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ABSTRACT 

 
Cyclopalladation of organic ligands followed by reactions at the C–Pd bond with 

MPR2 (M = Li, K, or H) or other reagents (e.g. oxidants) is a desirable strategy for the 

synthesis of hemilabile bidentate ligands due to the large library of known cyclopalladated 

complexes (CPCs). This dissertation is composed of three projects on the functionalization 

of cyclopalladated ligands.  

In the first study, a new method for sp3C–P bond formation using 

diphenylphosphine was studied. Conditions for the synthesis of aminophosphines were 

optimized for the reactions of dinuclear chloro-bridged sp3C–Pd CPCs and HPPh2. The 

best yields were obtained with 9 equivalents of phosphine in CH2Cl2 in the presence of 

Cs2CO3 at 35 °C. The scope of the reaction was explored with a range of enantiopure and 

achiral C,N and C,P CPCs. The corresponding N,P and P,P ligands or their oxides were 

isolated in 30–65% yields. Reactions of HPPh2 in toluene with CPCs derived from D-

camphor methyloxime and 2-tert-butyl-4,4-dimethyl-2-oxazoline provided unique 

mononuclear Pd(II) complexes with a terminal PPh2 ligand in 16 and 52% yield, 

respectively. 

The electronic and steric effect of secondary phosphines were studied in 

phosphination reactions of cyclopalladated ligands. HPR2 with electron-donating and -

withdrawing aryl groups (R = p-MeOC6H4 or p-CF3C6H4), bulky groups (R = mesityl or 1-

adamantyl) and non-equavalent substituents (R1 = t-Bu, R2 = Ph) were reacted with CPCs 



xxii 

derived from N,N-dimethylbenzylamine and enantiopure L-fenchone methyloxime, 1-

(N,N-dimethylamino)ethylphenyl, and di-2,4-tert-butyl-2-oxazoline. With large molar 

ratios of phosphine to CPC (9:1 or 4.5:1), C–PR2 bond formation occurred to produce the 

corresponding aminophosphines or phosphine oxides in 56–61% and 12–44% yields, 

respectively. For both sp2C–Pd and sp3C–Pd CPCs, the reaction was tolerant to electronic 

differences in the phosphine substituents, but the sterically hindered phosphines 

dimesitylphosphine and HPt-BuPh reacted only with the fenchone-derived CPC to give the 

N,P ligand products in 32 and 12% yield, respectively.  

Finally, an approach to the synthesis of N,O ligands was studied via the oxygenation 

of (S)-4-tert-butyl- and (S)-4-ethyl-2-phenyl-2-oxazoline CPCs with meta-

chloroperoxybenzoic acid (m-CPBA). Reactions were performed at room temperature in 

methylene chloride, ethyl acetate, or acetonitrile followed by workup with lithium chloride. 

Oxidation products formed in these reactions included dinuclear complexes (S,S)-di-μ-

Cl(κ2-N,O)2Pd2, (S,S)-di-μ-oxo(κ2-N,O)2Pd2Cl2, and (S,S)-di-μ-(m-Cl-C6H4CO2)(κ2-

N,O)2Pd2, as well as mononuclear derivatives (S,S)-bis(2-N,O)Pd and dinuclear 

monooxidation complexes (S,S)-di-μ-Cl(κ2-N,O)(κ2-C,N)Pd2. Each complex was isolated 

in low yield (6−46%) with the combined yield of oxidation products reaching up to 64%. 

The best selectivity in product distribution was observed for the reactions of μ-OAc-CPCs 

with 2.7 equivalents of m-CPBA in acetonitrile. 

All new compounds were characterized by 1H, 13C{1H}, and 31P{1H} NMR 

spectrometry, and their purity was proven by satisfactory elemental analysis. X-ray 

crystallographic data were obtained for a new cyclopalladated complex derived from O-

methyloxime L-fenchone having HP(mesityl)2 as an ancillary ligand.
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CHAPTER I 

INTRODUCTION: ADVANCEMENTS IN C–PR2 (R = ALKYL OR ARYL) BOND 
FORMATION REACTIONS INVOLVING PALLADIUM 

 

I.1. Background 
 
Tertiary phosphines have an important role in modern organic synthesis, primarily 

as ligands for transition-metal catalyzed reactions including C–C,1 C–N,2 C–O,3 and C–F4  

couplings and other transformations.5, 6 They are also used as organocatalysts,5, 7-9 as 

components of electronic materials,10, 11 and in coordination chemistry of platinum,12 

iron,13 and other metals.14, 15   

The library of known phosphines is entirely synthetic, though a variety of C–P 

bond-containing compounds such as phosphonic acids, P(=O)(OH)2R,16 as well as a single 

example of a phosphinic acid, P(=O)(OH)R1R2,17 have been isolated from biological 

sources. The diversity of reported phosphines has grown considerably over the last two 

decades to include structures with unique combinations of denticity, electron density, 

bulkiness, and chirality to suit the needs of their many applications. Methods for their 

preparation have also multiplied in recent years. Conventional approaches to tertiary 

phosphines via C–PR2 (R = alkyl or aryl) bond formation can be divided into three 

categories: 1) the reaction of chlorophosphines (ClPR2) with organometallic reagents, 

especially organolithium ones, 2) nucleophilic substitutions, including ring-opening 

reactions, with alkali phosphides (MPR2), and 3) palladium-catalyzed hydrophosphination 

of unsaturated compounds.18 These and other less common methods often rely on 
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organocatalysts or non-palladium transition metal catalysts,19, 20 but transformations 

involving Pd have been the most prolific due to the versatility of Pd-mediated C–H 

activation.   

It is the aim of this introduction to discuss the latest studies (from 2012) in C–PR2 

(R = alkyl or aryl group) bond formation involving P(III) compounds and Pd(0) or Pd(II) 

species as either reagent or catalyst. It has to be mentioned that the end products of many 

reactions summarized in this chapter are often not tertiary phosphines, but their more stable 

derivatives such as oxides, sulfides, or boranes formed after appropriate treatment of PR3.  

I.2. Hydrophosphination Reactions 

 
I.2.1. Background 

 
Palladium-catalyzed asymmetric addition of secondary phosphines to unsaturated 

compounds (i.e., activated alkenes and alkynes) was described at length in 2016 reviews 

by Pullarkat21 and by Chew and Leung.22 I will here discuss only the subsequent 

publications, aside from a brief introduction to the topic, since direct methods for the 

catalytic and asymmetric introduction of the PR2 moiety are highly desirable. 

The groups of Leung and Duan have been instrumental in the field of Pd-catalyzed 

hydrophosphination since its re-emergence in 2010.21 Reports have covered additions to a 

wide variety of electron-deficient trans alkenes (Scheme 1), mostly α,β-unsaturated 

carbonyl compounds, but the methodology has also been extended to nitroalkenes,23 

ketimines,24 alkynes,25 α,β,γ,δ-unsaturated sulfonic26 and bisphosphonate esters,27 as well 

as heterocycle-conjugated alkenes.28 These transformations have been catalyzed by two 

principle types of palladium complex, enantiopure phosphapalladacycles (S)- and (R)-129 

and the P,C,P pincer complexes (S,S)-2a–c.30-32   
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Scheme 1. Asymmetric hydrophosphination of electron-deficient alkenes by (S)-1, (R)-1 
and (S,S)-2a–c.29-32 

 
I.2.2. Recent Developments 

  
One of the challenges associated with catalytic hydrophosphination has been the 

synthesis of aminophosphines and diphosphines. Chelation of these products to Pd can 

result in catalyst poisoning, particularly for non-pincer complexes such as 1 containing two 

monodentate ligands.33-35 However, these transformations can be achieved with 

stoichiometric amounts of palladium. Yao and coworkers have recently reported the 

synthesis of a PROPHOS-type [1,2-bis(diphenylphosphino)propane] ligand via 

asymmetric diphosphination of 2-ethynylpyridine using equimolar amounts of the nitrogen 

analog of palladacycle (R)-1 as an enantiopure template (Scheme 2).36 After the addition 

of two equivalents of HPPh2, four diastereomers of complex 3 were obtained. The 

enantiopure diphosphine (S)-5 was recovered after mixing compound 3 with conc. HCl 

followed by fractional recrystallization of complex 4 and ligand liberation with KCN.   
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Scheme 2. Synthesis of PROPHOS-type diphosphine (S)-5 by asymmetric 
hydrophosphination.36 

 
Song and coworkers have recently reported an alternative solution to the problem 

of catalyst inhibition in the preparation of P,P,  N,P, and related ligands. Specifically, they 

proposed using the robust pincer complex (S,S)-2a.37 HPR2 was reacted with enones 6 

containing the 2-pyridinyl ring. The catalyst showed high efficiency at room temperature 

(rt) providing desirable products in high yields and high enantiopurity, which were 

improved further in experiments conducted at lower temperatures. The addition was 

tolerant to a variety of substituents in the 3- and 6-pyridinyl positions, including Me, Br, 

and MeO (Scheme 3). As a unique example, a bis(enone) was used in the synthesis of an 

achiral N,P,N ligand (7b) in high yield. The phosphine reactants were varied to give N,P 

ligands with different PAr2 substituents (where Ar = Ph, p-MeC6H4, or p-MeOC6H4) as 

well as compound 7c with the Pi-PrPh group. The authors also described the synthesis of 

the 2-pyrrolyl N-donor ligand 7d from the corresponding enone. 
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Scheme 3. Enantioselective synthesis of N,P chelating ligands 7a–d using catalyst (S,S)-
2a.37 

 
 Pincer complexes may be better suited as catalysts for hydrophosphination 

reactions in which the products are N,P ligands, since they have only one site for 

coordination and, therefore, little chance of poisoning via product chelation. Yang and 

coworkers have recently compared two types of complexes, (S)-1 and (S,S)-2b, in 

hydrophosphination of enones to assess the impact of different heteroatoms (N, O, and S) 

in various positions (Scheme 4).38 In these reactions, catalyst (S)-1 gave the products in 

good yields and high enantiopurity with few exceptions. Yields and enantiomeric excesses 

(ee) of products 9a–c were in the order of 2-pyridinyl (16% yield, 23% ee) < 2-furyl (50% 

yield, 57% ee) < 2-thienyl (86% yield, 94% ee) according to the dipole moment of the 

chelating N, O, and S atoms. In general, HPPh2 additions using the pincer complex gave R-

chiral phosphines with excellent enantiopurity. Interestingly, although yields were high in 

all cases, enantioselectivity was negligible in reactions of enones with 2-pyridinyl (9a) and 

2-pyridinyl-oxide (9d) substituents. However, as mentioned above, Song reported 92% ee 
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for the same 2-pyridinyl-substituted enone and a similar catalyst, albeit under modified 

conditions (1.2 equivalents of enone to HPPh2 at –60 °C in toluene37 vs. 1.2 equivalents of 

HPPh2 to enone at –25 °C in acetone). The article confirmed that while the application of 

catalyst (S)-1 is limited in the preparation of N,P ligands and suitable in the synthesis of 

O,P and S,P ligands, pincer complex 2b maintains high catalytic activity for obtaining all 

three groups of bidentate compounds, although stereocontrol is lost in some cases possibly 

due to the reaction conditions or modifications on the catalyst pendant arms.  

 
 

Scheme 4. Catalytic hydrophosphination of enones 8 using catalysts (S)-1 and (S,S)-2b.38 
 
Building on the work reported by Leung’s group in which a pincer complex 

catalyzed the 1,6-addition of HPPh2 to α,β,γ,δ-unsaturated malonic esters (10),26 Wei and 

coworkers investigated the factors affecting stereoselectivity of this transformation.39 The 
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bulk of the ester group was first varied, showing a trend towards 1,6- over 1,4-addition 

with increasing size. When isopropyl or tert-butyl substituents were installed in the ester 

moiety, a 15:1 ratio of 1,6-addition product to 1,4-addition was observed, whereas the ratio 

decreased to 9:1 and 1:1, respectively, for ethyl and methyl groups. The bulk of the alkoxy 

moiety was also positively associated with enantioselectivity (38% ee for methyl vs. 89% 

for tert-butyl), whereas the choice of solvent had no effect, nor was it found to affect the 

regioselectivity of the reaction. The transformation was found to be effective for a range 

of 2-substituted tert-butyl malonic ester derivatives with conjugated aryl groups containing 

electron-withdrawing and -donating substituents (Scheme 5). 

 

Scheme 5. Catalytic 1,6-addition of HPAr2 to α,β,γ,δ-unsaturated malonic esters 10.39 
 

I.2.3. Catalyst Design 

  
Palladacycle 1 has been established as an excellent catalyst in asymmetric 

hydrophosphination reactions, but a significant drawback is its tedious multistep 

synthesis.29 Based on earlier studies regarding interactions with H8 of the naphthyl group 

and the substituent at the pseudobenzylic position (Figure 1),40 Li and coworkers theorized 

that increasing the steric bulk of the chiral moiety may impart greater stereocontrol in 

catalytic reactions.41  
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Figure 1. Important steric interactions in complex 1.40 

This group employed CPC (R)-1 in the catalytic hydrophosphination of naphthyl-

substituted alkene 12 (Scheme 6). Phosphine 13 was then cyclopalladated, and the Pd(II) 

complex [(S)-14] formed was tested for catalytic activity in the asymmetric 

hydrophosphination of chalcone (15) and α,β-unsubstituted malonic ester 17 (Scheme 7). 

Although the selectivity in both reactions was lesser (78% ee and 84% ee) than that 

observed with complex (R)-1 (89% ee and 95% ee; see Table 1), the results are still 

promising given the synthetic ease and versatility of this approach to catalyst synthesis.  

 

Scheme 6. Preparation of catalyst (S)-14.41 
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Scheme 7a,b. Asymmetric hydrophosphination of a) chalcone 15 and b) malonic ester 
17.41 

Table 1. Data for the reactions shown in Scheme 7. 
 

Entry Cat. t (h) Product Conv. (%) ee (%) 
1 (R)-1 6 16 99 89 (S)  
2 (S)-14 6 16 99 78 (R) 
3 (R)-1 96 18 99 95 (S) 
4 (S)-14 96 18 99 84 (R) 

 
 Complexes with an sp3C–M (M = transition metal) bond are expected to hold higher 

electron density on the metal center and as a result may show greater reactivity in some 

transformations.42 In two recent reports from Leung’s group, the synthesis of new pincer 

complexes with an sp3C–Pd bond was undertaken via hydrophosphination of enones 

followed by cyclopalladation (Scheme 8). A 1,4-addition of HPPh2 to enone 19 followed 

by chalcogenation and cyclopalladation offered the “self-breeding” catalysts 20a,b (Table 

2).43 Catalyst 21a furnished the preligand from its own structure with similar efficiency to 

catalyst (S)-2b in the catalytic hydrophosphination of 19; its unsymmetrical and aliphatic 

scaffold could also be useful for more sterically demanding reactions.42   
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Scheme 8. Synthesis of catalysts 21a,b.43 

Table 2. Asymmetric hydrophosphination of 19 using pincer catalysts (S)-2b and 21a,b. 
 

Entry Cat. Base t (h) Solvent T (°C) Product Yield (%) ee (%) 
1 2b None 6 acetone 0 20a 90 >99  
2 2b None 6 acetone 0 20b 86 >99  
3 21a KOAc 24 thf/H2O Rt 20a 82 96 
4 21a KOAc 24 thf/H2O Rt 20b 85 93 
5 21b KOAc 24 thf/H2O Rt 20a 69 46 
6 21b KOAc 24 thf/H2O Rt 20b 66 45 

 

Tay and coworkers applied the same methodology to synthesize preligands to 

catalysts 22–26 (Scheme 9).44 Mononuclear (22a,b and 23) and dinuclear (24–26a,b) 

complexes were obtained and tested for their activity alongside CPC (S)-1 in reactions of 

α,β,γ,δ-unsaturated malonic ester 27. The results are summarized in Table 3. The sp2C–Pd 

pincer complex 23 outperformed all other sp3C–Pd complexes, while the latter group 

showed only low catalytic activity and chirality induction. 
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Scheme 9. HPPh2 addition to the conjugated diene 27 catalyzed by complexes 22–26.44 

Table 3. Results of the reactions shown in Scheme 9. 
 

Entry Cat. 28a:28b Yield (%) 
ee 

(%) 
Entry Cat. 28a:28b 

Yield 
(%) 

ee (%) 

1 22a 1.3:1 23   ND* 6 25a 0:100 28 ND 
2 22b 1:6 38 <10 7 25b 1:5.3 36 ND 
3 23 1:13 69 40 8 26a 1:1.7 43 ND 
4 24a 1:11.9 64 ND 9 26b 1:4.3 49 ND 
5 24b 1:11.9 57 ND   1045 (S)-1 0:100 100 >99 (S) 

*Not determined 
 
I.3. Stereoconvergent C–P Bond Formation  

 
I.3.1. Background 

 
Strategies for the direct synthesis of enantiopure phosphines are highly valuable as 

they allow researchers to bypass the often laborious process of chiral resolution or the use 

of chiral auxiliaries in stoichiometric amounts. Enantioselective introduction of the PR2 

group using optically active catalysts to create a new chiral center is the most common 

approach to avoid chiral resolution and has been broadly used in hydrophosphination 
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reactions (vide supra). Another group of asymmetric transformations includes 

stereoconvergent processes, in which both enantiomers of a racemic reactant provide a 

stereochemically identical product. One such method is dynamic kinetic resolution (DKR), 

which relies on the fast isomerization of a reactant or intermediate followed by preferential 

reaction of one stereoisomer over the other.45    

I.3.2. Dynamic Kinetic Resolution for the Synthesis of Axially Chiral 

Aminophosphines 

 
A DKR approach has recently been reported for the asymmetric synthesis of 1-(2-

(diphenylphosphino)naphthalen-1-yl)isoquinoline (QUINAP) by Bhat and coworkers.46 

Commercially available enantiopure P,P ligands were evaluated in the catalytic 

phosphination of racemic precursors 29a–c using HPPh2 (Scheme 10). In the case of 

bromide (±)-29a, dialkylphosphino ligands were found to exert greater stereocontrol than 

diarylphosphino analogs and were effective at slightly lower temperatures (80–90 °C 

compared to 100 °C). (S)-QUINAP (30) was obtained from (±)-29a in high ee using 

Pd[P(o-tol)3]2 with either (S,S)-Me-Ferrocelane (31) or (S,S)-Me-DuPhos (32) as 

enantiopure ligands (Table 4, entries 1 and 2). The same transformations also provided the 

R isomer of bromide 29a, which was then converted to (R)-QUINAP in separate 

experiments. Gram-scale reactions involving HPAr2 were also performed at low catalyst 

loadings with tetra-n-butyl ammonium bisulfate as an additive (entries 3 and 4; HPAr2 with 

the highest yields are listed). The DKR approach was not investigated further for bromide 

(±)-29a, since kinetic measurements revealed that the product racemized much faster (trac 

½ = 0.5 h at 150 °C) than the starting reactant (trac 
½ = 78 h at 150 °C). Although the sosylate 

(OSs, methanesulfonylbenzenesulfonate) derivative 29b showed a favorable racemization 
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rate (trac 
½ = 17 h at 90 °C compared to 246 h for QUINAP at the same temperature), DKR 

reactions provided low yields (entries 5 and 6).  

 

Scheme 10. Asymmetric synthesis of QUINAP (S)-30 from racemates 29a–c.46 

Table 4. Results for the reaction depicted in Scheme 10. 
 

Entry 
cat 

mol% 
(±)-29 Lig. t (h) 

Base/ 
Additive 

(S)-30 

Yield/ee (%) 

(R)-29a–c 

Recovery/ee 
(%) 

1 5 a 31 12–24 DIPEA 47*/84 47*/>96 
2 5 a 32 12–24 DIPEA 43*/90  43*/88 

3 0.5 a 31 20 
DIPEA/ 

n-Bu4NHSO4 
45/95  47/96 

  4† 0.5 a 31 14 
DIPEA/ 

n-Bu4NHSO4 
46/92  44/96 

5 2 b 31 8 DMAP 39/82  41/96 

6 8 b 31 96 DMAP 43/56   ND§ 

7 5 c 31 15 DMAP 100*/0 ND 

8 5 c 33 6 DMAP 86/90 ND 
*Conversion of starting material measured by UHPLC-MS. 
†HP(p-tol)2 was used instead of HPPh2. 
§ND = not determined. 

To improve yields, the authors described reactions involving triflate (±)-29c. In this 

case ligand 31 (entry 7) and bulkier variants, although highly active, provided only racemic 
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QUINAP. After re-evaluation of commercially available diphosphines and optimization of 

conditions, (S)-QUINAP was obtained in 90% ee with the (R,SFc)-Josiphos ligand 33 (entry 

8). Interestingly, the rate of reaction between compound (±)-29c and HPPh2 in the presence 

of Pd[P(o-tol)3]2/33 at 80 °C is several orders of magnitude greater than the racemization 

rate of the triflate, suggesting that in this case DKR is dependent on the isomerization of 

Pd complex intermediates. When a longer time was allowed for this process, as by slow 

addition of HPPh2 over several hours, the enantioselectivity was found to be the greatest. 

Ramírez-López and coworkers reported a similar DKR method for the asymmetric 

synthesis of axially chiral N,P ligands including QUINAP.47 Their approach employed 

trimethylsilylphosphines (Me3SiPR2) rather than secondary phosphines or metal 

phosphides in the reaction of heterobiaryl triflates and nonaflates (Scheme 11). As in the 

study by Bhat and coworkers46 planar chiral Josiphos ligands proved to be the most 

effective, with ligand 34 chosen for the model reaction. In addition to 29c, triflate and 

nonaflate compounds containing 3-methylpyridine, quinazoline, and phthalazine moieties 

were also used, and several phosphines were tested to assess the impact of electron-

donating and -withdrawing groups. The reaction was found to be tolerant to these variations 

in the starting compounds and provided phosphines (S)-30 and (S)-37 in good yields and 

with high ee in most cases. DFT calculations undertaken by the group supported several 

conclusions regarding the mechanism. Namely, the cyclopalladated complex 38 formed by 

displacement of the triflate group in the starting substrate 29c by Pd(0) was shown to be 

prone to epimerization (Figure 2). The less stable S isomer of complex 38 is more likely to 

proceed to a reaction intermediate, which undergoes the irreversible reductive elimination 

step to produce phosphine (S)-30.   
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Scheme 11. Asymmetric DKR synthesis of axially chiral N,P ligands.47 
 

 

 
Figure 2. Simplified reaction pathway of C–P bond formation from heterobiaryl 

compounds and Me3SiPR2 reported by Ramírez-López and coworkers.47  
 
I.4. Reaction of Cyclopalladated Complexes  

 
I.4.1 Background 
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Cyclopalladated complexes, or CPCs, have been used extensively as reactants in 

various regioselective ligand modification reactions.48 Recently, a two-step approach 

consisting of 1) cyclopalladation of appropriate preligands followed by 2) substitution of 

the metal in the C–Pd bond by a PR2 group (Scheme 12) became an alternative to the 

traditional methods of C–PR2 bond formation involving lithiation or halogenation and 

subsequent reaction with chlorophosphines or metal phosphides, respectively. These 

conventional approaches to phosphination require the initial introduction of either a lithium 

or halogen moiety; however, this is not always straightforward, especially with regard to 

functionalizing alkyl fragments. The use of CPCs as reactants in phosphination provides 

access to a wide variety of hemilabile bidentate ligands, with a phosphino group and 

additional functional group in the structure, due to the wealth of known palladacycles with 

an sp3C–Pd and sp2C–Pd bond.49  

 

Scheme 12. Cyclopalladation followed by C–PR2 bond formation. 
 

I.4.2. Reactions with LiPPh2 

 
The first introduction of the PPh2 group to cyclopalladated ligands was reported by 

Sokolov et al. in 198050 with the reaction of LiPPh2 and a complex derived from 2-N,N-

dimethylaminomethylferrocene [(S,S)-39, Scheme 13a]. A similar study was published by 

the same group in 199951 using LiPMePh (Scheme 13b). Dunina et al. have studied the 

synthesis of aminophosphine Pd(0) complexes resulting from the reaction of chiral CPCs 

and LiPPh2.52 Members of our group have since investigated the influence of LiPPh2 
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preparation method and time of storage on transformations with a number of structurally 

diverse CPCs.53 It was shown that “aged” LiPPh2 solutions in tetrahydrofuran (thf), 

including those purchased from Sigma Aldrich Co., reacted with dimeric CPCs to give thf 

ring opening products (Scheme 13c). When the phosphide was freshly prepared from 

ClPPh2 and Li, the reaction with CPC 41 in toluene provided aminophosphine 42 in 81% 

yield (Scheme 13d). 

 

Scheme 13a–d. Reactions of lithium phosphides with C,N CPCs.50, 51, 53 
 

I.4.3. Reactions with KPPh2 

A few drawbacks are associated with lithiated reagents, including high sensitivity 

to reaction conditions, their higher cost than corresponding potassium phosphides and their 
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tendency to form aggregates,53 whereas KPPh2 is monomeric in solution, allowing for more 

reproducible results. In 2002, Bolm et al. reported a phosphination reaction using KPPh2 

and a paracyclophane-derived CPC with an sp2C–Pd bond (Scheme 14).54 This study 

encouraged our group to investigate the use of KPPh2 for the preparation of functionalized 

phosphines. 

 
 

Scheme 14. Reaction between KPPh2 and paracyclophane-derived CPC (SPL,SC)-43.54 
 

In 2011, conditions were reported for aminophosphine synthesis using KPPh2 and 

cyclopalladated N,N-dimethylbenzylamine 41 (Scheme 15),55 and in the interest of testing 

the broad applicability of the KPPh2 approach, our group has recently undertaken two 

studies involving CPCs with an sp2C–Pd bond56 and comparatively rare “aliphatic” 

complexes with an sp3C–Pd bond.57 In the first study, aminophosphines, 

sulfidophosphines, phosphino-oxazolines, diphosphines, and tridentate S,P,S ligands were 

obtained from dichloro-bridged dimeric C,N, C,S and C,P CPCs with an sp2C–Pd bond in 

five- and six-membered palladacycles (Scheme 15). The phosphination of one S,C,S pincer 

complex was also described. The results obtained using commercial KPPh2 were identical 

to those obtained with the reagent freshly prepared from K and ClPPh2, a significant 

improvement over the observed sensitivity of the reaction to the LiPPh2 preparation 

method. It was also noted that yields of desired products compared favorably with 

previously reported multistep procedures and those involving lithiation for the introduction 
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of the PPh2 group. Using the same conditions, KPPh2 was reacted with structurally diverse 

CPCs containing an sp3C–Pd bond, including novel enantiopure complexes derived from 

L-fenchone and D-camphor.58, 59 The bidentate aminophosphines and related hemilabile 

ligands (or the corresponding phosphine oxides) isolated in the study cannot be obtained 

by traditional methods, although the yields were lower (20–51%, 5 examples) than those 

obtained for the analogous transformations using CPCs with an sp2C–Pd bond.   

 

Scheme 15. Phosphination of CPCs with KPPh2.55, 56 
 
I.5. Synthesis of P-Heterocycles 

 
I.5.1. Background  

 
Conjugated phospholes and other P-heterocycles have attracted interest for their 

promising applications as materials for organic light-emitting diodes, organic 

photovoltaics, and an assortment of optical sensors.10, 60 The pyramidal geometry of the 

phosphorous atom in phospholes results in weak aromaticity,61 which sets these 

compounds apart from their five-membered N-, S-, and O-heterocyclic counterparts. They 

are a handle for several types of alterations that affect electronic properties, including 

synthetically simple ones, such as chalcogenation, boronation, metalation, alkylation, and 

changing the identity of the substituent62 Apart from their use in materials, they have also 
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been studied extensively as monodentate ligands in transition-metal catalysis and as 

organocatalysts.63 Synthetic methods for the preparation of phosphorous heterocycles as 

well as their more recent applications have been discussed thoroughly in reviews by 

Hibner-Kulicka and Matano.64, 65 Here the most recently reported synthetic procedures 

involving palladium will be considered. 

I.5.2. Intramolecular C–P Bond Formation 

 
Nakano and coworkers have reported the preparation of λ5-phospha[7]helicenes, a 

new family of helicenes, employing catalytic intramolecular C–P bond formation (Scheme 

16).66 Triflate (±)-57 was synthesized in two steps by Pd-catalyzed coupling of the 

corresponding bis(triflate) with ethylphenyl phosphinate, HP(O)(OEt)Ph, followed by 

reduction with LiAlH4. Intramolecular cyclization of the triflate was catalyzed by 

Pd(OAc)2 in the presence of 1,4-bis(diphenylphosphino)butane (DPPB), and product (±)-

58 was subsequently oxidized to obtain phosphine oxide (±)-59a. Enantiomers of the 

phosphine oxide were separated by HPLC, then pure (P)- and (M)-59a were converted to 

the corresponding enantiopure sulfides 59b using Lawesson’s reagent. Crystallographic 

analysis showed unique packing structures for the racemic mixture of 59b. The (P) and 

(M)-enantiomers separated into alternating columnar packing structures having dipole 

moments in the opposite direction to one another. 

 
 

Scheme 16. Synthesis of λ5-phospha[7]helicenes (±)-59a,b via Pd-catalyzed 
intramolecular C–P coupling.66 
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I.5.3. C–P Bond Cleavage Methodologies 

  
Baba and coworkers have developed a Pd-catalyzed phosphole synthesis from 

tertiary phosphines by sequential C–P bond formation and cleavage.67 PAr3 had previously 

been used as an aryl group source in Pd-catalyzed reactions.68-70 Specifically, a method for 

the synthesis of phosphines has been reported via the coupling of aryl triflates and bromides 

with PR3.71-74 However, the study by Baba was the first investigation focused on the use of 

PAr3 for preparation of phospholes (Scheme 17). It is worth noting that a broad variety of 

triarylphosphines are commercially available and air-stable, and that the reaction displays 

high functional group tolerance. The authors obtained the phospholes at high temperature 

(160 °C) in good yields. They offered experimental evidence to support a proposed 

mechanism that includes the formation of CPC 62 followed by reductive elimination and 

then dearylation through oxidative addition to Pd(0) (Figure 3).   

 

 

Scheme 17. Pd(II)-catalyzed synthesis of phospholes using tertiary phosphines.67 
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Figure 3. Mechanism for phosphole synthesis proposed by Baba and coworkers.67 
 
 In a subsequent article, Baba and coworkers applied a similar methodology to 

prepare six-membered phospholes.75 However, starting bromides were needed to facilitate 

the formation of a seven-membered palladacycle intermediate, and hydrosilanes were 

added to induce reductive elimination from Ph–Pd–Br and regenerate the catalyst (Scheme 

18a). Bulkier hydrosilanes were more effective, with (Me3Si)3SiH giving yields between 

68% and 87% for the model reaction. The authors described the formation of compound 

67 having a ladder-type structure (Scheme 18b) to illustrate the accessibility to extended 

heterocycles. Intermolecular reactions could offer a more straightforward path to extended 

π-systems, thus similar conditions were used in the reaction of bromophosphine 68 and the 

benzyne precursor 69 as a proof-of-concept (Scheme 18c).   
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Scheme 18a–c. a) Synthesis of six-membered phospholes. b) Formation of extended 
heterocycles. c) Intermolecular cyclization via benzyne intermediate. 

 
 Zhou and coworkers have developed an alternative Pd/Cu-catalyzed phosphole 

synthesis.76 The method can be viewed as a P–Ph addition to a C≡C bond, analogous to the 

previously reported P–H addition to alkynes.25, 36 The reaction requires catalytic amounts 

of Cu(I) salts along with Pd, as neither metal alone gave cyclization products under the 

conditions shown in Scheme 19. The presence of electron-withdrawing or -donating 

substituents in the para positon of the alkyne Ar group was found to have a significant 

effect on phosphole formation. Lower yields of products were observed for alkynes with 

p-NPh2C6H4 and p-MeOC6H4 substituents (70a,b; Table 5, entries 1–3) and higher yields 

were achieved for compounds with electron-withdrawing p-CF3C6H4 and p-FC6H4 groups 

(70g,h; entries 8 and 9). Alkyne 70i (Ar = 1-naphthyl) did not give the desired product, an 

indication that bulky groups interfere with the cyclization process. The authors also 

reported the reactions of diisopropyl-substituted phosphine 72a and bis(diethylamino)-

substituted phosphazane 72b (Scheme 19b; entries 11 and 12). Although the cyclizations 
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were observed, the β-elimination products were also isolated from reaction mixtures. It is 

noteworthy that the formation of 73a constitutes the first reported case of a Pd(0)-catalyzed 

sp3C–P bond cleavage.    

 
 

Scheme 19a,b. a) Synthesis of monobenzofused phospholes 71a–h. b) Synthesis of 
compounds 73a,b. 

Table 5. Results of the reaction depicted in Scheme 19. 
 

Entry Product R Yield (%) Entry Product R Yield (%) 
1 71a NPh2 7 7 71f H 41 

  2* 71a NPh2 29 8 71g CF3 68 
3 71b OMe 32 9 71h F 72 

4 71c n-Bu 43  10† 71i NA 0 

5 71d Me 52 11 73a i-Pr 26 

6 71e Ph 45 12 73b NEt2 40 
*Pd(PPh3)2Cl2 was used instead of Pd(OAc)2. 
†1-Napthyl instead of p-RC6H4. 
 

I.6. Conclusions 
 
Palladium-assisted methods for the formation of the C–PR2 (R = alkyl or aryl 

group) bond have been surveyed. In recent reports, the synthesis of tertiary phosphine 

ligands with different types of chirality has been a focal point. This task has been 
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approached from multiple directions including the use of chiral catalysts and achiral 

reactants in the case of palladacycle-catalyzed hydrophosphinations. Stereoconvergent 

methods utilizing dynamic kinetic resolution have been applied to the synthesis of enantio-

enriched P,N ligands with axial chirality. Readily available enantiopure and achiral 

cyclopalladated complexes with either an sp3C–Pd or sp2C–Pd bond in five- and six-

membered C,N, C,S and C,S palladacycles have been used in reactions with metal 

phosphides and secondary phosphines to furnish unique hemilabile bidentate ligands, 

which are often not easily accessible by other known methods. Aside from the preparation 

of non-cyclic PR3 products, the synthesis of phospholes has been achieved using Pd-

catalyzed intramolecular couplings of secondary and tertiary phosphines.  

In addition, recent studies of phosphole synthesis have described Pd-catalyzed C–

P bond cleavage in phosphonium intermediates to form a new C–PR2 bond. In all but one 

case the cleaved bond was sp2C–P, which leaves the door open for further study of sp3C–

P bond cleavage. The possibility of intermolecular cyclization leading to a P-heterocycle 

has also been demonstrated, and provided a yet-to-be-explored avenue towards the Pd-

catalyzed synthesis of phosphole polymers with potential in the field of electronics. 

It is noteworthy that so far researchers in the field of Pd-mediated C–PR2 bond 

formation have rarely reported the use of phosphine reagents with bulky or non-equivalent 

substituents. Tuning steric properties of the substituents directly connected to the P atom 

and introducing P-chirality in tertiary phosphines are certain to influence the reactive 

center in transition metal-catalyzed reactions employing tertiary phosphines. There is no 

doubt that development of simple and general methods for the preparation of enantiopure 

phosphines with an sp2 and sp3C–PR2 bond and having different types of chirality will 
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remain an important task in synthetic organic chemistry. It is also likely that the use of Pd 

in new methods of C–P bond formation will be expanded to include more examples of 

these challenging reactions. 

I.7. Goals of the Proposed Study 

There are several known approaches for the synthesis of aminophosphines and 

related bidentate ligands; some of them were outlined in the previous section of this 

chapter. However, the diversity of these compounds is limited at present due to a reliance 

on specific types of reactants, many of which are difficult to synthesize. In this dissertation, 

new methods for the synthesis of tertiary phosphines were proposed, specifically those with 

an sp3C–P bond and an additional donor atom, using reactions of CPCs with HPPh2. The 

steric and electronic effect with a variety of secondary phosphines was investigated, 

including a prochiral phosphine, HPt-BuPh, on CPCs with either an sp2 or sp3C–Pd bond.  

Also, a method was proposed for C–O bond formation through the reaction of CPCs with 

meta-chloroperoxybenzoic acid (m-CPBA).  

The general methodology encompassing all three proposed studies can be 

summarized as a two-step approach (Scheme 20). In the first step, suitable preligands are 

cyclopalladated with a Pd(II) source to form dimeric chloro- or acetato-bridged complexes. 

The C–Pd bond of the products are then transformed to a C–P (Scheme 20a) or C–O 

(Scheme 20b) bond with secondary phosphines or the oxidizing agent m-CPBA, 

respectively. 
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Scheme 20a,b. a) Two-step method for the synthesis of hemilabile bidentate ligands.      
b) Method for regioselective C–O bond formation. 

  
There are several goals of this study: i) to develop a method for sp3C–P bond 

formation using CPCs and secondary phosphines, ii) to synthesize a set of structurally 

unique tertiary phosphines, iii) to study the electronic and steric effect of HPR2 on 

phosphination reactions with sp2 and sp3C–Pd CPCs, iv) to study the stereoselectivity of 

the transformation using HPt-BuPh, v) to develop a related C–O bond formation method 

using CPCs and m-CPBA, and vi) to characterize all new compounds by spectroscopic 

methods. 
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CHAPTER II 

 

RESULTS AND DISCUSSION 
 

II.1. Reactions of Cyclopalladated Complexes with HPPh2 

 
II.1.1. Background 

 
The use of secondary phosphines in C–PR2 bond formation is desirable compared 

to the use of metal phosphides for several reasons. First, as the precursors to lithium and 

potassium phosphides, they have a relatively low cost. They are also soluble in a variety of 

solvents, including non-polar ones. Finally, whereas air-sensitive MPR2 (where R ≠ Ph) 

generally need to be synthesized in the lab, there is a broad variety of secondary phosphines 

available commercially. 

Before the beginning of this work, our group had unpublished data regarding the 

phosphination of sp2C,E ligands using HPPh2. In the reaction of cyclopalladated N,N-

dimethylbenzylamine, varying the molar ratio of CPC:HPPh2 (2, 4.5, and 9), solvent (thf, 

PhMe, and CH2Cl2), temperature (rt, 40, 60, and 80 °C), time of experiment (1, 1.5, 3, 4, 

and 18 h), and base (NaOAc, K2CO3, K3PO4, Cs2CO3, and NaOSiMe3), led to conditions 

for the isolation of aminophosphine 42 in 77% yield (Scheme 21). This methodology was 

applied for the synthesis of enantiopure 74, aminophosphine 47 (obtained from the reaction 

of a six-membered CPC), sulfidophosphine 75, and diphosphine monoxide 76.
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Scheme 21. Optimized conditions of the reaction between sp2C–Pd CPCs and HPPh2. 
 

II.1.2. Reactions at the sp3C–Pd Bond 

 
While introduction of the PAr2 group to an aromatic ring is usually accomplished 

via the lithiation of appropriate substrates, the basic method for the formation of an sp3C–

P bond is the SN2 reaction of a metal phosphide with alkyl halides or related compounds 

having good leaving groups.6 Recently, a method for sp3C−P bond formation using KPPh2 

reactions with CPCs having an sp3C−Pd bond was reported.57 Based on the results of that 

study, it was predicted that phosphination of cyclopalladated ligands at an sp3-hybridized 

carbon could also be accomplished using HPPh2.   

The previously reported77, 78 C,N CPC 77 derived from 2-tert-butyl-4,4-dimethyl-

2-oxazoline was chosen as a model compound to determine the optimal conditions for 

phosphination reactions leading to the formation of an sp3C−P bond. The complex reacted 

with HPPh2 in the presence of Cs2CO3 in toluene at 40 °C; however, no signals of free 

iminophosphine 78 were detected in the 31P{1H} NMR spectrum of the crude mixture. 

Instead, complexes 79 and 80 were isolated in 24 and 52% yield, respectively (Scheme 22). 

After varying reaction conditions (Table 6), the best yield of iminophosphine 78, 56%, was 

obtained using 9 equivalents of HPPh2 in CH2Cl2 at 35 °C (entry 7). 
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Scheme 22. Reactions of HPPh2 with CPC 77 having an sp3C−Pd bond. 

Table 6. Yields of compounds 78−80 depending on the condition used. 
 

      
Complex 79 was previously reported as a product in the reactions of CPC 77 with 

KPPh2.57 The structure of the novel complex 80 was determined with 1H, 13C{1H}, DEPT, 

31P{1H} and 2D NMR spectroscopy. According to the NMR data, compound 80 contains 

a C,N cyclopalladated ligand of the starting reagent 77, iminophosphine 78 as a 

monodentate auxiliary ligand, and a terminal PPh2 ligand. The presence of two PPh2 groups 

in the complex and their cis geometry are supported by the presence of two doublets in the 

31P{1H} NMR spectrum at δ 7.8 and 116.8 ppm with coupling constant 2JPP = 38 Hz.79-81 

The signal at δ 116.8 ppm was assigned to the PPh2 ligand; the low-field position of the 

doublet suggests non-bridging coordination of this ligand to the metal.82 The cis position 
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of the CH2 fragment of the cyclopalladated ligand and the terminal PPh2 ligand in complex 

80 is suggested based on the transphobia concept.83, 84 There are several reports of 

mononuclear Pd(II) complexes containing a terminal phosphido group. Zhuravel et al. and 

Mazzeo et al. have reported complexes in which the P–Pd bond was stabilized by 

intramolecular chelation of the ligand.79, 82  Madadi et al. have recently reported disilyl- 

and dibenzoylphosphido complexes of type PdI(i-Pr2-bimy)2PR2 and PdI(n-Bu2-

bimy)2PR2, which are stabilized by the presence of N-heterocyclic carbene ligands.85 

Moncarz et al. as well as Pican and Gaumont isolated phosphido-borane complexes with 

the structure Pd(L)(Ar)P(BH3)R1R2 (L = diphos or another P,P or P,N ligand).86-88 

Mononuclear κ-PPh2 Pd(II) complexes were proposed as intermediates in Pd-catalyzed 

phosphination reactions,31, 89 but they have not been isolated to our knowledge.  

To examine the reactivity of other aliphatic CPCs, complexes 81 and 83 containing 

benzylic C–Pd bonds were reacted with 9 equivalents of HPPh2 in CH2Cl2 at 35 °C. In both 

cases, partial oxidation of the ligand was observed. The crude mixtures were therefore 

oxidized prior to purification either with 30% H2O2 or by exposure to air providing 

phosphine oxides 82 and 84 in 60% and 51% yield, respectively (Scheme 23).   

  
Scheme 23. Reactions of complexes 81 and 83 with HPPh2. 
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Our group has previously reported the preparation of CPC 85 derived from the O-

methyloxime of L-fenchone58 and its subsequent reaction with KPPh2 at rt in thf.57 In those 

reactions, the corresponding free N,P ligand 49 was isolated in 51% yield whereas the 

reaction with 9 equivalents of HPPh2 in CH2Cl2 at 35 °C gave an improved 65% yield 

(Scheme 24).   

 

Scheme 24. Reaction of CPC 85 with HPPh2 to form product 49. 
 

The preparation of CPC 86 derived from the O-methyloxime of D-camphor59 was 

also reported along with its reactions with KPPh2,57 furnishing the corresponding free N,P 

ligand (87) in 21% yield while its oxide (88) was not isolated. By contrast, in reactions of 

complex 86 with 9 equivalents of HPPh2 in the presence of Cs2CO3 in CH2Cl2 (both at rt 

and 35 °C) no signal of the N,P ligand was observed in 31P{1H} NMR spectra of the crude 

mixtures or isolated fractions. When the optimized conditions for the phosphination of CPC 

41 were used, the major product was found to be the unique Pd(II) complex 89. The 

compound contains a terminal PPh2 group, a chloride ligand, and an N,P ligand. The 1H 

NMR spectrum provided evidence that the NOMe group in the cyclopalladated ligand was 

converted to NOH, with the oxime signal appearing at 9.02 ppm. The 31P{1H} NMR 

spectrum of the complex contained two doublets with a rather small coupling constant 

(12.2 Hz), suggesting the cis position of two P atoms (Scheme 25).55 An interesting feature 

of the 13C{1H} NMR spectrum is the long-range coupling observed between the terminal 
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phosphido group and C3 of the camphor bicycle (4JCP = 4.8 Hz). HRMS data confirmed 

the presence of a cation corresponding to complex 89 minus a chloride ion. The proposed 

structure was further supported by testing the substance for halides using AgBF4, after 

which a precipitate was observed.  

   

Scheme 25. Reaction of CPC 86 with HPPh2 furnishing complex 89. 
 

In an attempt to free the N,P ligand from coordination with palladium, the workup 

was altered by addition of 1,2-bis(diphenylphosphino)ethane at the end of the reaction; 

however, this was not effective. A series of experiments were then performed where one 

parameter of the reaction conditions was changed: different temperatures (rt, 40 °C, and 80 

°C), solvents (toluene, CH2Cl2, and thf), and molar equivalents of HPPh2 (3.2, 3.9, 4.5, and 

9) were explored. However, the free N,P ligand was not isolated in any of these experiments 

with only one exception. At rt with 9 equivalents of HPPh2 in toluene, oximophosphine 87 

was obtained in 21% yield along with the oxidized analog 88 (9%, Scheme 26). 

Noteworthy, the N,P ligand was not isolated from reactions in toluene using the same ratio 

of reactants at 40 °C and 80 °C.  

  
Scheme 26. Preparation of compounds 87 and 88. 
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 The yields of N,P ligands 78, 82, and 49 as well as the phosphine oxide 84 

(56−65%) obtained in this study were consistently higher than those reported for the related 

KPPh2 reactions with CPCs having an sp3C−Pd bond.57 It is noteworthy that the alternative 

method for the phosphination of the alkyl fragment, based on the SN2 reaction of alkyl 

halides with metal phosphides, was successfully used for preparation of enantiopure 

phosphino-oxazolines.90 However, a major obstacle to the generality of this method for 

preparation of bidentate hemilabile ligands is the need for regioselective halogenation of 

the alkyl moiety before the phosphination step. 

II.1.4. Mechanistic Considerations 

 
It is suggested that the first step of the reaction between HPPh2 and complex [Pd(μ-

Cl)LC]2 (structure A in Scheme 27 where LC is a cyclopalladated ligand) is the formation 

of the corresponding mononuclear CPC, PdClLC(HPPh2) (B). The 31P{1H} NMR spectra 

of the 1:2.5 and 1:4.5 mixtures of CPC 77 and HPPh2 in toluene-d8 (recorded at 20 °C after 

freezing to –95 °C) contained a prominent signal at δ –1.2 ppm. This signal was assigned 

to the P atom of HPPh2 in PdClLC(HPPh2) (LC = cyclopalladated 2-tert-butyl-2,2-dimethyl-

2-oxazoline). Although there are several known Pd(II) complexes with HPPh2 as a terminal 

ligand,31, 80, 91, 92 to the best of our knowledge, there has been only one report of an 

analogous C,N cyclopalladated complex.93 Díez et al. described the preparation and 

spectral characterization of an HPPh2 adduct of benzo[h]quinoline-derived CPC 

PdCl(bzqC)(HPPh2). The reported 31P NMR data of the complex include the chemical shift, 

20.2 ppm, and the coupling constant, 1JPH = 376 Hz. In non-decoupled 31P NMR spectra of 

CPC 77/HPPh2/Cs2CO3 reaction mixtures, the proposed complex PdClLC(HPPh2) (LC = 
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cyclopalladated 2-tert-butyl-2,2-dimethyl-2-oxazoline) gave a broad doublet with a 

coupling constant 1JPH = 375 Hz.   

 

Scheme 27. Proposed mechanism of N,P ligand formation by reaction of CPC with 
HPPh2. 

 
Díez et al. also prepared the Pt analog PtCl(bzqC)(HPPh2), which was converted to 

[Pt(μ-PPh2)(bzqC)]2 in the presence of K2CO3.93 By analogy, it is suggest that in the 

presence of Cs2CO3 or another base, complexes of type B undergo a transformation to 

[Pd(μ-PPh2)LC]2 (C, Scheme 27). Previously, it was shown that in the presence of chloride 

ions, the diphosphido-bridged complex [Pd(μ-PPh2)LC]2 (C) derived from 2-tert-butyl-4,4-

dimethyl-2-oxazoline is converted to the corresponding mono-chloro-mono-phosphido-

bridged analog, LCPd(μ-PPh2)(μ-Cl)PdLC (D), and a small amount of the trinuclear 
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complex LCPd(μ-PPh2)(μ-Cl)Pd(μ-PPh2)(μ-Cl)PdLC.57 So, it is reasonable to suggest that 

CPC/HPPh2/Cs2CO3 reaction mixtures should also contain complexes of type D (Scheme 

27) and possibly trinuclear derivatives LCPd(μ-PPh2)(μ-Cl)Pd(μ-PPh2)(μ-Cl)PdLC (the 

latter complex is not shown).   

In the presence of an additional 2 equivalents of HPPh2, complex [Pd(μ-PPh2)LC]2 

(C) is expected to give PdLC(ķ-PPh2)(HPPh2) (E), whereas LCPd(μ-PPh2)(μ-Cl)PdLC 

provides two complexes, E and B (Scheme 27). Complex E may also be formed from its 

chloro-analog B in the presence of PPh2 ions or, perhaps more likely, from the Pd(II) 

phosphido complexes C and D, since HPPh2 (pKa 22.9 in DMSO)94 cannot be deprotonated 

by Cs2CO3 (HCO3
– has pKa 10.3) without prior coordination to palladium. This is 

supported by the fact that the 31P NMR spectra of HPPh2 with or without Cs2CO3 are 

identical.  

The last step of the phosphination reaction is expected to be reductive elimination. 

The isolation of Pd(HPPh2)4 from a reaction mixture of CPC 41 with 4.5 equivalents of 

HPPh2 in the presence of Cs2CO3 supports reductive elimination of Pd(0)Ln from a Pd(II) 

intermediate. The formation of this and other Pd(0) species containing HPPh2 as a ligand 

may explain why an excess of the reactant is needed. In general, all complexes having a 

PPh2 ligand cis to a C–Pd bond (e.g., compounds C–F) could be considered as species that 

potentially undergo reductive elimination. However, there is some indication that the 

complexes with a bridging PPh2 ligand, C and D, are unlikely to go through reductive 

elimination to produce an N,P ligand. In our previous study,53 it was found that complex D 

derived from N,N-dimethylbenzylamine slowly undergoes reductive P–P coupling in 

CH2Cl2 at rt to produce Ph2P–PPh2, the mononuclear complex LPdIICl[PPh2P(O)Ph2] and 
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Pd(0) black. In another study,57 it was shown that at rt in the presence of chloride ions, two 

diphosphido-bridged complexes of type C derived from D-camphor O-methyloxime and 

2-tert-butyl-2,2-dimethyl-2-oxazoline readily undergo ligand metathesis instead of 

reductive elimination. Both types of complexes, C and D, provided N,P ligands only in the 

presence of at least one additional equivalent of MPPh2 (M = Li or K).53, 57 These data 

suggest that in order to undergo reductive elimination with the formation of a C–P bond, a 

Pd(II) complex should have a terminal rather than bridging phosphido ligand. In order to 

have a complex with a terminal PPh2 group, the CPC/HPPh2/Cs2CO3 reaction mixture must 

have at least 2 equivalents of HPPh2 per palladium atom. The most plausible intermediate 

that may undergo reductive elimination to give C–P coupling appears to be [PdLC(κ-

PPh2)2]− (F, Scheme 27). Related anionic complexes of the type [PdLC(κ-OAc)2]− and 

[PdLCBr2]− (where LC is a C,P CPC with a benzylic sp3C–Pd bond) have previously been 

implicated as species undergoing reductive elimination leading to C–O and C–Br bond 

formation,95 respectively.  

In 1:2.5 and 1:4.5 reaction mixtures of CPC 77 and HPPh2 in the presence of 

Cs2CO3, initial 31P{1H} NMR spectra of the mixtures frozen to –95 °C and recorded at rt 

contained a broad signal at –1.2 ppm, as previously mentioned. As the samples were kept 

at rt, this signal gave way to a singlet at –1.53 ppm, which was assigned to the previously 

reported complex of type D, LCPd(μ-PPh2)(μ-Cl)PdLC (LC = cyclopalladated 2-tert-butyl-

2,2-dimethyl-2-oxazoline). Two doublets in the 31P{1H} NMR spectrum (still doublets in 

the non-decoupled spectrum) were also observed at 79.0 and 70.9 ppm (2JPP = 48 Hz) after 

14 h when the molar ratio of HPPh2 to CPC was 1:4.5. When the ratio was 1:2.5, these 

signals were present after 72 h. and were still prominent after ten days, when signals 
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corresponding to free iminophosphine 78 and complex 80 were first observed. The fact that 

the C–P coupling products 78 and 80 were not detected until after these two doublets were 

present suggests that they may belong to a key intermediate from which reductive 

elimination occurs. The chemical shift value and the proximity of the signals at 79.0 and 

70.9 ppm suggest that they belong to similar Pd-bound P-containing groups. The value of 

the coupling constant, 48 Hz, points to the cis position of these two ligands. It is proposed 

that these doublets belong to [PdLC(κ-PPh2)2]− (LC = cyclopalladated tert-butyl-2,2-

dimethyl-2-oxazoline). In the case of the 1:4.5 ratio of reactants, signals for complex 80 

were present after 18 hours at rt, implying that C–P bond formation is faster with excess 

HPPh2.   
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Figure 4. Proton-coupled 31P NMR spectra of CPC 77/HPPh2/Cs2CO3/toluene-d8 reaction 
mixtures frozen to –95 °C and kept at rt for: a) 10 min. (4.5 equivalents HPPh2), b) 4 h 
(4.5 equivalents HPPh2), and c) 10 days (2.5 equivalents HPPh2). (LC = cyclopalladated 

tert-butyl-2,2-dimethyl-2-oxazoline) 
 

There is no reason to believe that reductive elimination from [PdLC(κ-PPh2)2]− with 

an sp2C–Pd bond takes place through a different route than a traditionally proposed three-

membered transition state.96 To give Pd(0) species, complexes [PdLC(κ-PPh2)2]− with an 

sp2C–Pd bond may actually have two transition states, one with Pd, P and C atoms and the 

other with Pd and two P atoms, since one of the PPh2 ligands is cis to both C and P atoms. 

   80 80 78 
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Interestingly, products of P–P coupling were observed in the majority of reactions 

involving CPCs with an sp2C−Pd bond. Ph2PP(O)PPh2 was isolated in some of those 

reactions, and the corresponding adduct of the type LCPdIICl[PPh2P(O)Ph2] (LC = 

cyclopalladated N,N-dimethylbenzylamine) was also obtained in low yield when 

NaOSiMe3 was used as a base. However, in the same reactions of CPCs having an sp3C–

Pd bond, neither Ph2PP(O)PPh2 nor complexes LCPdIICl[PPh2P(O)Ph2] were isolated or 

detected. Thus, in reactions with CPCs containing an sp2C–Pd bond, P–P coupling 

competes with C–P bond formation during the reductive elimination step. The absence of 

P–P coupling products in reactions with CPCs having an sp3C–Pd bond indicates that the 

SN2-like mechanism of the reductive elimination step may be favored over the concerted 

pathway involving a three-atom transition state. In the case of an SN2 mechanism, the PPh2 

ion is more likely to attack the carbon than the phosphorus atom bonded to two bulky 

phenyl groups (vide infra).   

Little is known about the mechanism of the reductive elimination step from Pd(II) 

complexes to give an sp3C–E bond, where E = N, P or O.57, 96-107 Similar to the sp2C−E 

couplings, concerted sp3C–N bond formation through a three-membered transition state 

has been proposed for the reductive elimination of norbornylamines from 

alkylpalladium(II) amido complexes.99 However, an SN2-like mechanism for our 

phosphination reactions cannot be excluded. The two most probable SN2 pathways include 

1) nucleophilic attack by the exogenous PPh2 ion on the sp3-hybridized carbon bonded to 

Pd(II) and 2) dissociation of the PPh2 ligand from a Pd(II) complex, e.g., F, followed by 

SN2 attack of the phosphide ion on the carbon.  
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To shed light on possible mechanisms of the reductive elimination step, three 

experiments were performed with complex 80, which has a terminal PPh2 ligand cis to the 

Pd-bound carbon atom. The compound was heated for 18 h at 75 °C in acetonitrile, at 80 

°C in toluene in the presence of 4 equivalents of PPh3 as an auxiliary ligand, and at 80 °C 

in toluene with 9 equivalents of Cs2CO3 and 4 equivalents of HPPh2. Only in the latter case 

did the free iminophosphine form (NMR data showed >80% conversion), suggesting that 

either nucleophilic attack of the exogenous PPh2 ion is required to produce an sp3C–P bond 

and/or substitution of the iminophosphine moiety by PPh2 is necessary to form the [PdLC(κ-

PPh2)2]− intermediate, which then undergoes reductive elimination. The results of the 

experiments also show that intramolecular reductive elimination is unlikely for neutral 

Pd(II) intermediates with terminal PPh2 ligands cis to sp3C–Pd bonds at 75–80 oC in 

coordinating and non-coordinating solvents.  

The iminophosphine formed as a result of the reductive elimination step can exist 

in the reaction mixture as a free ligand or be coordinated to Pd(0) or Pd(II) to form various 

complexes. Two different types of Pd(II) complexes with N,P ligands, 80 and 89, were 

isolated in our study. It is noteworthy that Pd(0) complexes with N,P ligands have been 

reported.30, 108-117 For example, Pd(0) complexes with N,P ligands 42 and 74 were studied 

by the van Koten group.114 Both complexes Pd(42)3 and Pd(74)3 have three ligands 

coordinated to the metal through phosphorus atoms.  

II.1.5. Conclusions 

 
A general procedure for the formation of sp2C–P and sp3C–P bonds using reactions 

of dimeric dichloro-bridged CPCs with inexpensive HPPh2 has been developed. The scope 

of complexes that can be used in the reaction include five- and six-membered C,N, C,S and 
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C,P palladacycles having either an sp2 or and sp3C–Pd bond. Achiral or enantiopure 

products with an sp3C–PPh2 bond, including amino- (74), quinolyl- (82), imino- (78), 

oximophosphines (87 and 49), and a diphosphine monoxide (84), were obtained in 30–65% 

yield, which is comparable to yields reported for preparation of these or similar P-

containing bidentate ligands by other methods. Reactions in toluene involving CPCs 

derived from 2-tert-butyl-4,4-dimethyl-2-oxazoline and D-camphor methyloxime 

provided unique stable Pd(II) terminal phosphido complexes 80 and 89. 31P{1H} NMR 

monitoring of reaction mixtures of HPPh2 and sp3C–Pd CPC 77 suggests that the anionic 

Pd(II) complex [PdLC(κ-PPh2)2]−, previously implicated in reactions of LiPPh2 with CPCs, 

is likely to be a key intermediate undergoing reductive elimination to form a C–P bond. 

This method offers an approach to the regioselective introduction of PR2 (where R ≠ Ph) 

to ligands capable of cyclopalladation, whereas previous methods involving MPPh2 are 

limited by the commercial availability of metal phosphides and their inconvenient 

solubility and storage.  

II.2. Reactions of Cyclopalladated Complexes with HPR2 

 
II.2.1. Background 

 
Most recent approaches to Pd-mediated C–PR2 bond formation use HPPh2 as a 

model phosphine, as well as HPAr2 with electron-withdrawing or -donating Ar groups. 

However, secondary phosphines with bulky or non-equivalent substituents have been 

neglected with the exception of Song and coworkers who have reported a Pd-catalyzed 

hydrophosphination with HPi-PrPh to obtain N,P ligand 7c (Scheme 3). Modifying the 

bulk of tertiary phosphine substituents as well as introducing P-chirality is likely to have a 

pronounced effect on reactions utilizing them as organocatalysts or ancillary ligands of 
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metal catalysts.118 Thus the electronic and steric factors of the starting secondary 

phosphines HPR2 [R = p-MeOC6H4, p-CF3C6H4, mesityl (Mes), and 1-adamantyl (Ad)] on 

reactions with model CPCs were investigated. HPt-BuPh was also reacted to assess the 

stereoselectivity of the C–P bond formation. Additionally, conditions were found for the 

synthesis of (i) uncommon mononuclear complexes with secondary phosphines as ancillary 

ligands, LCPdCl(HPR2), and (ii) rare dinuclear complexes of type LCPd(μ-Cl)(μ-PR2)PdLC, 

where LC is a cyclopalladated ligand.  

II.2.2. Reactions of CPCs with Electron-Deficient and -Rich Phosphines 

 
It was previously reported that the dinuclear chloro-bridged C,N CPC 41 derived 

from N,N-dimethylbenzylamine was reacted with 4.5 equivalents of HPPh2 (a) at 40 °C in 

toluene in the presence of 9 equivalents of Cs2CO3 to produce aminophosphine 42a in 77% 

yield.119 Under the same conditions, phosphination of CPC 41 with HP(p-MeOC6H4)2, 

which has the electron-donating group compared to HPPh2, yielded aminophosphine 42b 

in 27% yield (Scheme 28 and Table 7, entry 2). By applying a significant excess of the 

phosphine, 9 equivalents, the yield of the phosphination product 42b increased to 59%. 

Replacing toluene with more polar CH2Cl2 resulted in 61% yield of 42b.   

 

Scheme 28. Reaction of CPC 41 with HPR2. 
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Table 7. Conditions used in the reactions of CPC 41 with HPR2. 
 

Entry R Solvent Temp. (°C) 
1:HPAr2 

Molar Ratio 

Yield of 
42 (%) 

  1119 Ph (a) PhMe 40 1:4.5 77 
2 
3 

p-MeOC6H4 (b) 
p-MeOC6H4 (b) 

PhMe 
PhMe 

40 
40 

1:4.5 
1:9 

27 
59 

3 p-MeOC6H4 (b) CH2Cl2 35 1:9 61 
4 p-CF3C6H4 (c) PhMe 40 1:4.5 56 
5 
6 

p-CF3C6H4 (c) 
p-CF3C6H4 (c) 

PhMe 

CH2Cl2 
40 
35 

1:9 
1:9 

traces* 
38 

            *29% of LCPd(μ-Cl)(μ-PR2)PdLC was isolated. 

Using the standard conditions (PhMe, 40 °C, 18 h, 1:4.5 molar ratio), the reaction 

of CPC 41 with the phosphine having electron-withdrawing substituents, HP(p-CF3C6H4)2, 

provided the N,P ligand 42c in 56% yield (entry 4). Increasing the number of equivalents 

of the starting phosphine led to a lower product yield (entry 5). In comparison to more 

electron-rich phosphines, the use of HP(p-CF3C6H4)2 has been reported in C–Pd to C–P 

bond transformations only once. In the asymmetric Pd-catalyzed synthesis of QUINAP 

derivatives from corresponding bromides, Bhat reported that reactions of HP(p-CF3C6H4)2 

required longer reactions times to achieve full conversion of the starting material compared 

to the analogous transformations with HPPh2 and HP(p-CH3C6H4)2.46 Presumably, those 

reactions proceeded via the formation of cyclopalladated complexes followed by reductive 

elimination.47 According to the data presented by Hartwig in his review and the conclusions 

made therein, the rate of the C–P bond forming reductive elimination step is expected to 

be higher for more electron-rich phosphido groups in Pd(II) complexes.120  

To compare the HPAr2 reactions involving CPC 41, which has an sp2C–Pd bond, 

analogous experiments with the L-(–)-fenchone-derived CPC 85 were performed. This 

complex was chosen because (i) it is readily available,58 (ii) it has an sp3C–Pd bond, (iii) it 
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is enantiopure (vide infra), and (iv) its phosphination with 9 equivalents HPPh2 provided a 

rather high yield (65%) of N,P ligand 49a.119 Reactions of HP(p-RC6H4)2 (R = OMe or 

CF3) with complex 3 in PhMe and CH2Cl2 furnished moderate yields of aminophosphines 

49b,c (Scheme 29 and Table 8, entries 1–7).  

 

Scheme 29. Reaction between CPC 85 and HPR2 (a–c). 

Table 8. Conditions used for reactions of CPC 85 with HPR2. 
 

Entry R Solvent Temp (°C) 
3:HPAr2 Molar 

Ratio 
Yield of 49 

(%) 
   1119 Ph (a) CH2Cl2 35 1:9 65 

2 
3 

p-MeOC6H4 (b) 
p-MeOC6H4 (b) 

PhMe 
PhMe 

40 
40 

1:4.5 
1:9 

30 
44 

4 p-MeOC6H4 (b) CH2Cl2 35 1:9 36 
5 p-CF3C6H4 (c) PhMe 40 1:4.5 0 
6 p-CF3C6H4 (c) PhMe 40 1:9 25 
7 p-CF3C6H4 (c) CH2Cl2 35 1:9 53 
      

 Similar to the results involving CPC 41 with an sp2C–Pd bond, the reaction of the 

fenchone-derived complex 85 with HPPh2 gave significantly higher yields of N,P ligand 

49a than phosphinations with either HP(p-MeOC6H4)2 or HP(p-CF3C6H4)2. This suggests 

that the electron density of the phosphine, regardless of the hybridization of the chelating 

carbon in the CPC, has an important influence on product formation.  

II.2.3. Reactions of CPCs with Bulky Secondary Phosphines 

 
After evaluating the electronic effect of HPAr2, the bulkiness of the phosphine was 

considered in reactions of complexes 41 and 85 with commercially available HPMes2 (d) 
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and HPAd2 (e). The experiments using CPC 41 with 4.5 equivalents of HPMes2 in PhMe 

and with 9 equivalents of the same phosphine in CH2Cl2 did not result in the desired C–P 

bond formation. Instead, traces of the mononuclear complex 90d were obtained as well as 

a small amount of the dinuclear complex 91d (Scheme 30; Table 9, entries 1 and 2). These 

two complexes, 91d and 90d, were isolated in excellent yields using 1 and 2 equivalents 

of HPMes2, respectively (entries 3 and 4). All attempts (i.e., longer periods of time up to 

96 h and higher temperatures up to 80 °C in PhMe) to obtain the aminophosphine product 

were unsuccessful.  

 

Scheme 30. Reaction between CPC 41 and bulky HPR2. 

Table 9. Conditions used in the reaction shown in Scheme 30. 
 

Entry R Solvent 
Temp 
(°C) 

Molar 
Ratio 

Yield of 90 
(%) 

Yield of 91 
(%) 

1 Mes (d) PhMe 40 1:4.5 Traces 10 
2 Mes (d) CH2Cl2 35 1:9 Traces 12 
3 Mes (d) PhMe 40 1:1 0 98 
4* Mes (d) CH2Cl2 Rt 1:2 90 0 
5 Ad (e) PhMe 40 1:4.5 75 0 
6 Ad (e) CH2Cl2 35 1:9 79 0 
7* Ad (e) CH2Cl2 Rt 1:2 90 0 

*Reactions were stopped after 30 min. and no base was used. 
 
 Reactions of CPC 41 with another phosphine with bulky substituents, HPAd2, gave 

only the corresponding HPAd2 adduct 90e under all conditions tried, including those 

extending for 96 h and performed at higher temperature (80 °C in PhMe; see also entries 5 
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and 6 in Table 9). Neither the targeted aminophosphine ligand nor the monophosphido-

bridged complex 91e were formed in those experiments. Moreover, the 1H NMR spectrum 

of the reaction mixture with a 1:1 ratio of CPC 41 and HPAd2 (the best ratio for the 

preparation of complexes of the type LCPd(μ-Cl)(μ-PR2)PdLC)55 contained only signals of 

the starting complex 41 and adduct 90e.  

It has been suggested that complexes with more hindered ancillary ligands may 

undergo reductive elimination faster than those with less bulky ancillary ligands.120 This 

was explained by “a relief in steric congestion upon generation of the free organic product 

and a resulting metal center with a reduced coordination number.”120 If so, it is possible to 

predict that increasing the size of the PR2 ligand in the intermediate undergoing reductive 

elimination will facilitate C–P bond formation for the same reasons. Previously, complexes 

of the type LCPd(µ-PR2)(µ-Cl)PdLC along with [LCPd(PR2)2]– were identified as possible 

intermediates in phosphination of cyclopalladated ligands.55, 119 In the case of bulky 

phosphines, the formation of the latter intermediate is problematic because two hindered 

PR2 ligands are unlikely to be in the cis position required for this complex. The fact that 

the compound LCPd(µ-PR2)(µ-Cl)PdLC 91d was isolated only using HPMes2 and no 

targeted aminophosphine was obtained with either of two tested bulky phosphines, 

indirectly supports our hypothesis55, 119 that aminophosphines are formed as a result of the 

reductive elimination from the diphosphido complexes [LCPd(PR2)2]–.   

Reactivity of CPC 85 with an sp3C–Pd bond toward the bulky phosphines was 

somewhat different compared to that of CPC 41 with an sp2C–Pd bond (Scheme 31 and 

Table 10). The desired phosphination product 49d´ with the oxidized PMes2 group was 

obtained after 18 h in 7% yield using 9 equivalents of HPMes2 (entry 2). The increase in 
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the reaction time to 96 h resulted in 32% yield of 49d´ (entry 3). All attempts to synthesize 

the analogous compound 49e with the PAd2 moiety were unsuccessful. Complexes 92d,e 

and/or 93d,e were major products of the reactions performed using all other conditions 

tested (Table 10). Compounds 92d,e were obtained in high yield using 2 equivalents of 

HPR2 (R = Mes or Ad) in CH2Cl2 (entries 4 and 7). The best yields of the monophosphido-

bridged complexes 93d,e were achieved in the reactions using a 1:1 ratio of the reagents in 

CH2Cl2 at 35 oC and in PhMe at 80 oC, respectively (entries 3 and 8).  

 

Scheme 31. Reaction between CPC 85 and bulky HPR2 (R = Mes or Ad). 

Table 10. Conditions used for reaction in Scheme 31. 
 

Entry R Solvent Temp (°C) Molar Ratio 49’ (%) 92 (%) 93 (%) 
1 R = Mes (d) PhMe 40 1:4.5 0 traces 8 
2 R = Mes (d) CH2Cl2 35 1:9 7 0 0 

 3* R = Mes (d) CH2Cl2 35 1:9 32 0 0 
4 R = Mes (d) CH2Cl2 35 1:1 0 0 69 

 5† R = Mes (d) CH2Cl2 Rt 1:2 0 81 0 
6 R = Ad (e) PhMe 40 1:4.5 0 77 0 
7 R = Ad (e) CH2Cl2 35 1:9 0 81 0 
8* R = Ad (e) CH2Cl2 35 1:9 0 31 45 
9† R = Ad (e) CH2Cl2 Rt 1:2 0 86 0 
10 R = Ad (e) PhMe 80 1:1 0 19 66 

* Reaction time: 96 h. 
 † Reactions were stopped after 30 minutes and no base was used. 

 
 It is noteworthy that, contrary to a large number of studies on mononuclear CPCs 

with PPh3 or other tertiary phosphines ligands, there are just five reports describing their 

analogs with secondary phosphines.121-125 All of them are of the C,N-type and contain an 
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sp2C–Pd bond in either a five- or six-membered palladacycle. Mononuclear complexes 

derived from ortho-palladated N,N-dimethyl-2-aminobiphenyl and HPR2 with bulky 

substituents (R = Nor, t-Bu, or Cy) proved to be excellent catalysts in Heck and other C–

C and C–N coupling reactions.122   

Mononuclear complexes 90d,e and 92d,e with HPMes2 and HPAd2 as ancillary 

ligands are expected to have the trans-P,N geometry as all other known phosphine adducts 

of C,N CPCs. 1H, 13C and 31P NMR spectra of compound 92e revealed that this CPC exists 

in solution as two isomers in a ratio of 4:1. These two isomers for 92e can be either 

cis/trans-N,P adducts or rotamers due to restricted rotation around the Pd–P bond. The 1H, 

13C and 31P NMR signals of two isomers differ insignificantly, except for the signals of the 

hydrogen bonded to the phosphorus atom, which appear as doublets at  3.36 and 4.06 ppm 

with 1JHP = 339 and 359, respectively. These data suggest that the two isomers have a 

similar geometry; however, the P–H fragments in these molecules have rather different 

chemical environments. For five closely related PPh3 adducts of five-membered sp3C,sp2N 

CPCs with trans-N,P geometry, the 1H NMR triplets (3JHP = 7.2–9 Hz) assigned to one of 

the two diastereotopic hydrogens of the Pd–CH2 fragment are significantly shifted upfield 

( 0.56–1.09 ppm) compared to the spectra of the corresponding dichloro-bridged dimers 

( 1.86–2.18 ppm).58, 59, 126, 127 In the 1H NMR spectrum of 92e, one of the hydrogens of 

the CH2Pd group in the major isomer provides a triplet at  1.15. NOE interactions were 

observed between this signal and the corresponding HP doublet centered at  3.36 ppm. 

The result of the NOE experiment as well as the similarity in the CHAPd chemical shift and 

3JHP coupling constant values for the major isomer of 92e with closely related complexes 

with the trans-N,P geometry strongly suggest that it has the same stereochemistry.  
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Unfortunately, the 1H NMR signals of the PdCH2 moiety in the minor isomer were 

overlapped with other signals, and NOE experiments could not be used reliably in this case. 

There are a few arguments to suggests the trans-N,P geometry not only for the major but 

also for the minor isomer of 92e. First, the 1H NMR chemical shifts of the NOMe group in 

both isomers differ by 0.01 ppm indicating their very similar chemical environment. One 

can expect that the chemical shift of the NOMe group near two bulky adamantyl 

substituents in the cis-N,P isomer would be different. Secondly, the value of 2JCP constant, 

4 Hz, for the PdCH2 group of the minor isomer is similar to the values of the 2JCP constants 

reported earlier58, 59, 93, 126, 127 (0–3 Hz) and in this dissertation (0−4 Hz) for mononuclear 

CPCs with the cis position of the chelating C (either sp2 or sp3) and P atoms. For 

comparison, the value for the 2JCP constant reported for the PdCH2 group in the complex 

of the type LCPd(μ-PPh2)2PdLC was 55.1 Hz.57 Finally, the trans position of a phosphine 

ligand relative to a donor carbon atom in Pd(II) complexes is unlikely due the transphobia 

effect84, 128, 129 and, to the best of our knowledge, there is only example of a mononuclear 

CPC having a phosphine ancillary ligand in trans-C,P geometry, but the 13C NMR data was 

not given.31 By contrast, a mononuclear Pd(II) complex with a bulky N-heterocyclic 

carbene ligand trans to HPAd2, (NHC)PdCl2(HPAd2), has been reported, with the 2JCP 

constant listed as 189.2 Hz. For similar complexes with tertiary phosphines in place of 

HPAd2, this 2JCP constant was 181.9–199.2 Hz.130 

Assuming that both isomers of 92e have the trans position of HPAd2 relative to the 

N atom of the fenchone-derived ligand, the presence of two sets of signals with similar 

chemical shift values in 1H, 13C and 31P NMR spectra of 92e can be explained by the 

existence of two rotamers due to restricted rotation around the P–Pd bond. This restricted 
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rotation has been reported for mononuclear CPCs with the secondary phosphine 

HPBnPh,124 and with tertiary phosphines Pt-BuPh(4-BrC6H4),131 PBni-PrPh,132 

PBnCyPh,124 and PBn2Ph;124 however, in all these cases only one set of signals was present 

in the 1H NMR spectra. The existence of two rotamers of complex 92e in solution is not 

surprising considering the larger size of the 1-adamantyl group compared to substituents 

in other phosphine ligands for which restricted rotation was observed. It is also noteworthy 

that complex 92e appears to be the first cyclopalladated complex with a phosphine as an 

ancillary ligand for which two rotamers have been reported.  

Complexes of the type LCPd(μ-Cl)(μ-PR2)PdLC have been previously isolated in 

the reactions of CPCs with LiPPh2,53 KPPh2,55, 57 and HPPh2.119 X-ray structural data for 

one of the C,N complexes of this kind were reported by Dunina et al.133 confirming the cis 

position of two cyclopalladated ligands (LC) and the trans position of the PPh2 group 

relative to the N atoms in both ligands LC. Similarly to all known CPCs of this kind, NMR 

spectra of complexes 91d and 93d,e have one set of signals for the chelating moieties. This 

confirms their equivalence, which is possible only for complexes LCPd(μ-Cl)(μ-PR2)PdLC 

having two cyclopalladated ligands in the cis position. Furthermore, the PR2 bridging unit 

is expected to be cis to the chelating carbon atoms according to the transphobia effect.84, 

128, 129 

II.2.4. Reactions of CPCs with the Chiral Phosphine HPt-BuPh 

 
Aminophosphines of type 42 and 49 as well as the new Pd(II) complexes obtained 

in this study are potential catalysts in various transformations including C–C coupling and 

hydrogenation.1, 6, 122 Optically active aminophosphines and other bidentate N,P ligands 

with a chelating P-chiral center are expected to have a greater influence on the 
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stereoselectivity of transition-metal-catalyzed reactions. For this reason, reactions of three 

enantiopure CPCs and commercially available racemic HPt-BuPh were explored with the 

goal of synthesizing chiral phosphines having both C- and P-stereocenters.  

In the reactions of the optically active CPC 85 with rather bulky HPt-BuPh (Scheme 

32), conditions determined to be the best for the synthesis of N,P ligand 49d’ with the large 

PMes2 substituent (Table 10, entry 3) were used. The 31P NMR spectrum of the reaction 

mixture after 96 h showed a strong signal at –18.6 ppm with negligible surrounding peaks. 

After preparative TLC on SiO2, 12% of one pure diastereomer of 49f was isolated. The 

second diastereomer was either not formed or not recovered from the TLC plate. The 

stereochemical purity of the isolated sample of N,P ligand 49f was supported by the 

presence of one set of signals in 1H, 13C, and 31P NMR spectra. The 31P NMR spectrum of 

compound 49f stored at rt in toluene-d8 after 48 h exhibited a single peak, suggesting that 

racemization of the P-chiral center did not take place. It is noteworthy that attempts to use 

a shorter reaction time or toluene instead of CH2Cl2 did not result in the formation of 49f.  
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Scheme 32. Preparation of 49f, 92f, and a 10:1 mixture of 93f and 94f. 
 

The synthesis of complexes 92f and 93f from CPC 85 was also investigated due to 

their potential in catalysis. Compound 92f was isolated as a 1:1 mixture of two 

diastereomers in a combined yield of 77% using a 1:2 molar ratio of CPC 85 and HPt-BuPh 

at rt (Scheme 32). To investigate a possibility of diastereoselective complexation of the 

racemic phosphine, 4 equivalents of HPt-BuPh were reacted with the dimeric CPC 85 at –

78 °C for 30 minutes in CH2Cl2. Two diastereomers of 92f were isolated using preparative 

TLC in a 5:4 ratio in a combined yield of 71%. Attempts to separate the diastereomers by 

recrystallization were unsuccessful because of the high solubility of the complex in organic 

solvents.  Separation of the diastereomers using TLC on silica gel was also unsuccessful 

with several different eluents. However, when the 1:4 reaction mixture of CPC 85 and HPt-

BuPh in toluene-d8 was monitored at rt, a single set of signals was observed in the 31P NMR 

spectra immediately after mixing and one hour later. These data suggest that the formation 
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of adduct 92f in toluene is highly diastereoselective. However, on silica gel or in the 

presence of acidic impurities (such as traces of HCl in halogenated solvents), epimerization 

of complex 92f take place. The epimerization is promoted by protonation of the free 

phosphine, which results in the formation of the achiral phosphonium cation H2t-BuPhP+ 

(Scheme 33).  

 

Scheme 33. Epimerization of complex (SC,SC,RP)-92f on silica gel or in the presence of 
traces of HCl. 

 
For comparison, Dunina et al. described a similar reaction of an enantiopure CPC 

derived from N-isopropyl-α-methylbenzylamine with 4 equivalents of Pt-BuMePh at rt.134 

A single diastereomer of the resultant complex with the tertiary phosphine was isolated 

after one recrystallization. Albert et al. described preparation of diastereomeric mixtures 

obtained by reacting optically active dimeric CPCs with 2 equivalents of racemic 

secondary phosphines, HPMePh and HPBzPh.125 The authors were able to separate two 

diastereomers using column chromatography.  

Complex 93f was obtained after stirring with 1 equivalents of HPt-BuPh in PhMe 

at 40 °C for 18 h (Scheme 32). Due to the transphobia effect,83, 84, 128 the major isomer is 

most likely to have the cis position of two cyclopalladated ligands with the phosphido 
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moiety trans to the N atoms. Due to the presence of two different substituents in the 

phosphido ligand and two chiral centers in the fenchone moiety, the two cyclopalladated 

ligands are non-equivalent. As a result, 1H and 13C NMR spectra of 93f have two sets of 

signals for these ligands. 

NMR spectra of all fractions of compound 93f contained one more set of signals in 

the amount of ca. 10%. At first, it was concluded that it was a minor isomer because the 

chemical shifts of the second compound present in the mixture were very similar to those 

of 93f. That minor compound had only one set of signals in the 1H, 13C and 31P NMR 

spectra; therefore, it could not have the trans position of two fenchone moieties since the 

cyclopalladated ligands would be non-equivalent. It is likely that the minor compound 

accompanying complex 93f is not its isomer but rather its trinuclear analog, LCPd(μ-Cl)(μ-

Pt-BuPh)Pd(μ-Pt-BuPh)PdLC (94f, see Scheme 32). One example of a trinuclear complex 

of this type was reported previously, isolated from the reaction of a camphor-derived CPC 

with KPPh2.57  

In an attempt to expand the number of the N,P ligands with chiral C and P centers, 

two other enantiopure CPCs, 95 and 97, were reacted with HPt-BuPh (Scheme 34). Even 

after 96 h at 35 °C, both complexes gave only monophosphido-bridged complexes 96f and 

98f without traces of the desired N,P ligands. Complexes 93f, 96f and 98f were enantiopure 

and did not require separation of diastereomers. As expected, they provide only one signal 

in 31P{1H} NMR spectra; however, some signals of the cyclopalladated ligands are doubled 

due to the presence of non-equivalent substituents in the bridging phosphido unit.  
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Scheme 34. Reactions of CPCs 95 and 97 with HPt-BuPh. 
 

II.2.5. 31P NMR Spectral Data for Synthesized Compounds  

 
31P NMR spectroscopy is a useful tool for identifying P-containing compounds in 

general and, specifically, products of the reactions described in the present study. As shown 

in Table 11, N,P ligands, mononuclear complexes with a secondary phosphine as an 

ancillary ligand, the corresponding oxides of N,P ligands, and monophosphido-bridged 

CPCs have specific chemical shift regions downfield (listed in order) from the parent 

secondary phosphines. Three free phosphines HPAr2 (Ar = Ph, p-MeOC6H4, and p-

CH3C6H4) provided signals in the narrow range of δ –54.5 to –59.5 ppm. Introduction of 

two bulky mesityl groups significantly shifted the signal of the secondary phosphine 

upfield to δ –108.1 ppm. In contrast, HPAd2 with bulky but aliphatic substituents 

underwent resonance at δ +2.7 ppm. Arylation of HPAr2 led to downfield shifts, Δ +25.5 

± 0.9 ppm, from the signals of the parent phosphines (see data for 42a–c) compared to Δ = 

+19.0 ± 1.4 ppm for alkylations (see data for 49a–c). Signals of phosphine oxides 42a´ and 

49a´ moved downfield by Δ +46.9 and +51.9 ppm from those of their corresponding 

tertiary phosphines.  
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Table 11. 31P{1H} NMR chemical shifts of the compounds used or synthesized in this 
study. 

 

PR1R2 
Compound Type and Its Chemical Shift in CDCl3, ppm 

HPR1R2 N,P ligand N,P oxide 
ligand 

LCPdCl(HPR2) 
LCPd(µ-Cl,µ-

PR2)PdLC 

R1=R2=Ph 
–54.5 

–55.4* 

42a: –30.353 
49a: –36.9,57 

–23.257,* 

42a’: +16.653 
49a’: +15.057 

 

91a: +25.153, 
+30.3§ 

93a: +2.2,57 
+18.0‡ 

R1=R2= 
p-MeOC6H4 

–59.8 42b: –33.5 
49b: –41.5 

   

R1=R2= 
p-CF3C6H4 

–55.9 
42c: –30.2 
49c: –35.5   91c: +19.9 

R1=R2=Mes –108.1  49d’: –45.7 
90d: –47.6 
92d: –54.6 

91d: –12.1 
93d: –44.7 

R1=R2=Ad +2.7   
90e: +71.3 

92e:† +49.5, 
+51.7 

93e: +70.5 

R1=t-Bu 
R2=Ph 

–20.4 
–24.7* 

49f: –18.6, 
–23.8* 

 
92f:† +27.3, 

+27.4 

93f: +33.7 
96f: +45.7 
98f:  +32.5 

* Toluene-d8 was used as the solvent. 
† Data are for two diastereomers. 
§ thf-d8 was used as the solvent. 
‡ C6D6 was used as the solvent. 
 

Complexation of HPR2 and HPt-BuPh to form LCPdCl(HPR2) was accompanied by 

signal shifts to lower fields by Δ +60.5 and +68.5 ppm (90d,e with an sp2C–Pd bond) and 

Δ +46.8 to +49.0 ppm (92d–f with an sp3C–Pd bond). For comparison, the reported 

chemical shifts of the same CPCs (90 and 92) with tertiary phosphine PPh3 instead of HPR2 

are δ +27.3 ppm53 (Δ +33.3 ppm relative to the signal of free PPh3) and δ +20.3 ppm58 (Δ 

+26.3).  

Complexes of the type LCPd(µ-Cl,µ-PR2)PdLC had signals the farthest downfield 

from the corresponding phosphine in comparison to other related compounds. The data for 

sp2C–Pd CPCs 91a,c,d and 96f show that the downfield shift value significantly depended 

on the substituents of the secondary phosphine HPR1R2, with R1 = R2 = Mes giving the 
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greatest shift followed by R1 = R2 = Ph, R1 = R2 = p-CF3C6H4, and R1 = t-Bu, R2 = Ph (Δ 

+96.0, 79.6, 75.8, and 66.1 ppm for 91d,a,c and 96f, respectively). 31P NMR signals of the 

closely related complexes 93a,d–f and 98f with an sp3C,N ligand also moved downfield by 

Δ +52.9 to +67.8 ppm with the highest value for the PAd2 derivative 93e.  

The solvent used for recording 31P NMR spectra had a noticeable effect on the 

chemical shift of phosphines and complexes 49a,f and 93a. The use of C6D6 instead of 

CDCl3 caused the upfield shift of Δ –4.3 and –5.5 ppm on the chemical shifts of free HPt-

BuPh and functionalized phosphine 49f. Interestingly, the signal of complex 93a in another 

aromatic solvent, toluene-d8, shifted to the opposite direction (Δ +15.8). A similar 

downfield shift (Δ +13.2) was observed in the 31P NMR spectrum of a related CPC by 

replacing CDCl3 with C6D6.119 A smaller downfield shift, Δ +5.2 ppm, was reported for the 

signal of complex 91a in less polar but coordinating thf-d8.53 

II.2.6. X-Ray Crystallographic Analysis of Complex 92d 

  
The mononuclear structure of complex 92d and its trans-N,P geometry were 

confirmed by X-ray crystallographic study. The molecular structure of the complex and the 

numbering scheme are shown in Figure 5. Selected bond lengths and bond angles are 

shown in Tables 12 and 13. The data obtained for complex 92d are compared to those 

reported for related complexes G–L (Chart 1).58, 126, 135-137  
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Figure 5. ORTEP drawing of the molecular structure of complex 92d. Thermal ellipsoids 
are shown at the 50% probability level. 

 
Table 12. Selected bond lengths (Å) for complex 92d and their comparison with related 

compounds G,58 H,58 I.0.25CH2Cl2,126 J,135 K,136 and L.137 
  

Bond Type 92d G H I J K L 

Pd(1)−C(1) 2.055 2.051(4) 2.063(5) 2.051 2.044 2.050(3) 2.064 
Pd(1)−P(3) 2.227 2.222(10) 2.2250(12) 2.2563 2.327 2.2722(8) 2.3285* 
Pd(1)−N(1) 2.103 2.064(3) 2.115(4) 2.072 n/a 2.186(3) n/a 
Pd(1)−Cl(1) 2.409 2.4019(9) 2.3822(11) 2.421 2.3035* 2.4013(9) 2.359 
N(1)−C(3) 1.269 1.273(5) 1.273(6) n/a n/a n/a n/a 
N(1)−O(1) 1.415 1.391(4) 1.4141(5) n/a n/a n/a n/a 
C(2)−C(1) 1.520 1.526(5) 1.517(6) 1.5465 n/a n/a n/a 
C(2)−C(10) 1.499 1.502(5) 1.500(6) 1.4898 n/a n/a n/a 

P(3)−H 1.270 n/a n/a n/a 1.000 1.278 1.3695* 
* Average of two distances. 
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Chart 3. Examples of Pd(II) complexes with a known molecular structure, which have 
either an sp3C,sp2N palladacycle (G–I) or a secondary phosphine as a ligand (J–L). 

Table 13. Selected bond angles (°) for complex 92d and their comparison with related 
compounds G,58 H,58and I.0.25CH2Cl2.126 

 
Bond Type 92d G H I 

C(1)-Pd(1)-N(1) 80.60 81.43(14) 79.25(17) 79.57 
C(1)-Pd(1)-P(3) 94.25 89.70(11) 90.25(13) 90.61 
C(1)-C(2)-C(10) 112.17 112.0(3) 110.7(4) 105.21 
C(2)-C(10)-N(1) 116.61 115.3(3) 117.3(4) 121.25 
C(2)-C(1)-Pd(1) 107.49 106.2(3) 105.5(3) 110.71 

C(10)-N(1)-Pd(1) 115.48 116.4(3) 112.9(3) 114.23 
N(1)-Pd(1)-Cl(1) 99.05 87.18(9) 95.05(11) 90.55 
P(3)-Pd(1)-Cl(1) 86.05 101.61(4) 95.31(4) 99.37 
N(1)-Pd(1)-P(1) 173.79 171.11(9) 167.58(11) 169.68 
C(1)-Pd(1)-Cl(1) 179.09 167.91(12) 174.23(13) 167.48 

 
 The Pd–X [X = C(1), P, N and Cl] bond lengths in 92d are within the ranges 

reported for the related Pd(II) complexes G–L (Table 12). The bond lengths within the 

palladacycle in 92d are similar to those reported for two other fenchone-derived CPCs G 

and H.   

 The value of the C(1)-Pd-N angle in the palladacycle of complex 92d is a close 

match to those reported for compounds G and H. However, the C(1)-Pd-P and N-Pd-Cl 

angles in 92d are 4.00−11.87o greater than those in complexes G and H (Table 13). As a 

consequence, the value of the P-Pd-Cl angle is unusually small at 86.05o compared to those 

in other mononuclear CPCs G–I, which also have an sp3C and sp2N donor atoms in the 

palladacycles. These observations can be explained by steric factors. In the crystal of 
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complex 92d, the small hydrogen of the HPMes2 ligand is closer to the Cl atom, while two 

bulky mesityl substituents are somewhat closer to the C(1)H2 fragment of the palladacycle. 

These steric requirements make the C(1)-Pd-P angle larger and the P-Pd-Cl smaller 

compared to the corresponding angles in complexes G–I, which all have the PPh3 ligand.  

The palladium atom in complex 92d has square-planar coordination with a slight 

distortion. The torsion angles Pd-N-C(1)-P, Pd-C(1)-P-Cl, Pd-P-Cl-N and Pd-Cl-N-C(1) 

have the same sign; therefore, the distortion can be described as pyramidal. The distortion 

from the ideal square-planar coordination in CPC 92d is smaller than that in the closely 

related complexes G and H as the distance from the mean plane {PClC(1)N}to the metal 

in 92d is 0.041 Å compared to 0.049 and 0.075 Å determined for G and H, respectively.58 

The angle between the planes {NPdC(1)} and {PPdCl} is equal to 3.6° in 92d compared 

to 4.3 and 6.8° in G and H.  

The palladacycle conformation in complex 92d is a slightly twisted envelope with 

the Pd atom serving as the envelope flap. The sum of absolute values of intrachelate 

torsion angles in the palladacycle is 87.04° with the average angle value of 17.41°. This 

metallacycle is slightly less distorted than those in complexes G–I: the sum of absolute 

values of intrachelate torsion angles in the corresponding palladacycles is equal to 93.50, 

123.24 and 97.56°.58, 126   

II.2.7. Conclusions 

  
Product formation in reactions of chloro-bridged dimeric CPCs with secondary 

phosphines is sensitive to the molar ratio of the reagents, base presence, solvent, time and 

temperature and provide either aminophosphines (or other N,P ligand), mononuclear HPR2 

adducts or monophosphido-bridged dimeric CPCs. Electronic factors of the aryl groups in 
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HPAr2 appear to play little role on the selectivity of product formation; however, the N,P 

ligands were obtained in lower yields than in the analogous reactions involving HPPh2. 

The application of bulky phosphines, i.e. HPMes2, Ht-BuPh and especially HPAd2, in 

reactions with CPCs significantly decreases the probability of a C–PR2 bond formation. 

Reaction of the enantiopure fenchone-derived CPC 85 with racemic HPt-BuPh afforded 

the desired N,P ligand 49f, which was isolated as a single diastereomer in 12% yield.  Using 

the same racemic phosphine, unique enantiopure mono-phosphido-bridged complexes 93f, 

96f and 98f were synthesized in good yields. Compound 92e appears to be the first 

mononuclear cyclopalladated complex with a phosphine ancillary ligand for which two 

rotamers in solution have been observed.  

II.3. Oxygenation of Cyclopalladated Ligands  

 
II.3.1. Background   

 
Transformations at the C–Pd bond of cyclopalladated complexes represent an 

attractive method for highly regioselective functionalization of organic compounds, but 

ligand modifications other than phosphination are of interest, including halogenation,138-

146 acetoxylation,147-152 and others.144, 153-158 These Pd-mediated transformations are gaining 

importance as a synthetic method, providing access to new organic and organometallic 

compounds not readily available by other methods. Furthermore, these reactions are great 

models for studying related Pd-catalyzed transformations involving substrates with 

chelating groups since many of them are thought to proceed through cyclopalladated 

intermediates.152, 159-161 In this work, oxygenation of cyclopalladated ligands is the focus.  

Oxygen insertion into the C–Pd bond of cyclopalladated complexes can be 

accomplished by any of the following reagents: m-chloroperoxybenzoic acid (m-CPBA) 
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(used alone162-174 or with an iron(III) porphyrin catalyst169), other peroxy acids,163 tert-

BuOOH (used alone33, 175-178 or with a catalyst164, 165, 175-180), hydrogen peroxide in the 

presence of an iron(III) porphyrin catalyst,181 pentafluoroiodosylbenzene C6F5IO (alone,169, 

180 in a combination with tert-BuOOH,169, 180 or in the presence of an iron(III) porphyrin 

catalyst169, 180), iodosylbenzene C6H5IO,182 [di(benzoyloxy)iodo]benzene PhI(O2CPh)2,183 

and the molybdenum peroxide MoO(O2)2
.HMPA.H2O (HMPA = hexamethylphosphoric 

triamide).138, 184 The mechanisms involved in these transformations appear to be 

different;185 however, in all cases, the C–Pd bond is transformed into the C–O–Pd moiety.   

It appears that m-CPBA is the most common and inexpensive oxidant used for 

metaloxylation of CPCs. However, in spite of the number of studies focused on reactions 

of CPCs with m-CPBA, only a few rather similar types of palladacycles have been tested: 

i) dinuclear complexes of the CN type derived from azoarenes (Chart 2, type M),167, 168, 172 

ii) mononuclear complexes based on azoarenes and having an additional cyclopentadienyl 

ligand (N),151, 173 iii) mononuclear complexes based on azoarenes with an SR (O)162, 163, 166, 

171 or another chelating substituent (P),164, 165 iv) dinuclear complexes of the CS type 

obtained from dibenzyl sulfide, benzyl phenyl sulfide and benzyl phenyl sulfoxide (Q),174 

and v) mononuclear complexes derived from 2-(dimethylamino)methylnaphthalene (R).176 

Here I present data for the reactions of m-CPBA with dimeric dichloro- and diacetato-

bridged CPCs derived from 2-phenyl-2-oxazolines.  
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Chart 2. Cyclopalladated complexes M−R used in reported reactions with m-CPBA. 
 

II.3.2. Reactions of CPCs with m-Chloroperoxybenzoic Acid  

The chloro-bridged complex 99186 previously reported by our group was chosen as 

a model compound for this study. The dimeric complex reacted with 2.7 molar equivalents 

of m-CPBA in ethyl acetate (EtOAc) at room temperature (rt). The reaction mixtures were 

treated with excess LiCl to minimize the products containing bridging m-chlorobenzoate 

ligands by replacing them with chloride ions. After 18 h, the reaction mixture contained 

several products, four of which were isolated and characterized by NMR spectroscopy: 

dimeric dichloro-bridged complex 100a, di-m-chlorobenzoato-bridged analog 101a, the 

corresponding bis(2N,O)Pd complex 102a and the dimeric mono-insertion complex 103a 

(Scheme 35 and Table 14).   
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Scheme 35. Reactions of complexes 99a,b with m-CPBA. 
 

Table 14. Yields of the products formed in the reaction of complex 99a with 2.7 
equivalents of m-CPBA at rt. 

 

Entry Solvent Time, h 
Yield*, %, of the Corresponding Product 
100a 101a 102a 103a 

1 CH2Cl2 0.5 7 † 20 † 

2 EtOAc 18 (8) (5) 13 (16) 13 
3 MeCN 18 (13) 7 (12) 20 6 (12) 

*Yields of isolated pure compounds are given. In some cases, 
yields were calculated using 1H NMR spectra; such yields are 
given in parentheses. 

†No product was detected in the 1H NMR spectrum of the reaction mixture. 
 

Complexes of type 100 were previously described in reactions of dimeric dichloro-

bridged CPCs with various oxidants including m-CPBA; they are one of the two types of 

oxygen-insertion products reported in these studies.174, 176-178, 182 It appears that type-100 

complexes are relatively unstable, especially during chromatographic purification and 

gradually produce the corresponding compounds of type 102 as well as, presumably, PdCl2. 

A tendency for decomposition was also noted for one of the azobenzene-derived complexes 

of this type, and likewise, it was proposed that the corresponding bis(2-N,O)Pd complexes 

of type 102 were produced along with PdCl2.182   
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Formation of the dimeric di-m-chlorobenzoato-bridged N,O-complexes of type 101 

has never been reported in reactions of CPCs with m-CPBA. However, in the present work, 

complexes of this type were isolated practically in all reactions even after addition of excess 

LiCl. In particular, complex 101a was obtained in chromatographically pure form with a 

maximum yield of 12% (Table 14). When silver m-chlorobenzoate was added to the 

reaction mixture (EtOAc, 18 h) after the oxidation step, the yield of 101a was increased to 

22%. 1H and 13C{1H} NMR spectra of complex 101a in CDCl3 contained one set of signals, 

suggesting that it exists in solution in the form of a single geometrical isomer. The presence 

of two different organic ligands in a ratio of 1:1 in the structure of 101a was evident from 

the NMR spectra. The most salient feature of the 1H NMR spectrum of compound 101a 

was the presence of resonance signals in the region of 6.5–6.9 ppm assigned to two 

aromatic hydrogens of the C6H4 fragment of the oxazoline ligand. Such a high-field shift 

for the signals of aromatic hydrogens in N,O-Pd(II) complexes compared to those of the 

starting CPCs was noted in other studies.168, 171, 178 

Complex 102a was isolated in 13% yield when standard reaction conditions were 

used (EtOAc, rt, 18 h). This yield remained about the same when the reaction was 

performed in other solvents (CH2Cl2 and MeCN) and at elevated temperature (40 °C). As 

in the case of complex 101a, the 1H NMR spectrum of compound 102a had signals of two 

aromatic hydrogens below 7 ppm. To eliminate the possibility of a dimeric dichloro-

bridged structure, complex 102a was independently synthesized by reaction of (S)-2-(2’-

hydroxyphenyl)-4-t-butyl-2-oxazoline (104) with [Pd(NCMe)4](BF4)2 in the presence of 

Cs2CO3 (Scheme 36). The 1H and 13C NMR spectra of the oxidation product and the 

complex synthesized from oxazoline 104 were identical. Furthermore, complex 102a was 
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found to crystallize readily into X-ray quality crystals, and X-ray diffraction analysis was 

performed (vide infra), unambiguously confirming the proposed structure. It should be 

mentioned that (oxazolinyl-κ2N,O)2Pd(II) complexes of type 102 have been reported187-189 

and some of them are active catalysts in allylic acetoxylation of alkenes.187  

 

Scheme 36. Preparation of complex 102a from oxazoline 104. 
 

Complexes of type 103, in which only one out of two palladacycles in the starting 

dimer underwent oxygen insertion, were previously reported in oxidation reactions of cis-

(2-C,N)2Pd complex R with t-BuOOH.176 In the reaction of CPC 99a with 2.7 equivalents 

m-CPBA, dinuclear monooxidation complex 103a was one of the major products (Scheme 

35 and Table 14). Attempts to minimize the formation of the monooxidation product by 

increasing the amount of m-CPBA up to 5 equivalents resulted in an insignificant decrease 

in the yield of 103a and greater yields of 101a. Raising the temperature to 40 °C did not 

affect either the yields or selectivity of the reaction. 

The 1H NMR spectrum of complex 103a exhibited signals from two different 2-

phenyl-2-oxazoline-derived ligands in a 1:1 ratio. For one of the two C6H4 fragments, all 

four protons provided well-resolved signals (COSY data); two of these signals appeared at 

6.47 and 6.71 ppm suggesting oxygen insertion for this ligand. The other C6H4 group 

provided two multiplets with an integration of 3H and 1H and centered at 7.45 and 8.42 

ppm, respectively. Such a pattern is typical for the C6H4 fragment of C,N-CPCs derived 
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from 2-phenyl-2-oxazoline ligands.186, 190, 191 Therefore, it is suggested that only one 

aromatic group of the two oxazoline ligands in complex 103a is connected to an oxygen 

atom. To eliminate the possibility of a mononuclear structure for compound 103a, it was 

treated with AgBF4. The immediate appearance of a precipitate suggests that complex 103a 

contains chlorine atoms and is likely to have a dimeric structure as shown in Scheme 35.   

Metaloxylation using m-CPBA was further investigated in reactions with the 

dimeric dichloro-bridged CPC 99b (Scheme 35). Different solvents (EtOAc, CH2Cl2 and 

MeCN) and reaction times (0.5 and 18 h) were tested. In all cases, complex mixtures of 

products were formed. Four oxidation products, 100b−103b, were isolated and 

characterized by NMR spectroscopy (Table 15). When the reaction mixtures of 99b in 

EtOAc were subsequently treated with excess LiCl, the result was a disappearance of 101b 

(Table 15, entries 1 and 2). However, when MeCN was used as a solvent for the oxidation 

reaction, 101b was isolated in 15% yield. When the reaction mixture (EtOAc, 0.5 h) was 

treated with silver m-chlorobenzoate, complex 101b was obtained in a comparable yield 

(19%). When excess LiCl was added to the reaction mixture, compounds 100b, 102b, and 

103b were isolated in 9, 11, and 11% yield, respectively.  

Table 15. Yields of the products formed in the reaction of complex 99b with 2.7 
equivalents of m-CPBA at rt. 

 

Entry Solvent Time, h 
Yield*, %, of the Corresponding Product 

100b 101b 102b 103b 

1 EtOAc 0.5 9 † 11 11 
2 EtOAc 18 (16) † 4 30 (32) 
3 MeCN 18 6 (12) 15 (18) 7 (8) (13) 

* Yields of isolated pure compounds are given. In some cases, yields were 
calculated using 1H NMR spectra; such yields are given in parentheses. 
† No product was detected in the 1H NMR spectrum of the reaction mixture. 
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The 1H and 13C{1H} NMR spectra of product 100b in CDCl3 contained one set of 

signals, just as the spectra of 100a and related dimeric dichloro-bridged complexes of this 

type obtained from compounds M and P shown in Chart 2. The spectra of 100b contained 

only signals of the 2-phenyl-2-oxazoline-derived moiety and were different from those of 

related compounds with the same ligand such as the starting CPC 99b, the corresponding 

free oxazoline (HL), the coordination complex (HL)2PdCl2
191 and the previously reported 

mononuclear complex 102b.189 Moreover, signal patterns in the spectra of 100a and 100b 

were different. Most importantly, in contrast to the oxygen-insertion products 100a, 101a,b 

and 102a,b, the 1H NMR spectrum of 100b did not have any signals of aromatic hydrogens 

below 7 ppm. It is likely that product 100b has the di-μ-oxo(κ2-N,O)2Pd2Cl2 structure (see 

Scheme 37) in CDCl3 solutions. Such oxygen-bridged structures for this type of complex 

were proposed by the research group of van Koten.178 They reported that oxidation of the 

dimeric dichloro-bridged N,N-dimethylbenzylamine-derived CPC by t-BuOOH in the 

presence of a vanadium catalyst resulted in the formation of three isomeric products: trans-

di-μ-Cl(κ2-N,O)2Pd2, cis-di-μ-Cl(κ2-N,O)2Pd2 and di-μ-oxo(κ2-N,O)2Pd2Cl2 in a ratio of 

1:1:9.4 (Scheme 37).178 The authors noted that the di-μ-oxo(κ2-N,O)2Pd2Cl2 isomer 

provided a characteristic low-field 1H NMR signal assigned to the aromatic hydrogen ortho 

to the C−O bond. In the 1H NMR spectrum of complex 100b, there was a doublet of the 

ortho hydrogen at 8.32 ppm. According to van Koten, such a low-field shift is due to a 

close proximity of the corresponding hydrogen to the chlorine atom.178 For comparison, in 

the 1H NMR spectrum of the coordination complex (HL)2PdCl2 (HL is (S)-4-ethyl-2-

phenyl-2-oxazoline) the ortho hydrogen provides a doublet at 8.87 ppm because of the 

hydrogen’s proximity to chlorine.191  
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Scheme 37. Possible isomeric forms of complexes 100a,b in solution. 
 

In contrast, the t-butyl analog of complex 100b appears to have a trans-dichloro-

bridged structure in CDCl3 solutions. The most plausible reason is that the bulky t-butyl 

groups in 100a have a greater interaction with the chloride ligand, making the di-μ-oxo(κ2-

N,O)2Pd2Cl2 geometry less likely (Scheme 37).  

The 1H and 13C{1H} NMR spectra of complex 101b had the same general features 

as those of 101a: i) one set of signals, ii) a 1:1 ratio of the oxazoline-derived ligand and m-

ClC6H4CO2 fragment, and iii) two characteristic signals of the aromatic moiety were 

apparent, in this case, at 6.52 and 6.82 ppm. The elemental composition of both complexes 

101a,b was confirmed by satisfactory elemental analysis.  

Preparation and 1H NMR data of complex 102b have been reported; it was 

synthesized from the corresponding phenol,189 and the NMR data are consistent with those 

obtained for compound 102b isolated in our study.   

The 1H and 13C NMR spectra of complex 103b were very similar to those of the 

analogous tert-butyl substituted oxazoline complex 103a and contained the same 

characteristic signals, as described above.   
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There is only one report of m-CPBA oxidation of μ-OAc CPCs.  Bhawmick et al. 

reported that the dimeric diacetato-bridged complex M derived from 1-(1’-

naphthylazo)naphthalene (see Chart 2) reacted with m-CPBA to give the oxygen-insertion 

product having a dimeric diacetato-bridged structure in 30% yield.172 In our study, two 

previously reported μ-OAc CPCs 105a,b were tested in reactions with m-CPBA (Scheme 

38). The 1H NMR spectra of the reaction mixtures taken after 30 min (EtOAc, rt, no LiCl 

treatment) showed no signals of the starting CPCs.  In spite of the fact that these spectra 

had signals between 6 and 7 ppm, which are characteristic of oxygen insertion products, 

only m-chlorobenzoato-bridged CPCs 106a,b were isolated in pure form in 29 and 22% 

yield, respectively. When the reaction mixture of complex 105a with m-CPBA (EtOAc, 18 

h, rt) was treated with excess LiCl, two oxidation products 100a and 102a were isolated in 

15 and 3% yield, respectively (Table 16). A significant amount of the non-oxidized CPC 

99a was recovered as well. (The dimeric acetato- and m-chlorobenzoato-bridged 

complexes 105a,b and 106a,b readily undergo conversion to the corresponding dichloro-

bridged analogs upon treatment with LiCl.) Reaction of 105b under the same conditions 

provided three oxidation products, 100b, 102b and 104b, in very low yield (Table 17). The 

non-oxidized CPC 99b was isolated in 22% yield. 
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Scheme 38. Reactions of complexes 105a,b with m-CPBA. 

Table 16. Yields of the products formed in the reaction of complex 105a with 2.7 
equivalents of m-CPBA (18 h, rt). 

 

Entry Solvent 
Yield*, %, of the Corresponding Product 
100a 101a 102a 103a 99a 106a 

1 EtOAc 15 † 3 † 37 † 
2 MeCN 46 (13) 5 † 7 6 

* Yields of isolated pure compounds are given. In some cases,  
yields were calculated using 1H NMR spectra; such yields are given  
in parentheses. 
† No product was detected in the 1H NMR spectrum of the reaction  
mixture. 

Table 17. Yields of the products formed in the reaction of complex 105b with 2.7 
equivalents of m-CPBA (18 h, rt). 

 

Entry Solvent 
Yield*, %, of the Corresponding Product 

100b 101b 102b 103b 99b 106b 

1 EtOAc 2 † 2 (8) 22 6 
2 MeCN † (7) 44 † 15 (17) 1 
* Yields of isolated pure compounds are given. In some cases,  
yields were calculated using 1H NMR spectra; such yields are  
given in parentheses. 
† No product was detected in the 1H NMR spectrum of the  
reaction mixture. 
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When reactions of 105a,b with m-CPBA were carried out in MeCN (18 h, rt, LiCl 

treatment), the total yields of oxidation products were higher, but unreacted palladacycles 

99a and 99b were isolated once again (Tables 16 and 17).  

Complexes 106a,b were assigned the dimeric di-m-chlorobenzoato-bridged 

structure based on NMR and IR data. Their elemental composition was confirmed by 

satisfactory elemental analysis. The IR spectrum of 106a displayed two strong bands at 

1562 and 1389 cm–1, corresponding to vibrations of the COO moiety.192 For comparison, 

the IR spectrum of the metaloxylation product 102a, also having a dimeric m-

chlorobenzoato-bridged structure, exhibited two bands of the COO fragment at 1560 and 

1395 cm–1. 1H NMR spectra of complexes 106a,b did not have signals between 6 and 7 

ppm, while other complexes with the C−O−Pd fragment, except for the oxo-bridged isomer 

100b, had two such signals. All di-m-chlorobenzoato-bridged complexes of type 102 and 

106 had one set of signals in 1H and 13C{1H} NMR spectra suggesting that these dimers 

are single geometric isomers in solutions.  

 To rule out the possibility that compounds 106a,b contained peroxybenzoate 

ligands, the dichloro-bridged complex 99a was reacted with silver m-chlorobenzoate to 

give the corresponding di-m-chlorobenzoato-bridged complex (Scheme 39). The 1H NMR 

spectra of the obtained product and complex 106a were identical. This observation also 

served as confirmation that complex 106a does not contain a C–O–Pd moiety. Further 

verification was obtained by reacting 106a with excess LiCl. This transformation yielded 

complex 99a in >95% yield (Scheme 39).  
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Scheme 39. Ligand exchange reactions of complexes 99a and 106a. 
 
 In our study, metaloxylation of dimeric 2-phenyl-2-oxazoline-derived CPCs with 

m-CPBA resulted in low yields of the oxygen insertion products. For comparison, the only 

study to date of m-CPBA oxidation involving a dimeric acetato-bridged CPC [derived from 

1-(1-naphthylazo)naphthalene] reported a 30% yield of the corresponding μ-OAc N,O-

complex.172 In other metaloxylation reactions with m-CPBA, the yields of the oxygen 

insertion products were ranging from 45172 to 60%167 for the μ-Cl-C,N complexes derived 

from azoarenes (compounds of type M, see Chart 2) and from 30 to 60% for the μ-Cl-C,S 

analogs (type P). Mononuclear C,N, C,N,S and C,N,N azoarene derivatives (complexes of 

types N−O) provided even higher yields, up to 90%.168, 176 It appears that all reported 

reactions of azoarene-derived CPCs, which are likely to have poor solubility in the majority 

of organic solvents, were performed in MeCN. 

 Oxazoline-derived CPCs 99a,b and 105a,b are soluble in the majority of organic 

solvents. In our metaloxylation experiments, several solvents were tested (CH2Cl2, EtOAc, 

thf, PhMe and MeCN) for the oxidation. The best results were obtained in the coordinating 

solvent MeCN, while reactions in other solvents, particularly EtOAc and CH2Cl2, provided 

lower yields. The solvent effect was especially noticeable for acetato-bridged complexes 
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105a,b. Thus, in the reactions of complex 105a performed in EtOAc and then in MeCN, 

the total yield of oxidation products 100a−103a rose from 18% to 64%. The total yield of 

100b−103b in oxidation reactions of 105b increased from 12% in EtOAc to 51% in MeCN.   

Comparison of the results obtained for metaloxylation of μ-Cl-CPCs 99a,b with 

those for μ-OAc-CPCs 105a,b shows that the former complexes are more reactive in both 

EtOAc and MeCN. Thus, in the reactions of 105a,b significant amounts (7−37%) of the 

non-oxidized complexes (μ-Cl-derived 99a,b and m-ClC6H3CO2-bridged 106a,b) were 

isolated, while no starting CPCs were recovered in the reactions of μ-Cl-CPCs 99a,b. The 

use of m-CPBA in high excess for reactions with CPCs 105a,b did not prevent the 

formation of m-ClC6H3CO2-bridged 106a,b, which apparently have low reactivity towards 

m-CPBA just like their m-OAc analogs. Therefore, when selecting complexes and 

conditions for metaloxylation reactions with m-CPBA, it may be best to employ ligands 

possessing a stronger trans influence. 

According to the mechanism proposed for oxygen-insertion reactions of CPCs with 

peroxy acids,185 oxidation by electrophilic m-CPBA is accelerated with increased 

nucleophilicity of the carbon bonded to the metal. By replacing EtOAc with the 

coordinating solvent MeCN, dimeric complexes are converted to mononuclear derivatives 

with MeCN acting as an auxiliary ligand. In these complexes, chloride and acetate ligands 

are monodentate. As such, they should have a stronger bond to the metal and therefore a 

greater trans influence on the Pd–C bond compared to bridging Cl and AcO ligands. To 

illustrate, the Pd–C bond length in the dimeric chloro-bridged CPC of (R)-1-

phenylethylamine is 1.946 Å, while the same bond trans to the monodentate Cl ligand in 

the corresponding mononuclear complex PPh3 adduct is longer, 1.971 Å (the average for 
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two independent molecules).193 Because the reactions of CPCs 99a,b and 105a,b in MeCN 

provided higher yields of oxidation products, it appears that the monodentate Cl and OAc 

ligands not only lengthened the Pd–C bond but also increased the nucleophilicity of the 

carbon bonded to the metal.  

The importance of the increased nucleophilicity of the palladium-bound carbon in 

achieving higher yields of metaloxylation can be demonstrated by comparing the NMR 

data and yields in reported reactions of CPCs with m-CPBA. One of the parameters 

determining nucleophilicity of a given atom is the electron density around the nucleus, 

which can be estimated using its chemical shift in NMR data. For dimeric μ-Cl and μ-OAc 

CPCs 99a,b and 105a,b, the 13C NMR chemical shift of the carbon bonded to the palladium 

was observed between 145 and 148 ppm (in CDCl3). The carbon bonded to the metal in 

the mononuclear CPC N (Chart 2) gives a 13C NMR signal at 189 ppm,173 while the 

corresponding carbon of the dimeric μ-OAc derivative of 1-(phenylazo)naphthalene (a 

complex of type M) resonated at 161 ppm].194 On the basis of these data, CPCs derived 

from azoarenes (complexes of type M), especially the one with the cyclopentadienyl 

moiety (complex N), are expected to be more prone to oxidation by m-CPBA compared to 

2-phenyl-2-oxazoline-derived CPCs and are likely to give higher yields of oxidation 

products. Indeed, metaloxylation of complex N afforded the oxidation product in 65% yield 

(by NMR), while the dimeric μ-Cl derivative of 1-(1-naphthylazo)naphthalene (a type M 

complex) provided the corresponding μ-Cl N,O-analog in 45% yield.172 Therefore, a 

possible reason for low yields of oxidation products for the dimeric 2-phenyl-2-oxazoline-

derived CPCs is lower nucleophilicity of the carbon bonded to the palladium compared to 

the carbon in azoarene-based CPCs previously investigated in oxidation reactions.   
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II.3.3. Conclusions 

 
Dimeric chloro- and acetato-bridged cyclopalladated complexes of 2-phenyl-2-

oxazolines 99a,b and 105a,b react with m-CPBA at rt to give complex mixtures of oxygen 

insertion products, including di-μ-Cl(κ2-N,O)2Pd2 (100a,b), di-μ-(m-ClC6H3CO2)(κ2-

N,O)Pd2 (101a,b), (κ2-N,O)2Pd (102a,b), and di-μ-Cl(κ2-N,O)(κ2-C,N)Pd2 (103a,b) 

complexes. Yields of oxygen-insertion products were increased when the coordinating 

solvent MeCN was used.  
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CHAPTER III 

EXPERIMENTAL SECTION 
 

III.1. General Procedures and Instrumentation  
 
All reactions of HPPh2 were carried out under an argon atmosphere using Schlenk 

techniques. Purifications by column chromatography were carried out using Natland silica 

gel 60 (230 mesh). Preparative thin-layer chromatography (TLC) was carried out using 200 

 250 mm glass plates with an unfixed layer of Natland or Merck silica gel 60 (230 mesh). 

Analytical TLC was performed on Whatman silica gel 60 (F254) 250 µm precoated plates. 

Compounds were visualized on TLC plates using UV light (254 nm) and/or iodine stains. 

Routine 1H (500 MHz), 13C{1H} (126 MHz) and 31P{1H} (202 MHz) NMR spectra as well 

as DEPT, COSY and HSQC spectra were recorded on a Bruker AVANCE 500 NMR 

spectrometer. Chemical shifts are reported in ppm with SiMe4 as an internal standard (1H 

and 13C) or P(OEt)3 as an external standard (31P). Spin-spin coupling constants, J, are given 

in Hz. Spectra of the products obtained were recorded in CDCl3 unless otherwise stated. 

Melting points were measured on a Laboratory Devices Mel-Temp apparatus and are 

uncorrected. Optical rotations were measured at room temperature on a Rudolph Autopol 

III automatic polarimeter or a JASCO P-2000 series digital polarimeter using a 1-dm tube. 

Elemental analyses were carried out by Atlantic Microlabs Inc., Norcross, GA. Mass 

spectrometry analyses were conducted on an Agilent 1100 HPLC coupled to a high 

resolution Time of Flight MS G1689A Series 6200. Samples were injected directly to the 
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mass spectrometer. Electrospray ionization was performed in a positive mode. Drying gas 

(N2) was set to 350 °C at a flow rate of 12 L/min and the nebulizer gas (N2) pressure was 

set to 25 psi. The MS data were acquired in the full scan mass range of 100–1000 m/z. 

The starting cyclopalladated complexes were synthesized by known procedures 

from N,N-dimethylbenzylamine (L41), 2-tert-butyl-4,4-dimethyl-2-oxazoline (L77), 8-

methylquinoline (L81), tri-o-tolylphosphine (L83), the O-methyloximes of L-fenchone 

(L85)58 and D-camphor (L86), (S)-4-tert-butyl- (L98a and 104a)186 and (S)-4-ethyl-2-

phenyl-2-oxazoline (L98b and 104b).191 L96 was synthesized195 from L-tert-leucinol 

ordered from Sigma Aldrich Co. Benzene, toluene, tetrahydrofuran, and their deuterated 

analogs were dried by refluxing over K/benzophenone ketyl, distilled under Ar, and stored 

over potassium. Acetone was purified by distillation over KMnO4. Other solvents were 

dried over CaH2. All commercially available reagents were used as received from the 

supplier, unless otherwise noted. Secondary phosphines were obtained from Sigma Aldrich 

Co. m-Chloroperoxybenzoic acid (m-CPBA, 0.2 g) was dissolved in 14 mL of ether and 

washed with pH 7.5–8.0 phosphate (KH2PO4 and NaOH) buffer (3 × 9 mL). The solution 

was dried over Na2SO4, and then the solvent was removed on a rotavapor. The purity of 

the purified m-CPBA was >95% (NMR data).  

III.2. Preparation of Products from the Reaction of CPCs with Secondary Phosphines 
 

III.2.1. General Procedure for Phosphination Reactions 

  
The CPC was placed into an Ar-filled 10-mL Schlenk flask with nine equivalents 

of Cs2CO3, a rubber septum was inserted, and the solvent was introduced by syringe (1 mL 

per 5 mg of complex, unless noted otherwise). The flask was lowered into an oil bath heated 

to the reaction temperature. Once the CPC was completely dissolved, the secondary 
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phosphine was added dropwise for 2 minutes either as a neat liquid or as a 1M toluene 

solution. The reaction mixture was stirred in an Ar atmosphere for 18 h unless otherwise 

stated. The solvent was removed at reduced pressure and the crude mixture was separated 

by preparative thin layer chromatography on silica gel. Additional experimental details are 

described below. 

III.2.2. Compounds Synthesized from Reactions of CPCs with Secondary 

Phosphines 

 
2-Methyl-2-(4,4-dimethyloxazolin-2-yl)propyldiphenylphosphine (78). CPC 77 

(0.0261 g, 0.0442 mmol) was reacted with 9 equivalents of HPPh2 in CH2Cl2 at 35 °C 

according to the general procedure. After solvent removal, the solid residue was purified 

using preparative TLC (7:1 benzene–acetone).  Iminophosphine 78 was obtained in as a 

pale yellow syrup in the amount of 12.2 mg (56%). Rf 0.61 (6:1 hexane–ethyl acetate). 1H 

NMR (δ, ppm): 1.17 (s, 6H, C(CH3)2), 1.30 (s, 6H, NC(CH3)2), 2.43 (d, 2H, 2JHP = 3.6, 

PCH2), 3.66 (s, 2H, OCH2), 7.29 (br. m, 5H, m- and p-PPh), 7.44 (dt, 3JHH = 7.5, 3JHP = 

1.4, 4H, o-PPh).  13C{1H} NMR (δ, ppm): 27.5 (d, 3JCP = 9.7, C(CH3)2), 28.2 (NC(CH3)2), 

36.5 (d, 2JCP = 17.2, PCH2C(CH3)3), 41.1 (d, 1JCP = 16.8, PCH2), 66.8 (NC(CH3)2), 78.7 

(OCH2), 128.3 (d, 3JCP = 6.5, m-PPh), 129.1 (p-PPh)), 132.9 (d, 2JCP = 19.5, o-PPh), 139.6 

(d, 1JCP = 12.6, ipso-PPh), 170.9 (d, 3JCP = 2.2, OC=N). 31P{1H} NMR (δ, ppm): -37.8.  

HRMS: [M + H]+ calcd for C21H27NOP+ 340.18303, found 340.18302.   

-Chloro--diphenylphosphido-[2-methyl-2-(4,4-dimethyloxazolin-2-yl)propyl-

C,N]dipalladium(II) (79). Method I.  CPC 77 (0.0235 mg, 0.0398 mmol) was reacted with 

4.5 equivalents of HPPh2 in toluene at 40 °C according to the general procedure. After 

solvent removal, the solid residue was dissolved in a minimal volume of CHCl3 and 
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purified using preparative TLC (7:1 benzene–acetone). Complex 79 was isolated as a 

yellow solid in the amount of 7.1 mg (24%).  Method II. CPC 77 (0.0271 mg, 0.0460 mmol) 

was reacted with 4.5 equivalents of HPPh2 in toluene at 40 °C according to the general 

procedure in the presence of pyridine (7.5 µL, 0.092 mmol) instead of Cs2CO3. After 

solvent removal, the solid residue was purified using preparative TLC (7:1 benzene–

acetone). Complex 79 was isolated as a yellow solid in in the amount of 13.7 mg (40%). 

1H and 31P NMR data were identical to those previously reported for this compound.57  

cis-(C,P1)-Diphenylphosphido-[2-methyl-2-(4,4-dimethyloxazolin-2-yl)propyl-

C,N][2-methyl-2-(4,4-dimethyloxazolin-2-yl)propyldiphenylphosphine-

P2]palladium(II) (80). CPC 77 (0.0206 g, 0.0349 mmol) was reacted with 4.5 equivalents 

of HPPh2 in toluene at 40 °C according to the general procedure.  After solvent removal, 

the solid residue was purified using preparative TLC (7:1 benzene–acetone). Complex 80 

was isolated as a pale yellow solid in 14.2 mg (52%). Rf = 0.72 (7:1 benzene–acetone); 

m.p. 154–156 (dec). 1H NMR (δ, ppm, C6D6): 0.50 (s, 6H, C(CH3)2), 1.15 (s, 2H, 

PdCH2C(CH3)2), 1.20 (s, 6H, C(CH3)2), 1.19 (s, 6H, NC(CH3)2), 1.22 (s, 6H, NC(CH3)2), 

1.43 (d, 2H, 2JHP = 2.1, PCH2), 3.31 (s, 2H, OCH2), 3.41 (s, 2H, OCH2), 7.01 (2, 2H, 3JHH 

= 7.5, p-PPh), 7.05 (br. m, 2H, p-PPh), 7.16 (br. m, 4H, o-PPh), 7.23 (dt, 4H, 3JHH = 7.5, 

3JHP = 1.6, 4H, o-PPh), 8.12 (dt, 3JHH = 8.6, 2JHP = 1.2, 4H, m-PPh), 8.19 (dt, 3JHH = 8.9, 

4JHP = 1.3, 4H, m-PPh).  13C{1H} NMR (δ, ppm, C6D6): 25.57 (C(CH3)2), 26.08 

(NC(CH3)2), 27.05 (NC(CH3)2), 28.4 (d, 3JCP = 9.7, C(CH3)2), 29.8 (CH2PdPPd), 40.4 

(PdCH2C(CH3)3), 40.4 (d, 2JCP = 2.9, PCH2C(CH3)3), 41.8 (d, 1JCP = 77.3, PCH2), 64.3 

(NC(CH3)2), 65.1 (d, 3JCP = 3.2, NC(CH3)2), 79.8 (OCH2), 80.2 (OCH2), 126.0 (p-PPh), 

126.1 (d, 3JCP = 2.6, m-PPh), 127.1 (d, 3JCP = 2.6, m-PPh), 127.5 (d, 4JCP = 1.5, p-PPh), 



82 

131.1 (d, 2JCP = 11.3, o-PPh), 133.6 (d, 2JCP = 12.7, o-PPh), 142.2 (d, 1JCP = 7.9, ipso-PPh), 

143.4 (d, 1JCP =55.3, ipso-PPh), 180.4 (OC=N), 183.7 (d, 3JCP = 6.6, OC=N). 31P{1H} NMR 

(δ, ppm, C6D6): 7.8 (d, 2JPP = 38, PdPPh2CH2), 116.8 (d, 2JPP = 38, PdPPh2). 31P{1H} NMR 

(δ, ppm, CDCl3): –5.4 (d, 2JPP = 38, PdPPh2CH2), 102.5 (d, 2JPP = 38, PdPPh2). Anal. calcd 

for C42H52Cl2N2O2P2Pd2: C, 52.41; H, 5.45; N, 2.91%. Found: C, 52.02; H, 5.54; N, 2.86%.  

8-[(Diphenyloxophosphino)methyl]quinoline (82). CPC 81 (0.0179 g, 0.0316 mmol) 

was reacted with 9 equivalents of HPPh2 in CH2Cl2 at 35 °C according to the general 

procedure. The mixture was brought to rt, ethyl acetate was added in a 3:2 ratio with 

CH2Cl2, and 70 µL of 30% aqueous solution of H2O2 was added dropwise. The mixture 

was allowed to stir for an additional 2 h at rt. After solvent removal, the solid residue was 

purified using preparative TLC (4:1 CH2Cl2–acetone; the fraction with compound 82 was 

washed with copious amounts of 4:1 hexane–acetone). The aminophosphine oxide was 

isolated as a pale yellow oil in the amount of 13.1 mg (60%). 1H and 31P{1H} NMR data 

were identical to those previously reported for this compound.57 

[2-(Di-ortho-tolylphosphino)benzyl]diphenylphosphine oxide (84). Complex 83 

(0.0193 g, 0.0217 mmol) was reacted with 9 equivalents of HPPh2 in CH2Cl2 at 35 °C 

according to the general procedure. Air was then bubbled through the crude mixture for 

approximately 5 h. After solvent removal, the solid residue was purified using preparative 

TLC (4:1 hexane‒acetone). The product was obtained as pale yellow oil in the amount of 

12.5 mg (51%). 1H and 31P{1H} NMR data were identical to those previously reported for 

this compound.57 

(1S,4S)-1-{(Diphenylphosphino)methyl}-3,3-dimethylbicyclo[2.2.1]heptan-2-one O-

Methyloxime (49). CPC 85 (14.8 g, 0.0230 mmol) was reacted with 9 equivalents of 
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HPPh2 in CH2Cl2 at 35 °C according to the general procedure. After solvent removal, the 

solid residue was purified using preparative TLC (1:1 CH2Cl2–hexane). The UV-visible 

band near the bottom of the plate contained the product as a pale yellow oil in the amount 

of 10.2 mg (61%). 1H and 31P{1H} NMR data were identical to those previously reported 

for this compound.57 

(1S,4R)-1-{(Diphenylphosphino)methyl}-7,7-dimethylbicyclo[2.2.1]heptan-2-one O-

Methyloxime (87) and (1S,4R)-1-{(Diphenyloxophosphino)methyl}-7,7-

dimethylbicyclo[2.2.1]heptan-2-one O-Methyloxime (88). CPC 86 (0.0165 g, 0.0256 

mmol) was reacted with 9 equivalents of HPPh2 in toluene at rt according to the general 

procedure. After solvent removal, the solid residue was purified using preparative TLC 

(1:15 acetone–hexane). The UV-visible band near the middle of the plate contained 88 as 

a pale yellow oil in the amount of 4.0 mg (21%). The starting line was also collected. It 

was dissolved in ether and about twice the volume of hexane was added. The solution was 

filtered, the solvent was evaporated, and the orange-red residue was purified by preparative 

TLC (5:3 hexane–acetone) to obtain compound 88 as a pale yellow oil in the amount of 1.8 

mg (9%). 1H and 31P NMR spectra of 87 and 88 were identical to those previously reported 

for these compounds.57 

(1S,4R)-cis-(P,P)-Chloro(diphenylphosphido){1-[(diphenylphosphino)methyl]-7,7-

dimethylbicyclo[2.2.1]heptan-2-one oxime}palladium (89). CPC 86 (0.0210 g, 0.0326 

mmol) was reacted with 4.5 equivalents of HPPh2 in toluene at 40 °C according to the 

general procedure. After solvent removal, the solid residue was purified using preparative 

TLC (3:2 hexanes–acetone). The product was obtained as a colorless solid in the amount 

of 7.2 mg (16%). Rf = 0.57 (24:1 CH2Cl2–CH3OH); m.p. 180−182 (dec); [α]D = –133o (c 
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0.165, acetone). 1H NMR (δ, ppm): 0.66 (ddd, 2JHH(6exo) = 13.7, 3JHH(5endo) = 9.4, 3JHH(5exo) 

= 4.3, 1H, H(6endo)), 0.82 (s, 3H, CH3), 0.83 (s, 3H, CH3), 0.85 (m, 1H, H(6exo)), 1.05 

(ddd, 2JHH(5exo) = 13.7, 3JHH(6endo) = 9.4, 3JHH(6exo) = 4.2, 1H, H(5endo)), 1.63 (dddd, 

2JHH(5endo) = 12.1, 3JHH(6exo) = 8.9, 3JHH(6endo) = 4.3, 3JHH(4) = 0.9, 1H, H(5exo)), 1.88 (dd, 

3JHH(5exo) = 7.6, 3JHH(3exo) = 3.5, 1H, H4), 1.94 (d, 2JHH(3exo) = 18.4,  1H, H(3endo)), 2.04 

(dd, 2JHP = 16.2, 2JHH = 14.6, 1H, PCHA), 2.13 (dd, 2JHH = 14.6, 2JHP = 6.9, 1H, PCHB), 

2.54 (br d, 2JHH(3endo) = 18.4, 1H, H(3exo), 7.11 (m, 4H, o-PPh), 7.21 (dt, 2JHH = 7.2, 3JHH 

= 1.3, 1H, p-PPh), 7.29 (m, 4H, o- and p-PPh), 7.52 (m, 7H, o-, m-, and p-PPh), 7.76 (m, 

2H, m-PPh), 8.18 (m, 2H, m-PPh), 9.03 (s, 1H, NOH). 13C{1H} NMR (δ, ppm): 19.2 (CH3), 

20.0 (CH3), 27.4 (C(5)H2), 28.6 (d, 1JCP = 24.6, PCH2), 29.4 (C(6)H2), 41.8 (d, 4JCP = 4.8, 

C(3)H2), 42.8 (C(4)H), 51.3  (d, 3JCP = 9.1, quat. C(7)), 57.9 (d, 2JCP = 1.9, quat. C(1)), 

127.0 (ipso-PPh), 127.4 (d, 2JCP = 11.4, o-PPh), 127.7 (d, 2JCP = 11.4, o-PPh), 128.0 (d, 

2JCP = 11.4, o-PPh), 129.0 (d, 3JCP = 11.4, o-PPh), 129.3 (d, 4JCP = 2.6, p-PPh), 129.4 (d, 

4JCP = 2.6, p-PPh), 130.1 (d, 4JCP = 2.6, p-PPh), 131.4 (d, 3JCP = 10.7, m-PPh), 131.6 (d, 3JCP 

= 10.7, m-PPh), 131.7 (ipso-PPh), 132.4 (d, 4JCP = 2.1, p-PPh), 133.1 (d, 3JCP = 10.7, m-

PPh), 136.7 (d, 3JCP = 13.3, m-PPh), 142.9 (ipso-PPh), 143.5 (ipso-PPh), 191.7 (C=N). 

31P{1H} NMR (δ, ppm): 17.6 (d, JPP = 12.2, PdPPh2CH2), 45.9 (d, JPP = 12.2, PdPPh2). 

HRMS: [M – Cl–]+ calcd for C34H36NOP2Pd+ 642.1301, found 642.1280. 

1-{2-[Bis(4-methoxyphenyl)phosphino]phenyl}-N,N-dimethylmethanamine (42b). 

CPC 41 (18.1 mg, 0.0328 mmol) was reacted in CH2Cl2 with bis(4-

methoxyphenyl)phosphine (73.0 mg, 0.296 mmol) according to the general procedure for 

18 h at 35 °C followed by purification using preparative TLC (2:3 acetone–hexane). 

Aminophosphine 42b was obtained in the amount of 15.7 mg (61% yield) as a colorless 
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oil. Rf = 0.57 (10:1 EtOAc–acetone). 1H NMR (δ, ppm): 2.11 (s, 6H, N(CH3)2), 3.56 (d, 

2H, 4JHP = 2, NCH2), 3.8 (s, 6H, p-OCH3) 6.86 (m, 5H, m-PAr and C(3)H arom), 7.14 (t, 

1H, 3J = 7, C(4)H arom), 7.18 (m, 4H, o-PAr), 7.30 (t, 1H, 3J = 7, C(5)H arom), 7.49 (dd, 

1H, 3J = 7, 3JHP = 4, C(6)H arom). 13C{1H} NMR (δ, ppm): 45.3 (NCH3), 55.5 (OCH3), 

62.2 (d, 3JCP = 19, NCH2), 114.3 (d, 4JHP = 8, m-PAr), 127.2 (C(4) arom), 128.7 (C(5)H 

arom), 128.8 (d, 2JCP = 7, C(1)), 129.2 (d, 3JCP = 5, C(6)H arom), 133.4 (C(3)H arom), 135.6 

(d, 2JCP = 21, o-PAr), 137.8 (d, 1JCP = 15, C(2)) 143.6 (d, 1JCP = 20, C(1) of PAr), 160.3 (p-

PAr). 31P{1H} NMR (δ, ppm): –33.5. HRMS [M+H]+ 380.1774 calcd for C23H27NO2P+, 

found 380.1788. 

1-{2-[Bis(4-trifluoromethylphenyl)phosphino]phenyl}-N,N-dimethylmethanamine 

(42c). CPC 41 (19.9 mg, 0.0360 mmol) was reacted in PhMe with bis(4-

trifluoromethylphenyl)phosphine (40 µL, 0.16 mmol) for 18 h at 40 °C followed by 

purification using preparative TLC (1:4 acetone–hexane). Complex 42c was obtained in 

the amount of 18.6 mg (57% yield) as a colorless liquid. Rf = 0.41 (7:3 acetone–hexane). 

1H NMR (δ, ppm): 1.91 (s, 6H, N(CH3)2), 3.61 (s, 2H, NCH2), 6.94 (dd, 1H, 3JHP = 4, 3J = 

8, C(3)H arom) 7.22 (td, 1H, 3JHP = 2, 3J = 8, C(4)H arom), 7.31–7.38 (m, 6H, o-PAr and 

C(6)H and C(5)H arom), 7.56 (d, 4H, 3J = 8, m-PAr). 13C{1H} NMR (δ, ppm): 44.1 (NCH3), 

63.2 (d, 4JHP = 14, NCH2), 124.4 (q, 1JCF = 272, CF3), 125.3 (dq, 3JCF = 3, 3JCP = 7, m-PAr), 

128.0 (C(4) arom), 129.5 (C(5) arom), 129.8 (d, 3JCP = 6, C(6) arom), 130.6 (q, 2JCF = 32, 

p-PAr), 133.8 (d, 2JCP = 20, o-PAr), 135.0 (d, 3JCP = 2, C(3) arom), 135.8 (d, 2JCP = 15, C(1) 

arom), 143.6 (d, 1JCP = 14, C(1) of PAr), 145.3 (d, 2JCP = 25, C(2) arom). 31P{1H} NMR (δ, 

ppm): –30.2. HRMS [M+H]+ 456.1310 calcd for C23H21F6NP +, found 456.1352. 
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(1S,4S)-1-{[Bis(4-methoxyphenyl)phosphino]methyl}-3,3-

dimethylbicyclo[2.2.1]heptan-2-one O-Methyloxime (49b). CPC 85 (20.3 mg, 0.0315 

mmol) was reacted in PhMe with bis(4-methoxyphenyl)phosphine (69.8 mg, 0.284 mmol) 

for 18 h at 35 °C followed by purification using preparative TLC (125:125:1 CH2Cl2–

hexane–MeOH). Compound 49b was obtained in the amount of 9.1 mg (42% yield) as a 

light yellow oil. Rf = 0.50 (1:4 acetone–hexane); [α]D
20 = +45.8° (c 0.490, acetone). 1H 

NMR (δ, ppm): 1.18, 1.23 (two s, 6H, 2CH3), 1.29 (d, 1H, 2J7A,7B = 10.1, H(7A)), 1.34–

1.41 (m, 1H, H(6endo)), 1.48–1.51 (m, 2H, H(5endo) and H(7B)), 1.70–1.78 (m, 2H, H(4) 

and H(5exo)), 1.93 (tt, 1H, 3J6exo,5endo = 4J6exo,P = 2, 2J6exo,6endo = 3J6exo,5exo = 12, H(6exo)), 

1.70–1.78 (m, 2H, H(4) and H(5exo)), 2.38 (dd, 1H, 2JHP = 3, 2J = 15, PCHA), 2.52 (dd, 

1H, 2JHP = 4, 2J = 15, PCHB), 3.74 (s, 3H, NOCH3), 3.79 (s, 6H, ArOCH3), 6.86 (d, 4H, 2J 

= 8, m-PAr), 7.36–7.44 (m, 4H, o-PAr). 13C{1H} NMR (δ, ppm): 22.9 and 23.5 (two CH3), 

25.3 (C(5)), 31.5 (PCH2), 33.4 (d, 3JCP = 9, C(6)), 41.5 (d, 3JCP = 8, C(7)), 44.7 (C(3)), 48.6 

(C(4)), 52.9 (d, 2JCP = 16, C(1)), 55.5 (ArOCH3), 61.6 (NOCH3), 114.3 (t, 3JCP = 7, m-PAr), 

131.3 (d, 1JCP = 10, p-PArA), 131.4 (d, 1JCP = 10, p-PArB), 134.4 (d, 2JCP = 20, o-PArA), 

134.6 (d, 2JCP = 20, o-PArB), 160.2 (d, 1JCP = 11, C(1) of PAr), 172.5 (C=N). 31P{1H} NMR 

(δ, ppm): –41.5. HRMS [M+H]+ 426.2192 calcd for C25H33NO3P +, found 426.2274. 

(1S,4S)-1-{Bis(4-trifluoromethylphenyl)phosphino)methyl}-3,3-

dimethylbicyclo[2.2.1] heptan-2-one O-Methyloxime (49c). CPC 85 (22.8 mg, 0.0354 

mmol) was reacted in CH2Cl2 with bis(4-trifluoromethylphenyl)phosphine (102.6 mg, 

0.318 mmol) for 18 h at 35 °C followed by purification using preparative TLC (125:125:1 

CH2Cl2–hexane–acetone). Compound 49c was obtained in the amount of 13.0 mg (53% 

yield) as a colorless oil. Rf = 0.50 (1:1 CH2Cl2–hexane); [α]D
20 = +35.3° (c 0.305, acetone). 
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1H NMR (δ, ppm): 1.21, 1.26 (two s, 6H, 2CH3), 1.27 (d, 1H, 2J7A,7B = 10, H(7A)), 1.45–

1.57 (m, 2H, H(5endo) and H(6endo)), 1.65 (dd, 1H, 4JHP = 1, 2J7A,7B = 10, H(7B)), 1.75–

1.86 (m, 3H, H(4), H(5exo) and H(6exo)), 2.47 (dd, 2JHP = 4, 2J = 15, PCHA), 2.63 (dd, 

2JH,P = 4, 2J = 15, PCHB), 3.70 (s, 3H, NOCH3), 7.53–7.61 (m, 8H, o-PAr and m-PAr). 

13C{1H} NMR (δ, ppm): 22.8 and 23.4 (two CH3), 25.3 (C(5)), 31.3 (d, 1JCP = 8, PCH2), 

34.1 (d, 1JCP = 9, C(6)), 41.7 (d, 3JCP = 9, C(7)), 44.7 (C(3)), 48.7 (C(4)), 52.9 (C(1)), 61.6 

(NOCH3), 124.4 (qd, 5JCP = 2, 1JCF = 273, CF3), 125.5 (dq, 3JCF = 3, 3JCP = 12, m-PAr), 

131.0 (qd, 4JCP = 3, 2JCF = 32, p-PAr), 133.4 and 133.6 (two d, 2JCP = 10, o-PAr), 144.8 

(dd, 4JCF = 2, 2JCP = 16, C(1) of PAr), 171.5 (C=N). 31P{1H} NMR (δ, ppm): –35.5. HRMS 

[M+NH4]+ 518.1916 calcd for C25H30F6N2OP+, found 518.1899. 

(1S,4S)-1-{[bis(2,4,6-trimethylphenyl)oxophosphino]methyl}-3,3-

dimethylbicyclo[2.2.1] heptan-2-one O-Methyloxime (49d’). CPC 85 (17.0 mg, 0.0264 

mmol) was reacted in CH2Cl2 with bis(2,4,6-trimethylphenyl)phosphine (64.0 mg, 0.237 

mmol) for 96 h at 35 °C followed by purification using preparative TLC (125:125:1 

CH2Cl2–hexane–acetone). Compound 49d’ was obtained in the amount of 9.0 mg (32% 

yield) as a colorless oil. Rf = 0.47 (1:1 CH2Cl2–hexane); [α]D
21 = –31.6° (c 0.460, acetone). 

1H NMR (δ, ppm): 1.18 and 1.24 (two s, 6H, 2CH3), 1.33–1.41 (m, 1H, H(6endo)), 1.49–

1.60 (m, 3H, H(7), and H(5endo)), 1.72–1.81 (m, 2H, H(4) and H(5exo)), 1.93 (tt, 1H, 

2J6exo,6endo = 3J6exo,5exo = 12, 3J6exo,5endo = 4J6exo,P = 3, H(6exo)), 2.21 and 2.22 (two s, 6H, 2 

p-CH3Ar), 2.32 and 2.36 (two s, 12H, 4 o-CH3Ar), 2.73 (dd, 1H, 2J = 15, 2JHP = 4, PCHA), 

2.96 (dd, 1H, 2J = 15, 2JHP = 3, PCHB), 3.67 (s, 3H, NOCH3), 6.76 (dd, 4H, 2J = 9, 4JHP = 

2, m-PAr). 13C{1H} NMR (δ, ppm): 21.1 and 21.2 (p-CH3Ar), 22.9 (CH3
B), 23.5 (d, 4JCP = 

14, o-CH3ArA), 23.5 (CH3
A), 23.8 (d, 4JCP = 14, o-CH3ArB), 25.5 (C(5)), 28.6 (d, 2JCP = 15, 
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PCH2), 32.6 (d, 3JCP = 11, C(6)), 40.8 (d, 3JCP = 9, C(7)), 44.7 (d, 4JCP = 2, C(3)), 48.3 

(C(4)), 53.9 (d, 2JCP = 23, C(1)), 61.5 (NOCH3), 130.1 and 130.3 (two d, 3JCP = 3, m-PAr), 

135.0 (t, 4JCP = 22, p-PAr), 141.9 and 142.7 (two d, 2JCP = 15, o-PAr), 137.2 and 137.7 

(C(1) of PAr), 172.5 (d, 3JCP = 6, C=N). 31P{1H} NMR (δ, ppm): –45.7. HRMS [M+H]+ 

466.2869 calcd for C29H41NO2P+, found 466.2889. 

(1S,4S)-1-[(tert-butylphenylphosphino)methyl]-3,3-dimethylbicyclo[2.2.1]heptan-2-

one O-Methyloxime (49f). CPC 85 (17.0 mg, 0.0264 mmol) was reacted in CH2Cl2 with 

tert-butylphenylphosphine (40.0 mg, 0.241 mmol) for 96 h at 35 °C followed by 

purification using preparative TLC (1:1 CH2Cl2–hexane). A single isomer of compound 

49f was obtained in the amount of 2.2 mg (12% yield) as a colorless oil. Rf = 0.43 (1:1 

CH2Cl2–hexane); [α]D
21 = +126° (c 0.205, acetone). 1H NMR (δ, ppm): 0.99 (d, 9H, 1JCP = 

12, C(CH3)3), 1.20 and 1.22 (two s, 6H, 2CH3), 1.22–1.38 (m, 2H, H(6endo) and H(7A)), 

1.43 (tt, 1H, 3J5(endo),6(exo) = 3J5(endo),4 = 4, 2J = 3J5(endo),6(endo) = 12, H(5endo)), 1.54 (td, 1H, 

3J5(endo),6(exo) = 4, 2J = 3J5(endo),6(endo) = 12, H(6exo)), 1.59 (br s, 1H, H(7B)), 1.69 (br s, 2H, 

H(4) and H(5exo)), 2.04 (d, 1H, 2J = 15, PCH2
A), 2.04 (dd, 1H, 2JHP = 7, 2J = 15, PCH2

B), 

3.76 (s, 3H, NOCH3), 7.32–7.37 (m, 3H, m- and p-PAr), 7.56–7.65 (m, 2H, o-PAr). 

13C{1H} NMR (δ, ppm): 22.5 (d, 1JCP = 17, C(CH3)3), 22.9 and 23.4 (two CH3), 25.3 (C(5)), 

27.7 (d, 2JCP = 13, C(CH3)3), 29.3 (d, 1JCP = 11, PCH2), 34.7 (d, 3JCP = 7, C(6)), 41.4 (d, 

3JCP = 9, C(7)), 44.7 (C(3)), 48.4 (C(4)), 52.9 (d, 2JCP = 19, C(1)), 61.6 (NOCH3), 128.0 (d, 

3JCP = 7, m-PAr), 129.1 (br s, overlapping p-PAr and C(1) of PAr), 134.6 (d, 2JCP = 20, o-

PAr), 171.6 (C=N). 31P{1H} NMR (δ, ppm): –18.6. HRMS [M+H]+ 346.2294 calcd for 

C21H33NOP+, found 346.2303. 
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Chloro-{[2-(N,N-dimethylamino)methyl]phenyl-C,N}[bis(2,4,6-

trimethylphenyl)phosphine-P]palladium(II) (90d). CPC 41 (20.2 mg, 0.0366 mmol) 

was reacted in CH2Cl2 with bis(2,4,6-trimethylphenyl)phosphine (10.0 mg, 0.0370 mmol) 

for 0.5 h at rt followed by purification using preparative TLC (1:4 acetone–hexane). 

Complex 90d was obtained in the amount of 35.8 mg (90% yield) as a white solid. Rf = 

0.22 (1:4 acetone-hexane); m.p. 152–153 °C (dec.). 1H NMR (δ, ppm): 2.27 (s, 6H, p-

CH3Ar), 2.51 (s, 12H, o-CH3Ar), 2.82 (s, 6H, 4JHP = 2, NCH3), 3.98 (s, 2H, NCH2), 6.32 

(d, 1H, 1JHP = 382, HP), 6.60 (t, 1H, 3J = 3JHP = 8, C(6)H arom), 6.77 (br t, 1H, 3J = 8, 

C(5)H arom), 6.87 (d, 4H, 4JHP = 3, m-PAr), 6.98 (br t, 1H, 3J = 8, C(4)H arom), 7.06 (br 

d, 1H, 3J = 8, C(3)H arom). 13C{1H} NMR (δ, ppm): 21.5 (p-CH3Ar), 23.9 (d, 3JCP = 10, o-

CH3Ar), 51.0 (d, 3JCP = 2, NCH3), 73.2 (d, 3JCP = 3, CH2), 122.8 (d, 1JCP = 49, C(1) of PAr), 

123.1 (C(3) arom), 124.7 (C(4) arom), 126.7 (d, 4JCP = 7, C(5) arom), 130.5 (d, 3JCP = 8, m-

PAr), 133.3 (d, 4JCP = 17, C(6) arom), 140.8 (d, 4JCP = 2, p-PAr), 142.8 (d, 3JCP = 8, o-PAr), 

148.9 and 150.6 (two d, JCP = 2 and 3, C(2) arom and PdC(1) arom). 31P{1H} NMR (δ, 

ppm): –47.6; 31P NMR (δ, ppm): –47.6 (d, 1JHP = 382). Anal. calcd for C27H35ClNPPd: C, 

59.35; H, 6.46; N, 2.56%.  Found: C, 59.05; H, 6.40; N, 2.54%.  

Chloro-{[2-(N,N-dimethylamino)methyl]phenyl-C,N}(di-1-adamantylphosphine-P) 

palladium (II) (90e). CPC 41 (17.2 mg, 0.0312 mmol) was reacted in CH2Cl2 with di-1-

adamantylphosphine (18.8 mg, 0.624 mmol) for 0.5 h at rt followed by purification using 

preparative TLC (1:4 acetone–hexane). Complex 90e was obtained in the amount of 32.2 

mg (90% yield) as a white solid. Rf = 0.38 (1:4 acetone-hexane); m.p. 198–199 °C (dec.). 

1H NMR (δ, ppm): 1.71 and 1.78 (two d, 12H, 2J = 12, C(4)H2 of Ad), 2.00 (s, 6H, C(3)H 

of Ad), 2.23 and 2.35 (two d, 12H, 2J = 12, C(2)H2 of Ad), 2.71 (s, 6H, NCH3), 3.73 (d, 
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1H, 1JHP = 342, HP), 3.92 (s, 2H, NCH2), 6.98–7.03 (m, 2H, C(5)H and C(6)H arom), 7.03–

7.08 (m, 1H, C(4)H arom), 7.22–7.27 (m, 1H, C(3)H arom). 13C{1H} NMR (δ, ppm): 29.0 

(d, 3JCP = 9, C(3) of Ad), 36.7 (C(4) of Ad), 39.0 (d, 1JCP = 20, C(1) of Ad), 43.0 (C(2) of 

Ad), 50.0 (d, 3JCP = 2, NCH3), 72.9 (d, 3JCP = 3, NCH2), 123.4 (C(4) arom), 124.4 (C(3) 

arom), 125.7 (d, 4JCP = 6, C(5) arom), 135.7 (d, 3JCP = 15, C(6) arom), 149.1 and 149.5 (s 

and d, JCP = 2, C(2) arom and PdC(1) arom). 31P{1H} NMR (δ, ppm): 71.3; 31P NMR (δ, 

ppm): 71.3 (d, 1JHP = 342). Anal. calcd for C29H43ClNPPd: C, 60.21; H, 7.49; N, 2.42%.  

Found: C, 60.38; H, 7.43; N, 2.42%. 

µ-Chloro-µ-[bis(4-trifluoromethylphenyl)phosphido]bis{[2-(N,N-

dimethylamino)methyl] phenyl-C,N}dipalladium(II) (91c). CPC 41 (13.6 mg, 0.0246 

mmol) was reacted in PhMe with bis(4-trifluoromethylphenyl)phosphine (54 µL, 0.22 

mmol) for 18 h at 40 °C followed by purification using preparative TLC (1:4 acetone–

hexane). Complex 91c was obtained in the amount of 6.0 mg (29% yield) as a yellow solid. 

Rf = 0.38 (1:9 acetone-hexane); m.p. 168–170 °C (dec.). 1H NMR (δ, ppm): 2.69 (s, 6H, 

NCH3), 3.89 (s, 4H, NCH2), 6.31 (dd, 2H, 4JHP = 4, 3J = 8, C(6)H arom), 6.51 (t, 2H, 3J = 

8, C(5)H arom), 6.83 (t, 2H, 3J = 8, C(4)H arom), 6.93 (d, 2H, 3J = 8, C(3) arom), 7.50 (d, 

4H, 3J = 8, m-PAr), 7.99 (dd, 4H, 3J = 8, 3JHP = 11, o-PAr). 13C{1H} NMR (δ, ppm): 49.8 

(NCH3), 71.3 (d, 3JCP = 2, NCH2), 123.0 (C(3) arom), 124.1 (C(4) arom), 124.4 (q, 1JCF = 

271, CF3), 125.0 (dq, 3JCF = 4, 3JCP = 11, m-PAr), 125.9 (d, 4JCP = 5, C(5) arom), 131.0 (qd, 

4JCP = 2, 3JCF = 32, p-PAr), 135.8 (d, 2JCP = 13, o-PAr), 137.5 (d, 3JCP = 9, C(6) arom), 140.8 

(d, 1JCP = 24, C(1) of PAr), 147.8 and 148.7 (two d, JCP = 2 and 3, C(2) arom and PdC(1) 

arom). 31P{1H} NMR (δ, ppm): 19.9. Anal. calcd for C36H46ClN2PPd2: C, 45.87; H, 3.85; 

N, 3.34%. Found: C, 46.06; H, 4.00; N, 3.07%.  
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µ-Chloro-µ-[bis(2,4,6-trimethylphenyl)phosphido]bis{[2-(N,N-

dimethylamino)methyl] phenyl-C,N}dipalladium(II) (91d). CPC 41 (41.3 mg, 0.0748 

mmol) was reacted in CH2Cl2 with bis(2,4,6-trimethylphenyl)phosphine (21.0 mg, 0.777 

mmol) for 18 h at 35 °C followed by purification using preparative TLC (1:4 acetone–

hexane). Complex 91d was obtained in the amount of 57.6 mg (98% yield) as a yellow 

solid. Rf = 0.58 (1:7 acetone-hexane); m.p. 169–170 °C (dec.). 1H NMR (δ, ppm): 2.22 (s, 

6H, p-CH3Ar), 2.68 (s, 12H, o-CH3Ar), 2.72 (s, 6H, NCH3
A), 2.73 (s, 6H, NCH3

B), 3.88 (s, 

4H, NCH2), 6.45–6.51 (m, 4H, C(6)H and C(5)H arom), 6.73 (d, 4H, 3JHP = 3, m-PAr), 

6.80 (t, 2H, 3J = 7, C(4)H arom), 6.86 (d, 2H, 3J = 7, C(3) arom).  13C{1H} NMR (δ, ppm): 

21.3 (p-CH3Ar), 27.5 (d, 3JCP = 12, o-CH3Ar), 50.7 (NCH3), 71.7 (d, 3JCP = 2, CH2), 121.6 

(C(3) arom), 123.4 (C(4) arom), 125.7 (d, 4JCP = 5, C(5) arom), 130.7 (d, 3JCP = 7, m-PAr), 

131.0 (br d, 1JCP = 22, C(1) of PAr), 135.8 (d, 3JCP = 7, C(6) arom), 138.2 (d, 4JCP = 3, p-

PAr), 143.6 (d, 2JCP = 8, o-PAr), 147.8 and 153.4 (two d, JCP = 3 and 6, C(2) arom and 

PdC(1) arom). 31P{1H} NMR (δ, ppm): –12.1. Anal. calcd for C36H46ClN2PPd2: C, 55.01; 

H, 5.90; N, 3.56%. Found: C, 55.74; H, 5.94; N, 3.65%. 

(1S,4S)-Chloro-[(2-methoxyimino-3,3-dimethylbicyclo[2.2.1]heptyl)methyl-

C,N][bis(2,4,6-trimethylphenyl)phosphine-P]palladium(II) (92d). CPC 85 (20.2 mg, 

0.0314 mmol) was reacted in CH2Cl2 with bis(2,4,6-trimethylphenyl)phosphine (17.0 mg, 

0.0629 mmol) for 0.5 h at rt followed by purification using preparative TLC (1:4 acetone–

hexane). Compound 92d was obtained in the amount of 25.5 mg (69% yield) as a white 

solid. Rf  = 0.50 (2:3 acetone–hexane); m.p. 169–171 °C (dec.); [α]D
20 = –292° (c 2.01, 

acetone). 1H NMR (δ, ppm): 0.78 (t, 2J = 3JHP = 10, PdCHA), 1.21 (d, 1H, 2J7A,7B = 10, 

H(7A)), 1.24 and 1.25 (two s, 6H, two CH3), 1.47 (td, 1H, 3J5(exo),6(endo) = 3, 2J = 
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3J5(endo),6(endo) = 12, H(6endo)), 1.55 (tt, 1H, 3J5(endo),6(exo) = 3J5(endo),4 = 4, 2J = 3J5(endo),6(endo) 

= 12, H(5endo)), 1.72 (d, 1H, 2J7A,7B = 10, H(7B)), 1.78–1.91 (m, 2H, H(5exo) and 

H(6exo)), 2.01 (d, 1H, 3J5(endo),4 = 4, H(4)), 2.17 (d, 2J = 10, PdCHB), 2.24 (s, 6H, p-CH3Ar), 

2.46 and 2.49 (two s, 12H, o-CH3Ar), 4.07 (s, 3H, NOCH3), 6.47, (d, 1H, 1JHP = 389, HP), 

6.82 (s, 4H, 4JHP = 3, m-PAr). 13C{1H} NMR (δ, ppm): 21.4 (d, 5JCP = 2, p-CH3Ar), 22.7 

and 23.3 (two CH3), 23.4 and 23.6 (two d, 3JCP = 10, o-CH3Ar), 25.4 (C(5)), 30.0 (PdCH2), 

34.7 (C(6)), 43.2 (C(7)), 44.1 (C(3)), 52.9 (C(4)), 63.2 (NOCH3), 64.3 (C(1)), 123.0 and 

123.5 (two d, 2JCP = 50, C(1) of PAr), 130.2 and 130.3 (two d, 3JCP = 6, m-PAr), 140.3 (d, 

4JCP = 2, p-PAr), 142.0 and 142.1 (two d, 2JCP = 8, o-PAr), 195.8 (d, 3JCP = 2, C=N). 31P{1H} 

NMR (δ, ppm): –54.6. 31P NMR (δ, ppm): –54.6 (d, 1JHP = 389). Anal. calcd for 

C29H41ClNOPPd: C, 58.79; H, 6.98; N, 2.36%. Found: C, 58.67; H, 7.12; N, 2.31%. 

(1S,4S)-Chloro-[(2-methoxyimino-3,3-dimethylbicyclo[2.2.1]heptyl)methyl-C,N](di-

1-adamantylphosphine-P)palladium(II) (92e). CPC 85 (15.1 mg, 0.0234 mmol) was 

reacted in PhMe with di-1-adamantylphosphine (14.2 mg, 0.0463 mmol) for 0.5 h at rt 

followed by purification using preparative TLC (1:4 acetone–hexane). Compound 92e was 

obtained in the amount of 25.1 mg (86% yield) as a white solid. Rf = 0.45 (1:4 acetone–

hexane); m.p. 168–170 °C (dec.); [α]D
21 = –199° (c 1.10, acetone). 1H NMR data for two 

isomers in a ratio of 1:4 (δ, ppm; signals assigned to the minor isomer are marked with an 

asterisk): 1.15 (t, 2J = 3JHP = 11, PdCH2
A), 1.24, 1.25, 1.26*, and 1.27* (four overlapping 

s, two CH3), 1.33 and 1.40* (two d, 2J = 11, C(7)HA), 1.58–1.92, 1.96–2.12 and 2.13–2.33 

(three complex m, 15H of Ad, PdCH2
B, C(4)H, C(5)H2, C(6)H2, and C(7)HB), 3.36 (d, 1JHP 

= 339, HP), 4.04* and 4.05 (two s, 3H, NOCH3), 4.06* (d, 1JHP = 359, HP). 13C{1H} NMR 

(δ, ppm): 15.9* (d, 2JCP = 3.8, PdC), 22.6*, 22.7, 23.3*, and 23.4 (four s, two CH3), 25.5 
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and 25.6* (two s, C(5)), 26.5 (PdC), 28.8*, 28.9*, 28.95, and 29.03 (four d, 3JCP = 9* and 

4, C(3) of Ad), 34.9* and 35.4 (two s, (C(6)), 36.7* and 36.8 (two s, C(4) of Ad), 38.3, 

38.4*, 38.5*, and 38.7 (four d, 1JCP = 19* and 20, C(1) of Ad), 42.5*, 42.6, 42.7, and 42.9* 

(four s, C(2) of Ad), 43.4 and 43.9* (two s, C(7)), 43.8* and 44.0 (two s, C(3)), 52.8 and 

52.8* (two overlapping s, C(4)), 63.1* and 63.2 (two s, NOCH3), 64.3 and 64.8* (two s, 

C(1)), 193.8* and 194.8 (d, 3JCP = 2, C=N). 31P{1H} NMR (δ, ppm): 49.5* and 51.7; 31P 

NMR (δ, ppm): 49.5* and 51.7 (two d, 1JHP = 359* and 339). Anal. calcd for 

C31H49ClNOPPd: C, 59.61; H, 7.91; N, 2.24%. Found: C, 59.58; H, 8.06; N, 2.13%.  

(1S,4S)-Chloro-[(2-methoxyimino-3,3-dimethylbicyclo[2.2.1]heptyl)methyl-C,N](tert-

butylphenylphosphine-P)palladium(II) (92f). CPC 85 (25.8 mg, 0.0400 mmol) was 

reacted in CH2Cl2 with tert-butylphenylphosphine (29.9 mg, 0.1799 mmol) for 0.5 h at rt 

followed by purification using preparative TLC (1:4 acetone–hexane). Two diastereomers 

of 92f were obtained in the amount of 20.7 mg (77% yield) as a transparent colorless solid 

in a ratio of 5:4. Rf = 0.45 (2:3 acetone–hexane); m.p. 102–110 °C; [α]D
20 = –382° (c 0.290, 

acetone). 1H NMR data for a 5:4 mixture of two diastereomers (δ, ppm; signals assigned 

to the minor isomer are marked with an asterisk): 1.22*, 1.23, 1.24*, and 1.25 (four s, two 

CH3), 1.26 (m, *PdCHA), 1.31 (d, 9H, 3JHP = 16, C(CH3)3), 1.29–1.46 (overlapping m, 

H(7A), H(5endo), and PdCHA), 1.51–1.97 (m, H (5exo), H(6exo), H(7B), and H(6endo)), 

2.02* and 2.06 (two d, 3J  = 4, H(4)), 2.26 and 2.29* (two d, 2J = 10, PdCHB), 4.02 and 

4.05* (two s, NOCH3), 4.70 and 4.71* (two d, 1JHP = 357, HP), 7.37–7.49 (m, o- and p-

PAr), 7.91* and 8.00 (two ddd, 4JHP = 1, 3J = 7, 3J = 10.2, m-PAr). 13C{1H} NMR data for 

a 5:4 mixture of two diastereomers (δ, ppm; signals assigned to the minor isomer are 

marked with an asterisk): 22.6* and 22.7 (CH3), 23.3 (two overlapping s, CH3), 25.4* and 
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25.5 (C(5)), 27.3* and 27.8 (PdC), 29.0* and 29.1 (two d, 2JCP = 5, PC(CH3)3), 32.5* and 

32.8 (two d, 1JCP = 29, PC(CH3)3), 34.9* and 35.3 (C(6)), 43.4 (two overlapping s, C(7)), 

44.1 two overlapping d, 4JCP = 3, C(3)), 52.8* and 52.9 (C(4)), 63.2 (two overlapping s, 

NOCH3), 64.2* and 64.3 (C(1)), 128.2* and 128.4 (two d, 1JCP = 31, C(1) of PPh), 128.68* 

and 128.70 (two d, 3JCP = 9, o-PPh), 130.9* and 131.0 (two d, 4JCP = 3, p-PAr), 135.2* and 

135.4 (two d, 2JCP = 9, m-PAr), 196.1 (two overlapping s, C=N). 31P{1H} NMR (δ, ppm): 

27.3* and 27.4; 31P NMR (δ, ppm): 27.3* and 27.4 (two overlapping d, 1JHP = 357). Anal. 

calcd for C21H33ClNOPPd: C, 51.65; H, 6.81; N, 2.87%. Found: C, 51.41; H, 6.74; N, 

2.75%. 

 (1S,4S)-µ-Chloro-µ-[bis(2,4,6-trimethylphenyl)phosphido]bis{[(2-methoxyimino-

3,3-dimethylbicyclo[2.2.1]heptyl)methyl-C,N]dipalladium(II) (93d). CPC 85 (38.8 mg, 

0.0602 mmol) was reacted in CH2Cl2 with bios(2,4,6-trimethylphenyl)phosphine (16.3 mg, 

0.0603 mmol) for 18 h at 35 °C followed by purification using preparative TLC (1:4 

acetone–hexane). Compound 93d was obtained in the amount of 36.3 mg (69% yield) as a 

yellow solid. Rf = 0.66 (1:4 acetone–hexane); m.p. 181–182 °C (dec.); [α]D
20 = –66.9° (c 

0.715, acetone). 1H NMR (δ, ppm): 1.03 (dd, 2H, 2JHP = 5, 2J = 10, PdCHA), 1.16 (s, 6H, 

two CH3), 1.21 (s and overlapping m, 8H, two CH3 and H(7A)), 1.49–1.65 (m, 8H, H(7B), 

H(5endo) and PdCHB), 1.79 (t, 2H, 2J = 10, H(5exo)), 1.87–1.94 (m, 4H, H(4) and 

H(6exo)), 2.23 (s, 6H, p-CH3Ar), 2.70 (s, 12H, o-CH3Ar), 3.90 (s, 6H, OCH3), 6.77 (s, 4H, 

m-Ar). 13C{1H} NMR (δ, ppm): 21.2 (p-CH3Ar), 22.7 and 23.3 (two CH3), 25.4 (2JCP = 3, 

PdCH2), 25.6 (C(5)), 26.6 (o-CH3Ar), 34.4 (C(6)), 43.5 (C(7)), 44.0 (C(3)), 52.2 (C(4)), 

62.6 (NOCH3), 64.3 (C(1)), 130.0 (d, 3JCP = 7, m-PAr), 133.8 (d, 1JCP = 24, C(1) of PAr), 

136.5 (d, 4JCP = 2, p-PAr), 140.9 (d, 2JCP = 8, o-PAr), 193.0 (C=N). 31P{1H} NMR (δ, ppm): 
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–44.7. Anal. calcd for C40H58ClN2O2PPd2: C, 54.71; H, 6.66; N, 3.19%. Found: C, 54.45; 

H, 6.46; N, 3.28%. 

(1S,4S)-µ-Chloro-µ-(di-1-adamantylphosphido)bis[(2-methoxyimino-3,3-

dimethylbicyclo[2.2.1]heptyl)methyl-C,N]dipalladium(II) (93e). CPC 85 (19.8 mg, 

0.0307 mmol) was reacted in CH2Cl2 with di-1-adamantylphosphine (9.3 mg, 0.031 mmol) 

for 18 h at 35 °C followed by purification with preparative TLC (1:4 acetone–hexane). 

Compound 93e was obtained in the amount of 18.5 mg (66% yield) as a yellow solid. Rf = 

0.44 (1:1 CH2Cl2–hexane); m.p. 200–201 °C (dec.); [α]D
20 = –409° (c 0.215, acetone). 1H 

NMR (δ, ppm): 1.19 and 1.22 (two s, 12H, 4CH3), 1.36 (d, 2H, 2J7A,7B = 10, H(7A)), 1.59 

(tt, 2H, 3J5endo,6exo = 3J5endo,4 = 5 and 2J = 3J5endo,6endo = 12, H(5endo)), 1.65–1.81 (m, 18H, 

H(7B), H(6endo), C(4)H2 of Ad, and PdCHA), 1.82 (overlapping tt, 2H, 3J5exo,6endo = 3JHP = 

3 and 2J = 3J5exo,6exo = 12, H(5exo)), 1.87–1.93 (m, 2H, H(6exo)), 1.96 (s, 8H, H(4) and 

C(3)H of Ad), 2.07 (dd, 2H, 3JHP = 3 and 2J = 10, PdCHB), 2.31 and 2.4 (two d, 12H, 2J = 

12, 2C(2)H2 of Ad), 3.90 (s, 6H, OCH3). 13C{1H} NMR (δ, ppm): 15.7 (d, 1JCP = 2, PdC), 

22.7 and 23.5 (two CH3), 25.7 (C(5)), 29.6 (d, 3JCP = 9, C(3) of Ad), 34.4 (C(6)), 37.4 (C(4) 

of Ad), 42.2 and 43.4 (d and s, JCP = 4, C(1) of Ad and C(3)), 44.1 (overlapping signals, 

C(2) of Ad and C(7)), 52.1 (C(4)), 62.4 (NOCH3), 64.6 (C(1)), 191.0 (C=N). 31P{1H} NMR 

(δ, ppm): 70.5. Anal. calcd for C42H66ClN2O2PPd2: C, 55.42; H, 7.31; N, 3.08%. Found: C, 

55.25; H, 7.28; N, 3.00%. 

(1S,4S)-µ-Chloro-µ-(tert-butylphenylphosphido)bis[(2-methoxyimino-3,3-

dimethylbicyclo[2.2.1]heptyl)methyl-C,N]dipalladium(II) (93f) and (1S,4S)-di[µ-

chloro-µ-(tert-butylphenylphosphido)]bis[(2-methoxyimino-3,3-

dimethylbicyclo[2.2.1]heptyl)methyl-C,N]tripalladium(II) (94f). CPC 85 (34.8 mg, 
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0.0540 mmol) was reacted in PhMe with HPt-BuPh (9.0 mg, 0.0540 mmol) for 18 h at 40 

°C followed by purification using preparative TLC (1:1 CH2Cl2–hexane). Compounds 93f 

and 94f were obtained in a ratio of 10:1 in the total amount of 19.2 mg (46% yield) as a 

light yellow solid. Data for the 10:1 mixture of 93f and 94f: Rf = 0.44 (1:1 CH2Cl2–hexane); 

m.p. 208–209 (dec.); [α]D
21 = –507° (c 0.775, acetone). 1H NMR (δ, ppm; data for complex 

94f are indicated with an asterisk): 0.57 (dd, 1H, 3JHP = 6, 2J = 9, PdCHA1), 0.97 (dd, 1H, 

3JHP = 4, 2J = 10, PdCHA2), 1.08–1.32 (m, 15H, CH3, H6(endo), H(7A)), 1.40–1.62 (m, 8H, 

2 H(7B), 2 H(5endo), H(6endo), PdCHB), 1.65 (d, 9H, 3JHP = 15, C(CH3)3), 1.70-1.81 (m, 

4H, 2 H(6exo) and 2 H(5exo)), 1.88 (s, 2H, H(4)), 2.08 (dd, 2H, 2J = 9, PdCHB1), 3.93, 395 

and 3.97* (two s, 6H, NOCH3), 7.15 (t, 1H, 3J = 3J = 7, p-PPh), 7.22 (t, 2H, 3J = 3J = 7, m-

PPh), 7.77* and 7.89 (two t, 2H, 3J = 3JHP = 7, o-PPh). 13C{1H} NMR (δ, ppm; data for 

complex 94f are indicated with an asterisk; A and B are two non-equivalent cyclopalladated 

ligands in 93f): 22.4, 22.5, and 22.9 (three s, CH3), 23.0 (two overlapping s, CH3 and 

PdCH2
A), 24.6 (PdCH2

B), 25.4 and 25.5 (two s, C(5)), 32.0 and 32.5* (two d, 2JCP = 7, 

PC(CH3)3), 34.3 (C(6)A), 34.60 and 34.61* (d, 1JCP = 14, PC(CH3)3), 35.39* (C(6)*), 35.42 

(C(6)B), 43.3 and 43.5 (two s, C(7)A and C(7)B), 43.4* (s, C(7)*), 43.80 (s, C(3)*), 43.82 

and 43.90 (two s, (C(3)A and C(3)B), 51.96 (s, C(4)A), 52.03 (two overlapped s, C(4)A and 

C(4)*), 62.36, 62.45*, and 62.55 (three s, NOCH3
A, NOCH3

B, and NOCH3*), 63.96, 

64.07*, and 64.18 (three s, C(1)A, C(1)B, and C(1)*), 126.8 (two overlapping s, p-PPh), 

127.1 and 127.2 (two s, m-PPh), 133.5* (d, 2JCP = 11, o-PPh*), 133.9 (d, 2JCP = 11, o-PPh), 

140.6 (d, 1JCP = 21, C(1) of PPh), 190.3*, 190.6, and 190.8 (three s, C=NA, C=NB, and 

C=N*). 31P{1H} NMR (δ, ppm): 33.7 and 33.8*. Anal. calcd for the mixture, 
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C362H564Cl12N22O22P12Pd23: C, 49.29; H, 6.44; N, 3.49%. Found: C, 49.40; H, 6.42; N, 

3.47%.  

(SC,SC)-µ-Chloro-µ-(tert-butylphenylphosphido)bis{2-[1-(N,N-

dimethylamino)ethyl]phenyl-C,N}dipalladium(II) (96f). CPC 95 (38.5 mg, 0.0664 

mmol) was reacted in PhMe with HPt-BuPh (11.0 mg, 0.0664 mmol) for 18 h at 40 °C 

followed by purification using preparative TLC (125:125:1 CH2Cl2–hexane–acetone). 

Compound 96f was obtained in the amount of 29.8 mg (72% yield) as a light yellow solid. 

Rf = 0.38 (1:1 CH2Cl2–hexane); m.p. 166–168 °C (dec.); [α]D
20 = +178° (c 0.0044, acetone). 

1H NMR (δ, ppm): 1.48 (d, 3H, 3J = 6, CHCH3
A), 1.59 (d, 9H, 3JHP = 15, C(CH3)3), 1.72 

(d, 3H, 3J = 6, CHCH3
B), 2.38, 2.51, 2.58, and 2.70 (four s, 12H, NCH3), 3.35–3.42 (m, 

1H, CHBCH3), 3.95–4.01 (m, 1H, CHACH3), 6.04 and 6.29 (two dd, 2H, 4JHP = 4, 3J = 8, 

H(6)A and H(6)B), 6.43–6.52 (m, 2H, H(5)A and H(5)B), 6.74–6.81 (m, 3H, H(4)A, H(4)B, 

and H(3)A), 6.87 (d, 1H, 3J = 7, H(3)B), 7.26–7.33 (m, 3H, m- and p-PPh), 8.11 (t, 2H, 3J = 

3JHP = 8, o-PPh). 13C{1H} NMR (δ, ppm): 16.4 and 24.1 (2 CHCH3), 32.9 (d, 2JCP = 7, 

C(CH3)3), 34.6 (d, 1JCP = 14, PC(CH3)3), 42.9, 45.4, 48.3, and 50.5 (4 NCH3), 71.5 and 

73.9 (two d, 3JCP = 2, 2 CHCH3), 122.5 and 122.7 (two s, 2 C(3) arom), 123.4 and 123.6 

(two s, 2 C(4) arom), 124.5 and 124.9 (two d, 3JCP = 4.4, 2 C(5) arom), 127.9 (br s, m-PPh), 

128.1 (d, 4JCP = 3, p-PPh), 135.1 (br s, o-PPh), 136.2 and 137.3 (two d, 3JCP = 8, 2 C(6) 

arom), 138.9 (d, 1JCP = 14, C(1) of PPh), 144.9 and 148.1 (two d, 2JCP = 4, 2 PdC(1) arom), 

153.23 and 155.2 (two d, 3JCP = 2, 2 C(2) arom). 31P{1H} NMR (δ, ppm): 45.7. Anal. calcd 

for C38H54ClN2PPd2: C, 50.75; H, 5.96; N, 3.95%. Found: C, 50.51; H, 5.95; N, 3.84%. 

(S,S)-Di-µ-chlorobis{2-[2-(4-tert-butyl)oxazolinyl]-2-methyl]propyl-

C,N}dipalladium(II) (97). Pd(OAc)2 (69.1 mg, 0.308 mmol) and 1.8 mL of acetic acid 
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were added to a flask with a stir bar. (S)-2,4-Di-tert-butyl-2-oxazoline (56.4 mg, 0.308 

mmol) was added by syringe dropwise while stirring. The reaction mixture was heated to 

96 °C (oil bath) upon stirring for 1 h.  The acetic acid was then removed under reduced 

pressure at rt. Acetone (2 mL) was added along with LiCl (52.0 mg, 1.23 mmol) and the 

solution was stirred overnight at rt. The solution was diluted with hexane (4 mL) and then 

filtered. The solvent was removed under reduced pressure at rt.  Preparative TLC was 

performed using 1:4 ethyl acetate-hexane. Compound 97 was obtained in the amount of 

60.0 mg (30% yield) as a yellow solid. Rf = 0.40 (1:1 CH2Cl2–hexane); m.p. 143–145 °C; 

[α]D
20 = +535° (c 1.21, acetone). 1H NMR (δ, ppm): 0.99 (d, 9H, C(CH3)3), 1.05 and 1.40 

(two s, 6H, two CH3), 1.87 and 2.14 (two d, 2H, 2J = 8, PdCH2), 3.63 (br s, 1H, 3J = 9, 

NCH), 4.21 (t, 1H, 2J = 3J = 9, OCH2
A), 4.41 (dd, 1H, 3J = 4, 2J = 9, OCH2

B). 13C{1H} 

NMR (δ, ppm): 26.1 (C(CH3)3), 26.5 and 28.2 (two CH3), 28.3 (PdCH2), 34.7 (C(CH3)3), 

41.5 (CC=N), 70.8 (NCH), 71.2 (OCH2), 182.9 (C=N). Anal. calcd for C22H40Cl2N2O2Pd2: 

C, 40.76; H, 6.22; N, 4.32%. Found: C, 41.24; H, 6.53; N, 4.16%. 

(S,S)-µ-Chloro-µ-(tert-butylphenylphosphino)bis{2-[2-(4-tert-butyl)oxazolinyl]-2-

methyl]propyl-C,N}dipalladium(II) (98f). CPC 97 (19.5 mg, 0.0301 mmol) was reacted 

in CH2Cl2 with HPt-BuPh (45.0 mg, 0.2708 mmol) for 96 h at 35 °C followed by 

purification with preparative TLC (125:125:1 CH2Cl2–hexane–acetone). Compound 98f 

was obtained in the amount of 15.6 mg (67% yield) as a light yellow solid. Rf 0.45 (1:1 

CH2Cl2–hexane); m.p. 195–196 °C (dec.); [α]D
20 = +696° (c 0.460, acetone). 1H NMR (δ, 

ppm, the prime sign was used to differentiate the data for two non-equivalent 

cyclopalladated ligands): 0.66 (dd, 1H, 2JHP = 6, 2J = 9, PdCHA), 0.95 (s, 9H, C(CH3)3), 

0.96–0.99 (m, 7H, 2 CH3 and PdCHA’), 1.01 (s, 9H, C(CH3)3), 1.05 (s, 3H, CH3), 1.30 (s, 
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3H, CH3), 1.35 (dd, 2JHP = 6, 2J = 10, PdCHB), 1.58 (d, 1H, 2J = 9, PdCHB’), 1.65 (d, 9H, 

3JHP = 14, PC(CH3)3), 3.79 (two overlapping dd, 2H, 3J = 4, 3J = 9, 2 NCH), 4.17 and 4.23 

(two t, 2H, 2J = 3J = 9, OCHA and OCHA’), 4.38 (two overlapping dd, 2H, 3J = 4, 2J = 9, 

OCHB and OCHB’), 7.15 (t, 1H, 3J = 7, p-PPh), 7.21–7.27 (m, 2H, m-PPh), 7.90 (dd, 3J = 

8, 3JHP = 10, o-PPh). 13C{1H} NMR (δ, ppm): 26.2 and 26.3 (two s, 2 C(CH3)3), 26.9 (d, 

2JCP = 2, PdCH2), 28.1, 28.5, 28.9, and 29.9 (4 CH3), 31.1 (d, 2JCP = 3, PdCH2
’), 32.2 (d, 

2JCP = 7, PC(CH3)3), 33.9 (d, 1JCP = 16, PC(CH3)3), 34.6 (two s, 2 C(CH3)3), 42.0 and 42.2 

(2 CC=N), 69.9 and 70.1 (2 NCH), 71.7 (OCH2), 71.8 (d, 4JCP = 2, OCH2
’), 126.5 (d, 4JCP 

= 2, p-PPh), 127.2 (d, 3JCP = 10, m-PPh), 133.8 (d, 2JCP = 12, o-PPh), 140.7 (d, 1JCP = 19, 

C(1) of PPh), 182.2 and 182.3 (2 C=N). 31P{1H} NMR (δ, ppm): 32.5. Anal. calcd for 

C32H54ClN2O2PPd2: C, 49.40; H, 7.00; N, 3.60%. Found: C, 49.87; H, 7.28; N, 3.73%. 

III.2.3. Sample Preparation and Procedures for 31P NMR Monitoring 

 
CPC 77 and 9 equivalents of Cs2CO3 were placed in a J. Young NMR tube at rt. 

The tube was vacuumed and filled with Ar 5 times. Under an Ar atmosphere, degassed 

toluene-d8 was added.  The concentration of CPC solutions was ca. 5 mg/mL. Then the 

NMR tube was frozen by placing it in liquid nitrogen. The specified amount of HPPh2 was 

added and 31P{1H} NMR spectra were recorded at rt.  

III.3. Preparation of Products from CPCs and m-Chloroperoxybenzoic Acid 
 

III.3.1. General Oxidation Procedure 

 
A solution of the starting CPC (25 mg/mL) and a stir bar were added to a small 

round-bottom flask. A solution of 2.7 equivalents of m-CPBA (unless otherwise specified) 

in solvent (MeCN, EtOAc or CH2Cl2, 40 mg/mL) was added dropwise to the CPC solution 

while stirring. The flask was stoppered, and the mixture was allowed to stir for 18 h (unless 
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otherwise specified) at rt. The crude solution was washed several times with saturated 

NaHCO3 aqueous solution and then with water. The combined aqueous layers were 

extracted with either EtOAc or CH2Cl2. The combined organic layers were dried over 

magnesium or sodium sulfate, filtered, and the solvent was evaporated on a rotavapor. The 

crude mixture, unless otherwise indicated, was dissolved in 5 mL of acetone and stirred for 

45 min at rt with 10 equivalents of LiCl. The solvent was removed and the mixture 

dissolved in CH2Cl2 then filtered through 1 cm of celite. Products were isolated using either 

preparative TLC or column chromatography.  

III.3.2. Compounds Synthesized from Oxidation of CPCs with m-CPBA 

 
(S,S)-Di-µ-chlorobis{2-[2-(4-tert-butyl)oxazolinyl]phenolato-κ2-N,O}dipalladium(II) 

(100a). The compound was obtained according to the general oxidation procedure 

described above using complex 105a (32.5 mg, 0.0442 mmol), m-CPBA (20.6 mg, 0.119 

mmol) and EtOAc (2.5 mL); the reaction mixture was stirred at rt for 18 h. Preparative 

TLC was performed using 1:1:18 EtOAc–CH2Cl2–hexane. Five fractions were collected of 

which the bottom one was recrystallized from toluene giving 4.8 mg of brown solid (15%). 

Rf = 0.41 (1:4 EtOAc–hexanes); m.p. 120–123 °C (dec.); [α]22
D = + 0.110 (c 0.400, 

acetone). 1H NMR (, ppm): 1.17 (s, 9H, (CH3)3C), 3.85 (dd, 1H, J = 2.2, 9.0, OCH2), 4.44 

(t, 1H, J = 9.0, NCH), 4.55 (dd, 1H, J = 2.2, 9.0, OCH), 6.59 (ddd, 1H, arom. CH), 6.90 (d, 

1H, J = 8.3, arom. CH), 7.19 (ddd, 1H, J = 1.8, 6.8, 8.3, arom. CH), 7.49 (dd, 1H, J = 1.8, 

8.3). 13C{1H} NMR (δ, ppm): 26.5 ((CH3)3C), 35.4 ((CH3)3C), 70.8 (NCH), 71.3 (OCH2), 

110.2 (arom. CH), 116.5 (arom. C), 120.3 (arom. CH), 129.7 (arom. CH), 135.1 (arom. 

CH), 162.8 (arom. CO), 167.5 (C=N). Anal. calcd for C26H32Cl2N2O4Pd2·0.5 PhMe: C, 

46.23; H, 3.66; N, 4.74. Found: C, 46.64; H, 4.10; N, 4.56%.  
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(S,S)-Di-μ-chlorobis{2-[2-(4-ethyl)oxazolinyl]phenolato-2-N,O}dipalladium(II) 

(100b). The compound was obtained according to the general oxidation procedure 

described above using complex 99b (87.7 mg, 0.139 mmol), m-CPBA (143.4 mg, 0.8310 

mmol) and CH2Cl2 (6 mL). Two consecutive preparative TLC purifications were 

performed, first using 1:4 CH2Cl2−petroleum ether as the eluent, then 1:1 

CH2Cl2−petroleum ether. Five fractions were collected, of which the bottom two contained 

the product. These fractions were combined and washed with ether and hexanes, then 

recrystallized from toluene to give 10 mg of a brown solid (9%). Rf = 0.26 (1:4 

EtOAc−hexanes); m.p. 140−142 °C; [α]22
D = −0.0750 (c 0.375, acetone). 1H NMR (δ, 

ppm): 1.02 (s, 3H, J = 7.5, CH3), 1.82−1.93 (m, 1H, CH2CH3), 2.28−2.39 (m, 1H, 

CH2CH3), 4.26 (t, 1H, J = 8.8, OCH2), 4.29−4.38 (m, 1H, NCH), 4.65 (t, 1H, J = 8.8, 

OCH2), 7.36−7.43 (m, 1H, arom. CH), 7.44−7.54 (m, 2H, arom. CH), 8.32 (d, 1H, J = 7.3 

Hz, arom. CH). 13C{1H} NMR (δ, ppm): 9.3 (CH3), 27.5 (CH2CH3), 67.0 (NCH), 73.3 

(OCH2), 126.3 (arom. CH), 127.2 (arom. C), 130.2 (arom. CH), 132.5 (arom. CH), 132.6 

(arom. CH), 133.9 (arom. CO), 167.1 (C=N). Anal. calcd for C22H24Cl2N2O4Pd2·0.5 PhMe: 

C, 43.12; H, 3.97; N, 3.94%. Found: C, 43.06; H, 3.60; N, 3.79%. 

(S,S)-Di-μ-(3-chlorobenzoato)bis{2-[2-(4-tert-butyl)oxazolinyl]phenolato-2-

N,O}dipalladium(II) (101a). The compound was obtained according to the general 

oxidation procedure described above using complex 99a (76.4 mg, 0.111 mmol), m-CPBA 

(53.6 mg, 0.300 mmol) and EtOAc (6 mL). Instead of acetone and LiCl, the crude residue 

was dissolved in PhMe (5 mL), the flask was covered in aluminum foil, and silver m-

chlorobenzoate was added (146 mg, 0.554 mmol). After stirring for 45 min at rt, the 

mixture was filtered through 1 cm of celite. Purification using preparative TLC (1:1:18 
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EtOAc−CH2Cl2−hexanes) afforded 23.0 mg of compound 101a as a red-orange solid 

(22%). Rf = 0.51 (1:4 EtOAc−hexanes); m.p. 148–151 (dec.); [α]D
23 = +256° (c 0.117, 

acetone). IR (ν, cm–1, mineral oil mull): 1620 (C=N), 1560 and 1395 (COO). 1H NMR (δ, 

ppm): 1.25 (s, 9H, (CH3)3C), 3.51 (dd, 1H, J = 8.9, 2.1, NCH), 3.59 (t, 1H, J = 8.9, OCH2), 

4.21 (dd, 1H, J = 8.9, 2.1, OCH2), 6.54 (t, 1H, J ≈ 7.5, arom. CH(4) (para to COPd)), 6.81 

(d, J = 8.2, 1H, arom. CH(6) (ortho to COPd)), 7.12–7.18 (m, 2H, arom. CH(3,5)), 7.27 (t, 

1H, J = 8.0, CH(5) of 3-ClC6H4), 7.40 (dd, 1H, J = 1.8, 8.0, CH(6) of 3-ClC6H4), 7.85 (dt, 

1H, J = 1.8, 8.0, CH(4) of 3-ClC6H4), 7.98 (7, 1H, J = 1.8, CH(2) of 3-ClC6H4). 13C{1H} 

NMR NMR (δ, ppm): 25.9 ((CH3)3C), 35.1 (CH3)3C), 69.8 (NCH), 70.1 (OCH2), 109.7 

(arom. C(2)), 115.3 (arom. CH(4) (para to C(1)OPd)), 119.4 (arom. CH(6) (ortho to 

COPd)), 128.0 (CH(4) of 3-ClC6H4), 129.2 (CH(5) of 3-ClC6H4), 130.2 (CH(2) of 3-

ClC6H4), 130.3 (arom. CH(3)), 132.1 (CH(6) of 3-ClC6H4), 134.0 (arom. C(1) of 3-

ClC6H4), 134.21 (arom. CH(5)), 134.23 (arom. ClC(3) of 3-ClC6H4), 162.1 (arom. OC(1)), 

167.5 (C=N), 177.6 (ArCO2). Anal. calcd for C40H40Cl2N2O8Pd2: C, 50.02; H, 4.20; N, 

2.92%. Found: C, 50.13; H, 4.26; N, 3.00%.  

(S,S)-Di-μ-(3-chlorobenzoato)bis{2-[2-(4-ethyl)oxazolinyl]phenolato-2-

N,O}dipalladium(II) (101b). The compound was obtained according to the general 

oxidation procedure described above using complex 99b (65.0 mg, 0.102 mmol), m-CPBA 

(84.0 mg, 0.487 mmol) and EtOAc (5 mL). Instead of acetone and LiCl, the crude residue 

was dissolved in PhMe (5 mL), the flask was covered in aluminum foil, and silver m-

chlorobenzoate was added (134 mg, 0.510 mmol). After stirring for 45 min at rt, the 

mixture was filtered through 1 cm of celite. Preparative TLC (1:1:18 

EtOAc−CH2Cl2−hexanes) afforded 18.0 mg (19%) of complex 101b as an orange solid. Rf 
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= 0.39 (1:4 EtOAc−hexanes); m.p. 126–128 °C; [α]23
D = –193 (c 0.155 acetone). 1H NMR 

(δ, ppm): 0.94 (s, 9H, CH3), 1.80–1.90 (m, 1H, CH2CH3), 2.08–2.19 (m, 1H, CH2CH3), 

3.72–3.79 (m, 1H, NCH), 3.85 (t, 1H, J = 8.2, OCH2), 4.01 (dd, 1H, J = 4.7, 8.2, OCH2), 

6.52 (dt, 1H, J = 1.0, 7.8, CH(4) (para to COPd)), 6.82 (d, 1H, J ≈ 9, CH(6) (ortho to arom. 

COPd)), 7.08–7.16 (m, 2H, arom. CH(3,5)), 7.27 (t, 1H, J ≈ 8, CH(5) of 3-ClC6H4), 7.39–

7.43 (ddd, 1H, J ≈ 1, 2, 8, CH(6) of 3-ClC6H4), 7.85 (dt, 1H, J ≈ 1, 8, CH(4) of 3-ClC6H4), 

7.98 (t, 1H, J ≈ 2, CH(2) of 3-ClC6H4). 13C{1H} NMR (δ, ppm): 8.8 (CH3), 28.0 (CH2CH3), 

63.9 (NCH), 72.4 (OCH2), 109.5 (arom. C(2)), 115.4 (arom. CH(4) (para to C(1)OPd)), 

119.3 (arom. CH(6) (ortho to COPd)), 128.0 (arom. CH(4) of 3-ClC6H4), 129.2 (arom. 

CH(5) of 3-ClC6H4), 129.8 (arom. CH(3)), 130.2 (CH(2) of 3-ClC6H4), 132.2 (CH(6) of 3-

ClC6H4), 133.8 (CH(5)), 133.9 (arom. C(1) of 3-ClC6H4), 134.1 (arom. ClC(3) of 3-

ClC6H4), 160.9 (arom. OC(1)), 167.0 (C=N), 177.4 (ArCO2). Anal. calcd for 

C36H32N2O8Pd2Cl2: C, 47.81; H, 3.57; N, 3.10%. Found: C, 47.74; H, 3.67; N, 3.09%. 

(S,S)-Bis{2-[2-(4-tert-butyl)oxazolinyl]phenolato-2-N,O}palladium(II) (102a). The 

compound was obtained according to the general oxidation procedure described above 

using complex 99a (26.9 mg, 0.0391 mmol), m-CPBA (18.2 mg, 0.105 mmol) and MeCN 

(2 mL). Preparative TLC (1:1:18 EtOAc−CH2Cl2−hexanes) afforded 4.2 mg (20%) of 

complex 102a as a yellow solid. Rf = 0.63 (1:20 hexanes−CH2Cl2); m.p. 220 °C (dec.) (lit. 

data: 278−279 oC [58]); []D
22 = +770° (lit. data +800o in thf,187 c 0.020, tert-butyl methyl 

ether). IR (, cm–1, mineral oil mull): 1612 (C=N). The 1H NMR spectrum was identical to 

already published data.187 13C{1H} NMR (, ppm): 25.0 ((CH3)3C), 33.8 ((CH3)3C), 65.0 

(NCH), 69.2 (OCH2), 108.7 (arom. C(1)), 113.1 (arom. CH), 120.1 (arom. CH), 128.5 

(arom. CH), 132.8 (arom. CH), 162.3 (arom. OC(2)), 167.5 (C=N). 
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 (S,S)-Bis{2-[2-(4-ethyl)oxazolinyl]phenolato-2-N,O}palladium(II) (102b). The 

compound was obtained according to the general oxidation procedure described above 

using complex 99b (24.6 mg, 0.0389 mmol), m-CPBA (18.2 mg, 0.105 mmol) and MeCN 

(2 mL). Purification using preparative TLC (1:2:7 EtOAc−CH2Cl2−hexanes) afforded 2.9 

mg (11%) of the product as a yellow solid. [The same reaction also provided 100b (9%) 

and 103b (11%).] Rf 0.37 (1:1:18 EtOAc−CH2Cl2−hexanes); m.p. 144–147 °C; [α] D
 23 = 

−49.3 (c 0.125, acetone). IR (v, cm-1, mineral oil mull): 1622 (C=N). The 1H NMR 

spectrum was identical to already published data.189 13C {1H} NMR (δ, ppm): 9.5 (Me), 

28.2 (CH2Me), 62.6 (NCH), 72.4 (OCH2), 109.5 (arom. C(1)), 114.6 (arom. CH), 121.3 

(arom. CH), 129.4 (arom. CH), 133.7 (arom. CH), 162.0 (arom. OC(2)), 167.9 (C=N).  

 (S,S)-Di-µ-chloro{2-[2-(4-tert-butyl)oxazolinyl]phenolato-κ2-N,O}{2-[2-(4-tert-

butyl)oxazolinyl]phenyl-κ2-C,N}dipalladium(II) (103a). The compound was obtained 

according to the general procedure described above using complex 99a (30.3 mg, 0.0440 

mmol), m-CPBA (20.5 mg, 0.119 mmol) and EtOAc (2.5 mL). Purification using 

preparative TLC (1:1:18 EtOAc–CH2Cl2–hexane) followed by recrystallization from 

toluene afforded 4.1 mg (13%) of complex 103a as an orange solid. [The same reaction 

also provided 102a (13%).] Rf = 0.58 (1:2:7 EtOAc−CH2Cl2−hexane); m.p. = 92−93 °C; 

[α]23
D =  +292 (c 0.110, acetone); IR (v, cm-1, mineral oil mull): 1616 (C=N). 1H NMR (δ, 

ppm; signals assigned to the oxygenated 2-phenyl-oxazoline moiety are marked with an 

asterisk): 0.95* (s, 9H, (CH3)3C), 1.35 (s, 9H, (CH3)3C), 4.22 (dd, 1H, J = 7.2, 10.8, OCH2), 

4.29-4.37* (m, 2H, NCH), 4.41* (d, 1H, J = 7.2, OCH2), 4.52-4.63 (m, 2H, NCH), 6.47* 

(ddd, 1H, J = 1.0, 7.0, 8.5, (CH(4) (para to COPd), 6.71* (d, 1H, J = 8.9, arom. CH(6) 

(ortho to COPd)), 7.14* (ddd, 1H, J = 1.9, 7.0, 8.5, arom. CH(5)), 7.40-7.50 (m, 4H, arom. 
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CH), 8.42 (d, 1H, J = 7.2, arom. CH). 13C{1H} NMR (δ, ppm): 26.4* ((CH3)3C), 26.7 

((CH3)3C), 34.5* ((CH3)3C), 35.2 ((CH3)3C), 70.0* (NCH), 70.3* (OCH2), 71.5 (NCH), 

74.4 (OCH2), 110.0* (arom. C(2)), 114.8* (CH(4) (para to COPd)), 121.0* (arom. CH(6) 

(ortho to COPd)), 126.7 (arom. CH), 128.2 (arom. C(2)), 129.8* (arom. CH(3)), 130.1 

(arom. CH), 132.6 (arom. CH), 132.9 (arom. CH), 133.6 (arom. PdC(1)), 134.4* (arom. 

CH(5)), 162.8* (arom. OC(1)), 167.9* (C=N), 168.8 (C=N). Anal. calcd for 

C26H32Cl2N2O3Pd2
.1.5 PhMe: C, 52.04; H, 5.26%. Found: C, 52.48; H, 5.35%. 

(S,S)-Di-μ-chloro{2-[2-(4-ethyl)oxazolinyl]phenolato-2-N,O}{2-[2-(4-

ethyl)oxazolinyl]phenyl-2-C,N}dipalladium(II) (103b). The compound was obtained 

according to the general oxidation procedure described above using complex 99b (100.7 

mg, 0.1593 mmol), m-CPBA (74.2 mg, 0.430 mmol) and EtOAc (7.5 mL). Purification 

using preparative TLC (1:2:7 EtOAc−CH2Cl2−hexanes) followed by recrystallization from 

toluene afforded 31.0 mg (30%) of the product as a yellow solid. [The same reaction also 

provided 102b (4%).] Rf = 0.30 (1:4 EtOAc−hexanes); m.p. 70–71°C; [α]23
D = −179 (c 

0.135, acetone); IR (v, cm-1, mineral oil mull): 1619 (C=N). 1H NMR (δ, ppm; signals 

assigned to the oxygenated 2-phenyl-oxazoline moiety are marked with an asterisk): 0.83* 

(t, 3H, J = 7.4, CH3), 1.13 (t, 3H, J = 7.4, CH3), 1.61–1.70* (m, 1H, CH2CH3), 1.82–1.90* 

(m, 1H, CH2CH3), 2.19–2.28 (m, 1H, CH2CH3), 2.28–2.38 (m, 1H, CH2CH3), 4.28* (dd, 

1H, J = 3.2, 8.6, OCH2), 4.38* (t, 1H, J = 8.6, OCH2), 4.42 (t, 1H, J = 8.0, OCH2), 4.44–

4.50* (m, 1H, NCH), 4.51–4.59 (m, 1H, NCH), 4.73 (dd, 1H, J = 8.4, 9.6, OCH2), 6.48* 

(ddd, 1H, J = 1.2, 7.0, 8.1, arom. CH(4) (para to COPd)), 6.68* (dd, 1H, J = 1.0, 8.5, arom. 

CH(6) (ortho to COPd)), 7.13* (ddd, 1H, J = 1.9, 7.0, 8.5, arom. CH(5)), 7.41–7.46 (m, 

3H, arom. CH), 7.44−7.48* (CH(4)), 8.46–8.51 (m, 1H, arom. CH). 13C{1H} NMR (δ, 
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ppm): 8.4* (CH3), 8.5 (CH3), 27.3* (CH2CH3), 28.0 (CH2CH3), 64.4* (NCH), 66.3 (NCH), 

71.7* (OCH2), 73.1 (OCH2), 109.3* (arom. C(2)), 114.6* (CH(4) (para to COPd)), 120.3* 

(arom. CH(6) (ortho to COPd)), 126.5 (arom. CH), 127.4 (arom. C(2)), 129.3* (arom. 

CH(3)), 130.1 (arom. CH), 132.4 (arom. CH), 132.6 (arom. CH), 133.6 (arom. PdC(1)), 

133.8*(arom. CH(5)), 161.5* (arom. OC(1)), 167.1* (C=N), 167.7 (C=N). Anal. calcd for 

C22H24N2O3Pd2Cl2.1 PhMe: C, 47.05; H, 4.36%. Found: C, 46.87; H, 4.12%. 

 (S,S)-Di-μ-(3-chlorobenzoato)bis{2-[2-(4-tert-butyl)oxazolinyl]phenyl-2-

C,N}dipalladium(II) (106a). The compound was obtained according to the general 

oxidation procedure described above using complex 105a (26.0 mg, 0.0354 mmol), m-

CPBA (16.5 mg, 0.0956 mmol) and EtOAc (2 mL). LiCl was not used to treat the crude 

mixture. Purification using preparative TLC (1:4 EtOAc−hexanes) afforded 9.4 mg (29%) 

of complex 106a as a yellow solid. Rf = 0.51 (4:1 hexanes−ethyl acetate); m.p. 143–146 

°C; [α]D
22 = +160° (c 0.410, acetone); IR (, cm–1, mineral oil mull): 1389 (COO), 1562 

(COO), 1624 (C=N). 1H NMR (, ppm): 0.88 (s, 9H, (CH3)3C), 2.75 (dd, 1H, J = 3.4, 9.2, 

OCH2), 3.13 (t, 1H, J = 9.2, NCH), 4.15 (dd, 1H, J = 3.4, 9.2, OCH2), 7.06−7.17 (three m, 

4H, arom. CH), 7.29 (t, 1H, J = 8, CH(5) of 3-ClC6H4), 7.39 (ddd, 1H, J = 1, 2, 8, CH(6) 

of 3-ClC6H4), 7.99 (dd, 1H, J = 2, 8, CH(4) of 3-ClC6H4), 8.14 (t, 1H, J = 2, CH(2) of 3-

ClC6H4). 13C{1H} NMR (, ppm): 26.1 ((CH3)3C), 35.0 ((CH3)3C), 71.0 (NCH), 71.7 

(OCH2), 124.2 (arom. CH), 126.0 (arom. CH), 128.6 (CH(4) of 3-ClC6H4), 129.4 (CH(5) 

of 3-ClC6H4), 130.7 (CH(2) of 3-ClC6H4), 130.8 (arom. CH), 131.5 (arom. C(2)), 131.5 

(arom. CH), 131.7 (CH(6) of 3-ClC6H4), 134.2 and 136.9 (arom. C(1) and ClC(3) of 3-

ClC6H4), 147.5 (arom. PdC(1)), 173.6 and 174.3 (ArCO2 and C=N). Anal. calcd for 

C40H40Cl2N2O6Pd2: C, 51.74; H, 4.34; N, 3.02%. Found: C, 51.44; H, 4.59; N, 3.06%. 
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(S,S)-Di-μ-(3-chlorobenzoato)bis{2-[2-(4-ethyl)oxazolinyl]phenyl-2-

C,N}dipalladium(II) (106b). The compound was obtained according to the general 

oxidation procedure described above using complex 99b (28.3 mg, 0.0448 mmol), m-

CPBA (19.4 mg, 0.112 mmol) and EtOAc (2.2 mL) in a 30-min reaction. Purification by 

preparative TLC (1:1:18 EtOAc−CH2Cl2−hexanes) afforded 8.1 mg (22%) of complex 

106b as a yellow solid. Rf = 0.40 (4:1 hexanes−ethyl acetate); m.p. 195–199 °C (dec.); 

[α]D
23 −216° (c 0.199, acetone) IR (v, cm-1, mineral oil mull): 1377 (COO), 1561 (COO), 

1630 (C=N). 1H NMR (, ppm): 0.78 (t, 3H, J = 7.5, CH2), 1.52 (m, 1H, CH2CH3), 1.63 

(m, 1H, CH2CH3), 3.09 (m, 1H, NCH), 3.54 (t, 1H, J = 9.1, OCH2), 3.98 (dd, 1H, J = 6.0, 

9.1, OCH2), 7.04–7.13 (m, 4H, arom. CH), 7.31 (t, 1H, J = 8.0, CH(5) of 3-ClC6H4), 7.40 

(ddd, 1H, J = 1.2, 1.8, 8.0 CH(6) of 3-ClC6H4), 8.02 (dt, 1H, J = 1.2, 8.0, CH(4) of 3-

ClC6H4), 8.15 (t, 1H, J = 1.8, CH(2) of 3-ClC6H4). 13C{1H} NMR (, ppm): 8.5 (CH3), 

26.5 (CH3CH2), 62.2 (NCH), 74.2 (OCH2), 123.9 (arom. CH), 125.6 (arom. CH), 128.2 

(CH(4) of 3-ClC6H4), 129.2 (CH(5) of 3-ClC6H4), 130.2 (CH(2) of 3-ClC6H4), 130.5 

(arom. CH), 131.1 (arom. C(2)), 131.3 (arom. CH), 131.4 (CH(6) of 3-ClC6H4), 134.0 and 

136.6 (arom. C(1) and ClC(3) of 3-ClC6H4), 147.6 (arom. PdC(1)), 173.6 and 173.9 

(ArCO2 and C=N). Anal. calcd for C36H32N2O6Pd2Cl2: C, 49.56; H, 3.70; N, 3.21%. Found: 

C, 49.21; H, 3.90; N, 3.38%. 
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APPENDIX: Spectra and X-Ray Crystallographic Data 
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Figure 6. 1H NMR spectrum of iminophosphine 78. 
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Figure 7. 31P{1H} NMR spectrum of iminophosphine 78. 
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Figure 8. 1H NMR spectrum of µ-chloro--diphenylphosphido complex 79. 
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Figure 9. 31P{1H} NMR spectrum of µ-chloro--diphenylphosphido complex 79. 
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Figure 10. 1H NMR spectrum of terminal phosphido complex 80 in C6D6. 
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Figure 11. 13C{1H} NMR spectrum of terminal phosphido complex 80 in C6D6. 
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Figure 12. 31P{1H} NMR spectrum of terminal phosphide complex 80 in C6D6. 
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Figure 13. 1H NMR spectrum of aminophosphine oxide 82. 
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Figure 14. 31P{1H} NMR spectrum of aminophosphine 82. 
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Figure 15. 1H NMR spectrum of diphosphine oxide 84. 
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Figure 16. 1P{1H} NMR spectrum of diphosphine oxide 84. 
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Figure 17. 1H NMR spectrum of oximophosphine 49a. 
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Figure 18. 31P{1H} NMR spectrum of oximophosphine 49a. 
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Figure 19. 1H NMR spectrum of oximophosphine 87. 
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Figure 20. 31P{1H} NMR spectrum of oximophosphine 87. 
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Figure 21. 1H NMR spectrum of oximophosphine oxide 88. 
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Figure 22. 31P{1H} NMR spectrum of oximophosphine oxide 88. 
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Figure 23. 1H NMR spectrum of terminal phosphido complex 89. 
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Figure 24. 13C{1H} NMR spectrum of terminal phosphido complex 89. 
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Figure 25. 31P{1H} NMR spectrum of terminal phosphido complex 89. 



129 

 

 

 

 

  

          

 

 

complex 80 
complex 80 

aminophosphine 78 



130 

Figure 26. 31P NMR spectra of 2.5 equivalents HPPh2/CPC 77/Cs2CO3 in toluene-d8 

frozen to –95 °C and recorded at rt. (LC = cyclopalladated 2-tert-butyl-4,4-dimethyl-2-
oxazoline) 
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Figure 27. 31P NMR spectra of 4.5 equivalents HPPh2/CPC 77/Cs2CO3 in toluene-d8 

frozen to –95 °C and recorded at rt. (LC = 2-tert-butyl-4,4-dimethyl-2-oxazoline) 
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Figure 28. 1H NMR spectrum of aminophosphine 42b.  
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Figure 29. 13C{1H} NMR spectrum of aminophosphine 42b.   

 

Figure 30. 31P{1H} NMR spectrum of aminophosphine 42b. 



134 

 

 
Figure 31. 1H NMR spectrum of aminophosphine 42c. 
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Figure 32. 13C{1H} NMR spectrum of aminophosphine 42c. 
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Figure 33. 31P{1H} NMR spectrum of aminophosphine 42c. 
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Figure 34. 1H NMR spectrum of mononuclear complex 90d. 
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Figure 35. 13C{1H} NMR spectrum of mononuclear complex 90d. 
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Figure 36. 31P NMR spectrum of mononuclear complex 90d. (Proton-coupled 31P NMR 

signal in expansion.) 
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Figure 37. 1H NMR spectrum of mononuclear complex 90e. 
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Figure 38. 13C{1H} NMR spectrum of mononuclear complex 90e. 
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Figure 39. 31P{1H} NMR spectrum of mononuclear complex 90e. (Proton-coupled 31P 

NMR signal in expansion.) 
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Figure 40. 1H NMR spectrum of monophosphido-bridged complex 91d. 
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Figure 41. 13C{1H} NMR spectrum of monophosphido-bridged complex 91d.  
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Figure 42. 31P{1H} NMR spectrum of monophosphido-bridged complex 91d. 
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Figure 43. 1H NMR spectrum of aminophosphine 49b. 
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Figure 44. 13C{1H} NMR spectrum of aminophosphine 49b. 
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Figure 45. 31P{1H} NMR spectrum of aminophosphine 49b. 
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Figure 46. 1H NMR spectrum of aminophosphine 49c. 
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Figure 47. 13C{1H} NMR spectrum of aminophosphine 49c. 
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Figure 48. 31P{1H} NMR spectrum of aminophosphine 49c. 
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Figure 49. 1H NMR spectrum of aminophosphine oxide 49d’. 
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Figure 50. 13C{1H} NMR spectrum of aminophosphine oxide 49d’. 
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Figure 51. 31P{1H} NMR spectrum of aminophosphine 49d’. 
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Figure 52. 1H NMR spectrum of complex 92d. 
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Figure 53. 13C{1H} NMR spectrum of complex 92d. 
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Figure 54. 31P{1H} NMR spectrum of mononuclear complex 92d. (Proton-coupled 31P 

NMR signal in expansion.) 
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Figure 55. 1H NMR spectrum of mononuclear complex 92e. 
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Figure 56. 13C{1H} NMR spectrum of mononuclear complex 92e.  
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Figure 57. 31P{1H} NMR spectrum of mononuclear complex 92e. (Proton-coupled 31P 
NMR signal in expansion.) 
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Figure 58. 1H NMR spectrum of mononuclear complex 92f.  
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Figure 59. 13C{1H} NMR spectrum of mononuclear complex 92f.  



163 

 

Figure 60. 31P{1H} NMR spectrum of mononuclear complex 92f. (Proton-coupled 31P 
NMR signal in expansion.) 
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Figure 61. 1H NMR of monophosphido-bridged complex 93d. 
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Figure 62. 13C{1H} NMR spectrum of monophosphido-bridged complex 93d. 
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Figure 63. 31P{1H} NMR spectrum of monophosphido-bridged complex 93d. 
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Figure 64. 1H NMR spectrum of monophosphido-bridged complex 93e. 
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Figure 65. 13C{1H} NMR spectrum of monophosphido-bridged complex 93e. 
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Figure 66. 31P{1H} NMR spectrum of monophosphido-bridged complex 93e. 
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Figure 67. 1H NMR spectrum of 10:1 mixture of monophosphido-bridged complex 93f 
trinuclear complex 94f. 
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Figure 68. 13C{1H} NMR spectrum of 10:1 mixture of monophosphido-bridged complex 
93f trinuclear complex 94f. 
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Figure 69. 31P{1H} NMR spectrum of 10:1 mixture of monophosphido-bridged complex 
93f trinuclear complex 94f. 

 



173 

 

 
Figure 70. 1H NMR spectrum of monophosphido-bridged complex 96f.  
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Figure 71. 13C{1H} NMR spectrum of monophosphido-bridged complex 96f. 
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Figure 72. 31P{1H} NMR spectrum of monophosphido-bridged complex 96f. 
 



176 

 

 
Figure 73. 1H NMR spectrum of cyclopalladated complex 97.  
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Figure 74. 13C{1H} NMR spectrum of cyclopalladated complex 97. 
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Figure 75. 1H NMR spectrum of monophosphido-bridged complex 98f. 
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Figure 76. 13C{1H} NMR spectrum of monophosphido-bridged complex 98f. 

 



180 

 

Figure 77. 31P{1H} NMR spectrum of monophosphido-bridged complex 98. 
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Table 18. Crystal, data collection, and refinement parameters for 92d. 
 

Parameters Complex 92d 

Molecular Formula C29H41ClNOPPd 
Formula Weight 592.45 
Space Group  P21 
Crystal System  
T, K 110 
a, Å 8.3398(4) 
b, Å 16.7354(8) 
c, Å 20.1585(10) 
α, °  90 
β, ° 90 
, ° 90 
Volume, Å3 2813.5(2) 
Z 4 
λ, Å 0.71073 
ρ (calc), g cm–3 1.399 
Absorpt. Coeff., mm-1 
CoeffCoeffimm–1 

0.833 
Crystal Color, Morph. Colorless, Needle 
Crystal Size, mm3  
F(000) 1232.0 
 max 30.534 
Index Ranges  
Refl. Collected  
Independ. Refl. (Rint) 7515 (0.0334) 
Observed Refl.  
Data/Restraints/Param.  
Compl. to   
GOF (F2)  
R(F) [I > 2σ(I)]  
R indices (all data)  
Larg. Diff. Peak, Hole 

–
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Figure 78. 1H NMR spectrum of di-µ-chloro complex 100a. 
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Figure 79. 13C{1H} NMR spectrum of di-µ-chloro complex 100a. 
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Figure 80. 1H NMR spectrum of di-μ-oxo complex 100b. 
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Figure 81. 13C{1H}  NMR spectrum of di-μ-oxo complex 100b. 
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Figure 82. 1H NMR spectrum of di-µ-3-chlorobenzoato complex 101a. 
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Figure 83. 13C{1H} NMR spectrum of di-µ-3-chlorobenzoato complex 101a. 
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Figure 84. 1H NMR spectrum of di-µ-3-chlorobenzoato complex 101b. 
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Figure 85. 13C{1H} NMR spectrum of di-µ-3-chlorobenzoato complex 101b. 
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Figure 86. 1H NMR spectrum of bis(2N,O)Pd complex 102a. 
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Figure 87. 13C{1H} NMR spectrum of bis(2N,O)Pd complex 102a. 
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Figure 88. 1H NMR spectrum of bis(2N,O)Pd complex 102b. 
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Figure 89. 13C{1H} NMR spectrum of bis(2N,O)Pd complex 102b. 
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Figure 90. 1H NMR spectrum of dimeric mono-insertion complex 103a 
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Figure 91. 13C{1H} NMR spectrum of dimeric mono-insertion complex 103a 
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Figure 92. 1H NMR spectrum of dimeric mono-insertion complex 103b 
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Figure 93. 13C{1H} NMR spectrum of dimeric mono-insertion complex 103b 
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Figure 94. 1H NMR spectrum of di-µ-chlorobenzoato complex 106a. 
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Figure 95. 13C{1H} NMR spectrum of di-µ-chlorobenzoato complex 106a. 
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Figure 96. 1H NMR spectrum of di-µ-chlorobenzoato complex 106b. 
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Figure 97. 13C{1H} NMR spectrum of di-µ-chlorobenzoato complex 106b. 
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