepare the 

conditioned growth media for protein analysis.   

 Immunofluorescence analysis was used to localize the expression of SPARC 

within the SPARC-transfected, blank vector, and non-transfected control cell lines, with 

the UROtsa parent cells used as a positive control.  The analysis showed the majority of 

the parental UROtsa cells had an intracellular expression of the SPARC protein, with 

only infrequent cell profiles showing no SPARC immunoreactivity (Figure IV-3A).  In 

contrast, none of the blank vector or non-transfected UROtsa cell lines transformed by 

either Cd+2 or As+3 had cell profiles that were immunoreactive for the SPARC protein 

(Figure IV-3B).  The SPARC-transfected cell lines were all immunoreactive for SPARC 

protein expression (Figure IV-3C-F) and had similar profiles to that of the UROtsa 

parental cell line.  SPARC expression in the UROtsa parent and SPARC-transfected cell 

lines was localized throughout the cytoplasm and appeared as distinct vesicles 

(Figure IV-3G).  An orthogonal slice of a z-series on the x-plane was also examined for 

the SPARC-transfected cell lines and demonstrated SPARC protein was diffuse 

throughout the cell and did not appear to be localized to the nucleus (Figure IV-3H).     

Morphology and Growth Rates of SPARC-Transfected and Blank Vector Cell Lines 

 The morphology of the SPARC-transfected cell lines was examined by light 

microscopy.  After stable transfection with SPARC or with the blank vector, all of the 
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UROtsa cell lines retained an epithelial morphology and each SPARC-transfected cell 

line was similar by light microscopy to its blank vector counterpart (Figure IV-4).  The 

morphology of the transfected cell lines were very similar to the morphology of the non-

transfected malignantly transformed UROtsa cell lines, as previously published (Cao et 

al., 2010; Somji et al., 2010).  The growth rates (doubling times) of the SPARC-

transfected and blank vector cell lines were also determined from linear regions of each 

respective growth curve following a 1:100 subculture of the cells (Table 1).  The 

doubling times of As#3-SPARC, Cd#1-SPARC and the corresponding blank vectors did 

decrease significantly compared to non-transfected control cell lines, while As#6-SPARC 

had an increased doubling time compared to its non-transfected control cell lines and the 

As#6-DEST (blank vector) was similar to the non-transfected control.  Cd#7-SPARC had 

a similar doubling time to its non-transfected control, but the doubling time of the  Cd#7-

DEST was significantly increased compared to the non-transfected control cell line.  The 

SPARC-transfected cells had doubling times ranging from 22.0 ± 0.6 h to 27.4 ± 1.0 h 

and the blank vector had similar growth rates ranging from 22.7 ± 0.8 h to 27.1 ± 0.5 h 

(Table 1).  There was no obvious correlation of morphology at the light level of 

microscopy with the doubling times of each cell line and there was no consistent 

difference between cell lines that expressed SPARC and those that did not.   

Migration Properties of SPARC-Transfected, Blank Vector,  

and Non-Transfected Cell Lines 

 

 The ability of the UROtsa parent, malignantly transformed Cd+2 or As+3, SPARC-

transfected, blank vector cell lines, and the MDA-MB-231 cell line as a positive control 

to migrate via chemotaxis was analyzed by a transwell migration assay.  Cells were 

stimulated to migrate by chemokinesis with the addition of 1.5% fetal calf serum added 
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to the bottom chamber and allowed to migrate for 8 h.  The MDA-MB-231 breast cancer 

cell line was chosen as a positive control as literature has previously shown this cell line 

to be highly migratory (Hughes et al., 2008; Zajac et al., 2011; Zuo et al., 2012).  Results 

from the migration of the MDA-MB-231 cell line confirmed this cell line to be highly 

migratory with 79% of all cells migrating (Figure IV-5A, 6A, 8A).  The parent UROtsa 

cell line showed 23% migration, while all the Cd+2- and As+3-transformed UROtsa cell 

lines had a greater percentage of cell migration than the parental cells.  Interestingly, 

As#1, As#3, As#4, As#6, and Cd#1, had the highest migratory percentages within their 

respective cell lines with 33% to 51% migration (Figures IV-5, 6).  These particular cell 

lines have been previously reported to not only form subcutaneous tumors, as all the Cd+2 

or As+3-transformed UROtsa cell lines form subcutaneous tumors, but to also uniquely 

produce tumors when injected into the intraperitoneal cavity, suggesting a more 

aggressive nature of these transformed bladder cell lines (Cao et al., 2010; Somji et al., 

2010).  Figure IV-7 graphically depicts the relative migration of the transformed UROtsa 

cell lines and MDA-MB231 as compared to the UROtsa parent cells.   

 Next, the SPARC-transfected and blank vector control cell lines were examined 

for their chemotaxis properties (Figure IV-8).  All the SPARC-transfected cell lines had a 

decreased percentage of chemotaxis when compared to its non-transfected counterpart, 

with As#3-SPARC and Cd#1-SPARC each having a statistically significant decrease in 

chemotaxis capabilities.  The blank vector was similar to the non-transfected cell lines in 

the As#3-DEST and As#6-DEST lines, however Cd#1-DEST and Cd#4-DEST cell lines 

had similar migration capabilities to the SPARC-transfected Cd#1-SPARC and Cd#4-

SPARC cell lines.  These results are graphically depicted in Figure IV-9.   
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 To determine the migratory capabilities of these cell lines in an assay used to 

simulate wound healing, cells were grown to confluence and a “wound” was generated by 

scratching the monolayer with a pipette tip.  The ability of these cells lines to close the 

wound was analyzed at 0, 24, and 48 h.  To ensure cells were actually migrating into the 

wounded area and not just filling in the wound by mitosis, the cells were pretreated for 

2 h with mitomycin C (MMC) before wound formation.  Since MMC inhibits cellular 

division by cross-linking DNA at guanine and adenine residues (Tomasz, 1995), the 2 h 

pre-treatment keeps the cell lines from undergoing cellular division for up to 48 h.  

Therefore, MMC is widely used in cell migration studies to inhibit cellular proliferation 

(Ding et al., 2003; Ma et al., 1999; Stevenson et al., 2008).  First, optimal MMC 

concentrations were determined for each cell line using serial dilutions of MMC and 

testing by MTT analysis to assess cell viability versus cellular growth.  Concentrations 

that limited cell growth but did not cause cell death were then used in the wound healing 

assay.  Figures IV-10 and 11 show the series of MTT assays that were conducted on the 

UROtsa parental, MDA-MB-231, Hs578T, UROtsa cell lines transformed by Cd+2 or 

As+3, and the SPARC- and DEST-transfected cell lines using the optimal concentrations 

of MMC.  These graphs show limited growth, with no sign of toxicity observed, and 

levels remaining similar to the 0 h untreated controls for each cell line (Figures IV-10-

11).  Wound healing assays for controls and the As+3-transformed UROtsa cell lines are 

shown in Figure IV-12,  Relative post-wound migration rates were determined for each 

cell line relative to the UROtsa parent cells at 24 and 48 h using a qualitative plus (+), 

minus (-), or equal (=) score.  As#1 and As#4 had an increase in the migration of cells into 

the wound area at both time points, while As#2 had increased migration at 24 h but 
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similar migration at 48 h compared to the parent.  As#3, As#5, and As#6 had similar 

migration to the parent at 24 h but increased migration at 48 h.  The migration of the 

Cd+2-transformed UROtsa cell lines (Figure IV-13) showed Cd#1 was similar to the 

parent at 24 h but increased at 48 h.  All the remaining Cd+2-transformed UROtsa cell 

lines had increased migration at 24 and 48 h with several having much greater migration 

(++ and +++) as compared to the UROtsa parent.  The SPARC- transfected and blank 

vector cell lines were compared to their non-transfected counterpart (Figures IV-14, 15) 

when assessing the migration of these cells into the wound.  As#3-SPARC, As#3-DEST, 

As#6-SPARC, Cd#4-SPARC, Cd#4-DEST all had similar post-wound migration when 

compared to their non-transfected cell line at 24 and 48 h (As#3, As#6, and Cd#4 

respectively), while the As#6-DEST cell line had increased post-wound migration at 24 

and 48 h compared to As#6 (Figure IV-14).  Also Cd#1-SPARC had decreased post-

wound migration at 24 and 48h, while Cd#1-DEST had similar migration at 24 h, but was 

reduced at 48 h compared to Cd#1 (Figure IV-15).  Results from the wound healing assay 

showed that the Cd+2 and As+3-transformed cell lines had a greater post-wound migration 

capability, especially at the 48 h time point, than the UROtsa parental cell line.  However, 

the SPARC-transfected cell lines showed similar results in their post-wound migration 

capabilities when compared to their non-transfected control cell lines, with only one 

SPARC-transfected (Cd#1-SPARC) cell line having decreased post-wound migration. 

 The invasion capabilities were measured using the UROtsa parent, malignantly 

transformed Cd+2 or As+3, SPARC-transfected, and blank vector cell lines, the Hs578T 

cell lines as a positive control using a transwell invasion assay.  Cells were stimulated to 

invade the basement membrane layer by the addition of 10% fetal calf serum added to the 
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lower chamber and cells were allowed to invade for 24 h.  The Hs578T breast cancer cell 

line was used as a positive control as literature has previously shown this cell line to be 

highly invasive (Hughes et al., 2008; Sheridan et al., 2006; Zuo et al., 2012).  Results 

from the invasion of the Hs578T cell line confirmed it to be highly invasive with 16% of 

all cells invading (Figures IV-16A , 17A, 19A).  The parent UROtsa cell line showed 

1.6% invasion (Figures IV-16B, 17B, 19B), while the invasion of the UROtsa cell line 

transformed by As+3 ranged from 0.5% to 6.1% (Figure IV-16) and the Cd+2-transformed 

cell lines ranged from 1.3% to 12% (Figure IV-17).  No correlation was seen in the 

invasive capabilities of the transformed cell lines and the ability to form intraperitoneal 

tumors, as was seen in the migration assay.  Figure IV-18 graphically depicts the relative 

invasion of the transformed UROtsa cell lines and Hs578T as compared to the UROtsa 

parent cells and shows that only Hs578T and Cd#4 had a statistically significant increase 

in invasion compared to the parent.  The micrographs of the invaded cells from the 

SPARC-transfected lines are shown in figure IV-19D, G, J, and M and the blank vector 

images are in figure IV-19E, H, K, and N.  There were no statistically significant 

differences seen in the SPARC or blank vector transfected cell lines when each of these 

lines were compared to the UROtsa parent or the non-transfected cell lines  

(Figure IV-20).   

Tumorigenicity and SPARC Protein Analysis of Mouse Heterotransplants Generated 

from the SPARC-Transfected, Blank Vector, and Non-Transfected Cell Lines 

 

 The SPARC-transfected and blank vector cell lines were analyzed for their ability 

to form colonies in soft agar.  All of the SPARC-transfected and blank vector cell lines 

were capable of forming colonies at the lowest inoculum and even greater amounts were 

formed at the highest inoculum shown in Figure IV-21.  No attempt was made to quantify 
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colony formation since the experimental endpoint was to provide evidence of adhesion-

independent growth as well as justification for animal usage as a vehicle for tumor 

growth and characterization.  The SPARC-transfected, blank vector, and non-transfected 

control cell lines were injected into nude mice at an inoculum of 1 x 106 cells per mouse.  

The SPARC-transfected cell lines were injected into 5 mice and the blank vector and 

non-transfected UROtsa cell lines were injected into 4 mice each.   

 The immunohistochemical analysis of SPARC expression in the mouse 

heterotransplants was analyzed using two different mouse anti-human SPARC antibodies 

due to differences in the antibodies to cross species.  As previously reported by Larson et 

al. (2010), the expression of SPARC in the epithelial component of tumors produced 

from the Cd+2 and As+3-transformed UROtsa cells was down-regulated to background 

levels, while the stromal component of these tumors showed strong immunoreactivity for 

SPARC.  This analysis was conducted with the use of a mouse anti-human osteonectin 

primary antibody purchased from Haematologic Technologies Inc. (HTI).  Since the 

stromal component originates from the murine host and is recruited to the tumor site, this 

antibody was capable of detecting the immunohistochemical localization of SPARC in 

murine stroma.  However, this antibody performed poorly in other applications.  

Therefore, an additional SPARC antibody was needed and the mouse anti-human SPARC 

antibody from Leica was able to work in all applications, but as of yet was untested on 

mouse tissue.  Figure IV-22 shows the differences in the staining patterns of the HTI and 

Leica antibodies within mouse tumors that were previously generated from the Cd+2 and 

As+3-transformed UROtsa cells.  The staining of the mouse tumor tissue with the HTI 

antibody was very similar to that previously reported by Larson et al. 2010, with only the 
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stroma being highly reactive for SPARC expression and the malignant epithelial cell 

having no SPARC expression.  The SPARC antibody purchased from Leica showed very 

different results.  All of the tumor heterotransplant tissues were entirely negative for the 

expression of SPARC.  The specificity of both these antibodies was further tested on a 

human bladder cancer specimen of high grade invasive carcinoma of the bladder, and 

showed immunoreactivity for SPARC within the stromal component of the tumor and 

absence of staining in the epithelial component (Figure IV-23A, B).  Therefore the HTI 

antibody was capable of recognizing human and mouse SPARC, while the Leica 

antibody only recognizes human SPARC protein by immunohistochemistry.   

 The tumors produced from the UROtsa Cd#1, Cd#1-SPARC, and Cd#1-DEST cell 

lines were then analyzed for SPARC expression by both SPARC antibodies  

(Figure IV-23).  The HTI antibody only detected SPARC expression within the stroma of 

the tumor, presumably of mouse origin, with no SPARC detection in the tumor cells 

generated from any of the cell lines (Figure IV-23A, C, E, G).  The Leica antibody 

showed a lack of SPARC staining throughout the entire tissue, both the epithelial tumor 

and mouse stroma, for all of the mouse heterotransplants (Figure IV-23B, D, F, H).   

 A corresponding analysis of protein expression by western blotting using tissue 

from the mouse heterotransplants determined an absence of SPARC expression in the all 

the heterotransplants (Figure IV-24).  Verification that the expression of SPARC was 

present in the cells prior to injection into the mice, showed the Cd#1-SPARC transfected 

cell line as well as the UROtsa parent cell line, a positive control, did express SPARC 

protein, while Cd#1 and Cd#1-DEST control cell lines did not (Figure IV-24). 
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SPARC and BSD mRNA Expression in Cell Lines and Mouse Heterotransplants 

Generated from the SPARC-Transfected, Blank Vector, and Non-Transfected Cell Lines 

 
 The determination that SPARC protein was not expressed in the mouse 

heterotransplants from the Cd#1-SPARC transfected cells led to two possible 

explanations.  The first being, the possibility that not all the cells maintained the SPARC 

vector and upon injected into the mouse, only the cells without the vector were capable of 

forming the tumor and therefore, did not express SPARC protein.  Or the second 

explanation being, the SPARC-transfected cells injected into the nude mouse responded 

to the mouse tissue environment and down-regulated SPARC protein expression.   

 The verification that the resulting mouse heterotransplants contained the 

transfection vector was determined by the presence of the Blasticidin (BSD) gene due to 

its presence in the vector.  The mRNA expression of BSD was analyzed in the SPARC 

and DEST-transfected cells and the corresponding non-transfected cell lines as well as 

within the extracts prepared from the subcutaneous tumors generated from these cell lines 

(Figure IV-25A).  The mRNA analysis of BSD expression revealed the presence of the 

transfected vector in SPARC and DEST-transfected cell lines and its absence from the 

Cd#1 cell line prior to injection of the cells into the nude mice as expected.  A 

corresponding analysis of the mouse tumors generated from the SPARC and DEST-

transfected cell lines, verified the expression of BSD in both the Cd#1-SPARC and Cd#1-

DEST injected mouse heterotransplants and absent from Cd#1 tumors.  Therefore the 

presence of the vector was confirmed within the Cd#1-SPARC and Cd#1-DEST generated 

tumors.  The level of BSD expression between the transfected cell lines and the mouse 

heterotransplants was similar.   
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 The cell lines and heterotransplants were further analyzed for the mRNA 

expression of human and mouse specific SPARC (Figures IV-25B, 26).  Human specific 

SPARC mRNA expression was only detected in the SPARC-transfected cell line; 

however, a great reduction in human SPARC mRNA was seen in the resulting tumor 

from this cell line (Figure IV-25B).  The DEST-transfected and non-transfected control 

cell lines were at the limit of detection for human SPARC.  Mouse specific SPARC 

primers were then used and revealed the presence of mouse SPARC within all of the 

mouse heterotransplants (Figure IV-26).  The level of mouse SPARC was similar in the 

heterotransplants from the non-transfected and DEST-transfected cell lines, but the 

SPARC-transfected cell line showed about a 50-fold induction in comparison.  This result 

may be specific to the cells injected or may reflect additional connective tissue within 

that particular tissue.  The expression of mouse SPARC within the human cell lines prior 

to injection into the mice showed an absence of mouse specific SPARC expression, as 

expected.   

Discussion 

 The initial goal of the present study was to determine if SPARC could be stably 

transfected into As+3 and Cd+2 -transformed UROtsa cell lines.  Two Cd+2 -transformed 

UROtsa cell lines and two As+3 -transformed UROtsa cell lines were chosen to be 

transfected with SPARC.  The decision to use two cell lines from each of the Cd+2 and 

As+3-transformed UROtsa cell lines was motivated by the finding that only two of the 

As+3 transformed lines and one of the Cd+2 transformed lines were able to establish 

tumors within the peritoneal cavity when transplanted into nude mice (Cao et al., 2010; 

Somji et al., 2010).  This is an important observation since bladder cancer is known to 
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metastasize locally within the body cavity and only very late in the disease to distant 

organ sites.  The peritoneal findings may indicate the ability of the transformed cells to 

“seed” organs within the peritoneal cavity.  For the stable transfection study, one cell line 

from each set will be capable of establishing peritoneal tumors and the other cell line will 

not have this ability.  The two As+3 transformed cell lines chosen for transfection were 

As#3 and As#6 and the two Cd+2 transformed cell lines were Cd#1 and Cd#4. 

 SPARC mRNA and protein expression was induced in all SPARC-transfected cell 

lines.  Variations in the levels of induced SPARC mRNA and protein were seen among 

the SPARC-transfected cell lines; which may provide an interesting analysis for future 

studies.  Intracellular localization of SPARC protein showed SPARC-transfected cells 

displayed a similar expression profile to the UROtsa parental cell, with SPARC staining 

localized to the cytoplasm and appeared as distinct vesicles.  SPARC secretion by 

analyzing conditioned growth media taken from the SPARC-transfected cells was 

confirmed within all of the SPARC-transfected cell lines and was similar to the secretion 

of SPARC protein detected in the UROtsa parent.   

 Another goal of this study was to determine if the forced expression of SPARC 

would alter the chemotaxis, wound healing, and invasion capabilities of these cells. The 

chemotaxis migratory capabilities seemed to decrease with the forced SPARC expression 

as compared to their non-transfected counterpart, but the decrease in migration was also 

seen in some of the vector only control cell lines, suggesting this might not be a SPARC 

specific response.  The migration in response to a wound only showed slight changes in 

the migration of SPARC-transfected cell lines as compared to its non-transfected 

counterpart.  Similar results were also obtained by the invasion assay.  Although several 
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other studies have suggested SPARC plays a substantial role in cellular invasion and 

migration (Arnold et al., 2008; Framson and Sage, 2004; Golembieski et al., 2008; Jacob 

et al., 1999), a large change in the ability of the Cd+2 and As+3-transformed UROtsa cell 

lines transfected with SPARC to regulate migration and invasion was not observed in our 

system.   

 Since the UROtsa parental cell line is non-tumorigenic and the SPARC-

transfected cells had similar expression profiles to that of the UROtsa parental cell in 

respect to SPARC, a surprising finding in the present study was the ability of the 

SPARC-transfected cell lines to form tumors in nude mice.  In general, the tumors that 

were produced by the SPARC-transfected cell lines appeared to form at a similar rate to 

the tumors formed by the control cell lines.  Within the tumors generated from the Cd#1-

SPARC transfected cell line, the tumors did seem smaller in volume than those formed 

by the control cell lines.  However, upon examination of SPARC protein by 

immunohistochemistry and western blotting analysis, the tumors produced by the Cd#1 

SPARC-transfected cell line showed a complete lack of SPARC expression in the 

urothelial cancer cells.  The tumors generated from the Cd#1 control cell line also showed 

a similar lack of SPARC expression; therefore, no difference in the expression of SPARC 

was seen between the tumors generated from the SPARC-transfected cells or the non-

transfected cells.   

 Of interest, two SPARC antibodies from differing manufactures were used to 

confirm the results by immunohistochemistry.  Both SPARC antibodies did not detect 

expression within the malignant epithelial component of the tumor generated by the 

SPARC-transfected cell lines.  The SPARC antibody purchased from HTI showed 
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SPARC immunoreactivity within the mouse stroma, while the Leica antibody did not.  It 

was determined from the present study and results previously reported (Larson et al., 

2010) that human SPARC protein could be detected using the HTI and Leica antibodies 

by immunohistochemistry and western blotting applications.  However, mouse SPARC 

protein was only capably of being detected by immunohistochemistry using the HTI 

antibody.  Therefore, the lack of human SPARC protein expression within the tumors 

generated from the Cd#1-SPARC transfected cells was due to either the lack of stable 

transfection of all cells with the SPARC vector and therefore, the tumor was formed only 

by not-transfected cells or the SPARC-transfected cells responded to the mouse 

environment and down-regulated SPARC expression.   

 Verification that the resulting tumor was formed by the Cd#1-SPARC transfected 

cells was confirmed using real time RT-PCR analysis that revealed BSD mRNA 

expression.  Subsequent analysis of human specific SPARC mRNA expression showed a 

reduction of human specific SPARC mRNA in the mouse heterotransplants compared to 

the original cell lines and the complete absence of human SPARC protein in the mouse 

heterotransplants.  These results strongly suggest a post-transcriptional regulation of 

SPARC expression especially when considering the lack of epigenetic regulation by 

promoter methylation and/or acetylation previously reported (Larson et al., 2010). 

 One possible mechanism to explain the down-regulation of SPARC mRNA and 

complete absence of SPARC protein is microRNA.  microRNAs (miRNAs) are short, 

roughly 20-24 nucleotides in length, and are non-coding RNAs that direct the post-

transcriptional repression of target mRNAs (Schnall-Levin et al., 2011).  Although there 

are only roughly 1000 miRNAs, their ability to bind to multiple targets allows miRNAs 
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to regulate at least 20% of all human genes that have been involved in the regulation of a 

wide spectrum of biological systems (Forman et al., 2008).  miRNAs were originally 

believed to only bind to the 3’ or 5’ untranslated regions of mRNAs, but evidence is 

quickly emerging that miRNAs can also bind to the coding regions (Forman et al., 2008; 

Huang et al., 2010; Schnall-Levin et al., 2011).  An analysis by Forman et al. (2008) 

revealed approximately 700 genes in the human genome that had been identified as 

having conserved regulatory sites within the coding region, and this number of involved 

genes is believed to be an under-estimation. 

 A search by DIANA-microT v3.0 (B.R.S.C. Alexander Leming, Athens, Greece) 

revealed several miRNAs that were potential binders to SPARC mRNA (Maragkakis et 

al., 2009a; Maragkakis et al., 2009b).  Five possible miRNAs were determined to be able 

to regulate SPARC, these included, miRNA-29a, miRNA-29b, miRNA-29c,  

miRNA-147, and miRNA-203.  Since only the SPARC ORF was transfected into select 

Cd+2 and As+3 -transformed UROtsa cell lines, the coding region of SPARC was analyzed 

for miRNA binding sites.  The family of miRNA-29, including 29a, 29b, 29c, had the 

highest degree of homology to the SPARC mRNA sequence, but miRNA-147 and 

miRNA-203 binding sites were also found, just with a lesser degree of homology.  Since 

the degree of homology of the miRNA to its target sequence leads to the miRNA’s mode 

of action, perfect paring leads to cleavage of the mRNA and lesser complementarity 

results in repression of translation.  Complementary pairing between the 5’ end of the 

miRNA, specifically called the “seed” region (bases 2-8), and the 3’ end of the target 

mRNA is critical for function (Schnall-Levin et al., 2011).  Also miRNA-mediated 

repression increases with the number of sites to which the miRNA can bind to the target 
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mRNA, suggesting that post-transcriptional repression may be substantial if a gene 

contains many miRNA sites within its coding region (Schnall-Levin et al., 2011).  The 

miRNA-29a, b, and c family was shown to bind to multiple times within the SPARC 

ORF with strong complementary pairing within the “seed” region, leading it be a 

probable regulator for the decrease in SPARC mRNA and protein expression in the 

mouse heterotransplant produced from the SPARC-transfected cells.  

 Overall, the results of this study show that SPARC was stably transfected into 

transformed UROtsa cells that did not make detectible levels of SPARC prior to 

transfection.  The SPARC-transfected cell lines did not have a consistent or result in 

major differences in relation to growth rate, general morphology, migration by 

chemotaxis or wound healing, invasion, or growth in soft agar.  However, analysis of the 

UROtsa Cd#1 cell line transfected with SPARC reveals an increase in growth rate and a 

decrease in migration by wound healing.  The tumors from the Cd#1-SPARC transfected 

cell lines, shockingly did not have express SPARC protein but all cells within the tumor 

were positive for BSD mRNA and slightly positive for SPARC mRNA.  The results from 

this study show that SPARC expression is most likely post-transcriptionally regulated by 

miRNA. 
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Cell Line Doubling Time 

Parent 33.2 ± 0.8 h 

 

As
#
3 33.3 ± 1.4 h 

As
#
3-SPARC 27.4 ± 1.0 h* 

As
#
3- DEST 27.1 ± 0.5 h* 

 

As
#
6 21.6 ± 1.6 h 

As
#
6-SPARC 25.6 ± 0.5 h* 

As
#
6- DEST 23.6 ± 0.7 h 

 

Cd
#
1 27.8 ± 0.6 h 

Cd
#
1-SPARC 23.8 ± 0.6 h* 

Cd
#
1- DEST 22.7 ± 0.8 h* 

 

Cd
#
4 20.7 ± 1.1 h 

Cd
#
4-SPARC 22.0 ± 0.6 h 

Cd
#
4-DEST 23.5 ± 0.4 h* 

 
Table IV-1.   Doubling times for SPARC-transfected and DEST-transfected UROtsa 

cells. The doubling times for UROtsa As#3, As#6, Cd#1, and Cd#4 were 
previously described by Cao et al., (2010) and Somji et al., (2010).  
*Denotes a statistically significant difference compared to the non-
transfected UROtsa cell line (p ˂ 0.05).



 

173 

 
 

Figure IV-1.   Expression of SPARC mRNA and protein in parental UROtsa cells, 
SPARC-transfected cells, and non-transfected and blank vector (DEST) 
control cells lines. (A) Real time-RT-PCR analysis of SPARC expression.  
The resulting mRNA levels were normalized to the fold change in β-actin.  
Real time data is plotted as the mean ± SEM of triplicate determinations.  
(B) Western analysis of SPARC protein expression (top panel) with an 
analysis of β-actin loading control shown in the bottom panel.  The #’s 
identify the independent cell lines isolated by the exposure of UROtsa 
cells to As+3 or Cd+2 as described by Cao et al. (2010) and Somji et al. 
(2010), respectively.  
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Figure IV-2.   Expression of secreted SPARC protein. Western analysis of SPARC 
protein secreted from confluent cultures of the parental UROtsa cells, 
SPARC-transfected cells, and non-transfected and blank vector (DEST) 
control cells lines.  Conditioned media (M) was collected at 24 h (top 
panel) and 48 h (bottom panel) time points then concentrated as described 
in materials and methods and was compared to their respective cell 
lysates (L).
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Figure IV-3.   Intracellular localization of SPARC protein by immunofluorescent 

staining.   SPARC (red) staining in: (A) Parent UROtsa cells, (B) UROtsa 
Cd#4-DEST cells (blank vector), and (C) UROtsa Cd#4-SPARC.  Higher 
magnification images of: (D)UROtsa As#3-SPARC, (E) UROtsa As#6-
SPARC, and (F) UROtsa Cd#1-SPARC.  (G) Higher magnification of 
UROtsa As#3-SPARC showing SPARC localized to structures that 
resemble vesicles. (H) Orthogonal slice of a z-series of UROtsa As#6-
SPARC showing SPARC expression throughout the cytoplasm of the cell.  
(A-F) DAPI counterstain was used to identify all cells in the fields.  
Images in A-C correspond to bar in C (10μm), images in D-F correspond 
to bar in F (10μm), and bar in G = 1 μm. 
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Figure IV-4.   Phase contrast light microscopy of the SPARC-transfected and DEST-
transfected UROtsa cell lines demonstrating epithelial morphology in all 
lines.  (A) As#3-SPARC; (B) As#3-DEST; (C) As#6-SPARC; (D) As#6-
DEST; (E) Cd#1-SPARC (F) Cd#1-DEST; (G) Cd#4-SPARC; and (H) 
Cd#4-DEST.  All images correspond to bar in H = 100 μm.
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Figure IV-5. Migratory ability of UROtsa parent, and malignantly transformed As+3 cell 
lines, with the MDA-MB-231 malignant breast cancer cells used a positive 
control.  Micrographs show the cells that migrated in: (A) MDA-MB-231; 
(B) UROtsa parental; (C) As#1; (D) As#2; (E) As#3; (F) As#4; and (G) 
As#5; (H) As#6.  The percentage of total cells that migrated is depicted in 
the bottom left corner of each micrograph, was determined by counting all 
cells in 20 fields using a 40 x magnification lens, removing the cells from 
the top of the insert, and counting the remaining cells on the bottom of the 
insert in 20 fields using a 40 x magnification lens.  All images correspond 
to bar in H = 100 μm.
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Figure IV-6. Migratory ability of UROtsa parent, and malignantly transformed Cd+2 
cell lines, with the MDA-MB-231 malignant breast cancer cells used a 
positive control.  Micrographs show the cells that migrated in: (A) MDA-
MB-231; (B) UROtsa parental; (C) Cd#1; (D) Cd#2; (E) Cd#3; (F) Cd#4; 
(G) Cd#5; (H) Cd#6; and (I) Cd#7.  The percentage of total cells that 
migrated is depicted in the bottom left corner of each micrograph, was 
determined by counting all cells in 20 fields using a 40 x magnification 
lens, removing the cells from the top of the insert, and counting the 
remaining cells on the bottom of the insert in 20 fields using a 40 x 
magnification lens.  All images correspond to bar in I = 100 μm. 



 

179 

 
 
Figure IV-7. Relative cell chemotaxis migration of MDA-MB-231 and UROtsa cells 

transformed by As+3 or Cd+2 compared to the parent UROtsa cells.  The 
red horizontal line at 1, represents the UROtsa parent cells.  ^ indicates 
malignantly transformed UROtsa cell lines capable of forming 
subcutaneous tumors in nude mice.  *Denotes a statistically significant 
difference from the UROtsa parent cells (p ˂ 0.05).
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Figure IV-8. Migratory ability of UROtsa parent, non-transfected, SPARC-transfected, 
and blank vector (DEST) cell lines with MDA-MB-231 malignant breast 
cells used as a positive control.  Micrographs show the cells that migrated 
in: (A) MDA-MB-231; (B) UROtsa parental; (C) As#3; (D) As#3-SPARC; 
(E) As#3-DEST; (F) As#6; (G) As#6-SPARC; (H) As#6-DEST; (I) Cd#1; 
(J) Cd#1-SPARC; (K) Cd#1-DEST; (L) Cd#4; (M) Cd#4-SPARC; and (N) 
Cd#4-DEST.  The percentage of total cells that migrated is depicted in the 
bottom left corner of each micrograph, and was determined by counting all 
cells in 20 fields using a 40 x magnification lens, removing the cells from 
the top of the insert, and counting the remaining cells on the bottom of the 
insert in 20 fields using a 40 x magnification lens.  All images correspond 
to bar in N = 100 μm. 
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Figure IV-9. Relative cell migration of MDA-MB-231, non-transfected UROtsa, 

SPARC-transfected, and blank vector (DEST) cells lines compared to the 
parent UROtsa cells.  The red horizontal line at 1, represents the UROtsa 
parent cells.  *Denotes a statistically significant difference from the 
UROtsa parent cells, while ** denotes statistically significant difference 
from the non-transfected UROtsa counterpart (p ˂ 0.05).
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Figure IV-10. MTT assessing cell viability of UROtsa parent, breast cancer, and As+3-

transformed UROtsa cell lines. (A) UROtsa parental; (B) Hs578T; (C) 
MDA-MB-231; (D) As#1; (E) As#2; (F) As#3; (G) As#4; (H) As#5; and (I) 
As#6 show the nontoxic effects of pretreatment with MMC (white bars) 
for 2 h and subsequent culturing in the absence of MMC for 24 or 48 h.  0, 
24, or 48 h controls (black bars) were not treated with MMC (untx).  The 
concentration of MMC used had been previously optimized for each cell 
line.
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Figure IV-11. MTT analysis assessing cell viability of UROtsa cells transformed by Cd+3 
and the cells transfected with SPARC (S) and DEST (D) vectors. (A) 
Cd#1; (B) Cd#2; (C) Cd#3; (D) Cd#4; (E) Cd#5; (F) Cd#6; (G) Cd#7; (H) 
As#3-SPARC; (I) As#3-DEST; (J) As#6-SPARC; (K) As#6-DEST; (L) 
Cd#1-SPARC; (M) Cd#1-DEST; (N) Cd#4-SPARC; and (O) Cd#4-DEST 
show the nontoxic effects of pretreatment with MMC (white bars) for 2 h 
and subsequent culturing in the absence of MMC for 24 or 48 h.  0, 24, or 
48 h controls (black bars) were not treated with MMC (untx). The 
concentration of MMC used had been previously optimized for each cell 
line.
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Figure IV-12. Wound healing assay of the UROtsa parent cells, breast cancer cell lines, 
MDA-MB231 and HS578T, and UROtsa cells transformed by As+3.  
Wound closing ability of each cell line was analyzed at 0, 24, and 48 h.  
Cells had been pretreated with MMC for 2 h prior to wounding.  
Qualitative analysis of wound closure rate is shown in the parenthesis as 
compared to the UROtsa parent at (24/48 h).  = showing similar closure, + 
showing greater closure, while ++ or +++ with much greater closure than 
the parent.  All images correspond to bar in last image, bar = 100 μm.
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Figure IV-13. Wound healing assay of UROtsa cells transformed by Cd+2.  Wound 

closing ability of each cell line was analyzed at 0, 24, and 48 h.  Cells had 
been pretreated with MMC for 2 h prior to wounding.  Qualitative analysis 
of wound closure rate is shown in the parenthesis as compared to the 
UROtsa parent (Figure IV-12) at (24/48 h).  = showing similar closure, + 
showing greater closure, while ++ or +++ with much greater closure than 
the parent.  All images correspond to bar in last image, bar = 100 μm.
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Figure IV-14. Wound healing assay of UROtsa As+3cells transfected with SPARC or 

blank vector (DEST) and their non-transfected counterparts.  Wound 
closing ability of each cell line was analyzed at 0, 24, and 48 h.  Cells had 
been pretreated with MMC for 2 h prior to wounding.  Qualitative analysis 
of wound closure rate is shown in the parenthesis at (24/48 h) as compared 
to the non-transfected control cell line (As#3 or As#6).  = showing similar 
closure and + showing greater closure than the non-transfected cell line.  
All images correspond to bar in last image, bar = 100 μm.
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Figure IV-15. Wound healing assay of UROtsa Cd+2cells transfected with SPARC or 

blank vector (DEST) and their non-transfected counterparts.  Wound 
closing ability of each cell line was analyzed at 0, 24, and 48 h.  Cells had 
been pretreated with MMC for 2 h prior to wounding.  Qualitative analysis 
of wound closure rate is shown in the parenthesis at (24/48 h) as compared 
to the non-transfected control cell line (Cd#1 or Cd#4). = showing similar 
closure and - showing reduced closure than the non-transfected cell line.  
All images correspond to bar in last image, bar = 100 μm.
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Figure IV-16. Invasion capability of UROtsa parent, and malignantly transformed As+3 

cell lines, with the Hs578T malignant breast cancer cell line as a positive 
control.  Micrographs show the cells that invaded in: (A) Hs578T; (B) 
UROtsa parental; (C) As#1; (D) As#2; (E) As#3; (F) As#4; (G) As#5; and 
(H) As#6.  The percentage of total cells that invaded is depicted in the 
bottom left corner of each micrograph and was determined by counting all 
cells in 20 fields using a 40 x magnification lens, removing the cells from 
the top of the insert, and counting the remaining cells on the bottom of the 
insert in 20 fields using a 40 x magnification lens.  All images correspond 
to bar in H = 100 μm.
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Figure IV-17. Invasion capability of UROtsa parent, and malignantly transformed Cd+2 

cell lines, with the Hs578T malignant breast cancer cell line as a positive 
control.  Micrographs show the cells that invaded in: (A) Hs578T; (B) 
UROtsa parental; (C) Cd#1; (D) Cd#2; (E) Cd#3; (F) Cd#4; (G) Cd#5; (H) 
Cd#6; and (I) Cd#7.  The percentage of total cells that invaded is depicted 
in the bottom left corner of each micrograph and was determined by 
counting all cells in 20 fields using a 40 x magnification lens, removing 
the cells from the top of the insert, and counting the remaining cells on the 
bottom of the insert in 20 fields using a 40 x magnification lens.  All 
images correspond to bar in I = 100 μm.
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Figure IV-18. Relative cell invasion of Hs578T and UROtsa cells transformed by As+3 or 

Cd+2 compared to the parent UROtsa cells.  Black graph bars represent 
As+3-transfirmed cell lines, while white bars represents Cd+2-transfirmed 
cell lines.  The red horizontal line at 1, indicates the invasion level of the 
UROtsa parent cells.  *Denotes a statistically significant difference from 
the UROtsa parent cells (p ˂ 0.05).
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Figure IV-19. Invasion capability of UROtsa parent, non-transfected, SPARC-
transfected, and blank vector (DEST) cell lines, with the Hs578T 
malignant breast cancer cell line as a positive control.  Micrographs show 
the cells that invaded in: (A) Hs578T; (B) UROtsa parental; (C) As#3; (D) 
As#3-SPARC; (E) As#3-DEST; (F) As#6; (G) As#6-SPARC; (H) As#6-
DEST; (I) Cd#1; (J) Cd#1-SPARC; (K) Cd#1-DEST; (L) Cd#4; (M) Cd#4-
SPARC; and (N) Cd#4-DEST.  The percentage of total cell that invaded is 
depicted in the bottom left corner of each micrograph and was determined 
by counting all cells in 20 fields at using a 40 x magnification lens, 
removing the cells from the top of the insert, and counting the remaining 
cells on the bottom of the insert in 20 fields at using a 40 x magnification 
lens.  All images correspond to bar in N = 100 μm.
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Figure IV-20. Relative cell invasion of Hs578T, non-transfected UROtsa, SPARC-

transfected, and blank vector (DEST) cells lines compared to the parent 
UROtsa cells.  White graph bars represent the As+3 and Cd+2 transformed 
cell lines, the black graph bars represents SPARC transfected cell lines, 
while dotted bars represents blank vector transfected cell lines.  Red 
horizontal line at 1, indicates the level of invasion of the UROtsa parent 
cells.  *Denotes a statistically significant difference from the UROtsa 
parent cells (p ˂ 0.05).
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Figure IV-21.  Soft agar morphology of SPARC-transfected and DEST-transfected 
UROtsa cell lines.  (A) As#3-SPARC; (B) As#3-DEST; (C) As#6-SPARC; 
(D) As#6-DEST; (E) Cd#1-SPARC (F) Cd#1-DEST; (G) Cd#4-SPARC; 
and (H) Cd#4-DEST.  All images correspond to bar in H = 20 μm.
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Figure IV-22.  Expression of SPARC in mouse heterotransplants using different SPARC 
specific antibodies.  Immunohistochemical analysis of SPARC protein 
using the mouse anti-human osteonectin primary antibody purchased from 
HTI in A, C, E, and G and the mouse anti-human osteonectin antibody 
purchased from Leica in B, D, F, H.  The expression of SPARC was 
analyzed in Cd+2 and As+3 tumor heterotransplants.  Tumors were 
generated from the (A and B) As#1, (C and D) As#3, (E and F) Cd#1, and 
(G and H) Cd#5 cell lines.  The brown color indicates SPARC positive 
cells and the blue color is indicative of the counterstain necessary to 
visualize all cells in the tissue.  All images are at a magnification of x 200.  
Bar = 100 μm.
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Figure IV-23. Expression of SPARC in archival human bladder cancer and mouse 
heterotransplants using 2 different SPARC specific antibodies.  
Immunohistochemical analysis of SPARC protein using the mouse anti-
human osteonectin primary antibody purchased from HTI in A, C, E, and 
G and the mouse anti-human osteonectin antibody purchased from Leica 
in B, D, F, H.  The expression of SPARC was analyzed in (A and B) high 
grade invasive carcinoma of the bladder and in mouse heterotransplants 
generated from the (C and D) UROtsa non-transfected cell line, (E and F) 
Cd#1-SPARC transfected cell line, and (G and H) Cd#1-DEST transfected 
cell line.  The brown color indicates SPARC positive cells while the blue 
color is indicative of the counterstain necessary to visualize all cells in the 
tissue.  All images are at a magnification of x 200.  Bar = 100 μm.
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Figure IV-24. Expression of human SPARC protein in mouse heterotransplants and 

corresponding cell lines.  Western analysis of SPARC protein expression, 
using the Leica mouse anti-human SPARC antibody in the UROtsa parent, 
Cd#1, Cd#1-SPARC (Cd#1-S), and Cd#1-DEST (Cd#1-D) cell lines as well 
as the resulting tumors from the transfected and non-transfected Cd#1 cell 
lines (top panel) and with β-actin shown as a loading control in the bottom 
panel.
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Figure IV-25.  Expression of BSD and human SPARC mRNA in mouse heterotransplants 

and corresponding cell lines.  Real time RT-PCR analysis of the UROtsa 
Cd#1, Cd#1-SPARC (Cd#1-S), and Cd#1-DEST (Cd#1-D) cell lines as well 
as the resulting tumors from these cell lines with regard to (A) BSD 
expression and (B) SPARC expression using human SPARC specific 
primers.  mRNA levels were normalized to the fold change in β-actin 
expression.  Real time data is plotted as the mean ± SEM of triplicate 
determinations.   
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Figure IV-26. Expression of mouse SPARC mRNA in mouse heterotransplants and 

corresponding cell lines.  (A) Real time-RT-PCR analysis of SPARC 
expression was analyzed in the UROtsa Parent, Cd#1, Cd#1-SPARC 
(Cd#1-S), and Cd#1-DEST (Cd#1-D) cell lines as well as the resulting 
tumors from the transfected and non-transfected Cd#1 cell lines.  mRNA 
levels were normalized to the fold change in β-actin expression.  Real time 
data is plotted as the mean ± SEM of triplicate determinations.   
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CHAPTER V 

DISCUSSION 

 Previously the UROtsa cell model’s mechanisms of cell death after exposure to 

toxic levels of Cd+2 and As+3 were determined (Somji et al., 2006).  However, it was 

unknown if autophagy may also be acting separately or in concert with the necrosis or 

apoptosis mechanisms.  In most cells, autophagy is suppressed to a low basal level, but 

under stressful conditions autophagic activity may increase.  The urothelium, which 

covers the luminal surface of the urinary bladder, serves to protect the bladder and is 

resilient to many stress factors, as the bladder can be exposed to toxic substances which 

accumulate and concentrate in the urine.  Even though the urothelium is exposed to many 

stressors, the cells of the normal urothelium have a relatively long lifespan with very little 

cell turnover.  The adaptability of the UROtsa bladder cells was questioned to determine 

if autophagy may play a role in the urothelium’s capability to withstand cellular stressors. 

 The present study, outlined in chapter II, was initiated after an analysis by Chai 

and colleagues (2007) showed that beclin-1, an autophagosome marker that when over-

expressed promotes autophagy, was induced in arsenic treated SV-HUC-1 normal human 

bladder cells.  Increasing concentrations of As+3 led to an increase in the expression of 

beclin-1 protein.  In this study, the UROtsa cell model was used to examine beclin-1 

expression as well as several other autophagy related genes, which are downstream 

effectors involved in the autophagosome formation.  The expression of beclin-1 in the 

UROtsa cell lines, in both the non-tumorigenic parental cells as well as in the Cd+2 and 
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As+3-transformed cells, showed detection of beclin-1 expression in all the cell lines.  

However, only modest alterations in the mRNA and protein expression levels of beclin-1 

were seen between the parental UROtsa cells and their malignantly transformed 

counterparts as well as between and among the transformed cell lines.  Although some 

alterations did reach significance, it is believed that with repetition of the experiments at 

several independent times, the small magnitude of differences in the expression of beclin-

1 would no longer remain significant.  This was not carried out due to the expense of 

such repeats being too great and the knowledge of previous work which has shown that 

repeated experiments of cell culture negate small changes first observed.  The expression 

of several autophagy associated genes, Atg-5, Agt-7, Atg-12, and LC3B, were also 

analyzed.  These genes are downstream effectors in the autophagy pathway that are up-

regulated for the induction of autophagosome formation.  The expression of these genes 

showed similar results to that of beclin-1.  Only modest changes in the expression 

patterns of the autophagy associated genes were seen between the UROtsa parent and the 

Cd+2 and As+3-transformed cells as well as within and between the transformed cell lines.  

The results from the basal expression of several autophagy genes in the UROtsa parental 

and the malignantly transformed cell lines suggests that autophagy may be occurring at a 

low rate within these cell lines, but large alteration in mRNA or protein expression does 

not occur in UROtsa cells malignantly transformed by Cd+2 or As+3 or UROtsa parent 

cells. 

 Since previous studies have shown arsenic treatment influences autophagy within 

normal bladder cells (Chai et al., 2007) as well as malignant cells, as seen in leukemic 

(Qian et al., 2007) and malignant glioma cells (Kanzawa et al., 2003), this was extended 
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into the present study.  The UROtsa parental cells and its transformed counterparts were 

exposed to both Cd+2 and As+3 and the expression of beclin-1 and the associated 

autophagy genes were analyzed.  Again, only modest changes were seen in the mRNA 

and protein expression of beclin-1 and the autophagy associated genes after Cd+2 or As+3 

treatment, this evidence further suggests that autophagy is only playing a minor role in 

the UROtsa cell model for heavy metal induced bladder carcinogenesis.  Therefore it is 

concluded that autophagy does not have a major role in assisting or determining which 

cells will undergo apoptosis or necrosis in the UROtsa cell model.  

 Of considerable interest, the expression of beclin-1 protein appeared to change as 

a result of being fed fresh growth media.  With the addition of fresh growth media, the 

expression of beclin-1 was relatively low, but an increase in its expression was detected 

after the growth medium had potentially depleted its nutrients.  The expression of  

beclin-1 was then reduced once again after the cells were fed and nutrients were 

replenished.  Since this study was performed on confluent monolayers, the nutrient 

depletion may have occurred at a faster rate than if the cultures were subconfluent.  This 

finding suggests autophagy in the UROtsa cell line model may be up-regulated and 

down-regulated based of the availability of nutrients. 

 Normal human bladder tissue was also analyzed for beclin-1 expression and the 

gene was found to be moderately expressed within the urothelium.  The highest 

expression of beclin-1 was seen in the apical most cells or the umbrella cells of the 

urothelium, with a reduction in the staining intensity seen in the intermediate and even 

less staining in the basal cells.  This observation may suggest that autophagy is more 

involved in the apical plasma membrane turnover in the superficial urothelial cells than in 
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cells of the intermediate or basal layers.  The stroma of the bladder had little to no 

expression of beclin-1, but occasional inflammatory cells were positive for beclin-1 

staining.  The staining of inflammatory cells for beclin-1 has been previously reported 

(Liang et al., 1999).  The expression of beclin-1 in cancerous bladder tissues remains to 

be determined.  However in a recent study, mouse urinary bladder urothelium was used to 

determine beclin-1 expression in response to starvation.  Beclin-1 expression was 

primarily negative in the adult mouse urothelium, but after a 24 h starvation period the 

urothelium was strongly reactive for beclin-1 in all layers of the urothelium, basal, 

intermediate, and apical (Erman et al., 2012).   

 The expression of beclin-1 in other tissues including normal and cancerous 

tissues, is unclear.  Several studies have showed beclin-1 expression to be up regulated in 

normal tissues compared to cancerous tissue.  Normal esophageal tissue showed positive 

staining in the squamous epithelial cells, while an absence of staining is found in 

esophageal squamous cell carcinoma (Chen et al., 2009).  Similarly, normal breast 

epithelial cells were strongly immunoreactive for beclin-1 with staining also seen in some 

inflammatory cells within the stroma.  While a significant decrease in beclin-1 expression 

was seen in breast carcinoma cells (Liang et al., 1999), normal cervical tissue also had 

relatively high expression of beclin-1 protein when compared to cancerous cervical tissue 

(Wang et al., 2007b).  These studies suggest beclin-1 to be a tumor suppressor due to a 

loss of beclin-1 protein expression in cancerous tissues.  

 Conversely, multiple lines of evidence indicate beclin-1 may contribute to the 

survival of tumors.  Increased beclin-1 expression was associated with cancerous tissue 

as seen in colorectal and gastric cancer cells, where normal colon and stomach tissues 



 

209 

stain only weakly for beclin-1 expression (Ahn et al., 2007; Li et al., 2008).  Human non-

small cell lung cancer also showed increased expression for beclin-1 as compared to 

normal lung tissue (Kim et al., 2011b).  In normal pancreatic tissue, beclin-1 was not 

detected in the cytoplasm of pancreatic islet cells, acinar cells, or ductal epithelial cells.  

However, in pancreatic ductal adenocarcinoma tissue, 22.2% of cases showed positive 

beclin-1 expression (Kim et al., 2011a).  From the studies indicating increased beclin-1 

expression in cancerous tissue, it is believed that beclin-1 enhances tumor development 

and protects tumor cells from stimuli that result in cell death leading to the progression of 

the tumor.  The notion that beclin-1 can be a tumor suppressor and a tumor promoter 

leads these divergent results to suggest that the function of beclin-1 expression is tissue-

specific. 

 Although the present study did not detect large alterations in the expression of 

beclin-1 and associated autophagy genes in Cd+2 or As+3 exposed and transformed 

urothelial cells, the involvement of autophagy in cell death and survival cannot be ruled 

out.  The apparent change in expression of beclin-1 as a function of being fed fresh 

growth medium complicates the interpretation of the presented data.  The possibility that 

beclin-1 expression can vary with nutritional status renders interpreting differences in 

expression between normal and tumorigenic UROtsa cell lines difficult.  Also further 

extension of this study for translational research may also prove challenging, since the 

nutritional status of the tissue may interfere with interpretation of results between normal 

and cancerous tissue.  This study did further the characterization of the UROtsa cell lines 

and its malignantly transformed counterparts by extending the study of possible routes of 

cell death.  Previous characterization of the UROtsa cell lines determined the parental and 
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malignantly transformed cells to die through apoptosis and necrosis, respectively, after 

exposure to toxic levels of Cd+2 or As+3.  Even though autophagy levels were low within 

these cell lines after acute treatment with Cd+2 or As+3, basal expression levels of 

autophagy were detected and may be further activated when nutrient availability is low.  

 The remaining studies, outlined in chapters III and IV, were motivated by a 

microarray analysis which identified that SPARC gene expression had a strong 

differential expression pattern between normal human bladder cells and malignantly 

transformed human bladder cells.  The UROtsa parental and the Cd+2 and As+3-

transformed human urothelial cell lines indicated a significant down-regulation of 

SPARC expression within the Cd+2 and As+3-transformed cell lines compared to the 

parental cell line.  SPARC is a matricellular protein that is expressed intracellularly and 

secreted into the ECM.  It functions in part to regulate levels of cellular adhesion and 

migration as well as regulate cell proliferation, survival, and angiogenesis (Bornstein and 

Sage, 2002; Brekken and Sage, 2001; Tai and Tang, 2008).  These functions are 

important for normal development and for physiological processes such as tissue 

remodeling during wound healing (Bornstein and Sage, 2002; Brekken and Sage, 2001).  

SPARC mediates interactions between cells and components of the ECM by influencing 

growth factor-induced signaling cascades.  Therefore, the function of SPARC is affected 

by the ECM present in the microenvironment, growth factors, and the availability of the 

growth factor’s receptor (Yan and Sage, 1999).  As a result, the role SPARC plays may 

differ between tissues and even within cell types, depending on the microenvironment.   

 The role SPARC plays in cancer is unclear and somewhat controversial.  The 

ability of SPARC to modulate its surrounding matrix has led it to have a positive 
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correlation with invasion or a poor prognosis in some cancers, but conversely, it also has 

a negative correlation with invasion and its expression leads to a better prognosis in other 

cancers (Bos et al., 2004).  Also a difference in prognosis may be attributed to the 

difference in expression patterns of SPARC in tumor cells versus stromal cells.  Most 

studies report on one or the other but few comprehensively examine both.   As previously 

reported, an absence of SPARC expression is associated with malignant urothelial tumor 

cells, but surrounding stromal cells were SPARC positive in the UROtsa cell model of 

Cd+2- and As+3 tumorigenesis (Larson et al., 2010).  Similar expression of SPARC is also 

seen in ovarian cancer, prostate cancer, and pancreatic cancer (Sato et al., 2003; Socha et 

al., 2009; Thomas et al., 2000).  Other cancers have a different presentation for the 

expression of SPARC.  Melanomas and renal cell carcinomas show a high level of 

SPARC expression in the malignant epithelial cells comprising the tumor (Ledda et al., 

1997a; Rempel et al., 1998; Sakai et al., 2001).   

 Within the UROtsa cell model, SPARC message and protein expression was 

detected within the UROtsa parental cells, with SPARC protein localized to distinct 

vesicles in the cytoplasm of the cell.  Both the Cd+2- and As+3-transformed UROtsa cell 

lines showed that SPARC message was reduced to the limit of detection and an absence 

of SPARC protein was seen by western blot and immunofluorescence analysis.  The lack 

of SPARC expression in malignant urothelial cells translated not only to the tumors 

generated by the injection of the transformed UROtsa cells into immune-compromised 

mice, but it also translated to human bladder cancer specimens.  The tumors from these 

applications showed an absence of SPARC expression; however, the stroma surrounding 

the tumor was highly reactive for SPARC expression.  It is believed that the connective 
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tissue was recruited to the tumor site by secretions from the tumor cells. Although 

previous studies have determined SPARC is expressed in normal urothelium and 

urothelial cell cultures (Alpers et al., 2002; Bassuk et al., 2000; Delostrinos et al., 2006; 

Hudson et al., 2005), the present study confirmed these findings and was the first to 

determine the expression of SPARC in human bladder cancer.  The translation of SPARC 

expression from bladder cells in culture, to mouse tumors generated from malignant 

bladder cells, and also to human urothelial cancer suggests that SPARC is a unique and 

powerful model for studying biomarkers in urothelial cancer.   

 Several studies have suggested the alterations in SPARC expression between 

normal and cancerous tissues are a result of DNA methylation.  The low level of SPARC 

expression in several cancers, including endometrial, colorectal, and leukemia were 

shown to be a result of SPARC promoter hypermethylation (Nagaraju and Sharma, 

2011).  Other studies have shown that changes in methylation levels of the SPARC 

promoter can lead to SPARC silencing.  This was seen in lung, colorectal, and pancreatic 

cancer cell lines, which all have a low level of SPARC expression, but after treatment 

with 5-Aza-2’deoxyctidine (5-AZC), a demethylating agent, the expression of SPARC 

increased (Cheetham et al., 2008; Sato et al., 2003; Suzuki et al., 2005).  These studies 

powered the analysis of determining if UROtsa cells transformed by Cd+2 or As+3 had a 

similar mechanism that regulated the expression of SPARC.  However treatment with  

5-AZC and MS-275, a histone deacetylase inhibitor, either separately or in conjunction 

with each other did not induce SPARC message.  However, a striking finding from this 

study was the down-regulation of SPARC mRNA and protein within the normal UROtsa 

parent cell line after acute treatment to both Cd+2 and As+3 in a concentration and time-
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dependent manner.  Further examination of this finding revealed that during the process 

of transforming the UROtsa cells with Cd+2 or As+3, the expression of SPARC gradually 

decreased with increasing time.  The transformation of the UROtsa cells took several 

months, but the resulting fully transformed UROtsa cell lines showed that the expression 

of SPARC was at the limit of detection and was incapable of being induced through 

demethylating or acetylating agents.  This study suggests that Cd+2 and As+3, down-

regulate the expression of SPARC during the development and progression of bladder 

cancer.  Since Cd+2 and As+3 activate different metabolic pathways within the cell, it is 

unique that both of these heavy metals have the ability to down-regulate the expression of 

SPARC within the transformed UROtsa cells and within the parental cells after acute 

treatment. 

 To further the understanding of SPARC expression in human UROtsa cells and 

their malignantly transformed counterpart, SPARC was stably transfected into select Cd+2 

and As3+ transformed UROtsa cell lines.  The resulting transfected cell lines were 

characterized for SPARC expression, cellular migration, invasion, and tumorigenicity.  

Most of the SPARC-transfected cell lines had a similar expression pattern of SPARC 

mRNA and protein as the UROtsa parent, one SPARC-transfected cell line was reduced 

and another induced compared to the parental cell line.  The intracellular localization of 

SPARC was also very similar among all the SPARC transfected cell lines and was very 

similar to parental cell line.   

 The generation of SPARC transfected cells has been the focus of several studies.  

The over-expression of SPARC in glioma cells induced brain tumor migration and 

invasion in vitro and in vivo (Golembieski et al., 2008), subsequently down-regulation of 
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SPARC in glioma cells by siRNA led to a decrease in cell migration (Seno et al., 2009) 

and invasion (Shi et al., 2007) in vitro.  However, an embryonic kidney cell line 

transfected with SPARC significantly impaired tumor growth in vivo compared to 

controls (Chlenski et al., 2006).  The resulting disparities in cellular migration and 

invasion with the forced expression of SPARC, led to further characterization of the Cd+2 

and As3+ transformed UROtsa cell lines transfected with SPARC by analyzing their 

chemotaxis, wound healing, and invasion capabilities.  The results from these assays 

were not expected, as the forced expression of SPARC did not seem to induce large 

alterations in the migration or invasion rates within the transformed UROtsa cell lines.  

However, upon analysis of human bladder cancers it has been shown that cancerous 

bladder cells generally do not invade through connective tissue and enter blood vessels, 

but rather invade through the muscle layers of the bladder.  Bladder cancer is also known 

to metastasize locally, generally seeding on the stroma of organs near the bladder.  

Therefore the determination that forced SPARC expression in the UROtsa cells did not 

greatly alter the migration and invasion rates may be due to the lack of the invasive 

nature of UROtsa cells.   

 In vivo examination of SPARC-transfected cells to form subcutaneous tumors in 

nude mice, revealed no differences in tumor formation between SPARC-transfected cells 

and non-transfected control cells regarding the ability to form tumors, time needed to 

form the tumor, and the size of the tumor.  However, upon histological examination of 

the resulting tumors, those from SPARC-transfected cells completely lacked SPARC 

protein expression within the epithelial component of the tumor, but were positive for the 

transfection vector.  Further analysis showed the SPARC-transfected tumors had greatly 
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reduced SPARC message when compared to the SPARC-transfected cell lines.  This 

study suggests that the down-regulation of human specific SPARC mRNA and a lack of 

human specific SPARC protein in the mouse heterotransplants generated from UROtsa 

cells transfected with SPRAC, is due to post-transcriptional regulation of SPARC 

expression in urothelial carcinoma cells within the mouse environment.  

 Emerging within the literature has been the identification of several microRNAs 

(miRNAs) that can regulate SPARC expression (Kapinas et al., 2009).  Characterized as a 

class of small, non-coding RNAs that modulate the translation or stability of a target 

mRNA, miRNAs have been shown to play an increasingly significant role in 

tumorigenesis (Bartel, 2004; Bartel, 2009).  Efficient repression of a target mRNA is 

either achieved by interfering with translation or by guiding processes for mRNA 

degradation that are initiated by deadenylation and decapping of the mRNA (Brodersen 

and Voinnet, 2009).  Although many miRNA targets have been reported, the majority of 

mRNAs regulated by miRNAs remain unknown.  Within studies on SPARC RNA 

interference, the miRNA-29 family of miRNAs, consisting of miRNA-29a, -29b, and -

29c have been examined as potential regulators of SPARC expression in a variety of cell 

models.  These studies have also only focused on the 3’ untranslated region (UTR) of 

SPARC as a binding site for the miRNA-29 family.  Although it was previously believed 

that miRNAs only target the 3’or 5’ UTR of a mRNA target, current evidence is 

emerging that miRNA also target the coding regions of genes (Forman et al., 2008).   

 Since only the open reading frame (ORF) of SPARC was transfected into the 

UROtsa cells transformed by Cd+2 or As+3, only the coding region can be analyzed for 

possible miRNA regulation.  A sequence analysis suggests that the SPARC ORF has the 
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ability to bind several miRNAs, including miRNA-29a, -29b, and -29c , miRNA-147, and 

miRNA-203.  Future studies will be conducted to further elucidate the exact miRNA or 

several miRNAs that are responsible for the down-regulation of SPARC mRNA and 

degradation of SPARC protein within mouse tumors generated by the transfection of 

SPARC into Cd+2 or As+3 transformed UROtsa cells.  These studies will greatly enhance 

our understanding of bladder tumorigenesis as well as the functions of the SPARC 

protein.  SPARC expression is unique because it was independently shutdown in all 13 

transformed UROtsa cell lines.  No other gene has yet been shown to have such a 

dramatic regulation in the UROtsa system.  When SPARC was forced to be expressed, 

the tumor microenvironment results in the expression of SPARC to again be down-

regulated to low levels.  This suggests that SPARC is most likely playing a critical role in 

bladder tumorigenesis.   

 In order for the injected Cd#1-SPARC cells to form tumors within the 

environment of the immunocompromised mice, the expression of SPARC may have been 

needed to be repressed.  It is known that all 13 of the Cd+2 and As+3 transformed UROtsa 

cell lines have low to undetectable levels of SPARC expression and are all capable of 

forming subcutaneous tumors when injected to immunocompromised mice.  The 

resulting malignant epithelial component of the tumors generated from the Cd+2 and As+3 

transformed cell lines was also negative for the expression of SPARC.  In contrast, the 

parental UROtsa cells have a relatively high expression of SPARC compared to the 

transformed cell lines and are incapable of forming subcutaneous tumors within nude 

mice.  Therefore, drastic down-regulation of SPARC mRNA and complete absence of 

detectable SPARC protein within the Cd#1-SPARC tumor heterotransplant may have 
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been required for the formation of the tumor.  Preliminary results from mice sacrificed at 

6 weeks showed that the resulting tumors from the Cd#1-SPARC cells were smaller in 

volume when compared to controls.  The smaller tumor size may be a result of the extra 

time needed to down-regulate SPARC expression within the injected cells before the 

tumor could grow; therefore, the tumors that resulted from the Cd#1-SPARC cells formed 

more slowly than tumors formed by controls, which did not have to down-regulate 

SPARC expression prior to tumor formation.  The expression of SPARC within the 

human bladder appears to be required for a normal phenotype while the down-regulation 

of SPARC expression is associated with a malignant phenotype.   
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APPENDIX 

ABBREVIATIONS 

5-AZC   5-Aza-2'-deoxycytidine / Methylation Inhibitor 

As+3   Arsenite 

As+5   Arsenite 

As(III)   Arsenite 

As(V)   Arsenate 

Asi(III)   Inorgainic Arsenite 

Asi(V)    Inorganic Arsenate 

As3mt   Arsenic Methyltransferase 

AIDS   Acquired Immune Deficiency Syndrome 

ARK   Animal Research Kit 

Atg   Autophagy Related Genes 

ATP   Adenosine Triphosphate 

BCA   Bicinchoninic Acid 

bFGF   Basic Fibroblast Growth Factor 

BM-40   Basement membrane-40 

bp   Base Pair 

BSD   Blasticidin 

Cd+2   Cadmium 

cDNA   Complementary DNA 
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CIS   Carcinoma in situ 

cm   Centimeter 

CO2   Carbon Dioxide 

DAPI   Trivalent Dimethylarsinous Acid 

DEST   Destination Vector or Blank Vecto 

DMA(V)   Pentavalent Dimethylarsinic Acid 

DMEM  Dulbecco’s Modified Eagle’s Medium 

DNA   Deoxyribonucleic acid 

DTT   Dithiothreitol 

EC   Extracellular Calcium Binding C-terminus 

ECM   Extracellular Matrix 

EDTA   Ethylenediaminetetraacetic acid 

FS   Follistatin-like 

g   Gram 

h   Hour 

H4K16   Histone 4 lycine 16 

HCl   Hydrochloric Acid 

HRP   Horseradish Peroxidase 

Hsc   Heat Shock Cognate 

Hsp   Heat Shock Protein 

IL   Interleukin 

IOD   Integrated Optical Density 

IRB   Institutional Review Board 
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kb   Kilobase 

kDa   Kilodalton 

LC3B   Light Chain 3 isoform B 

LDH   Lactate Dehydrogenase 

M   Molar 

mL   Milliliter  

mm   Millimeter 

mM   Millimolar 

min   Minute 

miRNA  microRNA 

MMA(III)  Trivalent Monomethylarsonous Acid 

MMA(V)  Pentavalent Monomethylarsonic Acid 

MMP   Matrix Metalloproteinase 

mRNA   Messanger RNA 

MS-275  Histone Deacetylase Inhibitor / Entinostat 

MT   Metallothionein 

mTOR   Mammalian Target of Rapamycin 

N6AMT  N-6 Adenine-Specific-DNA Methyltransferase 

NIH   National Institute of Health 

NT   N-Terminus 

ORF   Open Reading Frame 

PAGE   Polyacrylamide Gel Electrophoresis 

PAI   Plaminogen Activator Inhibitor 
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PBS   Phosphate Buffered Saline 

PCR   Polymerase Chain Reaction 

PDGF   Platelet Derived Growth Factor 

PE   Phosphatidylethanolamine 

PI3KC3  Class 3 Phosphatidylinositol 3-Kinase 

PI3P   Phosphatidylinositol 3-Phosphate 

PVDF   Polyvinylidine Difluoride 

rAS3MT  Rat Arsenic (+3 Oxidation State)-Methyltransferase 

RNA   Ribonucleic acid 

RIP   Receptor Interacting Protein 

ROS   Reactive Oxygen Species 

RT-PCR  Reverse Transcriptase Polymerase Chain Reaction 

SCC   Squamous Cell Carcinoma 

SDS   Sodium Dodecyl Sulfate 

SE   Standard Error 

sec   Second 

SILAC   Stable Isotope Labeling of Amino Acid in Cell Culture 

SMOC   SPARC-Related Modular Calcium Binding 

SPARC  Secreted Protein, Acidic and Rich in Cysteine 

SV40   Simian Virus 40 

TBS   Tris Buffered Saline 

TBS-T   Tris Buffered Saline with Tween-20 

TGF   Transforming Growth Factor 
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TMA   Trimethylarsine 

TMAO   Trimethylarsine Oxide 

TMN   Tumor, Node, Metastasis  

TN   Tenascin 

TSP   Thrombospondin 

URO-As+3  UROtsa Cells Transformed by Arsenic 

URO-Cd+2  UROtsa Cells Transformed by Cadmium 

URO-MSC12  Transformation of UROtsa Cells with MMA(III) taking 12 weeks 

URO-MSC12+12(-) Transformation of UROtsa Cells with MMA(III) taking 12 weeks, 
then also cultured for additional 12 weeks in the absence of 
MMA(III) 

 
URO-MSC12+24(-) Transformation of UROtsa Cells with MMA(III) taking 12 weeks, 

then also cultured for additional 24 weeks in the absence of 
MMA(III) 

 
URO-MSC52  Transformation of UROtsa Cells with MMA(III) taking 52 weeks 

UROtsa  Immortalized human bladder urothelial cell line 

UTR   Untranslated Region 

VEGF   Vascular Endothelial Growth Factor 

Zn+2   Zinc 

°C   Degree Centigrade 

β   Beta 

ɳM   Nanomolar  

µM   Micromolar 

µL   Microliter 

µg   Microgram 
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µm   Micrometer 

v/v   Volume to Volume 

w/v   Weight to Volumes 

x g   G-Force  
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