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ABSTRACT 

 Host-seeking mosquitoes are taxing for people and wildlife alike in the Red 

River Valley (RRV).  During the summer massive numbers of mosquitoes swarm the 

RRV, yet little is known about the ecology and biology of the mosquito species that 

inhabit this area.  This research will help to fill some of those knowledge gaps by 

studying the ecology of host seeking mosquitoes in the RRV.   

 Host-seeking mosquitoes were collected using CO2-baited MMX™ traps.  

Trapping was conducted in two very different rural settings within the RRV.  One site, 

a 40-acre hardwood forest with closed canopy, the other a farmstead consisting of open 

agricultural fields interspersed with forested wind-rows.  Trapping was conducted 2-3 

times weekly throughout the mosquito season (May through August). Each night’s 

catch was sorted, counted and identified to species.  During sorting, all engorged and 

partially engorged mosquitoes were removed, identified to species and stored at -80ºC.   

 DNA was extracted from individual mosquito blood meals and analyzed via 

polymerase chain reaction (PCR) assays multiple times to determine the host feeding 

preferences and parasitic infection status of the host.  The first round of PCR assays 

determined the host species from which the blood originated (e.g., deer, dog, human, 

etc.).  Analyzing the host composition of many mosquito blood meals produced 

information on the preference of host species that were most commonly fed upon by the 

various mosquito species within their natural environment.  The following rounds of 
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PCR assays examined mosquito blood meals for the presence of blood-borne pathogens 

(e.g., filarial nematodes, avian malaria, etc.). This process, known as xenomonitoring, 

uses mosquitoes as a sampling tool to acquire blood samples from wildlife without 

having direct contact with the vertebrate host.  Thus, xenomonitoring is an indirect way 

of estimating the prevalence of infection among vertebrate populations. 

 Mosquito counts from the forest and farm sites along with Grand Forks “Skeeter 

Meter” counts from the years of 2002-2010 were used to construct predictive models to 

understand the effects of climate on mosquito population dynamics and abundance 

throughout the summer.  Generalized linear models are used to determine how climate 

variables play roles on everyday mosquito activity, while cross-correlation maps were 

used to determine correlation values of preceding weather variables to trap counts.  

This allowed for the determination of which climate variables can be used to predict 

how mosquito populations will fluctuate in the future. 

 This research provides a critical foundation by describing the species 

composition of mosquitoes that inhabit two unique rural study sites within the RRV.  

Species composition is crucial to the initial component of mosquito-borne vector 

transmission of diseases, presence of mosquito vectors.  Building from the composition, 

this study provides information describing the population trends of multiple mosquito 

populations throughout the summers of 2009-2011 at these two rural sites.  Because 

mosquito population trends differed between sites, several meteorological variables 

were identified as affectors of mosquito abundance and activity.  By understanding how 

these meteorological factors affect mosquito populations, vital data is provided for the 
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future design of predictive models that will allow for focused mosquito control, but also 

lend information in potential disease risk-assessment map production.    

 To further build on the potential for zoonotic and enzootic pathogen 

transmission, it is important to understand the feeding habits of local mosquito species.  

These feeding preferences determine which hosts are more commonly fed upon by 

given mosquito species and offer a background to determine which vector transmitted 

diseases are currently present in the RRV as well as potential diseases, that upon 

introduction to the region, which could be transmitted within the valley.  
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CHAPTER I 

 
SPECIES COMPOSITION AND PHENOLOGY OF HOST-SEEKING 

MOSQUITOES IN TWO UNIQUE RURAL HABITATS OF THE RED RIVER 
VALLEY OF NORTH DAKOTA 

 
Abstract 

 

 North Dakota, specifically the Red River Valley, is a highly understudied region 

in terms of mosquito based research.  This study lays the foundations of mosquito 

ecology and biology by investigating the species composition between two contrasting 

habitat types, a typical Farming/agricultural setting and a heavily forested, riparian 

zone located near the Goose River in Steele County, North Dakota.  Over 125,000 

mosquitoes were collected belonging to 20 species.  Of the total collected, 57% 

(n=70,730) were identified as Aedes vexans, 19% (n=23,155) Ae. excrucians, and 11% 

(n=14,042) Culex tarsalis.  Within the Forest site, Ae. excrucians was the most 

abundant species (n=23,008; 55%) followed by Ae. vexans (n=8,301; 20%), Ae. 

triseriatus (n=3,914; 9%) and Coquillettidia perturbans (n=3,606; 9%).  Species 

composition at the Farm site was dissimilar to the Forest site with the major population 

being Ae. vexans (n=62,429; 75%), Cx. tarsalis (n=13,804; 17%), Culiseta inornata 

(n=1,932; 2%) and Ae. dorsalis (n=1,470; 2%).  In addition to having unique species 

composition between sites, each of these mosquito species displayed differing 

population trends throughout the summer with Ae. excrucians being the first to emerge 
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in early June from the Forest and Ae. vexans being the earliest of the Farm mosquito 

species.  

Introduction 

Since 2003, the northern Great Plains states of North Dakota, South Dakota and 

Nebraska have consistently experienced some of the highest incidence of West Nile 

virus infections in humans within the United States.  Despite this, the mosquito fauna of 

North Dakota has been little studied.  This chapter provides the first detailed 

description of the adult mosquito fauna within rural areas of the central Red River 

Valley of eastern North Dakota.   

The Red River Valley (RRV) is a large prehistoric lakebed (Lake Aggassiz) that 

extends from southern North Dakota northward into southern Manitoba, Canada.  The 

topography is extremely flat and the thick soil is fertile but does not drain well.  

Consequently, there are vast areas of potential mosquito breeding habitat within the 

RRV.  The RRV is primarily rural and the main landscape feature consists of large-

scale crop production (sugar beets, potatoes).  Agricultural sections are delineated by a 

grid-like network of raised gravel roadbeds, often flanked by low-lying ditches that can 

serve as mosquito larval habitats.  Other low-lying areas within agricultural fields can 

also contribute to mosquito breeding.  The farmsteads managing the crop production 

typically consist of several buildings surrounded by windrows of trees.  Presumably, 

farmsteads are the site of most of the mosquito transmission of West Nile virus to 

humans (i.e., epizootic transmission) within the RRV. 

Interweaved within the grid of agricultural fields, is a secondary habitat 

consisting of small slow-moving streams that meander and eventually drain into the 
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Red River flowing north into Lake Winnipeg, Canada.  These streams often support 

areas of forest along their banks.  These small tributaries typically flood during the 

spring snow melt and leave behind woodland pools and water-filled tree-holes that can 

serve as breeding habitat for mosquito species different from those breeding in the sun-

lit agricultural habitat.  Although not generally visited by humans during peak mosquito 

season, many wildlife species take up residence within these riparian habitats, as food 

and water resources are plentiful.  With ample breeding sites and many species of 

wildlife to feed upon, these forested, riparian zones present potential areas of enzootic 

transmission of mosquito-borne pathogens. 

 Within the state of North Dakota, up to 40 species of mosquitoes have been 

reported (Darsie and Anderson 1985, Darsie and Ward 1989) and during the summer 

months the Red River Valley (RRV) supports vast numbers of mosquitoes.  One of the 

most important roles of mosquitoes is as vectors of disease in wildlife, livestock and 

humans.  In terms of disease transmission, it is essential to understand the composition 

and distribution of mosquito species as not every species of mosquito transmits every 

pathogen.  Some regions may be more or less likely to support transmission of a given 

pathogen based on the presence/absence of a mosquito species.  In addition, the degree 

of viral competency has been shown to differ between mosquito species (Meyer et al. 

1988, Turell et al. 1996, Turell et al. 2000, Turell et al. 2001), indicating that differing 

mosquito species may have varying impacts on viral transmission.   

 The importance to determine which species inhabit the understudied, rural RRV 

of North Dakota, and identify potential candidate vector mosquito species is crucial. 
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This study analyzes the mosquito species composition and population dynamics 

between two unique rural sites in the RRV of North Dakota.   

Material and Methods 

Study Sites.  Mosquitoes were collected from two unique, rural sites within the 

RRV in Steele County, North Dakota.  Steele County is an agricultural region that 

comprises 712 square miles and has a total population of 1,975 people living within 4 

communities and multiple farmsteads (U.S. Census Bureau, 2010).  Crops commonly 

grown in the county include: wheat, barley, corn and soybeans.  Insecticides are 

commonly applied once during the summer using ground and aerial spraying.   

Both sites are located west of Hatton, ND (47.64°N, 97.46°W), a small rural 

community (pop. ~ 700) located within Traill County (Fig. 1.1).  The first site, located 

8.45 km southwest of Hatton, ND, is a hardwood forest with a semi-closed canopy and 

thick underbrush (hereafter referred to as the Forest site).  Green Ash (Fraxinus 

pennsylvanica), Boxelder (Acer negundo), Oak (Quercus mongolica) and American 

Elm (Ulmus americana) are the predominant tree species found within the Forest.  The 

lone building on this site is a hunting cabin that is only occupied during the North 

Dakota deer hunting season (November).  The Forest is bordered along the southern 

edge by the northern branch of the Goose River, which commonly overflows its banks 

each spring, leaving low lying forest flooded throughout summer.   

The second site, an agricultural ecosystem (from here on out referred to as the 

Farm), is located 1.61 km west of Hatton, ND, and is surrounded by cropland and 

shelterbelts.  A small grove of trees partitions the buildings from the surrounding fields.  

This type of landscape is more typical of North Dakota.  Buildings include a residential 
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home, an unoccupied pole barn and chicken coop, large equipment storage shed, and 

three granaries.  Boxelder, American Elm, Chinese Elm (Ulmus parvifolia), Russian 

Olive (Elaeagnus angustifolia), Blue Spruce (Picea pungens) trees and Lilac (Syringa 

vulgaris) bushes are common on the Farm. A small coulee collects overland floodwater 

from surrounding fields and borders the Farm along the north and eastern limits. This 

coulee retains water throughout the summer months.  No livestock are raised on the 

Farm.  Mosquito control is absent at both sites.   

Mosquito Collection: Mosquitoes were collected using battery operated CO2-

baited Mosquito Magnet X traps (MMX) (Woodstream Lititz, PA) from late May 

through mid-August of 2009, 2010, and 2011.  Traps were placed throughout both sites 

2-3 times per week and operated from 1800 to 0800 hr.  In addition to MMX traps, a 

hand-operated, battery powered aspirator (33 cm diameter, 91.44cm length) 

(Metropolitan Mosquito Control District, St. Paul, MN) was used weekly (15 min 

duration) to collect resting mosquitoes around buildings, trees and underbrush at both 

sites during the summer of 2011. 

Mosquitoes were transported to the laboratory and placed in -20°C freezers to 

immobilize mosquitoes. Mosquitoes were transferred into enamel pans and 

subsequently to plastic baggies for long term storage in -80°C freezers.  Using 

dissecting scopes and dichotomous keys, mosquitoes were identified to species (Darsie 

Jr. and Ward 2005). 

Images and Statistics:  Images were obtained through Google Earth ™ 

(Google, Mountain View, CA, United States of America).  Statistical analyses were 

performed using the R software package (R Development Core Team 2007).  Mosquito 
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species diversity at each site was quantified by computing Shannon indices 

(alyoung.com), using the following formula: 

 

where, p is the proportion (n/N) of individuals of one particular species found (n) 

divided by the total number of individuals found (N), ln is the natural log, Σ is the sum 

of the calculations, and s is the number of species.  Higher indices indicate greater 

species diversity than do lower indices. To quantify the degree of similarity between 

the mosquito communities found within the two habitats, Sorenson’s coefficient was 

computed using the following formula: 

2 x (no# of species in common) / (no# Forest species collected) + 

(no# Farm species collected) 

Complete community overlap = 1, whereas complete community dissimilarity = 0.   

Results 

 Species Diversity.  In this study, 125,695 mosquitoes (20 species) were 

identified from the two rural sites.  Three species of mosquitoes, Aedes vexans 

(n=70,730, 57%), Ae. excrucians (n=23,155, 19%) and Culex tarsalis (n=14,042, 11%), 

composed the majority of the total collection (Table 1.1).  Darsie and Ward 2005 

reported 26 species of mosquitoes within the state of North Dakota.  Using this as a 

comparison tool, seven additional species were found that were not named in Darsie 

and Ward 2005, including Ae. aurifer, Ae. hendersoni, Ae. triseriatus, Ae. trivatattus, 

Anopheles quadrimaculatus, Culiseta minnesotae and Cx. territans. All of these 

species, except Ae. aurifer, have previously been reported (Post and Munro 1949, 
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Darsie and Anderson 1985, Darsie and Ward 1989).  Of the 20 mosquito species 

collected at both sites, there were 13 species in common.  Overall, the mosquito 

communities were fairly similar between Farm and Forest (Sorenson’s coefficient = 

0.79), however the Forest site had a greater diversity of mosquito species (18 species, 

Shannon index = 1.35) than did the Farm site (15 species, Shannon’s index = 0.86). 

During the years of 2009 and 2011, mosquitoes were collected using MMX 

traps for the population trends within the Forest.  From mid-June through July, 

mosquito numbers peaked and consistently collected between 350-550 mosquitoes per 

trap per week.  Numbers of mosquitoes declined to nearly zero approximately two 

weeks into August. 

Comparison of Mosquito Collection Techniques.  In 2011, two types of 

mosquito collection were employed.  The MMX trap is a CO2 based trap operated 

during the night.  Thus, MMX traps collected primarily female mosquitoes seeking 

blood (=host-seeking segment of the population).  Aspiration of vegetation during the 

day collected resting mosquitoes that were not actively hunting but were either newly 

emerged, blood engorged or gravid (Fig. 1.2).  Relative densities of host-seeking 

mosquitoes were similar between sites but relative densities of resting mosquitoes were 

over five times greater in the Forest than at the Farm site (Table 1.2).  Blood-fed 

mosquitoes were collected using both techniques however significantly more were 

collected using the aspirator as compared to the MMX traps combined at each site 

(Kruskal-Wallis, χ2
=7.0886, df=1, p=0.0078).   

Forest Site.  Using the combination of MMX traps and aspirator, 18 species of 

mosquitoes were collected within the Forest site (Table 1.1) (n=41,755).  Predominant 
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species were Ae. excrucians (55%), Ae. vexans (20%), Ae. triseriatus (9%) and 

Coquillettidia perturbans (9%).  MMX traps collected 18 species while aspiration of 

vegetation collected only 12 species.  There was not a significant difference between 

the number of individual mosquitoes caught using MMX traps and the aspirator 

(Kruskal-Wallis, χ2
=0.1304, df=1, p=0.7180).  

 Within the Forest, each of the major mosquito species shows unique population 

fluctuations throughout the summer months.  The first of the major mosquito species to 

appear was Ae. excrucians (mid-June) (Fig. 1.3A).  By the first week of July the 

number of questing females depleted to half of the peak number.  Two smaller peaks of 

host-seeking Ae. excrucians occurred during the second and fourth weeks of July.  By 

mid-August the population of Ae. excrucians dropped to almost zero.  Host-seeking Ae. 

vexans first appeared at the end of June and peaked the first week of July, 

approximately one month later than Ae. excrucians.  The initial numbers of Ae. vexans 

dropped sharply  and within a week there was a subsequent peak (Fig. 1.3A).  By the 

fourth week of July, numbers of Ae. vexans decreased, and like Ae. excrucians are no 

longer present by mid-August. 

 The secondary species, Ae. triseriatus and Co. perturbans, also showed unique 

emergence and peak patterns (Fig. 1.3B).  Aedes triseriatus numbers were low until the 

first week of July when the population started to increase.  By the third week of July, 

Ae. triseriatus numbers peaked but, unlike Ae. excrucians and Ae. vexans, remain high 

for approximately one week before dropping gradually to zero in mid-August.  Initial 

emergence of Co. perturbans began in late June and gradually peaked the second week 

of July.  Coquillettidia perturbans, like Ae. triseriatus, showed a similar tendency to 
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sustain high numbers for approximately one week.  After the extended peak, just as the 

other species, numbers of Co. perturbans dropped to nil by mid-August. 

Farm Site.  Using the combination of MMX traps and aspirator, 15 species of 

mosquitoes were identified at the Farm site (Table 1.1) (n=82,940).  Predominant 

species were Ae. vexans (75%), Cx. tarsalis (17%), Cs. inornata (2%) and Ae. dorsalis 

(2%).  The MMX  traps collected 15 species while the aspirator collected 9 species.  

During 2011, significantly more mosquitoes were collected using MMX traps versus 

the aspirator (Kruskal-Wallis, χ2
=4.4179, df=1, p=0.03556).   

 Host-seeking Ae. vexans were abundant at the Farm in early June and peaked by 

the third week of June (Fig. 1.4A).  A smaller, less intense peak occurred during the 

first week of July.  Two unique characteristics to the Farm population of Ae. vexans are 

the emergence weeks before the Forest population and abundance during peak times are 

5-8 times higher than the peaks of Ae. vexans within the Forest.  After the second peak, 

numbers drop and remain at these lower levels through August.  Appearance of host-

seeking Cx. tarsalis appeared later in the season as their populations started  to increase 

during the end of June and peaked within the first week of July (Fig. 1.4A).  

Abundance declined after this peak but approximately one month later (first week in 

August) there occurred a larger, additional peak.  It appears there may have occurred an 

elevation in numbers after this second peak, but is unknown as sampling finished 

before the end of August.  The abundance of host-seeking Cx. tarsalis, although smaller 

than Ae. vexans, was almost 60 times higher than the numbers of Cx. tarsalis collected 

from the Forest site. 
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 The secondary species of the Farm have less defined trends.  The Ae. dorsalis 

population fluctuated throughout the summer (Fig. 1.4B), but at much lower intensities 

than that of Ae. vexans or Cx. tarsalis.  It would appear that throughout the summer in 

the RRV, Ae. dorsalis questing female numbers may have up to three peaks.  It also 

appears that each of these peaks is approximately one month apart.  Culiseta inornata 

showed an initial peak prior to the beginning of the sampling season (Fig 1.4B).  The 

population remained low throughout June and July but showed a defined peak the first 

week of August.  A subsequent peak may have occurred after the third week of August, 

but it was not determined due to end of field season. 

 Engorged mosquitoes were also collected via both collection methods.  While 

the MMX traps collected a larger number mosquitoes than the aspirator overall, the 

numbers of engorged mosquitoes collected using the aspirator was nearing a 

significantly larger number than that of MMX traps (MMX n=125, Aspirator n= 1716; 

χ2
=3.7844, df=1, p=0.0517). 

Discussion 

 

 Mosquito-borne pathogens are common throughout the world.  The success of 

these pathogens depends on both biotic factors (host susceptibility/competency/ 

intensity of viremia/parasitemia, competency of vector) and abiotic factors (rainfall, 

temperature).  All of these factors mean little in disease transmission if vector 

arthropods are not present within a region.  Not only does presence of the vector play 

an important role, but also the abundance of the vector species.   

 This study investigated the composition and population dynamics of mosquito 

species within the two rural habitat types found within the RRV.  Seven species of 
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mosquitoes were identified which were not in the newest distribution maps of Darsie 

and Ward 2005.  These include: Ae. aurifer, Ae. hendersoni, Ae. triseriatus, Ae. 

triviatattus, An quadrimaculatus, Cs. minnesotae and Cx. territans.  All of these 

species, except Ae. triseriatus, were relatively rare and represented less than 1% of the 

total catch for all years within the sampling areas. The low population numbers in 

combination with species habitat preference may be why these mosquitoes are not 

always collected and reported.  North Dakota claims a mere 4.4% of total land as 

Forest, which is the preferred habitat of Ae. triseriatus as well as Ae. trivittatus (Siverly 

1972).  Thus collection sites may influence prior reports of their presence.  

Another caveat to mosquito population studies is the style of trap used for 

collection.  To reduce variation due to trap preference we used a combination of two 

trap types to collect mosquitoes, CO2-baited MMX traps and vacuum aspiration of 

resting mosquitoes.  Using this combination of trapping styles, almost 42,000 

mosquitoes were collected from the Forest site.  Most of these mosquitoes were Ae. 

excrucians (55%).  Aedes excrucians is one of the most widely distributed Aedes 

mosquito and prefers a flooded, wooded habitat (Means 1979), which describes the 

Forest site.  Since Ae. excrucians is univoltine, we can surmise that the first population 

spike (4
th

 week in June, Fig 1.3A) is the new cohort of the summer.  There are two 

subsequent peaks in female, host-seeking Ae. excrucians throughout the summer. 

Because Ae. excrucians is univoltine, these subsequent peaks were probably parous 

females seeking another blood meal.  Even though this species is univoltine, multiple 

blood meals are likely taken and egg numbers build through the summer in depressions 

and low-lying ground as they are the overwintering stage that await spring flooding. 
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Aedes excrucians has also been implicated in the transmission of various 

parasites. In fact, Ae. excrucians were classified as having high vector potential for dog 

heartworm (Dirofilaria immitis) (Arnott and Edman 1978). Dog heartworm has been 

found within local pet populations (personal communications with veterinarians) and it 

is likely that Ae. excrucians is one of the local vectors. 

In addition to the transmission of dog heartworm, Ae. excrucians also shows the 

potential of becoming a vector to various viruses. In experimental studies, Sindbis virus 

(Ockelbo subtype) produced disseminated infections in 100% of the Ae. excrucians that 

fed on viremic chicks (Turell et al. 1990).  The Ockelbo virus was first isolated in 

Sweden in 1982.  This virus is endemic to Scandinavia and causes inflammatory 

responses such as rash and fever upon human infection.  This northern Great Plains of 

the United States is highly populated with individuals with Scandinavian background, 

and many people plan trips to Norway/Sweden to visit relatives and homelands. If 

active virus was transported either through infectious mosquito or active viremia in 

humans, the RRV could be a prospective entry point for a widespread Ockelbo 

epidemic. 

Aedes vexans were also recovered from the Forest site. Aedes vexans is among 

the most prevalent mosquito species in urban areas of the RRV previously studied 

(Deckert 1995, Bell et al. 2005). Aedes vexans is known as a flood water mosquito and 

lays eggs in a variety of substrates such as shallow depressions and within cracks in 

soils that are commonly flooded such as in fields and ditches (Horsfall et al. 1973).  

Eggs are less common oviposited in areas of high vegetation and permanent bodies of 

water.  While some Ae. vexans may be actively breeding within the Forest, it seems 
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more likely that these populations move into or are blown into the Forest (Fig 1.3A).  

This is supported by the appearance of Ae. vexans at the Farm site early in June (Fig 

1.4A), preceding the appearance of Ae. vexans in the Forest (Fig. 1.3A).  It may also be 

hypothesized that if Ae. vexans breed within the Forest, the development of larvae may 

have been delayed by cool temperatures of the water flooding the Forest floor. 

Aedes vexans has shown, at least in the RRV, they will inhabit any of our local 

landscapes (urban, forested, agricultural). Moreover, they will likely be the dominant 

species of mosquito in the region. Aedes vexans has been shown to be an unlikely 

vector to such viruses as West Nile virus as it seems the mosquito is refractory to initial 

infection, but if virus is somehow permitted across the midgut epithelial cells of the 

mosquito (loss of midgut integrity, Vaughan et al. 2012), the infection of the mosquito 

can occur and virus may be transmitted. Even if the percentage of mosquitoes that may 

have compromised midguts is low, the sheer number of Ae. vexans provides more than 

an abundance of new potential, initially refractory vectors. 

 Both Ae. triseriatus and Coq. pertubans displayed a single generation per year 

with host-seeking females appearing rather late in the season (Fig. 1.3B).  Aedes 

triseriatus is a tree-hole breeder and the Forest habitat provides many tree-holes in 

which gravid females can oviposit.  The eggs, are the overwintering stage and are 

typically deposited along the bottom and sides of these tree-holes.  Eggs hatch only 

after they become submerged.  While the ground within the Forest is often damp or 

flooded, tree-holes often remain dry until summer rains fill them.  The delayed 

emergence of Ae. triseriatus within the Forest is likely due to the time it takes for the 

tree-holes to fill above the level at which the eggs are deposited.  As spring continues, 
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rainfall rates tend to increase (USGS NPWRC), filling these tree-holes, and allowing 

for development of larvae.    

The reasons underlying the late-season emergence of a single generation of 

Coquillettidia perturbans are quite different (Fig 1.3B).  Coquillettidia perturbans is 

unique in that the larvae have specialized siphons which are used to pierce aquatic 

plants such as Cattails (Typha angustifolia), and larval respiration occurs through the 

plant and larvae do not have to surface for oxygen (Bosak and Crans 2002).  This 

species overwinters as larvae in association with the roots and mud below the frost 

level of the vegetation inhabited bodies of water (Rademacher 1979).  Because of the 

extremely low temperatures in the RRV during the winter months (often below -17°C), 

frost can penetrate 1.37 meters (USGS NPWRC).  Even with snow pools of water 

originating early (March/April), it may take many weeks for substrate below these 

pools to thaw.  Once the substrate has thawed, overwintering Co. perturbans larvae 

resume development.  The slow thaw of the substrate below the flooded surface of the 

Forest can explain the emergence of Co. perturbans at the beginning of July. 

 General mosquito population trends at the Farm site show multiple peaks 

throughout the summer.  The Farm population of host-seeking Ae. vexans peaks a full 3 

weeks earlier (3
rd

 week in June) than the Forest population.  Approximately 75% of the 

mosquitoes collected from the Farm were Ae. vexans (Table 1.1).  Ditches and cropland 

that are routinely flooded during the spring provide regions that produce massive 

numbers of Ae. vexans.  The second peak of Ae. vexans during the first week of July is 

likely a combination of parous females and a new cohort of host-seeking females as Ae. 

vexans is a multivoltine species.  Even though Ae. vexans is common at both Forest and 
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Farm sites, the seasonal dynamics at the Farm is uniquely different from that within the 

Forest.   

 The second most abundant species at the Farm was Culex tarsalis which is  the 

local West Nile virus within the RRV (Bell et al. 2005).  Mated, adult females are the 

overwintering stage of Cx. tarsalis.  These females break diapause (time of reduced 

physiological activity to retain viability through winter) as photoperiod and temperature 

increase, likely through the associated increase of juvenile hormone and reduction of 

fat bodies (Bennington et al. 1958, Mitchell 1981), and begin searching for a blood 

meal.  The first peak of Cx. tarsalis occurs during the first week of July.  This cohort of 

mosquitoes has potential to be of mixed ages, young from overwintering females who 

find blood meals early after breaking diapause, and females who are late to break 

diapause (Reisen et al. 2003).  It is probable that that second peak of Cx. tarsalis, 1
st
 

week of August, represent brood from mosquitoes that successfully engorged during 

the first peak. It is possible that some of the Cx. tarsalis in the second peak were from 

the initial peak, but unlikely that these mosquitoes would survive for an entire year.  

Because Cx. tarsalis is multivoltine (Buth et al. 1990), it is plausible that the host-

seeking females in the second peak will feed and give rise to females that have 

increased fat body production, decreased tendency for blood feeding, and reduced 

gonoactivity due to decrease in temperature and photoperiod, in preparation for 

diapause (Harwood and Takata 1965, Mitchell 1981). 

 Blood feeding patterns of female Culex tarsalis have shown that this species 

feed primarily on birds (Mehus and Vaughan 2013) and to lesser extent mammals. This 

species also tends to reside in non-forested, agricultural or urban regions of the RRV.  
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Because of these reasons, Cx. tarsalis has the opportunity to transmit many zoonotic 

diseases.  Within the region, Cx. tarsalis is the most competent vector for zoonotic 

viruses and Plasmodium. 

 It would seem that the Culex populations, both Cx. tarsalis and Cx. pipiens, in 

North Dakota would all be nulliparous at spring emergence, yet WNV is common 

within the state.  There are many theories as to what can spur the viral transmission 

cycle in northern regions such as vertical viral transmission (Blackmore and Winn 

1956, Bailey 1978, Goddard 2003, Reisen 2006), immigration of birds containing 

active virus (Rappole et al. 2000, Peterson et al. 2003, Dusek et al 2009) and 

overwintering of virus in vertebrate hosts (Owen et al. 2012, Nemeth et al. 2009, Miller 

et al. 2003, Steinman et al. 2006). Other viruses that can potentially be transmitted via 

infectious bite of Cx. tarsalis include: Rift Valley Fever virus, Western Equine 

Encephalitis virus, and St. Louis Encephalitis virus (Turell et al. 2010, Hammon et al. 

1941, Hammon and Reeves 1943, Hammon and Reeves 1943). 

 Culex tarsalis has also been implicated in the transmission of haemosporidian 

parasites such as avian Plasmodium (Christensen et al. 1983, Work et al. 1990). Avian 

Plasmodium has been confirmed within the RRV and it is believed that there is active 

transmission of this parasite in the RRV (Mehus and Vaughan Unpub).  House 

sparrows (Passer domesticus) have been found to be infected with avian Plasmodium in 

the RRV.  These birds are year round residents, often found at bird feeders throughout 

the winter months.  For these birds to become infected, they need to be bitten by a 

mosquito with sporozoites within the salivary glands.  Christenson 1983 has shown that 

both Cx. pipiens and Cx. tarsalis are capable vectors for avian Plasmodium. Given our 
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large numbers of Cx. tarsalis it seems probable that the likely vector species of avian 

Plasmodium is Cx. tarsalis.   

 Culiseta inornata, representing a mere 2% of the total mosquito population, was 

the third most abundant population at the Farm.  This species showed a bimodal peak 

during the summers of 2010 and 2011 (Fig 1.4B).  It appears that Cs. inornata develops 

a peak in abundance in May before collections began.  Although the population 

numbers are low, they are consistent throughout the summer until the first week in 

August when the second peak occurs.   

 Culiseta inornata overwinters as mated females (Siverly 1972) as does Cx. 

tarsalis, yet female Cs. inornata appear to break diapause over a month earlier than 

female Cx. tarsalis.  This phenomenon has also been noted within the neighboring state 

of Minnesota (Barr 1958).  There may be many hypotheses why Cs. inornata break 

diapause before Cx. tarsalis such as quicker metabolism of plant fluid reserves (food 

supply for winter) throughout overwintering or an increase in sensitivity to 

photoperiod.   

Culiseta inornata within the RRV feed primarily on WTD as well as cows and 

to a lesser extent smaller mammals such as house cats (Mehus and Vaughan 2013).  

Avian and human blood meals were observed in Manitoba, but were in very small 

percentages.  Even though WNV is common in North Dakota, it is unlikely that even 

though Cs. inornata may transmit WNV, its feeding patterns (mainly mammalian) 

would only constitute it as a minor or low risk mosquito (Goddard et al. 2002).  

 Aedes dorsalis is the fourth most populous species from the Farm site.  This 

mosquito species showed an early peak in population before sampling began in late 
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May (Fig 1.4B).  By the time sampling had begun, the population gradually decreased 

until the end of June.  During the first week of July, there occurred a population spike.  

There was one smaller peak of questing females during the beginning of August but is 

more than likely females looking for a second blood meal as the eggs from the previous 

group are more than likely set up for diapause as the egg is the overwintering stage.  

Eggs of Ae. dorsalis are usually deposited in most soils in depressions in ditches, fields 

and roads which frequently collect water in the spring and summer. 

 It was believed that as these pools fill with water they are rich in oxygen and as 

the oxygen levels are depleted via increased bacterial growth, they stimulate the 

hatching of the larvae from the egg (Gjullin et al. 1941).  Further studies have shown 

that it may not necessarily due to low levels of oxygen associated with the hatching of 

eggs, but the bacteria themselves, compounds released from the bacteria, or from the 

plant material associated with the pool of water (Punnusamy et al. 2011).  Whichever 

the case, it is easy to believe egg hatch is early for our Aedes mosquitoes due to the 

high levels of organic matter within our rich soils which is naturally degraded via 

aerobic bacteria.   

Females Ae. dorsalis have been shown to feed on WTD in the region, and will 

bite during the day or the night.  If mammals are not available for feeding upon, these 

mosquitoes will also feed on birds.  Because these mosquitoes will also feed upon man, 

there is the potential for disease transmission to humans from animals.  These 

mosquitoes have been known to transmit zoonotic viruses such as LaCrosse (California 

Encephalitis) (Turell et al. 1982) as well as Western Equine Encephalitis (Fulhorst et al. 

1994, Kramer et al. 1998).   
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These two study sites offered distinctive species composition.  The Forest site 

provided species that are typically found in heavily wooded areas such as Ae. 

excrucians, Ae. triseriatus, Ae. hendersoni, and Co. perturbans.  These species are 

common vectors of various enzootic diseases such as heartworm (Ae. excrucians), 

Eastern Equine Encephalitis (Co. perturbans) (Turell 2005), and La Crosse virus (Ae. 

triseriatus) (Grimstad et al. 1977).  Given the introduction to the area, these riparian 

areas offer great habitats for the transmission of multiple enzootic diseases. 

The Farm site provided many species of mosquitoes, with composition and 

abundance differing from that at the Forest site.  The most abundant species at the Farm 

was Ae. vexans, which is one of the most widely distributed mosquitoes in the world.  

The second most abundant mosquito species is Cx. tarsalis, a mosquito with great 

vector competency for multiple pathogens ranging from WNV to avian Plasmodium.  

Records from the CDC have shown that human cases of WNV occur within the region, 

and avian Plasmodium has been detected in blood meals of Cx. tarsalis, showing 

probable transmission in the RRV. 
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Figure 1.1.  Location of Farm and Forest sites.  Farm location is 1.60km west of Hatton, ND, USA. The Forest site is located 

8.05km west and 0.80km south of Hatton, ND, USA. 
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Figure 1.2.  Host-seeking activity (MMX counts) and collection of engorged mosquitoes from June-August 2001. Host-seeking 

activity of the primary species (Ae. excrucians, Forest and Ae. vexans, Farm) precedes the collection of engorged mosquitoes by 

approximately one week for both species.  A) Ae. excrucians from Forest site.  B) Ae. vexans from the Farm site.     
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Figure 1.3.  Population trends in host-seeking mosquitoes within the Forest site during 2009 and 2011.  A) Dominant two 

mosquito species Ae. vexans and Ae. excrucians.  B) Secondary species Ae. triseriatus and Co. perturbans.  
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Figure 1.4.  Population trends in host-seeking mosquitoes at the Farm during 2010 and 2011.  A) Dominant two mosquito species 

Ae. vexans and Cx. tarsalis.  B) Secondary mosquito species Ae. dorsalis and Cs. inornata.  
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Table 1.1. List of mosquito species found within two rural sites in Steele Co., ND from 2009-2011. 

Numbers in parentheses following totals is the percentage of the total mosquitoes from each site.  Grand total includes counts from both sites. 

  
Forest Site 

  
Agriculture Site 

 

  

MMX Traps Aspirator 

 

MMX Traps Aspirator 

  Mosquito Species 2009 2011 2011 Totals 2010 2011 2011 Totals Grand Total 

Ae. aurifer 68 4 1        73 (<1) 0 3 0         3 (<1)      76 (<1) 

Ae. canadensis 36 18 1        55 (<1) 668 296 11   975 (1) 1030 (1) 

Ae. dorsalis 23 28 4       55 (<1) 1140 323 7 1470 (2) 1525 (1) 

Ae. excrucians 16100 3199 3709 23008 (55) 76 29 42   147 (<1) 23155 (19) 

Ae. flavescens 89 39 10     138 (<1) 706 61 17  784 (1)   922 (1) 

Ae. hendersoni 9 21 0       30 (<1) 0 0 0      0 (0)      30 (<1) 

Ae. nigromaculis 0 0 0       0 (0) 1 0 0        1 (<1)       1 (<1) 

Ae. triseriatus 3424 490 0 3914 (9) 721 46 49   816 (1) 4730 (4) 

Ae. trivatattus 79 0 22    101 (<1) 0 0 0       0 (0)     101 (<1) 

Ae. vexans 3419 3787 1095   8301 (20) 53481 8304 644 62429 (75) 70730 (57) 

An. earlei 0 0 0      0 (0) 0 2 0         2 (<1)       2 (<1) 

An. punctipennis 6 8 0      14 (<1) 14 1 0       15 (<1)     29 (<1) 

An. quadrimaculatus 34 7 0      41 (<1) 13 3 0       16 (<1)     57 (<1) 

An. walkeri 3 0 0         3 (<1) 0 0 0       0 (0)      3 (<1) 

Co. perturbans 2537 1065 4 3606 (9) 172 328 6  506 (1)          4112 (3) 

Cs. inornata 1985 119 15 2119 (5) 1901 29 2 1932 (2)          4051 (3) 

Cs. minnesotae 3 0 0        3 (<1) 0 0 0      0 (0)      3 (<1) 

Cx. pipiens 0 17 34      51 (<1) 0 8 32      40 (<1)    91 (<1) 

Cx. tarsalis 161 74 3  238 (1) 13548 256 0 13804 (17)        14042 (11) 

Cx. territans 1 0 4       5 (<1) 0 0 0      0 (0)      5 (<1) 

Tot. Mos. 27977 8876 4902 41755 72441 9689 810 82940 124695 

Tot. Trap Events 105 22 11 

 

117 21 11   

Avg Mos./Trap Night 266 403 446 
 

619 461 74   

2
9
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Table 1.2. Relative abundance of adult mosquitoes collected concurrently at two 

different habitats throughout the summer 2011, Steele County, ND.  Values indicate the 

number of mosquitoes collected per sampling interval (number of trap-nights [MMX 

traps] or trapping sessions [aspiration]). 

 

 Farm Site Forest Site 

Host-seeking population (collected via MMX traps at night) 461 (21) 403 (22) 

Resting population (collected via vacuum aspiration of 

vegetation during the day) 

74 (11) 446 (11) 
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CHAPTER II 

 

DETERMININATION OF METEOROLOGICAL VARIABLES THAT PLAY 
PREDICTIVE ROLES ON ADULT MOSQUITO ACITIVITY IN THE RED 

RIVER VALLEY OF NORTH DAKOTA 
 

Abstract 
 

 The development of pathogen risk-assesment trends includes multiple factors 

including vector competence, presence of the vector arthropod, feeding preference of 

the arthropod as well as the behavior of the vector.  This study provides information 

about the host-seeking activity of multiple mosquito species from two rural sites 

located in Steele Co., North Dakota based on meteorological data.  One of these study 

sites is a densely forested habitat, the other a large agricultural farm habitat surrounded 

by cropland.  Aedes excrucians, Ae. vexans, Ae. triseriatus and Coquillettidia 

perturbans were identified as the most abundant species, while Ae. vexans, Culex 

tarsalis, Ae. dorsalis and Culiseta inornata were the most abundant at the Farm site.  

Mosquito trap counts from the city of Grand Forks, ND, USA were also collected and 

analyzed for the years 2002-2010. 

 Regression modeling was used to identify concurrent weather variables and 

daily trap counts for each of the predominant species for both sites.  Photoperiod was 

significantly associated with trap counts of Ae. excrucians (p=0.0013).  Ae. vexans from 

the Forest was positively associated with insect degree days (p<0.0001), minimum 

temperature (p=0.0002), and photoperiod (p=0.0005) but negatively associated with 
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bare soil temperature (p=0.0132), maximum humidity (p=0.0321) and wind speed 

(p=0.0036).  The population of Ae. vexans from the Farm site showed associations to 

similar meteorological variables as did the Forest population.  The local West Nile 

virus vector, Cx. tarsalis, displayed positive associations with turf soil temperature 

(p<0.0001), average humidity (p<0.0001) and maximum temperature (p=0.0009), while 

negatively associated with rainfall (p=0.0003) and dew point (p=0.0017).  Because 

mosquito counts for Grand Forks were not identified to species, total counts were used 

in regression modeling and both average temperature (p=0.0324) and minimum 

temperature (p=0.0033) were positively associated with trap counts. 

 Meteorological variables were used demonstrated time-lagged affects ranging 

from 1-30 days prior to mosquito trap counts by using cross-correlation map analyses.  

Ae. excrucians was negatively correlated with precipitation and minimum temperature 

at day 29 prior to trap date while negatively associated with relative and average 

humidity 2-4 weeks prior to trap date.  Ae. vexans from the Forest site were highly 

correlated with multiple meteorological variables including precipitation, minimum 

temperature, relative humidity, maximum humidity and dew point thoughtout the 30 

days prior to trap date.  Ae. vexans from the Farm was correlated to the same variables, 

but at reduced significance of correlation.  Cx. tarsalis was negatively correlated to 

rainfall 2-3 days prior to trap date as well as negatively correlated to wind speed 

throughout the 30 day period.  Cx. tarsalis also showed strong correlations between 

trap counts and turf soil temperature (day 6), maximum humidity (days 4-30) and 

relative humidity (days 1-30).   
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  Because Grand Forks mosquito counts were inclusive of all species, CCMs 

were analyzed by month.  The meteorological variables influencing trap counts varied 

by month.  In addition, total mosquito counts were analyzed for both Farm and Forest 

sites.  These total count CCMs were compared to individual CCMs for mosquito 

species.  These total CCMs displayed blended results of the predominant species from 

each site.  Grand Forks mosquito count CCMs were compared then to correlations to 

mosquito species CCMs resulting in the confirmation of hypothesized mosquito 

population trends within the city. 

Introduction 

 

In 2002, West Nile virus was first detected in North Dakota (www.cdc.gov).  

From 2002-2011, North Dakota has been within the top five states in the USA for 

human cases of WNV (per capita) eight times within the ten year span (Table 2.1).  

Within the USA, the major vectors of this virus belong to the genus Culex (Turell et al. 

2005).  It has been reported that there are 5 species within the Culex genus inhabiting 

North Dakota: Cx. pipiens, Cx. restuans, Cx. salinarius, Cx. tarsalis, and Cx. territans 

(Darsie and Anderson 1985). In addition, West Nile virus has also been detected within 

non-vector mosquito species in the generas Aedes, Anopheles, Coquillettidia, and 

Culiseta, all genera of which are found within North Dakota. 

 While numbers of mosquitoes are generally “high” during the summer, there are 

fluctuations in the populations of mosquitoes throughout the mosquito season in North 

Dakota (late May through August) (Mehus unpubl. data) (Fig 2.1).  Climatic variables 

(degree-day cooling, air temperature, precipitation) have previously been analyzed in 

time series studies in attempts to unravel the complex patterns of Cx. pipiens and Cx. 

http://www.cdc.gov/


34 

 

restuans abundance (Trawinski and Mackay 2008 [New York, NY], Wang et al. 2011 

[Ontario, Canada]), and Chuang et al. (2012) has recently shown positive associations 

between precipitation events several weeks prior to increased numbers of Cx. 

pipiens/restuans in Michigan.  

 Recently, cross-correlation maps have been utilized to visually display how 

time lagged meteorological variables are associated with mosquito abundance (Curriero 

et al. 2005, Shone et al. 2006, Chuang et al. 2012, Lebl et al. 2013), and using 

variations of their methods, we investigated the mosquito population dynamics of 

multiple local mosquito species including Aedes dorsalis, Ae. excrucians, Ae. 

triseriatus, Ae. vexans, Co.  perturbans, Cs. inornata, and Cx. tarsalis.  We also 

investigated impacts of meteorological variables on day-to-day mosquito 

abundance/activity using regression based models, as well as long term weather 

variables influence on mosquito abundance using cross-correlation techniques which 

analyzes larval development and to a lesser extent adult mostquito responses. By 

understanding the effects weather has on mosquito populations, we can better 

understand strategies for viral and pathogen risk assessment throughout the summer as 

well as inform local mosquito control groups. 

Materials and Methods 

Study Sites.  Three different study sites were utilized for this study. Mosquitoes 

were collected from two unique, rural sites within the RRV in Steele County, North 

Dakota.  Two sites were located west of Hatton, ND in Steele County (47°38’20”N, 

97°27’28”W), a small rural community (pop. ~ 700) located within Traill County.  The 

first site, located 8.45 km southwest of Hatton, ND, was a hardwood forest with a semi-
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closed canopy and thick underbrush.  Green Ash (Fraxinus pennsylvanica), Boxelder 

(Acer negundo), Oak (Quercus mongolica) and American Elm (Ulmus Americana) 

were the predominant tree species found within the forest.  Mosquitoes were collected 

from this site during the summers of 2008 and 2010   

The second site, an agricultural ecosystem (from here on out referred to as the 

farm), was located 1.61 km west of Hatton, ND, and is surrounded by cropland and 

shelterbelts.  A small grove of trees partitioned the farm from the surrounding fields.  

This type of landscape is more typical of North Dakota.  A small coulee collects 

overland floodwater from surrounding fields and borders the farm along the north and 

eastern limits. This coulee retains water throughout the summer months.  No livestock 

is raised on the farm.  Mosquito control is absent at both the forest and farm sites.  

Mosquitoes were collected from the farm site during the summers of 2009 and 2010. 

The third site from which mosquito data were collected was the city of Grand 

Forks, North Dakota (47°55’31” N, 97°1’57”W).  Grand Forks (pop. ~ 52,838, 

area=52.03km
2
) (U.S. Census Bureau, 2010) is located in Grand Forks county along the 

eastern edge of North Dakota and lies adjacent to the Red River. Mosquito control is 

used in the city and includes larviciding and ground/aerial spraying at the discretion of 

the Grand Forks Public Health Department (GFPHD).  

Mosquito Collection.  Mosquitoes from Steele County were collected using 

battery operated CO2-baited Mosquito Magnet X traps (MMX) (Woodstream Lititz, 

PA) from late May through mid-August of 2009, 2010, and 2011.  Traps were placed 

throughout both sites 2-3 times per week and operated from 1800 to 0800 hr.  

Mosquitoes were transported to the laboratory and placed in -20°C freezers to 
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immobilize mosquitoes. Mosquitoes were transferred into enamel pans and 

subsequently to plastic baggies for long term storage in -80°C freezers.  Using 

dissecting scopes and dichotomous keys, mosquitoes were identified to species (Darsie 

Jr. and Ward 2005). 

Mosquitoes from Grand Forks city were collected using CDC New Jersey light 

traps (NJLTs) throughout the city limits. Average daily mosquito counts for 2002-2010 

produced 24,785 mosquitoes and a total of ~7,360 trap nights. Trap count averages 

were used to account for addition of new traps throughout the 9 year study period.  

Trap counts were obtained through the Grand Forks Public Health Department 

(GFPHD), Grand Forks Mosquito Control website (www.gfmosquito.com).   Individual 

mosquito species were not identified by GFPHD, thus counts include female 

mosquitoes of multiple species. 

Weather Variables.  Values for meteorological variables were taken from the 

North Dakota Agricultural Weather Network Center (NDAWN 

Center)(http://ndawn.ndsu.nodak.edu/). NDAWN Center has many weather stations 

that record both hourly and daily meteorological measurements throughout North 

Dakota and western Minnesota.  These records were complete with no missing dates or 

measurements. Fifteen meteorological variables were initially investigated, including: 

precipitation (rain), maximum daily temperature (mxtemp), minimum daily temperature 

(mntemp), average daily temperature (avgtemp), bare soil temperature (bstemp), turf 

soil temperature (tstemp), wind speed (wind), dewpoint (dew), wind chill (windc), 

relative humidity (relhum), average daily humidity (ahum), maximum daily humidity 
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(mxhum), minimum daily  humidity (mnhum), insect degree-days (IDD40) and 

photoperiod (hours of daylight) (photo).  

The weather station nearest the Steele county sites is located near Mayville, 

North Dakota (47º29’59”N, 97 º19’32”W) at 290m elevation.  The Mayville weather 

station is located 24.14km and 32.19km from farm and forest sites, respectively.  The 

Grand Forks weather station located in Grand Forks, ND (47 º50’28”N, 97 º4’16”W) at 

an elevation of 257m.  Individual trap locations were not disclosed to us, but the 

weather station location is approximately 6.44km south of the city limits. 

Statistical Analyses.  General linear models were produced to determine the 

influence of daily weather variables on concurrent mosquito counts. Weather variables 

were analyzed for correlation and variables that displayed over 90% correlation to each 

other were then compared to mosquito counts.  Of the correlated variables, the variable 

with the highest correlation value to mosquito count were used in regression models.  

Regressions were estimated for specific mosquito species from the farm and forest sites 

only.  Martin et al. (2005) described the use of zero-inflated models, and their criteria 

were used to determine if zero-inflated models should be used based on the presence of 

either high numbers of true zero counts (low frequency of organism occurrence/no 

organisms present) or false zero counts (organism at site but not during 

trapping/organism failed to identify).  Full models were reduced stepwise until the best 

AIC score was reached. Regression-based models were produced using the R software 

(“pscl” package) and models confirmed with SAS software (SAS Institute Inc., Cary, 

NC, USA).   
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Farm, forest and Grand Forks mosquito data sets were analyzed to determine 

associations between adult mosquito abundance and any preceding meteorological 

conditions that might have contributed to that abundance (e.g., meteorological factors 

affecting larval development and survival, etc.).  Using the methods described recently 

by Chuang et al. (2012), individual cross correlation models (CCMs) were developed 

for each site and for each meteorological variable throughout the summer months. The 

CCMs produced in this study display the degree of correlation that existed between a 

particular trap count on a particular day  (abundance) and the daily weather conditions 

(e.g., humid or dry, windy versus calm, etc.) over a time interval varying from 1-30 

days.  Correlations were computed for each of 15 meteorological variables that 

occurred each day, up to 30 days, prior to the trap day. Using CCMs allows for 

graphical representation of association values. Cross-correlation maps were produced 

using the R software (R Development Core Team 2007) in association with “mass” 

package. 

Results 

 From the forest site (years 2009 and 2011), 18 species of mosquitoes were 

identified (n=9,321; 131 trap nights). The predominant species were Ae. excrucians 

(n=4,241; 46% ), Ae. vexans (n=2,527; 27%), Ae. triseriatus (n=887; 10%) and Co. 

perturbans (n=984; 11%).  Average numbers of mosquitoes per trap night were as 

follows: 32.37 Ae. excrucians , 19.29 Ae. vexans , 6.77 Ae. triseriatus and 7.51 Co. 

perturbans .  

From the farm site (years 2010-2011), 15 species of mosquitoes were identified 

(n=24,799, 134 trap nights).  The predominant species were Ae. vexans (n=19,389; 
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78%), Cx. tarsalis (n=3,451; 14%), Cs. inornata (n=505; 2%) and Ae. dorsalis (n=494; 

2%).  Average numbers of mosquitoes per trap night were as follows: 144.69 Ae. 

vexans , 25.75 Cx. tarsalis , 3.77 Cs. inornata and 3.67 Ae. dorsalis .   

From the NJLT in Grand Forks, (years 2002-2010), 24,785 mosquitoes were 

trapped (7,360 traps nights). The average trap count for the entire period was 3.37 

mosquitoes. 

 General mosquito abundance trends are unique to forest, farm, and Grand Forks 

sites. Within the forest (Fig 2.1A), we noted an initial increase in mosquito abundance 

starting early June. Around mid-June mosquito numbers peak and remain at elevated 

levels until the end of July.  During August, mosquito numbers gradually decline to 

zero. 

 Farm mosquito abundance rises more quickly and peak approximately one week 

earlier than the forest population (Fig 2.1B). This population shows an initial peak (3
rd

 

week of June), then the population drops until second and third peaks are achieved the 

first weeks of July and August, respectively. Even with the second and third peaks, 

there is a general decline in mosquito numbers after the initial peak in early summer. 

 The Grand Forks population of mosquitoes is unique compared to the other 

sites.  While the initial peak is similar in timing (end of June) (Fig 2.1C) to forest and 

farm sites, numbers tend to decline through August. If the temperatures continue to 

remain warm into September, a second peak is noted in the first half of the month.  

 To determine how various species within Steele County fluctuated throughout 

the summer, mosquitoes were identified, counted and the four species with the most 

abundant numbers were plotted. Figure 2.2 depicts the primary and secondary species 
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identified from the forest site and Figure 2.3 shows fluctuations of primary and 

secondary species at the farm site. Mosquito count data were used in generalized linear 

models (GLMs) to determine which meteorological variables were statistically 

associated with day-to-day trap counts.  Individual species counts that contained many 

zeros were considered zero-inflated, and were run as either zero-inflated Poisson (ZIP) 

or zero-inflated negative binomial (ZINB) mixture models dependent upon calculation 

of overdispersion.  

Concurrent Weather Conditions and Daily Trap Count Variability 

Forest Mosquitoes 

 Generalized linear regressions were used to indicate which weather variables 

prevailing at the time of mosquito trapping significantly influenced the outcome of 

trapping (i.e., daily trap counts). Model summaries and statistical values for Forest 

mosquito species are presented in Appendix A. The only meteorological variable 

significantly correlated to Ae. excrucians trap counts was photoperiod (Photo;  

p=0.0013) (Table 2.2). Daily trap counts of Aedes vexans, the second most populous 

species, were significantly correlated to bare soil temperature (bstemp;p=0.0133), 

insect degree-days (IDD40; p<0.0001), minimum daily temperature (mntemp, 

p=0.0002); maximum daily humidity(mxhum;  p=0.0321), photoperiod (photo, 

p=0.0005), and wind (p=0.0036).  

 Similarly, Aedes triseriatus daily counts were related to bare soil temperature 

(bstemp p=0.0002), insect degree-days (IDD40; p<0.0001), photoperiod (photo; 

p<0.0001), and (relhum p=0.0114).   



41 

 

 In contrast, trap counts for Co. perturbans were negatively associated with bare 

soil temperature (bstemp; p<0.0001), ), insect degree-days (IDD40; p<0.0001), rain 

(p=0.0047), relative humidity (relhum; p=0.0055); wind (p<0.0001), and positively 

associated with turf soil temperature (tstemp; p<0.0001); and average daily humidity 

(avghum; p=0.0144) 

Farm Mosquitoes 

 Complete model summaries and statistical values for Farm mosquitoes can be 

found in Appendix B . Daily trap counts for Ae. vexans at the farm site were negatively 

influenced by bare soil temperature (bstemp p<0.001) (Table 2.3.), minimum daily 

humidity (mnhum; p<0.0001), rain ( p=0.0186), relative humidity (relhum p=0.0027). 

Conversely, daily trap counts for Ae. vexans was positively influenced by insect degree-

days (IDD40; p<0.0001), minimum daily temperature (mntemp; p<0.0001), maximum 

daily humidity (mxhum; p<0.0001), and photoperiod (photo; p<0.0001). 

 Daily trap counts for Cx. tarsalis at the farm were negatively influenced by both 

rain (p=0.0003) and dewpoint (p=0.0017).  Conversely, daily trap counts for Cx. 

tarsalis were positively influenced by turf soil temperature (tstemp;  p<0.0001), 

average daily humidity (ahum; p<0.0001), and maximum daily temperature (mxtemp; 

p=0.0010). 

 Daily trap counts for Ae. dorsalis were negatively influenced by bare-soil 

temperature (bstemp; p<0.0001) and average daily humidity (ahum; p=0.0007). 

Although not highly significant, rain (p=0.0786) also seems to be playing a negative 

role and removal of this variable increased the AIC score. Daily trap counts for Ae. 

dorsalis were positively influenced by minimum daily temperature (mntemp; 
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p=0.0022) and insect degree-days40 (IDD40; p=0.0035).  Maximum temperature 

(mxtemp) (NB; s.e.=0.0462; n.d.=72.16; z=1.87; AIC=270.58; p=0.0611) positively 

influenced trap counts, but not significantly. 

 Daily trap counts of Cs. inornata trap counts were not positively influence by 

any meteorological variable, but were negatively influenced by insect degree-day 40 

(IDD40 p=0.0055), photoperiod (p=0.0005) and rain (p=0.0243). 

Grand Forks Mosquitoes 

 Using regression analysis, it was found that daily trap counts for the Grand 

Forks mosquitoes were positively affected by two different temperature variables: 

average temperature (Avgtemp;p=0.0324) (Table 2.4) and minimum temperature 

(mntemp; p=0.0033) (Appendix C) 

Time-lagged Mosquito Count Variability 

Forest Mosquitoes 

 To determine which meteorological variables could be used to forecast the 

abundance of mosquitoes, CCMs were developed for the four most abundant mosquito 

species. Aedes excrucians, by far the most abundant mosquito species, was positively 

correlated with photoperiod for  days 10-12 prior to trap date (Table 2.5). Interestingly, 

factors usually associated with increased mosquito numbers such as rain, mntemp, 

avghum, relhum, and IDD40 all influenced counts in a negative manner.  Wind speed 

showed a slightly positive influence on Ae. excrucians counts, but only for a short 

period approximately 2 weeks prior to trapping. Cross-corellation maps for Ae. 

excrucians can be found in Appendix D. 
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 Aedes vexans showed almost the opposite response to meteorological variables 

than Ae. excrucians. In fact, rain, mntemp, relhum, avghum, IDD40 and photo all 

showed highly positive influences on Ae. vexans trap count numbers (>0.6350).  CCMs 

for Ae. vexans are reported in Appendix E. (Table 2.5) 

 The tree-hole breeder, Ae. triseriatus, showed similar responses to 

meteorological variables as Ae. vexans. Rain, mntemp, relhum, IDD40 and photo all 

influenced trap counts in a positive manner. Relhum, also showed a period of negative 

influence 8 days prior to trap day. The variable wind also had a negative influence 

around 27-30 days before trap day.  (Table 2.5) (Appendix F) 

 Following suit, Co. perturbans was positively correlated with rain, mntemp, 

relhum, avghum, IDD40 and photo. Similarly to Ae. triseriatus, relhum showed a 

period of negative influence on Co. perturbans around but around 28 days in advance 

of trap date. Wind speed showed a negative influence on trap counts for the majority of 

the 30 day period, but with strongest correlation at day 29. Table 2.5, Appendix G.  

Farm Mosquitoes 

 The common species between the farm and forest, also the most abundant at the 

farm, was Ae. vexans. Not surprising, between the two sites, cof this species were 

associated with similar sets of variables.  At the farm site, rain, mntemp, relhum, 

mxhum, and photo all showed positive association with trap counts. These variables 

seemed to influence daily trap count to a lesser degree at the farm versus the forest site 

(Appendix H and E).  Wind speed had a negative influence on trap count approximately 

1 and 3 weeks prior to trap day (data not shown). Table 2.6, Appendix H.  
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 The local WNV vector, Cx. tarsalis, was negatively impacted by wind during 

days 16-18 prior to trap date. Rain was also a negative factor a few days before 

trapping, but showed a positive correlation slightly over 3 weeks before catch day. 

Turf-soil temperature, relhum, mxhum, IDD40 and photoperiod all had strong positive 

effects on trap counts. Wind had a strong negative effect on trap counts of Cx. tarsalis. 

Table 2.6, Appendix I. 

 Aedes. dorsalis, had differing outcomes from similar meteorological variables. 

Average temp, relhum, mnhum, IDD40, and photo had negative impacts on mosquito 

trap counts.  Wind was the only factor that played a positive role in mosquito counts for 

the first couple days prior to catches while other meteorological factors showed 

marginal negative correlations or no correlation.  (Table 2.6, Appendix J) 

 Culiseta inornata showed a contrasting affect of weather variables than did Ae. 

vexans and Cx. tarsalis from the farm site, but similar to Ae. dorsalis. Mntemp, 

avghum, rain, wind, and photo all showed differing degrees of negative influence. The 

only variable that showed a strictly positive effect was IDD40.  Few of the variables 

(rain, relhum, avghum, and wind) displayed mixed roles in trap counts having both 

positive and negative influences throughout the preceding 30 day period. (Table 2.6, 

Appendix K) 

Grand Forks Mosquitoes 

 Because the mosquito counts for the Grand Forks data set were not identified to 

species, daily trap counts were analyzed as one set. To try to obtain as much detail 

about the mosquitoes of Grand Forks, the mosquito counts were divided by month to 

determine if there was variability throughout the mosquito season (Table 2.7, 



45 

 

Appendices L-O).  During the month of June, rain (15-30 days), mntemp (1-30 days), 

avghum (10-17days), IDD40 (1 day) and photo (17 days) all had positive influences on 

daily trap counts.  The only variable that showed a negative relationship with count 

data in June was wind (5-13 days).  

 In July, there was a slight shift of meteorological variables that significantly 

influenced trap counts.  Not surprising, the most influential variable was rain (1-30 

days). Minimum temperature again was an important factor, but instead of the entire 30 

day lag, it is most influenced by the first 12 days prior.  Wind speed, previously a 

negative factor, now showed a positive influence from 11-30 days prior. Also reversing 

roles was the once positive role of IDD40, which is now negative in July.  While 

avghum seemed to be the humidity variable most influential on trap counts during June, 

there appears to be a switch to mnhum in July for the preceding 3 week period. 

 In August, many of the variables that had earlier been highly correlated became 

insignificant. For instance, the variable rain, that had correlation coefficients of 0.5742 

and 0.5200 for the months of June and July respectively, had a non-significant negative 

correlation coefficient of -0.1248.  Rain also showed a negative impact on August trap 

counts at 3-4 weeks lag time. All three measurements of humidity (avghum, mxhum, 

and mnhum), were negatively correlated to mosquito counts during August.  Both 

IDD40 and photo had previously been significant factors for trap counts, but now 

display absolute correlation values < 0.1. 

 Although August showed general declines in meteorological influence on trap 

counts, September showed a general return to previous climate based influence.  Rain 

again showed a highly positive influence on mosquito counts.  Minimum temperature, 



46 

 

mxhum and photo also showed positive associations with September trap counts.  

Insect degree-day 40 (IDD40) on the preceding days have negative correlation values. 

Discussion 

 In this study, multiple meteorological variables were analyzed to determine if 

they influenced mosquito trap counts and thus abundance of host-seeking mosquitoes.  

To determine the role on adult female mosquitoes, regression models were used to 

evaluate how meteorological variables affected daily activity of questing females. 

While this information is unique and overall interesting, it does not help much in the 

long term forecasting of mosquito abundance, or allow for a timely focus for mosquito 

control or risk assessment.  To aid in identification of informative forecasting variables, 

CCMs were utilized to analyze a 30-day pre-trap date time lag. 

 Rain has often been associated with mosquito abundance because of the aquatic 

nature of the larvae.  Previous studies have implied that rainfall may have either 

positive effects on mosquito counts by providing breeding places, but may also cause 

flooding, thereby washing away mosquito larvae and reducing trap counts (Gubler et al. 

2001, Woodruff et al. 2002, Kelly-Hope et al. 2004, Gardner et al. 2012).  Reduced 

mosquito activity may also be affected by rain as a hindrance to flight; although usually 

not lethal to mosquitos given the mosquito is not in close proximity to the ground or a 

hard structure in which the mosquito may collide (Dickerson et al. 2012).  

 Humidity is important to mosquito survival in many aspects.  For instance, high 

humidity may be an indication that breeding sites are losing water due to evaporation 

(Wu et al. 2007).  It does not appear that relative humidity (rh) has an impact on actual 

flight (Rowley and Graham 1968) of mosquitoes, but it has been shown that mosquitoes 
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avoid flight during times of humidity extremes (Muirhead-Thomson 1938, Murty et al. 

2010), possibly to maintain water equilibrium within the mosquito body. 

 While dew point has been reviewed in association with WNV transmission rates 

(DeGroote et al. 2008, Soverow et al. 2009) dew point has not been actively reviewed 

in association with mosquito counts in terms of direct relationship to trap counts.  It can 

be assumed though, that if there have been associations between WNV transmission 

and dew point, there is an association between dew point and mosquitoes, especially 

those involved with WNV transmission. 

 Wind and wind speed have been implicated in the spread of CO2 and heat, two 

of the major attractants that mosquitoes use for host location (Carde et al. 2008), and 

mosquitoes can maneuver both horizontally and vertically to locate upwind hosts on 

which to feed upon (Spitzen et al. 2012).  Decreased wind speed may prevent proper 

CO2 dispersal and limit the mosquito’s ability to locate available hosts.  Previous 

studies have also indicated that different mosquito species have unique abilities to fly 

within differing speeds of wind (Gjullin et al. 1961, Haufe 1966, Grimstad and 

DeFoliart 1974).  

 Degree-days and temperature have widely been established as factors that can 

initiate and play positive or negative roles in insect development and activity.  For 

example, Ae. vexans larvae do not develop at temperatures lower than approximately 

5ºC (41ºF), and highest developmental rates occur at 25ºC (77ºF) (Trpis and 

Shemanchuk 1970) and flight activity increases two-fold when temperatures are above 

19ºC (Bidlingmayer 1974).   
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 Photoperiod is often associated with insect degree-days. Photoperiod tends to 

increase and decrease at regular intervals, but this variable plays a crucial role in 

physiological changes in mosquito metabolism that can either induce or break mosquito 

diapause (Barr 1958, Bennington et al. 1958, Harwood and Takata 1965, Mitchell 

1981, Reisen et al. 2003).  Photoperiod is a seasonal factor particularily prior to adult 

emergence. 

Daily Mosquito Counts.  Plotting mosquito trap counts as a measure of adult 

mosquito abundance (i.e., the dependent variable) against the meteorological conditions 

(i.e., independent variables) present at the time on which trapping was conducted may 

not provide very useful or predictive information on which to forecast future adult 

mosquito abundance.  That is because adult mosquito abundance is largely driven by 

the size, survival and developmental rate of the immature population.   However, such 

an analyses can provide useful information on specific meteorological conditions that 

may favor (or inhibit) the flight and/or host-seeking behavior of adult mosquitoes on a 

given night.   My analyses suggest that different mosquito species may respond 

differently to various meteorological conditions.  

Forest Mosquitoes 

 Aedes excrucians is one of the earliest mosquitoes to appear within the forest 

site (Mehus unpub. data), appearing in early June.  The only meteorological variable to 

impact daily trap counts is photoperiod (Appendix A).  This may be due to the life 

history of the larval development of this species.  Aedes excrucians is widely known as 

a snow pool mosquito with larvae starting development as snow starts melting.  As 

larvae hatch while temperatures are low, it would seem that the activity of these 
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mosquitoes is not directly associated with temperature as long as larval habitat is 

present. 

 Aedes vexans daily trap counts show closer relationships with meteorological 

variables.  Both IDD40 and photo period are positively associated with daily trap 

counts, and it is plausible that these factors initiate early development and are 

associated due to an autocorrelation of increased population as these variables generally 

increase during the mosquito season.  Minimum daily temperature is a measurement of 

air temperature, and as minimum daily temperatures increased the capture of host-

seeking Ae. vexans also increased.  Conversely, increasing bare soil temperatures 

actually reduced trap counts.  At both the Forest and Farm sites, mosquitoes were 

trapped with CO2 emitting MMX traps. Because MMX traps do not utilize heat to 

attract mosquitoes, increased bare soil temperatures may actually increase mosquito 

activity and lead them to the vicinity of the trap, but since traps are located 3-4ft above 

the ground surface, mosquitoes may remain close to the ground and not be drawn into 

the trap.   

 Daily trap counts of Ae. triseriatus were highly influenced by both photoperiod 

and IDD40.  Within the forest, Ae. triseriatus, like Ae. vexans, showed a decrease in 

trap counts while bstemp increases.  This may be related to the means of sampling as it 

is hypothesized to be for Ae. vexans.  Relative humidity also plays a significant role in 

reduced trap counts of Ae. triseriatus.  As previously mentioned, this may be an effect 

of reduced flight activity to maintain mosquito hydration. 

 The fourth and final species discussed from the forest site is Cs. inornata.  This 

species is unique in that two humidity measurements seem to be influencing daily trap 
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counts, but in contrasting ways.  Maximum daily humidity increases trap counts while 

minimum daily humidity reduces daily trap counts for Cs. inornata.  It would appear 

that while having higher upper limits of humidity are beneficial to Cs. inornata, 

prolonged or higher levels of mnhum for the day may halt activity, causing avoidance 

of flight.  It seems, from this study, that Cs. inornata prefers the cycling of high mxhum 

and lower mnhum values.  It is plausible that increased mnhum values provide excess 

build up of condensation on vegetation reducing resting locations for adult Cs. inornata 

causing them to travel elsewhere or become trapped or damaged in the excess 

condensation.  Wind was a highly positive significant variable to Cs. inornata.  

Because of the nature of the forest site, Cs. inornata may not be able to detect CO2 

plumes given off by the traps without the aid of wind movement. 

Farm Mosquitoes 

 Ae. vexans in both sites demonstrated significantly reduced daily trap counts in 

association with bstemp (Appendix B).  It would appear that although Ae. vexans 

responded positively to high levels of humidity (mxhum) the population does not prefer 

high levels of mnhum, avoiding flight and capture.  Without the protection of the 

canopy and dense underbrush of the forest, it appears that rain negatively influences 

trap counts, likely due to increased exposure to raindrops.  It is likely that mntemp 

increases activity of Ae. vexans, thus increasing daily trap counts. 

 Culex tarsalis, as previously explained, shows a negative relationship between 

daily counts and rain.  Also, an increase in dew point (likely due to condensation on 

resting surfaces (Harwood and Halfhill 1960)) decreases Cx. tarsalis activity.  Unlike 

other species previously discussed, this species shows positive correlation to surface 
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and air temperature variables, tstemp and mxtemp.  While surface temperatures 

increase activity close to the ground, it may be due to the aggressive nature of this 

mosquito that draws it vertically into the suction of the trap. 

 As with the previously described Aedes mosquitoes, it appears that increased 

bstemps reduces daily trap counts of Ae. dorsalis, while air temperature (mntemp) 

increases trap counts.  Insect-degree days also positively influence trap counts and 

likely plays a role in mosquito larval development and adult emergence at 

approximately the same time.  Unlike other mosquitoes, Ae. dorsalis does not react 

positively to increased humidity. 

 Finally, the Cs. inornata population at the farm is likely to be the first 

mosquitoes active during the spring.  While IDD40 and photo may initially spark 

development and break diapause, as abundance decreases in early June, both photo and 

IDD40 continue to increase, leading to a negative association.  Continuing with the 

trend, rain also relates to a negative trap count of Cs. inornata. 

Grand Forks Mosquitoes 

 The nine year mosquito daily trap counts were analyzed using a negative 

binomial, generalized linear model based on overdispersion (Appendix C).  For this 

data set, it appears that there are only two meteorological variables that influenced trap 

count.  These variables are avgtemp and mntemp, with mntemp showing stronger 

significance (0.0324 and 0.0033 respectively).  This model does not show either IDD40 

or photo as influences on trap count, nor any of the humidity variables or rain.  It may 

be that by grouping all mosquito species together into one large count, the specificity of 
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variable impact is reduced, creating a model that is less intense due to a blending of 

meteorological variable effects on differing species of mosquitoes. 

Cross-Correlation Map Analysis.  These analyses were undertaken to 

determine if specific meteorological conditions, existing up to 30 days in advance of 

mosquito trapping, could be correlated in a predictive manner to forecast adult 

mosquito abundance.   Although some meteorological conditions preceding mosquito 

trapping could conceivably influence the emigration and immigration of adult 

mosquitoes into a particular trapping zone (e.g., strong windstorms), it is more probable 

that precedent weather exerts its greatest effect on the immature mosquito population or 

breeding period.  Furthermore, it might be anticipated that some meteorological 

variables may more influential than others and that there may be key meteorological 

variables that ultimately determine the survival or developmental rate of immature 

mosquitoes.  This in turn, will determine the abundance of adult mosquitoes.   

Forest Mosquitoes 

 All forest mosquito CCMs can be found in Appendices D-G.  The snowpool 

mosquito, Aedes excrucians, actually shows a negative response to rain approximately 

28-29 days prior to trapping.  While it seems beneficial to have added moisture in the 

larval habitat, additional rain causes the local river system to flood, washing larvae 

away.  Around day 18, rain does have a beneficial effect, and is probably good for 

maintaining breeding pools.  Aedes excrucians, whose larvae are frequently found in 

4ºC pools of water, are negatively affected by an increase in mntemp (day 29), 

probably due to stress from water temperatures reaching critical levels.  Minimum 

temperature does also play a role 3 days prior to trapping, around the time these 
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mosquitoes will be hatching and mating before looking for a bloodmeal.  Both relhum 

and avghum show negative influences on time-lagged trap counts 2-4 weeks before trap 

day.  It is likely that this increase in humidity is due to moisture evaporating from 

breeding pools, thus reducing larval survival.  Because Ae. excrucians is an early 

season, univoltine mosquito and has only one hatch during the summer, it is expected 

that as those mosquitoes age and die through the summer and as IDD40 continues to 

increase we would see a negative response to IDD40 based on the life history of the 

species. 

 Aedes vexans, the most abundant mosquito species in the region, showed 

variation between day-to-day and time-lagged trap counts.  While rain on a daily count 

basis proved a negative effect on adult mosquito behavior, over the 6-29 day lag period, 

rain is highly associated with trap counts and larval mosquito survival and 

development.  This is likely the result of the life history pattern of breeding site 

selection of the species.  Aedes vexans is a floodwater mosquito and eggs are laid in 

soils just higher than water levels and intermittent added moisture aids in keeping the 

pools from drying.  Minimum daily temperature is strongly associated with trap count 

2-3 weeks after the temperature increase.  During this time, it is likely that the increase 

in temperature does not affect imagos, but more likely causes increased larval 

development rates.  In contrast to day-to-day counts, relhum and mxhum have a 

positive influence on trap counts for the majority of the 30 day period.  The 

combination of increased humidity and dew point likely helps to retain water holes 

used for breeding and larval development. 
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 Aedes triseriatus are tree-hole breeding mosquitoes whose overwintering stage 

is the egg, which are placed in dry tree-holes.  It is no surprise then, that 24-27 days 

prior to trapping, rain is an important variable.  Overall, relhum acts positively on trap 

counts, as does dew point, probably aiding the retention of water in the tree-holes.  

Mntemp also acts positively 23-27 days prior to trap day, likely stimulating egg hatch 

and larval development.  IDD40 is important for the entire 30 day period, while 

photoperoid plays a larger impact 2-4 weeks prior to emergence, again, likely 

stimulating egg hatch and development of larval Ae. triseriatus. 

 Coquillettidia perturbans is a unique mosquito in that the overwintering stage is 

the larvae, which attach themselves to flooded vegetation via specialized siphons used 

for breathing (Rademacher 1979).  Because the breeding pools stay flooded through the 

winter, the positive role of rain 24-27 days prior may actually aid by increasing 

temperature of breeding pools and substrate where immature stages of Co. perturbans 

are found.  Mntemp, IDD40, and photo all are likely to play roles in breaking diapause 

in larval mosquitoes.  In fact, all variables except wind showed positive influences.  

Because these breeding pools may be only damp or under a few centimeters deep 

within the forest, increased wind may dry out grounds where larvae are present, 

increasing larval mortality. 

 Total mosquito counts were used in the development of CCMs for the Forest 

site (Appendix P).  These maps inially seemed to have unique correlations to 

meteorological variables until CCMs for the four most abundant mosquito species were 

simultaneously compared.  Total count CCMs for the Forest show correlation values 

approximately halfway between those of Ae. excrucians and Ae. vexans.  This effect is 
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likely due to two components, abundance of given mosquito species and the correlation 

of those mosquito populations to meteorlogical variables.  As an example, Ae. 

excrucians showed almost no correlation to precipitation except the negative 

correlation from days 28-29 (-0.4574) while Ae. vexans showed an extremely high 

correlation value (0.7638) for days 6-29.  Because of the high prevalence and lack of 

correlation of Ae. excrucians to rain along with the lower prevalence and the high 

correlation of Ae. vexans to rain we wind up with a blended CCM for total counts.  This 

was a similar trend with other meteorological variables within the site. 

Farm Mosquitoes 

 All CCMs for the farm mosquitoes can be found in Appendices H-K.  The 

population of Ae. vexans at the farm site showed the same responses to meteorological 

variables as the forest population.  The difference between the two groups is the degree 

of significance of each of these variables.  There are a few possibilities why these 

results may have occurred.  One of the main reasons is that Ae. vexans, in our region, is 

an open space, open environment mosquito, preferring habitats such as this agricultural 

site over the forest site (Mehus unpub data).  In the open environment, they are more 

exposed to all meteorological variables, increases the importance of variables within 

the Forest.  Rain was important in both farm and forest populations, 9-27 days and 6-24 

days, respectively.  This is likely the timing of initial flooding of soils containing 

overwintering eggs or eggs laid throughout the summer as Ae. vexans is multivoltine. 

 Local WNV vector Cx. tarsalis shows an interesting response to the rain 

variable.  Although, there are times rain events appear significant (23 days, rs=0.3096), 

overall rain assumes a negative role or is not strongly correlated in either direction.  
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This is likely due to the fact that Cx. tarsalis overwinter as mated female mosquitoes.  

These mated females need to first acquire a blood meal and produce eggs before a new 

cohort of Cx. tarsalis appears.  Since Cx. tarsalis oviposite egg rafts on permanent 

bodies of water, it is less likely that rain events will be significant except in extreme 

cases such as drought.   

 Ae. dorsalis appears early in the season, but is also multivoltine, having 

multiple broods throughout the summer.  For the first 24 days lagged from trap date, 

rain aids in increasing mosquito trap counts.  Like Ae. vexans, Ae. dorsalis is a 

floodwater mosquito, and relies heavily on multiple rain events to replenish breeding 

pools.  None of the temperature variables, humidity variables, IDD40 or photoperiod 

plays strong roles in the abundance of this mosquito species, in fact, most have slightly 

negative roles.  As an example, avgtemp which is usually positively associated with 

mosquito counts, negatively affects Ae. dorsalis, likely due to the fact these mosquitoes 

are more abundant during early spring while temperatures are still mild.  While 

multiple broods are likely during the summer, hatch events demonstrated in our regions 

have shown decreased emergence abundances later in the summer.  It is possible that 

increased temperatures increase physiological stress to larvae, and mortality increases, 

decreasing the percentage of imagos attained.  It may also be that during the summer 

months, there is an increase of other mosquito species’ larvae that may out-compete Ae. 

dorsalis larvae for resources. 

 The earliest mosquito species found within the majority of the RRV is Cs. 

inornata.  The mated adult females break diapause early in the spring, often before all 

the snow has melted.  These females find a blood meal, produce eggs and lay their eggs 
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on permanent to semi-permanent bodies of water.  This may explain why for the 

majority of the 30 day lag period, rain is shown as a negative variable, with rain only 

acting as an obstacle to overwintered females.  As with Ae. dorsalis, most of the 

climate based variables displayed either no correlation or slightly negative correlations 

to Cs. inornata trap counts.  Besides rain, the most influential of the meteorological 

variables was photoperiod, having a strong negative relationship with Cs. inornata trap 

counts, again likely due to the early season nature of this mosquito species. 

 One of the most interesting discoveries during this study was the relationship 

between climate-based variables and early-season versus later-season mosquito species.  

If we look at species such as Ae. triseriatus, Ae. vexans, Co. perturbans and Cx. taralis 

we note the importance of temperature, humidity as well as IDD40 and photoperiod.  

These late-season mosquitoes also show general negative tendencies towards wind.  

Except for Cx. tarsalis, these late-season mosquitoes rely heavily on rain events to 

replenish breeding pools.  Culex tarsalis does not rely on rain because of its tendency to 

lay egg rafts on permanent bodies of water.   

 Early season mosquitoes, Ae. dorsalis, Ae. excrucians and Cs. inornata are not 

as influenced by climatic variables, but more highly upon more stable variables such as 

IDD40 or photoperiod.  Temperature and humidity were either not correlated with trap 

counts or were negatively associated with trap counts, showing that as temperature and 

humidity increase through the summer months, the general numbers of Ae. dorsalis, Ae. 

excrucians and Cs. inornata decline. 

 When CCMs were run on total mosquito counts for the Farm site (Appendix Q) 

the resemblance to the Ae. vexans CCMs (Appendix H) were quickly noted.  The 
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meteorological variables rain and minimum temperature showed the same days of 

highest correlation (9-27 and 6-6) and only slightly reduced correlation coefficients 

(0.4653<0.5172 and 0.4665<0.4983 respectively).  With almost 80% of the total 

mosquito population being Ae. vexans, it is plausible that in CCMs for total counts the 

correlations would favor those of Ae. vexans. 

Grand Forks Mosquitoes 

 Cross-correlation analyses were used to determine how time-lagged weather 

variables were influencing mosquito counts in the city of Grand Forks.  Because 

individual species were not identified, counts were analyzed by month to determine if 

there were differing weather impacts on trap counts throughout the summer.  During 

the month of June, rain was highly correlated with mosquito trap counts two to four 

weeks prior to trap date.  Most of the mosquitoes collected in the city of Grand Forks 

are floodwater mosquitoes, more specifically Ae. vexans, and precipitation is likely 

involved in the flooding of breeding grounds containing the overwintering egg stages.  

For the entire 30-day lag period, minimum temperature was highly correlated with trap 

counts, influencing both larval development by warming soils and increase adult 

activity.  To maintain larval development, it is essential that these breeding grounds 

retain moisture.  It is possible that higher average humidity amounts help to maintain 

these breeding grounds by releasing moisture into the environment during the cool 

summer evenings.  In June, the role of wind on trap counts is negative.  The high winds 

in the RRV have a drying effect on the environment, specifically on soils and shallow 

depressions, regions often associated with larval Ae. vexans. 
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 The weather variables that are highly correlated to trap counts in July are 

similar to those in the month of June.  Rain is again the most correlated value to July 

trap counts, but for the entire 30-day period prior to trapping.  The most probable 

reason for the increase in days for which rain is important from June to July is the 

maintenance of dwindling breeding grounds due to increased temperatures in the month 

of July.  Minimum temperature again is positively correlated to trap counts, yet at a 

reduced lag period.   This reduction may be a product of soils and breeding pools 

warming gradually through the month of June.  Unlike wind speed in June, wind in July 

is positively correlated to trap counts.  Since many of the breeding grounds for these 

floodwaters are outside city limits, it is possible that mosquitoes reaching adulthood 

from these outlying regions are carried by the wind into city limits. 

 During the month of August, highly correlated weather variables such as rain, 

temperature and humidity drop in association values, yet one variable, wind, still plays 

a positive role on trap counts, suggesting that the mosquitoes entering traps are likely 

being blown in from outside city limits.  The decreased correlation values also are 

characteristic of a previously discussed mosquito species, Cx. tarsalis.  It is probably 

not coincidental then that by the end of July and beginning of August, Ae. vexans 

numbers start to decrease and there is an increase in the percentage of Cx. tarsalis 

recovered in traps (Deckert 1995; Bell et al. 2005) and we may be seeing this 

population switch within the cross-correlation maps. 

 By the beginning of September Cx. tarsalis populations in the region have 

declined (Mehus unpub. data), and a new and likely last cohort of newly emerged 

floodwater mosquitoes appears.  This dynamic of mosquito populations is visualized in 
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the cross-correlation maps for September as rain, minimum temperature and maximum 

humidity regain positive correlation values to trap counts.   By dividing the mosquito 

trap counts of Grand Forks by month, it was possible to determine which mosquito 

species was likely active.   
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Figure 2.1.  Weekly trends in total mosquito population at forest, farm and city of Grand Forks 
sites.  A) Mosquito species mean weekly counts within the forest site. B) Mean weekly 
mosquito counts within the farm site. C) Mean weekly mosquito counts within the city of 
Grand Forks ND (2002-2010). 
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Figure 2.2.  Trends in mosquito species dynamics with the forest.  A) Top two 

mosquito species showing unique peak times for Ae. vexans and Ae. excrucians.  B) 

Secondary species within the forest site showing overlapping peaks for Ae. triseriatus 

and Co. perturbans. 
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Figure 2.3  Trends in mosquito populations at the farm during the summers of 2010 and 

2011.  A) Predominant mosquito species dynamics showing multiple peaks in host-

seeking Ae. vexans and Cx. tarsalis.  B) Secondary mosquito populations showing early 

peaks with unique delayed peaks for Ae. dorsalis and Cs. inornata.  
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Table 2.1. States with the highest per capita (incidence/100,000 people) human cases of WNV from 2002-2011. Information 

obtained via CDC website. 

 

Rank 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 

1 
NE  

(8.80) 

SD 

(136.04) 

AZ  

(6.81) 

SD 

(29.51) 

ID 

(77.48) 

ND 
(56.52) 

ND 
(5.63) 

NE 

(2.87) 

AZ  

(2.60) 
MS (1.75) 

2 
LA  

(7.32) 

NE 

(111.70) 

SD  

(6.62) 
ND 

(13.51) 
ND 

(21.38) 
WY 

(33.84) 

SD  

(4.88) 

SD  

(2.60) 

SD  

(2.45) 

NE  

(1.57) 

3 
IL   

(7.06) 

ND 
(96.59) 

CO 

(6.32) 

ND 

(10.70) 

NE 

(19.98) 

SD 

(26.28) 

NE  

(2.62) 

ID  

(2.45) 

NE  

(2.13) 

AZ  

(1.06) 

4 MS 

(6.72) 

WY 

(74.49) 

NM 

(4.62) 

LA  

(3.78) 

WY 

(12.62) 

MT 

(20.94) 

ID  

(2.54) 

WY 

(2.14) 

CO 

(1.60) 

NE  

(0.59) 

5 
MI 

 (6.13) 

CO 

(65.07) 

ND 
(3.14) 

MT 

(2.67) 

AR 

(11.37) 

CO 

(11.99) 

MS 

(2.21) 

CO 

(2.07) 

ND 
(1.33) 

ND (0.58) 

- 
(10) ND 
(2.66)       

(20) ND 
(0.15)   

Population data acquired via the United States Census Bureau    

6
4
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Table 2.2. Summary of mosquito species generalized linear models analyzing 

meteorological variables affecting daily mosquito trap counts from the forest site. 

 

Model 

Components 
AIC Score Estimates 

Standard 

Error 
Z-value p-value 

Ae. excrucians 339.12     

     Photo  0.0102 0.0032 0.2200 0.0013 

     Year  0.0350 0.0014 24.8690 <0.0001 

Ae. vexans 259.76     

     Bstemp  -0.1555 0.0628 -2.476 0.0132 

     IDD40  0.0045 0.0011 4.018 <0.0001 

     Mntemp  0.0835 0.0230 3.632 0.0002 

     Mxhum  -0.0913 0.0426 -2.143 0.0321 

     Photo  0.0343 0.0099 3.466 0.0005 

     Wind  -0.2043 0.0702 -2.911 0.0036 

     Year  0.3072 0.0055 56.344 <0.0001 

Ae. triseriatus 215.94     

     Bstemp  -0.2378 0.0643 -3.698 0.0002 

     IDD40  0.0076 0.0011 7.195 <0.0001 

     Photo  0.0377 0.0083 4.518 <0.0001 

     Relhum  -0.0773 0.0306 -2.530 0.0114 

Co. perturbans 220.43     

     Bstemp  -0.4093 0.0778 -5.260 <0.0001 

     IDD40  -0.0021 0.0005 -4.161 <0.0001 

     Rain  -5.7930 2.0490 -2.827 0.0047 

     Relhum  -0.0826 0.0298 -2.775 0.0055 

     Tstemp  5.6960 0.0738 7.715 <0.0001 

     Wind  -0.4010 0.0860 -4.667 <0.0001 

     Avghum  0.0663 0.0271 2.446 0.0145 

     Year  -0.6852 0.0223 -3074.540 <0.0001 
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Table 2.3. Summary of mosquito species generalized linear models analyzing 

meteorological variables affecting daily mosquito trap counts from the farm site. 

 

Model 

Components 
AIC Score Estimates 

Standard 

Error 
Z-value p-value 

Ae. vexans 517.04     

     Bstemp  -0.3092 0.0690 -4.480 <0.0001 

     IDD40  0.0028 0.0007 3.965 <0.0001 

     Mnhum  -0.1307 0.0243 -5.370 <0.0001 

     Mntemp  0.2686 0.0532 5.052 <0.0001 

     Mxhum  0.5120 0.1069 4.790 <0.0001 

     Photo  0.0282 0.0066 4.298 <0.0001 

     Rain  -3.7021 1.5732 -2.353 0.0186 

     Relhum  0.1873 0.0625 -2.996 0.0027 

Cx. tarsalis 369.92     

     Rain  -6.3070 1.7439 -3.617 0.0003 

     Tstemp  0.4231 0.0840 5.040 <0.0001 

     Avghum  0.1874 0.0445 4.211 <0.0001 

     Dew  -0.2644 0.0843 -3.137 0.0017 

     Mxtemp  0.2242 0.0680 3.297 0.0009 

Ae. dorsalis 270.58     

     Avghum  -0.1085 0.0317 -3.423 0.0006 

     Bstemp  -0.2055 0.0510 -4.031 <0.0001 

     IDD40  0.0007 0.0003 2.923 0.0035 

     Mntemp  0.1331 0.0435 3.062 0.0022 

     Mxhum  0.0866 0.0462 1.873 0.0611 

     Rain  -2.2712 1.2912 -1.759 0.0786 

Cs. inornata 259.17     

     IDD40  -0.0010 0.0004 -2.776 0.0055 

     Photo  -0.0140 0.0040 -3.491 0.0005 

     Rain  -2.2010 0.9777 -2.251 0.0244 

     Year  -2.3340 0.4426 -5.480 <0.0001 

 

 

Table 2.4. Summary of generalized linear model analyzing meteorological variables 

affecting daily mosquito trap counts from Grand Forks, North Dakota. 

 

Model 

Components 
AIC Score Estimates 

Standard 

Error 
Z-value p-value 

Grand Forks 6590.8     

     Avgtemp  0.0286 0.0134 2.139 0.0324 

     Mntemp  0.0386 0.0131 2.939 0.0033 
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Table 2.5. Correlation coefficients of mosquito abundance and weather variables for the 

forest mosquito species (2009 and 2011).  Numbers in parentheses represent lag days. 

 

Weather  

Variable 

Aedes 

excrucians 

Aedes 

vexans 

Aedes 

triseriatus 

Coquillittidea 

perturbans 

Rain 
-0.4574 

(28-29) 

0.7638 

(6-29) 

0.5479 

(24-27) 

0.6010 

(24-27) 

Mntemp 
-0.3961 

(29-29) 

0.8610 

(14-20) 

0.7243 

(23-27) 

0.6682 

(24-27) 

Relhum 
-0.6233 

(18-30) 

0.6554 

(5-27) 

0.3679 

(21-23) 

0.4529 

(21-23) 

Wind 
0.3231 

10-12 

0.4991 

(26-29) 

-0.5196 

(27-30) 

-0.4462 

(29-29) 

Dew 
-0.4451 

(23-24) 

0.8628 

(14-28) 

0.6178 

(23-27) 

0.6132 

(23-27) 

Avghum 
-0.5078 

(20-30) 

0.7261
α
 

(9-29) 

0.4931 

(15-27) 

0.4405 

(15-27) 

IDD40 
-0.4377 

(30-30) 

0.6350 

(1-1) 

0.4657 

(6-6) 

0.3862 

(1-1) 

Photo 
0.6418 

(10-12) 

0.6391 

(29-29) 

0.5996 

(29-29) 

0.6460 

(29-30) 
α
-Mxhum substituted due to stronger correlation coefficient  
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Table 2.6. Correlation coefficients of mosquito abundance and weather variables for the 

farm mosquito species (2010-2011).  Numbers in parentheses represent lag days. 

 

Weather  

Variable 

Aedes 

vexans 

Culex 

tarsalis 

Aedes 

dorsalis 

Culiseta 

inornata 

Rain 
0.5172 

(9-27) 

-0.4124 

(2-3) 

0.4139 

(1-24) 

-0.4969 

(9-30) 

Mntemp 
0.4983 

(6-6) 

0.7584
€
 

(6-6) 

-0.3797 

(4-5) 

-0.4466 

(1-2) 

Relhum 
0.3826 

(1-7) 

0.6122 

(1-30) 

-0.1947 

(12-28) 

-0.2621 

(2-3) 

Wind 
0.3231 

(21-21) 

-0.6376 

(16-18) 

0.4663 

(1-2) 

-0.4843 

(28-28) 

Dew 
0.4140 

(6-7) 

0.7408 

(6-7) 

-0.2448 

(4-4) 

-0.4134 

(2-2) 

Avghum 
0.3521

 α
 

(1-7) 

0.5484 

(4-30) 

-0.2352
β
 

(28-28) 

-0.4148 

(2-2) 

IDD40 
0.1602 

(1-1) 

0.5680 

(1-1) 

-0.1049 

(1-1) 

0.1864 

(30-30) 

Photo 
0.4862 

(24-24) 

0.7090 

(30-30) 

-0.1560 

(29-29) 

-0.4843 

(23-23) 
α
-Mxhum substituted due to stronger correlation coefficient  

β
-Mnhum substituted due to stronger correlation coefficient 

€
-Tstemp substituted due to stronger correlation coefficient 
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Table 2.7.  Correlation coefficients of mosquito abundance and weather variables for 

Grand Forks mosquito (2002-2010).  Numbers in parentheses represent lag days. 

 

Weather  

Variable 
June July August September 

Rain 
0.5742 

(15-30) 

0.5200 

(1-30) 

-0.1248 

(25-25) 

0.6251 

(7-26) 

Mntemp 
0.5780 

(1-30) 

0.4336 

(1-12) 

-0.2369
¥
 

(5-6) 

0.5815 

(1-10) 

Wind 
-0.3787 

(5-13) 

0.4224 

(11-30) 

0.4442 

(6-16) 

-0.1778 

(4-4) 

Dew 
0.6001 

(1-27) 

0.2664 

(1-4) 

-0.2387 

(5-12) 

0.6127 

(1-17) 

Avghum 
0.5040 

(10-17) 

0.3385
β
 

(1-23) 

-0.3040
α
 

(6-15) 

0.5485
α
 

(8-15) 

IDD40 
0.4661 

(1-1) 

-0.2651 

(30-30) 

0.0755 

(15-15) 

-0.4609 

(19-19) 

Photo 
0.3126 

(17-17) 

0.1844 

(2-2) 

-0.0663 

(28-29) 

0.3709 

(29-29) 
α
-Mxhum substituted due to stronger correlation coefficient  

β
-Mnhum substituted due to stronger correlation coefficient 

¥
-Mxtemp substituted due to stronger correlation coefficient 
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APPENDIX A 

Forest Mosquito Daily Trap Count Regressions 

 

Zero-inflated negative binomial regression model for Ae. excrucians from the forest site 

(AIC=339.12). 

 

Model 
Components 

Estimate Std. Error z value Pr(>|z|) 

photo 0.0102 0.0032 3.220 0.0013 ** 

Year 0.0350 0.0014 24.869 < 0.0001 *** 

Log(theta) -0.1944 0.1910 -1.018 0.30873 

Photo= photoperiod (hours of daylight) 

Year = year to year variability 

 

Reduced zero-inflated negative binomial regression model for Ae. vexans from the 

Forest site. (AIC=259.76) 

 

Model 
Components 

Estimate Std. Error z value Pr(>|z|) 

bstemp -0.1555 0.0628 -2.476 0.0132 * 

IDD40 0.0045 0.0011 4.018 <0.0001 *** 

mntemp 0.0835 0.0230 3.632 0.0002 *** 

mxhum -0.0913 0.0426 -2.143 0.0321 * 

photo 0.0343 0.0099 3.466 0.0005 *** 

wind -0.2043 0.0702 -2.911 0.0036 ** 

Year 0.3072 0.0055 56.344 <0.0001 *** 

Log(theta) 1.1490 0.1880 6.112 9.86e-10 *** 

Bstemp= bare soil temperature 

IDD40= insect degree days at 40ºF 

Mntemp=minimum temperature 

Mxhum= maximum humidity 

Photo= photoperiod (hours of daylight) 

Wind= wind speed 

Year= year to year variability
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Reduced negative binomial model model for Forest species Ae. triseriatus 

(AIC=215.94) 

 

Model 
Components 

Estimate Std. Error z value Pr(>|z|) 

bstemp -0.2378 0.0643 -3.698 0.0002 *** 

IDD40 0.0076 0.0011 7.195 <0.0001 *** 

photo 0.0377 0.0083 4.518 <0.0001 *** 

relhum -0.0773 0.0306 -2.530 0.0114 * 

Bstemp= bare soil temperature 

IDD40= insect degree days at 40ºF 

Photo= photoperiod (hours of daylight) 

Relhum= relative humidity 

 

Zero-inflated negative binomial regression model for Co. perturbans from the Forest 

site. (AIC=220.43) 

 

Model 
Components 

Estimate Std. Error z value Pr(>|z|) 

bstemp -0.4093 0.0778 -5.260 <0.0001 *** 

IDD40 -0.0021 0.0005 -4.161 <0.0001 *** 

rain -5.7930 2.0490 -2.827 0.0047 ** 

relhum -0.0826 0.0298 -2.775 0.0055 ** 

tstemp 5.6960 0.0738 7.715 <0.0001 *** 

wind -0.4010 0.0860 -4.667 <0.0001 *** 

Year -0.6852 0.0223 -3074.540 <0.0001 *** 

avghum 0.0663 0.0271 2.446 0.0145 * 

Log(theta) 0.9809 0.1580 6.208 5.38e-10 *** 

Avghum= average humidity 

Bstemp= bare soil temperature 

IDD40= insect degree days at 40ºF 

Rain = precipitation 

Relhum= relative humidity 

Tstemp= turf soil temperature 

Wind= wind speed 

Year= year to year variability
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APPENDIX B 
  

Farm Mosquito Daily Trap Count Regressions 
 
Negative binomial regression model for Farm population of Ae. vexans. (AIC=517.04) 
 

Model 
Components 

Estimate Std. Error z value Pr(>|z|) 

bstemp -0.3092 0.0690 -4.480 <0.0001 *** 
IDD40 0.0028 0.0007 3.965 <0.0001 *** 
mnhum -0.1307 0.0243 -5.370 <0.0001 *** 
mntemp 0.2686 0.0532 5.052 <0.0001 *** 
mxhum 0.5120 0.1069 4.790 <0.0001 *** 

photo 0.0282 0.0066 4.298 <0.0001 *** 
rain -3.7021 1.5732 -2.353 0.0186 * 

relhum -0.1873 0.0625 -2.996 0.0027 ** 

Bstemp= bare soil temperature 

IDD40= insect degree days at 40ºF 
Mnhum= minimum humidity 
Mntemp=minimum temperature 
Mxhum= maximum humidity 
Photo= photoperiod (hours of daylight) 
Rain = precipitation 
Relhum= relative humidity 

 

Zero-inflated negative binomial model for Cx. tarsalis population from the Farm site. 
(AIC=359.92) 
 

Model 
Components 

Estimate Std. Error z value Pr(>|z|) 

rain -6.3070 1.7439 -3.617 0.0003 *** 
tstemp 0.4231 0.0840 5.040 <0.0001 *** 

avghum 0.1874 0.0445 4.211 <0.0001 *** 
dew -0.2644 0.0843 -3.137 0.0017 ** 

mxtemp 0.2242 0.0680 3.297 0.0009 *** 
Log(theta) -0.3719 0.2269 -1.639 0.1012 

Avghum= average humidity 
Dew= dew point 
Mxtemp= maximum temperature 
Rain = precipitation 
Tstemp= turf soil temperature
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Reduced negative binomial regression model for Ae. dorsalis from the Farm site. 

(AIC=270.58) 

 

Model 
Components 

Estimate Std. Error z value Pr(>|z|) 

avghum -0.1085 0.0317 -3.423 0.0006 *** 

bstemp -0.2055 0.0510 -4.031 <0.0001 *** 

IDD40 0.0007 0.0003 2.923 0.0035 ** 

mntemp 0.1331 0.0435 3.062 0.0022 ** 

mxhum 0.0866 0.0462 1.873 0.0611 . 

rain -2.2712 1.2912 -1.759 0.0786 . 

Avghum= average humidity 

Bstemp= bare soil temperature 

IDD40= insect degree days at 40ºF 

Mntemp=minimum temperature 

Mxhum= maximum humidity 

Rain = precipitation 

 

Reduced negative binomial model for Cs. inornata from the Farm site. (AIC=259.17) 

 

Model 
Components 

Estimate Std. Error z value Pr(>|z|) 

IDD40 -0.0010 0.0004 -2.776 0.0055 ** 

photo -0.0140 0.0040 -3.491 0.0005 *** 

rain -2.2010 0.9777 -2.251 0.0244 * 

Year -2.3340 0.4426 -5.480 <0.0001 *** 

IDD40= insect degree days at 40ºF 

Photo= photoperiod (hours of daylight) 

Rain = precipitation 

Year= year to year variability
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APPENDIX C 
 

Grand Forks Mosquito Daily Trap Count Regression 
 

Reduced negative binomial regression model for Grand Forks “Skeeter Meter”data for 
the years 2002-2010. (AIC=6590.80) 

 

Model 
Components 

Estimate Std. Error z value Pr(>|z|) 

avgtemp 0.0286 0.0134 2.139 0.0324 * 

mntemp 0.0386 0.0131 2.939 0.0033 ** 

Avgtemp= average temperature 

Mntemp=minimum temperature  
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APPENDIX D 
 

Cross Correlation Maps Displaying Meteorological Variable Impact on Trap 
Counts 

 

Forest Ae. excrucians 
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Cross Correlation Maps Displaying Meteorological Variable Impact on Trap 
Counts 

 

 

Forest Ae. excrucians 
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APPENDIX E 

 
Cross Correlation Maps Displaying Meteorological Variable Impact on Trap 

Counts 
 

Forest Ae. vexans 
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Cross Correlation Maps Displaying Meteorological Variable Impact on Trap 
Counts 

 
Forest Ae. vexans 
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APPENDIX F 
 

Cross Correlation Maps Displaying Meteorological Variable Impact on Trap 
Counts 

 

Forest Ae. triseriatus 
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Cross Correlation Maps Displaying Meteorological Variable Impact on Trap 
Counts 

 
Forest Ae. triseriatus 
 

 
 

 

 

 

 

 



85 

 

APPENDIX G 

 
Cross Correlation Maps Displaying Meteorological Variable Impact on Trap 

Counts 

 

Forest Co. perturbans 
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Cross Correlation Maps Displaying Meteorological Variable Impact on Trap 
Counts 

 
Forest Co. perturbans 
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APPENDIX H 
 

Cross Correlation Maps Displaying Meteorological Variable Impact on Trap 
Counts 

 
Farm Ae. vexans 
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APPENDIX I 
 

Cross Correlation Maps Displaying Meteorological Variable Impact on Trap 
Counts 

 

Farm Cx. tarsalis 
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Cross Correlation Maps Displaying Meteorological Variable Impact on Trap 
Counts 

 

Farm Cx. tarsalis 
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APPENDIX J 
 

Cross Correlation Maps Displaying Meteorological Variable Impact on Trap 
Counts 

 

Farm Ae. dorsalis 
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APPENDIX K 
 

Cross Correlation Maps Displaying Meteorological Variable Impact on Trap 
Counts 

 

Farm Cs. inornata 
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APPENDIX L 
 

Cross Correlation Maps Displaying Meteorological Variable Impact on Trap 
Counts 

 
Grand Forks June 
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APPENDIX M 
 

Cross Correlation Maps Displaying Meteorological Variable Impact on Trap 
Counts 

 

Grand Forks July 
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APPENDIX N 
 

Cross Correlation Maps Displaying Meteorological Variable Impact on Trap 
Counts 

 

Grand Forks August 
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APPENDIX O 
 

Cross Correlation Maps Displaying Meteorological Variable Impact on Trap 
Counts 

 

Grand Forks September 
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APPENDIX P 
 

Cross Correlation Maps Displaying Meteorological Variable Impact on Trap 
Counts 

 
Forest Total Mosquito Counts 
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Cross Correlation Maps Displaying Meteorological Variable Impact on Trap 
Counts 

 

Forest Total Mosquito Counts 
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APPENDIX Q 
 

Cross Correlation Maps Displaying Meteorological Variable Impact on Trap 
Counts 

 

Farm Total Mosquito Counts 
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Cross Correlation Maps Displaying Meteorological Variable Impact on Trap 
Counts 

 

Farm Total Mosquito Counts 
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CHAPTER III 
 

MOLECULAR IDENTIFICATION OF VERTEBRATE AND HEMOPARASITE 
DNA WITHIN MOSQUITO BLOOD MEALS FROM EASTERN NORTH 

DAKOTA 
 

Abstract 

To understand local transmission of vector-borne diseases, it is important to 

identify potential vectors, characterize their host feeding patterns, and determine if 

vector-borne pathogens are circulating within the region.  This study simultaneously 

investigated these aspects of disease transmission by collecting engorged mosquitoes 

within two rural study sites in the central Red River Valley of North Dakota.  

Mosquitoes were identified, midguts were excised and the blood was expelled from the 

midguts.  DNA was extracted from blood meals and subjected to polymerase chain 

reaction (PCR) and direct sequencing to identify the vertebrate origin of the blood.  

Using different primer sets, PCR was used to screen for two types of vector-borne 

pathogens, filarioid nematodes and haemosporidian parasites.  White-tailed deer were 

the primary source of blood meals for the eight aedine mosquito species collected.  

None of the 288 deer-derived blood meals contained filarioid or haemosporidian DNA.  

In contrast, 18 of 32 Culex tarsalis and 3 of 3 Cx. pipiens blood meals contained avian 

blood, representing 8 different species of birds.  Of 24 avian-derived blood meals 



101 

 

examined, 12 contained Plasmodium DNA, three of which also contained 

Leucocytozoon DNA (i.e., dual infection).  Potential confounding effects resulting from 

parasite acquisition and development from previous blood meals (e.g., oocysts) were 

eliminated because host blood had been removed from the midguts prior to DNA 

extraction.  Thus specific parasite lineages/species could be unequivocally linked to 

specific vertebrate species.  By combining mosquito identification with molecular 

techniques for identifying blood meal source and pathogens, a relatively small sample 

of engorged mosquitoes yielded important new information about mosquito feeding 

patterns and hemosporidia infections in birds.  Thorough analyses of wild-caught 

engorged mosquitoes and other arthropods represent a powerful tool in understanding 

the local transmission of vector-borne and zoonotic diseases. 

Introduction 

The Red River Valley (RRV) is plagued by mosquitoes every summer, yet 

knowledge of mosquito fauna and biology within the region is marginal.  Within the 

city of Grand Forks, the mosquito fauna is dominated by three species; two floodwater 

species, Aedes vexans and Ae. dorsalis which are present throughout the summer, and 

Culex tarsalis which is abundant during mid to late summer and is the primary vector 

for West Nile virus (Deckert 1995, Bell et al. 2005, Bell et al. 2006).  Preliminary 

studies suggest that species richness of mosquitoes is greater in the surrounding rural 

areas than within the city (Vaughan, unpubl. data).  Almost nothing is known about the 

blood feeding patterns of mosquitoes within the rural RRV.  Blood feeding patterns can 

incriminate mosquito species involved in various mosquito-borne diseases.  In addition 

to the limited knowledge of mosquito biology, the diversity of zoonotic pathogens in 



102 

 

the RRV remains understudied.  Surveying vertebrate populations for blood pathogens 

can be difficult and time-consuming. Instead, we examined the blood meals of wild-

caught mosquitoes.   The DNA within each blood meal was analyzed by polymerase 

chain reaction (PCR) and sequencing to identify its vertebrate host origin.  Polymerase 

chain reaction and sequencing have also been used to identify various types of 

hemoparasites within mosquito blood meals (Chanteau et al. 1994, Farid et al. 2007, 

Massey et al. 2007, Bartlett-Healy et al 2009, Chambers et al. 2009, Kim et al. 2009, 

Latrofa et al. 2012).  This is known as 'molecular xenomonitoring'.   Using these 

techniques, we determined the blood feeding patterns of local mosquito species as well 

as the prevalence and species identity of hemoparasites within birds fed on by 

mosquitoes.  

Materials and Methods 

Mosquito collection 

Mosquitoes were collected from two sites within Steele County, North Dakota.  

The first site was a 40-acre hardwood forest with a closed canopy and thick underbrush 

located 8.4 km southwest of Hatton, ND.  The site is typically flooded in early spring 

by the Goose River, leaving behind breeding pools within the forest throughout the 

summer.  The second site was a farmstead located 1.6 km west of Hatton, ND.  The 

farm was surrounded by open cropland and is more typical of the RRV landscape.  

Mosquito control was absent at both sites.   

Host-seeking mosquitoes were collected using three battery operated, CO2-

baited Mosquito Magnet X traps (MMX) (Woodstream Lititz, PA) spaced ca. 200 m 

apart.  Traps were deployed 2-3 times per week and operated from 1800 to 0800 h, 
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from late May through August.  The MMX traps were operated at the forest site during 

2009 and 2010, and at the farm site during 2011.  In 2011, resting mosquitoes were 

collected at both sites from underbrush, tree holes and around the bases of trees and 

buildings with a battery-operated vacuum aspirator.  The aspirator was constructed of 

lightweight aluminum with fan, and a 33cm diameter circular collection area by 

personnel at the Metropolitan Mosquito Control District, St. Paul, MN.  Insects were 

transported to the laboratory and placed in -20°C freezers for immobilization. 

Mosquitoes were identified to species (Darsie Jr. and Ward 2005) and stored at -80°C.  

Besides mosquitoes, the MMX traps also collected large numbers of host-seeking black 

flies (Simuliidae).  Blackflies were identified to species (Adler et al. 2004) but were not 

processed or analyzed for vertebrate or hemoparasite DNA. 

DNA Extraction 

Mosquitoes were dissected in phosphate buffered saline using jeweler’s forceps.  

Midguts were excised. split open and gently pressed against the inside of 1.5mL 

microtubes to expel the midgut contents.  Nucleic acids were extracted using a 

guanidine/ethanol protocol (Tkach and Pawlowski 1999).   

Identification of vertebrate DNA 

To identify the vertebrate origin of each blood meal, mitochondrial cytochrome 

b and cytochrome oxidase subunit I genes were amplified using previously described 

protocols (Townzen, Brower and Judd 2008).  Successful amplifications were 

visualized by gel electrophoresis.  PCR products were cleaned with ExoSAP-IT 

(Affymetrix, Santa Clara, CA) according to the manufacturer’s protocol and sequenced 

using the BigDye® Terminator v3.1 Cycle Sequencing Kit (Applied Biosystems Inc. - 
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ABI, Foster, CA) and a 3100 Genetic Analyzer (Applied Biosystems Inc. - ABI, Foster, 

CA).  Sequences were analyzed and trimmed to no fewer than 300 base pairs using the 

BioEdit program (Ibis Biosciences, Carlsbad, CA).  Sequences were aligned to 

published sequences available via the National Center for Biotechnology Information 

(NCBI) using Basic Local Alignment Search Tool (BLAST).  Host sequences were 

considered a match at or above 98% base pair matches.   

Identification of Parasite DNA 

The DNA extracts were screened for filarioid nematode and hemosporidian 

DNA using different primer sets (Table 3.1).  For filarioid nematodes, PCR primers 

were designed based on conserved sequences of the 18s ribosomal RNA genes of Loa 

loa, Brugia pahangi, Onchocerca cervicalis, Chandlerella quiscali (GenBank 

Accession numbers: DQ094173.1, EU496884.1, DQ094174.1).  When tested, the 

primers successfully amplified 18s rRNA gene fragments of five different genera from 

four different subfamilies of filarioid nematodes, including Dirofilariinae (Dirofilaria 

immitis, Waltonella sp.), Onchocercinae (Brugia pahangi), Splendidofilariinae 

(Chandlerella quiscali) and Lemdaninae (Eufilaria sp.), indicating their utility for 

detecting a broad taxonomic range of filarioid species (Fig. 3.1A).  The primers 

exhibited high sensitivity when tested against two-fold dilutions of DNA extracted 

from Chandlerella quiscali microfilariae recovered from the lungs of a Common 

Grackle (Quiscalus quiscula) (Fig. 3.1B).  To screen for Babesia parasites, a set of 

semi-nested primers was developed using sequences of the 18s rRNA genes of Babesia 

spp. (GenBank Accession numbers: AY046577.1, AY237638.1, AB190459.1, 

HQ184411.1) and tested using DNA from B. microti (kind gift of S. Telford III).  The 

http://www.ncbi.nlm.nih.gov/nucleotide/70610315?report=genbank&log$=nucltop&blast_rank=1&RID=ESF1USAE014
http://www.ncbi.nlm.nih.gov/nucleotide/169387941?report=genbank&log$=nucltop&blast_rank=6&RID=ESFBW6YR015
http://www.ncbi.nlm.nih.gov/nucleotide/70610316?report=genbank&log$=nucltop&blast_rank=11&RID=ESFHC66Y01R
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thermocycling protocols for the filarioid and the Babesia PCR were identical; 95°C for 

2 min for initial activation followed by 40 cycles of 95°C for 45 sec, 55°C for 30 sec, 

72°C for 45 sec with a one-time final extension at 72°C for 7 min.  Detection of the 

cytochrome b gene from Plasmodium, Leucocytozoon, and Haemoproteus utilized the 

previously described protocol and primers of Hellgren, Waldenstrom and Bensch 

(2004).   

Results 

MMX traps collected 8,855 and 9,687 mosquitoes from the forest and farm sites 

respectively, but few were blood-fed (1.3 and 0.1%, respectively).  Vacuum aspiration 

collected less mosquitoes (4,898 and 810 from the forest and farm sites respectively) 

but the proportion blood-fed was greater (30 and 31%, respectively).  Of 1,841 

engorged mosquitoes collected, DNA was extracted and PCRs were run on 770 

individual mosquitoes to determine blood meal origin.  Of these, usable DNA was 

recovered from 523 (68%) of the extracts.  The low recovery rate may be due to the 

digestion of blood as well as low levels of DNA since partial blood meals were also 

categorized as engorged.  Of 523 extracts with usable DNA, 416 were selected for 

sequencing.  Of the 416 DNA extracts that were sequenced, 391 (94%) provided 

sufficiently high-quality sequences to be aligned with vertebrate host sequences in the 

NCBI database. 

Mosquito Host Feeding Patterns 

The majority of engorged mosquitoes (75%) collected at the forest site were Ae. 

excrucians, most of which (94%) fed on white-tailed deer (WTD) (Table 3.2).  

Similarly, the host feeding patterns observed for Ae. canadensis, Ae. flavescens, Ae. 
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triseriatus, Cs. inornata and Co. perturbans suggest that the main blood source for 

mosquitoes at the forest site was WTD. 

Most (74%) of the engorged mosquitoes collected at the farm site were Ae. 

vexans the majority of which (70%) fed on WTD, although other blood sources were 

also utilized including cow, dog, rabbit and human (Table 3.3).  With the notable 

exception of the two Culex species, most of the mosquitoes collected at the farm site 

were decidedly mammophilic.  Culex tarsalis was the second most numerous mosquito 

species collected at the farm site and utilized a wide range of host animals (Table 3.3).  

Only 16% of Cx. tarsalis blood meals were from WTD.  The majority of Cx. tarsalis 

blood meals (56%) were avian-derived.  Robins, house sparrows, and grackles 

constituted >60% of all avian-derived blood meals taken by Cx. tarsalis.  Even so, the 

bird species composition (N=9) within Cx. tarsalis blood meals was diverse.  Culex 

pipiens also seem to feed preferentially on birds although the numbers collected were 

low (Table 3.3). 

Parasite Detection 

From the 255 blood meals derived from WTD, we suspected we might find 

DNA evidence for two parasite species; namely, Setaria yehi, a mosquito-borne 

filarioid nematode of North American cervids, and Babesia odocoilei, a tick-borne 

hemosporidian of WTD.  We found no DNA evidence of either parasite in mosquito 

blood meals.   

From the 24 blood meals derived from birds, we suspected we might find DNA 

evidence for two parasite groups; namely, filarioid nematodes (i.e., blood microfilariae) 

and hemosporidians (i.e., Plasmodium, Leucocytozoon or Haemoproteus).  None 
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contained filarioid or Haemoproteus DNA.  However, three (12%) of the 24 bird-

derived blood meals contained Leucocytozoon DNA and 12 (50%) contained 

Plasmodium DNA (Table 3.4).  Leucocytozoon DNA was present in two of the four 

blood meals taken from Common Grackles and one of the five blood meals taken from 

American Robins (Turdus migratorius).  Plasmodium DNA was present in three of the 

six blood meals taken from American Robins, all four blood meals taken from 

Common Grackles, one of the three blood meals from Cedar Waxwings (Bombycilla 

cedrorum), three of the five blood meals from House Sparrows, and the single blood 

meal taken from Green Heron (Butorides virescens).  When the 12 Plasmodium DNA 

sequences were compared with DNA sequences available from the NCBI database, two 

separate Plasmodium lineages emerged, both without formal species status.  One 

lineage was present in a Cx. tarsalis blood meal taken from an American Robin.  This 

lineage was 99% identical to the sequence of a Plasmodium isolate recovered from a 

White-throated Thrush (Turdus assimilis) in Costa Rica (Accession JN819347).  The 

other 11 Plasmodium sequences were identical to each other and to the sequence of a 

Plasmodium isolate recovered from a Barred Owl (Strix varia) in Wisconsin 

(Accession EU627827).  The fact that the second Plasmodium lineage was recovered 

from blood meals derived from 4 different families of passerine birds, a heron and an 

owl indicates that this particular Plasmodium lineage has a broad host range.  Three of 

the 12 blood meals (25%) contained both Plasmodium and Leucocytozoon DNA, 

including one blood meal from an American Robin and two blood meals from Common 

Grackles.  This suggests that haemosporidian polyparasitism among some passerine 

species within the RRV may be common. 
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Discussion 

Molecular analyses of blood meals from wild-caught mosquitoes yielded new 

information on local zoonotic disease ecology.  First, PCR and sequencing of vertebrate 

mitochondrial genes yielded information on the blood feeding patterns of local 

mosquito species.  This is important in defining the transmission ecology of mosquito-

borne diseases within a region and helps predict the likelihood of success for exotic 

mosquito-borne pathogens that may move into a region.  For example, we found that 

deer were the main blood source for many aedine mosquito species in the RRV.  This 

presents a favorable ecological setting for certain arboviruses such as Jamestown 

Canyon virus (see Andreadis et al. 2008) or perhaps even Rift Valley fever virus (see 

Iranpour et al. 2011) should these arboviruses become introduced in the RRV.     

Second, once the host origin of a blood meal was identified, it was then possible 

to target the types of hemoparasites that might be present within a particular blood 

meal.  By using different primer sets on the same DNA extracts, we were able to link 

the presence of certain hemoparasites to specific vertebrate species (i.e., molecular 

xenomonitoring).  Although mosquitoes are the raw material for analyses, it is 

important to remember that molecular xenomonitoring does not provide information on 

a mosquito’s ability to transmit the hemoparasites it has ingested (i.e., molecular 

xenomonitoring is not vector competence).  Molecular xenomonitoring merely 

substitutes for the direct capture and bleeding of vertebrates and thus it should be 

interpreted as an indirect way of estimating the prevalence and diversity of 

hemoparasites circulating within specific vertebrate populations.  Because it is an 

indirect measurement, the accuracy and reliability of molecular xenomonitoring can be 
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influenced by several factors including obvious things such as the age of the blood meal 

and the sample size, as well as less-obvious factors such as sample processing and the 

unique biology of the hemoparasite and host under investigation. 

For example based on the assays of 288 deer-derived blood meals, we found no 

evidence of Babesia or filaroid nematode infections in the local WTD population.  This 

may indeed be the case for B. odocoilei because the vector tick, Ixodes scapularis, has 

only recently become established in the RRV (Russart and Vaughan, unpubl. data).  

However, the reliability of our xenomonitoring to assess microfilarial infections in 

WTD is less certain.  Reported prevalences of the cervid filarioid, S. yehi, in WTD are 

16% (n=84) and 27% (n=1,045) from Illinois and the southeastern USA, respectively 

(Prestwood and Pursglove 1977, Cook, et al. 1979).  The prevalence of S. yehi in 

California black-tailed deer is 40% (n=488) (Weinmann, et al. 1973).  Thus, one would 

expect that xenomonitoring of 288 deer-fed mosquitoes would result in detecting at 

least some S. yehi parasites.  However, there are two confounding factors related to the 

biology of the parasite and the size of the host.  First, S. yehi microfilariae quickly 

penetrate the midgut after ingestion by Aedes spp. mosquitoes (Lee 1971).  Engorged 

mosquitoes in our studies, many of which likely fed at night, were collected in the 

morning and transported to the laboratory prior to dissections.  The delay between 

mosquito ingestion of deer blood and mosquito dissection may have allowed 

microfilariae sufficient time to exit the midgut and escape detection.  Second, deer are 

large animals and a single animal can serve as the blood source for many mosquitoes.  

Thus, the prevalence of pathogens within the blood meals of mosquitoes feeding on 

large herding animals (particularly if mosquitoes were collected at the same time and 
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location) may not directly correlate with the prevalence of pathogens within the 

vertebrate population in general.  This is probably of lesser concern when considering 

pathogens within blood meals derived from small or solitary host species. 

We also failed to detect filarioid nematode DNA in avian-derived blood meals.  

In this case, concerns over microfilariae exiting the midgut and escaping detection are 

unwarranted because only a small fraction of ingested passerine microfilariae 

successfully exit the midguts of local Culex mosquitoes (Vaughan et al. 2012).  Failure 

to detect filarioid DNA in avian-derived blood meals was most likely due to the low 

number of samples represented per bird species.  The greatest numbers of con-specific 

blood meals were from American Robins (n=6), House Sparrows (n=5) and Common 

Grackles (n=4) (Table 3.4).  But the estimated prevalence of filarioid infections for 

these bird species within the RRV is less than 20% (Vaughan et al. 2012).  Such small 

samples sizes fall below the theoretical limit of detection.  Obviously, the use of 

molecular xenomonitoring to detect low prevalence infections among a diverse 

community of host species requires larger sample sizes than those used here.   

In contrast, molecular xenomonitoring detected haemosporidian infections in 12 

of the 24 avian-derived blood meals examined (Table 3.4), indicating a high prevalence 

of haemosporidian infections in local bird populations.  The dominant haemosporidian 

consisted of a single lineage of Plasmodium capable of infecting a broad taxonomic 

range of birds.  Active transmission of this Plasmodium lineage almost certainly 

occurred at this site as indicated by the high abundance of an ornithophilic and 

competent vector (e.g., Culex tarsalis; see Work, Washino and Van Riper 1990) and 

the fact that three of the five blood meals containing House Sparrow blood also 
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contained Plasmodium DNA.  Unlike other bird species identified in this study, House 

Sparrows are non-migratory residents and thus are unlikely to have acquired their 

infections elsewhere. 

In addition, a substantial proportion (25%) of haemosporidian infections within 

mosquito blood meals consisted of Plasmodium and Leucocytozoon, indicating that 

polyparasitism of local birds was common.  The MMX traps used to collect mosquitoes 

also collected enormous numbers of black flies.  Black flies are the vectors of 

Leucocytozoon parasites (Valkiunas 2005).  A large sample (>800) of black flies was 

examined.  All belonged to a single ornithophilic species, Simulium johannseni.  Their 

appearance in late May and early June corresponded temporally with the detection of 

Leucocytozoon in avian-derived blood meals (Table 3.4).  Thus in addition to 

Plasmodium, active transmission of Leucocytozoon may also have occurred at the site.   

 One of our objectives was to use molecular xenomonitoring to link specific 

parasites to specific host species.  In the case of haemosporidia in avian-derived blood 

meals, the link was definitive (Table 3.4) because of the way in which mosquitoes were 

processed– i.e., blood meal contents were removed from mosquito midgut tissue prior 

to nucleic acid extraction.  Alternative ways in which engorged mosquitoes can be 

processed for DNA extraction include using whole mosquitoes or whole abdomens 

separated from the head/thorax region.  The optimal method depends on the object of 

the study.  If the object is merely to identify the vertebrate host origin of the blood, then 

the quickest method (i.e., whole mosquito) may be preferred.  However if the object is 

to link blood meal pathogens to the vertebrate species from which the blood originated, 
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then the method of sample preparation should be dictated by the type of pathogen being 

monitored.   

There are five types of pathogens that can be taken up in a mosquito blood 

meal; arboviruses, bacteria, trypanosomes, hemosporidians and microfilariae.  With 

bacteria and trypanosomes, it does not matter if the mosquito is dissected.  That is 

because blood-borne bacteria (e.g., rickettsiae, spirochetes, etc.) and most 

trypanosomes either never leave the mosquito digestive tract or, if they do (e.g, 

Salivaria trypanosome Trypanosoma brucei), they do not exit the gut until the blood 

meal has been digested beyond the point of accurately determining its vertebrate origin.   

With hemosporidia and arboviruses, it is crucial to rid the sample of mosquito 

midgut tissue prior to extraction.  As part of their normal development, hemosporidian 

oocysts stay attached to the outside of the gut for many days.  Similarly, arborviruses 

infect midgut epithelium long after the viremic blood meal has been digested and the 

mosquito has oviposited.  If an oocyst or arbovirus-infected mosquito takes a second 

blood meal from a different host species, then confusion may arise as to the host origin 

of the pathogen.  For example, Ejira et al. (2011a, b) identified avian Plasmodium DNA 

in the severed abdomens of engorged mosquitoes containing blood identified 

molecularly as being from cow and sitka deer.  Avian Plasmodium DNA could not 

have originated from the blood of a ruminant.  Instead it probably originated from 

oocysts attached to the outside of the midguts (i.e., previous blood meal from a bird), 

not from the blood inside the midguts.  Similarily, Santiago-Alarcon et al. (2012) 

analyzed severed abdomens of 105 engorged Culicoides gnats.  Four were concurrently 

positive for the DNA of humans and the DNA of avian Plasmodium and Haemoproteus 
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parasites.  Since avian hemosporidians do not infect humans, the only logical sequence 

of events that could account for such a result would be if the gnats had first fed on 

gametocytemic birds, the parasites underwent sporogonic development to oocysts and 

then the infected gnats fed on a human.  Without first separating the ingested blood 

from midgut tissue, it is impossible to unequivocally link a hemosporidian species (or 

an arbovirus) identified in an engorged abdomen to the vertebrate host species 

represented within the blood meal.  

The filarioid nematodes are the most problematic because the nematodes' 

location within the mosquito can vary.  In some filarioid/mosquito combinations, most 

if not all ingested microfilariae exit the bloodmeal into the hemocoel within hours after 

being ingested (Wharton 1957, Laurence and Pester 1961).  In other combinations, few 

if any succeed in leaving the midgut (Ewert 1966, Zielke 1992).  To account for such 

variability, severing abdomens from thorax might be the preferred method. 

In summary, we successfully used DNA recovered from the midguts of wild-

caught mosquitoes to simultaneously determine the host feeding patterns of local 

mosquitoes and conduct a survey of blood-borne parasites within local wildlife.  

Careful examination of relatively few specimens yielded important new information 

about the local transmission of avian hemosporidian parasites.  Application of this 

technique can contribute to an increasing understanding of the transmission ecology of 

zoonotic diseases.  However, certain considerations should be taken into account 

regarding how samples from the field are prepared prior to the extraction of nucleic 

acids. 
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Table 3.1. Primers used in molecular analyses of mosquito blood meals. 

 

Target Organism Target Gene Primer Name       5’-3’ Primer Sequence 
Amplicon Size 

(bp) 

Vertebrate* 
mtDNA 

cytochrome b 
Forward- Cyt b GAGGMCAAATATCATTCTGAGG 457  

Vertebrate
*
 

 

mtDNA 

cytochrome b 

Reverse- Cyt b TAGGGCVAGGACTCCTCCTAGT 457  

Vertebrate* 

 

mtDNA  

cytochrome 

oxidase 1 

Forward- COI_long AACCACAAAGACATTGGCAC 663  

Vertebrate* 

 

mtDNA 

cytochrome 

oxidase 1 

Reverse- COI_long AAGAATCAGAATARGTGTT 663  

Vertebrate* 

mtDNA 

cytochrome 

oxidase 1 

Forward- COI_short GCAGGAACAGGWTGAACCG 324  

Vertebrate
*
 

mtDNA 

cytochrome 

oxidase 1 

Reverse- COI_short AATCAGAAYAGGTGTTGGTATAG 324  

 

Filaria 

 

18s rRNA 

 

Forward- Chand FO 

 

GAGACCGTTCTCTTTGAGGCC 
580  

 

Filaria 

 

18s rRNA 

 

Reverse- Chand RO 

 

GTCAAGGCGTANNTTTACCGCCGA 
580  

Babesia 18s rRNA 

 

Forward- BabF  

1102-1122 

GACTAGGGATTGGAGGTCGTC 
739 & 

240  

Babesia 18s rRNA 
Reverse- BabR 

 1841-1818 
GACCACCACCCAAAGAATCAA 739  

Babesia 18s rRNA 
Reverse- BabR  

 1342-1318 
GGTCCGAATAATTCACCGGATCAC 240  

Haemosporidia** 
mtDNA 

cytochrome b 
Forward- HaemNFl CATATATTAAGAGAAITATGGAG 570  

Haemosporidia** 

 

mtDNA 

cytochrome b 

Reverse- HaemNR3 ATAGAAAGATAAGAAATACCATTC 570  

Leucocytozoon
** 

 

mtDNA 

cytochrome b 

Forward- HaemFL ATGGTGTTTTAGATACTTACATT 478  

Leucocytozoon
** 

 

mtDNA 

cytochrome b 

Reverse- HaemRL2 CATTATCTGGATGAGATAATGGIGC 478  

Plasmodium / 

Haemoproteus
**

 

 

mtDNA 

cytochrome b 

Forward- HaemF ATGGTGCTTTCGATATATGCATG 480  

Plasmodium / 

Haemoproteus
**

 

 

mtDNA 

cytochrome b 

Reverse- HaemR2 GCATTATCTGGATGTGATAATGGT 480  

*  Townzen et al. 2008  ** Hellgren et al. 2004  



 

 

Table 3.2. Mosquito feeding habits at the Forest site in 2009 and 2011, Steel Co., ND, USA. 

Host 
Ae.  

excrucians 

Ae.  

triseriatus 

Ae.  

vexans 

Ae.  

canadensis 

Ae.  

flavescens 

Cs.  

inornata 

Co. 

perturbans 
Total 

White-tailed deer 104 17 3 2 1 6 3 136 

Cow 2     2 1 
 
5 

Human 1      1 
 

2 

Raccoon 2       
 

2 

American Mink       1 
 
1 

 

Common Yellow-
throat 

1       
 

1 

Total 110 17 3 2 1 8 6 
 

147 1
1

9
 



 

 

Table 3.3. Mosquito feeding habits at the farm site in 2010 and 2011, Steele Co., ND, USA. 

  

Host Cx. 

tarsalis 

Cx. 

pipiens 

Ae. 

canadensis 

Ae. 

dorsalis 

Ae. 

excrucians 

Ae. 

flavescens 

Ae. 

triseriatus 

Ae. 

vexans 

Cs. 

inornata 
Total 

Deer 5  11  1  3 125 4 149 

Cow 1      1 21  23 

Dog 5   2  1 1 14  23 

Cat   2   1 2 1 1 7 

Rabbit 2       11  13 

Human 1      1 4  6 

AmericanRobin 5  1       6 

House Sparrow 5         5 

Cedar Waxwing 3         3 

Mourning Dove        1  1 

AmericanGoldfinch 1         1 

Chipping 

Sparrow 
1         1 

Cliff  

Swallow 
1         1 

CommonGrackle 1 3        4 

Green  

Heron 
1         1 

Total 32 3 14 2 1 2 8 177 5 244 

1
2

0
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Table 3.4. Detection of haemosporidian DNA within mosquito blood meals of avian 

origin. Steele Co., ND, USA. 

 

 

 

  

 

Month 

 

Day 

 

Year 

 

Mosquito Species 

 

Avian Host Species 

 

Plasmodium 

 

Leucocytozoon 

June 9 2010 Ae. vexans Mourning Dove   

  11 2011 Cx. pipiens Common Grackle + 
 

+ 

 11 2011 Cx. pipiens Common Grackle + 
 

 

 17 2011 Cx. pipiens Common Grackle + 
 
 

 17 2011 Ae. canadensis American Robin + 
 

+ 

July 1 2010 Cx. tarsalis Common Grackle + 
 

+ 

 1 2010 Cx. tarsalis Green Heron + 
 

 

 7 2010 Cx. tarsalis Cliff Swallow  
 
 

 7 2010 Cx. tarsalis American Robin + 
 

 

 8 2010 Cx. tarsalis American Robin  
 
 

 8 2010 Cx. tarsalis House Sparrow  
 

 

 15 2010 Cx. tarsalis American Robin + 
 
 

 15 2010 Cx. tarsalis American Robin  
 

 

 26 2010 Cx. tarsalis American Robin  
 
 

August 2 2010 Cx. tarsalis Chipping Sparrow  
 

 

 6 2010 Cx. tarsalis American Goldfinch  
 
 

 6 2009 Ae. excrucians Common Yellowthroat  
 

 

 6 2010 Cx. tarsalis Cedar Waxwing + 
 
 

 6 2010 Cx. tarsalis Cedar Waxwing  
 

 

 6 2010 Cx. tarsalis Cedar Waxwing  
 
 

 6 2010 Cx. tarsalis House Sparrow + 
 

 

 6 2010 Cx. tarsalis House Sparrow + 
 
 

 6 2010 Cx. tarsalis House Sparrow  
 

 

 8 2010 Cx. tarsalis House Sparrow +  
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Figure 3.1. Xenomonitoring PCR using 18s rRNA gene. A.) Lane 1- ladder, lane 2- avian 

filarid (Eufilaria sp.), lane 3- frog filarid (Waltonella sp.), lane 4- avian filarid 

(Chandlerella sp.), lane 5- engorged Cx. pipiens (host=mouse), lane 6-mouse blood, lane 

7- unengorged Ae. vexans.  B) Sensitivity of PCR to Ch. quiscali microfilaria in sample.  

Lane 1- ladder, lanes 2-12 represeting 128, 64, 32, 16, 8, 4, 2, 1, 0.5, 0.25 and 0.125 

microfilaria respectively.  PCR is sensitive to pick up less than 1 microfilaria in each 5µl 

sample. 

 



123 

 

EPILOGUE 
 

Summary of Research Findings 
 

 Mosquitoes in the Great Plains are highly understudied, especially in the state of 

North Dakota.  Although there have been a handful of papers discussing the mosquitoes 

in the Red River Valley (RRV), they have been limited to only the city limits of Grand 

Forks, North Dakota.  Also, incomplete and inaccurate mosquito identifications have 

made the records and information provided unreliable.  These inaccuracies provide an 

unstable foundation on which to build solid statements about the mosquitoes of the 

region and the potential role in disease transmission in wildlife, livestock and humans.  

The research described here had three main objectives 1) Identify the species 

composition between two rural habitats, 2) Determine which meteorological variables 

have impacts on day-to-day and time-lagged mosquito counts and 3) Analyze mosquito 

blood meals for host feeding habits and blood-borne parasite DNA.   

 The goal of the first chapter was to collect and identify mosquitoes collected 

from Farm and Forest habitats.  I identified over 125,000 mosquitoes from the two sites 

belonging to 20 different species.  The two sites shared 13 species between the two, yet 

the Forest site had a greater diversity of mosquito species.  This suggests that even 

though forested regions within North Dakota are few and far between, the mosquito 

populations within these areas are more numerous than agricultural sites.  This study 

also provided a comparison between mosquito collection techniques for both host-
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seeking and engorged, resting mosquito populations.  Mosquitoes actively looking for 

vertebrate hosts were collected in the CO2-baited MMX traps while mosquitoes that 

had previously taken blood and were digesting and producing eggs were collected at a 

higher frequency via aspiration.   

 In addition to revealing the species composition between these two study sites, I 

also used multiple meteorological variables in regression modeling to determine their 

influence on adult, host-seeking mosquito activity.  While these day-to-day models are 

interesting, they do not provide long range predictive efficacy.  To increase predictive 

range, cross-correlation map (CCM) analyses were utilized.  CCMs provided the ability 

to perceive mosquito count responses to meteorological variables ranging from 1-30 

days prior to trap date.  Not only do different mosquito species respond uniquely to 

varying meteorological factors, but mosquitoes of the same species respond differently 

given the habitat they reside within.  Ae. vexans populations from the Forest and Farm 

sites were highly correlated to similar meteorological variables (precipitation, minimum 

temperature, relative humidity), yet the correlation between counts and variables was 

less significant at the Farm site.   This may be the result of a higher exposure to the 

elements of climate at the Farm site that the Forest site may not be as exposed to, such 

as wind affects.  It also appears that while viewing mosquito species grouped together 

(using non-species specific trap counts), the CCMs tend to favor the correlations of the 

most prevalent mosquito species in the habitat.  By identifying individual species 

responses to meteorological variables, it allows some insight to the composition of 

mosquito counts that, at the time of collection, were not identified to species. 
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 The third chapter of this study provides critical information about the feeding 

habits of local mosquito species.  Not only is this information important to determine 

which mosquito species commonly feed upon humans, but also provides details on the 

feeding habits of mosquitoes that do not often encounter human blood sources.  Aedine 

mosquitoes inhabiting these two rural sites commonly fed upon one of the most 

numerous mammals present, white-tailed deer.  The local Culex population displayed a 

much wider variety of hosts, 60% avian and 40% mammalian.  While avian samples 

were more common that mammalian blood meals, there was no one bird species that 

was preferred.  Xenomonitoring of blood meals for hemoparasites was also used to 

determine if parasite DNA could be recovered from mosquitoes.  While no 

mammalian-dervied blood meals contained filarial nematode DNA nor haemosporidian 

DNA, avian samples provided some positive results.  Avian Plasmodium DNA was 

recovered from 12 of 24 bird-derived blood meals.  In addition, three of the avian blood 

meals that contained Plasmodium also showed successful amplification of 

Leucocytozoon DNA, proving there is blood-borne polyparacitism in local bird species. 

Future Studies 
 

 While this research provides the foundation to many aspects to mosquito 

ecology, disease biology and pathogen transmission, there are many potential studies or 

areas of this research that may be expounded.  The two major areas of future direction I 

am most interested include 1) A more intense collection and study of engorged 

mosquitoes and 2) Incorporation of CCM data into regression modeling to allow for 

mosquito abundance forecasting. 
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 Engorged mosquitoes provide a source of data that can be used in multiple 

studies such as species composition.  By not specifically targeting host-seeking 

mosquitoes, many mosquito species can be recovered by collecting engorged 

mosquitoes in habitats where they are likely to be resting and digesting blood meals.  

This study did offer some insight to the feeding habits of Culex mosquito populations in 

the RRV, the sample size of this study is low.  By focusing efforts on the aspiration 

collection method, we can more intensely study the Culex populations that act as the 

local vectors of West Nile virus and likely avian Plasmodium.  Viral pathogen detection 

within mosquito blood meals could also be added to the regime of xenomonitoring.   

 Not only are engorged blood meals important sources of parasite DNA, but they 

can also offer potential research opportunities in blood meal digestion/DNA recovery 

studies.  From this study, we know that not every mosquito that contains blood provides 

ample DNA for amplification.  By developing a grading scale of the degraded blood 

meal, we can potentially identify day of the feeding or age of the blood meal as well as 

determine a cut off point to which blood meals should no longer be used as DNA 

sources for PCRs to identify vertebrate hosts or xenomonitoring. 

 Another potential branch of this research is to combine results of CCMs and 

regression based modeling.  CCMs provide correlation between trap counts and 

meteorological variables ranging from 1-30 days before trap date.  Upon identification 

of significant time-lagged correlations between trap counts and weather variables, the 

values of the meteorological variables over the range of significantly correlated dates 

can be incorporated into the full regression models.  By determining these correlated 
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dates and incorporating the values into regression models we can forecast at a higher 

level of specificity how mosquito populations will be affected by weather. 
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