

University of North Dakota UND Scholarly Commons

Theses and Dissertations

Theses, Dissertations, and Senior Projects

January 2015

Phylogenetic Analysis Of Mitochondrial Genomes Of Filarial Nematodes In The Subfamily Waltonellinae

Sarina Marie Bauer

Follow this and additional works at: https://commons.und.edu/theses

Recommended Citation

Bauer, Sarina Marie, "Phylogenetic Analysis Of Mitochondrial Genomes Of Filarial Nematodes In The Subfamily Waltonellinae" (2015). *Theses and Dissertations*. 1741. https://commons.und.edu/theses/1741

This Thesis is brought to you for free and open access by the Theses, Dissertations, and Senior Projects at UND Scholarly Commons. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of UND Scholarly Commons. For more information, please contact zeinebyousif@library.und.edu.

PHYLOGENETIC ANALYSIS OF MITOCHONDRIAL GENOMES OF FILARIAL NEMATODES IN THE SUBFAMILY WALTONELLINAE

by

Sarina Marie Bauer Bachelor of Science, University of North Dakota, 2011

A Thesis

Submitted to the Graduate Faculty

of the

University of North Dakota

in partial fulfillment of the requirements

for the degree of

Master of Science

Grand Forks, North Dakota August 2015

Copyright 2015 Sarina Bauer

This thesis, submitted by Sarina Marie Bauer in partial fulfillment of the requirements for the Master of Science from the University of North Dakota, has been read by the Faculty Advisory Committee under whom the work has been done, and is hereby approved.

Vaughan, Jeffer

Vasyl Tkach, Ph.D

I. Outchinnilen

Igor Ovtchinnikov, Ph.D

This thesis is being submitted by the appointed advisory committee as having met all of the requirements of the Graduate School at the University of North Dakota and is hereby approved.

Wayne Swisher

Dean of the Graduate School July 2015

PERMISSION

Title	Phylogenetic Analysis of Mitochondrial Genomes of Filarial Nematodes in the Subfamily Waltonellinae
Department	Biology
Degree	Master of Science

In presenting this thesis in partial fulfillment of the requirements for a graduate degree from the University of North Dakota, I agree that the library of this University shall make it freely available for inspection. I further agree that permission for extensive copying for scholarly purposes may be granted by the professor who supervised my thesis work or, in his absence, by the chairperson of the department or the dean of the Graduate School. It is understood that any copying or publication or other use of this thesis or part thereof for financial gain shall not be allowed without my written permission. It is also understood that due recognition shall be given to me and to the University of North Dakota in any scholarly use which may be made of any material in my thesis.

Name: Sarina Bauer

Date: June 23, 2015

TABLE OF CONTENTS

LIST O	F FIGURES
LIST OI	F TABLESx
ACKNO	DWLEDGMENTS xi
ABSTR	ACTxii
СНАРТ	ER
I.	INTRODUCTION1
II.	MATERIALS AND METHODS7
	Parasite materials and DNA isolation7
	Primer design
	PCR amplification and sequencing11
	Assembly and annotation of mitochondrial genomes
	Phylogenetic analysis
	Wolbachia detection14
III.	RESULTS 17
	Genome Features and Organization17
	Protein-coding genes

Ribosomal and transfer RNA genes	21
AT-rich region	
Phylogenetic analysis	
Absence of Wolbachia	27
IV. DISCUSSION	
Conclusions	
APPENDIX	34
REFERENCES	50

LIST OF FIGURES

Figure	e	Page
1.	Filarioid life cycle depicting the transmission from definitive host (vertebrate to vector (arthropod). Modified from rowdy.msudenver.edu.	/
2.	Phylogeny based on the 12 protein coding genes of the mitochondrial (mtDNA) genome sequences of nine species of filarioids. Percentages of Bayesian posterior probabilities are displayed at nodes. Black circles indicate <i>Wolbachia</i> -dependence while white circles indicate <i>Wolbachia</i> -independence ¹⁷ .	5
3.	Gene map of the mitochondrial DNA for <i>Foleyellides</i> n. sp. Protein-coding genes are shown in red with the arrows indicating direction of the coding strand. rRNA genes are shown in blue and tRNA gene are shown in green. The hypothesized positions of two tRNA genes are shown in black. The AT rich region is shown in yellow (near position 6,500). The purple rectangle (near position 11,650) represents a small 62 bp insertion not present in other species.	19
4.	Phylogeny based on mitochondrial cytochrome oxidase subunit I (Cox1) sequences. Numbers at specific nodes indicate the percentages of Bayesian posterior probabilities when \geq 70%. Scale bar indicates branch length. (-In likelihood score = 9407.25743)	23
5.	Phylogeny based on mitochondrial 12s rRNA gene sequences. Numbers at specific nodes indicate the percentages of Bayesian posterior probabilities when \geq 70%. Scale bar indicates branch length. (-In likelihood score = 6250.45146)	25
6.	Phylogeny based on concatenated sequences of the 12 protein-coding mitochondrial genes. Numbers at specific nodes indicate the percentages of Bayesian posterior probabilities when \geq 70%. Scale bar indicates branch length. (-ln likelihood score = 62816.12747)	26
7.	Gel electrophoresis results from a polymerase chain reaction (PCR) using primers to detect the presence of the groEL gene of <i>Wolbachia</i> sp. <i>Foleyellides</i> n. sp. (A), <i>Foleyellides flexicauda</i> (B), and the negative control (-) all show negative results. The positive control (+) (<i>Brugia</i> <i>pahangi</i> adult worm) shows the optimal band size for a positive detection	

	of the gene. The 100 bp ladder is shown on the left (L).	27
8.	Phylogeny based on mitochondrial encoded NADH dehydrogenase 2 gene (ND2)	35
9.	Phylogeny based on mitochondrial encoded NADH dehydrogenase 4 gene (ND4)	36
10.	Phylogeny based on mitochondrial encoded cytochrome c oxidase I gene (Cox1)	37
11.	Phylogeny based on mitochondrial encoded NADH dehydrogenase 6 gene (ND6)	38
12.	Phylogeny based on mitochondrial encoded cytochrome b gene (CytB)	39
13.	Phylogeny based on mitochondrial encoded cytochrome c oxidase III gene (Cox3)	40
14.	Phylogeny based on mitochondrial encoded NADH dehydrogenase subunit gene (NDL4)	41
15.	Phylogeny based on mitochondrial encoded NADH dehydrogenase 1 gene (ND1)	42
16.	Phylogeny based on mitochondrial encoded ATP synthase 6 gene (ATP6)	43
17.	Phylogeny based on mitochondrial encoded cytochrome c oxidase II gene (Cox2)	44
18.	Phylogeny based on mitochondrial encoded NADH dehydrogenase 3 gene (ND3)	45
19.	Phylogeny based on mitochondrial encoded NADH dehydrogenase 5 gene (ND5)	46
20.	Maximum parsimony heuristic search in PAUP based on mitochondrial cytochrome oxidase subunit I (Cox1) sequences. Numbers at specific nodes indicate the percentages of bootstrap support (>75%). Consensus of 5 trees produced (length: 1748 steps; consistency index: 0.2946; retention index:0.3575).	47
21.	Maximum parsimony heuristic search in PAUP based on mitochondrial 12s rRNA gene sequences. Numbers at specific nodes indicate the percentages	

of bootstrap support (>75%). Consensus of 62 trees produced (length: 1139 steps; consistency index: 0.4056; retention index:0.4871)44	8
	0
22. Maximum parsimony heuristic search in PAUP based on concatenated sequences of the 12 protein-coding mitochondrial genes. Numbers at	
specific nodes indicate the percentages of bootstrap support (>75%). One tree produced (length: 11553 steps; consistency index: 0.6121; retention	
index: 0.3038)	9

LIST OF TABLES

able Pa	age
1. Filarioid subfamilies with Wolbachia prevalence and their definitive host	3
2. Primers used to amplify and sequence the mitochondrial genomes of <i>Foleyellides</i> n. sp. (A) and <i>Foleyellides flexicauda</i> (B)	9
3. List of species name, their family/subfamily, and their accession number used in the phylogenetic analyses of the Cox1 gene (Cox1) phylogenetic tree, the 12s rRNA gene (12s) phylogenetic tree, and the total protein coding gene phylogenetic tree (Total).	. 16
4. Comparison of the mitochondrial genomes of the ten filarioid nematode species with <i>Foleyellides</i> n. sp	. 18
5. Comparison of the start/stop codons used in the 12 mitochondrial protein coding genes of the ten filarioid nematodes species	. 20

ACKNOWLEDGMENTS

I wish to express my sincere appreciation to each member of my advisory committee for their guidance and support during my time in the master's program at the University of North Dakota. I would like to thank Dr. Jefferson Vaughan, my advisor, for his patience, excitement for teaching, and the many learning opportunities he has provided throughout my undergraduate and graduate years. My passion for science, more specifically parasitology, may have never developed without the guidance of Dr. Vaughan. He also instilled in me the core values of being a passionate teacher, of which I am exceedingly grateful. I would also like to thank Dr. Vasyl Tkach for helping develop my thesis project and spending many hours teaching me a great deal of information imperative to my thesis. Lastly, I would like to thank Dr. Igor Ovtchinnikov for his time and dedication to the thesis writing process.

Additionally, I am grateful for Dr. Rebecca Simmons' tremendous help and support in many aspects of my graduate career. I would also like to express gratitude towards Dr. Joseph Mehus for teaching me all the skills needed to complete my laboratory research, making it through graduate school, and of course, mosquitos. I am especially appreciative for the friends and colleagues I have made throughout my time as a student- without which, graduate school would have been far more difficult, and far less enjoyable.

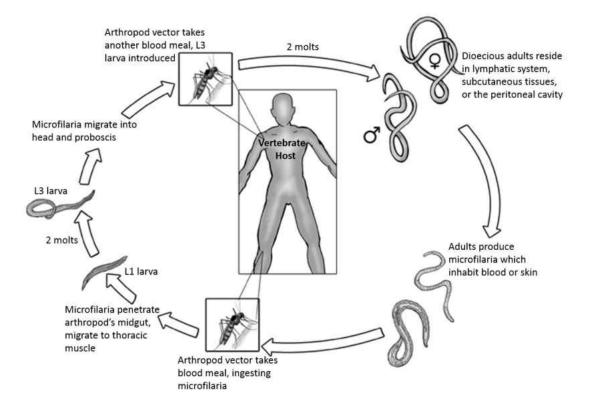
xi

To my family, Without whom this would not have been possible.

ABSTRACT

The family Onchocercidae is a group of parasitic vector born nematodes that are split up into eight subfamilies. Although the subfamilies containing species that parasitize humans and livestock (e.g., Onchocercinae) have been well-studied, there is a considerable lack of information for the lesser studied subfamilies in Onchocercidae (e.g. Waltonellinae). This uncertainty leaves some doubt as to the phylogenetic and evolutionary relationships among the different taxonomic groupings of filarioid nematodes.

I worked with two species of the subfamily Waltonellinae, *Foleyellides* n. sp. and *F. flexicauda*. The primers used in this study for polymerase chain reactions (PCR) and DNA sequencing reactions were based on previously published sources and newly designed as needed. DNA products having the predicted molecular size were used for sequencing reactions. Sequencing was performed using appropriate primers in order to cover the entire mitochondrial genome. Obtained sequences were assembled into a complete circular mitochondrial genome with exception of a small AT-rich region. Phylogenetic analyses using Baysian inference and other algorithms was performed to determine phylogenetic affinities of newly sequenced nematodes with the previously sequenced filarioids. Both genome-level and gene-level phylogenies were produced and compared.


Foleyellides n. sp. and *F. flexicauda* were often found to be the basal branch of the phylogenies. This, along with the fact that neither species is *Wolbachia*-dependent, suggests Waltonellinae was one of the first filarioid nematode groups to exist within the nematode family.

CHAPTER I

INTRODUCTION

Mitochondria are cellular organelles found in most eukaryotes. They are thought to have originated from endosymbiotic bacteria and are involved in respiratory metabolism. Mitochondria have their own genome which is distinct from the nuclear genome. The mitochondrial genome is a closed, circular molecule that is typically inherited maternally in animals. Because of this, mitochondrial sequences are not exposed to sexual re-assortment brought on by diversity generating mechanisms ¹. Also, the mitochondrial DNA (mtDNA) of many animals mutates faster than nuclear DNA. These traits may be advantageous when differentiating between closely related taxa ^{2,3}. One group of animals in particular that has been difficult to phylogenetically analyze for this reason is the filarioid nematode family Onchocercidae.

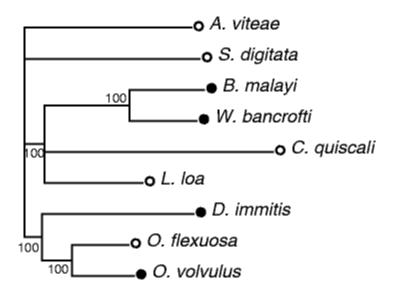
Filarioids are parasitic roundworms found in clade III (Spiruria) of the Phylum Nematoda ⁴. They have an indirect lifecycle, requiring two different hosts. One host is a vertebrate, including all vertebrate classes except fishes. The other host is a bloodsucking arthropod, such as mosquitoes, blackflies, and ticks, and is responsible for transmitting the parasite from one vertebrate host to another. Within the vertebrate, adult worms are found in the lymphatic system, subcutaneous tissues, or the peritoneal cavity. After mating, the adult females release thousands of larvae, known as microfilariae, which inhabit the blood or skin, depending on species. Microfilariae are the infective stage for the arthropod vectors ⁵. This life cycle is summarized in Figure 1.

Figure 1 Filarioid life cycle depicting the transmission from definitive host (vertebrate) to vector (arthropod). Modified from rowdy.msudenver.edu.

The Onchocercidae family is organized into 8 subfamilies ⁵. These subfamilies are listed in Table 1, along with their definitive host. The first three subfamilies listed infect humans and domestic animals causing human suffering and economic losses throughout the world. Because of this, these subfamilies have the most medical and veterinary importance ⁶, and therefore most research thus far has been focused on them.

Subfamilies (approx. no# of genera)	Percentage with <i>Wolbachia</i> (no# species examined)	Host animals
Onchocercinae (17)	61% (39)	Mammals, including humans
Dirofilariinae (10)	50% (4)	Mostly mammals
Setariinae (1)	0% (7)	Large hoofed mammals
Waltonellinae (3)	0% (2)	Amphibians
Splendidofilariinae (6)	25% (4)	Mostly songbirds
Oswaldofilarinae (2)	0% (1)	Reptiles
Iscosiellinae (1)	Unknown	Amphibians
Lemdaninae (4)	Unknown	Birds, reptiles, mammals

Table 1. Filarioid subfamilies with Wolbachia prevalence and their definitive hosts.


Several different species of filarioids from the subfamily Onchocercinae are among leading causes of parasite-induced disability in humans ⁷. *Wuchereria bancrofti, Brugia malayi,* and *Brugia timori* are the cause of lymphatic filariasis (elephantiasis) ⁸. These nematodes dwell in the lymph nodes of the host, slowing blocking the pathway ⁹. Over time, certain areas of the body, especially the feet, legs, and scrotum, become severely swollen and disfigured, to the point where mobility becomes difficult ¹⁰. *Onchocerca volvulus* is the cause of onchocerciasis (river blindness) ⁸. The microfilaria can migrate to the cornea, causing inflammation and, ultimately, blindness ¹¹.

The filarioids from the subfamily Dirofilariinae are responsible for deadly veterinary diseases such as dirofilariasis (dog heartworm)¹². Adult *Dirofilaria immitis* nematodes reside in the heart. Infections can become very dangerous with many adult worms, severely impacting the heart and health of the animal host ¹³.

The nematodes mentioned thus far have a unique relationship with an endosymbiotic intracellular bacterium known as *Wolbachia*. When the worms die within the vertebrate host, they release the bacteria. This causes the host to launch an immune response, which in turn causes increased and prolonged inflammation. This inflammation is the root cause of the most debilitating symptoms of these filarial diseases¹⁴.

Wolbachia, an obligate mutualistic endosymbiont, is found to be mutually dependent with many filarioids ¹⁵. This dependency is so important that the bacteria are required for such things as growth, molting, fertility, and even survival of the worm ¹⁶. *Wolbachia* are found in both sexes and in all developmental stages. In females, they are found in the reproductive organs where they are transmitted transovarially, from mother to offspring ⁷. Some filarioid species have been found to be naturally free of *Wolbachia*, but there are differences within subfamilies and even genera (e.g., *Onchocerca*), of filarioids. The evolutionary dynamics of *Wolbachia* in filarioids is complex and not completely understood ¹⁷. Table 1 depicts an up-to-date summary of the known taxonomy of filarioid species that are either *Wolbachia*-dependent or -independent. Table 1 also illustrates the amount of information that still needs to be collected. There is a considerable lack of information for the lesser studied subfamilies in Onchocercidae. This lack of knowledge leaves some doubt in the phylogenetic relationships amongst the different taxonomic groupings of filarioids.

All filarioid mitochondrial genomes encode two ribosomal RNA genes, 22 transfer RNA genes, and 12 protein-coding genes ¹⁸. This is different from other metazoan mitochondrial genomes which encode 13 protein genes ¹⁹. All nematodes are missing the atp8 gene except for *Trichinella spiralis* ²⁰. This information about the mitochondrial genome allows for easier evolutionary comparison of different species and lineages because it gives a template to read from and compare new sequences to. To date, there have been nine published mitochondrial genomes of filarioid parasites that have been used in phylogenetic analyses. One example is shown in Figure 2 ¹⁷.

Figure 2 Phylogeny based on the 12 protein coding genes of the mitochondrial (mtDNA) genome sequences of nine species of filarioids. Percentages of Bayesian posterior probabilities are displayed at nodes. Black circles indicate *Wolbachia*-dependence while white circles indicate *Wolbachia*-independence ¹⁷.

The main objectives for this study are:

- sequence the mitochondrial genomes of filarioid species in the lesser studied Waltonellinae subfamily
- compare the structure and gene organization of these mitochondrial genomes with those of other more well-studied filarioid species
- construct revised phylogenies of filarioids based on completed mitochondrial genomes and specific filarioid genes (e.g. 12s rRNA and Cox1 genes) currently available from a greater selection of filarioid species (GenBank)
- screen the newly sequenced Waltonellinae for the bacterial endosymbiont *Wolbachia*.

The hypotheses of the study are:

- Waltonellinae will be a basal branch
- Waltonellinae will not possess the endosymbiont *Wolbachia*.

Support for these hypothesis arise from the fact that the subfamily Waltonellinae are parasites of amphibians. Amphibians are the most phylogenetically basal group of vertebrates that are parasitized by filarioid nematodes.

CHAPTER II

MATERIALS AND METHODS

Parasite materials and DNA isolation

Adult female and male filarioid nematodes were collected from the peritoneal cavities of two leopard frogs (*Rana* [=*Lithobates*] sp.), obtained at two different times from teaching laboratories at the University of North Dakota. Both nematodes were identified as belonging to the genus *Foleyellides* using the taxonomic keys of Skrjabin and Shikhobalova 1948. One of the nematodes was determined to be *Foleyellides flexicauda* using the key of Schacher and Crans 1973, while the other was determined to be a new species. The new species, designated as *Foleyellides* n. sp., was collected in 2006 from the Animal Biology laboratory. The location of the supply company in which the host species were ordered is unknown. *Foleyellides flexicauda* was collected in 2011 from the Parasitology laboratory. The frogs were ordered from Niles Biological, Inc. in Sacramento, CA. DNA was isolated from the adult filarial nematodes using the DNeasy blood and tissue kit (Qiagen, Valencia, CA).

Morphology of collected specimens was examined under DIC-equipped Olympus BX51 compound microscope using Rincon digital imaging and measurement software.

Primer design

Primers used to amplify and sequence mtDNA are based on previously published sources ¹⁷ and were newly designed as needed (Table 2). The design method used for the primers was primer walking. Initial sequences were acquired using the previously published primers. Primers were designed on either side of the gaps that were left after initial sequencing was done. It was often difficult to find ample place to design acceptable primers because filarial nematode mitochondrial genomes are high in AT content, making adequate binding difficult. Primers were designed to be 15-20 bp in length and have a relatively even mixture of A's and T's versus G's and C's. Using this method, the gaps were slowly filled in from both sides until they met and overlapped in the middle.

Table 2. Primers used to amplify and sequence the mitochondrial genomes of

Foleyellides n. sp. (A) and Foleyellides flexicauda (B).

Name	Primer (5'-3')	Forward (F) or Reverse (R)	PCR, Sequence (Seq), or Both	Species	Reference
1RN1	CAACCCTAAACAACC	R	Both	A,B	This study
1F	TTATTTTTAATTTTCGATTA	F	Both	А	McNulty et al. ¹⁷
1FN	CTTCTAAACTAATATCGAG	F	Both	A,B	This study
1F2	GTTGTGGGGGCTTTGG	F	Seq	В	This study
1F4	CTTGTTGTGGGGGCTTTGG	F	Both	А	This study
1R3	CCAAAACACTTTCACAATTC	R	Both	А	This study
1R	ACACTCATAAAAGACAAAA	R	Both	A,B	This study
2F	TTTTTAATGTTCCTTTGAGTATTACTTTT	F	Both	A,B	McNulty et al. ¹⁷
2R	ТАБСААТАТБАТААААСТСАССААТААА	R	Seq	A,B	McNulty et al. ¹⁷
3F	TTGTAAGTCTTTGGCTGCTTA	F	Seq	A,B	McNulty et al. ¹⁷
3R	TCATAAAAAGAAGTATTAAAAATTACGAT	R	Both	A,B	McNulty et al. ¹⁷
4F	TGTTGGGTGCTATTAATTTT	F	Both	A,B	McNulty et al. ¹⁷
4R	CTACAAAAATAAGTTAACAAAGAAA	R	Both	A,B	McNulty et al. ¹⁷
4F3	GTGAGGTTAAGATGCTTG	F	Both	А	This study
5F	GTCGTGTTGGTTATGGTTATCA	F	Both	A,B	McNulty et al. ¹⁷
4R1	GCCCACCTAAAACTTAATAG	R	Both	А	This study
5RN	CCGTAATCAGATATAG	R	Seq	А	This study
5R	AATAAGGAACAGAAGTTATCAAACTAGTAAT	R	Both	A,B	McNulty et al. ¹⁷
6R2	CTGAATCCGCCCCACACTC	R	Both	А	This study
5F4	CCTGCCAGGTTTTCTTTG	F	Both	А	This study
6FN1	CTATTTTACGTTCTG	F	Both	А	This study
6FN	GGTTTGATTAATGGAAG	F	Both	A,B	This study
6RN	TCCAGTATAACATCC	R	Both	A,B	This study
6R	GAACCTCAAACATATAAAAAAAAA	R	Both	A,B	McNulty et al. ¹⁷
7R3	CTTAAAAACCAACCGCGC	R	Seq	А	This study
6FN5	GGGGCTCATGTTTTATCGGGG	F	Seq	А	This study
8R3	GCCACAACAAATAGAG	R	Seq	А	This study

Table 2. cont.

Name	Primer (5'-3')	Forward (F) or Reverse (R)	PCR, Sequence (Seq), or Both	Species	Reference
7R4	GTAACTAAAAATGCCACAAC	R	Seq	А	This study
12SR1	GGTACTAATCCAGTTC	R	Seq	А	This study
7F4	GTGTTCCTAGAATAATCGGC	F	Seq	А	This study
8F	AGATAGTATTACTTATTTTTAGTTT	F	Both	В	McNulty et al. ¹⁷
8F4	GATTAATGAGGCATG	F	Seq	В	This study
8FN	ATGAGGCATGTGTTAC	F	Both	А	This study
8FN1	TTTGGTTTACTTTGCC	F	Both	A,B	This study
8RN1	TCTAATCCGCAATGTC	R	Both	A,B	This study
8RN	GACTTTATAAAAGAATC	R	Both	А	This study
8R	AAATATAACTCTGCAAAAA	R	Both	В	McNulty et al. ¹⁷
8F5	GGCGCGTACTTTTAC	F	Both	В	This study
8F18	GCAAAGTTATATTTTTTAAC	F	Both	В	This study
8FN4	CAGTATCAGGGTCGG	F	Seq	А	This study
8FN2	ACTGATACAGTATCAGG	F	Both	A,B	This study
8R14	CTATGACAAAAACTTATACTGATATGC	R	Both	В	This study
8F6	CTCTAAGTTGTTTGTC	F	Both	В	This study
8F7	GTCTTCTGCCCTATG	F	Both	A,B	This study
8F9	CAGGAATGAATGAAG	F	Both	В	This study
8R12	CAAATCACTTACGCTAC	R	Both	А	This study
8F22	GGGATGTATGTTTTTTC	F	Both	В	This study
8FN3	GGTATTGCATATCAG	F	Both	А	This study
8F7	GTCTTCTGCCCTATG	F	Both	A,B	This study
8F11	GTTCGTCGTGAGACAGAGCGG	F	Both	А	This study
8F22	GGGATGTATGTTTTTTC	F	Both	В	This study
9F4	GGGGGCTAGTACGAAAGGAAAG	F	Both	А	This study
8R6	CTATCTCAGCAAGTTAAAG	R	Both	А	This study
8F12	GTGGTATTTAGGTAATTTGCC	F	Both	А	This study
9R6	CTTTATTACCCCTTTTATCG	R	Both	A,B	This study
9R3	CCCCTTTTATCGTAA	R	Both	A,B	This study

		Forward (F) or	PCR, Sequence		
Name	Primer (5'-3')	Reverse (R)	(Seq), or Both	Species	Reference
9R5	CCCCAAATTATACTTTCAAACACCATAAGGC	R	Both	А	This study
9R11	CAAACGAGACACCCCCACC	R	Both	В	This study
9R2	CAAAACTACACAAATC	R	Both	В	This study
9R1	CAAACCACTCATACTC	R	Both	А	This study
9RN	AGCGCACAAACACCAG	R	Both	В	This study
9F3	CGGTCTTTACTAATCG	F	Both	В	This study
9RN1	AGCGCACAAACACCAG	R	Both	А	This study
9FN	CCTGTTAGTTGTTTGGTTC	F	Both	A,B	This study
10RN	CTAACAAAAATAAGAGAG	R	Both	A,B	This study
10FN1	CTGGAATTTTTATTG	F	Both	A,B	This study

PCR amplification and sequencing

All polymerase chain reactions (PCRs) were carried out in a final volume of 25µl using 12.5µl *Taq* 2X Master Mix (New England BioLabs Inc., Ipswich, MA), 8.5µl ultrapure water, 2µl DNA template, 1µl of 10µmol/L forward primer, and 1µl of 10µmol/L reverse primer. The PCRs were run in an Eppendorf Mastercycler® using cycling conditions designed specifically for each primer pair and the anticipated amplicon lengths. The initial denaturation was 4-min at 94°C followed by 40 cycles of 94°C for 30s, 40°C-55°C (depending on primer's melting temperature) for 45s, and 68°C for 1-3min (depending on desired amplicon length). The amplified DNA resulting from these PCRs were visualized on a 1.5% agarose gel stained with ethidium bromide in a 0.5x Tris-borate-EDTA buffer. The DNA from PCR-positive samples was purified by either; 1) combining 2µl of the PCR product with 5µl of ExoSap and heated to 80°C for 15-min, or 2) by using DNA Clean & Concentrator^{TM-5} (Zymo

Research, Irvine, CA), depending on the strength of the band. For bands with very low DNA concentration, the Zymo kit was used to concentrate the product. For gels showing more than one band, with the correct band length being highly visible and fairly separated from other bands on the gel, a gel cleanup was done on the correct band. The Zymoclean[™] Gel DNA Recovery Kit (Zymo Research, Irvine, CA) was used after running the PCR product out on a 2.5% agarose gel stained with ethidium bromide in a 0.5x Tris-borate-EDTA buffer and excising the DNA fragment from the agarose gel using a scalpel blade and UV light box. The remaining purified DNA was then ready for sequencing.

Sequencing reactions were performed using 2µl of the purified PCR product in a 10µl solution containing 1µl of BigDye Terminator ® v3.1 (Life Technologies, Grand Island NY), 2µl 5x buffer, 2µl of 10µmol/L primer, and 3µl ultrapure water in an Eppendorf Mastercycler®. The initial denaturation was 2-min at 94°C followed by 25 cycles of 96°C for 15s, 50°C for 5s, and 60°C for 4min. Sequencing was conducted using an ABI PRISM® 3100 Genetic Analyzer.

Assembly and annotation of mitochondrial genomes

Sequences were assembled and spliced together using the program Sequencher (v. 4.2.2). Sequences were verified by comparison, and aligned against, the published complete mitochondrial genome sequences of *Acanthocheilonema vitea* (accession number HQ186249), *Chandlerella quiscali* (accession number HM773029), *Loa loa* (accession number HQ186250), and *Onchocerca flexuosa* (accession number HQ214004) using BioEdit Sequence Alignment Editor (v. 7.2.0).

12

Phylogenetic analysis

I used the program jModelTest ²¹ to select the appropriate model for the mitochondrial cytochrome oxidase subunit I (Cox1) dataset, mitochondrial 12s rRNA dataset, and the combined dataset with the 12 protein-coding genes in the mitochondrial genome. This program generated Akaike Information Criterion (AIC) scores for 40 different models and the GTR+I+G model had the best AIC score among the different models for both Cox1 and 12s datasets. This components of this model are:

GTR (General Time Reversible) refers to the fact that any base can switch to any other base, or switch back. This model also accounts for the empirically measured frequencies of those bases in the gene. In other words, the model actually counts the number of each base, instead of estimating the frequency of each base.

I+G (Inverse Gamma) refers to the probability of a mutation to occur based on the inverted Poisson distribution (i.e. tossing a coin to determine the probability). This is the most common model to decide this probability.

The analysis was run in MrBayes v3.1.2 (www.mrbayes.sourceforge.net). Over the course for 1 million generations, trees were saved at intervals of 100 generations to reduce the size of the final population of trees. The final analysis included a "burn-in" parameter. The reason for including a "burn-in" is because initially the selection process generates a rough estimation starter tree, then keeps the most likely trees. The program builds upon these trees to generate even more refined trees. Therefore, the first 25% of

13

the analysis are generally discarded (i.e. the "burn-in") and only the remaining 75% is retained.

The resulting phylogenetic tree was visualized in FigTree v1.4.0. Numbers at specific nodes indicate the percentages of Bayesian posterior probabilities when \geq 70%. The trees are rooted with *Thelazia callipaeda* as the outgroup. All sequences were obtained from GenBank, except those from *Foleyellides* n. sp. and *F. flexicauda*, which were obtained in this study (Table 3).

Twelve separate phylogenies each based on different mitochondrial proteincoding genes were selected, created and viewed using using Maximum Likelihood (ML) in MEGA 5.05. The mitochondrial protein-coding genes included NADH dehydrogenase 2 (ND2), NADH dehydrogenase 4 (ND4), cytochrome c oxidase I (Cox1), NADH dehydrogenase 6 (ND6), cytochrome b (CytB), cytochrome c oxidase III (Cox3), NADH dehydrogenase subunit (NDL4), NADH dehydrogenase 1 (ND1), ATP synthase 6 (ATP6), cytochrome c oxidase II (Cox2), NADH dehydrogenase 3 (ND3), and NADH dehydrogenase 5 (ND5). Numbers at specific nodes indicate the degree of maximum likelihood bootstrap support (estimated from 500 replicates) when \geq 50%.

The Cox1, 12s, and combined protein-coding phylogenies were also performed as maximum likelihood searches via GARLI ²² and maximum parsimony searches via PAUP ²³.

Wolbachia Detection

Both nematode species were screened for the groEL gene that is specific for *Wolbachia* endosymbionts, using a modification of the PCR methods described by

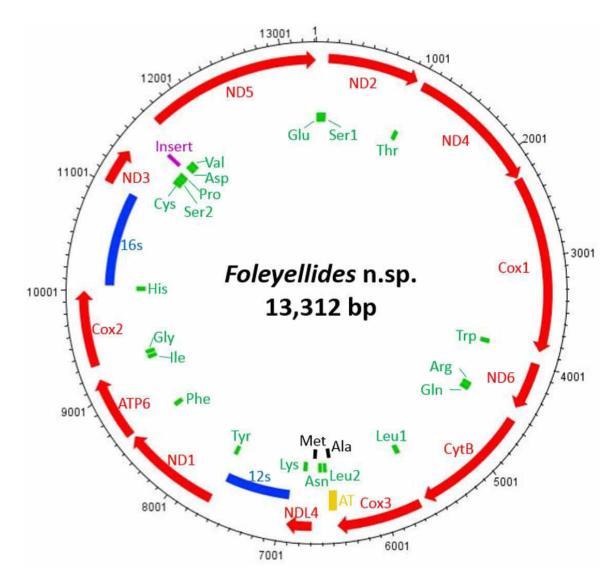
McNulty et al.¹⁷ The primers provided by Dr. Tkach's lab yielded better amplification than the primers described by McNulty et al.¹⁷ For *Wolbachia* positive control, I extracted the DNA from microfilaria of *Brugia pahangi*, a species known to harbor the endosymbiont. *Brugia pahangi* was obtained from the NIH-NIAID Filariasis Research Reagent Resource Center (www.filariasiscenter.org). Distilled water was used as negative control. **Table 3**. List of nematode species, family/subfamily, and accession number used in the phylogenetic analyses of the Cox1 gene (Cox1), the 12s rRNA gene (12s), and all 12 protein-coding genes combined (Total).

Family/Subfamily	Species	Cox1	12s	Total
Onchocercidae/Onchocercinae	Acanthocheilonema reconditum	AJ544876	AJ544853	
	Acanthocheilonema viteae	AJ272117	AJ544852	HQ186249
	Brugia malayi	AJ271610	AJ544843	NC 004298
	Brugia pahangi	AJ271611		—
	Cercopithifilaria crassa	AM749260	AM779791	
	Cercopithifilaria japonica	AM749262	AM779794	
	Cercopithifilaria multicauda	AM749254	AM779799	
	Dipetalonema gracile	AJ544877	AM779824	
	Litomosoides hamletti	AJ544868	AJ544847	
	Litomosoides westi	AJ544871	AJ544851	
	Litomosoides yutajensis	AJ544869	AJ544846	
	Loxodontofilaria caprini	AM749237	AM779821	
	Mansonella perforate	AM749265	AM779803	
	Mansonella ozzardi		JF412318	
	Onchocerca dewittei japonica	AM749266	AM779815	
	Onchocerca flexuosa	NC 016172	JQ733523	HQ214004
	Onchocerca gibsoni	AJ271616	AY462913	
	Onchocerca lupi	JX080029	JN863696	
	Onchocerca ochengi	AJ271618	KC167333	
	Onchocerca suzukii	162/1010	AM779811	
	Onchocerca volvulus	AM749285	KC167339	NC 001861
	Wuchereria bancrofti	AJ271612	AJ544844	HQ184469
Onchocercidae/Dirofilariinae	Dirofilaria immitis	EU169124	EU182327	NC 005305
Chenoterenaue, Diromarmae	Dirofilaria repens	AM749231	20102527	110_000000
	Foleyella candezei	FR823336	FR827906	
	Foleyella furcate	AJ544879	AJ544841	
	Loa Loa	AJ544875	AJ544845	HQ186250
Onchocercidae/Setariinae	Setaria digitata	EF174427	EF179382	NC 014282
Shenoverenaue, Seturmine	Setaria equina	AJ544873	AJ544835	110_011202
	Setaria labiotopapillosa	AJ544872	AJ544833	
	Setaria tundra	AJ544874	AM779848	
Onchocercidae/Splendidofilariinae	Aproctella sp	FR823335	FR827905	
onenoceretade, spiendidomarinae	Chandlerella quiscali	NC 014486	NC 014486	HM773029
	Madathamugadia hiepei	JQ888272	JQ888290	11117/3023
	Rumenfilaria andersoni	JQ888279	JQ888296	
Onchocercidae/Waltonellinae	Ochoterenella sp. 1	AJ544878	3Q000270	
Onenocerendae, wanonenmae	Ochoterenella sp. 2	FR823337		
	Ochoterenlla sp. 2	11(025557	AJ544836	
	Ochoterenella royi		AM779830	
	Foleyellides n. sp.	TBD	TBD	TBD
	Foleyellides flexuosa	TBD	TBD	IBD
Onchocercidae/Oswaldofilariinae	Piratuba scaffi	AM749281	AM779831	
Onchocercidae/-	Filaria martis	AJ544880	AJ544855	
Thelaziidae/-	Filaria martis Thelazia callipaeda	AJ 544880 NC 018363	AJ344855 NC 018363	NC 018363
ThetaZhuat/-	τπειαζια σαπιράθαα	INC_010303	INC_010303	110_010303

CHAPTER III

RESULTS

Genome Features and Organization


The mitochondrial genome of *Foleyellides* n. sp. and *F. flexicauda* was sequenced, annotated, and will be deposited to Genbank prior to publication. The genome of *Foleyellides* n. sp. is slightly smaller in size (13,312 bp) compared to the other species including *O. volvulus* reported at 13,474 bp (Table 4), though it is unclear if the genome of *Foleyellides* n. sp. was completely sequenced. The AT content, at 72.0% is also slightly lower than *O. volvulus*, which is at 73.3% (Table 4). Compared to preliminary data for *F. flexicauda*, the new species of *Foleyellides* has similar ratios of AT/GC content (Table 4).

All 10 filarial mtDNAs, including *Foleyellides* n. sp., encode the same 12 proteincoding genes, two rRNAs, 22 tRNAs, and an AT-rich non-coding region (Fig. 3). Due to sequencing gaps for *Foleyellides* n. sp., two tRNA genes were not able to be placed in the genome (Met and Ala). They are mapped where they are expected to be present based on the positions in related species (*C. quiscali* and *A. viteae*; Fig. 3); however, it is possible that these positions could shift once the complete genome is sequenced. There is also a small, 62 bp insertion found in *Foleyellides* n.sp not known to be present in other species.

Species	Subfamily	Size of mt genome (bp)	A%	T%	G%	C%	A+T%	Reference	
F. flexicauda	Waltonellinae	N/A	20.16%	51.38%	20.01%	8.00%	71.53%	This study	
Foleyellides n. sp.	Waltonellinae	13,312	20.86%	51.13%	20.12%	7.89%	71.99%	This study	
O. volvulus	Onchocercinae	13,474	19.30%	54.00%	19.80%	6.90%	73.30%	Keddie et al. ²⁴	
L. loa	Dirofilariinae	13,590	20.80%	54.80%	17.70%	6.70%	75.60%	McNulty et al. ¹⁷	
B. malayi	Onchocercinae	13,657	21.60%	53.90%	16.80%	7.70%	75.50%	Ghedin et al. ²⁵	
W. bancrofti	Onchocercinae	13,657	20.50%	54.10%	18.00%	7.40%	74.60%	McNulty et al. ¹⁷	
O. flexuosa	Onchocercinae	13,672	20.30%	53.90%	18.60%	7.20%	74.20%	McNulty et al. ¹⁷	
A. viteae	Onchocercinae	13,724	19.60%	54.00%	19.30%	7.20%	73.50%	McNulty et al. ¹⁷	
C. quiscali	Splendidofilariinae	13,757	23.00%	54.70%	15.90%	6.40%	77.70%	McNulty et al. ¹	
D. immitis	Dirofilariinae	13,814	19.30%	54.90%	19.30%	6.50%	74.20%	Hu et al. ²⁶	
S. digitata	Setariinae	13,839	19.40%	55.70%	18.20%	6.70%	75.10%	Yatawara et al. ²	

Table 4. Comparison of the mitochondrial genomes of the ten filarioid nematode species with Foleyellides n. sp.

N/A = F. *flexicauda* was not fully sequenced and therefore does not have an applicable genome size.

Figure 3 Gene map of the mitochondrial DNA for *Foleyellides* n. sp. Protein-coding genes are shown in **red** with the arrows indicating direction of the coding strand. rRNA genes are shown in **blue** and tRNA genes are shown in **green**. The hypothesized positions of two tRNA genes are shown in **black**. The AT rich region is shown in **yellow** (near position 6,500). The **purple** rectangle (near position 11,650) represents a small 62 bp insertion not present in other species. This map was made using DNAPlotter via Artemis v16.

Gene	ND2	ND4	Cox1	ND6	CytB	Cox3	NDL4	ND1	ATP6	Cox2	ND3	ND5
Species Foleyellides n. sp.	ATT/TAA	TTG/TAA	ATT/T	TTT/TAA	AAT/TTT	ATA/TAA	ATT/TAA	TTG/TAT	ATG/TAA	ATT/TAA	CTT/TAA	TTT/T
O. volvulus	ATT/TAG	TTG/TAA	ATT/TAG	ATT/TAG	ATT/TAA	ATT/TAA	TTG/TAA	TTG/T	ATT/TAG	ATT/TA	CTT/TAG	TTG/TAG
L. loa	ATT/TAA	TTG/TAG	GTT/T	TAT/TAG	ATT/T	ATT/TAA	GTA/T	TTG/T	ATT/TAA	ATT/TAA	CTT/T	TTT/TAG
B. malayi	TTA/T	TTG/TAA	ATT/TAG	TAT/TAA	ATT/T	ATT/TAA	GTA/TAA	TTG/T	ATT/TAG	ATT/TAA	CTT/TAG	TTT/TAG
W. bancrofti	TTA/T	TTG/TAA	ATT/TAA	TGT/TAA	ATT/T	ATT/TAA	GTA/TAA	TTG/TAA	ATT/TAG	ATT/TAA	CTT/T	TTT/TAG
O. flexuosa	ATT/TAG	TTG/TAG	ATT/TAA	ATT/TAA	ATT/TAA	ATT/TAG	TTA/T	TTG/T	ATT/TAA	ATT/TAA	CCT/T	TTA/TAA
A. viteae	TTT/TAG	ATG/TAA	GTT/T	TAT/TAG	TCT/T	ATT/TAA	GTA/T	TTG/T	ATT/TAA	ATT/TAA	CTT/T	TTT/TAG
C. quiscali	ATT/TAG	TTG/TAA	TTG/TAA	TTG/TAG	ATT/T	ATT/TAA	GTT/TAA	TTG/T	ATT/TAG	ATT/TAA	CTT/TAG	TTT/T
D. immitis	ATT/TAG	TTG/TAG	ATT/TAG	TAT/TAG	GTT/T	ATT/TAA	GTA/TAA	TTG/T	TTG/TAA	ATT/T	CTT/T	TTG/TAG
S. digitata	TTT/TAG	ATG/TAA	ATT/TAG	TTG/TAA	GTT/T	ATA/T	TTG/T	TTG/TAA	TTT/TAG	ATT/TAG	TTT/T	TTT/TAG

Table 5. Comparison of the start/stop codons used in the 12 mitochondrial protein coding genes of the ten filarioid nematodes species.

20

Protein-coding genes

All 12 protein-coding genes were identified in *Foleyellides* n. sp. along with their corresponding start and stop codons for each gene (Table 5). Filarioid mtDNA genomes are extremely thymine (T)- and adenine (A)-rich (Table 4); therefore, it is common to bias in start/stop codons containing mostly A/T nucleotides. When compared to those filarioid species whose mitochondrial have been sequenced, *Foleyellides* n. sp. contained novel start codons, including TTT for ND6, AAT for CytB, ATT for NDL4, and ATG for ATP6 (Table 5). Novel termination codons for *Foleyellides* n. sp. included TAT for ND1 and TTT for CytB (Table 5). The incomplete stop codon T in both CoxI and ND5 is converted to TAA upon the addition of a 3' poly(A) tail; it is not possible to determine if these are conserved or novel when comparing *Foleyellides* n. sp. to previously published sequences (Table 5).

Ribosomal and transfer RNA genes

The mitochondrial genome of *Foleyellides* n. sp. encodes two rRNA genes (12s and 16s). The position of these genes corresponds to that of all other filarioids sequenced thus far with the 12s gene being positioned between the NDL4 and ND1 genes and the 16s gene positioned between the Cox2 and ND3 genes (Figure 3).

In *Foleyellides* n. sp., only 20 of the 22 tRNA genes were able to be found due to incomplete sequencing. There were small gaps left over after sequencing the mitochondrial genome because of its high AT-richness, leading to incomplete binding of primers in PCR. The two tRNA's that were unable to be sequenced were MET and ALA, and their hypothesized positions were placed on the genome based on other published

genomes ¹⁷ (Fig. 3). The remaining 20 tRNA's were found to be in similar locations based on other published genomes ¹⁷ (Fig. 3).

AT-rich region

Like previously published filarioid sequences, *Foleyellides* n. sp. has a AT-rich control region comprised of 46bp. Size of the AT-rich control region varies widely in filarioid nematodes, from 256 bp in *W. bancrofti* to 506 in *S. digitata* ¹⁷. The smaller control region in *Foleyellides* n. sp. could be due to incomplete sequencing of the genome.

Phylogenetic analysis

Many subfamilies in the phylogeny inferred from CoxI are not monophyletic. The Onchocercinae is found in multiple clades with varying support (70% - 100% posterior probability; Fig. 5) with two other species found in a polytomy with ingroup species (*D. gracile* and *O. suzukii*). Dirofilariinae is divided between two clades, one with moderate support (86% posterior probability) and the other with no significant support (<70% posterior probability). *Piratuba scaffi* (Oswaldofilariinae) is placed within Waltonellinae, within *Ochoterenella*. The Setariinae is found to be monophyletic with strong support (100 % posterior probability). *Foleyellides* n. sp. and *F. flexicauda* are found to be sister species with 100% posterior probability, within the Waltonellinae.

The phylogeny based on the 12s gene reconstructs Onchocercinae in four clades with varying support (<70% - 100% posterior probability; Fig. 6). The Splendidofilariinae is found to be monophyletic with moderate support (89% posterior probability). The Dirofilariinae is divided into three clades; two nested within members

Figure 4 Phylogeny based on mitochondrial cytochrome oxidase subunit I (Cox1) sequences. Numbers at specific nodes indicate the percentages of Bayesian posterior probabilities when \geq 70%. Scale bar indicates branch length. (-In likelihood score = 9407.25743)

of Onchocercinae (*L. loa* and *D. immitis*), with the *Foleyella* one as an independent supported lineage (91% posterior probability; Fig. 6). The Setariinae are divided into two clades. *Setaria tundra* placed within Oswaldofilariinae and *F. martis* (a member of the outgroup); however, this relationship has no significant support (<70% posterior probability; Fig. 6). *Foleyellides* n. sp. and *F. flexicauda* are again found to be sister species with 100% posterior probability and are monophyletic with the rest of Waltonellinae (71% posterior probabilities; Fig. 6).

The phylogeny based on the combined data set with the 12 protein-coding genes in the mitochondrial genome provides information on the monophyly of the Onchocercinae and Dirofilariinae. *Foleyellides* n. sp., representing Waltonellinae, is found to be the most basal branch of the tree, but this placement lacks strong support (<70% posterior probability; Fig. 7). Onchocercinae is divided into three clades, all with high support (95% - 100% posterior probabilities). The Dirofilariinae are not monophyletic; instead *L. loa* is sister to *C. quiscali* (Splendidofilariinae) with moderate support (89% posterior probabilities; Fig. 7). *Dirofilaria immitis* is found in a clade basal to *O. volvulus* and *O. flexuosa* (Onchocercinae), with 100% posterior probability (Fig. 7).

The appendix shows phylogenies based on sequences of each of the 12 proteincoding mitochondrial genes separately (Fig. 8), (A) ND2, (B) ND4, (C) Cox1, (D) ND6, (E) CytB, (F) Cox3, (G) NDL4, (H) ND1, (I) ATP6, (J) Cox2, (K) ND3, (L) ND5. These 12 trees display highly variable structures, with only the pairings of *O. volvulus* with *O. flexuosa* and *B. malayi* with *W. bancrofti* staying constant. *Foleyellides* n. sp. is the basal branch in 5 out of 12 of the trees (Fig. 8). These trees indicate not all genes are suitable for phylogenetic analysis.

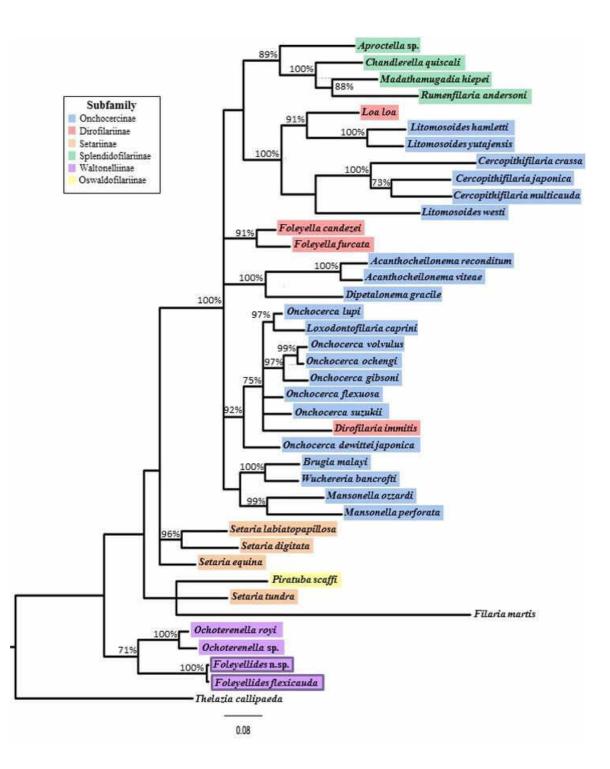


Figure 5 Phylogeny based on mitochondrial 12s rRNA gene sequences. Numbers at specific nodes indicate the percentages of Bayesian posterior probabilities when \geq 70%. Scale bar indicates branch length. (-ln likelihood score = 6250.45146)

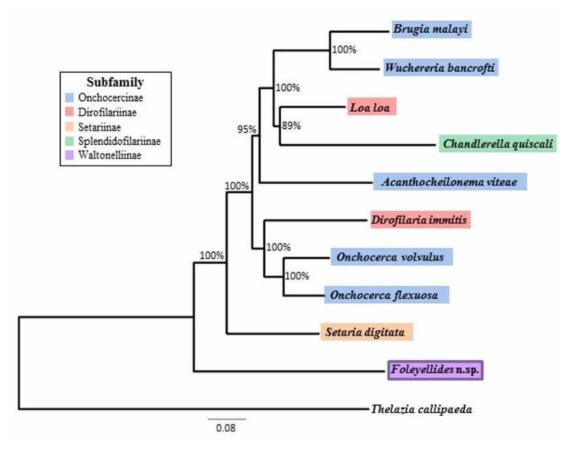


Figure 6 Phylogeny based on concatenated sequences of the 12 protein-coding mitochondrial genes. Numbers at specific nodes indicate the percentages of Bayesian posterior probabilities when \geq 70%. Scale bar indicates branch length. (-In likelihood score = 62816.12747)

Also in the appendix are maximum parsimony analyses based on Cox1, 12s, and combined protein-coding genes. These tree topologies did not differ from Bayesian consensus trees for well supported nodes (Figs. 9, 10, and 11; posterior probability >75%).

Absence of *Wolbachia*

There was no PCR amplification of the bacterial gene, groEL, for both *Foleyellides* n. sp. and *F. flexicauda* (Fig. 4), indicating that these two species do not harbor *Wolbachia*.

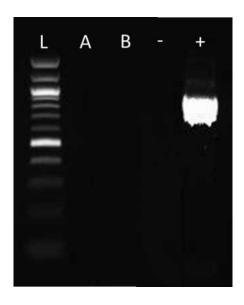


Figure 7. Gel electrophoresis results from a polymerase chain reaction (PCR) using primers to detect the presence of the groEL gene of *Wolbachia* sp. *Foleyellides* n. sp. (A), *Foleyellides flexicauda* (B), and the negative control (-) all show negative results. The positive control (+) (*Brugia pahangi* adult worm) shows the optimal band size for a positive detection of the gene. The 100 bp ladder is shown on the left (L)

CHAPTER IV

DISCUSSION

In 1974, Bain and Prod'Hon erected the subfamily Waltonellinae to group together filarioids parasitizing amphibians. Although several new species have been added to the subfamily since then, there has been very little molecular work done on these species. Not only does this study bring to light a new species of filarioid, it also adds genetic information about the subfamily Waltonellinae.

The overall size of the new *Foleyellides* sp. mitochondrial genome is the smallest in comparison to the nine other species. However, this could be due to the possibly incomplete sequencing of the A-T rich control region. This non-coding region of the mitochondrial genome in animals is called the control region because it is believed to control the transcription and replication of mitochondrial DNA (mtDNA)¹⁸. The control region found for the *Foleyellides* n. sp. was only 46 basepairs (bp) long, whereas the smallest recorded length of this area from filarioids to date comes from *Wuchereria bancrofti* at 256 bp ¹⁷. Nematodes have been found to have control regions very high in A-T content and to contain multiple sections of inverted repeats ^{18,28}. Among other things, these features can lead to difficulty in amplifying and sequencing the DNA for this region.

The gene organization of the *Foleyellides* n. sp. was found to be very similar to eight of the nine other filarioid species whose mitochondrial genomes have been

sequenced. *Chandlerella quiscali* was the only filarioid whose mitochondrial gene organization differed ¹⁷. However, we were unable to find the tRNA genes Met and Ala in *Foleyellides* n. sp. Again, difficulty in amplifying and sequencing portions of the mtDNA genome have led to some inconsistencies. Even though technical problems in the amplification is the most likely cause of the missing tRNA genes, it is possible that the genes do not exist within the *Foleyellides* n. sp. mitochondrial genome. It is known that in some organisms, transfer RNAs in the eukaryotic cytosol can be imported into the mitochondria and function in mitochondrial protein synthesis. This process has been described in a diversity of organisms ranging from protozoans, plants, and mammals (Rubio & Hopper, 2011). Perhaps a less likely possibility is that the two genes are split up into half genes and spread throughout the genome ^{30,31}. During sequencing, they may not be recognized as genes because they are fragmented and are only assembled after they have been transcribed ³².

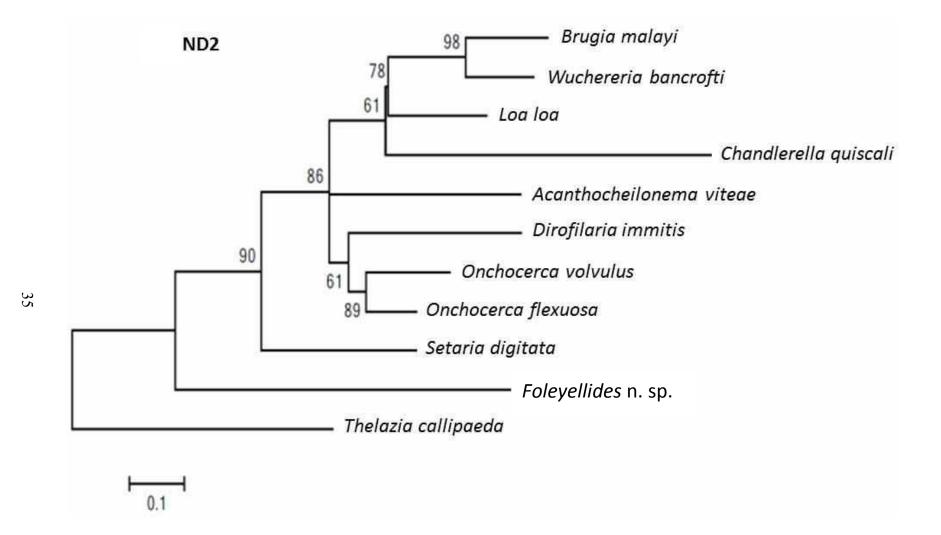
A key result gained from this study is that the *Wolbachia* endosymbiont was absent in both *Foleyellides* n. sp. and *Foleyellides flexicauda* filarioids. This doubles the number of *Wolbachia*-free species within the Waltonellinae subfamily, suggesting that this subfamily does not harbor *Wolbachia*. Since *Wolbachia*-dependent nematodes cannot survive without the bacteria ¹⁶, there has been much speculation as to how *Wolbachia*-independent species evolutionarily lost *Wolbachia*. One notable result from this study that could be related to this theory is the finding of a small 62 bp insert in the mitochondrial genome of *Foleyellides* n. sp. This has not been documented in other filarioid species. However, *Wolbachia* fragments have been found within the mitochondrial genome of two *Wolbachia*-independent filarioids, *Onchocerca flexuosa*

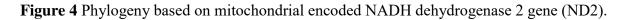
and *Acanthocheilonema viteae* ³³. Both of these species are from the Onchocercinae subfamily, which currently holds the most *Wolbachia*-dependent species at 61% prevalence. Future studies could try to search for *Wolbachia* gene fragments in filarioid subfamilies that have no *Wolbachia*, such as Waltonellinae. This could help further detect the point of evolutionary loss of *Wolbachia*. Alternatively, since Waltonellinae is often found to be the most basal branch, this subfamily may have never acquired *Wolbachia*. More derived filarioid species may have acquired *Wolbachia* after they evolutionarily branched off from this point.

Since the subfamily Waltonellinae probably evolved solely in amphibians around the Mesozoic radiations of anurans ³⁴, one would expect it to be fairly genetically different in comparison to the mammalian-parasitizing subfamily Onchocercinae. In support of this, the 12s phylogeny shows the Waltonellinae to form its own monophyletic clade and it becomes the most basal branch of this tree. Also, the 12s tree seems to separate the Onchocercinae into more distinct monophyletic clades, whereas the Cox1 tree is polyphyletic with several Onchocercinae clades spread throughout. Conflicting with this theory, the cytochrome oxidase subunit I (Cox1) phylogeny describes the amphibian- and reptilian-parasitizing Waltonellinae and Oswaldofilariinae subfamilies as monophyletic with Onchocercinae.

Another notable difference between the phylogenies Cox1 and 12s trees is that *L*. *loa* forms a clade with *F. candezei* and *F. furcata* at 86% posterior probability in the Cox1 tree. However in the 12s tree, *L. loa* forms a clade with *L. hamletti* and *L. yutajensis* at 92% posterior probability. Some of these differences between the Cox1 and 12s trees may be the result of DNA sequence availability for each species in both. For example in the Cox1 phylogeny, *Dirofilaria repens* and *Dirofilaria immitis* form their own clade which is expected since they are both found in dogs and are congeneric. However, 12s sequence of *Dirofilaria repens* is lacking, therefore in the 12s tree, this Dirofilarina is found within the Onchocercinae clades. This further exemplifies the reasoning behind adding more molecular data to lesser studied subfamilies. Even by doubling the amount of Waltonellinae species used in these phylogenies, they do not result in highly resolved trees.

Between the Cox1 and 12s trees in this type of study, we can conclude that the 12s tree yields a more robust topology for several subfamilies, especially Waltonellinae. Due to assumptions about the evolutionary history of this subfamily ³⁴, the basal position of *Ochoterenella* and *Foleyellides* in the tree is logical because the species associated with this subfamily have been evolving solely in amphibians for millions of years ³⁴, setting them far apart from subfamilies parasitic in mammals.


The addition of the new species to the phylogeny based on the complete mitochondrial genome leads to no major changes in topology in comparison to previous findings ¹⁷. We do see that *Foleyellides* n. sp. becomes the most basal branch of the tree, as in the 12s tree, and appears to be most distantly related in comparison with the rest of the species included. Again, this placement could indicate the Waltonellinae subfamily (or filarioids in amphibians) as one of the first groups to exist in the filarioid nematode family. This basal placement is also seen in the 12s tree. However, due to the large polytomy in the Cox1 tree, we do not see this similarity. Comparing the complete mitochondrial tree with the single gene Cox1 and 12s trees, it is notable that 12s gene tree shares more similarities. Of these similarities, the complete mitochondrial tree shows highest nodal support. For example, both trees group *Dirofilaria immitis* with the clade including *Onchocerca volvulus*. However, the 12s tree shows nodal support at 75%, whereas the mtDNA tree shows nodal support at 100%.


It is clear from all of these trees that the subfamily Onchocercinae is nonmonophyletic and is split among several clades across the phylogeny. In many instances, certain species consistently group with each other, for example *Brugia* malayi/Wuchereria bancrofi; Onchocera volvulus/O. flexuosa. However, these smaller clades do not cluster together with the rest of the subfamily. This indicates that Onchocercinae is a large, genetically diverse subfamily. It is difficult to bring up a topic about changing the arraignment of this subfamily when they have been grouped based on morphology. Instead, we can look at how intriguing it is to have a subfamily be so genetically diverse, yet share very similar morphology. One thing that could be useful is to split Onchocercinae into smaller subfamilies (or construct several tribes within the subfamily) to account for this diversity. Perhaps the divisions can be based upon the vector. For example, with the 12s phylogeny, the clade that includes *Litomosoides* and *Cercopithifilaria* are transmitted by ticks and mites. In contrast, the members of the Onchocercinae clade that includes Onchocerca, Brugia, and Mansonella are transmitted by bloodsucking insects. Dirofilariinae also shows such differences between morphological identity and phylogenetic comparison. All other subfamilies have stayed fairly consistent throughout the phylogenetic analysis.

Conclusions

In summary, I sequenced the mitochondrial genome of two species of filarial nematodes (subfamily Waltonellinae) recovered from the peritoneal cavity of leopard frogs. Phylogenetic analyses of multiple mitochondrial genes support the hypothesis that these nematodes belong to the basal lineage within the family Onchocercidae. Neither species contained the bacterial endosymbiont *Wolbachia*. This suggests that the ancestral state for filarioid nematodes is not dependent on *Wolbachia* mutualism and that the acquisition of *Wolbachia* occurred later during the evolution of filarioid nematodes.

APPENDIX

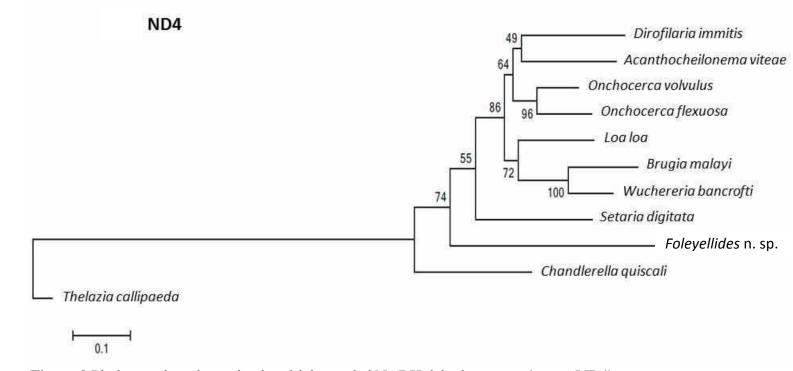


Figure 9 Phylogeny based on mitochondrial encoded NADH dehydrogenase 4 gene (ND4).

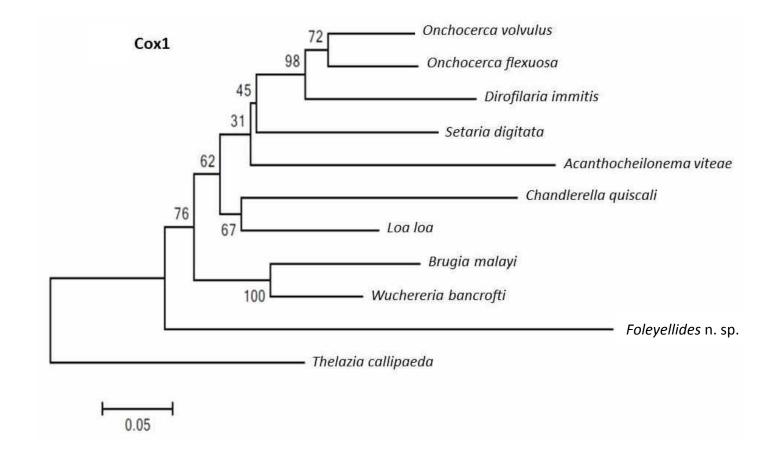


Figure 10 Phylogeny based on mitochondrial encoded cytochrome c oxidase I gene (Cox1).

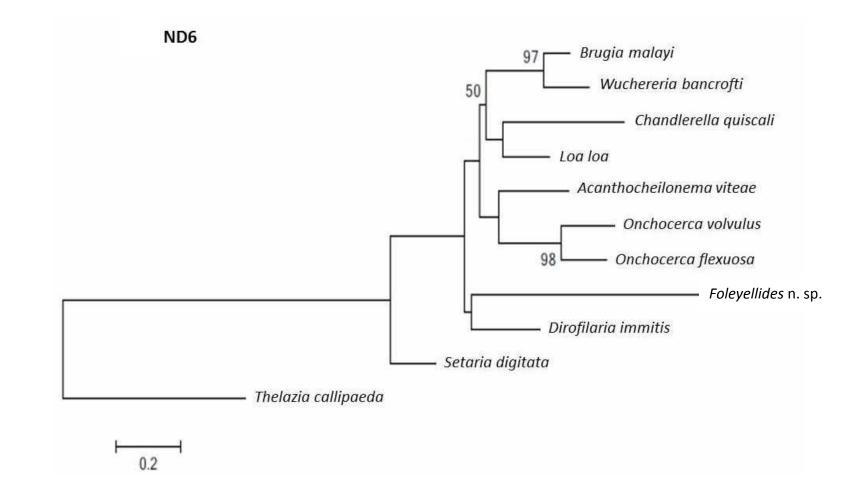


Figure 11 Phylogeny based on mitochondrial encoded NADH dehydrogenase 6 gene (ND6).

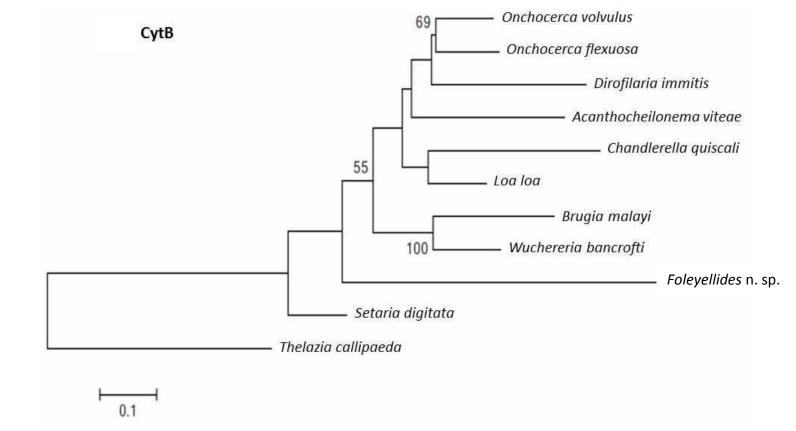


Figure 12 Phylogeny based on mitochondrial encoded cytochrome b gene (CytB).

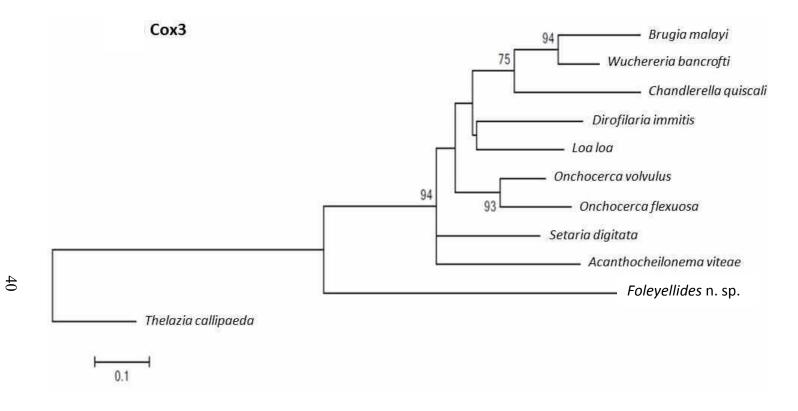


Figure 13 Phylogeny based on mitochondrial encoded cytochrome c oxidase III gene (Cox3).

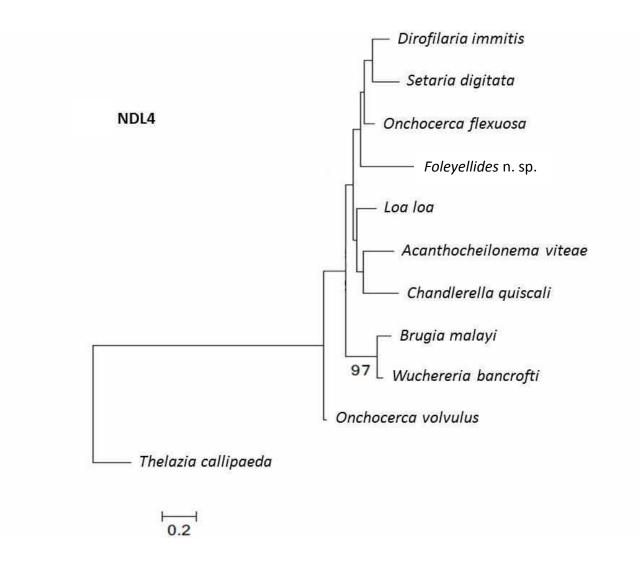


Figure 14 Phylogeny based on mitochondrial encoded NADH dehydrogenase subunit gene (NDL4).

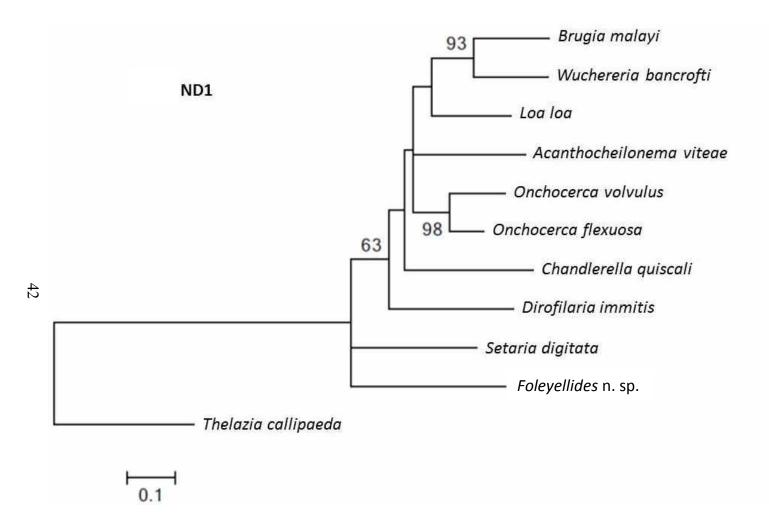


Figure 15 Phylogeny based on mitochondrial encoded NADH dehydrogenase 1 gene (ND1).

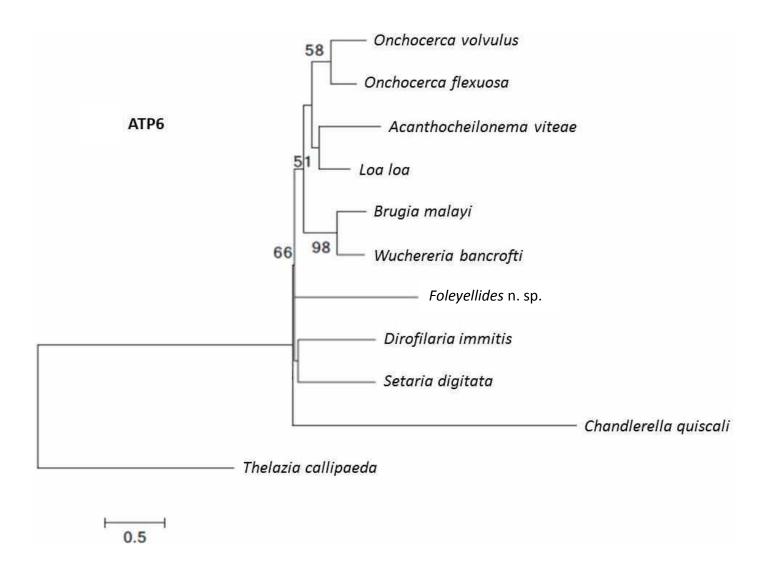


Figure 16 Phylogeny based on mitochondrial encoded ATP synthase 6 gene (ATP6).

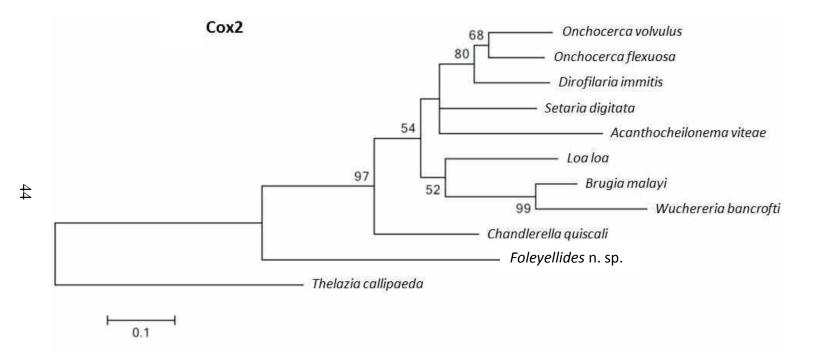


Figure 17 Phylogeny based on mitochondrial encoded cytochrome c oxidase II gene (Cox2).

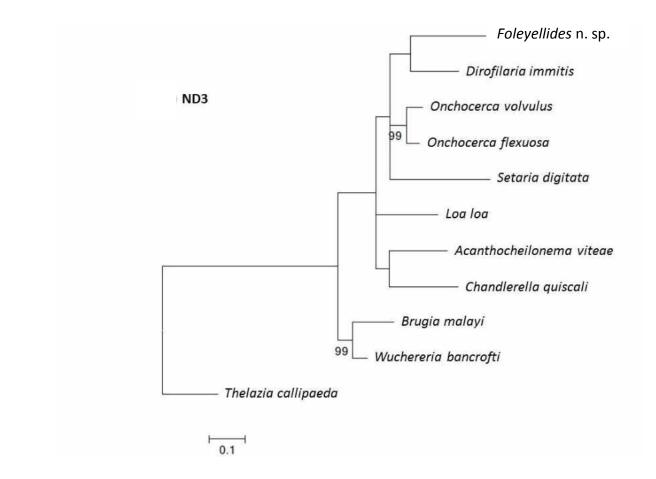
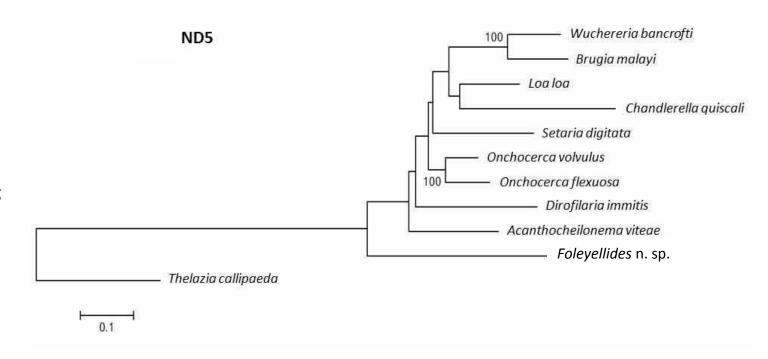
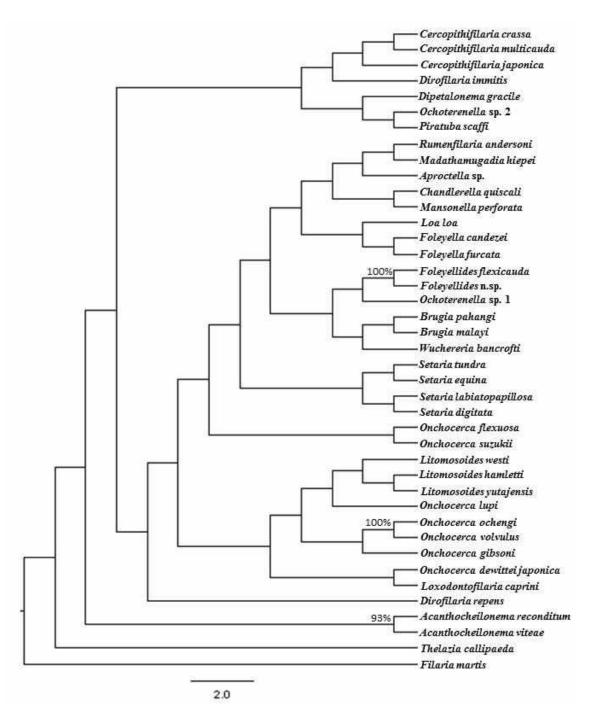
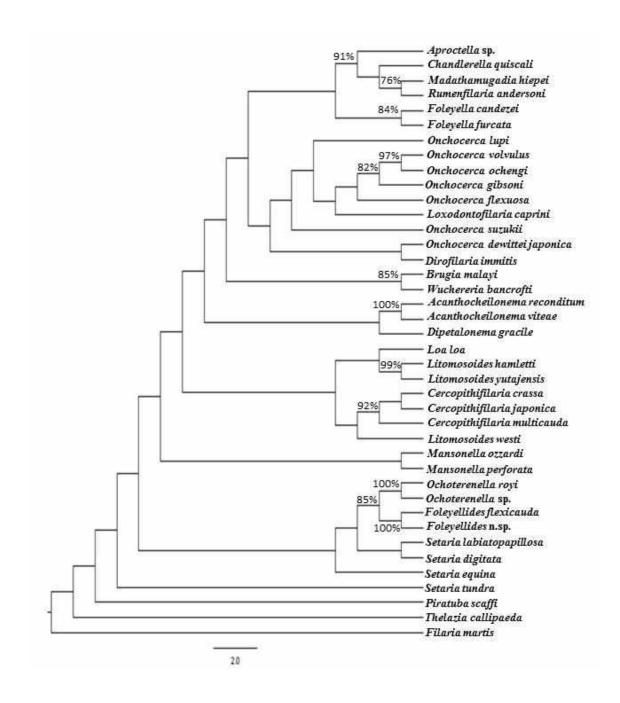


Figure 18 Phylogeny based on mitochondrial encoded NADH dehydrogenase 3 gene (ND3).

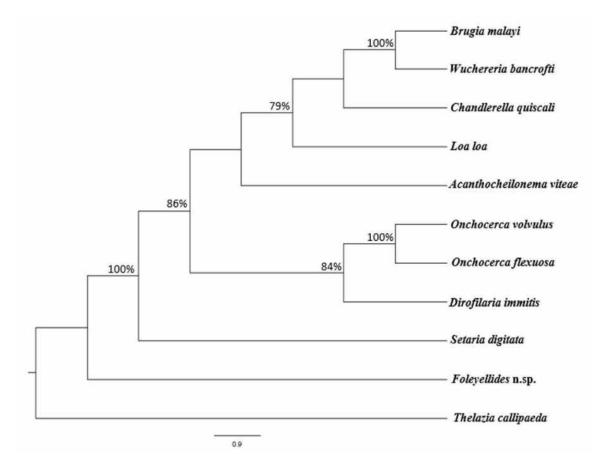

Figure 19 Phylogeny based on mitochondrial encoded NADH dehydrogenase 5 gene (ND5).

Figure 20 Maximum parsimony heuristic search in PAUP based on mitochondrial cytochrome oxidase subunit I (Cox1) sequences. Numbers at specific nodes indicate the percentages of bootstrap support (>75%). Consensus of 5 trees produced (length: 1748 steps; consistency index: 0.2946; retention index: 0.3575).

Figure 21 Maximum parsimony heuristic search in PAUP based on mitochondrial 12s rRNA gene sequences. Numbers at specific nodes indicate the percentages of bootstrap support (>75%). Consensus of 62 trees produced (length: 1139 steps; consistency index: 0.4056; retention index: 0.4871).

Figure 22 Maximum parsimony heuristic search in PAUP based on concatenated sequences of the 12 protein-coding mitochondrial genes. Numbers at specific nodes indicate the percentages of bootstrap support (>75%). One tree produced (length: 11553 steps; consistency index: 0.6121; retention index: 0.3038).

REFERENCES

- 1. Avise JC, Arnold J, Ball RM, et al. Intraspecific Phylogeography: The Mitochondrial DNA Bridge Between Population Genetics and Systematics. *Annu Rev Ecol Syst.* 1987;18(1):489-522. doi:10.1146/annurev.es.18.110187.002421.
- 2. Brown WM, George M, Wilson AC. Rapid evolution of animal mitochondrial DNA. *Proc Natl Acad Sci U S A*. 1979;76(4):1967-1971. doi:10.1073/pnas.76.4.1967.
- 3. Vawter L, Brown WM. Nuclear and mitochondrial DNA comparisons reveal extreme rate variation in the molecular clock. *Science*. 1986;234(4773):194-196. doi:10.1126/science.3018931.
- Blaxter ML, De Ley P, Garey JR, et al. A molecular evolutionary framework for the phylum Nematoda. *Nature*. 1998;392(6671):71-75. http://www.nature.com/nature/journal/v392/n6671/abs/392071a0.html. Accessed November 18, 2013.
- 5. Anderson RC. Nematode Parasites of Vertebrates. Vol Second. CABI; 2000.
- 6. Morales-Hojas R. Molecular systematics of filarial parasites, with an emphasis on groups of medical and veterinary importance, and its relevance for epidemiology. *Infect Genet Evol.* 2009;9(5):748-759. doi:10.1016/j.meegid.2009.06.007.
- 7. Taylor MJ, Bandi C, Hoerauf A. Wolbachia bacterial endosymbionts of filarial nematodes. *Adv Parasitol*. 2005;60:245-284. doi:10.1016/S0065-308X(05)60004-8.
- 8. Desjardins C a, Cerqueira GC, Goldberg JM, et al. Genomics of Loa loa, a Wolbachia-free filarial parasite of humans. *Nat Genet*. 2013;45(5):495-500. doi:10.1038/ng.2585.
- 9. Scott a L, Ghedin E, Nutman TB, et al. Filarial and Wolbachia genomics. *Parasite Immunol*. 2012;34(2-3):121-129. doi:10.1111/j.1365-3024.2011.01344.x.
- 10. WHO Media centre. No Title. 2015. http://www.who.int/mediacentre/factsheets/fs102/en/.
- 11. WHO Media centre. No Title. 2015. http://www.who.int/mediacentre/factsheets/fs374/en/.

- 12. Fischer K, Beatty WL, Jiang D, Weil GJ, Fischer PU. Tissue and stage-specific distribution of Wolbachia in Brugia malayi. *PLoS Negl Trop Dis.* 2011;5(5):e1174. doi:10.1371/journal.pntd.0001174.
- 13. McHaffie J. Dirofilaria immitis and Wolbachia pipientis: a thorough investigation of the symbiosis responsible for canine heartworm disease. *Parasitol Res.* 2012;110(2):499-502. doi:10.1007/s00436-011-2644-5.
- Taylor M, Mediannikov O, Raoult D, Greub G. Endosymbiotic bacteria associated with nematodes, ticks and amoebae. *FEMS Immunol Med Microbiol*. 2012;64(1):21-31. doi:10.1111/j.1574-695X.2011.00916.x.
- Tamarozzi F, Halliday A, Gentil K, Hoerauf A, Pearlman E, Taylor MJ. Onchocerciasis: the role of Wolbachia bacterial endosymbionts in parasite biology, disease pathogenesis, and treatment. *Clin Microbiol Rev.* 2011;24(3):459-468. doi:10.1128/CMR.00057-10.
- Hoerauf A, Specht S, Büttner M, et al. Wolbachia endobacteria depletion by doxycycline as antifilarial therapy has macrofilaricidal activity in onchocerciasis: a randomized placebo-controlled study. *Med Microbiol Immunol*. 2008;197(3):295-311. doi:10.1007/s00430-007-0062-1.
- 17. McNulty SN, Vaughan J a, Tkach V V, Mullin AS, Weil GJ, Fischer PU. Comparing the mitochondrial genomes of Wolbachia-dependent and independent filarial nematode species. *BMC Genomics*. 2012;13(1):145.
- Ramesh A, Small ST, Kloos Z a, et al. The complete mitochondrial genome sequence of the filarial nematode Wuchereria bancrofti from three geographic isolates provides evidence of complex demographic history. *Mol Biochem Parasitol*. 2012;183(1):32-41. doi:10.1016/j.molbiopara.2012.01.004.
- 19. Feagin JE. Mitochondrial genome diversity in parasites. *Int J Parasitol.* 2000;30(4):371-390. doi:10.1016/S0020-7519(99)00190-3.
- 20. Hu M, Gasser RB. Mitochondrial genomes of parasitic nematodes--progress and perspectives. *Trends Parasitol*. 2006;22(2):78-84. doi:10.1016/j.pt.2005.12.003.
- Posada D, Crandall KA. MODELTEST: Testing the model of DNA substitution. Bioinformatics. 1998;14(9):817-818. http://www.scopus.com/inward/record.url?eid=2-s2.0-0031773680&partnerID=tZOtx3y1.
- 22. Zwickl DJ. Genetic algorithm approaches for the phylogenetic analysis of large biological sequence datasets under the maximum likelihood criterion. 2006. http://molevol.lysine.umiacs.umd.edu/molevolfiles/garli/zwicklDissertation.pdf. Accessed June 22, 2015.

- Swafford D. Phylogentic Analysis Using Parsimony (* and other methods). Version 4. 2000. https://scholar.google.com/scholar?cluster=16821860147923522276&hl=en&oi=s cholarr#0. Accessed June 22, 2015.
- 24. Keddie EM, Higazi T, Unnasch TR. The mitochondrial genome of Onchocerca 6 ol 6 ulus : Sequence , structure and phylogenetic analysis. 1998;95:111-127.
- 25. Ghedin E, Wang S, Spiro D, et al. Draft genome of the filarial nematode parasite Brugia malayi. *Science*. 2007;317(5845):1756-1760. doi:10.1126/science.1145406.
- Hu M, Gasser RB, Abs El-Osta YG, Chilton NB. Structure and organization of the mitochondrial genome of the canine heartworm, Dirofilaria immitis. *Parasitology*. 2003;127(Pt 1):37-51. doi:10.1017/S0031182003003275.
- 27. Yatawara L, Wickramasinghe S, Rajapakse RPVJ, Agatsuma T. The complete mitochondrial genome of Setaria digitata (Nematoda: Filarioidea): Mitochondrial gene content, arrangement and composition compared with other nematodes. *Mol Biochem Parasitol.* 2010;173(1):32-38. doi:10.1016/j.molbiopara.2010.05.004.
- 28. Arunkumar KP, Nagaraju J. Unusually long palindromes are abundant in mitochondrial control regions of insects and nematodes. *PLoS One*. 2006;1(1). doi:10.1371/journal.pone.0000110.
- 29. Rubio MAT, Hopper AK. Transfer RNA travels from the cytoplasm to organelles. *Wiley Interdiscip Rev RNA*. 2(6):802-817. doi:10.1002/wrna.93.
- Randau L, Münch R, Hohn MJ, Jahn D, Söll D. Nanoarchaeum equitans creates functional tRNAs from separate genes for their 5'- and 3'-halves. *Nature*. 2005;433(7025):537-541. doi:10.1038/nature03233.
- 31. Kiethega GN, Yan Y, Turcotte M, Burger G. RNA-level unscrambling of fragmented genes in Diplonema mitochondria. *RNA Biol.* 2013;10(2):301-313. doi:10.4161/rna.23340.
- 32. Kanai A. Disrupted tRNA Genes and tRNA Fragments: A Perspective on tRNA Gene Evolution. *Life*. 2015;5(1):321-331. doi:10.3390/life5010321.
- McNulty NP, Simon GM, Fischer K, et al. Transcriptomic and Proteomic Analyses of a Wolbachia-Free Filarial Parasite Provide Evidence of Trans-Kingdom Horizontal Gene Transfer. *PLoS One*. 2012;7(9):e45777. doi:10.1371/journal.pone.0045777.
- Bain O, Prod'Hon J. Homogénéité des Filaires de Batraciens des genres Waltonella, Ochoterenella et Madochotera ; création des Wdtonellinae n. subfam. *Ann Parasitol*. 1974;49(6):721-739.