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ABSTRACT 

 A-Kinase Anchoring Proteins (AKAPs) comprise a family of roughly 70 scaffolds 

that anchor PKA and other enzymes to a variety of subcellular compartments. Although 

characterized as “anchoring proteins”, some AKAPs are not spatially and temporally 

static but can undergo dynamic subcellular trafficking, thus repositioning anchored 

enzyme complexes within the cell. Gravin (also called SSeCKS or AKAP12) anchors 

PKA and other enzymes to the plasma membrane but redistributes to the cytosol upon 

intracellular calcium ([Ca
2+

]i) elevation. However, the impact of gravin redistribution on 

PKA-dependent signaling pathways is poorly understood. We hypothesize that through 

Ca
2+

-mediated redistribution, gravin facilitates cross-talk between Ca
2+

-dependent and 

PKA-dependent pathways.  

 First, we tested this by characterizing the impact of [Ca
2+

]i elevation on the 

distribution of gravin and PKA. In cells expressing gravin-EGFP, [Ca
2+

]i elevation with 

ionomycin or thapsigargin caused gravin redistribution from the cell periphery to the 

cytosol in as little as 60 seconds. ATP treatment also triggered gravin redistribution 

through receptor-mediated pathways involving both [Ca
2+

]i and PKC. Gravin 

redistribution in response to ionomycin, thapsigargin, and ATP each triggered the gravin-

dependent loss of PKA localization at the cell periphery. In addition, we also found that a 

fourth putative calmodulin binding domain, which we call CB4 (a.a. 669-693), is 

essential for localization of gravin to the cell periphery. Either deletion of the CB4 
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domain or mutation of a calmodulin-binding consensus sequence within the CB4 domain 

disrupted the membrane localization of gravin.  

 Next, we measured the impact of exogenous gravin-V5/His expression on 

compartmentalized PKA activity using the PKA FRET biosensor AKAR3. Expression of 

gravin-V5/His in AN3 CA cells, which lack endogenous gravin, caused an increase in 

forskolin-stimulated PKA activity at the plasma membrane when compared to control 

cells lacking gravin. Under these conditions, gravin also decreased PKA activity in the 

cytosol. Gravin’s impact on subcellular PKA activity required both interaction with PKA 

and localization at the cell periphery. Pre-treatment with the [Ca
2+

]i elevating agent 

thapsigargin caused gravin redistribution and inhibited gravin-mediated elevation of PKA 

activity the plasma membrane. These results support the hypothesis that gravin mediates 

crosstalk between Ca
2+

-dependent and PKA-dependent signaling pathways. 
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CHAPTER I 

INTRODUCTION 

A-Kinase Anchoring Proteins  

 The most fascinating characteristic of the cell is its ability to transduce 

extracellular inputs into very specific outputs through complicated networks of signaling 

proteins, molecules and ions. Intracellular signal transduction is fundamental to cellular 

homeostasis and relies on precise physical interactions between proteins within an input-

directed signaling cascade. Many signaling proteins have a range of downstream targets 

but no intrinsic ability to specify which of these targets are appropriate for a given input. 

How do cells facilitate the specificity of signaling proteins? In part, the answer to this 

question lies in the spatial positioning of signaling proteins in close proximity to specific 

downstream effectors (Good, Zalatan, & Lim, 2011). A prototypical example of this is 

found in the A-Kinase Anchoring Proteins, or AKAPs, a specialized family of over 70 

scaffolds which play an important role organizing intracellular signaling networks 

(Welch, Jones, & Scott, 2010).  

 AKAPs share two common structural characteristics: the ability to bind cAMP-

dependent Protein Kinase A (PKA) and the ability to localize within a specific 

subcellular compartment. This localization “anchors” PKA in proximity to downstream 

substrates for phosphorylation, thereby providing spatial and temporal specificity to 

PKA-dependent signaling. PKA is a holoenzyme consisting of two catalytic (C) subunits 

that are bound to two regulatory (R) subunits. AKAPs bind to the R subunit through a 
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conserved amphipathic helical domain, and upon activation by 3’-5’-cyclic adenosine 

monophosphate (cAMP), the R subunit releases the C subunit to phosphorylate substrate 

proteins nearby. The interaction of AKAPs with PKA is critical to many PKA-dependent 

processes. In fact, studies now show that disrupting AKAP-PKA interaction can have the 

same effect as inhibiting PKA directly (Nijholt et al., 2008; Schillace et al., 2009; Y. 

Wang, Chen, Chen, & Xu, 2006). Since PKA is predicted in Homo sapiens to 

phosphorylate over 900 sites on 240 different proteins (Gao, Jin, Ren, Yao, & Xue, 

2008), the apparent control of AKAPs over PKA signaling gives AKAPs a powerful role 

in regulating many cellular functions. 

 Equally important to AKAP function is the subcellular localization motif, which 

is varied among AKAPs and targets each to a specific compartment. These include the 

plasma membrane, mitochondria, Golgi apparatus, nuclear envelope, and cytosolic 

vesicles, or to other localized proteins such as cytoskeletal proteins, centrosomal proteins, 

or membrane receptors (Wong & Scott, 2004). AKAPs target PKA to these subcellular 

compartments and facilitate the PKA-dependent phosphorylation of substrates in close 

spatial proximity within these compartments. In addition, many AKAPs bind not only 

PKA, but a host of other kinases, phosphatases, and regulatory enzymes that may act 

independently or within an anchored multiprotein signaling complex in which substrates 

and downstream effectors are bound to the a single AKAP. One example of an anchored 

multiprotein signaling complex is found in AKAPs that bind both PKA and 

phosphodiesterase type 4D (PDE4D), a PKA substrate that hydrolyzes cAMP to 

adenosine monophosphate. Upon elevation of [cAMP], activated PKA phosphorylates 

PDE4D to enhance PDE4D activity. As a result, PDE4D activity causes the rapid 
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decrease in [cAMP], forming a negative feedback loop for [cAMP] elevation (Dodge et 

al., 2001).  

 Given the important physiological relevance of PKA signaling, the apparent 

control of PKA signaling by AKAPs, and the multitude of other enzymes bound to 

AKAPs, we expect the study of AKAPs will yield a robust understanding of cellular 

signaling in many cell and tissue contexts. The subject of this dissertation is the AKAP 

gravin, which is implicated to have a broad range of physiological roles. By examining 

the molecular signaling events in which gravin participates, my hope is to gain 

mechanistic insights into gravin’s role in health and disease. 

Gravin 

 Gravin, a 300kD AKAP, was discovered in the early 1990s while screening an 

endothelial expression library with serum from a patient with myasthenia gravis (Gordon 

et al., 1992). Subsequently, gravin expression has been detected in a variety of cells and 

tissues and has been implicated to play a role in cancer, vascular biology, cardiac 

function, learning and memory, inflammation, and tissue injury. However, the 

mechanism(s) behind these diverse roles are poorly understood, and this lack of 

knowledge is a serious barrier to potential therapeutic applications. Three isoforms of 

gravin (α, β, and γ) seem to vary in subcellular localization, but the canonical α-isoform 

is targeted to the plasma membrane where it is thought to facilitate not only PKA-

dependent signaling, but signaling involving additional binding partners such as other 

kinases, regulatory enzymes, and β2-adrenregic receptor. Although gravin localizes PKA 

and other enzymes to the plasma membrane, it is known to undergo redistribution away 

from the plasma membrane in response to either elevation of intracellular calcium 
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concentration ([Ca
2+

]i) or upon activation of protein kinase C (PKC). Because AKAPs 

function in the spatial and temporal positioning of signaling enzymes, the redistribution 

of gravin may have a profound impact on how enzymes that bind to gravin, such as PKA, 

interact with specific downstream effectors. By changing its distribution in subcellular 

space, we postulate that gravin facilitates a crosstalk mechanism in which Ca
2+

 elevation 

and/or PKC activation can alter interaction of enzymes bound to gravin with their 

respective downstream targets. 

Orthologues, Isoforms, and Nomenclature 

 Within the human genome, gravin is located on the q24-25.2 locus of 

chromosome 6 and contains six exons that are differentially spliced into three distinct 

isoforms, each with its own promoter (Streb, Kitchen, Gelman, & Miano, 2004; Streb & 

Miano, 2005). All three isoforms share exons 5 and 6, which makes up ~95% of the 

amino acid sequence. The canonical isoform, gravin-α, is a 1782 amino acid protein 

product with its N-terminal sequence derived from exons 1 and 2. These exons comprise 

an 88 amino acid region unique to gravin-α which contains an N-myristoylation sequence 

and a Src binding (PXXP) domain. The -β isoform (1682 amino acids) and the –γ isoform 

(1677 amino acids) contain N-termini from exons 3 and 4, respectively. Gravin-β and -γ 

lack these 88 amino acids, but still retain three polybasic domains (PB1-3) important for 

localization at the plasma membrane. 

 Gravin is expressed in many species including humans (Gordon et al., 1992), 

baboons (Grove, Bowditch, Gordon, del Zoppo, & Ginsberg, 1994), rodents (Frankfort & 

Gelman, 1995), zebrafish (Weiser, Pyati, & Kimelman, 2007) and Xenopus (Klingbeil, 

Frazzetto, & Bouwmeester, 2001). Human gravin was discovered in an endothelial cell 
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expression library screened with serum from a patient with myasthenia gravis, and was 

named gravin accordingly. (Gordon et al., 1992). Gravin was later called AKAP250 

based on sequencing and biochemical data which revealed it to be an A-Kinase 

Anchoring Protein that aligned with a 250 kD marker on polyacrylamide gel (Nauert, 

Klauck, Langeberg, & Scott, 1997). The gravin gene was named AKAP12 by the Hugo 

Gene Nomenclature Committee (HGNC) and has also been used as an identifier of the 

protein product (Xia, Unger, Miller, Nelson, & Gelman, 2001). Gelman and colleagues 

discovered rodent gravin as a target of PKC phosphorylation which was suppressed in 

Src-transformed rat fibroblasts (Lin, Tombler, Nelson, Ross, & Gelman, 1996a). On this 

basis, it was named SSeCKS, or Src-Suppressed C-Kinase Substrate. The orthologous 

relationship between SSeCKS and gravin was not realized initially, but they in fact share 

83% sequence identity within the first 1000 residues and <20% over the remaining C-

terminus. Upon this realization, some authors sought to adapt the nomenclature using 

awkward names like “SSeCKS/gravin/AKAP12”, but in recent years there is growing 

consensus for use of the name “gravin” across species. For example, knockdown mice 

and zebrafish studies have used the word gravin to name the gene target, which is 

especially helpful if multiple species are under investigation within a single study (for 

examples of this, see D. Canton et al., 2012; Guillory et al., 2013; Havekes et al., 2012; 

Isoldi, Provencio, & Castrucci, 2010; Weiser et al., 2007). Therefore, for this dissertation 

I will use the word “gravin” as the overlying nomenclature when referring to previous 

studies and indicate the species as needed. If I give no species specification, my use of 

the name “gravin” will be in reference to the alpha isoform that is expressed in humans.
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Expression in Cells and Tissues 

 Gravin expression is specific to certain cells and tissues, and this distribution 

seems to be consistent across various studies. In general, high expression of gravin is 

seen in nervous tissue, connective tissue, heart, smooth muscle, and gonads, while low or 

restricted expression is found in endothelium and other epithelia. Gravin is also 

differentially expressed during development. The following section will briefly outline 

each of these areas.  

Nervous Tissue 

 Regions of the cerebral and cerebellar cortices show distinct cellular expression of 

gravin, with some reports of Purkinje cell expression and high expression in cells the 

molecular and granular layer of the cerebellum (Gelman, Tombler, & Vargas, 2000; 

Grove et al., 1994; Siegel, Grove, & Carr, 2002). In the hippocampus, gravin is expressed 

in the dentate gyrus as well as CA1 and CA3 regions (Havekes et al., 2012). Astrocytes 

also highly express gravin in an oxygen-sensitive manner (Lee et al., 2003). Siegel et al. 

(2002) additionally showed gravin expression in smaller-sized cell bodies of dorsal root 

ganglia and dorsal horn axons throughout the spinal cord, possibly indicating a role for 

gravin in pain sensation. 

Heart and Vasculature 

 Gravin expression is found in cardiomyocytes but not in cardiac endothelium 

(Guillory et al., 2013). In general, endothelial cells show a restricted expression pattern of 

gravin in vivo. Nearly all endothelial cells show no gravin expression, with the exception 

of hepatic sinusoids and intestinal lacteals (Gelman et al., 2000; Grove et al., 1994; Rung-

Ruangkijkrai, Fujikura, Kitamura, Saito, & Iwanaga, 2004). Gravin is expressed in 
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microvascular endothelial cells in culture (Weissmuller et al., 2014). In addition, gravin is 

expressed in human umbilical vein endothelial cells (HUVECs) in a cell density-

dependent manner (Roy, Schott, and Grove, in preparation), which suggests that gravin 

may be important in vascular homeostasis. Smooth muscle cells also express gravin in 

various locations throughout the body, one of which is in the vasculature (Coats et al., 

2000; Gelman et al., 2000; Grove et al., 1994; Horvat et al., 2012).  

Epithelium 

 Like endothelium, most other epithelial cells do not express gravin with a few 

notable exceptions. Gelman et al. (2000) reported gravin expression in mouse jejunal 

epithelium, columnar epithelium of lung bronchioles, and certain portions of renal 

epithelium. Interestingly, the parietal layer of Bowman’s capsule in the renal glomerulus 

has exceptionally high levels of gravin expression (Gelman et al., 2000; Grove et al., 

1994).  

Connective Tissue 

 Several reports show high gravin labeling in connective tissues both in adulthood 

and during development. Organ capsules have consistently high expression levels, as 

does the mesentery and lamina propria of the gut. The principle cell showing high 

expression in these tissues is the fibroblast, but gravin expression is also reported in 

osteoclasts and chondrocytes (Gelman et al., 2000; Grove et al., 1994).  

Gonads 

 High levels of gravin are found in both the testes and the ovaries. The testis is the 

only reported location for gravin-γ, but gravin-α is also expressed in the testis (Streb et 

al., 2004). Another report shows that Sertoli cells express gravin, as well as spermatids 



8 

(Erlichman, Gutierrez-Juarez, Zucker, Mei, & Orr, 1999). Interestingly, delayed fertility 

was reported in one particular line of gravin knockdown mice (Akakura, Huang, Nelson, 

Foster, & Gelman, 2008) and may indicate the possibility that gravin is important for 

germ cell maturation. In the female mouse, gravin is also highly expressed in the ovaries 

(Lin, Nelson, & Gelman, 2000). 

Miscellaneous  

 Within the kidney, in addition to the various epithelial cells discussed previously, 

high levels of gravin are found in mesangial cells of the glomerulus (Gelman et al., 2000; 

Grove et al., 1994; Nelson, Moissoglu, Vargas Jr, Klotman, & Gelman, 1999). Not far 

away from this location, cells of the adrenal medulla also express high levels of gravin 

(Grove et al., 1994). In the liver, gravin expression is reported not only in hepatic 

sinusoid endothelium, but also in hepatic stellate cells (Gelman et al., 2000; Grove et al., 

1994; Jiang et al., 2008; T. You et al., 2013) 

Expression during Development 

 During mouse development, gravin is highly expressed in mesenchyme and 

around neural precursors like the neural tube, neural crest, and in neural crest-derived 

spinal primordia. Gravin is also expressed in dorsal/ventral surfaces of limb buds and in 

other organs as development progresses (Gelman et al., 2000). In Xenopus laevis, 

Klingbeil et al. (2001) show that gravin is differentially expressed during development. 

Expression of Xenopus gravin begins stage 10 and continues throughout development 

with peak expression seen at stages 11-12. During gastrulation, gravin is distributed in 

posterior mesodermal cells on the dorsal lip of the blastopore (the Spemann organizer). 

As gastrulation progresses, this labeling pattern progressively distributes downward 
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around the blastopore circumference. During Xenopus neurulation, gravin is expressed in 

the forebrain and on two bilateral neuroectodermal stripes at the midbrain/hindbrain 

boundary. Gravin is also found in the notochord, spinal cord, and in mandibular neural 

crest cells. At later stages of development, Xenopus embryos show predominant labeling 

in the heart and notochord (Klingbeil et al., 2001). The role of gravin in Xenopus 

development is completely unknown, but an interesting study by Weiser et al. (2007) 

suggests a critical role for gravin during gastrulation in zebrafish (Danio rerio). In this 

study, antisense morpholino knockdown of gravin dramatically reduced anterior-posterior 

axis extension by blocking the extension of paraxial mesodermal cells lateral to the 

notochord. This resulted in defective formation of the heart, pancreas, and liver.  

Role of Gravin in Health and Disease 

 Many studies suggest that gravin plays a broad physiological role in health and 

disease. The majority of these studies are expression-based, and the lack of mechanistic 

insight provides a serious barrier to therapeutic application. Nonetheless, the apparent 

role of gravin in health and disease is quite impressive, not only in terms of the broadness 

of its impact, but also the importance that these physiological processes represent in 

human health. The following section will highlight what is known about gravin’s role in 

health and disease states.  

Regulation of Gravin Expression in Cancer 

 Oncogenic kinases v-Src and v-Jun induce tumorigenic phenotypes marked by 

mitogenic dysregulation and cytoskeletal remodeling in rodent fibroblasts. Early on, 

Gelman and colleagues discovered that Src- and Jun-induced transformation of these 

cells was accompanied by suppressed gravin expression (Frankfort & Gelman, 1995; Lin 
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et al., 1996a; Nelson & Gelman, 1997). Importantly, the re-expression of exogenous 

gravin in these transformed rat fibroblasts inhibited mitogenic dysregulation by reducing 

soft-agar growth and dramatically reducing proliferation rate. (Cohen, Waha, Gelman, & 

Vogt, 2001; Lin & Gelman, 1997). Subsequently, downregulation of gravin in cancer 

tissues has been widely reported. For example, microarray studies show suppressed 

gravin expression in cancerous lung (Tessema et al., 2008), thyroid (Wasenius et al., 

2003), colon (Yildirim et al., 2013), and liver (Goeppert et al., 2010). Other studies show 

that gravin is suppressed in cancers derived from stomach (M. C. Choi et al., 2004), 

pancreas (Cao et al., 2004; Mardin et al., 2010), breast (Vaidya & Welch, 2007), skin 

(Bonazzi, Irwin, & Hayward, 2009), blood (Mostafa, Yahia, Abd El Messih, El-Sisy, & 

El Ghannam, 2013; Yildirim et al., 2007), and grade IV astrocytoma (Goeppert et al., 

2013). These studies further reveal that the gravin is often silenced by epigenetic 

mechanisms in many types of cancer, and re-expression can be achieved by treatment 

with the demethylating agent 5’-Aza-dC or with the histone deacetylase inhibitor TSA.  

 Gravin’s gene locus on chromosome six is considered to be a major hotspot for 

deletion in cancers, particularly advanced prostate cancer. Indeed, gravin is readily 

detected in secretory epithelium and the surrounding mesenchyme of normal prostate 

tissue, but is silenced in prostate cancer biopsies and a variety of prostate cancer cell lines 

(Xia et al., 2001). Subsequently, much information has been gained from a model system 

which uses the forced re-expression of exogenous gravin in MatLyLu prostate cancer cell 

lines, which are gravin-deficient. Forced gravin expression in these cells inhibits 

proliferation, soft agar growth, Boyden chamber chemotaxis, and matrigel invasion (Su, 

Bu, Engelberg, & Gelman, 2010; Xia et al., 2001). Injection of these cells into nude mice 
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further revealed that gravin re-expression inhibits tumorigenesis, metastasis, and 

angiogenesis in subcutaneous tumors through the downregulation of VEGF expression 

(Su, Zheng, Vaughan, Bu, & Gelman, 2006). Moreover, prostate tissue from gravin 

knockout mice showed hyperplasia in the anterior and ventral lobes which was 

concurrent with increased expression of markers for proliferation and apoptosis (Akakura 

et al., 2008). Mechanistic insights from these expression studies strongly suggest that 

gravin interacts with PKC, MEK, ERK, MMP-2, and E-cadherin pathways in prostate 

cancer. However, the precise nature of gravin’s interaction with these signaling mediators 

in cancer progression is poorly understood.  

Regulation of β2-adrenergic Receptor Sensitivity 

 Gravin’s influence over β2-adrenergic receptor (β2AR) signaling has been studied 

extensively in the context of receptor resensitization (Reviewed by Malbon, Tao, & 

Wang, 2004). As a result, in vivo studies have now investigated this interplay in the 

hippocampus and the heart. In hippocampal brain slices of gravin-knock down mice, 

Havekes et al. (2012) demonstrated that β2AR mediated synaptic plasticity is altered at 

CA1 synapses. A variety of behavioral tests revealed that gravin knock-down mice 

displayed impairments in fear-conditioned long-term memory formation, and this 

corresponded with a reduction in phosphorylation of β2AR and ERK1/2 (Havekes et al., 

2012). This study correlates well with the notion that gravin regulates β2AR sensitivity 

and sets the stage for future studies to investigate the intracellular dynamics between 

these two proteins in hippocampal learning and memory.  

 In the heart, Guillory et al. (2013) used echocardiography in a different mouse 

model to show that gravin knockdown enhances cardiac contractility under both basal 



12 

conditions and when treated with isoproterenol, a β2AR agonist. Cultured 

cardiomyocytes from these mice had significantly altered calcium dynamics as well, 

implying that gravin may regulate L-type calcium channels or sarcoplasmic reticulum 

ryanodine receptors, both of which are phosphorylated by PKA. Interestingly, gravin 

knockdown caused a dramatic increase in phosphodiesterase activity in response to 

isoproterenol treatment, despite the fact that cellular cAMP levels and PDE4D3/5 

expression were unchanged (Guillory et al., 2013). Although this study raises many 

unanswered questions regarding the role of gravin in cardiac physiology, it is clearly 

linked at least in part to β2AR signaling and will be an area of great interest in future 

research. 

Regulation of Vascular Endothelial Function 

 Grove and Bruchey (2001) reported that gravin binds both PKA and PKC in 

human umbilical vein endothelial cells (HUVECs) and is distributed at the cell periphery 

independent of cytoskeletal proteins (Grove & Bruchey, 2001). Data from our lab have 

further revealed that subconfluent HUVECs readily express gravin, but confluent 

monolayers do not. In fact, scratch wounded confluent HUVEC monolayers showed 

elevated gravin expression at the wound edge, and gravin knockdown under these 

conditions slowed the rate of wound closure (Roy, Schott, and Grove; in preparation). 

This would imply that gravin enhances cellular migration, but the role of gravin in 

endothelial cell migration may be more complicated. For example, Turtoi et al (2010) 

suggested that HDAC7 knockdown in HUVECs leads to gravin overexpression and the 

inhibition of cellular migration (Turtoi et al., 2012). It is clear that gravin plays a role in 

cell migration, but future studies will be required to understand these differential results. 
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 In addition to regulating endothelial cell migration, gravin is also shown to 

regulate endothelial barrier permeability. In human microvascular endothelial cells 

(HMEC), gravin inhibited the formation of endothelial tubules, and in response to GPCR 

agonists, gravin supported endothelial barrier strength (Weissmuller et al., 2014). In 

zebrafish embryos, gravin was also linked to the enhancement of endothelial cell-cell 

contacts (Kwon et al., 2012). Conversely, You et al (2010) showed that gravin may 

promote endothelial permeability in response to inflammatory cytokines. (Q. H. You, 

Sun, Wang, Chen, & Luo, 2010). 

 Gravin may also regulate endothelial cell function through supporting cells that 

associate with the vasculature. For example, gravin regulates vascular endothelial 

function indirectly through gravin-expressing astrocytes at the blood-brain barrier. A 

study by Lee et al. (2003) showed that gravin expression in astrocytes causes VEGF 

downregulation, and that conditioned medium from gravin-overexpressing astrocytes 

suppressed endothelial cell angiogenesis. In addition, conditioned medium from gravin-

overexpressing astrocytes also stimulated the increased expression of tight junction 

proteins in endothelial cells, supporting cell-cell contact and resisting endothelial 

permeability (Lee et al., 2003). These results were confirmed in a similar study using 

gravin-overexpressing astrocytes (Y. K. Choi & Kim, 2008). 

Regulation of Gravin Expression by Inflammatory Mediators 

 Many inflammatory mediators have been shown to increase gravin expression, 

but the physiological impact of this is poorly understood. Lipopolysaccharide (LPS) 

induces gravin upregulation in a variety of adherent cells and tissue models (Cheng et al., 

2007; Kitamura et al., 2002; M. Yan et al., 2007; M. Yan et al., 2014). Gravin 
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upregulation seems to support LPS-mediated production of TNF-α, nitric oxide, iNOS, 

and the phosphorylation of ERK, p38, and JNK. (X. Li et al., 2010; Shao et al., 2011; 

Sun, Cheng, Liu, Shen, et al., 2007; P. Wang et al., 2010). Gravin was also shown to be 

upregulated in response to TNF-α (Pagnotta et al., 2013; M. Yan et al., 2007; Q. H. You 

et al., 2010), TGF-β, and interleukins 1β and 17F (Q. h You, Sun, Wang, Shen, & Wang, 

2010).  

Role of Gravin in Cellular Signaling 

 It is likely that gravin mediates its broad physiological impact by binding to a 

variety of signaling enzymes and targeting them to specific subcellular compartments. 

The following section will overview the mechanistic role of gravin in cells by outlining 

its molecular structure, binding partners, and intracellular localization dynamics. 

Molecular Structure and Subcellular Distribution 

 Gravin has a predicted rod-like structure and binding domains for many different 

molecules (Lin et al., 1996a). Four domains are responsible for plasma membrane 

localization and include a putative N-terminal myristoylation site and three polybasic 

domains located at residues 171–191, 296–316 and 507–536. Whereas the putative 

myristoyl group is added posttranslationally and serves as an N-terminal lipid anchor, 

gravin’s polybasic domains are believed to electrostatically adhere to acidic 

phospholipids of the plasma membrane (Malbon, Tao, Shumay, & Wang, 2004; Resh, 

1999). The polybasic domains also show additional binding affinity for cholesterol, and 

along with the N-myristoylation site support the notion that gravin may localize 

preferentially to lipid rafts of the plasma membrane (M. C. Choi, Lee, Kim, Lee, et al., 

2008; Su et al., 2013). The relative contribution of each of these domains to plasma 
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membrane localization is somewhat complex. Gravin mutants lacking the myristoylation 

site have seemingly normal localization at the cell periphery, as do gravin mutants that 

lack the polybasic domains but retain the myristoylation site (Tao, Shumay, McLaughlin, 

Wang, & Malbon, 2006; X. Yan, Walkiewicz, Carlson, Leiphon, & Grove, 2009). This 

means that the myristoylation site or all three polybasic domains are each sufficient, but 

not necessary for membrane localization. The sufficiency of the myristoylation site for 

membrane localization is surprising given the relatively weak binding energy provided by 

myristoyl groups – other models suggest that membrane binding due to N-myristoylation 

requires other membrane-bound binding regions for support (Resh, 1999). The mechanics 

of gravin membrane localization is important because it plays a central role in regulating 

the interaction of gravin-anchored enzymes with potential downstream substrates. 

Gravin Binds to Protein Kinase A 

  Several studies suggest that gravin anchors a host of signaling enzymes. Gravin 

binds to PKA RIIα through C-terminal amphipathic helical domain, a domain which has 

been shown in other AKAPs to interact with the docking domain (D/D) of RIIα on the 

hydrophobic pocket of AKAP amphipathic helix (Gold et al., 2006; Nauert et al., 1997). 

Gravin-PKA interaction directs PKA RII to the cell periphery and is required for the 

phosphorylation of downstream PKA substrates. Yan et al. (2009) showed that cells 

expressing both gravin-EGFP and PKA RII-ECFP co-distribute at the cell periphery, and 

PKA RII-ECFP does not distribute at the cell periphery in cells co-expressing a gravin 

mutant lacking the PKA binding domain (X. Yan et al., 2009). It is likely that gravin 

targets PKA to the plasma membrane for phosphorylation of PKA substrates at the 

plasma membrane. Two known downstream substrates are β2-adrenergic receptor 
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(β2AR) and gravin itself. Tao et al. (2003) showed that PKA phosphorylates gravin and 

thereby enhances gravin’s association with β2AR, and this phosphorylation does not 

occur in gravin mutants missing the PKA binding domain. In addition, PKA that is 

anchored to gravin phosphorylates β2AR and is required for receptor resensitization 

following isoproterenol induced desensitization (Tao, Wang, & Malbon, 2003). 

Phosphorylation of additional PKA substrates at the membrane are likely to be regulated 

by gravin-PKA interaction, but this has not been explored to date.  

Gravin Binds to β2-Adrenergic Receptor 

 Malbon and colleagues have reported extensively on gravin’s interaction with 

β2AR, a G protein-coupled receptor that activates PKA by stimulating cAMP production 

(G. F. Fan, E. Shumay, H. Y. Wang, & C. C. Malbon, 2001; F. Lin, H. Y. Wang, & C. C. 

Malbon, 2000; Malbon, Tao, & Wang, 2004; Shih, Lin, Scott, Wang, & Malbon, 1999b; 

Tao et al., 2006; Tao et al., 2003; Tao, Wang, & Malbon, 2007). Gravin-β2AR binding 

has been demonstrated in various pull-down assays and is reported to occur between 

residues 652-938 of gravin and the C-terminal cytoplasmic tail of β2AR (F. Lin, H. Y. 

Wang, et al., 2000; Shih et al., 1999b; Tao et al., 2003). A thorough study by Tao et al 

(2003) showed that upon isoproterenol treatment, gravin is phosphorylated on serines 

696, 697, 698, and 772 by gravin-anchored PKA, and this phosphorylation strengthens 

the association of gravin with β2AR. Additionally, gravin-β2AR interaction is required 

for receptor resensitization following isoproterenol-mediated receptor desensitization 

(Tao et al., 2003). Knockdown of gravin also prevents the association of β2AR with other 

molecules like β-arrestin, GRK2, and clathrin, but whether this is dependent on gravin-

β2AR interaction has not been demonstrated (F. Lin, H. Y. Wang, et al., 2000). It is 
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likely that gravin plays a major role not only in regulating β2AR dynamics, but also in 

influencing other downstream PKA substrates following receptor activation.  

Gravin Binds to Protein Kinase C 

 Gravin has been shown to bind several PKC isoforms in cultured human and 

rodent cell lines (Grove & Bruchey, 2001; Guo, Gao, Rothschild, Su, & Gelman, 2011; 

Lin et al., 1996a; Nelson, Moissoglu, Vargas Jr, et al., 1999; Piontek & Brandt, 2003). 

Gravin-PKC interaction has been reported to suppress ERK1/2 phosphorylation (Su et al., 

2010) and also suppress PKC activity itself (Guo et al., 2011), and facilitate phorbol 

ester-induced cytoskeletal remodeling (Guo et al., 2011). Activation of PKC by phorbol 

ester triggers the redistribution of gravin to juxtanuclear vesicles and is thought to occur 

through PKC phosphorylation of gravin at the membrane-binding polybasic domains (Lin 

et al., 1996a; Malbon, Tao, Shumay, et al., 2004; Nelson, Moissoglu, Vargas Jr, et al., 

1999; Piontek & Brandt, 2003; X. Yan et al., 2009). Interestingly, Yan et al. (2009) 

demonstrated that a mutant gravin-EGFP construct lacking the polybasic domains still 

underwent redistribution to a juxtanuclear compartment upon PKC activation, which 

suggests (A) that the mechanism of PKC-mediated gravin redistribution is more complex 

than phosphorylation of the polybasic domains, and (B) that PKC-mediated gravin 

redistribution may occur independent of gravin-PKC interaction since this mutant also 

lacked the putative PKC-binding domain. Interestingly, PKC activation by phorbol ester 

also causes the upregulation of gravin expression in cultured human erythroleukemia 

cells (HEL), which do not express gravin under basal conditions (Gordon et al., 1992; 

Grove et al., 1994; Nauert et al., 1997). Given the findings that PKC is suppressed when 
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bound to gravin, it would be interesting to investigate whether this supports a negative 

feedback loop in PKC-mediated gravin expression levels.  

Gravin Binds to Src 

 Gravin binds to Src within the first fifty amino acids of gravin’s N-terminus in 

human epidermal carcinoma cells, and this interaction is reported to enhance Src activity. 

It is also required for β2-adrenergic receptor resensitization following isoproterenol 

induced desensitization (Tao et al., 2007). A more recent study in mouse pancreatic 

carcinoma cells showed that gravin may also bind to Src at polybasic domain 1, and this 

interaction strengthens cell adhesion by sequestering Src away from focal adhesion 

plaques to lipid rafts (Su et al., 2013).  

Gravin Binds to Polo-Like Kinase 1 

 A recent study by Canton et al (2012) elegantly showed that gravin is 

phosphorylated by CDK1 on threonine 766 during mitosis, and this stimulates the 

interaction of gravin with Polo-like kinase 1, a mitotic kinase. During mitosis, phospho-

gravin and Plk1 congregate alongside nuclear DNA during prophase and at the mitotic 

spindle during metaphase, but segregate once the cell reaches anaphase. Since gravin 

knockdown was shown to impact the fidelity of mitotic progression, the authors proposed 

that this gravin-Plk1 interaction may in part facilitate gravin’s role in regulating cell cycle 

events. 

Gravin Binds to Cyclin D1 

  Gravin has been demonstrated to interact with cyclin D1 in both cultured rodent 

cells and in mouse parietal epithelial cells of Bowman’s capsule (Burnworth et al., 2012; 

Lin & Gelman, 2002; Yamamoto, Tamakawa, Yoshie, Yaginuma, & Ogawa, 2006). This 
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interaction occurs through two cyclin binding “CY” motifs between residues 500-517 of 

rodent gravin and sequesters cyclin D1 away from the nucleus. Interestingly, PKC 

phosphorylates gravin and inhibits gravin-cyclin interaction, stimulating cyclin D1 to 

localize back into the nucleus (Burnworth et al., 2012; X. Lin et al., 2000). The authors of 

these studies propose that gravin regulates G1-S stalling through its dynamic interaction 

with cyclin D1. 

Gravin Binds to Calmodulin 

 Two reports highlight the interaction of gravin with calmodulin. In rodent gravin, 

Lin and Gelman (2002) identified four regions with “1-5-10” consensus sequences for 

calmodulin binding: two of these sequences (residues 289-297 and 502-511) fall within 

polybasic domains 2 and 3, and the other two are located downstream between residues 

664-673 and 851-860, respectively. Calmodulin bound to peptides containing these four 

regions in a calcium-dependent manner and was inhibited by PKC activity (Lin & 

Gelman, 2002). A later study in human gravin also revealed four calmodulin binding 

domains with some variation to that in rodents: calmodulin bound to polybasic domains 

1, 2, and 3 (residues 171-187, 297-317, and 510-536), and a fourth downstream region 

containing a 1-5-10 motif (residues 670-694) that corresponds to the third calmodulin 

binding domain of rodent gravin (Tao et al., 2006). It is noteworthy that human gravin 

lacks the last calmodulin binding motif found in rodent gravin (851-860), and the impact 

of this is completely unknown. Additionally, it’s interesting that human gravin contains 

only two “1-5-10” motifs at the second and fourth calmodulin binding domain, whereas 

rodent gravin contains four of these motifs. This suggests that human gravin binds 

calmodulin at each of these sites with differential affinity, as evidenced in the paper by 
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Tao et al. (2006) where polybasic domain 2 of human gravin showed greater affinity for 

calmodulin than did polybasic domains 1 and 3. The affinity of calmodulin for the fourth 

calmodulin binding domain of human gravin was not explored in Tao’s study. The impact 

of gravin-calmodulin interaction is thought to promote the dissociation of gravin away 

from the plasma membrane especially through calmodulin interaction with the polybasic 

domains (Malbon, Tao, Shumay, et al., 2004). Tao et al. (2006) demonstrated that 

peptides corresponding to polybasic domains 1, 2, and 3 bound to lipid vesicles in silico, 

and this binding was reversed by calmodulin protein in a calcium-dependent manner. 

This mechanism has also been modeled in other proteins with polybasic domains similar 

to gravin (McLaughlin, Hangyas-Mihalyne, Zaitseva, & Golebiewska, 2005). 

Gravin Binds to Phosphodiesterase Type 4D 

 Gravin’s interaction with phosphodiesterase type 4D (PDE4D) has been 

demonstrated via pull-down both in human embryonic kidney (HEK293) and cultured rat 

aortic smooth muscle cells (Raymond, Carter, Ward, & Maurice, 2009; D. Willoughby, 

W. Wong, J. Schaack, J. D. Scott, & D. M. F. Cooper, 2006b). Willoughby et al. (2006) 

showed that either inhibition of PKA or disruption of PKA-AKAP interaction inhibited 

PDE-dependent cAMP hydrolysis at the plasma membrane. Gravin knockdown also 

inhibited plasma membrane cAMP hydrolysis. Based on these data, gravin was proposed 

to regulate compartmentalized [cAMP] dynamics by binding to PDE4D and targeting it 

to the plasma membrane. Importantly, the binding domain for PDE4D on gravin has not 

been determined, nor has the importance of gravin-anchored PKA been elucidated in 

gravin’s regulation of [cAMP].  
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Gravin Undergoes Subcellular Redistribution in Response to Calcium  

and/or PKC Activation. 

 

 Although gravin localizes to the plasma membrane under basal conditions, PKC 

activation or elevation of [Ca
2+

]i triggers the redistribution of gravin away from the 

plasma membrane. With PKC activation, gravin translocates to juxtanuclear vesicles (Lin 

et al., 1996a; Nelson, Moissoglu, Vargas Jr, et al., 1999; X. Yan et al., 2009). 

Juxtanuclear relocalization requires the myristoylation site, as mutant constructs missing 

this N-terminal region translocate from the plasma membrane to the cytosol (X. Yan et 

al., 2009). Although the mechanics of PKC-mediated gravin redistribution are not 

completely understood, this event probably occurs through PKC phosphorylation of 

gravin – which is a known PKC substrate – at sites that are important for membrane 

localization. PKC phosphorylates gravin peptides containing the membrane-associated 

polybasic domains (PB1-3) (Lin et al., 1996a), but alternative phosphorylation sites are 

also likely to be important since a mutant gravin construct missing the polybasic domains 

also underwent PKC-mediated redistribution from the plasma membrane to juxtanuclear 

vesicles (X. Yan et al., 2009). Importantly, PKC-mediated gravin redistribution also 

caused the relocalization of PKA from the plasma membrane to juxtanuclear vesicles, 

suggesting that gravin facilitates cross-talk between PKC and PKA-dependent signaling 

pathways.  

 Calcium elevation was shown by Tao et al. (2006) to cause the redistribution of 

gravin away from the plasma membrane and into the cytoplasm. Like PKC, the 

mechanics of calcium-mediated gravin redistribution are also poorly understood, but this 

event is likely to involve the binding of calmodulin to the membrane-associated polybasic 

domains (PB1-3). Calmodulin binds to gravin peptides corresponding to polybasic 
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domains 1, 2, and 3 in a calcium-dependent manner, releasing these peptides from 

phospholipid vesicles in vitro. Calcium-mediated redistribution of gravin is proposed to 

regulate β2-adrenergic receptor resensitization following agonist induced desensititzation, 

but the impact of this event on enzymes bound to gravin is currently unknown. It is likely 

that through this mechanism, gravin facilitates cross-talk between calcium and PKA-

dependent signaling pathways. 

Research Goal and Hypothesis 

 Since gravin’s role in cellular signaling depends on the targeting of signaling 

enzymes to discrete subcellular compartments, stimuli that regulate this subcellular 

targeting of gravin are also likely to impact the signaling dynamics of a host of enzymes 

bound to gravin. While it is known that intracellular calcium elevation triggers the 

redistribution of gravin from the membrane to the cytosol, almost nothing is known about 

the impact this event might have on signal transduction through signaling enzymes bound 

to gravin. PKA binding to AKAPs is well characterized, which makes PKA an excellent 

enzyme of study in investigating the impact of gravin dynamics on cell signaling. 

Therefore, the goal of my research is to determine the impact of calcium mediated gravin 

redistribution on PKA localization and PKA-dependent signaling. 

 The central hypothesis of my research is that gravin facilitates crosstalk between 

calcium and PKA-dependent signaling pathways through subcellular redistribution. To 

test this hypothesis, I used fluorescent gravin constructs to determine the effect of 

pharmacological and receptor-mediated calcium elevation on gravin distribution and 

gravin-directed PKA localization. In addition, I used mutant gravin constructs to explore 

the role of gravin’s calmodulin binding domains in calcium-mediated gravin 
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redistribution. Finally, I used the FRET-based PKA biosensor AKAR3 to determine the 

impact of gravin on subcellular PKA activity under basal conditions and under conditions 

which stimulate calcium-mediated gravin redistribution.  
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CHAPTER II  

METHODS AND MATERIALS 

Cell Culture and Transfection 

 Two cell lines were used in this study: AN3 CA cells and HEC-1-A cells 

(Manassas, VA, ATCC numbers: HTB-111, HTB-112 respectively). Both of these are 

human adenocarcinoma-derived cell lines from the endometrium of the uterus. AN3 CA 

cells were derived from a metastatic lesion in the lymph node of a 55 year old patient 

with endometrial carcinoma. HEC-1-A cells were similarly derived from a 71 year old 

patient with stage 1A endometrial carcinoma. While AN3 CA cells do not express gravin 

endogenously, HEC-1-A cells do express gravin sporadically in small clusters of cells (X. 

Yan et al., 2009).  

 Cells were maintained at 37°C with 5% CO2 in low glucose Dubecco’s Modified 

Eagle Medium (DMEM) supplemented with 10% fetal bovine serum and 100 units/ml 

penicillin and 100ug/ml streptomycin. Growth medium was replaced three times each 

week, and cells were split 1:25 upon reaching confluence. In experiments where cells 

were transfected with expression vectors, cells were transfected two to three days after 

seeding. To perform the transfection, cells were incubated in a transfection solution 

containing 3µl/ml GeneJammer (Agilent) and 1µg/ml plasmid DNA for twenty-four 

hours prior to microscopy. For experiments involving co-transfection with AKAR3 and 

gravin-V5/His constructs, it was critical that cells found expressing AKAR3 also 

expressed gravin-V5/His. To accomplish this, we found that a 1:3 molar ratio of 
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AKAR3:gravin plasmid DNA in the transfection mixture yielded transfected cultures in 

which roughly 90% of cells expressing AKAR3 also expressed gravin-V5/His (Fig. II-1).  

Construction of Expression Vectors 

 Gravin-EGFP, (ΔPB1-3) gravin-EGFP, and PKA RII-ECFP vectors were initially 

constructed as described in previous work (X. Yan et al., 2009). The current study used 

several additional gravin constructs which were generated as follows.  

Construction of (ΔPKA) Gravin-EYFP  

and (ΔPKA) Gravin-V5/His 

 

 A gravin-EYFP construct lacking the PKA RII binding domain (nucleotides 4621-

4662) termed “(ΔPKA) gravin-EYFP” was generated in three steps. First, a gravin 

fragment containing the PKA binding domain (between AgeI/AgeI restriction sites) was 

excised from full length gravin-EYFP and inserted into a pEYFP N1vector. The PKA 

binding domain was then deleted from this fragment through a PCR based mutagenesis 

approaching using a Phusion® site-directed mutagenesis kit (New England Biolabs, 

product F-541) and forward primer and reverse primers 

(5’ACAGCCGTTGACCAGTTTGTACGTACAGAA and 

5’TTCCAAAATCCCATTTTCAGGCTCTAAATC respectively) flanking the PKA 

binding domain. Finally, the mutated AgeI/AgeI gravin fragment generated in the new 

vector was substituted for the wild type fragment in the original vector. Cloning of the 

gravin fragment into an intermediate plasmid was necessary to due to difficulties 

obtaining PCR products from full length gravin. The deletion of the PKA binding domain 

was confirmed by sequence analysis. A gravin-V5/His construct missing the PKA-

binding domain – termed “(ΔPKA) gravin-V5/His” – was generated by replacing a DNA 
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fragment between two XbaI restriction sites of full-length gravin-V5/His with that of 

(ΔPKA) gravin-EYFP.  

Construction of (ΔPB1-3, CB4) Gravin-EGFP,  

(ΔPB1-3+) Gravin-EGFP, and (ΔCB4) Gravin-EGFP 

 

 A gravin-EGFP vector lacking the three polybasic domains and the fourth 

downstream putative calmodulin binding domain (nucleotides 125-2086) termed “(ΔPB1-

3, CB4) gravin-EGFP” was generated by inserting a SacII site directly downstream of the 

CB4 domain, and then removing nucleotides 125-2086 by SacII digestion 

(Primers:5’GCAAGGAGAAGT[CCGCGG]CTGATGAGGAA ; 

5’GGTGCGTCAAAGTCGGCTACGGGGGTGC; underlined nucleotides indicate the 

position of the SacII site). A gravin-EGFP vector lacking the polybasic domains and all 

nucleotides up to the beginning of the CB4 domain (Δ125-2011) termed “(ΔPB1-3+) 

gravin-EGFP” was similarly generated by inserting a SacII restriction site directly 

upstream of the CB4 domain, and removing nucleotides 125-2011 by SacII digestion 

(Primers:5’CCAAAGC[CCGCGG]TGGATACCTCAGTATCT ; 

5’GGTGCGTCAAAGTCGGCTACGGGGGTGC, mutagenic nucleotides underlined, 

constructed SacII sequence in brackets). Finally, a gravin-EGFP construct lacking only 

CB4 (Δ2005-2079) termed “(ΔCB4) gravin-EGFP” was generated by site-directed 

mutagenesis (Phusion®, New England Biolabs, product F-541; forward primer 

5’AGGTCGTCTTCTGATGAGGAAGGGGGACCA; reverse primer 

5’TGGTTCTTCCGGCTTTGGCTCTTCAACGCT). Like the ΔPKA gravin construct 

described above, the ΔCB4 mutation was done in an intermediate vector generated by 

inserting a gravin fragment that included the CB4 domain (between AccI-SbfI) into 

pmCherry N1. Following PCR mutagenesis and ligation of this intermediate vector, the 
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mutated AccI-SbfI fragment missing the CB4 domain was substituted back into the 

original gravin-EGFP vector. The deletion of the CB4 domain was subsequently 

confirmed by restriction digest and sequence analysis. 

Construction of (mutCB4) Gravin-EGFP  

and (mutCB4) Gravin-V5/His 

 

 A gravin-EGFP construct with mutations in the CB4 domain – termed “(mutCB4) 

gravin-EGFP” – was created by site-directed mutagenesis (Phusion®, New England 

Biolabs, product F-541; forward primer 5’CATCTTGGGAAGCTGCAATTTGTGTG; 

reverse primer 5’CTGAGGTATCCGCCTTTCGCTTTGGT; mutagenic nucleotides 

underlined) resulting in the following mutationsV672A, V676A, and L681A. The 

mutation indicated at the T position in the reverse primer is a silent mutation introduced 

to optimize primer design. Site-directed mutagenesis of the CB4 region was performed 

on the intermediate vector containing the gravin fragment described in the previous 

paragraph. Following PCR mutagenesis and ligation of this intermediate vector, the 

mutated Acc1-SbfI gravin fragment was substituted back in to full-length gravin-EGFP. 

A gravin-V5/His construct with mutations in the in the CB4 domain – termed “(mutCB4) 

gravin-V5/His” – was constructed by substituting a DNA fragment located between the 

SacII and EcoRV restriction sites in the full-length gravin-V5/His with a corresponding 

fragment from the (mutCB4) gravin-EGFP construct.  

Construction of Lck-AKAR3 

 AKAR3 (A-Kinase Activity Reporter 3) is a live-cell biosensor that uses Förster’s 

resonance energy transfer (FRET) to record changes in PKA activity in real time. Two of 

the AKAR3 biosensors used in this study, AKAR3-NES and AKAR3-CAAX (also called 

pmAKAR3), were kind gifts of Dr. Jin Zhang (Johns Hopkins) and were constructed as 
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described previously (Allen & Zhang, 2006). The Lck-AKAR3 construct used in this 

study was made in our lab by inserting a linker between the HindIII and BamHI 

restriction sites of AKAR3-NES (Oligos: 

5’AGCTTGCCACCATGGGCTGTGTCTGCAGCTCAAACCCTGAAAAG; 5’ 

GATCCTTTTCAGGGTTTGAGCTGCAGACACAGCCCATGGTGGCA).  

Western Blotting 

 To obtain protein samples for Western blotting, AN3 CA cells were transfected in 

T-25 flasks with 15 µL Genejammer (Aligent) and 5 μg of plasmid DNA per flask. 

Twenty-four hours later, cells were harvested by scraping into 2 ml of ice-cold PBS (58 

mM Na2HPO4, 17 mM NaH2PO4–H2O, 68 mM NaCl), pelleted by centrifugation, and 

resuspended in 50 μl of lysis buffer (20 mM Tris base, 150 mM NaCl, 10 mM EDTA, 10 

mM Benzamidine HCl, 1% (v/v) Triton X-100, 0.05% (v/v), Tween 20, 1 mM PMSF and 

100 μg/ml leupeptin). Cell lysates were then run on 5% SDS-polyacrylamide gels and 

transferred to nitrocellulose membranes by standard methods (Towbin, Staehelin, & 

Gordon, 1979). Blots were then rinsed overnight in blocking buffer (1x PBS, 0.2% I-

Block
TM

 Reagent, 0.1% Tween®-20 Detergent) and probed using an antigravin 

polyclonal antibody at a concentration of 1:5,000 for 60 minutes (Grove et al., 1994; 

Grove & Bruchey, 2001). Blots were then labeled with an alkaline phosphatase conjugate 

secondary antibody at a concentration of 1:100,000 for 60 minutes, and immunoreactive 

bands were detected by incubating blots in CDB Star chemiluminescence reagent. 

Immunofluorescence Labeling of Cultured Cells 

 For immunofluorescence labeling, cells were fixed in 3.7% paraformaldehyde in 

PBS (150 mM NaCl, 4 mM Na/K phosphate buffer and 5 mM KCl) for 10 minutes and 
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rinsed three times with PBS. Cells were then permeabilized with digitonin for 10 

minutes, rinsed with PBS, and treated for 30 minutes with 5% normal goat serum at room 

temperature to block non-specific binding of the antibody. Next, cells were treated with 

an anti-gravin monoclonal mouse antibody at a concentration of 1:1000 for 60 minutes at 

37° C, as previously described (X. Yan et al., 2009). Primary antibody labeling was 

detected using CY3 conjugated donkey anti-mouse secondary antibody (Jackson 

Immunoresearch, Inc., West Grove, PA) at a concentration of 1:200 for 60 minutes at 37° 

C. Cells were mounted to glass slides using Pro-long® Gold antifade reagent with DAPI 

(Life Technologies, P36935). 

Epifluorescence Microscopy 

Nikon TE300 Microscope 

 Experiments using quantitative imaging (calcium dynamics, gravin redistribution, 

FRET microscopy) were done on a Nikon TE300 inverted microscope equipped with a 

Hamamatsu camera, Ludl excitation and emission filter wheels, and a range filters for 

fluorescence microscopy. This microscope uses a mercury lamp to generate fluorescence 

excitation, which is passed through a combination of neutral density filters that control 

the intensity of excitation from the mercury lamp. Neutral density filter settings were 

optimized in each experiment to minimize photobleaching of fluorescent proteins. 

Various excitation filters allowed only certain wavelengths of light to pass to the sample, 

and these filters were located either in an automated excitation filter wheel or within one 

of four filter cubes mounted on a slider underneath the objective lens carousel. Excitation 

light passes through these excitation filters and is reflected up to the sample through and 

objective lens by a dichroic mirror within one of the filter cubes. As the sample is 



30 

excited, its emission fluorescence is passed back down through the objective lens, and the 

same dichroic which reflected the excitation light up toward the sample also allows 

emission fluorescence to pass back through the mirror where it is reflected either to the 

ocular eyepieces or to a Hamamatsu CCD camera. (Fig. II-2) Emission filters allow only 

certain wavelengths of emission fluorescence to reach the camera, and these emission 

filters are situated either in the automated emission filter wheel or within the filter cubes. 

 Images were acquired using software called Micro-Manager, an open source 

microscope controller developed by Vale and colleagues (Edelstein, Amodaj, Hoover, 

Vale, & Stuurman, 2010). Micro-manager was used to control both the excitation and 

emission filter wheels, the camera sensitivity (gain), and exposure time which was 

controlled by a shutter in the excitation filter wheel. In a time-course experiment, a set 

number images could be collected using multiple excitation/emission filter settings at a 

specified time-interval. Image quantification was subsequently performed using ImageJ 

software. 

Calcium Imaging 

 Changes in [Ca
2+

]i were measured with Fura-2 using the ratio of fluorescence 

intensity at excitation wavelengths of 340 and 380 nm. Cells on coverslips were 

incubated at 37°C with 1 mg/ml Fura-2 AM (Invitrogen/Molecular Probes) for 30 

minutes, rinsed with Standard Extracellular Solution (SES), and placed in an Attofluor 

chamber heated to 37º C containing either SES (1.5 mM CaCl2 dihydrate, 145 mM NaCl, 

5 mM KCl, 1 mM MgCl2 anhydrous, 10 mM glucose, 10 mM Hepes) or Ca
2+

 free SES 

(145 mM NaCl, 5 mM KCl, 1 mM MgCl2 anhydrous, 10 mM glucose, 10 mM Hepes). 

Images were obtained at 15 or 30 second intervals using a 40X Oil Plan Fluor objective 
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lens (NA=1.3) mounted on a Nikon TE300 inverted microscope, and acquisition settings 

were the same for each experiment (See Fig. II-3). Following acquisition, Fura-2 

fluorescence images were background subtracted, and the ratio of Fura-2 fluorescence 

intensity at 340 and 380 nm excitation wavelengths was measured for 10-20 cells per 

coverslip at each time interval using ImageJ plugins for background subtraction and 

ratiometric analysis (compiled by Tony Collins, McMaster Biophotonics Facility, 

Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, 

ON).  

Quantification of Gravin Redistribution 

 Changes in the subcellular distribution of wild type or mutant gravin-EGFP 

following agonist treatment were quantified by calculating the ratio of membrane to 

cytosolic fluorescence intensity from images acquired at 15 or 30 second intervals using 

the Nikon TE300 inverted microscope. Acquisition parameters were the same for each 

experiment (See Fig. II-4). Following background subtraction in ImageJ, this ratio was 

generated by measuring the fluorescence intensity profile along a line 1 pixel wide by 36 

pixels long drawn at several points across the plasma membrane of cells expressing 

gravin-EGFP (Fig. II-5A), calculating the mean fluorescence intensity of the four 

brightest pixels at the peak of the intensity profile and dividing that by the mean 

fluorescence intensity of the profile corresponding to the cytosolic portion of the cell 

(Fig. II-5B,C). Preliminary analysis of cells in which the plasma membrane was labeled 

with FM4-64 revealed that the plasma membrane region of the line profile was marked 

by a sharp elevation in intensity roughly 4 pixels in width, while the region of the line 

profile on the cytosolic side of these peak values provided a reasonable representation of 
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the cytosolic fluorescence intensity. Points of measurement across the plasma membrane 

were carefully selected to avoid non-fluorescent intracellular regions (e.g. nucleus) and 

brightly fluorescent puncta within the cytosol. Loss of gravin-EGFP at the cell cortex 

resulted in a decrease in membrane fluorescence intensity, an increase in cytosolic 

fluorescence intensity, and a decrease in the ratio of membrane fluorescence against 

cytosolic fluorescence (Fig II-5D). Ratios were normalized by dividing each ratio in the 

time series by the mean ratio prior to agonist treatment. All analysis and quantification 

was done on images in their native format (16-bit, 72 pixels/inch). For figures, cropped 

greyscale images of gravin-EGFP were converted to 8-bit and resized using Adobe 

Photoshop. 

Quantification of Gravin Localization at the Cell Periphery 

 Assessment of gravin localization at the membrane was done by imaging cells at 

predefined XY locations on coverslips, as set by a grid positioned on the microscope 

stage. The center of each coverslip corresponded to the center of the grid, and images 

were collected within nine predefined regions (Fig. II-6). Images were placed in random 

order, and each cell was scored as “yes” or “no” for gravin localization at the cell 

periphery in a blinded manner. The mean percentage of cells showing localized gravin at 

the cell periphery was then calculated for each coverslip.  

Quantification of FRET Biosensor Dynamics 

 Prior to each experiment, AKAR3 transfected AN3 CA cells plated on 25 mm 

coverslips were incubated at 37°C for 30 minutes in standard extracellular solution (SES; 

1.5 mM CaCl2 dihydrate, 145 mM NaCl, 5 mM KCl, 1 mM MgCl2 anhydrous, 10 mM 

glucose, 10 mM Hepes, pH 7.3) containing 10 μM IBMX (3-isobutyl-1-methylxanthine; 



33 

Sigma I-7018). Dual CFP/FRET images of the cells were acquired at 30-second intervals 

using the Nikon TE300 inverted microscope and the 40x/1.3NA Oil Plan Fluor objective 

lens. Filters used consisted of a 440AF21 excitation filter, a 455DRLP dichroic mirror 

and two emission filters (480AF30 for CFP and 535AF26 for FRET) mounted in a filter 

wheel. Excitation light intensity was adjusted using neutral density filters to minimize 

photobleaching. Acquisition parameters were the same for each experiment (Fig. II-7).  

Confocal Microscopy 

 Live-cell imaging of cells co-transfected with gravin-EYFP and PKA RII-ECFP 

were obtained using a Zeiss 510 META laser scanning confocal microscope, with a Zeiss 

100x Plan-Fluar oil objective lens (NA 1.45). Cells were incubated in regular SES 

medium and maintained at 37°C throughout each experiment. Two color imaging was 

performed to simultaneously capture EYFP and ECFP fluorescence: EYFP excitation 

light was generated with a 514 nm argon laser operated at 10% power, and ECFP was 

excited by a 458 nm argon laser at 80% power. Fluorescence emissions were passed 

through a NFT 515 beam splitter; 475 nm ECFP longpass filter and 530 nm EYFP 

longpass filter. Because control images of cells expressing gravin-EYFP or PKA RII-

ECFP alone were critical in demonstrating minimal signal crossover, detector gain and 

amplifier offset settings were changed only slightly (EYFP channel: 825-900 gain, -0.18 

to 0.01 offset; ECFP channel: 1150-1250 gain, -0.13 to -0.01 offset). Post-acquisition 

adjustments to image brightness and contrast were applied equally across corresponding 

images from different experimental treatments.  
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Table II-1. List of reagents used in this study. 
Name Abbreviation Source Catalog 

# 

Description Stock 

Conc. 

Working 

Conc. 

1,2-Bis  

(2-aminopheoxy) 

Ethane-N,N,N’,N’-

tetraacetic acid 

tetrakis 

(acetoxymethylester) 

BAPTA-AM Calbiochem 196419 Calcium chealator 50 mM 

(DMSO) 

10 μM 

3-Isobuty1-1-

methylxanthine 

IBMX Sigma I-7018 Inhibits cAMP 

hydrolysis, inhibits 

phosphodiesterases 

100 mM 

(DMSO)  

10 μM 

Adenosine 5’-

triphosphate 

disodium salt 

hydrate 

ATP Sigma A2383 Purinergic receptor 

agonist 

Solid 100 mM 

Alkaline 

phosphatase 

conjugate 

   Secondary antibody 

for Western blot 

 1:100,000 

Bisindolylmaleamide BIM Calbiochem 203290 PKC inhibitor 2mM 

(DMSO) 

20 μM 

Bovine Serum 

Albumin 

BSA Sigma A-7030 Used to block non-

specific antibody 

binding 

Solid 0.1% in 

1xPBS 

CY3 2° antibody CY3 Jackson 

Immunoresearch 

715-

165-

150 

Donkey anti-mouse 1.4 

mg/ml 

1:200 

Digitonin  Sigma D5628 Permeabilizes cell 

membranes for IF 

antibody labeling 

50 

mg/ml 

6.2 µl/ 

10 ml in  

1x PBS 

Forskolin Fsk Sigma F6886 cAMP elevation, 

stimulates adenylyl 

cyclase 

100 mM 

(DMSO) 

10 μM 

Gravin 1° 

monoclonal antibody 

2B3-1.1   Mouse antibody for 

immunofluorescence 

Ascites 

(mouse) 

1:1,000 

Gravin 1° polyclonal 

antibody 

Rb7753   Rabbit antibody for 

Western blot 

Serum 

(rabbit) 

1:5,000 

I-Block™ Reagent  Tropix A1300 Blocking buffer 

used in Western blot 

Solid .02% 

Ionomycin IM Calbiochem 407952 Calcium elevator 2 mM 

(DMSO) 

1 μM 

Normal Goat Serum NGS Thermo 

Scientific 

31873 Used to block non-

specific antibody 

labeling 

60 

mg/ml 

5% or 1% 

Paraformaldehyde  Polysciences, 

Inc. 

00380 Fixes cells for IF 

labeling 

Solid 3.7% 

Thapsigargin Tg Sigma T9033 Calcium elevator 10 mM 

(DMSO) 

1 μM,  

10 μM 

Tropix® CDP Star®  Applied 

Biosystems 

T2218 Chemiluminescence 

reagent for Western 

blot 

  

Tween® detergent  Sigma P7949 Used in some 

Western blot buffers 

 0.1% 
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Figure II-1.  Optimization of transfection conditions for co-expression of AKAR3 and 

non-fluorescent gravin-V5/His constructs. Plasmid DNA of gravin-V5/His 

and AKAR3-CAAX were mixed at different microgram ratios prior to 

transfection while maintaining a constant concentration of 1μg of DNA 

per 1 ml of growth medium. After transfection, cells expressing gravin 

were detected by immunofluorescence labeling with a gravin primary 

antibody and CY3 secondary antibody and imaged through a CY3 

fluorescence channel. Cells expressing AKAR3-CAAX were detected 

using a CFP channel. Cell counts on multiple coverslips were performed 

to determine the percentage of AKAR3 transfected cells which were also 

transfected with gravin-V5/His. As seen in the graph, the highest 

percentage was seen when the gravin:AKAR3 microgram ratio of 3:1 was 

used. This was used for all subsequent experiments in which V5/His 

tagged gravin constructs and AKAR3 constructs were used together. 
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Figure II-2.  Schematic diagram of filter cubes used on the Nikon TE300 microscope. 

 



 

38 

 
 

Figure II-3.  Filters and acquisition settings for Fura-2 fluorescence imaging on the 

Nikon TE300 microscope. 

 

 

 

 

 

 

 
 

Figure II-4.  Filters and acquisition settings for EGFP fluorescence imaging on the 

Nikon TE300 microscope. 
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Figure II-5.  Quantification of gravin-EGFP redistribution. This was accomplished by 

measuring fluorescence intensity along a line transect across the plasma 

membrane using ImageJ (A). When gravin-EGFP was localized to the cell 

cortex, the fluorescence intensity along this line yielded a sharp peak in 

intensity at the membrane with cytosolic intensity following the peak. 

However, as gravin-EGFP underwent redistribution away from the 

membrane and into the cytosol, the membrane intensity decreased while 

the cytosolic intensity increased (B). The average fluorescence intensity at 

the membrane and at the cytosol was determined for each time point (C) 

and plotted as a ratio of membrane to cytosolic intensity over time (D). 

Ratios of membrane to cytosolic intensity (Mem/Cyt) were normalized by 

dividing each ratio in the time series by the average ratio value prior to 

treatment.  
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Figure II-6.  Quantification of gravin localization at the cell periphery. Nine images 

were acquired per coverslip at these pre-defined locations on a grid that 

was mounted to the stage of the Nikon TE300 microscope.  

 

 

 

 

 

 

 
 

Figure II-7.  Filters and acquisition settings for FRET and CFP fluorescence imaging 

on the Nikon TE300 microscope.  
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Abstract 

 A-Kinase Anchoring Proteins (AKAPs) direct the flow of cellular information by 

positioning multiprotein signaling complexes into proximity with effector proteins. 

However, certain AKAPs are not stationary but can undergo spatiotemporal redistribution 

in response to stimuli. Gravin, a 300kD AKAP that intersects with a diverse signaling 

array, is localized to the plasma membrane but has been shown to translocate to the 

cytosol following the elevation of intracellular calcium ([Ca
2+

]i). Despite the potential for 

gravin redistribution to impact multiple signaling pathways, the dynamics of this event 

remain poorly understood. In this study, quantitative microscopy of cells expressing 

gravin-EGFP revealed that Ca
2+

 elevation caused the complete translocation of gravin 

from the cell cortex to the cytosol in as little as 60 seconds of treatment with ionomycin 

or thapsigargin. In addition, receptor mediated signaling was also shown to cause gravin 

redistribution following ATP treatment, and this event required both [Ca
2+

]i elevation and 

PKC activation. To understand the mechanism for Ca
2+ 

mediated gravin dynamics, 

deletion of calmodulin-binding domains revealed that a fourth putative calmodulin 

binding domain called CB4 (a.a. 670-694) is critical for targeting gravin to the cell cortex 

despite its location downstream of gravin’s membrane-targeting domains, which include 

an N-terminal myristoylation site and three polybasic domains. Finally, confocal 

microscopy of cells co-transfected with gravin-EYFP and PKA RII-ECFP revealed that 

gravin redistribution mediated by ionomycin, thapsigargin, and ATP each triggered the 

gravin-dependent loss of PKA localized at the cell cortex. Our results support the 

hypothesis that gravin redistribution regulates cross-talk between PKA-dependent 

signaling and receptor-mediated events involving Ca
2+

 and PKC.  
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Introduction 

 Compartmentalization of intracellular signaling molecules is essential to signal 

transduction and is achieved in part by scaffold proteins, which have the ability to shape 

and direct intracellular signaling networks by organizing molecular complexes into 

distinct subcellular compartments (Good et al., 2011). The ability of scaffold proteins to 

control the flow of signal transduction in space and time gives them a powerful role in 

regulating cellular behavior. Conceptually, scaffold proteins help provide a framework 

for understanding how sophisticated signaling networks can function accurately and 

efficiently among a widely diverse milieu of intracellular signaling proteins, some with 

opposing effects. PKA, a critical intracellular enzyme with several hundred 

phosphorylation substrates (Gao et al., 2008), relies heavily upon spatial targeting to 

exert its signaling effects. This occurs largely through A-Kinase Anchoring Proteins 

(AKAPs), which anchor PKA to various subcellular locations through a conserved 

amphipathic helical domain and a widely varied subcellular targeting domain. AKAPs are 

known to localize to a number of cellular compartments including the cytoskeleton, 

plasma membrane, nucleus, Golgi, and endoplasmic reticulum, positioning multiprotein 

signaling complexes into proximity with other effector proteins (reviewed in Welch et al., 

2010). Numerous reports demonstrate that the loss of PKA compartmentalization 

significantly disrupts PKA signaling and leads to a many physiological dysfunctions, for 

example, in memory (Nijholt et al., 2008), immune response (Schillace et al., 2009), and 

cytoskeletal dynamics (Y. Wang et al., 2006). 

 The AKAP12 gene encodes a 300kD AKAP known as gravin in humans (Gordon 

et al., 1992; Nauert et al., 1997) or SSeCKS (Lin, Tombler, Nelson, Ross, & Gelman, 
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1996b) in rodents, that binds the RII subunit of PKA and is expressed in a variety of cell 

types and tissues (Grove et al., 1994). Three isoforms of gravin have been described 

(gravin-α, -β, -γ) which differ in subcellular localization (Streb et al., 2004). The 

canonical α isoform used in this study is expressed in humans and is localized to the cell 

cortex through an N-myristoylation sequence and by three polybasic domains (PB1-3) 

which adhere to negatively charged phospholipids (Tao et al., 2006; X. Yan et al., 2009). 

Like many AKAPs, gravin is a multivalent scaffold and interacts not only with PKA, but 

also with PKC (Grove & Bruchey, 2001; Nauert et al., 1997; Piontek & Brandt, 2003), 

phosphodiesterase 4D (D. Willoughby, W. Wong, J. Schaack, J. D. Scott, & D. M. 

Cooper, 2006a), Ca
2+

/calmodulin (Tao et al., 2006), and the β2-adrenergic receptor (G. 

Fan, E. Shumay, H. Wang, & C. C. Malbon, 2001; F. Lin, H. Wang, & C. C. Malbon, 

2000; Shih, Lin, Scott, Wang, & Malbon, 1999a; Tao et al., 2003). Accordingly, gravin 

has been implicated in a wide range of cellular functions. Gelman and colleagues have 

published extensively on the role of SSeCKS as a tumor suppressor (Akakura et al., 2008; 

Gelman, 2010; Gelman, Lee, Tombler, Gordon, & Lin, 1998; Gelman et al., 2000). Along 

similar lines, Choi et al. (M. C. Choi, Lee, Kim, Park, et al., 2008) demonstrated in 

human SNU-449 heptaocellular cancer cells that gravin is critical in cytokinesis and 

interacts with actin and myosin light chain kinase during cell division. More recently, 

Scott and colleagues showed that gravin recruits Polo-like kinase to the mitotic spindle to 

regulate cell cycle progression (D. A. Canton et al., 2012). Malbon and colleagues 

determined that gravin associates with the β2-adrenergic receptor in A293 cells and is 

crucial in regulating this receptor’s desensitization and resensitization (G. Fan et al., 

2001; F. Lin, H. Wang, et al., 2000; Shih et al., 1999a; Tao et al., 2003). Willoughby et 
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al. (Willoughby et al., 2006a) determined that gravin-anchored PKA and PDE4D 

establish a negative feedback loop for regulating [cAMP] in the submembrane 

compartment of HEK293 cells. It is clear from these examples that gravin intersects with 

a broad network of signaling pathways; however the precise molecular dynamics behind 

these diverse functions remain poorly understood.  

 Although gravin (α isoform) localizes at the plasma membrane under basal 

conditions, it is known to translocate to alternative subcellular compartments in response 

to stimuli. Further knowledge of this may be critical in understanding how gravin 

regulates the activity of its binding partners. Redistribution of gravin from the cell 

periphery to the cytosol has been demonstrated in response to PKC activation by phorbol 

ester treatment (Nelson, Moissoglu, Vargas, Klotman, & Gelman, 1999; Piontek & 

Brandt, 2003). Previous work in our lab demonstrated that PKC activity directs gravin to 

a vesicular compartment near the nucleus, and that this translocation also causes similar 

redistribution of PKA (X. Yan et al., 2009). In addition, elevation of intracellular calcium 

concentration ([Ca
2+

]i) has been shown to cause gravin redistribution through a presumed 

mechanism involving Ca
2+

/calmodulin (CaM) binding to gravin’s membrane-associated 

polybasic domains (PB1, 2 and 3) (Tao et al., 2006). Although CaM binding to PB1-3 has 

been clearly demonstrated, the notion that this interaction is alone responsible for Ca
2+

 

mediated gravin redistribution may be incomplete in light of our previous findings which 

show that the myristoylation site is sufficient to target gravin to the plasma membrane 

even in the absence of PB1-3 (X. Yan et al., 2009). While it is likely that CaM binding to 

PB1-3 contributes to the dissociation of gravin from the plasma membrane, the role of the 

myristoylation sequence in the event is yet to be determined. In addition, it is currently 
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unknown whether calcium mediated gravin redistribution also results in the redistribution 

of PKA, or if these dynamics are linked to receptor-mediated signaling. Given that PKA 

signaling often relies heavily on spatial compartmentalization, the findings that both 

[Ca
2+

] elevation and PKC activation lead to gravin redistribution raise the interesting 

possibility that signaling cascades involving Ca
2+

 and/or PKC may engage in cross-talk 

with PKA-dependent signaling events through the redistribution of gravin. This would be 

a novel finding particularly with regard to Ca
2+

/PKA crosstalk, which has been thought to 

occur primarily through Ca
2+

 sensitive adenylyl cyclases and phosphodiesterases which 

regulate cAMP concentrations. From these observations, we hypothesize that gravin 

redistribution is mediated by receptors which trigger [Ca
2+

]i elevation and/or PKC 

activation, and that these dynamics also cause the redistribution of PKA.  

 To test the hypothesis that calcium-mediated gravin redistribution also triggers 

PKA redistribution, we used fluorescent constructs of gravin and PKA RII to determine 

the effect of cytosolic calcium increase on gravin-PKA localization. Our results revealed 

that both gravin and PKA are redistributed away from the cell periphery following 

extracellular calcium influx, release of calcium from intracellular stores, or upon 

activation of purinergic receptors by ATP. In addition, these studies demonstrate that 

purinergic P2Y receptors utilize both PKC activation and [Ca
2+

]i increase to trigger 

gravin-PKA redistribution. Although calcium-mediated gravin redistribution has been 

proposed to occur through CaM binding to polybasic regions 1-3, our studies additionally 

demonstrate that the deletion of these regions had no effect on gravin redistribution. A 

fourth calmodulin binding domain, termed CB4, was also assessed to determine the role 
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of calmodulin binding on gravin redistribution; however deletion of this region 

dramatically reduced the membrane localization of gravin. 

Results  

Ionomycin and Thapsigargin Cause the Calcium-Dependent Redistribution of Gravin 

 

 Treatment of cells expressing gravin-EGFP with the calcium ionophore 

ionomycin (1μM) resulted in the complete translocation of gravin-EGFP from the cell 

cortex to the cytosol (Fig. III-1A images). Plots of the ratio of membrane to cytosolic 

fluorescence over time revealed that gravin redistribution began immediately after 

ionomycin treatment and was complete within 60 seconds, at which time [Ca
2+

]i elevation 

reached its plateau (Fig. III-1B,C).  

 To determine if ionomycin mediated redistribution of gravin-EGFP was indeed 

calcium-dependent, inhibition studies were performed in regular and Ca
2+

 free SES 

medium by treating cells with BAPTA-AM (10 μM), a high-affinity intracellular calcium 

chelator, for 30 min prior to ionomycin treatment. In regular SES medium, control 

ionomycin treatments with no BAPTA-AM resulted in the complete redistribution of 

gravin and an immediate, sustained increase in [Ca
2+

]i (Fig. III-2A,B). In Ca
2+

 free SES, 

ionomycin caused both the increase of [Ca
2+

]i and the redistribution of gravin, although 

the magnitude and duration of calcium increase were substantially reduced (Fig. III-

2E,F). This finding is consistent with other studies which have demonstrated that 

ionomycin targets the release of calcium from intracellular stores in addition to triggering 

extracellular calcium influx (Morgan & Jacob, 1994; Yoshida & Plant, 1992). Ionomycin 

mediated gravin redistribution and cytosolic calcium increase were both fully prevented 

in Ca
2+

 free SES when BAPTA-AM was present (Fig. III-2G,H), confirming that 
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ionomycin mediated gravin redistribution is calcium dependent. Surprisingly, pre-

treatment of cells with BAPTA-AM in regular SES also showed ionomycin-mediated 

gravin redistribution and a sustained [Ca
2+

]i increase; however there was a 60 second 

delay in gravin redistribution and [Ca
2+

]i increase (Fig. III-2C,D). Even at BAPTA-AM 

concentrations as high as 500 μM, ionomycin caused gravin redistribution in regular SES 

(not shown) and suggests that the intracellular BAPTA-AM concentration required to 

prevent [Ca
2+

] elevation in these cells could not be achieved. Nonetheless, our finding 

that BAPTA-AM prevented gravin redistribution in Ca
2+

 free SES demonstrated that 

ionomycin-mediated gravin redistribution was calcium-dependent.  

 To examine the effect of [Ca
2+

]i increase through the release of Ca
2+

 from 

intracellular stores on gravin distribution, cells expressing gravin-EGFP were treated with 

thapsigargin, an agent which rapidly elevates cytosolic calcium by inhibiting SERCA-

mediated Ca
2+

 reuptake into the endoplasmic reticulum (Lytton, Westlin, & Hanley, 

1991). Upon treatment with thapsigargin (0.4 μM), gravin-EGFP underwent 

redistribution from the cell periphery to the cytosol in both the presence and absence of 

extracellular Ca
2+

. Thapsigargin mediated calcium increase peaked within 60 seconds and 

then gradually decreased to basal levels over the course of several minutes (Fig. III-3A-

B,E-F). Pre-treatment of cells with BAPTA-AM (10 μM) 30 minutes prior to 

thapsigargin treatment prevented gravin redistribution and cytosolic calcium increase in 

both regular and Ca
2+

 free SES (Fig. III-3C-D,G-H). These results confirm that 

thapsigargin elicited gravin redistribution in a calcium-dependent manner, raising the 

possibility that receptor-mediated signaling events which target the release intracellular 

Ca
2+

 stores into the cytosol would also cause the redistribution of gravin.  
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Role of Putative Calmodulin Binding Domains in Ca
2+

-Mediated Gravin Redistribution 

 

 Currently, the mechanism underlying redistribution of gravin in response to 

elevated [Ca
2+

]i is poorly understood. However, a study by Tao et al. (Tao et al., 2006) 

proposed that calcium mediated gravin redistribution occurs as a result of 

Ca
2+

/calmodulin binding to three polybasic domains located in the N-terminal half of 

gravin (PB1-3) and inhibiting their association with the plasma membrane (Tao et al., 

2006), Based on this, we predicted that deletion of PB1-3 would alter the rate of gravin 

redistribution in response to ionomycin treatment. However, fluorescence microscopy 

revealed that a gravin-EGFP construct lacking the three polybasic domains (ΔPB1-3) 

localized to the cell cortex prior to treatment and underwent redistribution from the cell 

cortex to the cytosol at an identical rate to the wild type gravin construct after ionomycin 

treatment (Fig. III-4A). This suggests that the polybasic domains PB1-3 are not required 

for calcium-mediated redistribution of gravin.  

 The study by Tao et al. (Tao et al., 2006) also revealed the location of a possible 

fourth calmodulin binding domain on gravin between amino acids 670-694 which, unlike 

polybasic domains 1-3, did not bind to phospholipid vesicles. This fourth putative 

calmodulin binding domain (CB4) conforms to a 1-5-10 consensus sequence for 

Ca
2+

/calmodulin binding (Rhoads & Friedberg, 1997) and corresponds exactly to the 

SSeCKS-3 domain, which was shown to bind calmodulin in SSeCKS, the murine 

orthologue of gravin (Lin & Gelman, 2002). To further understand the role of all four 

calmodulin binding domains of gravin in Ca
2+

 mediated redistribution, additional mutant 

gravin constructs were generated with the intent of comparing their rates of redistribution 

to that of the full length (WT) gravin. A gravin-EGFP construct lacking the polybasic 
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domains and everything up to but not including the CB4 domain (ΔPB1-3+) localized to 

the cell cortex prior to treatment, but in response to ionomycin (1 μM) underwent 

translocation of away from the cell cortex at a significantly delayed rate compared to WT 

gravin (Mann-Whitney Rank Sum Test, horizontal bar denotes time points at which p < 

0.05) (Fig. III-4B). Surprisingly, a gravin-EGFP construct lacking the three polybasic 

domains and the fourth putative calmodulin binding domain (ΔPB1-3, CB4) did not 

localize at the cell cortex in a manner which was sufficient to measure its rate of 

redistribution. As illustrated in Fig. III-4C, 75.7% (± 14.8%, 231 cells) of cells 

transfected with full-length (WT) gravin-EGFP, displayed cortically localized 

fluorescence, while only 17.8% (± 11.4%, 215 cells) of cells expressing (ΔPB1-3,CB4) 

gravin-EGFP displayed any appreciable cortical fluorescence. Normal membrane 

localization was observed in (ΔPB1-3+) gravin-EGFP (81.7% ±10.2%, 125 cells) 

compared to WT gravin, but a gravin-EGFP construct lacking only the CB4 domain 

(ΔCB4) localized to the cell cortex in significantly fewer transfected cells (19.7% ± 

6.2%, 90 cells) (ANOVA followed by Holm-Sidok post-hoc, significant differences from 

WT gravin denoted by asterisks, p < 0.05).  

 The expression of the mutant gravin–EGFP vectors was confirmed in AN3 CA 

cells by Western blotting using an anti-gravin antibody. As seen in Fig. III-4D, the lanes 

loaded with lysates from different gravin–EGFP transfectants showed gravin expression 

at the positions that matched the size of the desired gravin–EGFP mutants. No gravin 

expression was detected in control untransfected cells. These findings demonstrate that 

the presence of the CB4 domain is critical in targeting gravin to the cell cortex, and that 

this domain seems to regulate the membrane-binding activity of upstream domains (myr, 
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PB1-3) which have been well-characterized as necessary for membrane localization. 

These results also suggest that activity at this domain may in fact regulate the 

redistribution of gravin. While this activity is likely to involve Ca
2+

/calmodulin binding, 

future studies will be required to understand the precise function of Ca
2+

/calmodulin at 

this region. 

ATP Mediated Gravin Redistribution Involves Both Ca
2+

 and PKC 

 Since gravin was demonstrated to undergo redistribution from the cell membrane 

to the cytosol after ionomycin and thapsigargin treatment, we sought to determine if 

gravin redistribution would occur through receptor signaling linked to [Ca
2+

]i elevation. 

ATP is well known to induce an increase in [Ca
2+

]i through both ionotropic (P2X) and 

metabotropic (P2Y) purinergic receptors. While P2X receptors trigger the influx of 

extracellular calcium, P2Y receptors stimulate cytosolic calcium increases primarily 

through their association with Gq/11, which activates PLCβ to stimulate both PKC 

activation and InsP3 mediated release of calcium from intracellular stores (Erb, Liao, 

Seye, & Weisman, 2006; Weisman et al., 2006). Treatment of HEC-1A cells with 10 mM 

ATP resulted in a change in gravin-EGFP distribution from the cell cortex to the cytosol. 

This change was also accompanied by an immediate increase in [Ca
2+

]i followed by a 

subsequent decrease back to basal levels (Fig. III-5A,B). ATP-mediated gravin 

redistribution and [Ca
2+

]i increase also occurred in Ca
2+

 free SES (Fig. III-5C,D), a result 

consistent with P2Y receptor activation.  

 To determine the mechanism of ATP-mediated gravin redistribution in HEC-1A 

cells, inhibition studies were performed using bisindolylmaleamide (BIM, 1 μM), a PKC 

inhibitor, and/or BAPTA-AM (50 μM). Treatment with 10mM ATP caused complete 
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redistribution of gravin from the cell membrane to the cytosol, compared to cells with no 

ATP added (Fig. III-6A-D). ATP treatment in the presence of either BIM or BAPTA-AM 

(Fig III-6E-H) caused partial redistribution of gravin, while ATP treatment in the 

presence of both inhibitors showed no gravin redistribution (Fig. III-6I-J). Measurement 

of the ratio of membrane to cytosolic fluorescence at each time point revealed that BIM 

and BAPTA-AM significantly attenuated ATP-mediated gravin redistribution (Fig. III-

6K,L). However, treatment with both BAPTA-AM and BIM together was necessary to 

completely prevent gravin redistribution in cells treated with ATP (Fig. III-6M), 

suggesting that both Ca
2+

 and PKC are required for ATP-mediated gravin dynamics. 

Statistical analyses were performed at each time point using a Mann-Whitney Rank Sum 

Test (horizontal bars denote time points at which p < 0.05). Analysis of the maximum 

change in membrane to cytosolic ratio for each of the treatments further revealed three 

statistically significant subsets: ATP in the presence of no inhibitors showed the greatest 

change in gravin distribution; ATP in the presence of either BIM or BAPTA-AM showed 

a significantly reduced change in gravin distribution; and ATP in the presence of both 

BIM and BAPTA-AM showed no difference in gravin distribution from untreated cells 

(ANOVA followed by Holm-Sidok post-hoc, significantly different subsets denoted by 

asterisks, p < 0.05) (Fig. III-6N). 

Loss of Cortical PKA Compartmentalization Following Gravin Redistribution. 

 Since a major function of AKAPs is to direct PKA to specific subcellular 

compartments, we sought to examine whether Ca
2+

-mediated or purinergic receptor-

mediated gravin redistribution also causes the redistribution of PKA. We used confocal 

microscopy to simultaneously visualize the subcellular distribution of gravin-EYFP and 
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PKA RII-ECFP before and after treatment with ionomycin, thapsigargin, or ATP. As 

seen in Fig. III-7, expression of PKA RII-ECFP was distributed throughout the cytosol in 

cells transfected with PKA RII-ECFP alone or when co-transfected with a gravin 

construct lacking the PKA-binding domain, (ΔPKA) gravin-EYFP, but PKA RII-ECFP 

was concentrated at the cell periphery in cells co-expressing WT gravin-EYFP. 

Treatment of cells with ionomycin, thapsigargin, or ATP resulted in in the loss of PKA 

RII-ECFP localization at the cell cortex, concurrent with the redistribution of gravin-

EYFP (Fig. III-7A-F’). These studies demonstrate that signaling events that trigger 

translocation of gravin also alter the subcellular distribution of PKA. 

Discussion 

 The aim of the current study was to characterize the redistribution of gravin 

following an increase in [Ca
2+

]i and determine its effect on subcellular PKA localization. 

This study demonstrated that gravin undergoes subcellular redistribution following 

treatment with ionomycin or thapsigargin, both from extracellular Ca
2+

 influx and from 

intracellular store release. Calcium mediated redistribution of gravin does not require the 

presence of polybasic domains 1-3, three regions rich in basic amino acids which bind 

Ca
2+

/calmodulin and are involved in targeting gravin to the plasma membrane. 

Interestingly, deletion of a fourth calmodulin binding domain (amino acids 670-694) 

which is reported to not associate with phospholipid vesicles (Tao et al., 2006) resulted in 

a dramatic decrease in the localization of gravin at the cell cortex. This study also 

demonstrated that purinergic receptor mediated elevation of [Ca
2+

]i and activation of 

PKC can also induce gravin redistribution. Finally, ionomycin, thapsigargin, and ATP 

mediated gravin redistribution also triggered the loss of PKA localization at the cell 
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cortex. Our results support the hypothesis that receptor mediated signaling events 

involving calcium and/or PKC can influence cAMP-dependent signaling through the 

spatial regulation of gravin. 

 Calcium mediated redistribution of gravin was first reported by Tao et al. (Tao et 

al., 2006) to occur in response to A23187, a calcium ionophore. The current study adds to 

this finding in several important ways. First, our approach revealed that gravin 

redistribution occurs immediately following treatment with the calcium elevating agents 

ionomycin, thapsigargin, or ATP, and that these agents caused the complete redistribution 

of gravin from the cell periphery to the cytosol in as little as 60 seconds. Second, our 

findings with ionomycin and thapsigargin demonstrated that gravin redistribution can be 

mediated by both influx of extracellular calcium and the release of calcium from 

intracellular stores. Third, our approach demonstrated that both sustained and transient 

increases in cytosolic calcium following ionomycin or thapsigargin treatment were 

sufficient to mediate the complete redistribution of gravin. Finally, the current study 

demonstrated that Ca
2+

 signaling is involved in receptor-mediated gravin redistribution 

following ATP treatment. In these experiments ATP-generated Ca
2+

 transients were 

sufficient to cause partial gravin redistribution, in contrast to experiments involving 

ionomycin and thapsigargin, which caused complete gravin redistribution. This apparent 

contrast suggests that while Ca
2+

 alone may be sufficient for complete gravin 

redistribution under certain conditions, the mechanisms involved in receptor-mediated 

gravin redistribution may be more complex. Indeed, our findings demonstrate that ATP-

mediated gravin redistribution also acted through PKC activity in addition to [Ca
2+

]i 

elevation. Previous reports have shown that PKC activation causes gravin redistribution 
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and complements our finding that PKC is involved in ATP-mediated gravin redistribution 

(Nelson, Moissoglu, Vargas, et al., 1999; Piontek & Brandt, 2003; X. Yan et al., 2009). 

In sum, the results of the current study further our understanding of the real-time 

dynamics behind Ca
2+

 mediated gravin redistribution, and provide additional insight into 

its biological context and molecular mechanism. 

 Although the mechanism behind calcium mediated redistribution of gravin has yet 

to be fully elucidated, previous work indicates the involvement of Ca
2+

/calmodulin 

(CaM). Tao et al. (Tao et al., 2006) reported compelling evidence that CaM interacts with 

the membrane-binding polybasic domains (PB1-3) of gravin to cause the dissociation of 

these domains from phospholipid vesicles, but this work used gravin constructs lacking 

the N-terminal myristoylation sequence. More recently, work in our lab demonstrated 

that the myristoylation sequence is sufficient to target gravin to the plasma membrane, 

even in the absence of the polybasic domains (13). We therefore postulated that a 

myristoylated gravin construct lacking the polybasic domains would not undergo 

redistribution in response to elevated [Ca
2+

]. Surprisingly, such a construct underwent 

redistribution from the plasma membrane to the cytosol at the same rate as full-length 

gravin. This finding indicates that CaM binding to the polybasic domains does not fully 

explain the mechanism for Ca
2+

 mediated redistribution of myristoylated gravin. Indeed, 

the membrane-binding activity of the myristoylation site must also be altered by [Ca
2+

]i 

elevation. Our results suggest that CaM interaction with an additional calmodulin binding 

domain, termed CB4, may regulate the membrane targeting of gravin. This CB4 domain 

conforms to the 1-5-10 consensus sequence for CaM binding 

(
669

KRKVDTSVSWEALICV) and is identical to the SSeCKS-3 domain found in the rat 
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orthologue of gravin, reported by Lin and Gelman to bind CaM in vitro (Lin & Gelman, 

2002). Deletion of the four known gravin calmodulin binding domains (ΔPB1-3, CB4) 

resulted in a dramatic loss of membrane localization of gravin, while reconstitution of 

only the CB4 domain fully restored membrane localization to that of full-length gravin. 

Moreover, deletion of CB4 alone caused a similar loss of membrane localization to that 

of (ΔPB1-3,CB4) gravin-EGFP. These results are the first to demonstrate that the CB4 

domain is critical in the subcellular localization of gravin. Although the precise effect of 

CB4 deletion is unclear, one possibility is that CB4 deletion mimics CaM binding to 

gravin. Nonetheless, our results support the notion that calcium-mediated gravin 

redistribution operates through a mechanism which involves the interaction of CaM with 

gravin. 

 Our findings that gravin redistribution occurs from both intracellular calcium 

influx and from the release of calcium from intracellular stores suggest that gravin 

redistribution occurs across a variety of physiological contexts. These modes of calcium 

signaling are central to cellular homeostasis and exist not only in G protein coupled 

receptor (GPCR) systems, but also in the form of plasma membrane channels such as 

ionotropic receptors, cyclic-nucleotide gated channels, L-type channels, and membrane 

components of store operated calcium entry (SOCE). Thus, signaling through any one of 

a number of pathways that induce an increase in cytosolic [Ca
2+

] may result in the 

redistribution of gravin and affect the signaling dynamics of molecules associated with 

gravin. Our finding that ATP triggered redistribution of gravin through a pathway that 

involved both [Ca
2+

]i increase and PKC activation supports this notion and indicates that 

GPCR signaling through the canonical Gq/11 pathway may be a major pathway for gravin 
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redistribution. Given the widespread occurrence of signaling pathways involving these 

modes of signaling, gravin redistribution is likely to be a widespread response to 

signaling events and could serve as an important mediator for cross-talk over the 

signaling dynamics of molecules bound to the gravin scaffold. Since gravin interacts with 

a diverse array of signaling molecules including PKA, PKC, PDE4, β2-adrenergic 

receptor (β2AR), cyclin D and others (Gelman, 2002; Gelman & Gao, 2006; Tao et al., 

2003; Willoughby et al., 2006a), subcellular translocation of this AKAP would likely 

affect signaling events involving these binding partners. PKA, for instance, is known to 

require spatial compartmentalization by AKAPs (Skroblin, Grossmann, Schafer, 

Rosenthal, & Klussmann, 2010). Thus, loss of cortically-localized gravin/PKA would 

likely affect PKA signaling by reducing activity at the plasma membrane or directing 

PKA signaling to another subcellular compartment. β2AR signaling is known to be 

regulated by gravin expression and redistribution in a variety of contexts (G. Fan et al., 

2001; F. Lin, H. Wang, et al., 2000; Shih et al., 1999a; Tao et al., 2006; Tao et al., 2003) 

and thus receptor mediated events leading to gravin redistribution would most certainly 

impact a wide range of β2AR dependent physiological activities known to be linked to 

gravin. Finally, reports that PDE4 binds to gravin and that this complex regulates cortical 

cAMP levels suggest that receptor mediated relocalization of gravin could impact cAMP 

dependent signaling broadly by altering dynamic control of [cAMP].  

Conclusions 

 We report that gravin undergoes rapid redistribution from the cell periphery to the 

cytosol following treatment with the calcium-elevating agents ionomycin, thapsigargin, 

or ATP, and that this redistribution is accompanied by a change in subcellular PKA 
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localization. The effect of ionomycin and thapsigargin on gravin distribution was calcium 

dependent, whereas ATP’s effect on gravin distribution involved both calcium and PKC. 

Surprisingly, calcium mediated redistribution of myristoylated gravin did not require 

polybasic regions 1-3, but deletion of a 1-5-10 consensus sequence for calmodulin 

binding downstream of the polybasic regions seems to regulate the targeting of gravin to 

the cell cortex. Our data supports the hypothesis that receptor mediated signaling events 

involving calcium and/or PKC can alter cAMP-dependent signaling through the spatial 

regulation of gravin and anchored PKA. This finding suggests that gravin facilitates a 

novel cross-talk mechanism in which cAMP-dependent signaling pathways are altered by 

calcium and PKC, and lays the groundwork for future studies of gravin spatiotemporal 

dynamics in regulating cAMP-dependent signaling events.  
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Figure III-1.  Ionomycin treatment induces gravin redistribution. (A) Fluorescent 

micrographs illustrating that gravin-EGFP undergoes redistribution 

immediately following the addition of 1 µM ionomycin. (B) Plot of 

membrane:cytosol fluorescence intensity ratio over time illustrating the 

time course of gravin redistribution. (C) Corresponding plot of the Fura2 

fluorescence ratio illustrating the rapid increase in [Ca
2+

]i upon ionomycin 

treatment. Note that gravin translocation is complete at t = 60 seconds, 

which corresponds to the time at which maximal cytosolic calcium 

increase is observed.  
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Figure III-2.  Representative fluorescent images of gravin-EGFP and corresponding 

plots of Fura2 fluorescence ratios illustrate that ionomycin-mediated 

gravin distribution is calcium dependent. Note that ionomycin treatment in 

both the presence and absence of extracellular calcium resulted in 

elevation of intracellular calcium and redistribution of gravin. Ionomycin 

treatment in the presence of BAPTA-AM (10 μM) and extracellular 
calcium also resulted in a sustained increase in cytosolic calcium and 

gravin redistribution. However, when BAPTA-AM was present in Ca
2+

 

free medium, ionomycin-mediated gravin redistribution was fully 

prevented. Scale bar = 10 μM. 
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Figure III-3.  Representative fluorescent images of EGFP-gravin and corresponding 

plots of Fura2 fluorescence ratios illustrating that thapsigargin mediated 

gravin redistribution is calcium dependent. Note that thapsigargin 

treatment in the presence and absence of extracellular calcium caused 

redistribution of gravin concurrent with a transient increase in cytosolic 

calcium. Addition of BAPTA-AM (10 μM) prior to thapsigargin treatment 
fully prevented gravin redistribution in either the presence or absence of 

extracellular Ca
2+

. Scale bar = 10 μM. 
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Figure III-4. Role of four calmodulin binding domains (PB1-3, CB4) in gravin 

redistribution and subcellular localization. (A, B) Comparison of the rate 

of redistribution from cell membrane to cytosol for either WT gravin-

EGFP and (ΔPB1-3) gravin-EGFP (A) or WT gravin-EGFP and (ΔPB1-

3+) gravin-EGFP (B) after ionomycin treatment. The deleted regions are 

illustrated below the graphs. No difference was observed between WT 

gravin and (ΔPB1-3) gravin, but the rate of (ΔPB1-3+) gravin 

translocation from membrane to cytosol was significantly reduced 

compared to WT gravin. (Comparison at each time point revealed 

significant differences between constructs as indicated by the horizontal 

bar; Mann-Whitney Rank Sum Test, p < 0.05). (C) Graph illustrating the 

effect of deleting the CB4 region on localization of gravin at the cell 

periphery in transfected cells. Note that localization of the (ΔPB1-3, CB4) 

mutant at the cell cortex was significantly reduced compared to WT 

gravin. Reconstitution of the CB4 domain (ΔPB1-3+) restored membrane 

localization, while deletion of the CB4 domain (ΔCB4) alone resulted in a 
decrease in membrane localization similar to that of ΔPB1-3,CB4. 

Astericks indicate significant differences from WT gravin-EGFP (one-way 

ANOVA followed by a Holm-Sidak post-hoc test; p < 0.05). (D) A 

Western blot demonstrating the expression of full-length gravin–EGFP 

and its deletion mutants in AN3CA cells. Sixty micrograms total protein 

was loaded in all lanes. The number of amino acids comprising each 

construct is marked at the top of the blot. 
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Figure III-5.  Fluorescence micrographs illustrating the effect of ATP treatment on 

gravin redistribution and changes in intracellular calcium in the presence 

and absence of extracellular calcium. Gravin redistribution was observed 

following ATP treatment (10 mM) in both regular SES and Ca
2+

 free SES. 

Moreover, cytosolic [Ca
2+

] increased to the same extent (an approximately 

1.7 fold increase) in cells treated with ATP in regular and Ca
2+

 free SES. 

Scale bar = 10 μM. 
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Figure III-6. Regulation of gravin redistribution by ATP treatment. (A-J) Fluorescence 

micrographs illustrating the effect of ATP treatment (10 mM) on gravin 

distribution in the presence of bisindolylmaleimide (BIM), BAPTA-AM, 

or BIM and BAPTA-AM together. ATP treatment induced complete 

redistribution of gravin (C,D) compared to untreated cells (A,B). Gravin 

redistribution was partially attenuated when ATP was administered in the 

presence of 2 μM bisindolylmaleimide (BIM) or 50 μM BAPTA-AM 

(G,H). However, gravin redistribution was fully prevented when ATP was 

administered in the presence of both BIM and BAPTA-AM (I,J). (K-M) 

Quantitative analysis of gravin-EGFP dynamics in response to ATP in the 

presence of BIM and BAPTA-AM. BIM (K) or BAPTA-AM (L) caused a 

significant attenuation in the redistribution of gravin-EGFP. However, 

ATP treatment in the presence of both BIM and BAPTA-AM completely 

inhibited redistribution of gravin-EGFP (M). (N) Histogram illustrating 

the extent to which gravin distribution changed under the different 

treatment conditions. The height of the bars corresponds to the difference 

between the membrane/cytosol ratio at t=0 and the minimum 

membrane/cytosol ratio reached during each run. One-way ANOVA 

followed by Holm-Sidak post hoc tests revealed three significantly distinct 

responses to the treatments, which are denoted by asterisks (p < 0.05). 

Scale bar = 10 μM. 
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Figure III-7. Confocal micrographs of HEC1A cells transfected with gravin-EYFP and 

PKA RII-ECFP. PKA co-distributes with gravin at the cell cortex in cells 

expressing both PKA and full-length gravin (A,A’; C,C’, E,E’), However, 

redistribution of gravin following treatment with ionomycin (B, 1 μM), 
thapsigargin (D, 0.4 μM), or ATP (F, 10mM) triggers the loss of PKA 
localization at the cell periphery (B’, D’, F’) in concert with redistribution 

of gravin. PKA RII-ECFP did not localize at the cell cortex nor change 

distribution after ionomycin treatment in cells co-expressing PKA RII-

ECFP and a gravin–EYFP construct lacking the PKA RII binding domain 

(Δ-PKA gravin; G,G’; H,H’), although the gravin construct underwent 

redistribution to the cytosol. Controls transfected with either gravin-EYFP 

or PKA RII-ECFP alone confirmed that the observed codistribution of 

gravin and PKA was not due to cross-over of the EYFP signal into the 

ECFP channel, or vice versa. Scale bar = 10 μM. 
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Abstract 

 Scaffold proteins play a critical role in cellular homeostasis by positioning 

signaling molecules in proximity to downstream effectors. However, some scaffold 

proteins do not assemble static enzyme complexes, but form dynamic signalosomes that 

traffic to different subcellular compartments in response to stimuli. Gravin (AKAP12), a 

multivalent scaffold linked to a variety of cellular functions, anchors PKA and other 

enzymes to the plasma membrane but is redistributed to the cytosol upon elevation of 

[Ca
2+

]i . We postulate that gravin redistribution represents a novel mechanism for 

crosstalk between Ca
2+

-dependent and cAMP-dependent signaling pathways. To assess 

this, we measured the impact of gravin-V5/His expression on compartmentalized PKA 

activity using the PKA FRET biosensor AKAR3. Expression of gravin-V5/His in AN3 

CA cells, which lack endogenous gravin, caused an increase in forskolin-stimulated PKA 

activity in AKAR3 constructs targeted to the plasma membrane compared to control cells 

lacking gravin or expressing a gravin construct lacking the PKA-binding domain. 

Expression of a gravin mutant with reduced membrane localization also showed no 

increase in membrane PKA activity compared to control cells lacking gravin. In addition, 

gravin-V5/His caused a decrease in forskolin-stimulated PKA activity in cytosolic 

AKAR3 constructs compared to control cells lacking gravin, and this effect also required 

PKA interaction and membrane localization. Pretreatment with thapsigargin, a calcium 

elevating agent, stimulated gravin redistribution away from the membrane and prevented 

gravin’s impact on membrane PKA activity. These results reveal that gravin shapes the 

subcellular profile of PKA activity and support the hypothesis that gravin mediates 

crosstalk between Ca
2+

 and cAMP-dependent signaling pathways. Based on these results, 
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AKAP localization dynamics may represent an important paradigm for the regulation of 

cellular signaling networks. 

Introduction 

 Intracellular signal transduction requires precise physical interactions between 

specific signaling proteins within a receptor-directed cascade. It is now clear that many of 

these protein-protein interactions are facilitated by scaffold proteins and not by random 

diffusion (Good et al., 2011). A-Kinase Anchoring Proteins (AKAPs) play an integral 

role in this by compartmentalizing cAMP-dependent protein kinase (PKA) and other 

enzymes to specific subcellular locations. AKAPs possess a conserved amphipathic 

helical domain that binds the regulatory subunit of cyclic AMP-dependent kinase (PKA) 

and a subcellular targeting domain that serves to anchor PKA and often additional 

kinases, phosphatases, and other regulatory enzymes to diverse subcellular compartments 

(reviewed in Wong & Scott, 2004). Interestingly, some AKAPs do not merely serve as 

static “anchors”, but can traffic to alternative subcellular compartments in response to 

stimuli (Eide et al., 1998; H. Li, Adamik, Pacheco-Rodriguez, Moss, & Vaughan, 2003; 

Rawe, Payne, Navara, & Schatten, 2004; K. E. Smith, Gibson, & Dell'Acqua, 2006).  

 Gravin (AKAP12) is a 300 kD AKAP with dramatic spatial targeting dynamics. 

Gravin binds to PKA and a host of other signaling enzymes and associates with the 

plasma membrane through an N-myristoylation site and three polybasic domains (PB1-3) 

which are presumed to adhere electrostatically to acidic phospholipids. In response to 

either PKC activation or intracellular calcium ([Ca
2+

]i) elevation, gravin is redistributed 

away from the membrane, removing gravin bound PKA from the cell periphery. Yan et al 

(X. Yan et al., 2009) showed that PKC activation triggers the redistribution of 
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gravin/PKA to a juxtanuclear vesicular compartment. In addition, Tao et al. (Tao et al., 

2006) were the first to show that elevation of intracellular [Ca
2+

] triggers the 

redistribution of gravin to the cytosol through a mechanism thought to involve 

Ca
2+

/calmodulin binding to PB1-3. A recent study from our laboratory further revealed 

that calcium mediated gravin redistribution triggers relocalization of PKA away from the 

membrane and that a fourth putative calmodulin binding domain called CB4 may be 

critical in this event. In addition, this study found that receptor-mediated signaling 

triggers gravin/PKA redistribution to the cytosol through a mechanism involving both 

calcium and PKC (Schott & Grove, 2013). These findings raise the interesting possibility 

that gravin facilitates a crosstalk mechanism in which Ca
2+

/PKC-dependent inputs can 

modulate cAMP-dependent outputs through the redistribution of gravin. However, 

gravin’s impact on subcellular PKA activity under both basal conditions and upon 

Ca
2+

/PKC-mediated redistribution is currently unknown. This could have important 

implications for gravin’s role in many health-and disease-related contexts that utilize 

crosstalk between Ca
2+

/PKC-dependent and cAMP-dependent signaling, such as cellular 

migration (Akakura & Gelman, 2012; Gelman et al., 2000; Liu, Guan, Hu, Gu, & Lu, 

2011), cancer (reviewed in Gelman, 2012), learning and memory (Havekes et al., 2012), 

cardiac function (Guillory et al., 2013), and vascular biology (Grove & Bruchey, 2001; 

Weissmuller et al., 2014).  

 In the current study, we investigate the role of gravin in shaping subcellular PKA 

activity and in mediating crosstalk between Ca
2+

 and cAMP-dependent signaling 

pathways. Gravin’s role in targeting PKA to the plasma membrane suggests that gravin 

potentiates PKA signaling at the plasma membrane. This suggestion in turn implies that 
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Ca
2+

 elevation may suppress plasma membrane PKA signaling by triggering the 

redistribution of gravin/PKA into the cytosol. We hypothesize that through this 

mechanism, gravin mediates cross-talk between calcium and cAMP-dependent signaling 

pathways. We tested this hypothesis in AN3 CA cells, a cell line that lacks endogenous 

gravin, by using the FRET-based PKA biosensor AKAR3 that has been optimized to 

measure PKA activity within targeted subcellular compartments (Allen & Zhang, 2006). 

Using AKAR3 constructs targeted to the plasma membrane and to the cytosol, we 

measured the impact of exogenous gravin-V5/His expression on compartmentalized PKA 

activity at the plasma membrane and in the cytosol. In addition, we tested the impact of 

calcium-mediated gravin redistribution on plasma membrane PKA activity. 

Results 

Forskolin Treatment Stimulates AKAR3 Dynamics 

 Fluorescent micrographs in Figure IV-1 illustrate the subcellular distributions of 

AKAR3 constructs used in this study. AKAR3-NES contains a nuclear export signal 

which confines it to the cytosol, while AKAR3-CAAX and Lck-AKAR3 are localized to 

the plasma membrane. After background subtraction, FRET and CFP intensity values 

over time were measured for each cell within regions of interest using ImageJ. FRET 

intensity values were then corrected for CFP crossover (44% based on images of cells 

expressing CFP only), and ratios of FRET/CFP intensities were plotted over time for each 

cell measured. Upon treatment with forskolin, fluorescence intensity in the CFP channel 

decreased while FRET intensity increased (Fig. IV-1A), causing an increase in the ratio 

of FRET/CFP emissions which peaked close to 60 seconds (Fig. IV-1B). FRET/CFP 

ratios were normalized by dividing each ratio in the time series by the mean of ratio 
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values prior to treatment. To calculate the fold increase in FRET/CFP as a result of 

forskolin treatment, the max ratio value for each cell, Rmax, was divided by the mean ratio 

value prior to treatment, R0 (Fig. IV-1B-C).  

Role of Gravin in Shaping Subcellular PKA Activity 

 To determine the effect of gravin-V5/His expression on subcellular PKA activity, 

three different AKAR3 constructs were used which were localized to the plasma 

membrane (AKAR3-CAAX and Lck-AKAR3) and in the cytosol (AKAR3-NES). 

AKAR3-CAAX contains a motif reported to target non-raft plasma membrane 

microdomains, whereas Lck-AKAR3 contains a motif reported to target membrane rafts 

(Agarwal et al., 2014; Allen & Zhang, 2006; Depry, Allen, & Zhang, 2011; Gao et al., 

2011; Melkonian, Ostermeyer, Chen, Roth, & Brown, 1999; Zacharias, Violin, Newton, 

& Tsien, 2002). AKAR3-NES contains a nuclear export signal which restricts this 

biosensor to the cytosol (Allen & Zhang, 2006). The AN3 CA cells used in this study do 

not express gravin endogenously (Schott & Grove, 2013; X. Yan et al., 2009). Prior to 

microscopy, cells were equilibrated for 30 minutes in standard extracellular solution 

(SES) containing the phosphodiesterase inhibitor IBMX (10 μM) to prevent cAMP 

degradation. To stimulate cAMP elevation and subsequent PKA activity, we treated cells 

with the adenylyl cyclase activator forskolin (10 μM) and measured changes in AKAR3 

fluorescence in the presence and absence of gravin-V5/His. Upon treatment with 

forskolin, we observed a sustained increase in the ratio of AKAR3 FRET/CFP 

fluorescence which reached its peak value by 60 seconds. As seen in Fig. IV-2A-B, 

gravin-V5/His expression significantly elevated the response of AKAR3-CAAX from 

1.112 to 1.205, an increase of 45%. Gravin-V5/His expression also elevated the response 
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of Lck-AKAR3 from 1.045 to 1.072, an increase of 37% (Fig. IV-2C-D). In the cytosol, 

gravin-V5/His expression suppressed the response of AKAR3-NES from 1.223 to 1.178, 

a decrease of 26% (Fig. IV-2E-F). From these results, we conclude that gravin expression 

potentiates PKA activity in the plasma membrane in a manner which may be slightly 

greater in non-raft membrane domains vs membrane rafts, but reduces PKA activity in 

the cytoplasm. It is likely that gravin expression accomplishes this by anchoring PKA to 

the plasma membrane and sequestering PKA away from the cytosol.  

Gravin-PKA Interaction is Required for Gravin-Mediated  

Shaping of Subcellular PKA Activity 

. 

 We next sought to examine the role of gravin-PKA interaction in gravin-mediated 

shaping of subcellular PKA activity using a gravin construct lacking its PKA-binding 

domain. First, we quantified the subcellular localization of PKA RII at the cell periphery 

in AN3 CA cells co-expressing either full-length (WT) gravin-V5/His or a (ΔPKA) 

gravin-V5/His mutant which lacks the PKA binding domain. Immunofluorescence 

labeling of gravin in these cells revealed that roughly 95% of cells transfected with PKA 

RII-ECFP also expressed gravin-V5/His constructs, and cells expressing PKA RII-ECFP 

only had no gravin (Fig. IV-3A). As seen in Fig. IV-3B, roughly 40% of cells co-

expressing WT gravin-V5/His and PKA RII-ECFP showed ECFP localization along the 

cell periphery. In contrast, no ECFP localization at the cell periphery was seen in cells 

co-expressing (ΔPKA) gravin-V5/His and PKA RII-ECFP or in cells expressing PKA 

RII-ECFP only. These results show that gravin targets PKA RII to the cell periphery, and 

that the (ΔPKA) gravin-V5/His mutant has no impact on subcellular PKA localization at 

the cell periphery. 
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 To determine if the gravin-mediated changes in subcellular PKA activity were 

dependent on gravin-PKA interaction, we co-transfected AN3 CA cells with the AKAR3 

constructs and either WT gravin-V5/His or a (ΔPKA) gravin-V5/His. In figure IV-4, 

confocal micrographs of transfected AN3 CA cells labeled with a gravin antibody and 

CY3 secondary antibody show that both full-length (WT) gravin-V5/His and (ΔPKA) 

gravin-V5/His were localized to the plasma membrane. In cells expressing plasma 

membrane AKAR3-CAAX, gravin-V5/His expression potentiated forskolin-stimulated 

PKA activity in comparison to control cells with no gravin, but this potentiation was not 

observed in cells expressing (ΔPKA) gravin-V5/His. Similarly, in cells expressing 

cytosolic AKAR3-NES, gravin-V5/His expression reduced forskolin-stimulated PKA 

activity compared to control cells with no gravin, but this reduction was not observed in 

cells expressing (ΔPKA) gravin-V5/His. These results confirm that gravin-PKA 

interaction is required for gravin-mediated potentiation of plasma membrane PKA 

activity and reduction of forskolin-stimulated PKA activity in the cytosol.  

Mutation of Gravin’s CB4 Domain Reduces Membrane Localization  

and Gravin-Mediated Changes in Subcellular PKA Activity. 

 

 Gravin localization at the plasma membrane is aided in part by an N-

myristoylation sequence and three N-terminal polybasic domains, PB1-3 (X. Yan et al., 

2009). Tao et al. (2006) proposed that Ca
2+

/calmodulin (CaM) binding to PB1-3 is 

responsible for calcium mediated relocalization of gravin into the cytosol (Tao et al., 

2006). However, more recently we reported that deletion of PB1-3 had no effect on the 

ability of calcium to cause this relocalization. Moreover, this previous study found that 

even in the presence of the myristoylation site and PB1-3, gravin localization at the cell 

periphery was severely hindered by the deletion of a fourth putative calmodulin binding 
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domain (CB4) (Schott & Grove, 2013), a region which contains a 1-5-10 consensus motif 

for CaM interaction (Rhoads & Friedberg, 1997). To test the role of this CaM consensus 

sequence within the CB4 domain in the membrane localization of gravin, we used site-

directed mutagenesis to substitute the 1-5-10 amino acids in this sequence for alanine as 

seen in Fig. IV-5A, similar to the strategy used by several other investigators (see Ahn, 

Lim, Cook, & McDonald, 2004; Fancy et al., 2014; Suever, Chen, McDonald, & Song, 

2008). Expressing this mutant construct, termed (mutCB4) gravin-EGFP, revealed a 

dramatically reduced membrane localization compared to WT gravin-EGFP. Membrane 

localization of (mutCB4) gravin-EGFP was not different compared to (ΔCB4) gravin-

EGFP (Fig. IV-5B). From these results, we conclude that the 1-5-10 amino acids within 

gravin’s CB4 domain are required for normal membrane localization. This suggests a 

novel role for CaM in supporting gravin localization at the membrane, which contrasts 

with previous reports showing that CaM promotes gravin relocalization away from the 

membrane by binding to PB1-3.  

 Using the (mutCB4) gravin-V5/His construct, we sought to define the importance 

of gravin localization at the membrane in gravin’s ability to impact subcellular PKA 

activity both at the plasma membrane and within the cytosol. In figure IV-6, 

representative confocal micrographs of AN3 CA cells transfected with gravin-V5/His 

constructs and immunolabeled for gravin illustrate that while full-length (WT) gravin 

strongly localized along the cell periphery, (mutCB4) gravin did not. In AN3 CA cells 

expressing plasma membrane AKAR3-CAAX, gravin-V5/His expression potentiated 

forskolin-stimulated PKA activity compared to control cells with no gravin, but this 

increase was not observed in cells expressing (mutCB4) gravin-V5/His (Fig. IV-6A-B). 
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Similarly, in cells expressing cytosolic AKAR3-NES, the presence of gravin-V5/His 

reduced forskolin-stimulated PKA activity in the cytosol compared to control cells with 

no gravin, but this suppression was not observed in cells expressing (mutCB4) gravin-

V5/His (Fig. IV-6C-D). These results demonstrate that alterations in gravin localization 

have profound effects on subcellular PKA activity, both at the plasma membrane and in 

the cytosol.  

Thapsigargin Causes Gravin Redistribution and Inhibits  

Gravin-Mediated Potentiation of Plasma Membrane PKA Activity. 

 

 Intracellular calcium elevation causes the redistribution of gravin away from the 

plasma membrane and into the cytosol, and this redistribution also triggers the 

relocalization of PKA away from the cell periphery (Schott & Grove, 2013; Tao et al., 

2006). In light of this, we sought to determine whether calcium-mediated gravin 

redistribution would impact the ability of gravin to potentiate PKA activity at the plasma 

membrane. To test this, we pre-treated AN3 CA cells expressing AKAR3-CAAX with 10 

μM thapsigargin, a calcium-elevating agent which causes gravin redistribution. AN3 CA 

cells co-expressing gravin-V5/His showed elevated PKA activity compared to control 

cells with no gravin when treated with forskolin without pretreatment with thapsigargin. 

However, 30 minute pre-treatment with thapsigargin abolished gravin’s ability to 

potentiate forskolin-stimulated PKA activity. Pre-treatment with thapsigargin in cells 

with no gravin showed no significant difference in forskolin-stimulated PKA activity, 

confirming that the effect of thapsigargin on plasma membrane PKA activity was gravin-

dependent (Fig. IV-7A-B). In Figure IV-7C, representative micrographs of AN3 CA cells 

expressing gravin-EGFP demonstrate the impact of thapsigargin pretreatment on gravin 

distribution. To confirm that gravin redistribution had also occurred in experiments 
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represented by Figure IV-7A-B, coverslips were immunofluorescently labeled for gravin 

after these experiments. As seen in Figure IV-7D, the percentage of cells showing gravin 

localization at the cell periphery dropped dramatically with thapsigargin pretreatment. 

Overall these results demonstrate that calcium-mediated gravin redistribution alters 

plasma membrane PKA activity and supports the hypothesis that gravin can mediate 

crosstalk between calcium and cAMP-dependent signaling pathways.  

Discussion 

 In the current study, we investigated the role of gravin in shaping 

compartmentalized PKA activity and in mediating crosstalk between Ca
2+

 and cAMP-

dependent signaling pathways. We report that the expression of gravin potentiated PKA 

activity at the plasma membrane and reduced PKA activity in the cytosol. The impact of 

gravin on membrane and cytosolic PKA activity depended on both gravin-PKA 

interaction and gravin-membrane interaction. This was evident from the finding that 

mutant gravin constructs that lack PKA interaction ([ΔPKA] gravin) or normal membrane 

localization ([mutCB4] gravin) had no impact on plasma membrane or cytosolic PKA 

activity. In addition, redistribution of gravin away from the cell periphery with 

thapsigargin, a calcium-elevating agent, also inhibited the potentiation of plasma 

membrane PKA activity by gravin. These results support the hypothesis that gravin 

mediates cross-talk between calcium and cAMP-dependent signaling pathways and may 

provide mechanistic insight into gravin’s role in health and disease.  

 In the current study, gravin increased forskolin-stimulated PKA activity at the 

plasma membrane while reducing cytosolic PKA activity, and this effect required both 

PKA interaction and localization at the cell periphery. This suggests that gravin mediates 



80 

its impact on subcellular PKA activity by targeting PKA to the plasma membrane and 

sequestering PKA from the cytosol. The notion that gravin targets PKA to the cell 

periphery is in line with its characterization as an AKAP and has been clearly 

demonstrated in previous studies (Schott & Grove, 2013; X. Yan et al., 2009). However, 

the putative sequestration of PKA away from the cytosol is not well defined. Assuming a 

fixed concentration of PKA, it is logical that AKAP-mediated targeting of PKA to one 

compartment would to some degree subtract PKA concentrations in other compartments. 

In fact, this sequestration phenomenon was proposed in an early study of AKAP79 

overexpression in HEK293 cells (Ndubuka, Li, & Rubin, 1993). A recent study by Su et 

al. (2013) also showed that rodent gravin (also called SSeCKS) reduces FAK 

phosphorylation presumably through the sequestration of Src to lipid rafts and away from 

FAK-associated complexes (Su et al., 2013). Gravin interaction with cyclin D1 was also 

shown to sequester cyclin D1 away from the nucleus in mouse glomerular parietal 

epithelial cells (Burnworth et al., 2012). The current study raises the intriguing possibility 

that gravin may reduce PKA activity in other cellular compartments through PKA 

sequestration at the plasma membrane. However, future experiments using endogenous 

gravin knockdown and/or computational modeling will be required to validate the 

efficacy of this phenomenon at normal physiologic levels of gravin expression.  

 The finding that forskolin-stimulated PKA phosphorylation of AKAR3 constructs 

targeted to the plasma membrane was elevated with the expression of gravin-V5/His 

suggests that gravin may facilitate PKA phosphorylation of a wide range of membrane-

targeted substrates. Although remarkably little is known about gravin’s role in targeting 

specific PKA substrates, several lines of evidence indicate that gravin participates in 



81 

PKA-dependent signaling events at or near the membrane. Tao et al. (2003) showed that 

gravin-PKA interaction facilitates PKA phosphorylation of both β2-adrenergic receptor 

(β2AR) and gravin itself. Gravin and β2AR phosphorylation enhances their physical 

interaction with one another, which regulates receptor resensitization following 

isoproterenol-induced desensitization (Tao et al., 2003). A study by Havekes et al. (2012) 

also showed reduced β2AR phosphorylation in gravin knockdown mice and implicated a 

role for gravin in G protein switching (Havekes et al., 2012), which is another 

consequence of β2AR phosphorylation by PKA (Daaka, Luttrell, & Lefkowitz, 1997). 

Gravin may also target the phosphorylation of PDE4D, a PKA-enhanced 

phosphodiesterase that binds to gravin (Raymond, Wilson, Carter, & Maurice, 2007; 

Willoughby et al., 2006b). The finding that AKAR3 constructs targeted to the membrane 

show increased phosphorylation in the presence of gravin expands the possible range of 

PKA substrates targeted by gravin in this compartment. It would be interesting to explore 

the impact of gravin expression on other known PKA targets at or near the plasma 

membrane such as ion channels (Brown & Yule, 2010; Dai, Hall, & Hell, 2009; Swope, 

Moss, Raymond, & Huganir, 1999) and cytoskeletal regulators (Howe, Baldor, & Hogan, 

2005; Y. Wang et al., 2006).  

 While the current study demonstrates that gravin potentiates PKA activity at the 

plasma membrane, our results also suggest that this potentiation is present within both 

raft and non-raft membrane microdomains. Evidence for this was seen in gravin’s ability 

to direct the phosphorylation of two membrane-associated AKAR3 constructs: AKAR3-

CAAX and Lck-AKAR3. AKAR3-CAAX contains a C-terminal prenylation domain that 

has been shown to localize preferentially at non-raft microdomains, whereas Lck-
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AKAR3 contains a myristoylated and palmitoylated N-terminal domain has been shown 

to target ordered lipid domains known as membrane rafts (Agarwal et al., 2014; Allen & 

Zhang, 2006; Melkonian et al., 1999). While plasma membrane microdomains represent 

highly dynamic compartments, some evidence suggests that protein-protein interactions 

within these compartments can be exclusive (Depry et al., 2011; Gao et al., 2011; 

Zacharias et al., 2002). How then could gravin facilitate PKA dependent phosphorylation 

activity in different membrane microdomains? One possibility could be via dissociation 

and diffusion of C subunits from R subunit dimers as described by the classical model of 

PKA activation. However, serious challenges to this dissociation model have been 

outlined in recent years. First, cAMP binds to PKA with low diffusion constant on the 

order of nanomolars, so it is not likely to be readily turned over in cells (Poppe et al., 

2008). In addition, Smith et al. (2013) show that AKAP18-PKA complexes – similar to 

gravin-PKA in that both involve RIIα – retain the catalytic subunit (PKAc) even after 

isoproterenol stimulation and subsequent elevation of PKA activity. In fact, Smith et al. 

(2013) further showed that a flexible linker domain on RIIα works to constrain PKAc to 

substrates within a ~16 nanometer radius (F. D. Smith et al., 2013). In addition to these 

important studies, the current study also challenges the PKAc dissociation model, evident 

in the finding that gravin was able to reduce cytosolic PKA activity through interaction 

with PKA and with the plasma membrane. This finding would be difficult to explain 

were PKAc to dissociate into the cytosol following forskolin treatment (an example of 

subcellular PKAc dissociation is seen in Martin, Deerinck, Ellisman, Taylor, & Tsien, 

2007). Therefore, the extent of gravin-directed PKA activity at the membrane may more 

likely due to the localization of gravin within both raft and non-raft microdomains. To be 
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sure, the localization of gravin within these microdomains is currently not well 

understood; however its N-myristoylation motif suggests a preferred localization within 

membrane rafts. This is in part supported by a study by Choi et al (2008), which showed 

that plasma membrane cholesterol extraction in SNU-449 cells caused gravin 

redistribution away from the cell periphery to intracellular vesicles (M. C. Choi, Lee, 

Kim, Lee, et al., 2008). In a more recent study, Su et al (2013) showed that exogenous 

rodent gravin, also called SSeCKS, was found in caveolin-rich membrane fractions 

corresponding to membrane rafts. However, Su et al. also showed moderate gravin 

labeling in “lighter” membrane fractions which supports the notion that gravin may 

localized within both membrane microdomains, at least in exogenous expression models 

(Su et al., 2013). The current study also uses exogenous gravin expression, so it is unclear 

whether levels of endogenous gravin would result in a similar localization within both 

raft and non-raft membrane microdomains, or facilitate the phosphorylation of both 

membrane-targeted AKAR3 constructs as observed in the current study. Nonetheless, if 

the breadth of PKA activity across membrane microdomains is proportional to the level 

of gravin expression in cells, this may serve as an important regulatory mechanism for 

PKA phosphorylation at the plasma membrane. This would be a fascinating topic of 

further research, especially given that gravin expression is highly regulated in cells under 

various physiological conditions such as cancer (reviewed in Gelman, 2012), 

inflammation (Kitamura et al., 2002; Sun, Cheng, Liu, Xiao, et al., 2007; Q. H. You et 

al., 2010), tissue injury/stress (Chen et al., 2008; Dolinay et al., 2006; Higgins et al., 

2003), and hypoxia (Wasenius et al., 2003; Weissmuller et al., 2014). 
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 The finding that gravin localization at the cell periphery is impaired by the 

mutation of a consensus binding motif for Ca
2+

/calmodulin (CaM) within the CB4 

domain suggests a novel role for CaM interaction with gravin. A previous study by Tao et 

al. (2006) suggests that CaM plays a role in relocalization of gravin to the cytosol upon 

calcium elevation by binding to the membrane-associated polybasic domains, PB1-3 (Tao 

et al., 2006). More recently, we demonstrated that a gravin mutant missing PB1-3 still 

underwent calcium-dependent redistribution identical to that of full-length gravin, which 

suggests that the role of CaM in mediating gravin redistribution is more complex than 

previously thought. In fact, deletion of gravin’s CB4 domain – a fourth putative CaM 

binding domain located downstream of gravin’s polybasic domains – caused a significant 

reduction in the basal localization of gravin the cell periphery even in the absence of 

calcium elevation (Schott & Grove, 2013). Since CaM has been linked to gravin 

redistribution, we proposed in the previous study that deletion of the CB4 domain might 

mimick a CaM-gravin interaction and prevent gravin from associating with the plasma 

membrane. However, as the current study indicates, a gravin construct with mutations to 

the CaM-binding amino acid sequence within the CB4 domain caused a similar reduction 

in membrane localization as CB4 deletion, suggesting that CaM-CB4 interaction 

promotes gravin localization at the plasma membrane under basal conditions. Thus, while 

CaM binding to gravin may regulate the dissociation of gravin from plasma membrane, 

possibly via an interaction with polybasic domains 1-3, CaM binding may also regulate 

the association of gravin at the membrane through binding to CB4. At the moment, it is 

not clear how CaM binding to the CB4 domain might support membrane association. One 

possibility is that the CB4 domain may support the myristoylation site in binding to the 



85 

membrane through an as yet unknown mechanism. Previous work by us shows that the 

myristoylation site is sufficient to retain normal membrane localization in the absence of 

a region containing the polybasic domains (X. Yan et al., 2009), but it is not sufficient for 

normal gravin-membrane localization in the absence of a region containing both the 

polybasic domains and CB4 (Schott & Grove, 2013). Perhaps in the absence of CaM-

CB4 binding, the conformation of gravin’s tertiary structure renders the myristoylation 

site and PB1-3 inaccessible to membrane phospholipids. It is also interesting that the CB4 

domain (a.a. 669–693) lies directly upstream of three PKA-phosphorylation sites (ser696-

698) which have been shown by Tao et al. (2003) to enhance gravin’s association with 

β2AR. It is possible that CaM binding to CB4 may influence either the 

phosphorylation/dephosphorylation of serines 696-698 or the interaction of these sites 

with other proteins. Future studies could investigate the importance of gravin’s CB4 

domain in serine 696-698 phosphorylation and in β2AR interaction to gain clues into the 

role of this domain in membrane localization.  

 Demonstration that thapsigargin pre-treatment abolished gravin’s ability to 

potentiate PKA activity at the plasma membrane indicates a role for gravin in regulating 

cross-talk between calcium- and cAMP-dependent signaling pathways. Several lines of 

evidence clearly show that although gravin is distributed at the plasma membrane under 

basal conditions, gravin redistributes away from the membrane in response to PKC 

activation (Lin et al., 1996a; Piontek & Brandt, 2003) and/or cytosolic Ca
2+

 elevation 

(Tao et al., 2006), both of which are also shown to cause the redistribution of PKA away 

from the cell periphery (Schott & Grove, 2013; X. Yan et al., 2009). Despite the 

understanding that gravin redistribution alters PKA localization, the impact of gravin 
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redistribution on subcellular PKA activity has not been demonstrated until now. In the 

current study, pre-treatment with thapsigargin caused the redistribution of gravin and 

prevented gravin-mediated potentiation of PKA activity at the plasma membrane. 

Importantly, thapsigargin pre-treatment had no significant impact on membrane PKA 

activity in the absence of gravin, demonstrating that the impact of thapsigargin on 

membrane PKA activity was gravin-dependent and likely mediated by gravin 

redistribution. The notion that calcium elevation impacts PKA activity through changes 

in gravin distribution represents a novel mode of calcium/cAMP crosstalk. It is well 

documented that crosstalk between these two second messenger pathways has broad 

physiological relevance, and several pathways have been described. Calcium-dependent 

signaling is known to regulate cAMP production through various adenylyl cyclase 

isoforms, but calcium can also regulate cAMP degradation by stimulating type 1 

phosphodiesterase (reviewed in Halls & Cooper, 2011). The current study describes a 

mechanism of Ca
2+

/cAMP crosstalk downstream of cAMP production and degradation 

that operates through the spatial regulation of PKA by gravin. This lays groundwork for 

future studies to investigate the impact of gravin-mediated calcium/PKA crosstalk in 

vivo. For example, based on the current study we predict that calcium impacts not only 

β2AR phosphorylation, but also plasma membrane PKA activity operating downstream 

of receptor activation. This may be important particularly in hippocampal neurons where 

gravin was shown to phosphorylate β2AR and regulate learning and memory (Havekes et 

al., 2012). Gravin is also shown to regulate cellular migration, a phenomenon which 

relies heavily on the compartmentalization of PKA at the leading edge, and also on 

calcium/PKA crosstalk (Howe, 2011). Since our knowledge of gravin-dependent PKA 
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phosphorylation targets remains somewhat limited, it is hard to predict the precise impact 

of gravin in the context of calcium signaling. Proteomic knowledge of PKA substrate 

dynamics in the presence and absence of gravin may be critical in future studies.  

Conclusions 

 We report here that gravin-V5/His expression impacted PKA activity at the 

plasma membrane and in the cytosol. This effect was seen in response to forskolin 

treatment, which showed higher levels of PKA activity at the plasma membrane and 

lower levels of PKA activity in the cytosol when gravin was expressed. Experiments 

using mutant gravin constructs revealed that this impact on plasma membrane and 

cytosolic PKA activity was dependent on gravin’s interaction with PKA and localization 

at the cell periphery. Pretreatment with thapsigargin triggered the redistribution of gravin 

away from the cell periphery and inhibited gravin-V5/His from increasing forskolin-

stimulated PKA activity at the plasma membrane. Our data shows that gravin expression 

may have profound effects on subcellular PKA activity and supports the hypothesis that 

gravin facilitates crosstalk between Ca
2+

 and cAMP-dependent signaling pathways.  
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Figure IV-1.  Quantification of PKA dynamics with AKAR3. Fluorescent images show 

the distribution of three AKAR3 constructs that contain a targeting 

sequence for the cytosol (NES), non-raft plasma membrane (CAAX), or 

membrane rafts (Lck). Forskolin caused a drop in CFP fluorescence and 

an increase in YFP fluorescence as imaged through CFP and FRET 

channels, respectively. FRET intensity was corrected for CFP crossover 

(44%) at each time point. The normalized ratio of FRET/CFP intensity 

was then plotted over time, and the fold increase was calculated by 

dividing the maximal ratio value after treatment (Rmax) by the average 

ratio value prior to treatment (R0). Graph C represents the mean fold 

increase in each of the AKAR3 constructs after 10 μM forskolin treatment. 
Scale bar = 10 μm; cells were incubated in 10 µM IBMX for 30 minutes 

prior to forskoliln treatment. 
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Figure IV-2. Gravin-V5/His expression alters subcellular PKA activity. AN3CA cells 

were co-transfected with gravin-V5/His and with AKAR3 constructs 

containing targeting sequences for non-raft membrane (CAAX), 

membrane raft (Lck), or cytosolic (NES) localization. Representative 

fluorescent images show the distribution the AKAR3 constructs. 

Expression of gravin increased forskolin-mediated PKA activity in both 

non-raft (A,B), and raft (C,D) membrane compartments. Conversely, 

gravin reduced PKA activity in the cytosol (E,F). Mann-Whitney Rank 

Sum tests revealed significant differences between the mean fold increases 

of each treatment. Asterisks denote p < 0.05. Scale bar = 10 μm ; cells 
were incubated in 10 μM IBMX for 30 minutes prior to forskolin 
treatment. 
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Figure IV-3. PKA RII-ECFP was localized to the cell periphery in AN3CA cells only 

when full-length WT gravin was present. Graph A shows that 39% of cells 

expressing PKA RII-ECFP showed ECFP localization at the cell periphery 

when co-transfected with WT gravin-V5/His. No cells showed PKA RII-

ECFP localization at the cell periphery when co-transfected with (ΔPKA) 
gravin-V5/His, or when expressed in cells containing no gravin. Graph B 

shows the % co-transfection of PKA RII-ECFP positive cells with and 

without gravin-V5/His constructs. PKA-RII-ECFP positive cells showed a 

high rate of co-transfection with gravin-V5/His constructs as indicated by 

immunofluorescence labeling with a gravin antibody (94% with WT 

gravin-V5/His; 95% with (ΔPKA) gravin-V5/His), but cells transfected 

with PKA RII-ECFP only showed no immunofluorescence labeling the 

gravin antibody. 
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Figure IV-4. Forskolin-stimulated PKA activity at the plasma membrane (AKAR3-

CAAX) and cytosol (AKAR3-NES) in AN3CA cells co-expressing 

AKAR3 and either WT or (ΔPKA) gravin-V5/His. Graphs A,B show that 

while gravin expression caused an increase in forskolin-stimulated PKA 

activity at the plasma membrane, this increase was not observed in cells 

expressing ΔPKA gravin. Graphs C,D show that the gravin-mediated 

suppression of cytosolic PKA activity was not observed in cells expressing 

ΔPKA gravin. One-way ANOVA with Holm-Sidak post hoc tests revealed 

significant differences between the mean fold increase as indicated by 

asterisks. Representative confocal micrographs show the distribution of 

transfected gravin-V5/His constructs in fixed cells immunolabeled with a 

gravin antibody. Scale bar = 10 μm. Cells were incubated in 10 μM IBMX 
for 30 minutes prior to forskolin treatment. 
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Figure IV-5. Role of CB4 domain in subcellular gravin localization. Part A illustrates 

the sequence and location of gravin’s CB4 domain downstream of the 

membrane targeting regions (myr, PB1-3). Amino acids shown in red 

comprise a calmodulin-binding consensus sequence and were substituted 

for alanine. Mutagenesis was confirmed by HindIII restriction digest (not 

shown). In graph B, either mutation or deletion of the CB4 domain caused 

a significant reduction in membrane localization compared to WT gravin. 

(ANOVA with Holm–Sidak post-hoc test; asterisks denote significant 

differences; NS, not significant). Representative fluorescent images show 

the localization of these constructs in AN3CA cells. Scale bar = 20 μm. 
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Figure IV-6. Forskolin-stimulated PKA activity at the plasma membrane (AKAR3-

CAAX) and cytosol (AKAR3-NES) in AN3CA cells co-expressing 

AKAR3 and either WT or (mutCB4) gravin. Graphs A,B show that while 

gravin expression caused an increase in forskolin-stimulated PKA activity 

at the plasma membrane, this increase was not observed in cells 

expressing mutCB4 gravin. Graphs C,D show that the gravin-mediated 

suppression of cytosolic PKA activity was not observed in cells expressing 

mutCB4 gravin. One-way ANOVA with Holm-Sidak post hoc tests 

revealed significant differences between the mean fold increase as 

indicated by asterisks. Representative confocal micrographs show the 

distribution of transfected gravin-V5/His constructs in fixed cells 

immunolabeled with a gravin antibody. Scale bar = 10 μm. Cells were 
incubated in 10 μM IBMX for 30 minutes prior to forskolin treatment. 
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Figure IV-7. Thapsigargin triggers gravin redistribution and abolishes gravin-mediated 

elevation in plasma membrane PKA activity. Graphs A,B show that gravin 

expression caused an increase in forskolin-stimulated PKA activity at the 

membrane, but this increase was not observed in cells expressing gravin 

but pretreated with the calcium-elevating agent thapsigargin (10 µm) for 

30 min. Thapsigargin pretreatment had no effect on forskolin-stimulated 

PKA activity in the absence of gravin. One-way ANOVA on ranks with 

Kruskal-Wallis post hoc showed significant differences between 

treatments as indicated by asterisks. In part C, representative fluorescent 

images illustrate the redistribution of gravin-EGFP away from the plasma 

membrane by thapsigargin. Gravin-V5/His redistribution was confirmed 

after FRET experiments by quantifying the percentage of cells showing 

gravin localization at the membrane, shown in box plot represented in 

graph D. Scale bar = 10μm. 
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CHAPTER V 

DISCUSSION 

 The goal of the current study was to investigate the hypothesis that gravin 

mediates crosstalk between calcium and cAMP dependent signaling pathways by 

translocating from the plasma membrane to the cytoplasm in response to intracellular 

calcium elevation. This study demonstrated that gravin undergoes redistribution in 

response to treatment with the calcium-elevating agents ionomycin, thapsigargin, and 

ATP. These calcium elevating agents triggered not only the redistribution of gravin but 

also the loss of compartmentalized PKA at the cell cortex. Calcium-mediated gravin 

redistribution did not require the calmodulin-binding polybasic domains (PB1-3), but a 

fourth calmodulin binding domain (CB4) was shown to be important for membrane 

localization under basal conditions and suggests that calmodulin plays a complex role in 

regulating gravin-membrane interaction. Gravin-membrane interaction was shown to be 

important for PKA localization and for compartmentalized PKA activity, as seen in 

studies using the PKA FRET biosensor AKAR3. These studies determined that gravin 

expression potentiates plasma membrane PKA activity but suppresses cytosolic PKA 

activity. Gravin’s impact on membrane and cytosolic PKA activity were lost in cells 

expressing gravin constructs that either lacked the PKA binding domain or were inhibited 

in binding to the membrane. In addition, thapsigargin pretreatment, which caused gravin 

redistribution, prevented gravin-mediated potentiation of PKA activity at the plasma 

membrane. By demonstrating the impact of calcium-mediated gravin redistribution on
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 PKA localization and subcellular activity, these studies support the hypothesis that 

gravin mediates crosstalk between calcium and cAMP dependent signaling pathways. 

 Gravin-mediated crosstalk between calcium and cAMP-dependent signaling 

outlined in the current study represents a novel mode of crosstalk between these two 

signaling pathways. The influence of calcium on cAMP-dependent signaling is well 

understood to occur in the regulation of cAMP levels themselves (Reviewed by Halls & 

Cooper, 2011). Production of cAMP begins with G-protein coupled receptors (GPCRs) 

that associate with trimeric G-proteins containing the stimulatory α-subunit, αs. Upon 

GPCR activation, Gαs dissociates from βγ subunits and activates adenylyl cyclase (AC) 

enzymes, which then convert ATP to cAMP. Adenylyl cyclase activity (and therefore 

cAMP production) can be influenced by calcium-dependent signaling mediators which 

target certain isoforms in either a stimulatory or inhibitory manner. For example, 

Ca
2+

/calmodulin (CaM) stimulates three of the ten known adenylyl cyclase isoforms, 

AC1, AC3, and AC9, whereas AC5 and AC6 are inhibited by CaM. Other adenylyl 

cyclase isoforms are further regulated by calcium-dependent phosphorylation by CaM-

dependent kinases (CaMK) and dephosphorylation by CaM-dependent phosphatases 

(CaN). For example, AC1 and AC3 are inhibited by CaMK phosphorylation, and AC9 is 

inhibited by CaN dephosphorylation. In addition to calcium’s impact on cAMP 

production, however, calcium-dependent signaling mediators also regulate cAMP 

degradation. For example, CaM is known to stimulate phosphodiesterase type 1, an 

enzyme that hydrolyzes cAMP back to AMP. It is clear from the current literature that 

calcium plays a complicated role in regulating intracellular cAMP levels, and the current 

study adds to this by showing that calcium exerts addition control over cAMP-dependent 
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signaling downstream of cAMP production/degradation by regulating the interaction of 

PKA with its targets (Fig. V-1). We report that this mechanism occurs through the 

calcium-mediated redistribution of gravin. In our studies, gravin targeted PKA to the cell 

periphery and potentiated forskolin-stimulated PKA activity at the plasma membrane. In 

response to calcium elevation, gravin redistribution caused the relocalization of PKA 

away from the cell periphery and also inhibited the potentiation of plasma membrane 

PKA activity by gravin.  

 

 

Figure V-1.  Ca
2+

 crosstalk with cAMP signaling pathways occurs by (1) 

positive/negative regulation of adenylyl cyclases which produce cAMP, 

(2) regulation of phosphodiesterases that hydrolyze cAMP, and (3) 

regulation of cAMP-dependent protein kinase (PKA) interaction with 

substrate proteins, as evidenced by the current study.  

 

 

Role of Calmodulin in Gravin-Mediated Ca
2+

/cAMP Crosstalk 

 Future studies will be required to fully understand the mechanism behind calcium 

-mediated gravin redistribution, but our results and others suggest a role for calmodulin in 

1 
 

2 
 

3 
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this event. Tao et al. (2006) first asserted that CaM causes gravin redistribution by 

binding to the membrane associating polybasic domains (PB1-3) and thereby reversing  

their electrostatic interaction with the plasma membrane. However, a later study from our 

laboratory showed that a mutant gravin construct missing PB1-3 was still localized at the 

plasma membrane identical to full-length gravin due to the N-myristoylation site (X. Yan 

et al., 2009). This raised the interesting possibility that this mutant construct missing 

PB1-3 would not interact with CaM and would therefore remain at the plasma membrane 

upon calcium elevation. In the current study, we discovered that this was not the case. 

Even in the absence of PB1-3, gravin localized to the plasma membrane and translocated 

to the cytosol upon calcium elevation at an identical rate to that of full-length gravin, 

suggesting that the polybasic domains are in fact not necessary for calcium-mediated 

gravin redistribution. This result also supports another interesting finding by Yan et at. 

(2009) which showed that this same ΔPB1-3 construct also underwent PKC-mediated 

redistribution, despite a previous assertion that PKC phosphorylation of the polybasic 

domains mediates gravin redistribution. In search for an explanation for these results, we 

came to find that the ΔPB1-3 gravin mutant construct does retain a fourth putative 

calmodulin binding domain downstream of PB1-3. This region, which we have termed 

CB4, was first identified by Tao et al. (2006) and was reported to have no affinity for 

phospholipid vesicles. We therefore reasoned that the ΔPB1-3 grain mutant underwent 

calcium-mediated redistribution because of CaM interaction with the downstream CB4 

domain. To test this assertion, we generated a gravin mutant missing PB1-3 and CB4, but 

surprisingly this mutant did not localize to the plasma membrane under basal conditions 

in a manner that was sufficient to measure it’s redistribution upon calcium elevation. In 
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fact, both deletion of CB4 and mutation of the putative calmodulin binding sequence 

within the CB4 domain caused a dramatic reduction in gravin localization at the cell 

periphery. This finding suggests that while calmodulin interaction with PB1-3 could 

promote the dissociation of these domains from the plasma membrane, calmodulin 

interaction with CB4 promotes the association of gravin with the plasma membrane. This 

may provide insight not only into the membrane localization of gravin, but also into 

calcium mediated gravin redistribution.  

 It is possible that the function of gravin’s CB4 domain is to support the membrane 

binding activity of the myristoylation site. Evidence for this comes from the finding that 

ΔPB1-3 gravin mutant is localized at the membrane, but the ΔPB1-3,CB4 gravin mutant 

is not, even though both of these mutant constructs contain the N-terminal myristoylation 

sequence. To put it another way, the myristoylation site is sufficient for membrane 

localization, but only when the CB4 domain is present. Although myristoyl lipid anchors 

are involved in the localization of proteins to plasma membranes, they are reported to 

have relatively weak binding energy by themselves and are thus supported either by 

additional lipid anchors like palmityol groups or by interactions with other membrane-

bound or transmembrane proteins (Resh, 1999). Gravin does not contain any 

palmitoylation sequences, but the latter notion is quite possible since the CB4 domain 

(a.a. 669-684) falls within the β2AR binding region (a.a. 652-938) described by Tao et al. 

(2003). Based on this, it’s possible that the CB4 domain itself and/or CaM binding to 

CB4 could play a role in facilitating gravin’s interaction with β2AR, thereby supporting 

gravin’s localization at the cell periphery. This is an exciting prospect that could be tested 

in several ways. The first would be to determine whether the interaction between full-
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length gravin and β2AR receptor is different than that of (mutCB4) gravin or (ΔCB4) 

gravin. Next, it should be confirmed whether calmodulin binds to CB4 and if this is 

important in gravin’s interaction with β2AR. It would also be useful to explore gravin 

localization and interaction with β2AR receptor in living cells under calmodulin 

knockdown and overexpression conditions, or with pharmacological inhibitors of 

calmodulin such as Ophobolin-A, which prevents calmodulin from interacting with other 

proteins by covalently bonding to calmodulin’s hydrophobic pocket. Gravin localization 

could be also assessed under β2AR receptor knockdown and overexpression conditions. 

Finally, it would be interesting to generate a peptide corresponding to the CB4 domain to 

serve as a competitive inhibitor for calmodulin interaction with this region. One could 

assess the impact of this peptide on (A) gravin localization at the cell periphery, and (B) 

gravin’s interaction with β2AR. I predict that a CB4 peptide would competitively 

interfere with calmodulin binding to gravin and thus inhibit gravin’s localization at the 

plasma membrane and possibly gravin’s interaction with β2AR. This inhibitor peptide 

may even serve as a means for therapeutic intervention in regulating calcium and cAMP 

crosstalk in cells expressing gravin, which could be explored in vascular endothelial 

disorders and/or hippocampal learning and memory.  

Ca
2+

/cAMP Crosstalk in Vascular Function. 

 In the context of vascular endothelial cell function, unpublished work from our 

lab shows that gravin promotes cellular migration in a scratch wound healing model. In 

addition to this, gravin is concentrated at the leading edge of microvascular endothelial 

cell lamellipodia along with RhoA and F-actin. In light of the current study, gravin-

mediated Ca
2+

/cAMP crosstalk may be a promising avenue for research in the context of 
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endothelial cell migration. A review written by Alan Howe (2011) discusses the critical 

importance of calcium and PKA crosstalk in migrating cells, particularly with regard to 

localized calcium transients in at the leading edge (Howe, 2011). These transients are in 

part mediated by stretch-activated calcium channels (SACC) which become active in 

response to mechanosensation, causing transient extracellular calcium influx. TRPM7, 

for example, is known to produce calcium transients known as “flickers” in leading edge 

lamellipodia that are important for cellular migration. TRPC1 is another leading edge 

SACC that regulates cellular chemotaxis through lamellipodial calcium gradients. 

Finally, TRPV4 mediated calcium signaling is linked to cytoskeletal remodeling. The 

possible link between these SACC-mediated pathways and gravin in the context of 

endothelial cell migration are completely unknown but would make a fascinating subject 

for further research. It is possible that gravin’s localization at the leading edge is 

mechanosensitive in response to SACC-mediated calcium entry. I predict that SACC 

channel activation would cause the transient redistribution of gravin away from the point 

of calcium influx, and this would additionally impact the interaction of PKA with 

downstream targets. Some of these targets may be cytoskeletal effector proteins such as 

RhoA, which is distributed at the leading edge with gravin in microvascular endothelial 

cells. Also, it is possible that a calmodulin-interfering peptide, such as the CB4 domain, 

could be generated to regulate gravin localization at the cell periphery and perhaps be 

used as a therapeutic agent to regulate endothelial cell migration. Given the clear link 

between gravin and endothelial barrier function and angiogenesis, this might create 

additional avenues for treatment of diseases such as stroke or tumor growth. 
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 Another component of the vasculature that readily expresses gravin is smooth 

muscle cells, which utilize calcium signaling to regulate cytoskeletal organization and 

contractility. Bruce et al. (2003) reports an interesting smooth muscle phenomenon in 

which contractility and relaxation are both regulated by calcium but depend entirely on 

the shape of the calcium signal. For example, calcium sparks – localized calcium 

transients – mediate smooth muscle cell contractility while more global calcium signals 

mediate relaxation (Bruce, Straub, & Yule, 2003). While smooth muscle cells readily 

express gravin, the impact of gravin on smooth muscle function is poorly understood. It 

would be interesting to observe whether calcium sparks vs. whole cell calcium gradients 

impact gravin distribution, PKA distribution, and PKA activity/phosphorylation of 

downstream substrates.  

 Gravin is also present in cardiomyocytes of the heart, and knockdown of gravin in 

mice is shown to enhance cardiac contractility (Guillory et al., 2013). Given the central 

importance of calcium signaling in cardiac myocytes, it is possible that gravin mediates 

its effect on cardiac contractility in part through Ca
2+

/cAMP crosstalk. Future 

experiments could be done to determine the difference in phosphorylation states of PKA 

substrates within wild-type versus gravin knockdown hearts, and assess how calcium 

signaling in cardiac myocytes may regulate this phosphorylation in a gravin-dependent 

manner. In addition, calcium signaling in cardiac myocytes may regulate β2AR receptor 

sensitivity by affecting its association with gravin.  

Role of Gravin in GPCR Crosstalk 

 The current study suggests that gravin intersects with GPCR signaling in a 

number of ways. This line of investigation also represents a promising next step for 
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further research. This study showed that receptor-mediated signaling linked to [Ca
2+

]i 

elevation and PKC activation caused gravin and PKA redistribution. In addition, gravin 

redistribution was shown to regulate not only PKA localization, but gravin-mediated 

potentiation of PKA activity the cell periphery. Given these findings, it is reasonable to 

hypothesize that (1) gravin potentiates Gs-coupled GPCR signaling at the plasma 

membrane, (2) Gq-coupled GPCRs impact cAMP-dependent signaling through gravin 

redistribution, and therefore (3) gravin mediates crosstalk between Gq-coupled and Gs-

coupled GPCRs.  

 Evidence that gravin may potentiate GPCR-stimulated PKA activity at the plasma 

membrane comes from the demonstration that gravin directs PKA localization at the cell 

periphery through its PKA-binding domain (also shown by X. Yan et al., 2009) and that 

gravin potentiates plasma membrane PKA activity upon treatment with forskolin, an 

agent which raises cAMP levels by stimulating adenylyl cyclase. GPCRs coupled to Gs 

are known to stimulate adenylyl cyclase and raise cAMP levels, suggesting that these 

receptors may also be subject to gravin-mediated potentiation of PKA activity at the 

plasma membrane. An obvious context for the investigation of this hypothesis would be 

within β2AR receptor signaling, since gravin is known to physically interact with this Gs-

coupled receptor (G. F. Fan et al., 2001; Shih et al., 1999b). This, however, brings up an 

interesting question: Does gravin impact PKA activity in only certain Gs-coupled GPCR 

pathways or does it regulate a wide array of Gs-coupled GPCR pathways? This question 

could be investigated by treating cells with different Gs-coupled GPCR agonists in cells 

expressing AKAR3 biosensors in the presence and absence of gravin. This approach 

could also be investigated in the context of a physiological output, such as endothelial 



104 

barrier function. A recent study by Weissmuller et al. (2014) showed that gravin supports 

endothelial barrier formation in response to treatment with PKA-stimulating GPCR 

agonists albuterol (β-adrenergic agonist) and NECA (adenosine receptor agonist). 

Perhaps gravin accomplishes this by potentiating PKA activity at the plasma membrane 

in response to these agonists. 

 In addition to gravin’s potential impact on Gs-coupled GPCR systems, it is also 

likely that Gq/11-coupled GPCRs may cause gravin redistribution, thereby altering PKA 

localization and compartmentalized PKA activity. Evidence for this comes from the 

findings that ATP caused gravin and PKA redistribution in HEC1A cells (Fig. III-8), and 

that gravin redistribution required both calcium elevation and PKC activity (Fig. III-7). 

Since ATP-mediated gravin redistribution was unaffected in the absence of extracellular 

calcium, it is likely that this change occurred through P2Y receptors, many of which are 

coupled to Gq/11. Given that Gq/11-coupled GPCRs are known to cause both PKC 

activation and [Ca
2+

]i elevation from intracellular stores through phospholipase C 

activity, it is possible that other Gq/11-coupled GPCRs also cause gravin redistribution 

and alter PKA localization. To test this, one could treat cells expressing gravin-EGFP 

with a variety of agonists that target Gq/11-coupled GPCRs and measure the impact on 

gravin distribution. These experiments could also be applied to AKAR3-expressing cells 

in the presence and absence of gravin to measure the impact of GPCR-mediated gravin 

redistribution on forskolin-stimulated PKA activity at the plasma membrane (see Fig. IV-

5). Going back to the example of endothelial barrier function, it’s interesting to note that 

some of the most potent agonists for endothelial permeability – thrombin, bradykinin, and 

histamine – target Gq/11-coupled GPCRs (Mehta & Malik, 2006). Given gravin’s role in 
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supporting endothelial barrier integrity (Weissmuller et al., 2014), perhaps these agonists 

stimulate endothelial permeability in part by redirecting PKA away from the cell 

periphery through gravin redistribution.  

 Gravin’s putative interplay with these various GPCR pathways raises the 

interesting possibility that gravin may be involved in a crosstalk mechanism between 

Gq/11-coupled and Gs-coupled GPCR pathways. One very interesting line of 

investigation might be found within GPCR families that couple to both G protein 

pathways through various receptor classes, as is the case with purinergic P2Y receptors 

and with adrenergic receptors. In these examples, both of the mentioned GPCR pathways 

can be activated by a common agonist. ATP activates P2Y receptors, most of which are 

coupled to Gq/11 (Erb et al., 2006). However ATP can also stimulate Gs-coupled 

pathways through P2Y11 (Qi, Kennedy, Harden, & Nicholas, 2001) or adenosine receptor 

activation if extracellular ATP becomes metabolized to adenosine through surface-

expressed ectonucleotidases (Narravula, Lennon, Mueller, & Colgan, 2000). In the case 

of adrenergic receptors, epinephrine/norepinephrine activates both Gq/11-coupled α1 

adrenergic and Gs-coupled β-adrenergic receptors. Within both adrenergic and purinergic 

systems, one could test how Gs-coupled GPCR signaling is impacted by the presence of 

Gq/11-coupled GPCRs, and whether gravin affects this interplay. I predict that Gq/11 

activation would trigger gravin/PKA redistribution and thereby impact Gs-mediated 

subcellular PKA activity. This could very likely be the case in hippocampal neurons, 

which express both gravin and multiple adrenergic receptor subtypes and have already 

been linked in functions related to learning and memory (Havekes et al., 2012). Gravin 

may be involved in regulating postsynaptic inputs through an interplay between dendritic 
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GPCRs, or be more broadly involved in dendritic Ca
2+

 and PKA signaling as is the case 

with AKAP79 (Dell'Acqua et al., 2006; Fuller, Fu, Scheuer, & Catterall, 2014; Gomez, 

Alam, Smith, Horne, & Dell'Acqua, 2002; Murphy et al., 2014; Oliveria, Dell'Acqua, & 

Sather, 2007; Oliveria, Dittmer, Youn, Dell'Acqua, & Sather, 2012). To test this idea, one 

could begin with a thorough characterization of gravin expression in the hippocampus to 

identify both the types of hippocampal neurons that express gravin and also the 

subcellular localization of gravin within these neurons. Gravin redistribution could also 

be assessed following stimulation of Gq/11-coupled GPCRs, such as α1-adrenergic 

receptors. If α1ARs trigger gravin redistribution through Ca2+
 and/or PKC mediated 

pathways, it would be interesting to determine how this could impact β2AR signaling and 

the interaction of β2AR with gravin. Knockdown or pharmacological inhibition of α1AR 

and β2AR could also be performed to determine how these receptors might affect one 

another upon norepinephrine stimulation in the presence of gravin. 

Conclusions 

 In conclusion, the current study demonstrates that gravin mediates crosstalk 

between calcium-dependent and cAMP-dependent signaling pathways. Under basal 

conditions, gravin localizes PKA to the cell periphery which results in the potentiation of 

plasma membrane PKA activity and the suppression of cytosolic PKA activity. 

Intracellular calcium elevation causes gravin redistribution to the cytosol, which triggers 

both the loss of PKA compartmentalization and loss of PKA potentiation at the plasma 

membrane. Calcium therefore exerts control over cAMP-dependent signaling pathways 

by altering the subcellular compartmentalization of PKA through gravin redistribution. 

Although the physiological impact of this crosstalk mechanism is currently unclear, 
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future research could lead to translational findings toward the treatment of disease. First, 

a more detailed understanding of the mechanism behind gravin redistribution might lead 

to pharmacological tools to regulate gravin distribution in vivo without the manipulation 

of specific signaling networks. Second, many facets of vascular function could be 

pursued in understanding gravin-mediated Ca
2+

/cAMP crosstalk including endothelial 

cell migration, smooth muscle function, and cardiac contractility. Finally, knowledge of 

gravin’s precise interplay between different GPCR-based signaling networks could be 

usefully applied to other health and disease models, such as endothelial barrier function 

and hippocampal learning and memory. The current study gives strong justification for 

the exploration of gravin function within these contexts and paves the way for novel 

therapeutic strategies and a more robust understanding of the complexity of cellular 

signal transduction.  
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ABBREVIATIONS 

α1AR α1-adrenergic receptor 

AKAP A-Kinase Anchoring Protein  

AKAR3 A-Kinase Activity Reporter 3 

ATP adenosine triphosphate  

β2AR β2-adrenergic receptor 

BAPTA-AM 1,2-Bis(2-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid 

tetrakis(acetoxymethyl ester) 

 

BIM bisindolylmaleimide 

[Ca
2+

]i intracellular calcium concentration 

CAAX C-terminal prenylated domain 

CaM calcium-calmodulin 

cAMP cyclic adenosine monophosphate 

CB4 calmodulin binding domain 4 

ECFP enhanced cyan fluorescent protein 

EGFP enhanced green fluorescent protein 

EYFP enhanced yellow fluorescent protein 

FRET Förster’s Resonance Energy Transfer 

Fsk Forskolin 

GPCR G protein coupled receptor
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IBMX 3-isobutyl-1-methylxanthine 

IM ionomycin 

InsP3 inositol triphosphate 

kD kilodaltons 

Lck N-terminal myristoylated and palmityolated domain 

myr myristoylation site 

NES nuclear export signal 

PB1-3 polybasic domains 1 through 3 

PDE4 phosphodiesterase type 4 

PKA protein kinase A 

PKAc catalytic subunit of PKA holoenzyme 

PKC protein kinase C 

PLC phospholipase C 

RII regulatory subunit of type II PKA 

SERCA sarco/endoplasmic reticulum calcium ATPase 

SES standard extracellular solution 

SOCE store-operated calcium entry 

SSeCKS Src-Suppressed C-Kinase Substrate 

Tg thapsigargin 

WT wild-type/full-length 
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