University of North Dakota

January 2015

# Synthesis And Applications Of Cyclopalladated Complexes Containing An (sp3)c-pd Bond 

Gerard Chepnda Dickmu

Follow this and additional works at: https:// commons.und.edu/theses

## Recommended Citation

Dickmu, Gerard Chepnda, "Synthesis And Applications Of Cyclopalladated Complexes Containing An (sp3)c-pd Bond" (2015).
Theses and Dissertations. 1889.
https://commons.und.edu/theses/1889

# SYNTHESIS AND APPLICATIONS OF CYCLOPALLADATED COMPLEXES CONTAINING AN $\left(s p^{3}\right) \mathrm{C}-\mathrm{Pd}$ BOND 

By<br>Gerard C. Dickmu<br>Bachelor of Science, University of Buea, 2008

A Dissertation<br>Submitted to the Graduate School<br>of the<br>University of North Dakota<br>In partial fulfillment of the requirements<br>for the degree of<br>Doctor of Philosophy

Grand Forks, North Dakota

December
2015

This dissertation, submitted by Gerard Chepnda Dickmu in partial fulfillment of the requirements for the degree of Doctor of Philosophy from the University of North Dakota, has been read by the Faculty Advisory Committee under whom the work has been done, and is hereby approved.

## Irina P. Smoliakone

Dr. Trina P. Smoliakova


Dr. AleXei Noxikov


Dr. Mark R. Hoffman


## Dr. Katherine Sukalski

This dissertation meets the standards for appearance, conforms to the style and format requirements of the Graduate School at the University of North Dakota, and is hereby approved.


Wayne Swisher
Dean of the Graduate School


## PERMISSION

| Title | SYNTHESIS AND AP <br> COMPLEXES CONTA |
| :--- | :--- |
| Department | Chemistry |
| Degree | Doctor of Philosophy |

In presenting this dissertation in partial fulfillment of the requirements for a graduate degree from the University of North Dakota, I agree that the library of this University shall make it freely available for inspection. I further agree that permission for extensive copying for scholarly purposes may be granted by the professor who supervised my dissertation work or, in her absence, by the chairperson of the department or the dean of the Graduate School. It is understood that any copying or publication or other use of this dissertation or part thereof for financial gain shall not be allowed without my written permission. It is also understood that due recognition shall be given to me and to the University of North Dakota in any scholarly use which may be made of any material in my dissertation.

## Gerard Chepnda Dickmu

Signature

September 18, 2015
Date

TABLE OF CONTENTS
LIST OF FIGURES ..... viii
LIST OF TABLES ..... xi
LIST OF CHARTS ..... xii
LIST OF SCHEMES. ..... xiv
LIST OF ABBREVIATIONS ..... xvii
ABSTRACT ..... xxi
CHAPTER
I. INTRODUCTION ..... 1
I.1. Cyclopalladated Complexes Containing an $\left(s p^{3}\right) \mathrm{C}-\mathrm{Pd}$ Bond ..... 1
I.2. Classification of CPCs with an $\left(s p^{3}\right) \mathrm{C}-\mathrm{Pd}$ Bond ..... 3
I.2.1. $C N$-Palladacycles ..... 5
I.2.2. CP-Palladacycles ..... 8
I.2.3. CS-Palladacycles ..... 10
I.2.4. CO -Palladacycles ..... 11
I.2.5. CC-Palladacycles ..... 11
I.2.6. Pincer Palladacycles ..... 12
I.2.7. Spiro Palladacycles ..... 13
I.3. Synthesis of Palladacycles Containing an $\left(s p^{3}\right) \mathrm{C}-\mathrm{Pd}$ Bond ..... 14
I.3.1. Pd(II)-Promoted C-H Bond Activation ..... 14
I.3.2. Oxidative Addition ..... 23
I.3.3. Transmetalation ..... 24
I.3.4. Nucleophilic Addition ..... 27
I.3.5. Miscellaneous Methods ..... 27
I.4. Applications of Palladacycles Containing an $\left(s p^{3}\right) \mathrm{C}-\mathrm{Pd}$ Bond ..... 30
I.4.1. Use as Catalysts or Precatalysts ..... 30
I.4.2. Ligand Modifications Using Reactions at the Pd-C Bond ..... 36
II. GOALS OF THE STUDY ..... 38
II.1. Types of Optically Active Cyclopalladated Complexes ..... 38
II.1.1. Optically Active Cyclopalladated Complexes Containing an $\left(s p^{2}\right) \mathrm{C}-\mathrm{Pd}$ Bond ..... 39
II.1.2. Optically Active Cyclopalladated Complexes with an $\left(s p^{3}\right) \mathrm{C}-\mathrm{Pd}$ Bond ..... 41
II.2. Synthesis of Optically Active Cyclopalladated Complexes ..... 41
II.2.1. Cyclopalladation of Enantiopure Preligands ..... 41
II.2.2. Synthesis of Optically Active Cyclopalladated Complexes through Chiral Resolution ..... 43
II.2.3. Synthesis of Optically Active CPCs through Enantioselective Palladation ..... 44
II.3. Applications of Optically Active Cyclopalladated Complexes ..... 45
II.4. Goals of the Present Study ..... 46
III. RESULTS AND DISCUSSION ..... 49
III.1. Synthesis of CPCs ..... 49
III.1.1. Oxime of D-Camphor ..... 49
III.1.2. $N, N$-Dimethylhydrazone of D-Camphor ..... 57
III.1.3. $N, N$-Diphenylhydrazone of D-Camphor ..... 66
III.1.4. Phenylhydrazone of D-Camphor ..... 67
III.1.5. $O$-(Diphenylphosphinyl)oxime of D-Camphor ..... 68
III.1.6. tert-Butylimine of D-Camphor ..... 69
III.1.7. Thiocamphor ..... 69
III.1.8. Oxime of L-Fenchone ..... 70
III.2. Reactions of $\mathrm{KPPh}_{2}$ with CPCs having the $\left(s p^{3}\right) \mathrm{C}-\mathrm{Pd}$ Bond ..... 77
CONCLUSIONS ..... 92
VI. EXPERIMENTAL ..... 93
VI.1. General Methods and Materials ..... 93
VI.2. Preparation of D-Camphor Derivatives and Their Cyclopalladation ..... 94
VI.2.1. Synthesis and Characterization of New Compounds ..... 94
VI.3. Preparation of L-Fenchone Derivatives and Their Cyclopalladation ..... 99
VI.4. Preparation of CPCs and Their Reactions with $\mathrm{KPPh}_{2}$ ..... 104
III.4.1. Synthesis and Characterization of New Compounds ..... 104
APPENDICES
APPENDIX A ..... 113
APPENDIX B ..... 116
APPENDIX C ..... 119
APPENDIX D ..... 122
APPENDIX E ..... 125

## LIST OF FIGURES

Figure ..... Page

1. $C Y$ - and $Y C Y$-palladacycles. ..... 3
2. Trans and cis geometric isomers of CPCs. ..... 5
3. ORTEP drawing of the molecular structure of CPC 177. Thermal ellipsoids are shown at the $50 \%$ probability level. ..... 55
4. Expected and observed NOE effect upon irradiation of the $\mathrm{NMe}_{2}$ group on 185 ..... 58
5. ORTEP drawing of the molecular structure of CPC 186. Thermal ellipsoids are shown at the $50 \%$ probability level. ..... 63
6. ORTEP drawing of the molecular structure of complex 199a. Thermal ellipsoids are shown at the $50 \%$ probability level. ..... 75
7. ORTEP drawing of the molecular structure of complex 199b. Thermal ellipsoids are shown at the $50 \%$ probability level. ..... 75
8. Structure of complex 209 ..... 83
9. Oxide of 205. ..... 90
10. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 7 4 b}$. ..... 126
11. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathbf{1 7 4 b}$. ..... 127
12. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 7 7}$ ..... 128
13. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathbf{1 7 7}$. ..... 129
14. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 7 8}$ ..... 130
15. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathbf{1 7 8}$. ..... 131
16. ${ }^{1} \mathrm{H}$ NMR spectrum of endo- $\mathbf{1 8 8}$. ..... 132
17. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of endo-188. ..... 133
18. ${ }^{1} \mathrm{H}$ NMR spectrum of exo- $\mathbf{1 8 8}$ ..... 134
19. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of exo-188. ..... 135
20. ${ }^{1} \mathrm{H}$ NMR spectrum of 196 a . ..... 136
21. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of 196a. ..... 137
22. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 9 6 b}$. ..... 138
23. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathbf{1 9 6 b}$. ..... 139
24. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 9 8 a}$ ..... 140
25. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of 198a. ..... 141
26. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 9 8 b}$ ..... 142
27. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathbf{1 9 8 b}$. ..... 143
28. ${ }^{1} \mathrm{H}$ NMR spectrum of 199 a. ..... 144
29. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathbf{1 9 9 a}$. ..... 145
30. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 9 9 b}$. ..... 146
31. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathbf{1 9 9 b}$. ..... 147
32. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{2 0 5}$ ..... 148
33. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathbf{2 0 5}$. ..... 149
34. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathbf{2 0 5}$. ..... 150
35. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{2 0 6}$ ..... 151
36. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of 206. ..... 152
37. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of 206 ..... 153
38. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{2 1 0}$ ..... 154
39. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathbf{2 1 0}$. ..... 155
40. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathbf{2 1 0}$. ..... 156
41. ${ }^{1} \mathrm{H}$ NMR spectrum of 211 ..... 157
42. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of 211 . ..... 158
43. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of 211 . ..... 159
44. ${ }^{1} \mathrm{H}$ NMR spectrum of 214 ..... 160
45. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of 214. ..... 161
46. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of 214 ..... 162
47. ${ }^{1} \mathrm{H}$ NMR spectrum of 216 ..... 163
48. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathbf{2 1 6}$. ..... 164
49. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathbf{2 1 6}$. ..... 165
50. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{2 2 0}$ ..... 166
51. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathbf{2 2 0}$. ..... 167
52. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathbf{2 2 0}$. ..... 168
53. ${ }^{1} \mathrm{H}$ NMR spectrum of 224 ..... 169
54. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of 224 . ..... 170
55. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of 224 . ..... 171
56. ${ }^{1}$ H NMR spectrum of 226 ..... 172
57. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathbf{2 2 6}$. ..... 173
58. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathbf{2 2 6}$ ..... 174

## LIST OF TABLES

Table Page

1. Cyclopalladation of camphor $\mathrm{N}, \mathrm{N}$-dimethylhydrazone $\mathbf{1 8 5}$. ..... 59
2. Crystal data, data collection, structure solution and structure refinement for $\mathbf{1 7 7}$ ..... 113
3. Selected bond lengths for $\mathbf{1 7 7}$ ..... 114
4. Selected angles for 177. ..... 114
5. Crystal data, data collection, structure solution and structure refinement for 156. ..... 116
6. Selected bond lengths for $\mathbf{1 8 6}$. ..... 117
7. Selected angles for 186. ..... 117
8. Crystal data, data collection, structure solution and structure refinement for 199a ..... 119
9. Selected bond lengths for 199a ..... 120
10. Selected angles for 199a. ..... 120
11. Crystal data, data collection, structure solution and structure refinement for 199b. ..... 122
12. Selected bond lengths for 199b ..... 123
13. Selected angles for 199b ..... 123

## LIST OF CHARTS

## Chart

## Page

1. Examples of benzylic CN -palladacycles. ..... 4
2. Aliphatic $C N$-palladacycles with different directing groups. ..... 8
3. Benzylic $C P$-palladacycles. ..... 9
4. Examples of $C P$-palladacycles. ..... 9
5. Examples of $C S$-palladacycles. ..... 10
6. Example of CO -palladacycles. ..... 11
7. Examples of $C C$-palladacycles ..... 12
8. Examples of pincer palladacycles ..... 13
9. Examples of spiro palladacycles. ..... 14
10. Examples of optically active CPCs containing 1) a chiral center $\left[\left(R_{C}\right) \mathbf{- 1 4 1},\left(R_{C}\right)-\mathbf{8},\left(S_{P}, S_{P}\right)\right.$-56 and $\left.\left.\left(S_{P l}, R_{C}\right)-142\right], 2\right)$ chiral plane $\left[\left(S_{P l}, R_{C}\right)-142\right]$ and 3) chiral axis $\left[\left(R_{a}, R_{a}\right)-\mathbf{1 3 1}\right]$. ..... 38
11. Examples of optically active CPCs with an $\left(s p^{2}\right) \mathrm{C}-\mathrm{Pd}$ bond. ..... 39
12. Examples of optically active pincer complexes. ..... 40
13. Examples of optically active complexes containing an $\left(s p^{3}\right) \mathrm{C}-\mathrm{Pd}$ bond. ..... 41
14. Known CPCs containing the D-camphor carbon framework. ..... 49
15. Examples of chloro-bridged dimeric $C N$-CPCs with the $\left(s p^{3}\right) \mathrm{C}-\mathrm{Pd}$ bond and a known molecular structure ..... 55
16. Possible isomers of CPC 186. ..... 60
17. Examples of chloro-bridged dimeric $C N$-CPCs with an $\left(s p^{3}\right) \mathrm{C}-\mathrm{Pd}$ bond and a known molecular structure. ..... 64
18. Examples of $\mathrm{PPh}_{3}$ adducts of $C N$-CPCs with the $\left(s p^{3}\right) \mathrm{C}-\mathrm{Pd}$ bond and a known molecular structure.

## LIST OF SCHEMES

Scheme
Page

1. Synthesis of compound $\mathbf{2}$ and CPC 3 from azobenzene. ................................................ 1
2. Synthesis of CPCs from N,N-dimethyl-2-methylallylamine. .......................................... 2
3. Synthesis of aliphatic CPC 15 from 2-tert-butyl-4,4-dimethyl-2-oxazoline 53. .......... 15
4. Synthesis of the optically active $\mathrm{P}^{*}$-chiral benzylic $C P-\mathrm{CPC}(S p S p)-56 . . . . . . . . . . . . . . . . . . . . ~ 16$
5. Trancyclopalladation of 8-methylquinoline with CPC 58 on $\mathrm{SiO}_{2} . \ldots \ldots . . . . . . . . . . . . . . . . . . . . . . . . ~ 17 ~$
6. Synthesis of palladacycles $\mathbf{6 2}$ and 63 from acetophenone
N, N-dimethylhydrazone $\mathbf{6 1} . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ~$
18
7. Solvent effect on the cyclopalladation of preligand 64. ............................................... 19
8. Solvent effect on the cyclopalladation of preligand 67 by $\mathrm{PdCl}_{2}$................................. 19
9. Temperature effect on the cyclopalladation of preligand 70 using $\operatorname{Pd}(\mathrm{OAc})_{2} . \ldots . . . . . . . . . .20$
10. Effect of reaction conditions on the cyclopalladation of preligand 73. ...................... 21
11. Palladation of preligand 76. ........................................................................................ 21
12. Regioselectivity in the palladation of 3-methyl-2-pentanone O-methyl oxime.......... 22
13. Selectivity in palladation of aliphatic amines $\mathbf{8 3}$ and 85. ........................................... 23
14. Synthesis of the aliphatic palladacycle 30 by oxidative addition. .............................. 24
15. Synthesis of the silicon-containing aliphatic $C N$-palladacyle 90
by transmetallation..................................................................................................... 25
16. Synthesis of the silicon-containing alkyl palladacyle 94
by transmetallation................................................................................................... 25
17. Synthesis of the ketoxime-based aliphatic palladacyle $\mathbf{9 6}$ by transmetallation ..... 26
18. Synthesis of the $C C$-palladacyle $\mathbf{9 9}$ by transmetallation. ..... 26
19. Synthesis of palladacyle $\mathbf{3 1}$ by nucleophilic addition. ..... 27
20. Synthesis of palladacycle $\mathbf{1 0 3}$ by carbene insertion at the $\mathrm{C}-\mathrm{Pd}$ bond of CPC 102 ..... 28
21. Synthesis of palladacycle $\mathbf{1 0 7}$ by a rearrangement of CPC $\mathbf{1 0 6}$ ..... 29
22. Synthesis of palladacycle $\mathbf{1 1 1}$ by modification of the preformed Pd-aryl unit 109 ..... 29
23. Catalytic activity of CPC $\mathbf{1 1 4}$ in Heck reaction. ..... 31
24. Catalytic activity of PCP pincer CPCs in Heck reaction. ..... 32
25. Catalytic activity of CPC 114 in Suzuki reaction. ..... 33
26. Catalytic activity of CPC $\mathbf{1 2 4}$ in Suzuki-Miyaura reaction. ..... 33
27. Catalytic activity of CPC 127 in Suzuki-Miyaura reaction. ..... 34
28. Reaction of oxabicyclic alkenes with terminal alkynes using CPCs. ..... 35
29. Palladium-catalyzed homocoupling of 4-iodotoluene using CPC 114. ..... 36
30. Synthesis of compound $\mathbf{1 4 0}$ using CPC $\mathbf{1 3 8}$ as a reactant. ..... 36
31. Synthesis of compound 141 by the ligand modification method. ..... 37
32. Synthesis of CPC $\left(S_{C}\right)$ - $\mathbf{1 6 0}$ from $\left(S_{C}\right) \mathbf{- 1 6 3}$. ..... 42
33. Synthesis of the optically active CPCs 44 by chiral resolution of rac-44. ..... 44
34. Synthesis of the optically active CPC $\mathbf{1 7 0}$ via enantioselective palladation. ..... 45
35. Proposed synthesis and applications of D-camphor-derived CPCs. ..... 48
36. Proposed synthesis and applications of L-fenchone-derived CPCs. ..... 48
37. Preparation of oxime $\mathbf{1 7 4}$ from D-camphor. ..... 51
38. Preparation of the coordination complex 175. ..... 51
39. Preparation of dimeric and mononuclear complexes 177 and 178 ..... 52
40. Synthesis of camphor $N, N$-dimethylhydrazone 185. ..... 58
41. Cyclopalladation of camphor $N, N$-dimethylhydrazone 185. ..... 59
42. Reaction of camphor $N, N$-dimethylhydrazone CPC 186 with $\mathrm{PPh}_{3}$. ..... 61
43. Reaction of the camphor $N, N$-dimethylhydrazone CPC 186 with $\mathrm{Na}(\mathrm{acac})$. ..... 62
44. D-Camphor-derived palladacycles with the $\left(s p^{2}\right) \mathrm{C}-\mathrm{Pd}$ bond. ..... 66
45. Synthesis of camphor $\mathrm{N}, \mathrm{N}$-diphenylhydrazone 191 ..... 67
46. Synthesis of camphor phenylhydrazone 192. ..... 68
47. Synthesis of $O$-(diphenylphosphinyl)oxime of D-camphor 193 ..... 68
48. Failed attempt to obtain tert-butylimine of D-camphor 194. ..... 69
49. Synthesis and the failed cyclopalladation of thiocamphor 195. ..... 70
50. Preparation of preligands 196a,b from L-fenchone ..... 71
51. Preparation of L-fenchone-derived CPCs 198a,b ..... 72
52. Formation of bidentate ligands by reacting $\mathrm{MPPh}_{2}$ with dimeric CPCs containing an $\left(s p^{2}\right) \mathrm{C}-\mathrm{Pd}$ bond. ..... 80
53. Reaction of CPC 177 with $\mathrm{KPPh}_{2}$ ..... 81
54. Proposed reaction of dimer 207 with phosphine 205 ..... 83
55. Reactions of the fenchone-derived CPC 198 with $\mathrm{KPPh}_{2}$. ..... 85
56. Reactions of CPCs 212 with $\mathrm{KPPh}_{2}$. ..... 86
57. Reaction of $\mathrm{CPC} \boldsymbol{\mu}$ - $\mathbf{O A c} \mathbf{- 2 1 2}$ with 4.5 equiv. of $\mathrm{KPPh}_{2}$ ..... 87
58. Formation of compound 218 in the reaction of CPC 217 with $\mathrm{KPPh}_{2}$. ..... 87
59. Reaction of complexes 219 and $\boldsymbol{\mu}$-OAc-219 with $\mathrm{KPPh}_{2}$ ..... 88
60. Reaction of CPC 222 with $\mathrm{KPPh}_{2}$ ..... 88

## LIST OF ABBREVIATIONS

| Ac | Acetyl |
| :--- | :--- |
| Acac | Acetylacetone |
| Ar | Aryl |
| Bn | Benzyl |
| Boc | tert-Butyloxycarbonyl |
| ${ }^{\text {Bu }}$ Bu | tert-Butyl |
| COD | Cyclooctadiene |
| CPC | Cyclopalladated complex |
| Cy | Diazabicyclooctane |
| DABCO | Dibenzylideneacetone |
| dba | Diazabicycloundecene |
| DBU | 1,3-Dicyclohexylcarbodiimide |
| DCC | Dichloromethane |
| DCM | Diastereomeric excess |
| de | Diisopropylethylamine |
| DIPEA | Dimethylacetamide |
| DMA | DME |


| ee | Enantiomeric excess |
| :---: | :---: |
| Et | Ethyl |
| EPR | Electron paramagnetic resonance |
| GC | Gas chromatography |
| HMPA | Hexamethylphosphine |
| HPLC | High performance liquid chromatography |
| $\mathrm{KPPh}_{2}$ | Potassium diphenylphosphide |
| Me | Methyl |
| Mes | 2,4,6-Trimethylbenzyl |
| Naph | Naphthyl |
| NMP | N -methyl-2-pyrrolidone |
| NMR | Nuclear magnetic resonance |
| Ph | Phenyl |
| PHOX | Phosphino-oxazoline |
| Pr | Propyl |
| ${ }^{i} \mathrm{Pr}$ | Isopropyl |
| TBS | tert-Butyldimethylsilyl |
| TEA | Triethylamine |
| Tf | Trifluoromethanesulfonyl |
| TfO | Trifluoromethanesulfonate |
| TLC | Thin-layer chromatography |
| THF | Tetrahydrofuran |
| TMEDA | $N, N, N^{\prime}, N^{\prime}$-Tetramethylethylenediamine |

TMS Tetramethylsilane
TOF Turnover frequency
Tol Tolyl
Xyl
3,5-Dimethylphenyl

## ACKNOWLEDGEMENTS

I am grateful to my supervisor Dr. Irina P. Smoliakova, and my graduate advisory committee for their guidance and support throughout my pursuit of this degree. I am thankful to the UND Chemistry Department, Graduate School and ND EPSCoR for all the financial support they provided.

I thank my family especially my parents for their encouragement to connect my life with science and for all they had to give up in order to let me follow my goals.

I thank the past and current members of Dr. Smoliakova's research group, especially Valeria Stepanova and Nicholas Korte, for everything they have done to help me in the beginning of my graduate student journey.


#### Abstract

Cyclopalladated complexes (CPCs) possess a number of important properties and have been used in various application studies. However, preparation and uses of optically active CPCs with an $\left(s p^{3}\right) \mathrm{C}-\mathrm{Pd}$ bond have not been thoroughly investigated.

In this dissertation, the synthesis and applications of new enantiopure CPCs derived from naturally occurring and optically active D-camphor and L-fenchone are described. The preparation of these CPCs, which contain an $\left(s p^{3}\right) \mathrm{C}-\mathrm{Pd}$ bond, was accomplished by cyclopalladation of D-camphor $O$-methyloxime, L-fenchone $O$-methyloxime, L-fenchone oxime and camphor $\mathrm{N}, \mathrm{N}$-dimethylhydrazone using $\mathrm{Pd}(\mathrm{II})$ salts such as $\mathrm{Pd}(\mathrm{OAc})_{2}$ and $\operatorname{Pd}(\mathrm{MeCN})_{2} \mathrm{Cl}_{2}$.


Phosphination reactions of CPCs derived from D-camphor $O$-methyloxime and Lfenchone $O$-methyloxime, as well as other $C N$-, $C S$ - and $C P$-dimeric CPCs having an $\left(s p^{3}\right) \mathrm{C}-\mathrm{Pd}$ bond, were investigated using $\mathrm{KPPh}_{2}$. These alternative CPCs were obtained from 8 -methylquinoline, tri-( $O$-tolyl)phosphine, 2,6-dimethylthioanisole and trimesitylphosphine. In each case, when the CPC reacted with 4.5 equiv. of $\mathrm{KPPh}_{2}$, the corresponding $N P$-, $S P$ - and $P P$-ligands were isolated in 13-51\% yield. Reactions using only 1 equiv. of $\mathrm{KPPh}_{2}$ gave $\mu$-chloro- $\mu$-diphenylphosphido-CPCs as main products in 2656\% yield.

Proposed structures of new compounds obtained in the reactions were confirmed by spectroscopic methods and in some cases by X-ray crystallography. Purity and
elemental composition of the synthesized complexes and organic compounds were confirmed by either satisfactory elemental analysis or high resolution mass spectra data.

## CHAPTER I

## INTRODUCTION

## I.1. Cyclopalladated Complexes Containing an $\left(s p^{3}\right) \mathrm{C}-\mathrm{Pd}$ Bond

Cyclopalladated complexes (CPCs) are organometallic compounds with a sigma C-Pd bond, intramolecularly stabilized by a dative bond between Pd and a heteroatom to form three-, four-, five-, six- or seven-membered palladacycles. The heteroatoms commonly involved in CPC formation include N and P and more rarely $\mathrm{S}, \mathrm{Se}, \mathrm{As}$ and O . Cyclopalladated compounds have been known since the beginning of 1960s. In 1963, Kleiman and Dubeck investigated the reaction of dicyclopentadienylnickel ( $\mathrm{NiCp}_{2}$ ) and azobenzene (1) under both solvent and solvent-free conditions to furnish a new complex 2 (Scheme 1). ${ }^{1}$


Scheme 1. Synthesis of compound 2 and CPC 3 from azobenzene.

In 1965, Cope and Siekman reported an analogous reaction with $\mathrm{PdCl}_{2}$ in an alcoholic solution to generate the first known palladacycle (3) (Scheme 1). ${ }^{2}$ Soon after this study, five-membered palladacycles were obtained when $\mathrm{N}, \mathrm{N}$-dimethylbenzylamines were reacted with $\mathrm{PdCl}_{2}$ under similar conditions. ${ }^{2}$ These first palladacycles contained an
aromatic $\left(s p^{2}\right) \mathrm{C}-\mathrm{Pd}$ bond. ${ }^{2}$ Cope et al. later investigated the reaction between $\mathrm{Pd}(\mathrm{II})$ reagents and allylic amines. ${ }^{3}$ They found that $N, N$-dimethyl-2-methylallylamine (4) reacted with $\mathrm{Li}_{2} \mathrm{PdCl}_{4}$ or $\mathrm{PdCl}_{2}$ in an alcohol to give the corresponding CPCs 6 and 7 (Scheme 2). ${ }^{3}$ These are the first examples of the palladacycles with an $\left(s p^{3}\right) \mathrm{C}-\mathrm{Pd}$ bond. ${ }^{3}$


Scheme 2. Synthesis of CPCs from $\mathrm{N}, \mathrm{N}$-dimethyl-2-methylallylamine.

Cyclometallation reactions have been observed with many transition metals, including Ru, Rh, Os, Pt, Ir, Fe, Ni, $\mathrm{Co}, \mathrm{Mn}$ and others. ${ }^{2,4-8}$ Organopalladium compounds are especially valuable for several reasons. The $\mathrm{C}-\mathrm{Pd}$ bond is known to react with numerous reagents to reliably yield functionalized products. ${ }^{9-13}$ This versatility is in part due to the tolerance of palladium reagents to many functional groups and also due to the selective reactivity of cyclopalladated intermediates at the $\mathrm{C}-\mathrm{Pd}$ bond. ${ }^{14-16}$ Thus, cyclopalladation is an excellent route to many different bond linkages, including carboncarbon, carbon-oxygen, carbon-nitrogen, carbon-sulfur, carbon-phosphorus and carbonhalogen bonds. Furthermore, the compatibility of palladium reagents such as $\operatorname{Pd}(\mathrm{OAc})_{2}$ with a variety of directing groups enables the use of a wider variety of substances compared to other transition metal reagents. Finally, most reactions involving palladacycles are not
sensitive to moisture and air, making the synthesis of complex organic molecules more facile.

Aliphatic palladacycles (here and later, all CPCs and palladacycles with an $\left(s p^{3}\right) \mathrm{C}-$ Pd will be called aliphatic) have a characteristic $\sigma$-bond between palladium and an $s p^{3}-$ hybridized carbon of the ligand. ${ }^{17-19}$ The $\left(s p^{3}\right) \mathrm{C}-\mathrm{H}$ bond is generally inert due to the absence of either empty low-energy orbitals or filled high-energy orbitals, which can overlap with metal orbitals. ${ }^{20,21}$ Thus, reports of CPCs with an $\left(s p^{3}\right) \mathrm{C}-\mathrm{Pd}$ bond are far outnumbered by those of palladacycles containing an $\left(s p^{2}\right) \mathrm{C}-\mathrm{Pd}$ bond.
I.2. Classification of CPCs with an $\left(s p^{3}\right) \mathrm{C}-\mathrm{Pd}$ Bond

CPCs containing an $\left(s p^{3}\right) \mathrm{C}-\mathrm{Pd}$ bond are broadly divided into two types: benzylic (e.g., 8-10 in Chart 1) and aliphatic (e.g., 5-7 in Scheme 2). Benzylic CPCs are those in which the metal is bonded to a benzylic carbon, while palladium in aliphatic CPCs is bonded to an $s p^{3}$-hybridized carbon. The organic moiety of both benzylic and aliphatic CPCs can be either an anionic four-electron $(C Y)$ or six-electron $(Y C Y)$ donor (Figure 1).4, ${ }^{22}$ CPCs of the latter type are examples of pincer complexes.


CY-type
$Y=N, P, S$
$\mathrm{X}=\mathrm{Cl}, \mathrm{OAc}$

Figure 1. $C Y$ - and $Y C Y$-palladacycles.


9, $\mathrm{X}=\mathrm{Cl}, \mathrm{Br}, \mathrm{OAc}$
$\mathrm{R}^{1}=\mathrm{H}, \mathrm{SiMe}_{3}$
$\mathrm{R}^{1}, \mathrm{R}^{2}=\mathrm{H}, \mathrm{Me},{ }^{\mathrm{i}} \mathrm{Pr}$
$\mathrm{R}^{2}, \mathrm{R}^{3}=\mathrm{H}, \mathrm{Me}, \mathrm{Et}$


Chart 1. Examples of benzylic $C N$-palladacycles.

While all $Y C Y$-type complexes are mononuclear, the $C Y$-analogs can be mono-, di, and trinuclear. ${ }^{4,22} \mathrm{Di}$ - and trinuclear complexes can exist as cis and trans geometric isomers with halogen, acetate or other bridging moieties (Figure 2). ${ }^{4,22}$ Acetato-bridged trinuclear aliphatic CPCs derived from 1-tert-butylpyrazole, ${ }^{23} \mathrm{~N}, \mathrm{~N}$ dimethylneopentylamine ${ }^{24}$ and 2-tert-butyl-4,4-dimethyl-2-oxazoline ${ }^{25}$ have been reported by the research groups of Alonso, Hiraki, and Balavoine, respectively. Preparation of the acetato-bridged trinuclear benzylic CPC derived from 2-(dimethylamino)toluene has been discussed by Pfeffer. ${ }^{26,27}$ Although acetate and chloride are the most common bridging ligands in CPCs with $\left(s p^{2}\right) \mathrm{C}-\mathrm{Pd}$ bonds, $\mathrm{N}, \mathrm{O}$-imidate ligands like succinimidate, phthalimidate and maleimidate ${ }^{28,29}$ as well as carboxylato groups like oxalato, $n$ alkylcarboxylato, $n$-oxaalkylcarboxylato, $p$-alkoxyphenylacetato and $p$-alkoxybenzoato have also been reported. ${ }^{30}$

$\mathrm{Y}=\mathrm{N}, \mathrm{P}, \mathrm{S}$
$\mathrm{X}=\mathrm{Cl}, \mathrm{OAc}$

$\mathrm{Y}=\mathrm{N}$
$\mathrm{X}=\mathrm{OAc}$

$\mathrm{Y}=\mathrm{N}, \mathrm{P}, \mathrm{S}$
$\mathrm{X}=\mathrm{Cl}, \mathrm{OAc}$

$\mathrm{Y}=\mathrm{N}$
$X=O A c$

Figure 2. Trans and cis geometric isomers of CPCs.

CPCs can also be classified based on the donor heteroatom bonded to the metal, e.g., $C N$-, $C P-, C S$ - and $C O$-type palladacycles. The donor atom Y is responsible in part for the ring size of CPCs since it delivers the palladium reagent to a particular $\mathrm{C}-\mathrm{H}$ bond where palladation occurs. While $C Y$-type benzylic CPCs contain mostly five- or sixmembered palladacycles, ${ }^{31-34}$ their aliphatic counterparts can also be three- ${ }^{35,36}$ or fourmembered. ${ }^{37-39}$

## I.2.1. $C N$-Palladacycles

Common directing groups for benzylic CN -CPCs include the pyridine, aniline and imine moieties. Hartwell et al. synthesized the first example of a benzylic $C N$-palladacycle (10) from 8-methylquinoline in 1970 via $\mathrm{C}-\mathrm{H}$ bond activation using $\mathrm{Li}_{2} \mathrm{PdCl}_{4}{ }^{40}$ Thereafter, many research groups reported other examples, particularly those derived from 2substituted 8 -alkylquinolines, ${ }^{41-47}$ ortho-alkyl-substituted $N, N$-dialkylanilines, ${ }^{27,48-50}$ and $N$-mesitylbenzylideneamines. ${ }^{51-55}$ In 1978-1981, Deeming and Rothwell studied the cyclopalladation of 8 -alkylquinolines with various substituents $(\mathrm{Me}, \mathrm{Br}, \mathrm{CHO}, \mathrm{CH}=\mathrm{NMe}$, $\mathrm{CH}_{2} \mathrm{OH}$ and $\mathrm{CO}_{2} \mathrm{H}$ ) at the 2 position. ${ }^{42,43,47}$ They determined that the 2-substituted
derivatives of 8 -alkylquinolines were readily palladated using $\mathrm{Pd}(\mathrm{OAc})_{2}$ when the substituent was either $\mathrm{CH}=\mathrm{NMe}, \mathrm{CH}_{2} \mathrm{OH}$ or $\mathrm{CO}_{2} \mathrm{H}$, while every attempt to metalate the analogs with $\mathrm{Me}, \mathrm{Br}$, or CHO groups did not work. ${ }^{42,43,47}$ During the same time, Pfeffer et al., while studying reactions of ortho-alkyl-substituted $\mathrm{N}, \mathrm{N}$-dialkylanilines with $\mathrm{LiPdCl}_{4}$, observed demethylation at the $\mathrm{NMe}_{2}$ group to give N -alkylanilines. ${ }^{26,27,56}$ Reactions of ortho-alkyl-substituted $\mathrm{N}, \mathrm{N}$-dialkylanilines with $\mathrm{Pd}\left(\mathrm{PhCN}_{2} \mathrm{Cl}_{2}\right.$ and $\mathrm{Pd}\left(\mathrm{OCCF}_{3}\right)_{2}$ provided coordination complexes. ${ }^{26,27,56}$ They were able to palladate only ortho-methyl-substituted $N, N$-dialkylanilines using $\operatorname{Pd}(\mathrm{OAc})_{2}$ to get trinuclear CPCs which were converted to the dinuclear chloro-bridged analogs upon treatment with $\mathrm{LiCl}^{26,27,56}$ The dinuclear $\mu$ - $\mathrm{Cl}-\mathrm{CPC}$ was subsequently reacted with AgOAc to regenerate the acetate-complexes. ${ }^{26,27,56}$ The research groups of Gómez, Sales, Liu, Fernández and Munno have investigated the cyclopalladation of $N$-mesitylbenzylideneamines using $\operatorname{Pd}(\mathrm{OAc})_{2} .{ }^{52-55,} 57$ Palladation preferentially took place at the aromatic carbon to give five-membered endopalladacycles. ${ }^{52-55}$ The six-membered analogs generated via palladation at a benzylic carbon required higher temperatures. ${ }^{52-55}$

Aliphatic CN -palladacycles have been reported with a variety of nitrogencontaining directing groups: oxime (including their $O$-substituted derivatives), hydrazone, ketazine, oxazoline, pyridine, amine, benzothiazole, pyrazole, urethane and acetanilide. Aliphatic five- and six-membered oxime palladacycles $\mathbf{1 2}$ include those with ordinary oxime ( NOH ), $O$-methyl oxime (NOMe) or $O$-acetyl oxime (NOAc) directing groups. ${ }^{17,58-}$ ${ }^{65}$ In 1978, Shaw et al., synthesized the first example of a $\mathrm{CPC}^{58}$ containing an NOH directing group while those containing the NOAc directing group were introduced simultaneously in 1985 by the groups of Nishilyama, ${ }^{60}$ and Baldwin. ${ }^{59,}{ }^{61}$ CPCs with a
hydrazone directing group (13a) are usually five-membered and were first introduced by Shaw and his collaborators in 1978. ${ }^{58}$ Such CPCs have an $s p^{3}$ nitrogen coordinated to the Pd center. In 1983, Galli and Gasparrini reported a case of a hydrazone CPC (13b) in which the $s p^{2}$ nitrogen was coordinated to the Pd center. ${ }^{66}$ This could be attributed to the stability of five-membered palladacycles compared to the six-membered rings that are formed if coordination occurs at the $s p^{3}$ nitrogen. ${ }^{66}$ In 1994 and 1995, Echavarren et al. worked on the synthesis of the $\mathrm{PPh}_{3}$ adducts of type $\mathbf{1 3} \mathrm{CPCs}$ upon reaction of the preligand ( $\mathrm{N}, \mathrm{N}$ dimethylhydrazone) with $\operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}$ and NaOAc in $\mathrm{MeCN} .{ }^{67,68}$ Shaw et al. synthesized five-membered ring CPCs of type $\mathbf{1 4}$ containing ketazine as the directing group. ${ }^{63}$ Clinet et al. worked on the five-membered ring CPCs derived from oxazoline (type 15). ${ }^{25}$ Our group also reported such CPCs. ${ }^{18,69}$ In 1983 through 1992, Hiraki and his collaborators studied five- and six-membered ring CPCs (16) containing the pyridine moiety as the directing group. ${ }^{70-72}$ Recently, Rourke et al. reported five-membered ring CPCs $\mathbf{1 6}$ containing the pyridine moiety as the directing group. ${ }^{73,74}$ Aliphatic $C N$-palladacycles (17) containing the amino directing group were introduced in 1967 by Cope et al. ${ }^{3}$ and since then many of such CPCs have been reported. ${ }^{19,24,75-85}$ In 1986, Hiraki et al. reported fivemembered CPCs (18) with the benzothiazole moiety as the directing group, ${ }^{86}$ while in 1992, Alonso et al. synthesized five-membered CPCs (19) with the pyrazole moiety as the directing group. ${ }^{23}$ In 1994, Henderson et al. reported four-membered palladacycles 20 and 21 derived from urethane and acetanilide ligands. ${ }^{87-89}$



15


19


13a


16


20, $\mathrm{L}_{2}=\mathrm{dppe}$


13b


17



21, $L_{2}=$ bipy


18

Chart 2. Aliphatic $C N$-palladacycles with different directing groups.

## I.2.2. $C P$-Palladacycles

Benzylic $C P$-CPCs are usually five-membered and synthesized from aryl- or benzylphosphines. Benzylic CPCs 22 were first reported in 1972 by Shaw et al. ${ }^{90}$ and since then many groups have either worked on their synthesis or their application as catalysts in cross-coupling reactions. ${ }^{31,32, ~ 91-105}$ Recently, Hou et al. prepared rare six-membered benzylic CPCs 23. ${ }^{101}$ Joshaghani et al. also recently synthesized a benzylic biphenyl-based phosphine CPC 25. ${ }^{93}$ A unique three-membered benzylic palladacycles 24 was obtained from bidentate derivatives of a phosphaalkene. ${ }^{106}$


Chart 3. Benzylic $C P$-palladacycles.

The majority of aliphatic $C P$-CPCs prepared from alkylphosphines are fivemembered. Examples include palladacycles (type 26) obtained by the palladation of ${ }^{t} \mathrm{Bu}_{2}{ }^{i} \mathrm{PrP}$ and ${ }^{i} \mathrm{Pr}_{3} \mathrm{P} .{ }^{107-109}$ Four-membered P-containing palladacycles are also known. In 1977, Goel et al. synthesized the four-membered ring CPC 27 from ${ }^{t} \mathrm{Bu}_{3} \mathrm{P} .{ }^{37-39}$ Later, Werner and Kraus developed a method to form similar palladacycles from ${ }^{t} \mathrm{Bu}_{3} \mathrm{P}$ and ${ }^{t} \mathrm{Bu}_{2} \mathrm{PhP}$ by the reaction of their coordination complexes with $\mathrm{AgOAc} .{ }^{110}$ Interestingly, Milstein isolated the dinuclear five-membered aliphatic $C P$-palladacycle 28 with a monobridging diphosphine. ${ }^{108}$


26


27


28

Chart 4. Examples of $C P$-palladacycles.

## I.2.3. CS-Palladacycles

Like phosphorus, sulfur is a relatively soft donor atom and well suited for the soft Lewis acid $\mathrm{Pd}(\mathrm{II})$. Both benzylic and aliphatic palladacycles containing a sulfur directing group have been reported.

In 1989, Pfeffer et al. reported benzylic five-membered CS-CPCs (29) synthesized from 2,6-dimethylthioanisole. ${ }^{111,112}$ More recently, Vicente et al. discussed the synthesis of benzylic five-membered CS-CPCs from aryldithioacetals. ${ }^{113,114}$

Aliphatic CS-palladacycles can be derived from a sulfide, thioamide, or thiourea. The first sulfide-derived palladacycle $\mathbf{3 0}$ was published by Okawara et al. in 1976. ${ }^{35}$. That complex had a rare three-membered ring. ${ }^{35}$ The five-membered ring sulfide palladacycles of type $\mathbf{3 1}$ were reported by the groups of Holton and Pfeffer. ${ }^{75, ~ 82, ~ 111, ~} 112$ An unusual method was described by Albéniz et at. for four- to six-membered palladacycles of type $\mathbf{3 0}$ by insertion reactions at the Pd-aryl bond. ${ }^{115}$ Leaver et al. made available the fivemembered thioamide-derived aliphatic CS-CPC 32. ${ }^{116}$ Groups of Dunina and Pfeffer reported related five-membered thioamide-derived CPCs 33. ${ }^{111,117,118}$


29



30

33


31, $R^{1}=\mathrm{H}, \mathrm{OMe}$
$\mathrm{R}^{2}=\mathrm{OMe}, \mathrm{R}^{3}=\mathrm{Ph}, n-\mathrm{Bu}$
$\mathrm{R}^{4}=\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{~F}_{5}, \mathrm{X}=$ halide

32

Chart 5. Examples of CS-palladacycles.

## I.2.4. CO-Palladacycles

Despite the fact that oxygen-containing moieties are relatively hard ligands, CO CPCs have also been reported. Palladacycles derived from aldehydes (34) were obtained by the groups of Elsevier, Vrieze, Sen and Osakada. ${ }^{19-123}$ Singh et al. also reported the aliphatic CO-palladacycle 35 with a hydroxyl donor moiety. ${ }^{118, ~}{ }^{124}$ Recently, Lindsell et al. observed the oxidation addition of 2-hydroxymethylbenzyl chloride with $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ in toluene to afford the benzylic CPC 36. ${ }^{125}$


34


35

Chart 6. Example of CO -palladacycles.

## I.2.5. CC-Palladacycles

In 1999, Catellani et al. reported the CC-palladacycles 37, in which one of the carbon atoms bonded to the palladium center was $s p^{3}$-hybridized while the other was $s p^{2}$ hybridized. ${ }^{126-129}$ Earlier in 1998, Hashni et al. obtained complex 38 with both carbon atoms $s p^{3}$-hybridized. ${ }^{130,131}$



38, $\mathrm{E}=(R)-\mathrm{CO}_{2} \mathrm{CH}(\mathrm{Me}) \mathrm{CO}_{2} \mathrm{Et}$
Chart 7. Examples of $C C$-palladacycles.

## I.2.6. Pincer Palladacycles

Pincer palladacycles contain ligands with three or sometimes four chelating atoms.
They can be subdivided based on the number (tridentate or tetradentate) and type of chelating atoms, e.g., tridentate $C N O,{ }^{132,133} \mathrm{NCN},{ }^{134} \mathrm{NCO},{ }^{135} \mathrm{NNC},{ }^{136-138} \mathrm{CNN},{ }^{139,} 140$ $C N C,{ }^{138,141} C N S^{142}$ and $P C P^{143-148}$ and tetradentate $C N N C^{138,149}$ and $C N N O .{ }^{150}$


CNNC-39 $\mathrm{R}=\mathrm{CO}_{2} \mathrm{Et}$


CNNO-42
$\mathrm{BAr}_{\mathrm{F}}=\mathrm{B}\left[\mathrm{C}_{6} \mathrm{H}_{3}\left(3,5-\mathrm{CF}_{3}\right)_{2}\right]_{4}$

$\mathrm{X}=\mathrm{Cl}, \mathrm{NO}_{3}, \mathrm{OAc}$


CNO-44, $\mathrm{n}=1-2$

NCO-45

NCN-46
X = CI, OAc
CNC-47, $\mathrm{n}=1$-2

PCP-48
$\mathrm{Ar}=2-\mathrm{MeC}_{6} \mathrm{H}_{4} ; \mathrm{R}=\mathrm{Me}, \mathrm{Et}$


Chart 8. Examples of pincer palladacycles.

## I.2.7. Spiro Palladacycles

These are bis-chelated mononuclear palladacycles formed by two bidentate ligands bound to a single Pd center. They have a characteristic C 2 axis perpendicular to the plane of the molecule and passing through the Pd center. The chelation at the Pd center must be trans; cis ${ }^{48}$ chelations give mononuclear CPCs which are not spiro. There are only three
types of the ligands which were used to prepare such complexes. The research group of Newkome has synthesized five- and six-membered spiro palladacycles $\mathbf{5 0}$ and $\mathbf{5 1}$ from pyridine and pyrazine derivatives, respectively (Chart 9). ${ }^{138,151}$ Fedorov et al. reported the spiro CPC 52 from the reaction of 3,3-dinitropropylamine with $\mathrm{PdCl}_{2} .{ }^{152}$


50, $\begin{aligned} \mathrm{n} & =1-2 \\ \mathrm{R} & =\mathrm{CO}_{2} \mathrm{Me}\end{aligned}$


52

Chart 9. Examples of spiro palladacycles.

## I.3. Synthesis of Palladacycles Containing an $\left(s p^{3}\right) \mathrm{C}-\mathrm{Pd}$ Bond

The methods available for the synthesis of palladacycles include $\mathrm{C}-\mathrm{H}$ activation with a $\mathrm{Pd}(\mathrm{II})$ reagent, oxidative addition, transmetalation and nucleophilic addition.

## I.3.1. $\mathrm{Pd}(\mathrm{II})$-Promoted $\mathrm{C}-\mathrm{H}$ Bond Activation

Direct cyclopalladation using $\mathrm{Pd}(\mathrm{II})$ salts such as $\mathrm{Pd}(\mathrm{OAc})_{2}, \mathrm{M}_{2} \mathrm{PdCl}_{4}(\mathrm{M}=\mathrm{Na}, \mathrm{Li}$, $\mathrm{K})$ and $\mathrm{Pd}(\mathrm{MeCN})_{2} \mathrm{Cl}_{2}$ is the most common method for synthesizing palladacycles in general and those containing an $\left(s p^{3}\right) \mathrm{C}-\mathrm{Pd}$ bond in particular. Ligands that have been palladated using this method include amines, ${ }^{24,} 56,76,77,136,152$ imines, ${ }^{51-55,132,150}$ pyridines, ${ }^{42,43,47,70-72,133,134,138-141,151}$ pyrazines, ${ }^{151}$ hydrazones, ${ }^{58,63,66-68}$ oximes, ${ }^{58,59,61,63}$ pyrazoles, ${ }^{23,149}$ ketazines, ${ }^{63}$ oxazolines, ${ }^{18,25,69}$ phosphines, ${ }^{31,32,37, ~ 90, ~ 91, ~ 97, ~ 100, ~ 101, ~ 105, ~ 107, ~ 109, ~}$ 110, $143-148,153$ sulfides, ${ }^{111}$ thioureas, ${ }^{111,116,117}$ thioamides, ${ }^{116}$ acetanilides, ${ }^{89}$ and thiazoles. ${ }^{86}$ $\mathrm{Pd}(\mathrm{OAc})_{2}$ in acetic acid, benzene or toluene is the most common way to achieve palladation at an $\left(s p^{3}\right) \mathrm{C}-\mathrm{H}$ bond. ${ }^{17-19,23,25,31,32,42,51,54,70,72, ~ 86, ~ 111, ~ 132, ~ 134, ~ 153, ~} 154$ For example, in 1990,

Clinet et al. reported, the synthesis of CPC $\mathbf{1 5}$ through the activation of an $\left(s p^{3}\right) \mathrm{C}-\mathrm{H}$ bond on the tert-butyl group of 2-tert-butyl-4,4-dimethyl-2-oxazoline using $\mathrm{Pd}(\mathrm{OAc})_{2}$ in AcOH followed by chloride substitution (Scheme 3). ${ }^{25}$


Scheme 3. Synthesis of aliphatic CPC 15 from 2-tert-butyl-4,4-dimethyl-2-oxazoline 53.

Alkali salts of tetrachloropalladate, though weaker palladating agents than palladium acetate, have also been used for palladations at $\left(s p^{3}\right) \mathrm{C}-\mathrm{H}$ bonds. ${ }^{40,42,43,59, ~ 62, ~ 64, ~}$ 149, 153 In 1972, Cheney and Shaw succeeded in cyclopalladating di-tert-butyl- $O$ tolylphosphine 55 using $\mathrm{Na}_{2} \mathrm{PdCl}_{4}$. The product was the racemic $\mathrm{P}^{*}$-chiral phosphapalladacycle 56 with an $\left(s p^{3}\right) \mathrm{C}-\mathrm{Pd}$ bond, ${ }^{153}$ which turned out to possess a very high catalytic activity in $\mathrm{C}-\mathrm{C}$ coupling reactions. ${ }^{92,}{ }^{94-96,155-158}$ Dunina et al. reported the resolution of $\mathrm{P}^{*}$-chiral phosphapalladacycle rac-56 using potassium (S)-prolinate (Scheme 4). ${ }^{100}$


Scheme 4. Synthesis of the optically active $P^{*}$-chiral benzylic $C P$-CPC $(S p S p)-56$.

Synthesis of aliphatic CPCs through $\mathrm{C}-\mathrm{H}$ activation can also be achieved by transcyclopalladation. ${ }^{34,} 159,160$ Transcyclopalladation is a ligand-exchange reaction between a nonmetallated preligand and a palladacycle to form a new CPC. ${ }^{159}$ This reaction often requires the presence of either AcOH or $\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}$ as a reaction promoter. ${ }^{159,160}$ In 1984, Ryabov et al. reported the synthesis of CPC 8, which has a benzylic $\left(s p^{3}\right) \mathrm{C}-\mathrm{Pd}$ bond, in $64 \%$ yield in the reaction of palladacycle $\mathbf{5 8}$ with 8 -methylquinoline (59) at $50^{\circ} \mathrm{C}$ for 24 h in $\mathrm{AcOH}-\mathrm{CHCl}_{3} .{ }^{159}$ Later, the same researchers increased the yield of complex $\mathbf{8}$ to $94 \%$ upon using the acetate-bridged CPC 58. ${ }^{161}$ The same reaction was also performed on $\mathrm{SiO}_{2}$ without a solvent. In order to remove the product from $\mathrm{SiO}_{2}$, the dimeric complex $\mathbf{8}$ was converted to the more soluble triphenylphosphine adduct 60 upon treatment with $\mathrm{PPh}_{3}$ (Scheme 5). ${ }^{34}$ The yield of $\mathbf{6 0}$ was $46 \%$.


Scheme 5. Trancyclopalladation of 8-methylquinoline with $\mathrm{CPC} \mathbf{5 8}$ on $\mathrm{SiO}_{2}$.

Ryabov in one of his reviews on mechanism of $\mathrm{C}-\mathrm{H}$ bond activation stated that cyclopalladation through $\mathrm{C}-\mathrm{H}$ bond activation follows an electrophilic mechanism when an aromatic ligand is involved. ${ }^{6}$ The other suggested mechanistic routes include oxidative addition and $\sigma$-bond metathesis. ${ }^{8}$ It is now obvious that there is no single mechanism for $\mathrm{C}-\mathrm{H}$ bond activation that is applicable to all types of substrates and $\mathrm{Pd}(\mathrm{II})$ reactants. ${ }^{136}$ Furthermore, the mechanisms of $\mathrm{C}-\mathrm{H}$ bond activations for aromatic and aliphatic substrates should be different. Cyclopalladation at $\left(s p^{3}\right) \mathrm{C}-\mathrm{H}$ bonds is usually believed to proceed through the transition state which exhibits agostic (three-center two-electron) interactions between the $\mathrm{C}-\mathrm{H}$ bond and the metal atom. ${ }^{162}$ Agostic interactions have been observed for metallations at $\left(s p^{3}\right) \mathrm{C}-\mathrm{H}$ bonds using transition metal reagents. ${ }^{73,163-165}$ In 2009, Rouke and his group reported the X-ray structure of an agostic complex while working on the metallation of 2-tert-butyl-6-(4-fluorophenyl)pyridine using $\mathrm{K}_{2} \mathrm{PtCl}_{4} .{ }^{73}$ Later, they were able to obtain an X-ray structure for the agostic complex when $\operatorname{Pd}(\mathrm{OAc})_{2}$ was used as the metallating agent. ${ }^{74}$

## Challenges in the Synthesis of Aliphatic Palladacycles Through C-H Bond Activation

Besides the inertness of $\left(s p^{3}\right) \mathrm{C}-\mathrm{H}$ bonds, synthesis of aliphatic palladacycles through $\mathrm{C}-\mathrm{H}$ bond activation has two other fundamental challenges: (1) how to selectively palladate an $\left(s p^{3}\right) \mathrm{C}-\mathrm{H}$ bond in the presence of a competing aromatic $\left(s p^{2}\right) \mathrm{C}-\mathrm{H}$ bond and
(2) how to achieve palladation of $2^{\circ}$ and $3^{\circ}$ carbons instead of primary, particularly those in the tert-butyl moiety.

In general, aromatic $\mathrm{C}-\mathrm{H}$ bond activation is favored over aliphatic $\mathrm{C}-\mathrm{H}$ bond activation. ${ }^{54}$ Nonetheless, several research groups have reported palladation at a $\left(s p^{3}\right) \mathrm{C}-\mathrm{H}$ bond in the presence of a competing aromatic $\mathrm{C}-\mathrm{H}$ bond achieved using the appropriate palladation agent and conditions. ${ }^{67,68, ~ 76, ~ 139, ~ 140, ~} 166$ In 1994, Echavarren and Cardenas reported the palladation of acetophenone $N, N$-dimethylhydrazone (61) at the aliphatic C H bond using $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}$ and NaOAc in MeCN to furnish palladacycle $\mathbf{6 3} .^{67,68}$ When the researchers used $\mathrm{Na}_{2} \mathrm{PdCl}_{4}$ and NaOAc in MeOH , they observed exclusive palladation at the ortho position of the aromatic ring to give palladacycle $\mathbf{6 2} .{ }^{67}$ In the ${ }^{1} \mathrm{H}$ NMR spectrum of complex 62, two $N$-methyl groups gave rise to a singlet at $\delta 3.09 \mathrm{ppm}$ confirming that the $s p^{3}$-hybridized nitrogen atom is not the donor atom (Scheme 6). In contrast, two N methyl substituents of 63 appeared as two singlets, proving diastereotopicity of these two groups and, therefore, Pd coordination with the $\left(s p^{3}\right)$-N atom. Compound 62 remained unchanged when it was refluxed with NaOAc in MeCN . This observation allowed the authors to conclude that it is not an intermediate in the formation of aliphatic CPC 63.


Scheme 6. Synthesis of palladacycles 62 and 63 from acetophenone $N, N$ dimethylhydrazone 61.

Cinellu et al. reported that the selective palladation of an unactivated $\left(s p^{3}\right) \mathrm{C}-\mathrm{H}$ bond in the presence of a competing aromatic $\left(s p^{2}\right) \mathrm{C}-\mathrm{H}$ bond in $6,6^{\prime}$-dimethoxy- $2,2^{\prime}$ -
bipyridine (64) depends on the solvent used. ${ }^{140}$ They observed that the use of a protic solvent like AcOH led to metalation at the unactivated $\left(s p^{3}\right) \mathrm{C}-\mathrm{H}$ bond to give palladacycles 66a,b. ${ }^{140}$ The use of the same Pd reagent in the aprotic solvent toluene led to palladation at the $\left(s p^{2}\right) \mathrm{C}-\mathrm{H}$ bond to yield complex 65 (Scheme 7). ${ }^{140}$


Scheme 7. Solvent effect on the cyclopalladation of preligand $\mathbf{6 4}$.

Dunina et al. observed a similar but opposite effect when they used different solvents in the reaction of 1-thiobenzoylpyrrolidine (67) with $\mathrm{PdCl}_{2}$ or $\mathrm{K}_{2} \mathrm{PdCl}_{4}{ }^{117}$ Reaction of $\mathbf{6 7}$ with $\mathrm{K}_{2} \mathrm{PdCl}_{4}$ in the protic solvent MeOH gave $\mathrm{CPC} \mathbf{6 8}$ with an $\left(s p^{2}\right) \mathrm{C}-\mathrm{Pd}$ bond, while the use of the aprotic solvent HMPA and $\mathrm{PdCl}_{2}$ led to palladation at $\left(s p^{3}\right) \mathrm{C}-\mathrm{H}$ bond to furnish CPC 69 (Scheme 8). ${ }^{117}$


Scheme 8. Solvent effect on the cyclopalladation of preligand 67 by $\mathrm{PdCl}_{2}$.

Both Sales' and Minghetti's groups have shown that regioselectivity of palladation can be governed by using different temperatures. ${ }^{54,139}$ In 1991, Sales et al. studied the
palladation of N -mesitylbenzylideneamine 70 using $\mathrm{Pd}(\mathrm{OAc})_{2}$. They observed that refluxing the reaction mixture led to metallation at the $\left(s p^{3}\right) \mathrm{C}-\mathrm{H}$ bond to give palladacycle 72. ${ }^{54}$ When the reaction was carried out at lower temperatures, palladation preferentially took place at the aromatic $\left(s p^{2}\right) \mathrm{C}-\mathrm{H}$ bond to furnish compound 71 (Scheme 9). ${ }^{54}$ These data suggest that complex $\mathbf{7 2}$ with the benzylic $\mathrm{C}-\mathrm{Pd}$ bond is more thermodynamically stable than its anlog 71.



Scheme 9. Temperature effect on the cyclopalladation of preligand 70 using $\operatorname{Pd}(\mathrm{OAc})_{2}$.

The research groups of Sales and Minghetti together with that of Fernandez have investigated the ring size preference in the palladation of $\left(s p^{3}\right) \mathrm{C}-\mathrm{H}$ bonds. ${ }^{53}, 54,139$ Minghetti et al. obtained the six-membered palladacycle 74 upon reaction of preligand 73 with $\mathrm{Pd}(\mathrm{OAc})_{2}$ in AcOH under reflux. ${ }^{139}$ Palladacycle 74 was converted quantitatively to the five-membered-ring analog 75 upon refluxing in AcOH (Scheme 10). ${ }^{139}$ This is an example of the general trend that five-membered aliphatic palladacycles appear to be more stable than related six-membered aromatic palladacycles. ${ }^{167-169}$


Scheme 10. Effect of reaction conditions on the cyclopalladation of preligand 73.

In 2004, while studying the palladation of $(R)$-4-phenyl-2-oxazolines using $\mathrm{Pd}(\mathrm{OAc})_{2}$ in AcOH , our research group observed regioselectivity towards the formation of endo-palladacycles derived from imines. ${ }^{170}$ Later, our group also investigated reactions of (S)-2-tert-butyl-4-phenyl-2-oxazoline 76 with $\mathrm{Pd}(\mathrm{II})$ salts in an effort to determine whether the endo-effect-driven regioselectivity would lead to metalation at the $\left(s p^{3}\right) \mathrm{C}-\mathrm{H} .{ }^{69}$ This reaction provided endo-palladacycle 77 with the $\left(s p^{3}\right) \mathrm{C}-\mathrm{Pd}$ as the major product while the alternative exo-palladacycle $\mathbf{7 8}$ with an $\left(s p^{2}\right) \mathrm{C}-\mathrm{Pd}$ bond, was isolated in much lower yield (Scheme 11). ${ }^{69}$ It is noteworthy that palladacycle 77 was obtained exclusively when the reaction was performed solvent-free on silica gel (Scheme 11). ${ }^{18}$


78, minor
Scheme 11. Palladation of preligand 76.

As a rule, aliphatic palladations proceed with very high selectivity for $1^{\circ}\left(s p^{3}\right) \mathrm{C}-\mathrm{H}$ bonds especially those in the tert-butyl fragment. ${ }^{167}$ The reason for such selectivity appears to be due to the possibility of $\beta$-hydride elimination in cyclopalladated complexes with $2^{\circ}$ and $3^{\circ}\left(s p^{3}\right) \mathrm{C}-\mathrm{Pd}$ bonds. In the case of metalation of the tert-butyl group, $\beta$-elimination is impossible because of the absence of $\beta$-hydrogens. Sanford et al. has reported the selective palladation and subsequent oxygenation of a $1^{\circ}\left(s p^{3}\right) \mathrm{C}-\mathrm{H}$ bond in the presence of a competing $2^{\circ}\left(s p^{3}\right) \mathrm{C}-\mathrm{H}$ bond in 3-methyl-2-pentanone $O$-methyl oxime 79 (Scheme 12). ${ }^{171-173}$ Compound 79 could undergo both $1^{\circ}\left(s p^{3}\right) \mathrm{C}-\mathrm{H}$ bond and $2^{\circ}\left(s p^{3}\right) \mathrm{C}-\mathrm{H}$ bond palladation to form two different five-membered palladacycles; however, no traces of the palladation product at the $2^{\circ}\left(s p^{3}\right) \mathrm{C}-\mathrm{H}$ bond were observed due to a more statistically probable $\beta$-hydride elimination. ${ }^{171,172}$ Palladation occurred at the $1^{\circ}\left(s p^{3}\right) \mathrm{C}-\mathrm{H}$ bond of the methyl group to give palladacycle $\mathbf{8 0}$, which has just a single $\beta$-hydrogen.


81

Scheme 12. Regioselectivity in the palladation of 3-methyl-2-pentanone $O$-methyl oxime.

Recently, McNally et al. reported the cyclopalladation of aliphatic amines using $\operatorname{Pd}(\mathrm{OAc})_{2} .{ }^{19}$ The amines used in this study (e.g., 83) have $\mathrm{C}-\mathrm{H}$ bonds in the positions that could not give rise to conventional five-membered-ring palladacycles. ${ }^{19}$ Metalation of
these amines led to strained four-membered palladacycles. ${ }^{19}$ The effect of $\beta$-hydride elimination on selectivity was evident when the researchers selected amine $\mathbf{8 3}$, which could undergo cyclopalladation at an $\left(s p^{3}\right) \mathrm{C}-\mathrm{H}$ bond of either methyl or ethyl group. ${ }^{19}$ Cyclopalladation of amine $\mathbf{8 3}$ at one of the three methyl group would give a strained fourmembered palladacycle, while metalation at the ethyl group would furnish a conventional five-membered ring. ${ }^{19}$ Interestingly, palladation took place at the methyl group to give the four-membered palladacycle 84 (Scheme 13). No product of cyclopalladation at the $1^{\circ}$ $\left(s p^{3}\right) \mathrm{C}-\mathrm{H}$ bond of the ethyl group was obtained.


Scheme 13. Selectivity in palladation of aliphatic amines $\mathbf{8 3}$ and $\mathbf{8 5}$.

McNally et al. isolated four-membered CPCs by selecting aliphatic amines that possess no $\mathrm{C}-\mathrm{H}$ bonds in the positions amenable to the formation of five-membered rings (Scheme 13). ${ }^{19}$ These four-membered CPCs are the first (and only) examples of their kind. ${ }^{19,}$ 174, 175 Interestingly, four-membered metalacycles were also obtained when McNally and his collaborators used amines capable of forming five-membered analogs. ${ }^{19}$

## I.3.2. Oxidative Addition

Oxidative addition can be used for the synthesis of palladacycles with an $\left(s p^{3}\right) \mathrm{C}-$ Pd bond when $\mathrm{C}-\mathrm{H}$ bond activation is impossible in the preligand. In this method, the twoelectron donor group of an alkyl halide oxidatively adds to a $\operatorname{Pd}(0)$ or $\operatorname{Pd}(\mathrm{II})$ source
increasing both its formal oxidation state and coordination number by two. ${ }^{21}$ This approach is particuclarly convenient for the preparation of palladacycles with an $\left(s p^{2}\right) \mathrm{C}-\mathrm{Pd}$ bond. ${ }^{4}$

The synthesis of palladacycles with an $\left(s p^{3}\right) \mathrm{C}-\mathrm{Pd}$ bond through direct oxidative addition is still a great challenge due to the relative inertness of alkyl halides toward $\operatorname{Pd}(0)$ reagents. However, in 1975, Okawara et al. reported the direct oxidative addition of chloromethyl methyl sulfide (87) to $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ to give the aliphatic palladacycle $\mathbf{3 0}$ in $87 \%$ yield (Scheme 14). ${ }^{35, ~ 36, ~ 176-178 ~}$


Scheme 14. Synthesis of the aliphatic palladacycle $\mathbf{3 0}$ by oxidative addition.

## I.3.3. Transmetalation

Transmetallation is another method to form a C-Pd bond. ${ }^{4,179,180}$ In this reaction, Pd replaces a metal within an organometallic compound. ${ }^{180}$ Organolithium reagents are the most commonly used to furnish palladacycles, particuclarly those with an $\left(s p^{3}\right) \mathrm{C}-\mathrm{Pd}$ bond..$^{48,180,181}$ Tin, silicon and magnesium have also been used, though to a lesser extent. ${ }^{60}$, 180, 182-184

There are several examples of using transmetalation to obtain aliphatic CPCs. Thus, attempts by Strohmann et al. to palladate silane $\mathbf{8 8}$ at the $1^{\circ}$ carbon using $\mathrm{Pd}(\mathrm{OAc})_{2}$ did not work. ${ }^{181}$ Ligand $\mathbf{8 8}$ was recovered from the reaction mixture unchanged and palladium black was observed. ${ }^{181}$ When silane $\mathbf{8 8}$ was treated with ${ }^{t} \mathrm{BuLi}$ in $n$-pentane at $-90{ }^{\circ} \mathrm{C}$, metallation took place at the methyl group to give the organolithium derivative $\mathbf{8 9}$ in $90 \%$ yield. The organolithium reagent $\mathbf{8 9}$ was then treated with trans $-\mathrm{PdCl}_{2}\left(\mathrm{SMe}_{2}\right)_{2}$ in THF at $78{ }^{\circ} \mathrm{C}$ to form the aliphatic dimeric chloro-bridged CPC 90 in $72 \%$ yield (Scheme 15 ). ${ }^{181}$


Scheme 15. Synthesis of the silicon-containing aliphatic $C N$-palladacyle 90 by transmetallation.

Pfeffer and co-workers have used transmetallation to access the silicon-containing dimeric chloro-bridged CPC 94, which is difficult to synthesize using other methods. ${ }^{48,49}$ The organolithium reagent 91 did not react with $\operatorname{Pd}\left(\mathrm{SEt}_{2}\right) \mathrm{Cl}_{2}{ }^{48}$ However, the same compound 91 readily underwent transmetalation with the dimeric chloro-bridged $\mathrm{N}, \mathrm{N}$ -dimethylbenzylamine-derived CPC 92 in $\mathrm{Et}_{2} \mathrm{O}$ to furnish compound 93 in $60 \%$ yield (Scheme 17). ${ }^{48}$ Refluxing compound 93 with trans $-\mathrm{Pd}\left(\mathrm{SMe}_{2}\right) \mathrm{Cl}_{2}$ in toluene gave complexes 92 and 94 (Scheme 16). ${ }^{49}$


Scheme 16. Synthesis of the silicon-containing alkyl palladacyle $\mathbf{9 4}$ by transmetallation.

Nishiyama et al. synthesized ketoxime-based aliphatic palladacyles by transmetallation of stannyl and silyl ketoximes (e.g., 95) with $\mathrm{Pd}(\mathrm{PhCN})_{2} \mathrm{Cl}_{2}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2} .{ }^{60}$ Complex 96 was isolated in $78 \%$ yield from the reaction of $(E)$ - $\beta$-tributylstannyl ketoxime

95 with 1 equiv. of $\operatorname{Pd}\left(\mathrm{PhCN}_{2} \mathrm{Cl}_{2}\right.$ at $0{ }^{\circ} \mathrm{C}$ for 30 min in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (Scheme 17). For comparison, Shaw and his co-workers have reported that direct cyclopalladation of alipahatic oxime derivatives using $\operatorname{Pd}(\mathrm{II})$ salts typically takes three days at rt to furnish CPCs with yields up to $70 \% .{ }^{63}$ This is strong evidence that $\left(\mathrm{s} p^{3}\right) \mathrm{C}-\mathrm{Pd}$ bond is formed faster during transmetallation than in case of $\mathrm{C}-\mathrm{H}$ bond activation to access ketoxime-based aliphatic palladacycles. However, this transformation suffers significant drawbacks, which are 1) the use of highly poisonous tin derivatives and 2) a laborious synthesis of the tin derivatives prior to transmetallation.


Scheme 17. Synthesis of the ketoxime-based aliphatic palladacyle 96 by transmetallation.

Cámpora et al. have reported the synthesis of $C C$-palladacycle 99 via transmetallation. ${ }^{183}$ The Grignard reagent 98 underwent transmetallation by $\mathrm{Pd}(\mathrm{COD}) \mathrm{Cl}_{2}$ in THF followed by base-catalyzed $\left(s p^{2}\right) \mathrm{C}-\mathrm{H}$ activation to afford palladacycle 99 in $80 \%$ yield (Scheme 18). ${ }^{183}$


Scheme 18. Synthesis of the $C C$-palladacyle 99 by transmetallation.

## I.3.4. Nucleophilic Addition

The preparation of palladacycles through nucleophilic addition involves the formation of a carbon-carbon or a carbon-oxygen bond between the $\beta$-carbon of an allylic amine or sulfide and a nucleophile. This reaction spontaneously results in the formation of a carbon-palladium bond at the $\delta$-carbon of the allylic and homoallylic amine or sulfide. The nucleophile used in this reaction is either an alcohol or a stable enolate ion such as sodiodiethylmalonate; the palladating agent most often used is $\mathrm{Li}_{2} \mathrm{PdCl}_{4}$. Nucleophilic additions have been used in the synthesis of diverse types of palladacycles including those with an $\left(s p^{3}\right) \mathrm{C}-\mathrm{Pd}$ bond. ${ }^{3,44,75,80-83}$ As mentioned above (Scheme 2), the first CPC with an $\left(s p^{3}\right) \mathrm{C}-\mathrm{Pd}$ bond was prepared by this method from allylic amines. Later in 1977, Kjonaas et al. expanded the substrate scope in this reaction to include the allylic sulfide $\mathbf{1 0 0} .{ }^{75,82}$ They also found that carbon nucleophiles like sodiodiethylmalonate can also be used in this method (Scheme 19). ${ }^{75,82}$


Scheme 19. Synthesis of palladacyle $\mathbf{3 1}$ by nucleophilic addition.

## I.3.5. Miscellaneous Methods

## I.3.5.1. Modification of a Preformed Palladacycle

It is also possible to obtain one palladacycle from another. For example, a preformed $\left(s p^{2}\right) \mathrm{C}-\mathrm{Pd}$ bonded palladacycle can then undergo a rearrangement or insertion reaction at the $\mathrm{C}-\mathrm{Pd}$ bond to generate an $\left(s p^{3}\right) \mathrm{C}-\mathrm{Pd}$ bonded palladacycle. ${ }^{113,114,185,186}$ In

2004, Solé et al. reported the synthesis of azapalladacycle $\mathbf{1 0 2}$ by the oxidative addition of $N, N$-dialkyl-2-iodoaniline 101 to $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ or $\mathrm{Pd}_{2}(\mathrm{dba})_{3} / \mathrm{PPh}_{3} .{ }^{185}$ As expected, the strained four-membered ring in complex $\mathbf{1 0 2}$ underwent carbene insertion into the $\mathrm{C}-\mathrm{Pd}$ bond to give the more stable five-membered ring palladacycle 103 (Scheme 20). ${ }^{185}$


Scheme 20. Synthesis of palladacycle $\mathbf{1 0 3}$ by carbene insertion at the C-Pd bond of CPC 102.

Vicente and his collaborators have reported the unusual rearrangement of orthopalladated aryldithioacetals. ${ }^{113,114}$ The oxidative addition of aryldithioacetal $\mathbf{1 0 4}$ to $\operatorname{Pd}(\mathrm{dba})_{2}$ gave the unexpected iodine-bridged palladacycle $\mathbf{1 0 7}$ (Scheme 21). ${ }^{114}$ When this reaction occurred in the presence of TlOTf and 2,2'-bipyridine (bipy), the expected monomeric product 105 was obtained (Scheme 21). ${ }^{114}$ Compound 105 rearranged to palladacycle $\mathbf{1 0 6}$ upon refluxing in 1,2-dichloroethane (Scheme 21). ${ }^{114}$ This rearrangement resulted from the cleavage of one $\left(s p^{2}\right) \mathrm{C}-\mathrm{Pd}$ and one $\left(s p^{3}\right) \mathrm{C}-\mathrm{S}$ bond and the formation of one $\left(s p^{3}\right) \mathrm{C}-\mathrm{Pd}$ and one $\left(s p^{2}\right) \mathrm{C}-\mathrm{S}$ bond.


Scheme 21. Synthesis of palladacycle 107 by a rearrangement of CPC $\mathbf{1 0 6}$.

## I.3.5.2. Modification of a Preformed Pd-Aryl Unit

Oxidative addition of an aryl halide to a $\operatorname{Pd}(0)$ source is the first step in another method used for preparation of CPCs. ${ }^{180}$ The aryl-Pd compound $\mathbf{1 0 9}$ then reacts with an norbornene followed by treatment with a base to form a CC-palladacycle 111. ${ }^{180}$ Catellani et al. have worked extensively on the synthesis of $C C$-palladacycles using this methodology. ${ }^{126-129,187}$ In the example shown in Scheme 16, the first step of this transformation was oxidative addition of phenyl iodide $\mathbf{1 0 8}$ to $\operatorname{Pd}(0) \mathrm{L}_{2}$ to give compound 109. The subsequent insertion of norbornene into the $\left(s p^{2}\right) \mathrm{C}-\mathrm{Pd}$ bond of compound $\mathbf{1 0 9}$ provided the stable product 110. Compound 110 then underwent base-catalyzed intramolecular C-H activation to furnish $C C$-palladacycle 111 (Scheme 22). ${ }^{126}$


Scheme 22. Synthesis of palladacycle $\mathbf{1 1 1}$ by modification of the preformed Pd -aryl unit 109.

## I.4. Applications of Palladacycles Containing an $\left(s p^{3}\right) \mathrm{C}-\mathrm{Pd}$ Bond

CPCs containing an $\left(s p^{2}\right) \mathrm{C}-\mathrm{Pd}$ bond have been used in synthetic organic chemistry as 1) catalysts or precatalysts in the Mizoroki-Heck, ${ }^{95,}{ }^{96,104}$ Suzuki ${ }^{57,92,96}$ and other reactions, ${ }^{92,101,188-194} 2$ ) reagents for chiral resolution of racemic ligands, ${ }^{195} 3$ ) reagents for chiral coordinative derivatizing agents to determine optical activity, ${ }^{195}$ 4) chiral auxiliaries, ${ }^{195}$ and 5) ligand modifications using reactions at the Pd-C bond. ${ }^{196} \mathrm{CPCs}$ containing an $\left(s p^{3}\right) \mathrm{C}-\mathrm{Pd}$ bond have mostly been used as catalysts ${ }^{92-96,98,101,154,197}$ and to a lesser extent in ligand modifications using reactions at the $\mathrm{Pd}-\mathrm{C}$ bond. ${ }^{62,84, ~ 85, ~ 119, ~} 198$ To the best of our knowledge, aliphatic CPCs have never been utilized as reagents for chiral resolution of racemic ligands and chiral coordinative derivatizing agents, as well as chiral auxiliaries.

## I.4.1. Use as Catalysts or Precatalysts

The first CPC with an $\left(s p^{3}\right) \mathrm{C}-\mathrm{Pd}$ bond used as a catalyst in cross-coupling reactions is the Herrmann palladacycle $\mathbf{1 1 4} .^{96}$ The catalytic activity of complex $\mathbf{1 1 4}$ in the Heck reaction surpassed that of all previously used catalysts in the same transformation. ${ }^{96}$ The exceptional stability and a possibility of activating less reactive chloroarenes made this and related complexes target compounds for potential application in industries. ${ }^{22,96}$ Herrmann et al. obtained $100 \%$ yield of product $\mathbf{1 1 5}$ when CPC $\mathbf{1 1 4}$ was used as a catalyst in the reaction of 4-bromobenzaldehyde (112) with $n$-butyl acrylate (113) (Scheme 23). ${ }^{96}$ The product yield of this reaction remained the same when the equivalence of the catalysts was reduced to thousand times its initial amount. ${ }^{96}$ Kinetic studies showed that the standard catalyst, a mixture of $\mathrm{Pd}(\mathrm{OAc})_{2}$ and triarylphosphine, was deactivated at temperatures
above $120{ }^{\circ} \mathrm{C}$ due to the breaking of a $\mathrm{P}-\mathrm{C}$ bond in the phosphine. ${ }^{96}$ This led to the deposition of Pd black usually observed in Heck reactions and explained why this catalyst cannot be used for less reactive chloroarenes and deactivated bromoarenes, which are often unreactive under mild reaction conditions and require temperatures above $120^{\circ} \mathrm{C} .{ }^{96,199}$ For comparison, thermal gravimetric/mass spectrometric studies of compound $\mathbf{1 1 4}$ indicated that it decomposes only at temperatures above $250{ }^{\circ} \mathrm{C}$; hence it can be used in Heck reactions requiring high temperatures. ${ }^{96}$


Scheme 23. Catalytic activity of CPC 114 in Heck reaction.

In an effort to compare the catalytic activity of pincer palladacycles with an $\left(s p^{3}\right) \mathrm{C}-$ Pd and an $\left(s p^{2}\right) \mathrm{C}-\mathrm{Pd}$ bond, Milstein and his group used three $P C P$ pincer CPCs in a Heck reaction. ${ }^{200}$ They reported that iodobenzene (116) reacted with tert-butyl acrylate (117) in the presence of catalytic amounts of the $P C P$ pincer complex 119 containing an $\left(s p^{2}\right) \mathrm{C}-\mathrm{Pd}$ bond to furnish product 118 in $4 \%$ yield (Scheme 24 ). ${ }^{200}$ To their surprise, when the $P C P$ pincer complex $\mathbf{1 2 0}$ with an $\left(s p^{3}\right) \mathrm{C}-\mathrm{Pd}$ bond was used, this reaction gave product $\mathbf{1 1 8}$ in $100 \%$ yield (Scheme 24). ${ }^{200}$ They screened many reagents and reaction conditions, and in each case the $P C P$ pincer complex $\mathbf{1 2 0}$ provided better yields of the product than the $P C P$ pincer complex 119. ${ }^{200}$ Although both pincer complexes showed very high thermal stability
with no decomposition up to $180^{\circ} \mathrm{C}, \mathrm{CPC} \mathbf{1 2 0}$ had a higher turnover rate. ${ }^{200}$ Complex $\mathbf{1 2 0}$ was an effective catalyst even in Heck reactions of nonactivated aryl bromides, in which CPC 119 was not. ${ }^{200}$ The researchers concluded that the higher catalytic activity of CPC $\mathbf{1 2 0}$ could be due to electronic factors since the metal center in CPC $\mathbf{1 2 0}$ is more electron rich than in CPC 119. ${ }^{200}$


Scheme 24. Catalytic activity of $P C P$ pincer CPCs in Heck reaction.

To examine whether the Herrmann palladacycle $\mathbf{1 1 4}$ was also effective in Suzuki reactions, Beller et al. used this complex as a catalyst in cross-coupling reactions of aryl halides with arylboronic acids. ${ }^{95}$ These researchers found that 4-bromoacetophenone (112) reacted with phenylboronic acid (121) in the presence of compound $\mathbf{1 1 4}$ to give the desired 4-acetylbiphenyl (122) in yields above $90 \%$ (Scheme 25). ${ }^{95}$ Complex 114 was also found to be effective in Suzuki reactions with less reactive chloroarenes. ${ }^{95}$


Scheme 25. Catalytic activity of CPC 114 in Suzuki reaction.

Liu and her group have used the imine-derived CPC 124 as a catalyst ${ }^{57}$ in a similar Suzuki-Miyaura reaction (Scheme 26). ${ }^{57}$ They reported a quantitative yield of the product even though these reactions were carried out in air and protic solvents. ${ }^{57}$ The use of activated aryl chlorides like $p$-nitrophenyl chloride and $p$-acetylphenyl chloride both gave $100 \%$ yields of the respective products. ${ }^{57}$ However, they observed poor conversions for deactivated aryl halides and phenyl chloride. ${ }^{57,199}$ Deactivated aryl halides had electrondonating groups on the benzene ring. ${ }^{199}$


Scheme 26. Catalytic activity of CPC 124 in Suzuki-Miyaura reaction.

Recently, Joshaghani et al. described the use of the biphenyl-based phosphinederived CPC 127 as a catalyst in Suzuki couplings (Scheme 27). ${ }^{93}$ Previously, the researchers reported high catalytic activity of 2-(diphenylphosphino)-2'-methylbiphenyl in the presence of $\operatorname{Pd}(0)$ in several coupling reactions, which they assumed was due to the
formation of the palladacycle intermediate $127 .{ }^{93} \mathrm{CPC} \mathbf{1 2 7}$ was synthesized and tested as a catalyst for Suzuki cross-coupling reactions. ${ }^{93}$ The catalytic activity of CPC $\mathbf{1 2 7}$ improved with increasing reactivity of the aryl chloride used. ${ }^{93}$ They observed quantitative yield of the product when highly activated aryl chlorides with electron-withdrawing groups were used. ${ }^{93}$ It is worth noting that compound 127 was still effective in the reactions with electron-rich aryl halides like 3-chloroanisole (126). ${ }^{93}$ They also observed that the catalytic activity of CPC $\mathbf{1 2 7}$ surpassed that of its preligand. ${ }^{93}$

$+$

121


128, 100\%


127

Scheme 27. Catalytic activity of CPC 127 in Suzuki-Miyaura reaction.

Hou and his group have observed a rather different phenomenon. When $C P$-CPCs containing either an $\left(s p^{3}\right) \mathrm{C}-\mathrm{Pd}$ or $\left(s p^{2}\right) \mathrm{C}-\mathrm{Pd}$ bond were used as catalysts in the reaction of oxabicyclic alkenes and terminal alkynes, different products were obtained. ${ }^{101}$ When the reaction of 7-oxabenzonorbornadiene (129) with phenylacetylene (130) was catalyzed by $C P-C P C 132$ containing an $\left(s p^{3}\right) \mathrm{C}-\mathrm{Pd}$ bond, the cyclic ether $\mathbf{1 3 3}$ was formed as the major product (Scheme 28). ${ }^{101} \mathrm{~A}$ switch to alcohol 134 was observed when $C P$-CPC 131 with an $\left(s p^{2}\right) \mathrm{C}-\mathrm{Pd}$ bond was used (Scheme 28). ${ }^{101}$ DFT calculations showed that this selectivity resulted from the difference in trans effects of the carbon donors in the CPCs. ${ }^{101}$ The $\left(s p^{3}\right) \mathrm{C}$ atom possess a greater trans effect than the $\left(s p^{2}\right) \mathrm{C}$ because the former is a stronger donor. ${ }^{101}$ In the transition state (TS1) leading to compound 134, the $\mathrm{O}-\mathrm{Pd}$ bond being formed is trans to the $\left(s p^{2}\right) \mathrm{C}-\mathrm{Pd}$ bond of CPC 131 . This trans- $\left(s p^{2}\right) \mathrm{C}, \mathrm{O}$ geometry resulted in predominant
$\beta$-O elimination. In the transition state TS 2 leading to compound $\mathbf{1 3 3}$ the $\mathrm{C}-\mathrm{Pd}$ bond being broken is trans to the $\left(s p^{3}\right) \mathrm{C}-\mathrm{Pd}$ bond of CPC 132. This trans- $\left(s p^{3}\right) \mathrm{C}, \mathrm{O}$ geometry favored protonolysis. ${ }^{101}$


Scheme 28. Reaction of oxabicyclic alkenes with terminal alkynes using CPCs.

The Herrmann palladacycle has also been used in palladium-catalyzed homocoupling of aryl iodides. ${ }^{92}$ Luo et al. observed homocoupling of 4-iodotoluene (135) in DMF in the presence of complex 114 to give product 136 in $87 \%$ yield (Scheme 29). ${ }^{92}$ The yield of the products changed only a little when substituents on the benzene ring were varied. ${ }^{92}$ However, the reaction was faster with arenes having electron-withdrawing substituents than with those bearing electron-donating groups. ${ }^{92}$



Scheme 29. Palladium-catalyzed homocoupling of 4-iodotoluene using CPC 114.

## I.4.2. Ligand Modifications Using Reactions at the $\mathrm{Pd}-\mathrm{C}$ Bond

Similarly to other organometallic compounds, CPCs can react with a number of substrates resulting in ligand modifications. Only a small fraction of these reactions involve CPCs with $\left(s p^{3}\right) \mathrm{C}-\mathrm{Pd}$ bonds. For example, the research group of Sheppard has reported the synthesis of novel compounds via cyclopalladation of lanosterol and cholesterol. ${ }^{62}$ These products could potentially be used as new adjuvant saponins. ${ }^{62}$ Holton, R. A. synthesized a prostaglandin by using the cyclopalladation of cyclopentadiene as the first step. ${ }^{84}$ Lindsell et al. have utilized reactions at the $\mathrm{Pd}-\mathrm{C}$ bond of the benzylic CPC $\mathbf{1 3 8}$ to prepare lactone 140, which is a precursor of pharmaceutical agents. ${ }^{125}$ Their lactone synthesis started with the oxidative addition of 2-hydroxymethylbenzyl chloride (137) to $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ in toluene to afford CPC 138. ${ }^{125}$ Insertion of CO into the Pd-C bond of CPC $\mathbf{1 3 8}$ gave compound $\mathbf{1 4 0}$ in $71 \%$ yield (Scheme 30). ${ }^{125}$


Scheme 30. Synthesis of compound $\mathbf{1 4 0}$ using CPC $\mathbf{1 3 8}$ as a reactant.

Pfeffer et al. have accessed novel heterocyclic compounds containing a bridgehead nitrogen via reactions at the $\mathrm{Pd}-\mathrm{C}$ bond of the 8 -methylquinoline-derived $\mathrm{CPC} 8 .{ }^{198}$ The
researchers reacted CPC 8 with 1 equiv. of dimethyl acetylenedicarboxylate to afford compound $\mathbf{1 4 1}$ in $91 \%$ yield (Scheme 31). ${ }^{198}$


Scheme 31. Synthesis of compound $\mathbf{1 4 1}$ by the ligand modification method.

## CHAPTER II

## GOALS OF THE STUDY

## II. 1. Types of Optically Active Cyclopalladated Complexes

Known optically active CPCs possess either 1) a chiral center, ${ }^{201}$ 2) chiral plane, ${ }^{202}$ 3) chiral axis ${ }^{203}$ or 4) a combination of two chiral elements. ${ }^{204}$ The first examples of optically active $C^{*}$-chiral CPCs were derived from $\alpha$-arylalkylamines and were reported as early as 1971 (Chart 10). ${ }^{201,205}$ Later in the 1980s, Sokolov et al. introduced the planar chiral 1-dimethylaminoethylferrocene-derived complex 142 (Chart 10). ${ }^{204,206}$ Presently, there are many examples of optically active CPCs, which include both mono- and dinuclear $C N$-, $C S$-, and $C P$-complexes as well as mononuclear $S C S$, $N C N, P C P$ and $P C N$ pincer derivatives. The majority of optically active CPCs reported in literature have an $\left(s p^{2}\right) \mathrm{C}-\mathrm{Pd}$ bond, ${ }^{192}$ although optically active aliphatic CPCs have also been known (Chart 10). ${ }^{32,207-209, ~} 133$

$\left(R_{C}\right)-141, R_{\mathrm{n}}=\mathrm{H}$,
3,4-benzo, 4,5-benzo


$\left(R_{C}\right)-8, \mathrm{X}=\mathrm{Cl}$,
$\left(S_{P} S_{P}\right)-56$
$\mathrm{R}^{1}=\mathrm{H}, \mathrm{R}^{2}=\mathrm{Me},{ }^{i} \mathrm{Pr}$
$\mathrm{Cp}=\eta-\mathrm{C}_{5} \mathrm{H}_{5}$

Chart 10. Examples of optically active CPC containing 1) a chiral center $\left[\left(R_{C}\right) \mathbf{- 1 4 1},\left(R_{C}\right)-\right.$ 8, $\left(S_{P}, S_{P}\right)-56$ and $\left.\left.\left(S_{P l}, R_{C}\right)-142\right], 2\right)$ chiral plane $\left[\left(S_{P l}, R_{C}\right)-142\right]$ and 3) chiral axis [ $\left(R_{a}, R_{\mathrm{a}}\right)$ 131].

## II.1.1. Optically Active Cyclopalladated Complexes Containing an $\left(s p^{2}\right) \mathrm{C}-\mathrm{Pd}$ Bond

Optically active CPCs containing an $\left(s p^{2}\right) \mathrm{C}-\mathrm{Pd}$ bond are the most abundant group of chiral CPCs and can be differentiated by the type of chirality into those with a chiral plane, chiral center or chiral axis. CPCs with central chirality contain one or more chiral atoms, which can be C, N, P or S. Chart 11 provides examples of C*-chiral CPCs 78 (see Scheme 11) and $\mathbf{1 4 1}($ Chart 10$),{ }^{201} \mathrm{C}^{*}$ - and $\mathrm{N}^{*}$-chiral complex $\mathbf{1 4 3},{ }^{210} \mathrm{C}^{*}$ - and $\mathrm{S}^{*}$-chiral analog 144, ${ }^{211}$ CS-CPC $69(\text { see Scheme } 8)^{117}$ and C*- and P*-chiral CPC 145 (Chart 11). ${ }^{212}$ Examples of CPCs with only planar chirality include $C N$-CPCs $\mathbf{1 4 6}^{213}$ and $\mathbf{1 4 7}^{\mathbf{2 1 4}}$ (Chart 11). The majory of planar chiral CPCs also contain a chiral center, e.g., 148 and 149 (Chart 11)..$^{214}$ Phosphapalladacycle $\mathbf{1 3 1}$ derived from binaphthalene exhibits axial chirality (see Chart 10). ${ }^{203}$

$\left(R_{C}, S_{N}\right)-143$

( $R_{C}, R_{S}$ )-144

$\left(S_{P}, S_{C}\right)-145$




Chart 11. Examples of optically active CPCs with an $\left(s p^{2}\right) \mathrm{C}-\mathrm{Pd}$ bond.

Pincer CPCs with a stereocenter have been studied by several groups. ${ }^{215} 216217133$ 218219194 Examples of these pincer complexes include $\mathrm{CNO}-44$ (see Chart 8), ${ }^{133} \mathrm{NCN}$ 150, ${ }^{215} \mathrm{NCNO}-151,{ }^{216} \mathrm{OCNO}-152,{ }^{217} \mathrm{PCP}-153$ and $P C P-154,{ }^{219} \mathrm{PCN}-155{ }^{194}$ and $S C S-$

156 (Chart 12). ${ }^{218}$ There are also reports of pincer complexes with axial chirality, e.g., $P C P-\mathbf{1 5 7}^{220}$ as well as complexes with both axial and central chirality, e.g., $N C N-\mathbf{1 5 8}$ Chart 12). ${ }^{221}$


Chart 12. Examples of optically active pincer complexes.

## II.1.2. Optically Active Cyclopalladated Complexes with an $\left(s p^{3}\right) \mathrm{C}-\mathrm{Pd}$ Bond

Most aliphatic CPCs containing a chiral center exist as racemates due to the tedious process of chiral resolution. This is one of the reasons why only a limited number of optically active CPCs of this kind have been known to date. Their examples include phosphapalladacycles 56 (see Scheme 4), ${ }^{207} \mathbf{1 6 1}^{222}$ and 162, ${ }^{223}$ CS-CPC 69 (Scheme 8), ${ }^{117}$ $C C$-CPC 38 (Chart 7), ${ }^{130,131}$ pyrazole-derived CN -CPC 19 (Chart 2), ${ }^{23}$ and oxazoline-based $C N$-CPCs 159 and 160 (Chart 13). ${ }^{208, ~ 209, ~} 224$

$\left(S_{C}\right)-159$

$\left(S_{C}\right)-160$



Chart 13. Examples of optically active complexes containing an $\left(s p^{3}\right) \mathrm{C}-\mathrm{Pd}$ bond.

## II.2. Synthesis of Optically Active Cyclopalladated Complexes

Two common methods to access optically active CPCs with an $\left(s p^{3}\right) \mathrm{C}-\mathrm{Pd}$ bond have been reported: 1) cyclometalation of enantiopure preligands ${ }^{209}$, 225 and 2) chiral resolution of racemic cyclopalladated complexes. ${ }^{32,} 133$ The third approach, enantioselective palladation, ${ }^{226,227}$ has also been used to prepare optically active CPCs, but all of them contain an $\left(s p^{2}\right) \mathrm{C}-\mathrm{Pd}$ bond.

## II.2.1. Cyclopalladation of Enantiopure Preligands

The most straightforward approach for preparation of optically active CPCs is cyclopalladation of preligands derived from naturally occurring optically active compounds. Examples include complexes obtained from (i) 4-substituted 2-oxazolines, ${ }^{228,}$ ${ }^{229}$ which are prepared from readily available enantiopure $\alpha$-amino alcohols, (ii) derivatives
of natural phenols $\mathrm{L}-(+)$-tyrosine and (+)-estrone ${ }^{230}$ and (iii) derivatives of Lphenylalanine ${ }^{231}$ and ( $R$ )-2-phenylglycine. ${ }^{232}$ Only a small fraction of known enantiomerically pure or scalemic CPCs have an $\left(s p^{3}\right) \mathrm{C}-\mathrm{Pd}$ bond (see Chart 13). ${ }^{32,207-209}$

Our research group has also synthesized optically active CPCs via the cyclopalladation of enantiopure preligands. Previously, we studied the cyclopalladation of (S)-4-tert-butyl-2-methyl-2-oxazoline (165). ${ }^{209}$ Preligand 165 was synthesized according to a procedure reported by Meyers and Shipman from (S)-tert-leucinol and ethylacetimidate hydrochloride (Scheme 32). ${ }^{225}$ Reaction of $\mathbf{1 6 5}$ with $\mathrm{Pd}(\mathrm{OAc})_{2}$ in acetic acid gave the exo-palladacycle $\mathbf{1 6 0}$ (Scheme 32). ${ }^{209}$ The yield of the product was not high, possibly because 1) the structure of $\mathbf{1 6 5}$ allows only the less favored exo-cyclopalladation and 2) the difficulty associated with the activation of an $\left(s p^{3}\right) \mathrm{C}-\mathrm{H}$ bond. ${ }^{209}$ This is in contrast to the observed endo-cyclopalladation of (S)-2-tert-butyl-4-phenyl-2-oxazoline and 2-tert-butyl-4,4-dimethyl-2-oxazoline previously discussed in this dissertation (see Scheme 3). ${ }^{208}$


Scheme 32. Synthesis of CPC $\left(S_{C}\right)$ - $\mathbf{1 6 0}$ from $\left(S_{C}\right) \mathbf{- 1 6 3}$.
II.2.2. Synthesis of Optically Active Cyclopalladated Complexes through Chiral

## Resolution

Examples of preparation of optically active aliphatic CPCs using chiral resolution includes synthesis of $\mathbf{5 6}$ and 44. The preparation of enantiomerically pure phosphapalladacycle 56 by chiral resolution using optically active amino acid derivatives was described in Chapter I (see Scheme 4). ${ }^{32}$ The pincer CNO-complex 44 has also been successfully accessed through chiral resolution. ${ }^{133}$ Reaction of compound 166 with $\mathrm{K}_{2} \mathrm{PdCl}_{4}$ in EtOH followed by addition of pyridine gave rac-44, which upon stirring with $S$-(-)-1-phenylethylamine furnished a mixture of two diastereomers (Scheme 33). ${ }^{133}$ The diastereomeric mixture was separated using column chromatography, and a subsequent ligand exchange with pyridine gave both enantiomers of CPCs 44 (Scheme 33). ${ }^{133}$


Scheme 33. Synthesis of the optically active CPCs $\mathbf{4 4}$ by chiral resolution of rac-44.

## II.2.3. Synthesis of Optically Active CPCs through Enantioselective Palladation

All optically active complexes obtained by this method have an $\left(s p^{2}\right) \mathrm{C}-\mathrm{Pd}$ bond. The synthesis of optically active CPCs via enantioselective palladation was first introduced in 1979 by Sokolov and his research group. ${ }^{226}$ In this study, the researchers obtained dimer 170 with $79 \%$ ee using 1 equiv. of ( $S$ )- $N$-acetylleucine (169) in the palladation of (dimethylaminomethyl)ferrocene (170) by $\mathrm{Na}_{2} \mathrm{PdCl}_{4}$ (Scheme 34). ${ }^{226}$ Recently, Richards and Günay investigated the same reaction in an attempt to confirm the enantioselectivity
observed by Sokolov (Scheme 34). ${ }^{227}$ To obtain CPC 170, they used the same reaction conditions described by Sokolov. The product analysis by chiral chromatography provided $96 \%$ ee. ${ }^{227}$ The research groups of Ryabov and Richards used enantioselective palladation to access other optically active CPCs. ${ }^{159,233,234}$ To the best of our knowledge, optically active aliphatic CPCs have never been prepared using this method.


Scheme 34. Synthesis of the optically active CPC $\mathbf{1 7 0}$ via enantioselective palladation.

## II. 3. Applications of Optically Active Cyclopalladated Complexes

Optically active CPCs have many applications. For example, in asymmetric synthesis, they can play three roles: catalyst/precatalyst, ${ }^{189,190,235-238}$ chiral auxiliary ${ }^{239-241}$ and reactant. ${ }^{14,207,242,243}$ Optically active CPCs have also been used in chiral resolution, ${ }^{244-}$ 247 for determination of enantiopurity of amines, phosphines and other substrates possessing ligand properties ${ }^{248-250}$ as well as functioning as a reference point for determination of absolute configuration. ${ }^{245,246,251-253}$ In the majority of the application studies (except for the use of CPCs as chiral catalysts), only a small group of optically active CPCs are commonly employed; they are derivatives of optically active 1phenylethylamine,,${ }^{248,250} 1$-(1-naphthyl)ethylamine ${ }^{205}$ and 1-(2-naphthyl)ethylamine. ${ }^{254}$

Amongst the optically active CPCs obtained from compounds available in the chiral pool, ${ }^{255}$ only CPCs containing the oxazoline moiety were used in applications involving
chiral induction, predominantly as catalysts in asymmetric transformations. ${ }^{256,} 257$ Moreover, the best results were obtained for quite complex structures, particularly those containing not only the oxazoline ring, but also a planar-chiral moiety. ${ }^{256,257}$ Only a small fraction of known enantiopure or scalemic CPCs have an $\left(s p^{3}\right) \mathrm{C}-\mathrm{Pd}$ bond, ${ }^{32,207-209}$ and none of them have been used as either resolving agents or catalysts in enantioselective transformations.

## II.4. Goals of the Present Study

As was presented above, enantiopure CPCs have many important applications. However, most of these complexes are derivatives of 1-phenylethylamine and have an $\left(s p^{2}\right) \mathrm{C}-\mathrm{Pd}$ bond. It is of interest to 1) prepare new types of enantiopure aliphatic CPCs from readily accessible chiral compounds, 2) characterize their structures using available spectrometric methods and 3) study them as chiral inductors in various asymmetric transformations.

Readily available enantiopure D-camphor and other bicyclic monoterpenoids possess rigid structures that may be an advantageous feature in asymmetric reactions; therefore, CPCs based on compounds of this type are important research targets. If new CPCs based on inexpensive compounds from the chiral pool become available, applications of metallacycles in catalysis can be broadened and enriched. In this dissertation, we proposed and studied the synthesis, structural pecularities and applications of new enantiopure CPCs derived from D-camphor and L-fenchone. Among various possible applications of the new camphor- and fenchone-based CPCs, we selected and investigated their transformations using $\mathrm{KPPh}_{2}$.

Recently, our research group ${ }^{14,15}$ and others ${ }^{258,}{ }^{259}$ have shown that $\mathrm{LiPPh}_{2}$ and $\mathrm{KPPh}_{2}$ are capable of reacting with aromatic CPCs at the $\mathrm{C}-\mathrm{Pd}$ bond to give hemilabile $N P$-ligands containing an $\left(s p^{2}\right) \mathrm{C}-\mathrm{P}$ bond. $N P-, P P$ - and $S P$-bidentate ligands are efficient catalysts in a number of reactions. New types of chiral hemilabile $N P-, P P$ - and $S P$-ligands obtained from inexpensive and naturally optically active compounds can greatly broaden and enrich the applications of these compounds in catalysis. In this dissertation, we proposed and studied the synthesis of new enantiopure $N P$ - and other bidentate ligands through the reaction of aliphatic CPCs with $\mathrm{KPPh}_{2}$. Bidentate ligands having an $\left(s p^{2}\right) \mathrm{C}-\mathrm{P}$ bond have primarily been synthesized using lithium-mediated substitution. ${ }^{260-262}$

The specific goals of the present study are: (1) to prepare D-camphor and Lfenchone derivatives capable of forming cyclopalladated complexes; (2) to synthesize and structurally characterize new enantiopure CPCs based on D-camphor- and L-fenchone derivatives and (3) to investigate a possibility of the $N P$-ligand preparation by reactions of aliphatic CPCs with $\mathrm{KPPh}_{2}$ (Schemes 35 and 36).


Scheme 35. Proposed synthesis and applications of D-camphor-derived CPCs.



L-fenchone Goal 2 $\xrightarrow{\text { cyclopalladation }}$ and structural of new CPCs


optically active derivative

CPCs hemilabile $N P$-ligands

$$
\mathrm{R}=\mathrm{OH}, \mathrm{OMe}
$$

Scheme 36. Proposed synthesis and applications of L-fenchone-derived CPCs.

## CHAPTER III

## RESULTS AND DISCUSSION

## III.1. Synthesis of CPCs

## III.1.1. Oxime of D-Camphor

There are a few reports about CPCs based on D-camphor; however, their structures are either quite complex (see structures $\mathbf{1 7 1}$ and $\mathbf{1 7 2}$ in Chart 14) ${ }^{263}$ or the bornane carbon framework is not a part of the metalacycle (compound 173). ${ }^{264}$ In 1983, Constable et al. reported unsuccessful attempts to cyclopalladate D-camphor oxime (HL) (174a) using $\mathrm{Na}_{2} \mathrm{PdCl}_{4}{ }^{265}$ The main product of the reaction was the corresponding coordination complex, $\mathrm{PdCl}_{2}(\mathrm{HL})_{2}$. Attempts to convert the coordination complexes $\mathrm{PdCl}_{2}(\mathrm{HL})_{2}$ and $\mathrm{PdI}_{2}(\mathrm{HL})_{2}$ to their cyclopalladated analogs by heating in high-boiling solvents were also unsuccessful. ${ }^{265}$ For comparison, the oximes of 2,2-dimethylcyclohexanone and related substrates undergo cyclopalladation using the same palladating reagent in high yields. ${ }^{64}$

171

172

173

Chart 14. Known CPCs containing the D-camphor carbon framework.

The Sanford group reported $\mathrm{Pd}(\mathrm{OAc})_{2}$-catalyzed $\mathrm{C}-\mathrm{H}$ bond oxygenation of $O$ methyl camphor oxime (174b) using $\mathrm{K}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$ in a mixture of AcOH and $\mathrm{Ac}_{2} \mathrm{O}\left(100{ }^{\circ} \mathrm{C}, 12\right.$ $\mathrm{h}, 63 \%)^{172}$ or $\mathrm{PhI}(\mathrm{OAc})_{2}$ in $\mathrm{AcOH}\left(100{ }^{\circ} \mathrm{C}, 12 \mathrm{~h}, 75 \%\right) .{ }^{172,173}$ The same year, Thu et al. disclosed the results of the $\operatorname{Pd}(\mathrm{OAc})_{2}$-catalyzed amidation of the same camphor derivative using $\mathrm{K}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$ and $\mathrm{H}_{2} \mathrm{NCOR}\left(\mathrm{R}=p-\mathrm{ClC}_{6} \mathrm{H}_{4}\right)$ and resulting in the conversion of the 1-methyl group to $1-\mathrm{CH}_{2} \mathrm{NHSO}_{2} \mathrm{R}\left(80{ }^{\circ} \mathrm{C}, 14-20 \mathrm{~h}, 93 \%\right) .{ }^{266}$ Both groups suggested that the reactions preceded through the formation of a cyclopalladated intermediate; however, no attempts were made to isolate it.

## Synthesis of Compounds 174-178 and Spectral Characterization

On the basis of the aforementioned literature data, $O$-methyl camphor oxime 174b was chosen as a simple preligand for synthesis. First, attempts were made to obtain oxime 174b following the procedure, according to which a solution of D-camphor, methoxyamine hydrochloride and pyridine in isopropanol was refluxed for $7 \mathrm{~h} .{ }^{267}$ The ${ }^{1} \mathrm{H}$ NMR spectrum of the reaction mixture showed that only ca. $10 \%$ of D -camphor was converted to the oxime. The Booth method, ${ }^{268}$ following which a mixture of D-camphor, methoxyamine hydrochloride and pyridine was stirred at rt for 48 h , was also unsuccessful in our hands. When a mixture of D-camphor, methoxyamine hydrochloride and NaOAc in ethanol was refluxed for 5 h following the procedure by Kumar and Verma, ${ }^{269}$ the desired product was prepared in $25 \%$ yield. When two-fold excess of methoxyamine hydrochloride and NaOAc was used and the reaction time was increased to 24 h , the pure product was isolated in $74 \%$ yield (Scheme 37). According to the ${ }^{1} \mathrm{H}$ NMR, the prepared oxime was a $92: 8$ mixture of two geometrical isomers. Refluxing $\mathrm{HONH}_{2} . \mathrm{HCl}$ with D-camphor and NaOAc in EtOH
for 48 h gave preligand $\mathbf{1 7 4 a}$ in $80 \%$ yield. The structure of $\mathbf{1 7 4 a}$ was confirmed using ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra.


Scheme 37. Preparation of oxime $\mathbf{1 7 4}$ from D-camphor.

The coordination complex $\mathrm{PdCl}_{2}(\mathrm{HL})_{2}(\mathbf{1 7 5})$ was prepared as a reference compound before attempting the cyclopalladation of the oxime. The coordination complex $\mathbf{1 7 5}$ was isolated in $67 \%$ yield by stirring camphor oxime $\mathbf{1 7 4 b}$ with 0.5 equiv of $\mathrm{Na}_{2} \mathrm{PdCl}_{4}$ at rt for 18 h (Scheme 38). According to the NMR spectroscopy data, the compound was a mixture of two isomers in ca. 9:1 ratio, possibly due to the presence of $E$ and $Z$ isomers in the starting oxime, although the existence of trans/cis forms of the complex in the solution cannot be excluded.


Scheme 38. Preparation of the coordination complex 175.

Cyclopalladation of oxime 174b was first tested with equimolar amounts of $\mathrm{Na}_{2} \mathrm{PdCl}_{4}$ and NaOAc by stirring the reagents in abs. MeOH at rt. Analytical TLC and ${ }^{1} \mathrm{H}$ NMR spectrum of the product indicated that this reaction gave only complex 175 ( $33 \%$ yield). Repeating this reaction at reflux for 6 h still showed only the coordination complex.

An equimolar mixture of camphor oxime $\mathbf{1 7 4 b}$ and $\mathrm{Pd}(\mathrm{OAc})_{2}$ was then stirred in glacial acetic acid at $80^{\circ} \mathrm{C}$ for 5 h . After treatment with LiCl , the chloro-bridged CPC 177 was obtained in $66 \%$ yield (Scheme 39). The dimeric complex was converted to the mononuclear triphenylphosphine adduct $\mathbf{1 7 8}$ in $98 \%$ yield by stirring a 2:1 mixture of $\mathrm{PPh}_{3}$ and CPC 177 in acetone at rt (Scheme 39).


Scheme 39. Preparation of dimeric and mononuclear complexes 177 and 178.

The proposed structures of the obtained coordination and cyclopalladated complexes 175, $\mathbf{1 7 7}$ and $\mathbf{1 7 8}$ were supported by NMR spectroscopy. Signal assignment in the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra was done using DEPT, COSY and HMQC spectra. Purity and elemental composition of the compounds were proven by satisfactory elemental analysis.

The ${ }^{1} \mathrm{H}$ NMR spectra of the free oxime and the coordination complex contained four 3 H singlets confirming the presence of one methoxy and three methyl groups in their structures. The striking difference between the two spectra was a significant downfield shift of the singlet belonging to the 1-Me group of complex $\mathbf{1 7 5}$ from $\delta 1.02$ to 2.42 ppm . Such downfield shifts of some signals in the spectra of coordination complexes in comparison to those of free ligands have been observed earlier ${ }^{56,111,270,271}$ and can be explained by the position of the corresponding hydrogens above or below the $\mathrm{PdCl}_{2} \mathrm{~N}_{2}$
plane of the coordination complex. ${ }^{272}$ Such positioning of the $\mathrm{C}-\mathrm{H}$ bond is considered a possible step of cyclopalladation. ${ }^{23}$

As expected, ${ }^{1} \mathrm{H}$ NMR spectra of the cyclopalladated derivatives $\mathbf{1 7 6}$ and $\mathbf{1 7 8}$ had signals of only two methyl groups instead of three (in addition to the singlet of the NOMe fragment). Each of the two diastereotopic hydrogens in the $\mathrm{PdCH}_{2}$ group provided a doublet (or a doublet of doublets due to ${ }^{3} J_{\mathrm{H}, \mathrm{P}}$ for one of the hydrogens in complex 178): ${ }^{2} J$ $=8 \mathrm{~Hz}$ at 2.22 and 2.58 ppm for $\mathbf{1 7 7}$ and $^{2} J=10 \mathrm{~Hz}$ at 0.53 and 1.86 ppm for $\mathbf{1 7 8}$. The observed coupling constants and chemical shift values are similar to those reported previously for other dimeric CPCs and $\mathrm{PPh}_{3}$ derivatives with the $\left(s p^{3}\right) \mathrm{C}-\mathrm{Pd}$ bond. ${ }^{208,209}$

It is noteworthy that the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra in $\mathrm{C}_{6} \mathrm{D}_{6}$ of the dimeric CPC 177 showed doubling of some signals (in a 5:3 ratio). This can be explained by the presence of two geometrical isomers, cis and trans. Such isomerism is well known for dimeric CPCs ${ }^{25}$, ${ }^{273}$ including those with the $\left(s p^{3}\right) \mathrm{C}-\mathrm{Pd}$ bond. ${ }^{23}$

The ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and ${ }^{31} \mathrm{P}$ NMR spectra ${ }^{23}$ of the mononuclear CPC 178 had one set of signals that suggests the existence of only one isomer in a solution. This complex appears to have the trans- $P, N$ geometry as practically all known $\mathrm{PPh}_{3}$ adducts of CN cyclopalladated complexes. The 1D NOE experiment with the irradiating frequency corresponding to the resonance frequency of the ortho hydrogens of the $\mathrm{PPh}_{3}$ ligand ( $\delta 7.78$ ppm ) showed a positive enhancement of the signal at 1.86 ppm , which belongs to one of the hydrogens of the $\mathrm{CH}_{2} \mathrm{Pd}$ fragment. Also, the ${ }^{1} \mathrm{H}$ NMR signal of one of the hydrogens of the $\mathrm{CH}_{2} \mathrm{Pd}$ group ( $\delta 0.53 \mathrm{ppm}$ ) appeared as a doublet of doublets with ${ }^{2} J_{\mathrm{HH}}=10 \mathrm{~Hz}$ and ${ }^{3} J_{\mathrm{HP}}=8 \mathrm{~Hz}$. A similar value of the ${ }^{3} J_{\mathrm{HP}}$ coupling constant observed for only one of the two
hydrogens of the $\mathrm{CH}_{2} \mathrm{PdP}$ fragment was reported for a related $\mathrm{PPh}_{3}$ complex with trans$P, N$ geometry proven by X-ray crystallographic study. ${ }^{209}$

When the cyclopalladation $O$-methyl camphor oxime (174) was achieved in our lab, we learned that Kuchin et al. just published the cyclopalladation of a closely related derivative of camphor, $N$-benzylimine 179 (Scheme 40). ${ }^{274,} 275$ When our work was compared with Kuchin's, we concluded that their spectral data and ours were similar (Scheme 40). ${ }^{274,275}$


Scheme 40. D-Camphor-derived palladacycle $\mathbf{1 8 0}$ with the $\left(s p^{3}\right) \mathrm{C}-\mathrm{Pd}$ bond.

## X-ray Crystallographic Study of CPC 177

The X-ray single crystal study of complex 177 unambiguously proved its dimeric and cyclopalladated structure. The molecular structure of the compound and the numbering scheme are presented in Fig. 3. Several crystallographic studies of chloro-bridged dimeric five-membered $C N$-CPCs with the $\left(s p^{3}\right) \mathrm{C}-\mathrm{Pd}$ bond have been reported, including structures 90, 181-184, which will be used for comparison (Chart 15). ${ }^{63,181,276,277}$ Only one of these studies describes the molecular structure of a cyclopalladated oxime with a $\left(s p^{3}\right) \mathrm{C}-\mathrm{Pd}$ bond (184); that oxime was obtained from tert-butyl methyl ketone. ${ }^{63}$


Figure 3. ORTEP drawing of the molecular structure of CPC 177. Thermal ellipsoids are shown at the $50 \%$ probability level.


Chart 15. Examples of chloro-bridged dimeric $C N-\mathrm{CPCs}$ with the $\left(s p^{3}\right) \mathrm{C}-\mathrm{Pd}$ bond and a known molecular structure.

Complex 177 crystallizes from hexane/dichloromethane in the orthorhombic crystal system and in the space group $P 2_{12} 2_{1} 1_{1}$. The dimeric molecule consists of two independent halves, which are slightly different in their structural parameters. The structure showed trans geometry of the cyclopalladated ligands typical for the majority of known chloro-bridged $C N$-CPCs with a five-membered palladacycle in solid state. The $\mathrm{Pd}_{2} \mathrm{Cl}_{2}$ ring in $\mathbf{1 7 7}$ is almost planar as in many other chloro-bridged $C N$-CPCs with trans-configuration. Four torsion angles in the $\mathrm{Pd}_{2} \mathrm{Cl}_{2}$ ring are between 7.28 and $7.89 \AA$. The $\mathrm{Pd} . . . \mathrm{Pd}$ distance in the complex is $3.500 \AA$, which is similar to those reported for $C N$-CPCs with transgeometry. ${ }^{278}$ For comparison, the closest analog 184 has very rare cis ligand geometry in solid state and displays a significant bending of the $\mathrm{Pd}_{2} \mathrm{Cl}_{2}$ ring that results in an unusually short Pd...Pd distance of $2.99 \AA .{ }^{63}$

The $\mathrm{Pd}-\mathrm{Cl}$ bond trans to the metalated carbon is longer, $2.4996 \AA$, than that trans to the nitrogen, $2.3311 \AA(\Delta 0.1685 \AA)$, (here and later, the given values represent the average of two numbers obtained for each half of the dimeric molecule). Similar findings were reported for trans complexes $\mathbf{9 0}, \mathbf{1 8 1}-\mathbf{1 8 3}$, in which the $\mathrm{Pd}-\mathrm{Cl}$ bond length differences are $0.188,0.156,0.128$ and $0.162 \AA$, respectively. ${ }^{181,276,277}$ For three representative chlorobridged dimeric $C N-\mathrm{CPCs}$ with (i) the $\left(s p^{2}\right) \mathrm{C}-\mathrm{Pd}$ bond, (i) a five-membered palladacycle and (iii) trans ligand geometry, the difference between two $\mathrm{Pd}-\mathrm{Cl}$ bonds (cis and trans to the aromatic carbon) has also been observed, although that difference is smaller, 0.1053 , 0.125 and $0.131 \AA . .^{4,170,228,279}$ These data reflect a stronger trans influence of (i) the carbon donor atom compared to nitrogen and (ii) the $\left(s p^{3}\right) \mathrm{C}$ atom compared to $\left(s p^{2}\right) \mathrm{C}$.

The $\left(s p^{3}\right) \mathrm{C}-\mathrm{Pd}$ bond length in 177 is $2.019 \AA$. This value is within the range reported for complexes $\mathbf{9 0}, \mathbf{1 8 1}-\mathbf{1 8 4}(1.959-2.034 \AA)$. The $\left(s p^{2}\right) \mathrm{N}-\mathrm{Pd}$ bond in $\mathbf{1 7 7}$ is a little bit longer than the $\left(s p^{3}\right) \mathrm{C}-\mathrm{Pd}$ bond, $2.037 \AA$, as it is reported for other chloro-bridged dimeric $C N$-CPCs with the $\left(s p^{2}\right) \mathrm{N}$ and $\left(s p^{2}\right) \mathrm{C}$ donor atoms and trans geometry of cyclopalladated ligands. ${ }^{170,228,279,280}$ For comparison, in complexes $\mathbf{1 8 2}$ and 184, the $\left(s p^{2}\right) \mathrm{N}-\mathrm{Pd}$ bond lengths are $1.996(13)$ and $1.986(1) \AA$, respectively. ${ }^{63,277}$

In complex 177, the bite angles $\mathrm{C}(10)-\mathrm{Pd}-\mathrm{N}(1)$ and $\mathrm{C}(30)-\mathrm{Pd}(2)-\mathrm{N}(2)$ are $82.14(10)$ and $82.39(10)^{0}$, respectively. This value falls in the range reported for compounds $\mathbf{1 8 1}-$ 183: $84.5(1), 80.7(7)$ and $82.9(6)^{\circ}$, respectively. ${ }^{276,277}$ In complex $\mathbf{1 8 3}$ with a silicon atom in the metalacycle, the angle reaches $86.81(9)^{\circ} .{ }^{181}$ For comparison, the C-Pd-N angle for chloro-bridged CPCs with the $\left(s p^{2}\right) \mathrm{N}$ and $\left(s p^{2}\right) \mathrm{C}$ donor atoms varies from 80.3 to $81.2^{\mathrm{o}} ;{ }^{170}$, ${ }^{228,279}$ for the corresponding complexes with $\left(s p^{3}\right) \mathrm{N}$ and $\left(s p^{2}\right) \mathrm{C}$, the C-Pd-N bite angle is slightly larger, $80.6-82.8^{\circ} .{ }^{278,280}$

Both palladium atoms in complex 177 are nearly in square-planar coordination with a slight tetrahedral distortion. The angle between the planes $\{\mathrm{N}(1) \operatorname{Pd}(1) \mathrm{C}(10)\}$ and $\{\mathrm{Cl}(1) \operatorname{Pd}(1) \mathrm{Cl}(2)\}$ is only $0.56^{\circ}$; the angle between the corresponding planes $\{\mathrm{N}(2) \mathrm{Pd}(2) \mathrm{C}(30)\}$ and $\{\mathrm{Cl}(1) \mathrm{Pd}(2) \mathrm{Cl}(2)\}$ is just slightly bigger, $3.26^{\circ}$. It appears that such almost ideal square-planar geometry is a characteristic feature of aliphatic palladacycles. ${ }^{209}$

Two metalacycles of dimer $\mathbf{1 7 7}$ can be described as slightly twisted envelopes with $C(10)$ and $C(21)$ serving as the envelope flaps. To estimate the distortion of each metalacycle from planarity, the sum of absolute values of intrachelate torsion angles was used as was proposed by Dunina. ${ }^{281}$ For one of the rings in CPC 177, the sum is $65.67^{\circ}$ with the average angle of $13.13^{\circ}$. For the second metalacycle, the sum is $31.7^{\circ}$ with the average angle of $6.34^{\circ}$. The closely related dimer $\mathbf{1 8 1}$ displays a significantly higher distortion of the metalacycle with the sum of torsion angles equal to $158^{\circ}$, with an average angle of $31.6^{\circ} .{ }^{276}$ For comparison, chloro-bridged $C N-\mathrm{CPCs}$ with the $\left(s p^{2}\right) \mathrm{C}$ and $\left(s p^{3}\right) \mathrm{N}$ donor atoms have the sum of intrachelate torsion angles in the range of 99-135.5 ${ }^{\circ}$.

## III.1.2. $N, N$-Dimethylhydrazone of D-Camphor

The $N, N$-dimethylhydrazone of D-camphor (185) was first reported by Chelucci et al. in 1986 in their study of pyridoannelation of hindered ketones. ${ }^{282}$ As mentioned before, aliphatic CPCs containing the hydrazone directing group have been investigated by Cardenas et al. ${ }^{67,68}$ There are no literature reports on the attempted cyclopalladation of compound $\mathbf{1 8 5}$ or its involvement in palladium-catalyzed reactions.

Preligand $\mathbf{1 8 5}$ was synthesized as a single isomer $\left({ }^{1} \mathrm{H}\right.$ and ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR data) in $89 \%$ yield following the published procedure by Chelucci et al. ${ }^{282,283}$ D-Camphor, $N, N$ dimethylhydrazine and a catalytic amount of 4-toluenesulfonic acid were refluxed for
seven days in ethanol to give product 185 in $89 \%$ yield (Scheme 41). The product of this reaction can exist as two geometric, $E / Z$, isomers. According to ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR data, the hydrazone was isolated as a single geometric isomer. To determine whether the compound has either E or Z geometry, an NOE test was carried out. Irradiation of the protons on the $\mathrm{NMe}_{2}$ group during the NMR experiment showed positive NOE for the endo hydrogen on $C(3)$. Based on this observation, it could be concluded that compound $\mathbf{1 8 5}$ has the E geometry.


Scheme 41. Synthesis of camphor $\mathrm{N}, \mathrm{N}$-dimethylhydrazone 185.


Figure 4. Expected and observed NOE effect upon irradiation of the $\mathrm{NMe}_{2}$ group on 185.

Cyclopalladation of the camphor hydrazone $\mathbf{1 8 5}$ was attempted using a variety of conditions; the successful results are summarized in Table 1. All reactions in AcOH resulted in deprotection of the carbonyl group to give camphor. Palladation of $\mathbf{1 8 5}$ using $\mathrm{Pd}(\mathrm{OAc})_{2}$ in MeCN or toluene furnished the desired product 186, although in low yields. The yield of compound 186 was increased to $72 \%$ when $\mathrm{Na}_{2} \mathrm{PdCl}_{4}$ was used in the presence
of the weak base NaOAc in MeCN . The best yield (92\%) of the cyclopalladated complex was achieved with $\operatorname{Pd}(\mathrm{MeCN})_{2} \mathrm{Cl}_{2} / \mathrm{NaOAc}$ in MeCN (Scheme 42).


Scheme 42. Cyclopalladation of camphor N,N-dimethylhydrazone 185.

Table 1. Cyclopalladation of camphor $N, N$-dimethylhydrazone 185.

| Entry | Pd source/base | Rxn temp. <br> $\left({ }^{\circ} \mathrm{C}\right)$ | Rxn time (h) | Solvent | Yield of <br> $\mathbf{1 8 6}(\%)$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | $\mathrm{Pd}(\mathrm{OAc})_{2}$ | reflux | 4 | MeCN | 44 |
| 2 | $\mathrm{Na}_{2} \mathrm{PdCl}_{2} / \mathrm{AcONa}$ | reflux | 4 | MeCN | 72 |
| 3 | $\mathrm{Pd}(\mathrm{OAc})_{2}$ | 60 | 6 | PhMe | 46 |
| 4 | $\mathrm{Pd}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{2} \mathrm{Cl}_{2} / \mathrm{NaOAc}$ | reflux | 4 | MeCN | 92 |

Cyclopalladation of $\mathbf{1 8 5}$ occurred at the methylene group. This conclusion was made based on the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of CPC $\mathbf{1 8 6}$ which showed signals of the three methyl groups on the camphor moiety in addition to the nonequivalent methyl groups on the $\left(s p^{3}\right) \mathrm{N}$ atom. This suggested that palladation takes place at $\mathrm{C}(3)$ (the methylene carbon) and the $\left(s p^{3}\right) \mathrm{N}$ atom is coordinated to the Pd center leading to the possibility of endo/exo palladation. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of product $\mathbf{1 8 6}$ were complex. This complexity is not only due to possible formation of endo and exo isomers but also cis and trans isomers (Chart 16). In addition, conformational flexibility of trans- and cis-186
is plausible, resulting in three diastereomers for each conformation. This was observed by Perera et al. for complexes of molybdenum derived from 3-diphenylphosphino-(1R)-(+)camphor dimethylhydrazone. ${ }^{284}$


Chart 16. Possible isomers of CPC 186.

Repeated attempts to get only one isomer by varying the reagents and reaction conditions gave the same mixture ( ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR data). All efforts to separate the isomers by preparative thin-layer chromatography (TLC) using different eluents were unsuccessful. The mixture of CPCs was refluxed in MeOH in the hope that it would isomerize to give a single isomer, but instead deprotection of the carbonyl group occurred to give D-camphor. Refluxing CPCs $\mathbf{1 8 6}$ over 6 h in aprotic solvents like MeCN and toluene also led to the breakdown of the complex with the deposition of Pd black. Separation of CPCs $\mathbf{1 8 6}$ by recrystallization using common solvents was unsuccessful.

Because the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra for the dimeric complex 186 were difficult to interpret, it was reacted with 2 equiv. of $\mathrm{PPh}_{3}$ in acetone to give the mononuclear triphenylphosphine adduct 187 (Scheme 43). The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of complexes 187 showed a mixture of two stereoisomers in a 1:1 isomeric ratio, one with an
endo $\mathrm{C}-\mathrm{Pd}$ bond (endo-187) and the other with an exo $\mathrm{C}-\mathrm{Pd}$ bond (exo-187, Scheme 43 ). Attempts to separate the isomers by preparative TLC using different eluents were also unsuccessful. Similar to dimers 186, deprotection of the carbonyl group occurred to give D-camphor when the mixture of complexes $\mathbf{1 8 7}$ was refluxed in MeOH . Refluxing complexes 187 in aprotic solvents like MeCN and toluene also led to the breakdown of the complex with the deposition of Pd black. Separation of CPCs 187 by recrystallization using common organic solvents failed.


Scheme 43. Reaction of camphor $N, N$-dimethylhydrazone CPC 186 with $\mathrm{PPh}_{3}$.

There are many reports of the conversion of dimeric CPCs to their mononuclear adducts by reaction with $\mathrm{Na}(\mathrm{acac}) .{ }^{74,285-289} \mathrm{Na}$ (acac) was prepared by slow addition of a solution of NaOH to acetylacetone. CPC-186 was also converted to the mononuclear acetylacetonate adducts endo- and exo- $\mathbf{1 8 8}$ in $96 \%$ yield by stirring with 3 equiv. of $\mathrm{Na}(\mathrm{acac})$ in $\mathrm{CHCl}_{3}$ (Scheme 44). The yield of endo- and exo- $\mathbf{1 8 8}$ was similar to those reported in the literature ( $80-98 \%$ ). The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of product $\mathbf{1 8 8}$ showed a mixture of two diastereomers, which differ by stereochemistry at $C(3)$ (Scheme 44). Attempts to separate the two isomers using preparative TLC were unsuccessful.


Scheme 44. Reaction of the camphor $N, N$-dimethylhydrazone CPC 186 with Na (acac).

The best ratios of endo- and exo-188, 83:17 for the former and 19:81 for the latter, were obtained using preparative TLC (silica gel, 1:2 ethyl acetate-hexane). The 83:17 mixture of endo and exo complexes were left in $\mathrm{CDCl}_{3}$ for 3 weeks resulting to a 3:2 ratio of endo and exo complexes which suggested a slow isomerization of the former compound to the latter. The two isomers can be differentiated by a distinct ${ }^{1} \mathrm{H}$ NMR signal of the hydrogen bonded to $\mathrm{C}(3)$. The singlet at $\delta 3.99 \mathrm{ppm}$ was assigned to isomer exo- $\mathbf{1 8 8}$ with the endo hydrogen at $\mathrm{C}(3)$ since no coupling is expected between hydrogens of $\mathrm{C}(3)$ and $C(4)$. The exo hydrogen of $\mathrm{C}(3)$ in isomer endo- $\mathbf{1 8 8}$ was coupled with both the hydrogen of $\mathrm{C}(4)$ and the exo hydrogen of $\mathrm{C}(5)$ providing a triplet at $\delta 4.82 \mathrm{ppm}$ with a coupling constant of 3.5 Hz . These data point to the fact that endo- $\mathbf{1 8 8}$ has $\mathrm{C}-\mathrm{Pd}$ bond in endo position, while exo-188 is the exo isomer as shown in scheme 44 . The identity of the endo isomer could further be confirmed by comparing the ${ }^{1} \mathrm{H}$ NMR signals of the three methyl groups of the camphor fragment as they appear in three compounds: preligand $\mathbf{1 8 5}$ and complexes endo- and exo-188. The three methyl groups of the camphor moiety of the endo isomer are arranged in a similar pattern to those of the preligand $\mathbf{1 8 5}$ while those in the exo isomer are not. The interaction of the acac ligand with (pro-S)-Me at $\mathrm{C}(7)$ in the exo isomer led to a downfield shift of its ${ }^{1} \mathrm{H}$ NMR signal.

The X-ray single crystal study of complex $\mathbf{1 8 6}$ unambiguously proved its dimeric and cyclopalladated structure. The molecular structure of the compound and the numbering scheme are presented in Fig. 4. To the best of our knowledge, there are no reported crystal structures for $C N$-CPCs with a $2^{\circ}\left(s p^{3}\right) \mathrm{C}-\mathrm{Pd}$ bond. However, several crystallographic studies of chloro-bridged dimeric five-membered $C N-\mathrm{CPCs}$ with $1^{\circ}\left(s p^{3}\right) \mathrm{C}-\mathrm{Pd}$ bonds have been reported, including structures $90,177,181-184$, which will be used for comparison (Chart 17). ${ }^{63,181,276,277}$ Only two of these studies describe the molecular structure of a cyclopalladated hydrazone with a $\left(s p^{3}\right) \mathrm{C}-\mathrm{Pd}$ bond $(\mathbf{1 8 2}, \mathbf{1 8 3})$; these hydrazones were obtained from tert-butyl methyl ketone. ${ }^{277}$


Figure 5. ORTEP drawing of the molecular structure of CPC 186. Thermal ellipsoids are shown at the $50 \%$ probability level.


Chart 17. Examples of chloro-bridged dimeric $C N$-CPCs with an $\left(s p^{3}\right) \mathrm{C}-\mathrm{Pd}$ bond and a known molecular structure.

Complex 186 crystallizes from hexane/dichloromethane in the monoclinic crystal system and in the space group $P 2_{1}$. The dimeric molecule consists of two independent halves, which are slightly different in their structural parameters. The structure showed trans geometry of the cyclopalladated ligands typical for the majority of known chlorobridged $C N$-CPCs with a five-membered palladacycle in solid state. The $\mathrm{Pd}_{2} \mathrm{Cl}_{2}$ ring in $\mathbf{1 8 6}$ is almost planar as in many other chloro-bridged CN -CPCs with trans configuration. Four torsion angles in the $\mathrm{Pd}_{2} \mathrm{Cl}_{2}$ ring are between 2.17 and $2.38 \AA$. The $\mathrm{Pd} . . . \mathrm{Pd}$ distance in the complex is $3.466 \AA$, which is similar to those reported for $C N$-CPCs with transgeometry. ${ }^{278}$ For comparison, the closest analog 177 has a Pd...Pd distance of $3.500 \AA$ while another close analog, 184, possesses very rare cis ligand geometry in solid state and displays a significant bending of the $\mathrm{Pd}_{2} \mathrm{Cl}_{2}$ ring that results in an unusually short $\mathrm{Pd} . . . \mathrm{Pd}$ distance of $2.99 \AA .{ }^{63}$

The $\mathrm{Pd}-\mathrm{Cl}$ bond trans to the metalated carbon is longer, $2.4906 \AA$ (here and later, the given values represent the average of two numbers obtained for each half of the dimeric molecule), than that trans to the nitrogen, $2.3374 \AA(\Delta 0.1532 \AA)$. Similar findings were reported for trans complexes $\mathbf{9 0}, \mathbf{1 7 7}, \mathbf{1 8 1}-\mathbf{1 8 3}$, in which the $\mathrm{Pd}-\mathrm{Cl}$ bond length differences are $0.188,0.169,0.156,0.128$ and $0.162 \AA$, respectively. ${ }^{181,276,277}$ For three representative chloro-bridged dimeric $C N$-CPCs with (i) the $\left(s p^{2}\right) \mathrm{C}-\mathrm{Pd}$ bond, (ii) a five-membered
palladacycle and (iii) trans ligand geometry, the difference between two $\mathrm{Pd}-\mathrm{Cl}$ bonds (cis and trans to the aromatic carbon) has also been observed, although that difference is smaller, $0.1053,0.125$ and $0.131 \AA . .^{4,170,228,279}$ These data reflect a stronger trans influence of (i) the carbon donor atom compared to nitrogen and (ii) the $\left(s p^{3}\right) \mathrm{C}$ atom compared to $\left(s p^{2}\right) \mathrm{C}$.

The $\left(s p^{3}\right) \mathrm{C}-\mathrm{Pd}$ bond length in complex $\mathbf{1 7 7}$ is $1.982 \AA$. This value is within the range reported for complexes $\mathbf{9 0}, \mathbf{1 7 7}, \mathbf{1 8 1}-\mathbf{1 8 4}\left(1.959-2.034 \AA\right.$ ). The $\left(s p^{3}\right) \mathrm{N}-\mathrm{Pd}$ bond $(2.078 \AA)$ in $\mathbf{1 8 6}$ is a little bit longer than the $\left(s p^{3}\right) \mathrm{C}-\mathrm{Pd}$ bond $(1.982 \AA)$, as it is reported for other chloro-bridged dimeric $C N$-CPCs with the $\left(s p^{2}\right) \mathrm{N}$ and $\left(s p^{3}\right) \mathrm{C}$ or $\left(s p^{3}\right) \mathrm{N}$ and $\left(s p^{3}\right) \mathrm{C}$ donor atoms and trans-geometry of cyclopalladated ligands. ${ }^{17,170,228,279,280}$ For comparison, in complexes 177, $\mathbf{1 8 2}$ and $\mathbf{1 8 4}$, the $\left(s p^{2}\right) \mathrm{N}-\mathrm{Pd}$ bond lengths are 2.037(2) 1.996(13) and $1.986(1) \AA$, respectively ${ }^{63,277}$ while in complex $\mathbf{1 8 3}$ the $\left(s p^{3}\right) \mathrm{N}-\mathrm{Pd}$ bond length is $2.063(1) \AA . .^{277}$

In complex 186, the bite angles $\mathrm{C}(3)-\mathrm{Pd}(1)-\mathrm{N}(2)$ and $\mathrm{C}(3 \mathrm{~A})-\mathrm{Pd}(1 \mathrm{~A})-\mathrm{N}(2 \mathrm{~A})$ are equivalent, $80.8(2)^{\mathbf{o}}$. This value falls in the range reported for compounds $\mathbf{1 7 7}, \mathbf{1 8 1} \mathbf{- 1 8 3}$ : $82.27(10), 84.5(1), 80.7(7)$ and $82.9(6)^{\circ}$, respectively. ${ }^{17,276,277}$ In complex 183 with a silicon atom in the metalacycle, the angle reaches $86.81(9)^{0} .{ }^{181}$ For comparison, the C-PdN angle for chloro-bridged CPCs with the $\left(s p^{2}\right) \mathrm{N}$ and $\left(s p^{2}\right) \mathrm{C}$ donor atoms varies from 80.3 to $81.2^{\text {o. }} ;{ }^{170,228,279}$ for the corresponding complexes with $\left(s p^{3}\right) \mathrm{N}$ and $\left(s p^{2}\right) \mathrm{C}$, the C-Pd- N bite angle is slightly larger, $80.6-82.8^{\circ} .278,280$

Both palladium atoms in complex 186 are nearly in square-planar coordination with a slight tetrahedral distortion. The angle between the planes $\{\mathrm{N}(2) \operatorname{Pd}(1) \mathrm{C}(3)\}$ and $\left\{\mathrm{Cl}(1) \mathrm{Pd}(1) \mathrm{Cl}(1 \mathrm{~A})\right.$ is only $6.02^{\circ}$; the angle between the corresponding planes
$\{\mathrm{N}(2 \mathrm{~A}) \operatorname{Pd}(1 \mathrm{~A}) \mathrm{C}(3 \mathrm{~A})\}$ and $\{\mathrm{Cl}(1) \operatorname{Pd}(1 \mathrm{~A}) \mathrm{Cl}(1 \mathrm{~A})\}$ is just slightly bigger, $3.60^{\circ}$. It appears that such almost ideal square-planar geometry is a characteristic feature of aliphatic palladacycles. ${ }^{209}$

Two metalacycles of dimer $\mathbf{1 7 7}$ can be described as slightly twisted envelopes with $C(10)$ and $C(21)$ serving as the envelope flaps. To estimate the distortion of each metalacycle from planarity, the sum of absolute values of intrachelate torsion angles was used as was proposed by Dunina. ${ }^{281}$ For one of the rings in CPC 177, the sum is $65.67^{\circ}$ with the average angle of $13.13^{\circ}$. For the second metalacycle, the sum is $31.7^{\circ}$ with the average angle of $6.34^{\circ}$. The closely related dimer $\mathbf{1 8 1}$ displays a significantly higher distortion of the metalacycle with the sum of torsion angles equal to $158^{\circ}$, with an average angle of $31.6^{\circ} .{ }^{276}$ For comparison, chloro-bridged $C N$-CPCs with the $\left(s p^{2}\right) \mathrm{C}$ and $\left(s p^{3}\right) \mathrm{N}$ donor atoms have the sum of intrachelate torsion angles in the range of 99-135.5 ${ }^{\circ}$.

## III.1.3. $N, N$-Diphenylhydrazone of D-Camphor

Previously, Kuchin et al. synthesized CPC 190 from camphor $N$-benzylimine 189 using $\mathrm{Pd}(\mathrm{OAc})_{2}$ in toluene at $60^{\circ} \mathrm{C}$. Preligand $\mathbf{1 8 9}$ can undergo either palladation at the $\left(s p^{2}\right) \mathrm{C}$ of the phenyl group or at the $\left(s p^{3}\right) \mathrm{C}$ of the camphor moiety. This research group observed regioselective metalation at the $\left(s p^{2}\right) \mathrm{C}$ of the phenyl group of camphor N benzylimine 189 to give CPC 190 in $45 \%$ yield (Scheme 45). ${ }^{274,275, ~} 290$


189, 51\%


190, 45\%

Scheme 45. D-Camphor-derived palladacycles with the $\left(s p^{2}\right) \mathrm{C}-\mathrm{Pd}$ bond.

It was of interest to investigate regioselectivity of cyclopalladation for the related preligand, $N, N$-diphenylhydrazone of D-camphor 191 . There are no literature reports on $N, N$-diphenylhydrazone of D-camphor 191. Attempts were made to obtain hydrazone 191 following the published procedure for the synthesis of the phenylhydrazone of D-camphor 192 by Schantl et al. ${ }^{291}$ According to their procedure, $N, N$-diphenylhydrazine, D-camphor and a catalytic amount of AcOH were refluxed for 3 h in ethanol (Scheme 46). ${ }^{1} \mathrm{H}$ NMR spectrum of the reaction mixture indicated the presence of the product in ca. $70 \%$ yield, but upon purification the $\mathrm{N}, \mathrm{N}$-diphenylhydrazone of D-camphor completely decomposed to D-camphor.


Scheme 46. Synthesis of camphor $\mathrm{N}, \mathrm{N}$-diphenylhydrazone 191.

## III.1.4. Phenylhydrazone of D-Camphor

The phenylhydrazone of D-camphor (192) was synthesized in $50 \%$ yield following the published procedure by Schantl et al. ${ }^{291}$ According to their procedure, D-camphor, phenylhydrazine and a catalytic amount of AcOH were refluxed for 3 h in ethanol (Scheme 47). The structure of the phenylhydrazone product was confirmed using ${ }^{1} \mathrm{H}$ NMR spectroscopy. As the authors mentioned, elevated temperatures or traces of acids readily converted phenylhydrazone 192 to D-camphor. It is worth noting that we observed decomposition of this compound immediately after purification even at rt as the brown oily product was turning green. All attempts to cyclopalladate the freshly prepared compound

192 using $\mathrm{Na}_{2} \mathrm{PdCl}_{2} / \mathrm{AcONa}, \mathrm{Pd}(\mathrm{OAc})_{2}$ or $\mathrm{Pd}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{2} \mathrm{Cl}_{2} / \mathrm{NaOAc}$ at rt in aprotic solvents such as MeCN and toluene failed due to too rapid decomposition of the preligand to the starting carbonyl compound.


Scheme 47. Synthesis of camphor phenylhydrazone 192.
III.1.5. $O$-(Diphenylphosphinyl)oxime of D-Camphor

The aim of this work was to access a chiral aliphatic $C P$-palladacycle based on Dcamphor. The presence of a phosphorus atom in the desired CPC allows one to use ${ }^{31} \mathrm{P}$ NMR spectroscopy for characterization. There are no reports of $O$-(diphenylphosphinyl) oxime of D-camphor 193 in literature. The synthesis of the acetone analog has been reported by the research groups of Harger and Jennings. ${ }^{292-294}$ According to their procedure, diphenylphosphinic chloride, D-camphor oxime and $\mathrm{Et}_{3} \mathrm{~N}$ were stirred at rt in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ /petroleum ether for three weeks (Scheme 48). The ${ }^{1} \mathrm{H}$ NMR spectrum of the reaction mixture showed ca. $91 \%$ conversion to product 193; however, several attempts to isolate this compound in pure form were unsuccessful.


Scheme 48. Synthesis of $O$-(diphenylphosphinyl)oxime of D-camphor 193.

## III.1.6. tert-Butylimine of D-Camphor

The tert-butylimine of D-camphor $\mathbf{1 9 4}$ has not been reported in literature. $\mathrm{TiCl}_{4}$ has been shown to be a very effective catalyst for the condensation of sterically hindered ketones and alkyl amines to furnish $N$-alkylimines. ${ }^{295-297}$ Based on this information, Dcamphor, tert-butylamine and $\mathrm{TiCl}_{4}$ were refluxed in benzene for three weeks (Scheme 49). Analysis of the reaction mixture using ${ }^{1} \mathrm{H}$ NMR spectroscopy showed no conversion to the product.


Scheme 49. Failed attempt to obtain tert-butylimine of D-camphor 194.

## III.1.7. Thiocamphor

A sulfur-containing D-camphor derivative 195 was synthesized in order to attempt preparation of the corresponding $C S$-palladacycle. Since there was a report of the cyclopalladation of thioketones, ${ }^{117}$ we decided to obtain thioketone 195 (also known as thiocamphor). Attempts to synthesize this compound by refluxing D-camphor with Lawesson's reagent in toluene were unsuccessful. ${ }^{298}$ The reaction gave a complex mixture that was difficult to separate. The Polshettiwar and Kaushik procedure, according to which D-camphor and $\mathrm{P}_{4} \mathrm{~S}_{10} / \mathrm{Al}_{2} \mathrm{O}_{3}$ were refluxed in MeCN for 2 h , gave thiocamphor in $51 \%$ yield (Scheme 50). ${ }^{299}$ The structure of thiocamphor 195 was confirmed using ${ }^{1} \mathrm{H}$ NMR spectroscopy. All attempts to cyclopalladate thiocamphor using $\mathrm{Na}_{2} \mathrm{PdCl}_{2} / \mathrm{AcONa}$, $\operatorname{Pd}(\mathrm{OAc})_{2}$ or $\mathrm{Pd}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{2} \mathrm{Cl}_{2} / \mathrm{NaOAc}$ led to the formation of D-camphor.


Scheme 50. Synthesis and the failed cyclopalladation of thiocamphor 195.
III.1.8. Oxime of L-Fenchone

After succeeding to synthesize and cyclopalladate D -camphor $O$-methyloxime, we decided to try a closely related bicyclic derivative, L-fenchone. Since there is not a single report in the literature on the cyclopalladation of any L-fenchone derivative or their involvement in palladium-catalyzed reactions, we thought that it would be interesting to study their cyclopalladation. The rigidity of inexpensive and naturally optically active Lfenchone could be an advantageous feature in cyclopalladation and subsequently in the applications of the fenchone based CPCs.

## Preparation of CPCs Based on L-Fenchone Oximes and their Spectral Characterization

Readily available and inexpensive L-fenchone was converted to two preligands: oxime 196a and its $O$-methyl derivative 196b (Scheme 51 ). Oximes 196b were synthesized using the Kumar and Verma procedure ${ }^{269}$ according to which a mixture of L-fenchone, methoxyamine hydrochloride and NaOAc in ethanol was refluxed for 48 h furnishing the desired product in ca. $50: 50$ isomeric ratio. All attempts to get a single isomer or predominantly one isomer ratio did not work. Palladation of oxime $\mathbf{1 9 6 b}$ using $\mathrm{Pd}(\mathrm{OAc})_{2}$ in AcOH with the hope that isomerization would occur during this process instead gave an inseparable mixture of CPCs. The Jennequin procedure was used to prepare compound 196a according to which a mixture of L-fenchone, hydroxylamine hydrochloride $\left(\mathrm{HONH}_{2} \cdot \mathrm{HCl}\right)$ and pyridine was refluxed in EtOH for 48 h to afford oxime 196a in $64 \%$
yield. ${ }^{267}$ The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of 196a contained only one set of signals suggesting that the oxime was in the form of one isomer. When $\mathrm{HONH}_{2} \cdot \mathrm{HCl}$ was replaced with its $O$ methyl analog, oxime 196b was isolated in $82 \%$ yield. The ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{1 9 6 b}$ contained two sets of signals; the 94:6 ratio of two geometric isomers was determined by integration of two MeO signals in the ${ }^{1} \mathrm{H}$ NMR spectrum.


Scheme 51. Preparation of preligands 196a,b from L-fenchone.

Cyclopalladation of oximes 196a,b was accomplished using the same reagent and conditions as reported for the preparation of $\mathrm{CPC} 177^{17}: \mathrm{Pd}(\mathrm{OAc})_{2}, \mathrm{AcOH}, 80^{\circ} \mathrm{C}, 5 \mathrm{~h} .{ }^{55,60}$ The dimeric acetato-bridged complexes 197a,b were converted in situ to their chlorobridged analogs $\mathbf{1 9 8} \mathbf{a}, \mathbf{b}$ using LiCl in acetone. In a separate reaction, the latter complexes were converted to mononuclear derivatives $\mathbf{1 9 9} \mathbf{a}, \mathbf{b}$ using $\mathrm{PPh}_{3}$ as a monodentate auxiliary ligand (Scheme 52). Chemical composition and purity of complexes 198a,b and 199a,b as well as the fenchone derivative $\mathbf{1 9 6 b}$ were confirmed by satisfactory elemental analysis.


Scheme 52. Preparation of L-fenchone-derived CPCs 198a,b.

Cyclopalladation of preligands 196a,b and the proposed structures of new complexes 198a,b were supported by NMR spectroscopy. The ${ }^{1} \mathrm{H}$ NMR spectra of oxime $196 \mathbf{a}^{300}$ and its $O$-methyl derivative 196 b contained three 3 H singlets in the region of $1.20-1.35 \mathrm{ppm}$ assigned to the methyl groups at positions 1 and 3. In the ${ }^{1} \mathrm{H}$ NMR spectra of complexes 198a,b, one of the three singlets in that region was replaced by two oneproton signals with the chemical shifts between 2.15 and 2.80 ppm . Compared to oximes 196a,b, the DEPT spectra of dimers 198a,b contained one more $\mathrm{CH}_{2}$ signal (at 24.6 ppm for $198 \mathbf{a}$ and at 25.8 ppm for $\mathbf{1 9 8 b}$ ). For comparison, the ${ }^{1} \mathrm{H}$ NMR signals of two diastereotopic hydrogens of the $\mathrm{PdCH}_{2}$ group in the camphor-derived complexes 177 and $\mathbf{1 8 0}$ appeared at 1.55 and $2.59 \mathrm{ppm}(\mathbf{1 8 0})$ and 1.89 and $2.41 \mathrm{ppm}(\mathbf{1 7 7})$; the ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR signal of the carbon bonded to the metal in complexes $\mathbf{1 7 7}$ and $\mathbf{1 8 0}$ was observed at 30.2 and 29.9 ppm, respectively. ${ }^{17,275}{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of dimers 198a,b in $\mathrm{CDCl}_{3}$ contained only one set of signals suggesting that these complexes exist in solution as one isomer. For comparison, the ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of the camphor-derived dimeric
complex 177 in $\mathrm{CDCl}_{3}$ and $\mathrm{C}_{6} \mathrm{D}_{6}$ contained two sets of signals signifying the existence of this complex in solution as a mixture of cis and trans isomers. ${ }^{17}$
${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ and ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of mononuclear CPCs 199a,b in $\mathrm{CDCl}_{3}$ contained only one set of signals suggesting that these complexes are single geometric isomers in solutions. The ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR signals assigned to the carbon of the $\mathrm{PdCH}_{2}$ fragment in compounds $\mathbf{1 9 9} \mathbf{a}, \mathbf{b}$ appeared as singlets at 32.8 and 33.0 ppm . The fact that these signals appeared as singlets ( $\left.{ }^{3} J_{\mathrm{C}, \mathrm{P}} \approx 0 \mathrm{~Hz}\right)$ may be indicative of the cis position of $\mathrm{PPh}_{3}$ relative to the methylene group bonded to the palladium. ${ }^{24}$ For comparison, the $s p^{3}$ hybridized carbons bonded to the metal in the $\mathrm{PPh}_{3}$ derivatives of $\mathbf{1 7 7}$ and $\mathbf{1 8 0}$ of trans geometry provided singlets in the ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra at 35.1 and 27.0 ppm , respectively. ${ }^{17,275}$ As reported for related $\mathrm{PPh}_{3}$ derivatives with the $\left(s p^{3}\right) \mathrm{C}-\mathrm{Pd}$ bond and proven trans- $N, P$ geometry, ${ }^{76,208,209}$ one of the two ${ }^{1} \mathrm{H}$ NMR signals of the $\mathrm{PdCH}_{2}$ group in 199a,b appeared as a doublet $\left({ }^{2} J_{\mathrm{H}, \mathrm{H}}=10.1\right.$ and 10.7 Hz , respectively), while the other hydrogen gave a doublet of doublets due to additional splitting on the phosphorus atom $\left({ }^{3} J_{\mathrm{H}, \mathrm{P}}=7.2\right.$ and 9.0 Hz , respectively $)$. One of the two hydrogens of the $\mathrm{PdCH}_{2}$ fragment in both complexes 199a,b provided a signal in a significantly higher field (at 1.09 ppm for 199a and 0.84 ppm for 199b) compared to the other hydrogen ( 2.28 and 2.16 ppm , respectively). The significant signal shift to a higher field for one of the two hydrogens of the $\mathrm{PdCH}_{2}$ group in the ${ }^{1} \mathrm{H}$ NMR spectra of the $\mathrm{PPh}_{3}$ adducts $\mathbf{1 9 9}$ a,b suggests that the hydrogen is under the influence of magnetic anisotropy caused by phenyl groups of the $\mathrm{PPh}_{3}$ auxiliary ligand. ${ }^{301-303}$ This, in turn, suggests trans- $N, P$ geometry of complexes 199a,b. For comparison, both ${ }^{1} \mathrm{H}$ NMR signals of the $\mathrm{PdCH}_{2}$ group in the chloro-bridged CPCs 198a,b were observed above 2.15 ppm . To note, the chemical shift of the signals in
the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of $\mathbf{1 9 9 a}, \mathrm{b}\left(19.70\right.$ and 20.32 ppm relative to $\mathrm{P}(\mathrm{OEt})_{3}$, respectively) is within the range reported for related mononuclear CPCs with the $\left(s p^{3}\right) \mathrm{C}-\mathrm{Pd}$ bond, the $\mathrm{PPh}_{3}$ auxiliary ligand, and proven trans- $N, P$ geometry. ${ }^{76,} 208,209,304$

## X-ray Structural Analysis of Complexes 199a,b

Cyclopalladated structure of complexes $\mathbf{1 9 9} \mathbf{a}, \mathbf{b}$ and their trans- $N, P$ geometry were unambiguously proven by X-ray crystallographic studies. Molecular structures of the complexes and the numbering schemes are presented in Figures 5 and 6. Crystal, data collection, and refinement parameters for 199a,b are presented in Table 15-20. The data obtained for complexes 199a,b are compared to those reported for dimer $\mathbf{1 7 7}{ }^{17}$ and the closely related five-membered $C N$-palladacycles 200-204 containing the ( $\left.s p^{3}\right) \mathrm{C}-\mathrm{Pd}$ bond and $\mathrm{PPh}_{3}$ as the auxiliary ligand (Chart 18). ${ }^{74,76, ~ 208, ~ 209, ~} 304$


Chart 18. Examples of $\mathrm{PPh}_{3}$ adducts of $C N$-CPCs with the $\left(s p^{3}\right) \mathrm{C}-\mathrm{Pd}$ bond and a known molecular structure.


Figure 6. ORTEP drawing of the molecular structure of complex 199a. Thermal ellipsoids are shown at the $50 \%$ probability level.


Figure 7. ORTEP drawing of the molecular structure of complex 199b. Thermal ellipsoids are shown at the $50 \%$ probability level.

Bond lengths in $\mathbf{1 9 9} \mathbf{a}, \mathbf{b}$ are similar to those reported for related complexes. ${ }^{17,74,76,}$ ${ }^{208,209,304}$ It is noteworthy that the $\mathrm{C}-\mathrm{Pd}$ bond $(2.063 \AA$ ) in complex $\mathbf{1 9 9 b}$ is the longest among those found in the related complexes (2.000-2.051 $\AA$ ). Interestingly, the $\mathrm{Pd}-\mathrm{N}$ bond ( $2.115 \AA$ ) in the same complex $\mathbf{1 9 9 b}$ is also the longest among the camphor- and fenchonederived CPCs $\mathbf{1 7 7}$ and 199a,b. The $\operatorname{Pd}-\mathrm{P}$ bond ( 2.2218 and $2.2250 \AA$, respectively) in 199a,b are the shortest among the related $C N$-palladacycles chosen for the comparison (2.2340-2.2563 Å).

The values of the $\mathrm{C}(1)-\mathrm{Pd}-\mathrm{N}$ angle ( $81.43^{\circ}$ and $79.25^{\circ}$, respectively) in both complexes 199a,b fall in the range of reported values for related compounds (78.15-83.43 ${ }^{\circ}$ ). ${ }^{17,74,76,208,209,304}$ Other bond angles in 199a,b are also similar to those found in complexes $\mathbf{1 7 7}$ and 200-203.

The palladium atom in complexes 199a,b has square-planar coordination with a slight distortion. In both compounds, the torsion angles $\mathrm{Pd}-\mathrm{N}-\mathrm{C}(1)-\mathrm{P}, \mathrm{Pd}-\mathrm{C}(1)-\mathrm{P}-\mathrm{Cl}, \mathrm{Pd}-\mathrm{P}-$ $\mathrm{Cl}-\mathrm{N}$ and $\mathrm{Pd}-\mathrm{Cl}-\mathrm{N}-\mathrm{C}(1)$ have the same sign; therefore, the distortion can be described as pyramidal. The distance from the mean plane $\{\mathrm{PClC}(1) \mathrm{N}\}$ to the metal in 199a,b is 0.049 and $0.075 \AA$, respectively, indicating that the distortion is greater in $\mathbf{1 9 9 b}$. The angle between the planes $\{\mathrm{NPdC}(1)\}$ and $\{\mathrm{PPdCl}\}$ is equal to $4.3^{\circ}$ in $\mathbf{1 9 9 a}$ and $6.8^{\circ}$ in 199b. For comparison, the angle between planes $\{\mathrm{NPdC}(1)\}$ and $\{\mathrm{PPdCl}\}$ in the reported mononuclear complexes 200 and 201 is equal to $7.7^{\circ}$ (the average for four independent molecules) and $2.9^{\circ}$, respectively. ${ }^{208,209}$

Palladacycle's conformation in complexes 199a,b can be described as a slightly twisted envelope with the Pd atom serving as the envelope flap. The sum of absolute values of intrachelate torsion angles in the palladacycle of $\mathbf{1 9 9 a}$ is found to be $93.50^{\circ}$ with the
average angle value of $18.70^{\circ}$. The metalacycle in $\mathbf{1 9 9 b}$ is more distorted than that in 199a: the sum of absolute values of intrachelate torsion angles in palladacycle 199b is equal to $123.24^{\circ}$ with the average angle value of $24.65^{\circ}$. These values suggest that distortion of palladacycles 199a,b from planarity is about average compared to related palladacycles. ${ }^{17}$ For example, for the closely related dichloro-bridged dimer 177, the sum of the intrachelate torsion angles in palladacycle is $48.69^{\circ}$ (the average for two palladacycles in the dimer), while the angle sum in the palladacycle of complex $\mathbf{2 0 0}$ is found to be $97.56^{\circ}$. The most distorted palladacycle appears to be in complex 201, ${ }^{209}$ where the sum of intrachelate torsion angles reaches $171.24^{\circ}$.

A notable feature of the crystal structure of complex 199a is the participation of the OH fragment in an intramolecular hydrogen bond with the Cl acceptor. There are two other reports of hydrogen bonding involving the oxime group in camphor-derived $\mathrm{Pd}(\mathrm{II})$ complexes. ${ }^{265,305}$ One of these two studies describes the molecular structure of the coordination complex $\mathrm{PdCl}_{2} \mathrm{~L}_{2}, \mathrm{~L}=$ camphor oxime. ${ }^{265}$ The authors drew attention to two hydrogen bonds involving one of the two Cl atoms and both hydroxyl groups suggesting that such a geometry makes the cyclopalladation difficult as it is impossible for the carbon atom of $\mathrm{CH}_{3}(7)$ to approach the metal. All attempts to palladate camphor oxime with halogen-containing Pd salts were unsuccessful. ${ }^{265}$ Our own attempts to synthesize a CPC from this oxime using $\operatorname{Pd}(\mathrm{AcO})_{2}$ also failed. This makes the cyclopalladation of the closely related fenchone oxime 196a especially rewarding.
III.2. Reactions of KPPh2 with CPCs having the (sp3)C-Pd Bond

Stoichiometric and catalytic transformations using palladium and other transitionmetal derivatives are rightfully considered a cornerstone of organic and organometallic
chemistry. During the last decade, a variety of atom-economical Pd-catalyzed $\mathrm{C}-\mathrm{H}$ bond functionalization reactions have gained recognition as a powerful and versatile synthetic approach. ${ }^{306-317}$ Most recently, the focus of these investigations has shifted toward aliphatic $\mathrm{C}-\mathrm{H}$ bond activation ${ }^{220,306,307,318-321}$ because possible synthetic applications appear to be more diverse and, therefore, more useful. However, metal-catalyzed reactions at the $\left(s p^{3}\right) \mathrm{C}-\mathrm{H}$ bond are difficult to achieve in comparison to those at the $\left(s p^{2}\right) \mathrm{C}-\mathrm{H}$ bond ${ }^{171,306,}$ ${ }^{317}$ due to the absence of both empty low-energy orbitals and filled high-energy orbitals that facilitate interaction with orbitals from the metal. ${ }^{306,322}$ To attain the $\mathrm{C}-\mathrm{H}$ bond activation by a metal and to increase the regioselectivity of this process, a directing heteroatom or auxiliary is introduced into in the substrate structure. ${ }^{317,323-329}$ As a result, the first step in many Pd -catalyzed $\mathrm{C}-\mathrm{H}$ bond functionalization reactions is the formation of a palladacycle. ${ }^{330}$ Additionally, it has been noted that many examples of $\mathrm{C}-\mathrm{H}$ bond activation, including cyclopalladation reactions, appear to occur under thermodynamic control; therefore, the outcome is dependent on the relative stability of the palladacycle and the strength of the nascent $\mathrm{C}-\mathrm{Pd}$ bond. ${ }^{331}$ By analogy with data previously reported for Rh complexes, ${ }^{331}\left(s p^{2}\right) \mathrm{C}-\mathrm{Pd}$ bonds are expected to be stronger then $\left(s p^{3}\right) \mathrm{C}-\mathrm{Pd}$ bonds; this may explain frequently observed ${ }^{4,8,332}$ (with rare exceptions) ${ }^{47,51,54,63,76,136,139,208,333}$ regioselective aromatic cyclopalladation in the presence of a competing aliphatic fragment. Besides the C-Pd bond forming step, a typical catalytic cycle includes the reaction of this bond with a second reagent. Therefore, investigating possible Pd -catalyzed $\mathrm{C}-\mathrm{H}$ bond functionalization transformations by a certain reagent, it is important to consider the reactivity of the corresponding $\mathrm{C}-\mathrm{Pd}$ bond toward that chemical. The fact that palladacycles are intermediates of the auxiliary-directing Pd -catalyzed $\mathrm{C}-\mathrm{H}$ bond
functionalization reactions warrants further studies of stoichiometric reactions of cyclopalladated complexes (CPCs), particularly those with the $\left(s p^{3}\right) \mathrm{C}-\mathrm{Pd}$ bond.

Despite the abundance of reported reactions at the C-Pd bond of palladacycles, ${ }^{137,}$ 196, 334 there are only a limited number of transformations involving the $\left(s p^{3}\right) \mathrm{C}-\mathrm{Pd}$ bond. Moreover, most of these infrequent studies describe reactions at the benzylic position. The earliest examples of reactions at the $\left(s p^{3}\right) \mathrm{C}-\mathrm{Pd}$ bond of CPCs were reported by the Pfeffer group. ${ }^{56,335,336}$ They investigated mono- and bis-insertions of hexafluorobutyne and other electron-deficient alkynes into the $\mathrm{C}-\mathrm{Pd}$ bond of various CN -CPCs including dimeric complexes obtained from $\mathrm{N}, \mathrm{N}$-dimethyl- $o$-toluidine. Later, the same group reported reactions of benzyl isocyanide with several CS-CPCs, including one with a benzylic C-Pd bond and one with an aliphatic $\mathrm{C}-\mathrm{Pd}$ bond (derived from methyl 2,2-dimethylphenyl sulfide and tert-butyl phenyl sulfide, respectively). ${ }^{112}$ The same CPCs were also tested in reactions with CO at rt ; however, only the complex obtained from tert-butyl phenyl sulfide provided a new insertion product. ${ }^{112}$ The authors noted that (i) the yields of the isocyanide insertion products were comparable for all studied CPCs regardless of the hybridization of the carbon atom bonded to the metal and (ii) CS-palladacycles were more reactive towards insertion reactions of isocyanides and CO compared to CN -analogs.

In 1984, Carr and Sutherland studied the iodination of an aliphatic five-membered $C, N$ palladacycle with $\mathrm{I}_{2}{ }^{65}$ Later, chlorinations using $\mathrm{Cl}_{2}{ }^{337}$ and $\mathrm{Et}_{3} \mathrm{BnNCl}^{137}$ were reported for one $C, N$ and one $C, S$ complex, respectively. In 2005, the Yu group described the iodination of 2,4-di-tert-butyl-2-oxazoline with $\mathrm{I}_{2}$ using stoichiometric and catalytic amounts of $\mathrm{Pd}(\mathrm{OAc}) 2 .{ }^{338}$ The CPC used in the Yu study was first synthesized by Balavoine and Clinet, who reacted the complex with methyl vinyl ketone, MeI, $n$-BuI, allyl iodide
and CO with and without MeOH to give substituted oxazolines with new $\mathrm{C}-\mathrm{C}$ bonds. However, no information was provided about the products formed in these reactions except for the yields. ${ }^{25}$

Several research groups reported oxidation of CN -CPCs obtained from oximes with bulky alkyl substituents. ${ }^{59,61,339,340}$ The formation of an $\left(s p^{3}\right) \mathrm{C}-\left(s p^{2}\right) \mathrm{C}$ bond was observed in the reaction of $\mathrm{Me}_{3} \mathrm{SnPh}$ with a $C P$-palladacycle having a benzylic $\mathrm{C}-\mathrm{Pd}$ bond. ${ }^{341} \mathrm{All}$ of these reports suggest that palladacycles with benzylic and aliphatic $\left(s p^{3}\right) \mathrm{C}-\mathrm{Pd}$ bonds can be used in the same reactions as analogous $\left(s p^{2}\right) \mathrm{C}-\mathrm{Pd}$-bonded CPCs; however, no proper comparison of their reactivity can be made because of the limited data available.

Our group ${ }^{14,15,342}$ and others ${ }^{243,258,259}$ have investigated reactions of CPCs with lithium and potassium phosphides to form aminophosphines and related bidentate ligands (Scheme 53). All CPCs used in these studies contained an $\left(s p^{2}\right) \mathrm{C}-\mathrm{Pd}$ bond. In this section of the dissertation, we report our data on reactivity of $C N-, C P$ - and $C S$-palladacycles with an $\left(s p^{3}\right) \mathrm{C}-\mathrm{Pd}$ bond toward $\mathrm{KPPh}_{2}$ and compare these results with the those reported for the $\left(s p^{2}\right) \mathrm{C}-\mathrm{Pd}$-bonded CPCs in the same reaction.

$\mathrm{X}=\mathrm{N}, \mathrm{P}$ or S
Scheme 53. Formation of bidentate ligands by reacting $\mathrm{MPPh}_{2}$ with dimeric CPCs containing an $\left(s p^{2}\right) \mathrm{C}-\mathrm{Pd}$ bond.

Previously, we showed that both $\mathrm{LiPPh}_{2}$ and $\mathrm{KPPh}_{2}$ are capable of reacting with dimeric chloro-bridged CPCs. ${ }^{14,}{ }^{15}$ However, the outcome of the $\mathrm{LiPPh}_{2}$ reactions with CPCs was highly sensitive to the phosphide structure in the solution, which in turn, depended on the preparation method, concentration and age of the chemical. $\mathrm{KPPh}_{2}$ in a
solution appears to exist only in a monomeric form, and reactivity of the commercial reagent and the one prepared in our lab from $\mathrm{ClPPh}_{2}$ and K was proven to be the same. In the present investigation, we used only commercially available $\mathrm{KPPh}_{2}$ as a phosphide source.

The dimeric dichloro-bridged $C N$-CPC 177 derived from $O$-Me camphor oxime ${ }^{17}$ was chosen as a model complex for our study. Complex $\mathbf{1 7 7}$ reacted with 4.5 equiv. of $\mathrm{KPPh}_{2}$ in THF at rt for 18 h to give the desired $N P$-ligand 205 in $21 \%$ yield (Scheme 54). The conditions used for this transformation were the same as those previously reported in reactions with CPCs derived from aromatic substrates, ${ }^{14,15,342}$ but the obtained yield of the phosphine was less than half. ${ }^{14,15}$ Increasing the reaction temperature to $40^{\circ} \mathrm{C}$ resulted in 5\% yield of 205. Considering that the bidentate ligand 205 might be coordinated to the metal, 1,2-bis(diphenylphosphino)ethane was added at the end of the room temperature reaction to release the $N P$-ligand in its free form. The yield, indeed, was improved, but not significantly (28\%).


177


205


206


207

Scheme 54. Reaction of CPC 177 with $\mathrm{KPPh}_{2}$.

In an attempt to improve the yield of the camphor-based phosphine 205 and learn more about this reaction, the dimeric CPC 177 was reacted in THF with 1 equiv. of $\mathrm{KPPh}_{2}$ (corresponds to a 1:2 ratio of Pd and $\mathrm{PPh}_{2}$ ). As in the previously reported reactions of CPCs with 1 equiv. of $\mathrm{KPPh}_{2},{ }^{15}$ no phosphine $\mathbf{2 0 5}$ was formed and only complex $\mathbf{2 0 6}$ was isolated (Scheme 54). The best yield of this complex (31\%) was obtained when the reaction time was shortened to 1 h .

Then, the reaction of CPC 177 with 4.5 equiv. of $\mathrm{KPPh}_{2}$ was performed using the standard conditions (THF, $18 \mathrm{~h}, \mathrm{rt}$ ) with a modified purification procedure. Use of ethyl acetate instead of halogenated solvents allowed for isolation of the unstable complex 207 (24\%), which presumably has a dimeric structure with two $\mathrm{PPh}_{2}$ bridges. Phosphine 205 was obtained from the same reaction in $17 \%$ yield. Further chromatographic purification of complex 207 using $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ provided several compounds, some of which were isolated in a pure form or identified using ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR data. The $\mu-\mathrm{Cl}-\mu-\mathrm{PPh}_{2}$ complex 206 and $\mathrm{HP}(\mathrm{O}) \mathrm{Ph}_{2}$ were obtained in $16 \%$ and $5 \%$ yield, respectively, and phosphine 205 was detected by ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( $<5 \%$ yield $)$. The ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of one of the fractions contained the singlet of complex 207 at $\delta-64.7 \mathrm{ppm}\left[\right.$ in $\mathrm{C}_{6} \mathrm{D}_{6}$ relative to $\left.\mathrm{P}(\mathrm{OEt})_{3}\right]$ and two doublets, $\delta 21.8$ and $113.5 \mathrm{ppm}, J_{\mathrm{PP}}=36 \mathrm{~Hz}$. We hypothesize that these doublets belong to compound 208, which can be formed by reacting free phosphine 205 with complex 207 (Scheme 55). The ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR chemical shift of 123.2 ppm has been reported for complexes with the $\mathrm{PAr}_{2}$ group as a terminal ligand bonded to $\operatorname{Pd}(\mathrm{II})^{343}$ (cf. the chemical shift of -7.8 ppm for the terminal $\mathrm{PPh}_{2}$ ligand bonded to Pt$),{ }^{344,345}$ while the chemical shifts in a range of $20-35 \mathrm{ppm}$ are typical for tertiary phosphines bonded to $\mathrm{Pd}(\mathrm{II})$ as terminal ligands. ${ }^{342,346}$ The value of the coupling constant suggests that there are two phosphorus
atoms in complex 208 that are cis to each other. Also, the values of the ${ }^{31} \mathrm{P}$ NMR chemical shifts and the coupling constant of compound $\mathbf{2 0 8}$ are remarkably similar to the analogous complex 209 (Figure 8), which was previously isolated and fully characterized (including a satisfactory elemental analysis). ${ }^{347}$ According to the transphobia concept, ${ }^{348,} 349$ complexes of type $\mathbf{2 0 8}$ and $\mathbf{2 0 9}$ are expected to have a terminal $\mathrm{PPh}_{2}$ group cis to the $\mathrm{CH}_{2}$ fragment of the cyclopalladated ligand. Thus, we suggest that the diphosphido-bridged complexes of type 207 can a) slowly produce the corresponding $N, P$ ligands (in this case 205) as a result of reductive elimination and b) react with other ligands, including compound 205, to form mononuclear complexes of type 208 and 209.


Scheme 55. Proposed reaction of dimer 207 with phosphine 205.


209

Figure 8. Structure of complex 209.

To test whether the $\mu-\mathrm{Cl}-\mu-\mathrm{PPh}_{2}$ complex 206 could be converted to its di- $\mu-\mathrm{PPh}_{2}$ analog $207 \mathrm{and} /$ or phosphine 205, it was reacted with 1 equiv. of $\mathrm{KPPh}_{2}$. Two compounds were isolated after preparative TLC: free $N, P$ ligand $\mathbf{2 0 5}$ in $23 \%$ yield and complex 207 in $14 \%$ yield. It is noteworthy that the $\mu-\mathrm{Cl}-\mu-\mathrm{PPh}_{2} \mathrm{CPC}$ obtained from $N, N-$ dimethylbenzylamine can also be converted to the corresponding free aminophosphine in $38 \%$ yield by reacting with $\mathrm{LiPPh}_{2}{ }^{342}$

Next, we studied whether the free phosphine could be obtained directly from the di- $\mu-\mathrm{PPh}_{2} \mathrm{CPC} 207$ by reacting it with 2.5 equiv. of $\mathrm{KPPh}_{2}$ in THF. To our surprise, after 18 h at rt , no free phosphine $\mathbf{2 0 5}$ was detected in the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of the reaction mixture. Chromatographic separation of the reaction mixture allowed for $31 \%$ recovery of the starting complex 207. Carrying out the same reaction over 36 h provided no free phosphine either. In the third experiment, which lasted 96 h , the non-coordinated $N P$ ligand 205 was finally isolated in $27 \%$ yield. Therefore, the di $-\mu-\mathrm{PPh}_{2}$ CPC 207 can be converted to compound $\mathbf{2 0 5}$ by reaction with $\mathrm{KPPh}_{2}$; however, this produces the $N P$-ligand much more slowly than the direct reaction of CPC 177 with 4.5 equiv. of $\mathrm{KPPh}_{2}$ in THF. In another experiment, the di- $\mu-\mathrm{PPh}_{2}$ dimer 207 was treated with 2 equiv. of LiCl before addition of 2.5 equiv. of $\mathrm{KPPh}_{2}$. The ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of the reaction mixture after 18 h at rt already contained the signal of non-coordinated phosphine 205 suggesting that the reaction of complex 207 with $\mathrm{KPPh}_{2}$ to give phosphine $\mathbf{2 0 5}$ is faster in the presence of chloride ions.

The ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of the sample from the reaction of CPC $\mathbf{1 7 7}$ with 4.5 equiv. of $\mathrm{KPPh}_{2}(\mathrm{rt}, 18 \mathrm{~h})$ had signals of free phosphine 205, complex 207, $\mathrm{PPh}_{2} \mathrm{PPh}_{2}$ and its monoxide, as well as several compounds, which we could not identify, including two
complexes apparently having two different P atoms cis to each other and separated by two bonds $\left(J_{\mathrm{PP}}=30-40 \mathrm{~Hz}\right)$. The formation of $\mathrm{PPh}_{2} \mathrm{PPh}_{2}$ and its monoxide was also observed in all other reactions of CPCs with metal phosphides.

Encouraged by our results for the camphor-based complex 177, we tested the fenchone-derived CPC $198{ }^{353}$ in reactions with $\mathrm{KPPh}_{2}$. The reaction of CPC 198 with 4.5 equiv. of $\mathrm{KPPh}_{2}$ in THF furnished the enantiopure $N P$-ligand $210(\delta-37.1 \mathrm{ppm})$ in $51 \%$ yield (Scheme 57). Using 1 equiv. of $\mathrm{KPPh}_{2}, \mathrm{CPC} 198$ was converted to the $\mu-\mathrm{Cl}-\mu-\mathrm{PPh}_{2}-$ bridged derivative 211 ( $\delta 2.2 \mathrm{ppm}$ ) in 56\% yields (Scheme 57). ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ and ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR data for complex 211 suggest that this and other $\mu-\mathrm{Cl}-\mu-\mathrm{PPh}_{2}$-bridged CPCs reported in the literature, ${ }^{14,15,342}$ as well as the others described in this study, exist in solutions as single isomers with trans- $N, P$ geometry.


Scheme 56. Reactions of the fenchone-derived CPC 198 with $\mathrm{KPPh}_{2}$.

The 8 -methylquinoline-derived complex $\mathbf{2 1 2}^{42}$ studied next differs from the previously used CPCs 177 and 198 by having a benzylic carbon bonded to the metal. Reactions of CPC 212 with 4.5 equiv. of $\mathrm{KPPh}_{2}$ at rt gave only 8-methylquinoline (Scheme 58). The isolation of free preligands was previously reported in $\mathrm{KPPh}_{2}$ reactions with CPCs
containing an $\left(s p^{2}\right) \mathrm{C}-\mathrm{Pd}$ bond ${ }^{14}$ as well as in the Pd-catalyzed phosphination reactions of aryl triflates with $\mathrm{PPh}_{3} .{ }^{354}$ The formation of such products can be explained by $\beta$-hydride elimination of the alkoxide-containing Pd(II) intermediate,,$^{14}$ which could be formed after the adventitious cleavage of a $\mathrm{C}-\mathrm{O}$ bond in THF by the phosphide. ${ }^{342}$


Scheme 57. Reactions of CPCs 212 with $\mathrm{KPPh}_{2}$.

When 1 equiv. of $\mathrm{KPPh}_{2}$ was used in the reaction, the $\mu-\mathrm{Cl}-\mu$ - $\mathrm{PPh}_{2}$-brigded derivative 214 was isolated in $56 \%$ (Scheme 58). The ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of complex 214 had a singlet at $\delta 10.2 \mathrm{ppm}\left[\mathrm{CDCl}_{3}\right.$ relative to $\left.\mathrm{P}(\mathrm{OEt})_{3}\right]$ and matched the data for this complex prepared by a different method. ${ }^{347}$

Complex 212 had a limited solubility in THF. To test if the more soluble complex $\boldsymbol{\mu}$-OAc-212 could provide the phosphination product $\mathbf{2 1 5}$, the reaction of this CPC with 4.5 equiv. of $\mathrm{KPPh}_{2}$ at rt was carried out. Preparative TLC provided a mixture of the desired product 215 and its oxide 216. In the next experiment, air was bubbled through the reaction mixture for 18 h before preparative TLC. The change in the work-up resulted in the isolation of compound 216 in $21 \%$ (Scheme 59). This reaction is the first example of converting acetato-bridged CPCs to the corresponding phosphines (or phosphine oxides) using metal phosphides.


Scheme 58. Reaction of CPC $\boldsymbol{\mu}$-OAc-212 with 4.5 equiv. of $\mathrm{KPPh}_{2}$.

It was of interest to investigate $\mathrm{KPPh}_{2}$ reactivity toward CPCs with donor atoms other than nitrogen such as trimesitylphosphine-derived complex $217^{103}$ containing a benzylic $\mathrm{C}-\mathrm{Pd}$ bond. This compound reacted with 4.5 equiv. of $\mathrm{KPPh}_{2}$ at rt to provide only the free preligand 218 (Scheme 60).


Scheme 59. Formation of compound 218 in the reaction of CPC 217 with $\mathrm{KPPh}_{2}$.

Reactions of $\mathrm{KPPh}_{2}$ with two tri-ortho-tolylphosphine-derived complexes, dichloro-bridged dimer 219 and its acetato-bridged analog $\boldsymbol{\mu}$-OAc-219 ${ }^{31}$ were investigated as well. In all experiments with these two CPCs, air was bubbled into the reaction mixtures before purification to ensure oxidation of the phosphine product. Reaction of complex 219 furnished phosphine oxide 220 in $20 \%$ yield (Scheme 61). In contrast to the $\mathrm{KPPh}_{2}$ reactions with the 8-methylquinoline-derived CPCs, the use of $\boldsymbol{\mu}$ - $\mathbf{O A c} \mathbf{- 2 1 9}$ instead of its chloro-bridged analog provided only traces of the phosphination product 220. It is worth mentioning that, according to ${ }^{31} \mathrm{P}$ NMR data, only one of the two phosphino groups in the
product was oxidized. In both reactions, along with compound 220, tri-orthotolylphosphine 211 was isolated as well (Scheme 61).


Scheme 60. Reaction of complexes 219 and $\boldsymbol{\mu}$-OAc-219 with $\mathrm{KPPh}_{2}$.

Finally, the reactivity of the CS-CPC 222 ${ }^{111}$ was studied. This complex reacted with 4.5 equiv. of $\mathrm{KPPh}_{2}$ to provide the phosphination product $\mathbf{2 2 3}$ in low yield. Because of the rapid conversion of $\mathbf{2 2 3}$ to the corresponding oxide $\mathbf{2 2 4}$ during purification, the crude product was oxidized before preparative TLC. The best yield of the phosphine oxide was $22 \%$. It is noteworthy that a significant amount of the free sulfide $\mathbf{2 2 5}$ was isolated in all reactions of CPC 222 (Scheme 62).


Scheme 61. Reaction of CPC 222 with $\mathrm{KPPh}_{2}$.

### 2.2. Structure confirmation

According to the literature, ${ }^{355,} 356$ non-coordinated tertiary phosphines provide ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR signals in the -70 to +70 ppm interval (relative to $\mathrm{H}_{3} \mathrm{PO}_{4}$ ), diphenylsubstituted tertiary phosphines give signals with negative chemical shift values, and signals of phosphine oxides usually have positive chemical shift values between 10 and 30 ppm . The spectra of the synthesized phosphines 205 and $\mathbf{2 1 0}$ contained a single peak at -23.2 and -37.1 ppm [relative to $\mathrm{P}(\mathrm{OEt})_{3}$ ], respectively. These phosphines were slowly, within a week, oxidized by oxygen in air to give corresponding phosphine oxides with ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR signals at $\delta 15.1$ and 15.0 ppm , respectively. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of phosphine oxides 216 and 224 exhibited singlets at $\delta 16.5$ and 15.0 ppm , respectively, whereas the spectrum of product $\mathbf{9 f}$ with two phosphorus atoms contained two doublets at $\delta-45.1$ and $15.4 \mathrm{ppm}\left({ }^{4} J_{\mathrm{P}, \mathrm{P}}=9.2 \mathrm{~Hz}\right)$.
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR signals of the $\mathrm{CH}_{2} \mathrm{P}$ fragment in compounds 205 and 210 and 226, 216, 220 and 224 displayed $J_{\mathrm{H}, \mathrm{P}}$ and $J_{\mathrm{C}, \mathrm{P}}$ coupling constants. Diastereotopic hydrogens of the $\mathrm{CH}_{2} \mathrm{P}$ group in $\mathbf{2 0 5}$ and $\mathbf{2 1 0}$ and $\mathbf{2 2 6}$ (Figure 9) provided two doublets of doublets between $\delta 2.15$ and 3.06 ppm . The ${ }^{1} \mathrm{H}$ NMR signal of the benzylic $\mathrm{CH}_{2}$ group bonded to the phosphorus atom in phosphine oxides 216, 220 and 224 appeared as a doublet between $\delta 4.00$ and 4.56 ppm . It is noteworthy that the values of the coupling constant ${ }^{2} J_{\mathrm{H}, \mathrm{P}}$ for phosphines 205 and 210 were 3.5 and 4.1 Hz , while those for phosphine oxides 226, 216, 220 and 224 were much larger: 16.0, 14.2, 9.6 and 14.1 Hz , respectively. The difference in the values of coupling constants when comparing phosphines to phosphine oxides was especially noticeable in ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra. The $\mathrm{CH}_{2} \mathrm{P}$ group in phosphines 205 and 210 gave a doublet at $\delta 27.5$ and 30.7 ppm with ${ }^{1} J_{\mathrm{C}, \mathrm{P}}$ equal to 18 and 13 Hz , respectively. The ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR signal of the same group in phosphine oxides 226, 216,

220 and 224 appeared between $\delta 27.3$ and 36.6 ppm and displayed the coupling constant ${ }^{1} J_{\mathrm{C}, \mathrm{P}}$ in a range of $67-73 \mathrm{~Hz}$. The oxidation of the phosphino group in compounds $\mathbf{2 2 6}$, 216, 220 and 224 was also confirmed by IR spectroscopy. IR spectra of these compounds had an absorption band at $1187-1199 \mathrm{~cm}^{-1}$ assigned to the stretching vibrations of the $\mathrm{P}=\mathrm{O}$ group. ${ }^{357}$ The elemental composition of phosphines 205 and 210 and phosphine oxides 213, 221 and 225 was confirmed by HRMS data.


226

Figure 9. Oxide of 205.
$\mathrm{Pd}(\mathrm{II})$ complexes with both a chloro and phosphido bridge are rather uncommon in the literature. ${ }^{15,342,358-361}$ Moreover, there are only two known cyclopalladated complexes of this type. They were obtained from $N, N$-dimethylbenzylamine ${ }^{15,342}$ and its $\alpha$-tert-butylderivative. ${ }^{361}$ Three isomers can be predicted for such complexes; however, it was shown that in the solid form ${ }^{361}$ and in a solution, ${ }^{342}$ they exist as syn isomers with the trans- $N, P$ ligand configuration. The $\mu-\mathrm{Cl}-\mu-\mathrm{PPh}_{2} \mathrm{Pd}(\mathrm{II})$ complex (206) obtained in this study presumably have a syn configuration with the $\mathrm{PPh}_{2}$ bridging ligand trans to both nitrogen atoms. The ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of CPC 206 in $\mathrm{CDCl}_{3}$ exhibited a singlet at $\delta 4.9 \mathrm{ppm}$, respectively. In the ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of this complex, the signal of the $\mathrm{CH}_{2} \mathrm{Pd}$ fragment appeared as a doublet $\left({ }^{2} J_{\mathrm{C}, \mathrm{P}}=2.2 \mathrm{~Hz}\right)$ at 19.4 ppm . For comparison, the reported complex of this type synthesized from $N, N$-dimethylbenzylamine provided the ${ }^{31} \mathrm{P}$ NMR signal at $\delta 25.1 \mathrm{ppm}\left({ }^{2} J_{\mathrm{C}, \mathrm{P}}=1.8 \mathrm{~Hz}\right) .{ }^{342}$ The ${ }^{1} \mathrm{H}$ NMR spectra of complex 206 confirmed a

1:2 ratio of the $\mathrm{PPh}_{2}$ group and cyclopalladated ligands in it structure. The elemental composition and purity of this compound was confirmed by satisfactory elemental analysis.
$\mathrm{Di}-\mu-\mathrm{PPh}_{2}$ complexes of $\mathrm{Pd}(\mathrm{II})$ and especially $\mathrm{Pt}(\mathrm{II})$ are well known. ${ }^{362-366}$ However, to the best of our knowledge, only one cyclometallated derivative of this type has been reported, the $\mathrm{Pt}(\mathrm{II})$ complex derived from 7,8-benzoquinoline. ${ }^{367}$ Unfortunately, only the X-ray crystallographic data for this compound are available. The ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of known di- $\mu-\mathrm{PPh}_{2} \mathrm{Pd}(\mathrm{II})$ complexes usually have the signals of the bridging $\mathrm{PPh}_{2}$ group between -100 and $-140 \mathrm{ppm} .{ }^{362,363,365,368}$ In the present study, we were able to isolate complex, 207, which presumably have dimeric cyclopalladated structure with two bridging $\mathrm{PPh}_{2}$ ligands. The ${ }^{1} \mathrm{H}$ NMR spectrum of the oxazoline-derived analog of complex 207 previously synthesized in our lab suggests a $1: 1$ ratio of the $\mathrm{PPh}_{2}$ fragment and the cyclopalladated ligand. The ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of the same compound in $\mathrm{CDCl}_{3}$ exhibited a lone singlet at $\delta-85.1 \mathrm{ppm}\left(-72.5 \mathrm{ppm}\right.$ in $\left.\mathrm{C}_{6} \mathrm{D}_{6}\right)$, which suggests the anti configuration of the cyclopalladated ligands. The ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR signal of the $\mathrm{CH}_{2} \mathrm{Pd}$ fragment in oxazoline-derived analog of complex 207 appeared at $\delta 42.2 \mathrm{ppm}$ as a triplet with $J_{\mathrm{C}, \mathrm{P}}$ equal to 55.1 Hz . Regrettably, the camphor-derived complex 207 could not be obtained in the pure form to allow its complete characterization by NMR spectroscopy. The ${ }^{1} \mathrm{H}$ NMR spectrum of this compound was too complex to assign all signals; however, the signal integration suggested a $1: 1$ ratio of the $\mathrm{PPh}_{2}$ fragment and the cyclopalladated ligand. The only reliable spectroscopic data for this complex that can be reported are its ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR signal at $\delta-64.8 \mathrm{ppm}$ in $\mathrm{C}_{6} \mathrm{D}_{6}$ and -76.9 ppm in $\mathrm{CDCl}_{3}$.

## CONCLUSIONS

As a result of the experimental work, all three major goals (see page 47) have been accomplished.

1. Enantiopure D-camphor $O$-methyloxime, L-fenchone oximes and camphor $\mathrm{N}, \mathrm{N}$ dimethylhydrazone were synthesized according to published procedures in $64-89 \%$ yield from readily available compounds in the chiral pool. Structures of these preligands were confirmed using NMR spectroscopy.
2. Direct cyclopalladation of D-camphor $O$-methyloxime, L-fenchone oximes and camphor $\mathrm{N}, \mathrm{N}$-dimethylhydrazone with $\mathrm{Pd}(\mathrm{OAc})_{2}$ and/or $\mathrm{Pd}(\mathrm{MeCN})_{2} \mathrm{Cl}_{2}$, afforded new optically active aliphatic cyclopalladated complexes in $49-92 \%$ yield. NMR spectral and single crystal X-ray crystallographic studies were used to confirm the presence of an $\left(s p^{3}\right) \mathrm{C}-\mathrm{Pd}$ bond in the complexes.
3. Phosphination reactions of new complexes derived from the $O$-methyloximes of D-camphor and L-fenchone as well as other dimeric $C N-, C P$ - and $C S$-CPCs with an $\left(s p^{3}\right) \mathrm{C}-\mathrm{Pd}$ bond were investigated. Using 4.5 equiv. of $\mathrm{KPPh}_{2}, \mathrm{CPCs}$ were converted to the corresponding phosphines or phosphine oxides in 20-51\% yield. When CPCs reacted with 1 equiv. of $\mathrm{KPPh}_{2}$, unique mono-chloro-mono-phosphido-bridged CPCs were isolated in $31-56 \%$ yield.

## CHAPTER VI

## EXPERIMENTAL

## VI.1. General Methods and Materials

Routine ${ }^{1} \mathrm{H}(500 \mathrm{MHz})$ and ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}(126 \mathrm{MHz})$ as well as DEPT, COSY, and HSQC NMR spectra were recorded on a Bruker AVANCE 500 NMR spectrometer. Chemical shifts are reported in ppm with $\mathrm{SiMe}_{4}$ as an internal standard $\left({ }^{1} \mathrm{H}\right.$ and $\left.{ }^{13} \mathrm{C}\right)$ or $\mathrm{P}(\mathrm{OEt})_{3}$ as an external standard $\left({ }^{31} \mathrm{P}\right)$. Spin-spin coupling constants, $J$, are given in Hz . Spectra were recorded in $\mathrm{CDCl}_{3}$ unless stated otherwise. IR spectra were recorded on a Perkin Elmer Spectrum 400 FT-IR/FT-FIR Spectrometer. Melting points were measured on a Laboratory Devices Mel-Temp apparatus and are uncorrected. Optical rotations were measured at rt on a Rudolph Autopol III automatic polarimeter in a 1-dm tube. Elemental analyses were carried out by Atlantic Microlabs Inc., Norcross, GA. Analytical TLC was performed on Whatman silica gel $60\left(\mathrm{~F}_{254}\right) 250$ precoated plates. Preparative TLC was carried out using $200 \times 250 \mathrm{~mm}$ glass plates with an unfixed layer of Merck silica gel 60 (230 mesh) containing ca. 5\% of silica gel with fluorescent indicator (Aldrich). Compounds were visualized on TLC plates using UV light ( 254 nm ) and/or iodine stain. Methoxyamine hydrochloride, hydroxylamine hydrochloride and L-(-)-fenchone were purchased from Acros Organics Co., $\mathrm{PPh}_{3}$ from Eastman Kodak, D-camphor $\left\{[\alpha]_{\mathrm{D}}=+44.1^{\circ}(c=10.0\right.$, $\mathrm{EtOH})\}$ from Fisher Scientific. These reagents were used as purchased as their purity was confirmed by ${ }^{1} \mathrm{H}$ NMR spectroscopy. $\mathrm{Pd}(\mathrm{OAc})_{2}$ purchased from Aldrich was purified by dissolving in hot benzene, filtering the solution
and removing the solvent on a rotavapor. NaOAc and $\mathrm{Pd}(\mathrm{OAc})_{2}$ were dried in vacuum prior to use. Benzene, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, hexane and ethyl acetate were distilled over $\mathrm{CaH}_{2}$. Toluene and THF were dried by refluxing over $\mathrm{K} /$ benzophenone ketyl and distilled under Ar immediately before starting a reaction. These reagents were used as purchased. The enantiometric purity of L-(-)-fenchone was $97 \%,[\alpha]^{24}$ D -48.9 (neat). Other chemicals were acquired from Sigma-Aldrich Co. and were used without purification unless indicated.
VI.2. Preparation of D-Camphor Derivatives and Their Cyclopalladation

Compounds 174b, 185, 191, 192 and 195 were synthesized using published procedures. ${ }^{269,} 282,283,291,299$ The NMR spectra of the obtained compounds matched those reported in the literature.
VI.2.1. Synthesis and Characterization of New Compounds
(1R,4R)-1,7,7-Trimethylbicyclo[2.2.1]heptan-2-one O-Methyloxime (D-
Camphor $\boldsymbol{O}$-Methyloxime (174b). Enantiopure D-camphor ( $0.2000 \mathrm{~g}, 1.314 \mathrm{mmol}$ ) was added to a solution of methoxylamine hydrochloride $(0.3007 \mathrm{~g}, 3.600 \mathrm{mmol})$ and sodium acetate $(0.4676 \mathrm{~g}, 5.700 \mathrm{mmol})$ in water $(1.2 \mathrm{~mL})$. Ethanol ( 2 mL ) was added, and the mixture was refluxed for 48 h . The mixture was then filtered to remove any solid residue, and ethanol was evaporated under reduced pressure to get an oily residue. The crude product was purified by extraction using $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL} \times 3)$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After filtration, the solvent was removed on a rotavapor to obtain the pure product as a colorless oil in $74 \%(0.1744 \mathrm{~g}, 0.9625 \mathrm{mmol})$. According to the ${ }^{1} \mathrm{H}$ NMR spectrum, the product was a mixture of two geometric isomers in a ratio of 92:8. $R_{f}$ 0.60 (100:1 hexane-acetone); $[\alpha]^{22}{ }_{\mathrm{D}}-29.7,[\alpha]^{22}{ }_{546}-42.7,[\alpha]^{22}{ }_{435}-67.9$ (c 0.781, EtOH). IR (film, $v, \mathrm{~cm}^{-1}$ ): 1654 and $1667(\mathrm{C}=\mathrm{N}), 1045(\mathrm{~N}-\mathrm{O}) .{ }^{1} \mathrm{H} \operatorname{NMR}(\delta, \mathrm{ppm})$ [63]: $0.80(\mathrm{~s}, 3 \mathrm{H}$,
$\left.\mathrm{CH}_{3}\right), 0.91\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.02\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.22\left(\mathrm{ddd}, 1 \mathrm{H},{ }^{2} J_{5 \text { endo, } 5 \text { exo }}=12.8,{ }^{3} J_{5 \text { endo, } 6 \text { endo }}=\right.$ $\left.9.3,{ }^{3} J_{5 \text { endo }, 4}=4.2, \mathrm{H}(5 \mathrm{endo})\right), 1.45\left(\mathrm{ddd}, 1 \mathrm{H},{ }^{2} J_{6 \text { endo,6exo }}=14.5,{ }^{3} J_{6 \text { endo, } 5 \text { endo }}=9.3,{ }^{3} J_{6 \text { endo }, 5 \text { exo }}\right.$ $=4.4, \mathrm{H}(6 \mathrm{endo})), 1.69\left(\mathrm{td}, 1 \mathrm{H},{ }^{2} J_{6 \mathrm{exo}, \text { eendo }}={ }^{3} J_{6 \mathrm{exo} 0,5 \mathrm{exo}}=12.0,{ }^{3} J_{6 \mathrm{exo}, 5 \mathrm{endo}}=4.3, \mathrm{H}(6 \mathrm{exo})\right)$, $1.82(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}(5 \mathrm{exo})), 1.86\left(\mathrm{t}, 1 \mathrm{H},{ }^{3} \mathrm{~J}_{4,5 \mathrm{exo}}={ }^{3} J_{4,3 \mathrm{exo}}=4.3, \mathrm{H}(4)\right), 1.98\left(\mathrm{~d}, 1 \mathrm{H},{ }^{2} J_{3 \text { endo,3exo }}=\right.$ 18.1, H (3endo)), 2.47 (dt, $1 \mathrm{H},{ }^{2} J_{3 \text { exo,3endo }}=18.1,{ }^{3} J_{3 \text { exo, } 4}={ }^{4} J_{3 \text { exo, } 5 \text { exo }}=4.3, \mathrm{H}(3 \mathrm{exo})$ ), 3.73 (minor isomer) and 3.82 (major isomer) (two s, $3 \mathrm{H}, \mathrm{OCH}_{3}$ ). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $(\delta, \mathrm{ppm})$ : 11.2, 18.6, $19.5\left(\right.$ three $\left.\mathrm{CH}_{3}\right), 27.4\left(\mathrm{CH}_{2}, \mathrm{C}(5)\right), 32.9\left(\mathrm{CH}_{2}, \mathrm{C}(6)\right), 33.6\left(\mathrm{CH}_{2}, \mathrm{C}(3)\right), 43.8(\mathrm{CH}$, $\mathrm{C}(4))$, 48.1 and 51.6 (two quat. $\mathrm{C}, \mathrm{C}(1)$ and $\mathrm{C}(7))$, $61.2\left(\mathrm{OCH}_{3}\right), 169.2(\mathrm{C}=\mathrm{N})$.

## (1R,4R)-Dichlorobis \{2-(methoxyimino)-1,7,7-

trimethylbicyclo[2.2.1]heptane $\}$ palladium(II) (175). To a small, one-neck roundbottomed flask containing a magnetic stirring bar and camphor oxime 174b (0.0245 g, $0.135 \mathrm{mmol}), \mathrm{Na}_{2} \mathrm{PdCl}_{4}(0.0206 \mathrm{~g}, 0.0700 \mathrm{mmol})$ was added. Abs. $\mathrm{MeOH}(1 \mathrm{~mL})$ was added as well, and the flask was covered with a stopper. After stirring the mixture at rt for $18 \mathrm{~h}, \mathrm{MeOH}$ was removed on a rotavapor. The red-brown crude product was purified using preparative TLC (silica gel, 5:1 hexane-acetone). The pure product was isolated as a yellow powder in $67 \%$ yield ( $0.0168 \mathrm{~g}, 0.0468 \mathrm{mmol}$ ). Mp: $180-182{ }^{\circ} \mathrm{C}$; $R_{f} 0.36(99: 1$ benzene-acetone); $[\alpha]^{22}{ }_{\mathrm{D}}+50.3,[\alpha]^{22}{ }_{546}+44.4\left(c 0.0510\right.$, EtOH). IR (Nujol mull, $\left.v, \mathrm{~cm}^{-1}\right)$ : $1655(\mathrm{C}=\mathrm{N}) .{ }^{1} \mathrm{H} \operatorname{NMR}(\delta, \mathrm{ppm}): 0.84$ (minor isomer) and 0.87 (major) (two s, $3 \mathrm{H}, \mathrm{CH}_{3}$ ), 0.94 (minor) and 0.98 (major) (two s, $3 \mathrm{H}, \mathrm{CH}_{3}$ ), 1.22 (m, 1H, H(5endo)), 1.81-1.99 (m, $4 \mathrm{H}, \mathrm{H}(5 \mathrm{exo}, 6 \mathrm{endo}, 6 \mathrm{exo}, 4)), 2.29\left(\mathrm{~d}, 1 \mathrm{H},{ }^{3} J_{3 \mathrm{endo}, 3 \mathrm{exo}}=18.5, \mathrm{H}(3 \mathrm{endo})\right), 2.42\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$, $2.80(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}(3 \mathrm{exo})), 4.20$ (major) and 4.51 (minor) (two s, $\left.3 \mathrm{H}, \mathrm{OCH}_{3}\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $(\delta, \mathrm{ppm}): 14.8,19.2,20.4\left(\right.$ three $\left.\mathrm{CH}_{3}\right), 27.2\left(\mathrm{CH}_{2}, \mathrm{C}(5)\right), 32.4\left(\mathrm{CH}_{2}, \mathrm{C}(6)\right), 38.6\left(\mathrm{CH}_{2}\right.$, $\mathrm{C}(3)), 43.5(\mathrm{CH}, \mathrm{C}(4)), 50.3(\mathrm{C}, \mathrm{C}(7)), 55.4(\mathrm{C}, \mathrm{C}(1)), 62.5\left(\mathrm{OCH}_{3}, \mathrm{C}(10)\right), 188.0(\mathrm{C}=\mathrm{N})$.

Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{38} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Pd}$ : C, 48.94; H, 7.09; N, 5.19. Found: C, 48.94; H, 7.18; N, 5.21\%.

## (1S,4R)-Di- $\mu$-chlorobis $\{[2$-(methoxyimino)-7,7-

dimethylbicyclo[2.2.1]heptyl]methyl- $\boldsymbol{C , N} \boldsymbol{N}\}$ dipalladium(II) (177). To a $10-\mathrm{mL}$ one-neck round-bottomed flask containing a magnetic stirring bar, camphor oxime $\mathbf{1 7 4 b}(0.0797 \mathrm{~g}$, $0.440 \mathrm{mmol}), \mathrm{Pd}(\mathrm{OAc})_{2}(0.0987 \mathrm{~g}, 0.440 \mathrm{mmol})$ and glacial acetic acid $(19 \mathrm{~mL})$ were added. The resulting mixture was stirred at $80^{\circ} \mathrm{C}$ for 5 h . The solvent was removed under reduced pressure to give a brown oily residue of the crude acetate-bridged analog of $\mathbf{1 7 6}$. Abs. acetone ( 19 mL ) was added to the crude product followed by introduction of LiCl $(0.0746 \mathrm{~g}, 1.76 \mathrm{mmol})$. The mixture was stirred at rt for 18 h . The solution was then filtered through celite $(\mathrm{h}=1 \mathrm{~cm})$, and the flask with the filtrate was placed on a rotavapor to remove acetone. The crude product was purified using preparative TLC (silica gel, 99:1 benzeneacetone). The pure product was isolated as an orange-yellow powder in $66 \%$ yield ( 0.0936 g, 0.145 mmol ). Mp: 204-206 ${ }^{\circ} \mathrm{C} ; R_{f} 0.56$ (99:1 benzene-acetone); $[\alpha]^{22}{ }_{\mathrm{D}}-164,[\alpha]^{22}{ }_{546}-$ 201, $[\alpha]^{22}{ }_{435}-307\left(c 0.100\right.$, EtOH). IR (Nujol mull, $\left.v, \mathrm{~cm}^{-1}\right): 1662(\mathrm{C}=\mathrm{N}) .{ }^{1} \mathrm{H} \operatorname{NMR}(\delta$, ppm): $0.80\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.93\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.32\left(\mathrm{t}, 1 \mathrm{H},{ }^{2} J_{5 \text { endo,5exo }}={ }^{3} J_{5 \text { endo,6endo }}=9.4\right.$, $\mathrm{H}(5 \mathrm{endo})$ ), 1.89 (m, 4H, H(5endo), $\left.\mathrm{H}(6 \mathrm{endo}), \mathrm{PdCH}^{\mathrm{A}}, \mathrm{H}(3 \mathrm{exo})\right), 2.06$ (m, 1H, H(6exo)), $2.14\left(\mathrm{t}, 1 \mathrm{H},{ }^{3} J_{4,3 \mathrm{exo}}={ }^{3} J_{4,5 \mathrm{exo}}=4.0, \mathrm{H}(4)\right), 2.41\left(\mathrm{~m}, 2 \mathrm{H},{ }^{2} J_{3 \mathrm{endo}, 3 \mathrm{exo}}=18.1,{ }^{3} J_{3 \mathrm{exo}, 4}=4.0\right.$, $\left.\mathrm{H}(3 \mathrm{exo}), \mathrm{PdCH}^{\mathrm{B}}\right), 3.78\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $(\delta, \mathrm{ppm}): 18.3$ and 19.6 (two $\mathrm{CH}_{3}$ ), $26.7\left(\mathrm{CH}_{2}, \mathrm{C}(5)\right), 31.9\left(\mathrm{CH}_{2}, \mathrm{C}(6)\right), 33.3\left(\mathrm{CH}_{2}, \mathrm{C}(3)\right), 46.7$ and 66.4 (two quat. $\mathrm{C}, \mathrm{C}(1)$ and $\mathrm{C}(7)), 47.6(\mathrm{CH}, \mathrm{C}(4)), 62.2\left(\mathrm{OCH}_{3}\right), 193.6(\mathrm{C}=\mathrm{N}) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}, \delta, \mathrm{ppm}\right): 0.42(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{CH}_{3}\right), 0.56\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.74\left(\mathrm{ddd}, 1 \mathrm{H},{ }^{2} J_{5 \text { endo,5exo }}=12.5,{ }^{3} J_{5 \text { endo,6endo }}=9.2,{ }^{3} J_{5 \text { endo,6exo }}=\right.$ 4.2, $\mathrm{H}(5 \mathrm{endo})$ ), $1.34(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}(5 \mathrm{exo})), 1.43\left(\mathrm{~d}, 1 \mathrm{H},{ }^{2} J_{3 \mathrm{exo}}\right.$ 3endo $\left.=19.0, \mathrm{H}(3 \mathrm{endo})\right), 1.47(\mathrm{t}$,
$\left.1 \mathrm{H},{ }^{3} J_{4,5 \mathrm{exo}}={ }^{3} J_{4,3 \mathrm{exo}}=4.0, \mathrm{H}(4)\right), 1.51(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}(6 \mathrm{endo})), 1.71\left(\mathrm{ddd}, 1 \mathrm{H}^{2} J_{6 \mathrm{endo}, 6 \mathrm{exo}}=13.0\right.$, $\left.{ }^{3} J_{6 \mathrm{exo}, 5 \mathrm{exo}}=9.2,{ }^{3} J_{6 \mathrm{exo}, 5 \mathrm{endo}}=4.2, \mathrm{H}(6 \mathrm{exo})\right), 1.96\left(\mathrm{dt}, 1 \mathrm{H},{ }^{2} J_{3 \text { endo,3exo }}=18.8,{ }^{3} J_{3 \text { exo, } 4}={ }^{3} J_{3 \mathrm{exo}, 5 \mathrm{exo}}\right.$ $=4.0, \mathrm{H}(3 \mathrm{exo})), 2.22\left(\mathrm{~d}, 1 \mathrm{H},{ }^{2} J_{\mathrm{H}, \mathrm{H}}=8.0, \mathrm{PdCH}^{\mathrm{A}}\right), 2.58\left(\mathrm{~d}, 1 \mathrm{H},{ }^{2} J_{\mathrm{H}, \mathrm{H}}=8, \mathrm{PdCH}^{\mathrm{B}}\right), 3.79(\mathrm{~s}$, $3 \mathrm{H}, \mathrm{OCH}_{3}$ ). Minor isomer: 2.06 and 2.42 (two br. s, $\mathrm{PdCH}^{\mathrm{A}}$ and $\mathrm{PdCH}^{\mathrm{B}}$ ), $3.87(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{OCH}_{3}\right)$. The isomer ratio in $\mathrm{C}_{6} \mathrm{D}_{6}$ solution was 5:2. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}, \delta, \mathrm{ppm}\right): 16.7$ and $18.1\left(\right.$ two $\left.\mathrm{CH}_{3}\right), 25.3\left(\mathrm{CH}_{2}, \mathrm{C}(5)\right), 30.5\left(\mathrm{CH}_{2}, \mathrm{C}(6)\right), 31.8\left(\mathrm{CH}_{2}, \mathrm{C}(3)\right), 45.0$ and 65.0 (two quat. $\mathrm{C}, \mathrm{C}(1)$ and $\mathrm{C}(7))$, $46.2(\mathrm{CH}, \mathrm{C}(4)), 60.9\left(\mathrm{OCH}_{3}\right), 191.0(\mathrm{C}=\mathrm{N})$. Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{36} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Pd}_{2}$ : C, $41.01 ; \mathrm{H}, 5.63$; N, 4.35. Found: C, 41.02; H, 5.69; N, 4.38\%.
(1S,4R)-Chloro\{[2-(methoxyimino)-7,7-dimethylbicyclo[2.2.1]heptyl]methyl$\boldsymbol{C , N} \boldsymbol{N}\}($ triphenylphosphine- $\boldsymbol{P}$ )palladium(II) (178). To a $25-\mathrm{mL}$ round-bottomed flask containing a magnetic stirring bar and CPC $177(0.0148 \mathrm{~g}, 0.0230 \mathrm{mmol})$, abs. acetone ( 8 $\mathrm{mL})$ and $\mathrm{PPh}_{3}(0.0121 \mathrm{~g}, 0.0460 \mathrm{mmol})$ were added. The resulting mixture was stirred at rt for 18 h . The solvent was removed under reduced pressure to give a pale-yellow residue. The crude product was purified using preparative TLC (silica gel, 1:2 ethyl acetatehexane). The pure product was isolated as a pale yellow powder in $98 \%$ yield $(0.0263 \mathrm{~g}$, 0.0450 mmol ). Mp $198-200^{\circ} \mathrm{C} ; R_{f} 0.40$ (1:2 ethyl acetate-hexane); $[\alpha]^{22}{ }_{\mathrm{D}}-237,[\alpha]^{22}{ }_{546}-$ 277, $[\alpha]^{22}{ }_{435}-462\left(c 0.0730\right.$, EtOH). IR (Nujol mull, $\left.v, \mathrm{~cm}^{-1}\right): 1662(\mathrm{C}=\mathrm{N}) .{ }^{1} \mathrm{H}$ NMR ( $\delta$, ppm): $0.53\left(\mathrm{dd}, 1 \mathrm{H},{ }^{2} J_{\mathrm{H}, \mathrm{H}}=10,{ }^{3} J_{\mathrm{H}, \mathrm{P}}=8, \mathrm{PdCH}^{\mathrm{A}}\right), 0.56\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.84\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$, $1.29\left(\mathrm{ddd}, 1 \mathrm{H},{ }^{3} J_{6 \text { endo }, 5 \mathrm{endo}}=12.5,{ }^{2} J_{5 \text { endo,5exo }}=9.5,{ }^{3} J_{5 \mathrm{endo}, 6 \mathrm{exo}}=4.2, \mathrm{H}(5 \mathrm{endo})\right), 1.61(\mathrm{td}$, $\left.1 \mathrm{H},{ }^{2} J_{6 \mathrm{exo}, 6 \mathrm{endo}}={ }^{3} J_{6 \text { endo,5endo }}=12.5,{ }^{3} J_{6 \mathrm{endo}, 5 \mathrm{exo}}=4.2, \mathrm{H}(6 \mathrm{endo})\right), 1.80(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}(5 \mathrm{exo})), 1.86$ $\left(\mathrm{d}, 1 \mathrm{H},{ }^{2} J_{\mathrm{H}, \mathrm{H}}=10, \mathrm{PdCH}^{\mathrm{B}}\right), 1.96\left(\mathrm{ddd}, 1 \mathrm{H},{ }^{2} J_{6 \mathrm{exo} 0, \text { endo }}=12.5,{ }^{3} J_{6 \mathrm{exo}, 5 \mathrm{exo}}=9.3,{ }^{3} J_{6 \mathrm{exo} 0,5 \mathrm{endo}}=\right.$ 4.2, $\mathrm{H}(6 \mathrm{exo})), 2.02\left(\mathrm{~d}, 1 \mathrm{H},{ }^{2} J_{3 \text { endo,3exo }}=18.7, \mathrm{H}(3 \mathrm{endo})\right), 2.07\left(\mathrm{t}, 1 \mathrm{H},{ }^{3} J_{4,5 \mathrm{exo}}={ }^{3} J_{4,3 \mathrm{exo}}=4.3\right.$,

$\left.\mathrm{OCH}_{3}\right), 7.40(\mathrm{~m}, 9 \mathrm{H}, m-$ and $p-\mathrm{PPh}), 7.74(\mathrm{~m}, 6 \mathrm{H}, o-\mathrm{PPh}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}(\delta, \mathrm{ppm}): 18.2$ and $20.2\left(\right.$ two $\left.\left.\mathrm{CH}_{3}\right), 27.0\left(\mathrm{PdCH}_{2}\right)\right), 27.2\left(\mathrm{CH}_{2}, \mathrm{C}(5)\right), 33.4\left(\mathrm{CH}_{2}, \mathrm{C}(3)\right), 33.5\left(\mathrm{CH}_{2}, \mathrm{C}(6)\right)$, $47.2(\mathrm{CH}, \mathrm{C}(4)), 48.1(\mathrm{C}, \mathrm{C}(7)), 63.3\left(\mathrm{OCH}_{3}\right), 66.0(\mathrm{C}, \mathrm{C}(1)), 128.5\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=10.1, m-\right.$ $\mathrm{PPh}), 130.7\left(\mathrm{~d},{ }^{4} J_{\mathrm{C}, \mathrm{P}}=2.4, p-\mathrm{PPh}\right), 131.7\left(\mathrm{~d},{ }^{1} J_{\mathrm{C}, \mathrm{P}}=51.6\right.$, ipso-PPh $), 135.1\left(\mathrm{~d},{ }^{2} J_{\mathrm{C}, \mathrm{P}}=11.3\right.$, $o-\mathrm{PPh}), 192.2(\mathrm{C}=\mathrm{N}) .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( $\left.\delta, \mathrm{ppm}\right)$ : 20.4. Anal. Calcd for $\mathrm{C}_{29} \mathrm{H}_{33} \mathrm{ClNOPPd}: \mathrm{C}$, 59.60; H, 5.69; N, 2.40. Found: C, 59.83; H, 5.68; N, 2.48\%.

Complexes 188. To a $25-\mathrm{mL}$ round-bottomed flask containing a magnetic stirring bar and the CPC of camphor $\mathrm{N}, \mathrm{N}$-dimethylhydrazone $(0.0385 \mathrm{~g}, 0.0574 \mathrm{mmol})$, chloroform $(12 \mathrm{~mL})$ and $\mathrm{Na}(\mathrm{acac})(0.0216 \mathrm{~g}, 0.0177 \mathrm{mmol})$ were added. The resulting mixture was stirred at rt for 18 h . The solvent was removed under reduced pressure to give a pale yellow residue. The crude product was purified using preparative TLC (silica gel, 1:2 ethyl acetate-hexane) to give the pure product 188 as a pale yellow powder $(0.0538 \mathrm{~g}, 0.0900$ mmol, $96 \%$ ).

## (1R,3S,4S)-Chloro\{[2-(N,N-dimethylhydrazono)-1,7,7-

trimethylbicyclo[2.2.1]heptyl]methylenyl- $C, N\}$ (acetylacetonate- $O, O$ )palladium(II) (endo-188). Mp: 120-122 ${ }^{\circ} \mathrm{C} ; R_{f} 0.80$ (2:1 hexane-ethyl acetate). IR ( $\mathrm{v}, \mathrm{cm}^{-1}$, mineral oil): $1656(\mathrm{C}=\mathrm{N}) .{ }^{1} \mathrm{H}$ NMR ( $\left.\delta, \mathrm{ppm}\right): ~ 0.91,0.93,1.08$ (three s, $9 \mathrm{H}, 3 \mathrm{CH}_{3}$ ), 1.31 (ddd, 1 H , $\left.{ }^{3} J_{5 \text { endo, } 6 \text { endo }} \approx 13,{ }^{2} J_{5 \text { endo,5exo }} \approx 9.2,{ }^{3} J_{5 \mathrm{endo}, 6 \mathrm{exo}}=4.0, \mathrm{H}(5 \mathrm{endo})\right), 1.70(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}(5 \mathrm{exo})), 1.75$ (m, 1H, H(6endo)), $1.87\left(\mathrm{~s}, 3 \mathrm{H}\right.$, acac $\left.\mathrm{CH}_{3}\right), 1.89(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}(6 \mathrm{exo})), 1.91$ (s, 3H, acac $\left.\mathrm{CH}_{3}\right), 2.02\left(\mathrm{t}, 1 \mathrm{H},{ }^{3} J_{4,5 \mathrm{exo}} \approx{ }^{3} J_{4,3 \mathrm{exo}} \approx 4.3, \mathrm{H}(4)\right), 2.66,3.02\left(\mathrm{two} \mathrm{s}, 6 \mathrm{H}, 2 \mathrm{NCH}_{3}\right), 4.82(\mathrm{t}$, $\left.1 \mathrm{H},{ }^{3} J_{4, \mathrm{PdCH}} \approx{ }^{4} J_{\mathrm{PdCH}, 5 \mathrm{exo}} \approx 3.5, \mathrm{PdCH}\right), 5.22(\mathrm{~s}, 1 \mathrm{H}$, acac CH$) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $(\delta, \mathrm{ppm})$ : 11.2, 20.0, 21.3 (three $\mathrm{CH}_{3}$ ), $26.3\left(\mathrm{CH}_{2}, \mathrm{C}(5)\right)$, 27.7, 28.7 (two $\mathrm{CH}_{3}$, (acac)), $37.2\left(\mathrm{CH}_{2}\right.$, $\mathrm{C}(6)), 48.3(\mathrm{PdCH})), 48.4(\mathrm{C}, \mathrm{C}(7)), 48.9(\mathrm{CH}, \mathrm{C}(4)), 51.92,51.94$ (two $\left.\mathrm{NCH}_{3}\right), 53.0(\mathrm{C}$,

C(1)), 99.9 (CH, (acac)), 186.2, 188.1 (two C, (acac)), 200.3 (C=N). Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Pd}$ : C, 51.19; H, 7.08; N, 7.02. Found: C, 50.89; H, 6.89; N, 7.03\%.
(1R,3R,4S)-Chloro\{[2-(N,N-dimethylhydrazono)-1,7,7-trimethylbicyclo[2.2.1]heptyl]methylenyl- $C, N\}$ (acetylacetonate- $O, O$ )palladium(II) (exo-188). Mp: 120-122 ${ }^{\circ} \mathrm{C}$; $R_{f} 0.75$ (2:1 hexane-ethyl acetate). IR ( $v, \mathrm{~cm}^{-1}$, mineral oil): $1656(\mathrm{C}=\mathrm{N}) .{ }^{1} \mathrm{H}$ NMR $(\delta, \mathrm{ppm}): 0.89,0.99$ (two s, $6 \mathrm{H}, 2 \mathrm{CH}_{3}$ ), 1.33 (ddd, $1 \mathrm{H},{ }^{3} J_{5 \text { endo,6endo }} \approx$ $\left.11.8,{ }^{2} J_{5 \mathrm{endo}, 5 \mathrm{exo}} \approx 8.9,{ }^{3} J_{5 \mathrm{endo}, 6 \mathrm{exo}}=2.9, \mathrm{H}(5 \mathrm{endo})\right), 1.42\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.69\left(\mathrm{t}, 1 \mathrm{H},{ }^{3} J_{4,5 \mathrm{exo}} \approx\right.$ $\left.{ }^{3} J_{4,3 \text { exo }} \approx 3.4, \mathrm{H}(4)\right), 1.76(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}(5 \mathrm{exo}),(6 \mathrm{endo})), 1.888\left(\mathrm{~s}, 3 \mathrm{H}\right.$, acac $\left.\mathrm{CH}_{3}\right), 1.891(\mathrm{~m}$, $1 \mathrm{H}, \mathrm{H}(6 \mathrm{exo})$ ), $1.893\left(\mathrm{~s}, 3 \mathrm{H}\right.$, acac $\left.\mathrm{CH}_{3}\right), 2.66,3.04$ (two s, $\left.6 \mathrm{H}, 2 \mathrm{NCH}_{3}\right), 3.99$ (s, $1 \mathrm{H}, \mathrm{PdCH}$ ), $5.21(\mathrm{~s}, 1 \mathrm{H}$, acac CH$) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( $\delta$, ppm): 12.1, 20.7, 21.3 (three $\mathrm{CH}_{3}$ ), 27.9, 28.6 (two $\mathrm{CH}_{3}$, (acac)), $29.3\left(\mathrm{CH}_{2}, \mathrm{C}(5)\right), 30.9\left(\mathrm{CH}_{2}, \mathrm{C}(6)\right), 46.8(\mathrm{CH}, \mathrm{C}(4)), 46.9(\mathrm{CH}, \mathrm{PdCH})$ ), 50.7 (C, C(7)), 51.5 (C, C(1)), 52.1, 52.5 (two $\mathrm{NCH}_{3}$ ), $99.9(\mathrm{CH},(\mathrm{acac})$ ), 186.3, 188.0 (two $\mathrm{C},(\mathrm{acac})), 198.6(\mathrm{C}=\mathrm{N})$. Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Pd}: \mathrm{C}, 51.19 ; \mathrm{H}, 7.08 ; \mathrm{N}, 7.02$. Found: C, 50.89; H, 6.89; N, 7.03\%.
VI.3. Preparation of L-Fenchone Derivatives and Their Cyclopalladation
(1R,4S)-1,3,3-Trimethylbicyclo[2.2.1]heptan-2-one oxime (196a). To a solution of hydroxylamine hydrochloride ( $0.5483 \mathrm{~g}, 7.891 \mathrm{mmol}$ ) in abs. EtOH ( 10 mL ) was added L-(-)-fenchone ( $0.4290 \mathrm{~g}, 2.818 \mathrm{mmol}$ ). Pyridine ( $0.60 \mathrm{~mL}, 7.5 \mathrm{mmol}$ ) was then added dropwise and the mixture was refluxed for 48 h . The mixture was filtered, and ethanol from the filtrate was evaporated under reduced pressure. $1 \mathrm{M} \mathrm{aq} . \mathrm{HCl}$ solution $(30 \mathrm{~mL})$ was added to the oily residue, and the product was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 5 \mathrm{~mL})$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After filtration, the solvent was removed on a rotavapor to obtain the pure product as a white powder $(0.3041 \mathrm{~g}, 1.818 \mathrm{mmol}, 64 \%) . \mathrm{Mp}$ :
$149-151{ }^{\circ} \mathrm{C}$ (lit. data $\left.150-153{ }^{\circ} \mathrm{C}[14]\right) ;[\alpha]^{24} \mathrm{D}+3.00(c 0.406, \mathrm{EtOH}) ; R_{f} 0.53$ (100:1 hexane-acetone). IR ( $v, \mathrm{~cm}^{-1}$, mineral oil): $1682(\mathrm{C}=\mathrm{N}) .{ }^{1} \mathrm{H}$ NMR ( $\left.\delta, \mathrm{ppm}\right): 1.22(\mathrm{~s}, 3 \mathrm{H}$, $\mathrm{CH}_{3}(8)$ ), 1.30, 1.33 (two s, 3 H each, $\mathrm{CH}_{3}(9 \mathrm{exo})$ and $\mathrm{CH}_{3}(9 \mathrm{endo})$ ), $1.34(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}(7 \mathrm{~A})$ ), $1.45\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}\right.$ (6endo) ), 1.55 (m, 2H, H(6exo), H(5endo)), $1.72\left(\mathrm{~d},{ }^{2} J_{7 \mathrm{~A}, 7 \mathrm{~B}}=10.5 \mathrm{~Hz}, 1 \mathrm{H}\right.$, $\mathrm{H}(7 \mathrm{~B})), 1.79(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}(5 \mathrm{exo})), 1.82(\mathrm{~d}, J \approx 1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}(4)), 8.61(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{OH}) .{ }^{13} \mathrm{C}\left\{{ }^{\{1} \mathrm{H}\right\}$ NMR ( $\delta, \mathrm{ppm}): 17.1\left(\mathrm{CH}_{3}(8)\right), 22.2,22.9\left(\mathrm{CH}_{3}(9 \mathrm{exo})\right.$ and $\left.\mathrm{CH}_{3}(9 \mathrm{endo})\right), 25.2\left(\mathrm{CH}_{2}, \mathrm{C}(5)\right)$, $34.2\left(\mathrm{CH}_{2}, \mathrm{C}(6)\right), 43.2\left(\mathrm{CH}_{2}, \mathrm{C}(7)\right), 44.2$ (quat. $\left.\mathrm{C}, \mathrm{C}(3)\right), 48.6(\mathrm{CH}, \mathrm{C}(4)), 50.1$ (quat. C, $\mathrm{C}(1)), 172.5(\mathrm{C}=\mathrm{N})$. HRMS: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{10} \mathrm{H}_{18} \mathrm{NO} 168.1388$, found 168.1449.
(1R,4S)-1,3,3-Trimethylbicyclo[2.2.1]heptan-2-one O-Methyloxime (196b). This compound was synthesized using the procedure described for oxime 196a in $82 \%$ yield ( $3.197 \mathrm{~g}, 17.63 \mathrm{mmol}$ ) using methoxylamine hydrochloride ( $5.000 \mathrm{~g}, 59.87 \mathrm{mmol}$ ), L-(-)-fenchone ( $3.255 \mathrm{~g}, 21.38 \mathrm{mmol}$ ) and pyridine ( $4.7 \mathrm{~mL}, 58 \mathrm{mmol}$ ) and abs. EtOH (50 mL ). According to the ${ }^{1} \mathrm{H}$ NMR spectrum, the product was a mixture of two geometric isomers in a ratio of 94:6. Bp: 86-88 ${ }^{\circ} \mathrm{C} ;[\alpha]^{24} \mathrm{D}-20.0,[\alpha]^{24}{ }_{546-35.0},[\alpha]^{24}{ }_{435}-67.0(c 1.04$, $\mathrm{EtOH}) ; R_{f} 0.66$ (100:1 hexane-acetone). IR ( $v, \mathrm{~cm}^{-1}$, mineral oil): $1655(\mathrm{C}=\mathrm{N}) .{ }^{1} \mathrm{H}$ NMR $(\delta, \mathrm{ppm}): 1.22,1.23,1.25$ (three s, $\left.9 \mathrm{H}, 3 \mathrm{CH}_{3}\right), 1.31\left(\mathrm{dd},{ }^{2} J_{7 \mathrm{~A}, 7 \mathrm{~B}}=10.0,{ }^{3} J_{7,4}=1.2,1 \mathrm{H}\right.$, $\mathrm{H}(7 \mathrm{~A})), 1.43(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}(6 \mathrm{endo})), 1.54(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}(6 \mathrm{exo}), \mathrm{H}(5 \mathrm{endo})), 1.70\left(\mathrm{dq},{ }^{2} J_{7 \mathrm{~A}, 7 \mathrm{~B}}=10.0\right.$, ${ }^{3} J_{4,7 \mathrm{~B}} \approx{ }^{4} J_{5 \mathrm{exo} 0}, 7 \mathrm{~B} \approx{ }^{4} J_{5 \mathrm{endo}, 7 \mathrm{~B}} \approx 1.8 \mathrm{~Hz} ; 1 \mathrm{H}, \mathrm{H}(7 \mathrm{~B})$ ), $1.78(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}(5 \mathrm{exo}), \mathrm{H}(4)), 3.71$ (minor isomer) and 3.75 (major isomer) (two s, $3 \mathrm{H}, \mathrm{OCH}_{3}$ ). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( $\delta, \mathrm{ppm}$ ): 17.2, 22.5, 23.4 (three $\left.\mathrm{CH}_{3}\right), 25.3\left(\mathrm{CH}_{2}, \mathrm{C}(5)\right)$, $34.4\left(\mathrm{CH}_{2}, \mathrm{C}(6)\right), 43.4\left(\mathrm{CH}_{2}, \mathrm{C}(7)\right)$, $48.6(\mathrm{CH}, \mathrm{C}(4))$, 44.6 and 49.9 (two quat. $\mathrm{C}, \mathrm{C}(1)$ and $\mathrm{C}(3)), 61.0\left(\mathrm{OCH}_{3}\right), 172.6(\mathrm{C}=\mathrm{N})$. Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{19} \mathrm{NO}: \mathrm{C}, 72.88 ; \mathrm{H}, 10.56 ; \mathrm{N}, 7.73$. Found: C, $72.59 ; \mathrm{H}, 10.35 ; \mathrm{N}, 7.78 \%$.

## (S,S)-Di- $\mu$-chlorobis\{[2-(hydroxyimino)-3,3-

dimethylbicyclo[2.2.1]heptyl]methyl- $\boldsymbol{C}$, $\boldsymbol{N}\}$ dipalladium(II) (198a). To a $25-\mathrm{mL}$ oneneck round-bottomed flask containing a magnetic stirring bar, fenchone oxime 196a $(0.0527 \mathrm{~g}, 0.315 \mathrm{mmol}), \mathrm{Pd}(\mathrm{OAc})_{2}(0.0707 \mathrm{~g}, 0.315 \mathrm{mmol})$ and glacial acetic acid $(5.6 \mathrm{~mL})$ were added at rt . The resulting mixture was stirred at $80^{\circ} \mathrm{C}$ for 5 h . The solvent was removed under reduced pressure to give a brown oily residue of the crude acetate-bridged dimer 197a. HPLC-grade acetone ( 5.6 mL ) was added to the crude acetate-bridged dimer followed by introduction of $\mathrm{LiCl}(0.0534 \mathrm{~g}, 1.26 \mathrm{mmol})$. The mixture was stirred at rt for 18 h . The solution was then filtered through celite $(\mathrm{h}=1 \mathrm{~cm})$, and the flask with the filtrate was placed on a rotavapor to remove acetone. The crude product was separated into several fractions using preparative TLC (silica gel, 9:1 toluene-ethyl acetate). Complex 198a was isolated as an orange-yellow powder in $65 \%$ yield $(0.0189 \mathrm{~g}, 0.0307 \mathrm{mmol}) . \mathrm{Mp}: 189-191$ ${ }^{\circ} \mathrm{C} ;[\alpha]^{24}{ }_{\mathrm{D}}-57,[\alpha]^{24}{ }_{546}-70\left(c 0.30, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ; R_{f} 0.56$ (9:1 toluene-ethyl acetate). ${ }^{1} \mathrm{H}$ NMR $(\delta, \mathrm{ppm}): 1.20\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.27\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.39\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{7 \mathrm{~A}, 7 \mathrm{~B}}=9.9,1 \mathrm{H}, \mathrm{H}(7 \mathrm{~A})\right), 1.59-$ 1.71 (m, 2H, H(6endo), 5(endo)), 1.80-1.87 (m, 2H, H(7B), H(5exo)), 1.95 (m, 1H, $\mathrm{H}(6 \mathrm{exo})), 2.14(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}(4)), 2.29\left(\mathrm{~d}, 1 \mathrm{H},{ }^{2} \mathrm{~J}_{\mathrm{A}, \mathrm{B}}=8.8, \mathrm{PdCH}^{\mathrm{A}}\right), 2.76\left(\mathrm{~d}, 1 \mathrm{H},{ }^{2} \mathrm{~J}_{\mathrm{A}, \mathrm{B}}=8.8\right.$, $\left.\mathrm{PdCH}^{\mathrm{B}}\right), 7.60(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{OH}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $(\delta, \mathrm{ppm}): 21.3$ and $22.4\left(\right.$ two $\left.\mathrm{CH}_{3}\right), 24.6\left(\mathrm{CH}_{2}\right.$, PdC) [24], $25.2\left(\mathrm{CH}_{2}, \mathrm{C}(5)\right), 34.0\left(\mathrm{CH}_{2}, \mathrm{C}(6)\right), 41.0\left(\mathrm{CH}_{2}, \mathrm{C}(7)\right), 43.9$ and 65.6 (two quat. $\mathrm{C}, \mathrm{C}(1)$ and $\mathrm{C}(3))$, $54.1(\mathrm{CH}, \mathrm{C}(4)), 190.4(\mathrm{C}=\mathrm{N})$. Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{32} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Pd}_{2}$ : C, 38.98; H, 5.23; N, 4.55. Found: C, 39.23; H, 5.23; N, 4.55\%.

## (S,S)-Di- $\mu$-chlorobis\{[2-(methoxyimino)-3,3-

dimethylbicyclo[2.2.1]heptyl]methyl-C, $N$ \} dipalladium(II) (198b). This compound was isolated as an orange-yellow powder in $49 \%$ yield $(0.1453 \mathrm{~g}, 0.2255 \mathrm{mmol})$ using the
procedure described for complex 198a and the following reagents: fenchone $O$ methyloxime $196 \mathbf{b}(0.3164 \mathrm{~g}, 1.745 \mathrm{mmol}), \mathrm{Pd}(\mathrm{OAc})_{2}(0.3918 \mathrm{~g}, 1.745 \mathrm{mmol})$ and LiCl $(0.2960 \mathrm{~g}, 6.981 \mathrm{mmol}) . \mathrm{Mp}: 202-204{ }^{\circ} \mathrm{C} ;[\alpha]^{22}{ }_{\mathrm{D}}-172,[\alpha]^{22}{ }_{546}-226,\left(c 0.416, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ; R_{f}$ 0.56 (9:1 toluene-ethyl acetate). ${ }^{1} \mathrm{H}$ NMR ( $\delta$, ppm): 1.19, 1.21 (two s, $6 \mathrm{H}, 2 \mathrm{CH}_{3}$ ), 1.38 (d, $\left.{ }^{2} J_{7 \mathrm{~A}, 7 \mathrm{~B}}=10.2,1 \mathrm{H}, \mathrm{H}(7 \mathrm{~A})\right), 1.63(\mathrm{~m}, 1 \mathrm{H}, 5$ (endo) ), $1.74(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}(6 \mathrm{endo})), 1.81(\mathrm{~m}, 2 \mathrm{H}$, $\mathrm{H}(7), \mathrm{H}(5 \mathrm{exo})), 2.01(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}(6 \mathrm{exo})), 2.08(\mathrm{~d}, J=3.5,1 \mathrm{H}, \mathrm{H}(4)), 2.17\left(\mathrm{br} . \mathrm{s}, 1 \mathrm{H}, \mathrm{PdCH}^{\mathrm{A}}\right)$, 2.58 (br. s, $\left.1 \mathrm{H}, \mathrm{PdCH}^{\mathrm{B}}\right), 3.78\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right)$ ). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}(\delta, \mathrm{ppm}): 22.4$ and 23.3 (two $\left.\mathrm{CH}_{3}\right), 25.3\left(\mathrm{CH}_{2}, \mathrm{C}(5)\right), 25.8(\mathrm{PdC})[24], 33.9\left(\mathrm{CH}_{2}, \mathrm{C}(6)\right), 41.3\left(\mathrm{CH}_{2}, \mathrm{C}(7)\right), 44.6$ and 64.9 (two quat. $\mathrm{C}, \mathrm{C}(1)$ and $\mathrm{C}(3))$, $53.7(\mathrm{CH}, \mathrm{C}(4))$, $62.4\left(\mathrm{OCH}_{3}\right), 198.6(\mathrm{C}=\mathrm{N})$. Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{36} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Pd}_{2}$ : C, $41.01 ; \mathrm{H}, 5.63$; N, 4.35. Found: C, $41.28 ; \mathrm{H}, 5.52 ; \mathrm{N}, 4.28 \%$. (S,S)-Chloro\{[2-(hydroxyimino)-3,3-dimethylbicyclo[2.2.1]heptyl]methyl$\boldsymbol{C}, \boldsymbol{N}\}$ (triphenylphosphine-P)palladium(II) (199a). To a $50-\mathrm{mL}$ round-bottomed flask with a magnetic stirring bar, a solution of complex 198a ( $0.0505 \mathrm{~g}, 0.0820 \mathrm{mmol}$ ) in acetone ( 32 mL ) and $\mathrm{PPh}_{3}(0.0430 \mathrm{~g}, 0.164 \mathrm{mmol})$ were added. The resulting mixture was stirred at rt for 18 h . The solvent was removed under reduced pressure to give a white residue. The crude product was purified using preparative TLC (silica gel, 1:2 ethyl acetate-hexane). The pure complex was isolated as a white powder in $99 \%$ yield ( 0.0921 $\mathrm{g}, 0.0164 \mathrm{mmol}) . \mathrm{Mp}: 148-150{ }^{\circ} \mathrm{C} ;[\alpha]^{22}{ }_{\mathrm{D}}-76.0,[\alpha]^{22}{ }_{546}-96.0,[\alpha]^{22}{ }_{435}-212(c$ 0.366, $\mathrm{EtOH}) ; R_{f} 0.65$ (2:1 hexane-ethyl acetate). ${ }^{1} \mathrm{H} \operatorname{NMR}(\delta, \mathrm{ppm}): 1.09$ (dd, $1 \mathrm{H},{ }^{2} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=10.1$, $\left.{ }^{2} J_{\mathrm{H}, \mathrm{P}}=7.2, \mathrm{PdCH}^{\mathrm{A}}\right), 1.22\left(\mathrm{~d}, 1 \mathrm{H},{ }^{2} J_{7 \mathrm{~A}, 7 \mathrm{~B}}=10.4, \mathrm{H}(7 \mathrm{~A})\right), 1.27,1.29\left(\right.$ two s, $\left.6 \mathrm{H}, 2 \mathrm{CH}_{3}\right), 1.52$ (m, 1H, H(6endo) ), 1.58 (m, 1H, H(5endo)), 1.76 (br. d, $\left.1 \mathrm{H},{ }^{2} J_{7 \mathrm{~A}, 7 \mathrm{~B}}=10.4, \mathrm{H}(7 \mathrm{~B})\right), 1.8-1.9$ $(\mathrm{m}, 2 \mathrm{H}, \mathrm{H}(5 \mathrm{exo}), \mathrm{H}(6 \mathrm{exo})), 2.08$ (poorly resolved $\mathrm{d}, 1 \mathrm{H}, J \approx 1.0, \mathrm{H}(4)), 2.28\left(\mathrm{~d}, 1 \mathrm{H},{ }^{2} J_{\mathrm{H}, \mathrm{H}}\right.$ $\left.=10.1, \mathrm{PdCH}^{\mathrm{B}}\right), 7.41(\mathrm{~m}, 9 \mathrm{H}, m-$ and $p-\mathrm{PPh}), 7.65(\mathrm{~m}, 6 \mathrm{H}, o-\mathrm{PPh}), 9.70(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH})$.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $(\delta, \mathrm{ppm}): 21.0$ and 22.1 (two $\left.\left.\mathrm{CH}_{3}\right), 25.1\left(\mathrm{CH}_{2}, \mathrm{C}(5)\right), 32.8(\mathrm{PdC})\right), 34.7$ $\left(\mathrm{CH}_{2}, \mathrm{C}(6)\right), 42.1\left(\mathrm{CH}_{2}, \mathrm{C}(7)\right), 42.9(\mathrm{C}, \mathrm{C}(3)), 53.2(\mathrm{CH}, \mathrm{C}(4)), 64.9(\mathrm{C}, \mathrm{C}(1)), 128.3(\mathrm{~d}$, $\left.{ }^{3} J_{\mathrm{C}, \mathrm{P}}=10.8, m-\mathrm{PPh}\right), 130.5\left(\mathrm{~d},{ }^{4} J_{\mathrm{C}, \mathrm{P}}=1.7, p-\mathrm{PPh}\right), 131.0\left(\mathrm{~d},{ }^{1} J_{\mathrm{C}, \mathrm{P}}=49.6\right.$, $\left.i p s o-\mathrm{PPh}\right), 134.5$ $\left(\mathrm{d},{ }^{2} J_{\mathrm{C}, \mathrm{P}}=12.2, o-\mathrm{PPh}\right), 187.9(\mathrm{C}=\mathrm{N}) .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $(\delta, \mathrm{ppm}):$ 19.7. Anal. Calcd for $\mathrm{C}_{28} \mathrm{H}_{31}$ ClNOPPd: C, 58.96; H, 5.48; N, 2.46. Found: C, 58.70; H, 5.68; N, 2.49\%.

## (S,S)-Chloro\{[2-(methoxyimino)-3,3-dimethylbicyclo[2.2.1]heptyl]methyl-

$\boldsymbol{C , N \}}$ (triphenylphosphine-P)palladium(II) (199b). This compound was obtained as a white powder in $74 \%$ yield $(0.0579 \mathrm{~g}, 0.0991 \mathrm{mmol})$ using complex $\mathbf{1 9 8 b}(0.0430 \mathrm{~g}, 0.0667$ $\mathrm{mmol})$ and $\mathrm{PPh}_{3}(0.0350 \mathrm{~g}, 0.134 \mathrm{mmol})$ and following the procedure described for compound 199a. Mp: $179-181{ }^{\circ} \mathrm{C} ;[\alpha]^{24}{ }_{\mathrm{D}}-134,[\alpha]^{24}{ }_{546}-169,[\alpha]^{24}{ }_{435}-373(c 0.348$, EtOH); $R_{f} 0.54$ (2:1 hexane-ethyl acetate). ${ }^{1} \mathrm{H}$ NMR ( $\delta, \mathrm{ppm}$ ): 0.84 (dd, $1 \mathrm{H},{ }^{2} J_{\mathrm{H}, \mathrm{H}}=10.7,{ }^{2} J_{\mathrm{H}, \mathrm{P}}=$ $\left.9.0, \mathrm{PdCH}^{\mathrm{A}}\right), 1.18(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}(7)), 1.25,1.27$ (two s, $\left.6 \mathrm{H}, 2 \mathrm{CH}_{3}\right), 1.50(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}$ (6endo) ), $1.55(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}(5$ endo $)), 1.72\left(\mathrm{~d}, 1 \mathrm{H},{ }^{2} J_{7 \mathrm{~A}, 7 \mathrm{~B}}=9.9, \mathrm{H}(7 \mathrm{~A})\right), 1.82(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}(5 \mathrm{exo})), 1.91$ $(\mathrm{m}, 1 \mathrm{H}, \mathrm{H}(6 \mathrm{exo})), 2.00$ (unresolved d, $1 \mathrm{H}, \mathrm{H}(4)), 2.16\left(\mathrm{~d}, 1 \mathrm{H},{ }^{2} J_{\mathrm{H}, \mathrm{H}}=10.7, \mathrm{PdCH}^{\mathrm{B}}\right), 4.10$ $\left(\mathrm{s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 7.39(\mathrm{~m}, 9 \mathrm{H}, m-$ and $p-\mathrm{PPh}), 7.71(\mathrm{~m}, 6 \mathrm{H}, o-\mathrm{PPh}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \operatorname{NMR}(\delta, \mathrm{ppm}):$ 22.8 and 23.4 (two $\left.\left.\mathrm{CH}_{3}\right), 25.5\left(\mathrm{CH}_{2}, \mathrm{C}(5)\right), 33.0(\mathrm{PdC})\right), 34.8\left(\mathrm{CH}_{2}, \mathrm{C}(6)\right), 43.4\left(\mathrm{CH}_{2}\right.$, $\mathrm{C}(7)), 44.2(\mathrm{C}, \mathrm{C}(3)), 52.9(\mathrm{CH}, \mathrm{C}(4)), 63.5\left(\mathrm{OCH}_{3}\right), 64.5(\mathrm{C}, \mathrm{C}(1)), 128.5\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=10.7\right.$, $m-\mathrm{PPh}), 130.7(\mathrm{~s}, p-\mathrm{PPh}), 131.8\left(\mathrm{~d},{ }^{1} J_{\mathrm{C}, \mathrm{P}}=50.3\right.$, ipso-PPh$), 135.1\left(\mathrm{~d},{ }^{2} J_{\mathrm{C}, \mathrm{P}}=11.6, o-\mathrm{PPh}\right)$, $196.6(\mathrm{C}=\mathrm{N}) .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( $\delta, \mathrm{ppm}$ ): 20.3. Anal. Calcd for $\mathrm{C}_{29} \mathrm{H}_{33}$ CINOPPd: C, 59.60; H, 5.69; N, 2.40. Found: C, 59.90; H, 5.71; N, 2.40\%.
VI.4. Preparation of CPCs and Their Reactions with $\mathrm{KPPh}_{2}$

Complexes 177, 178, 212, 217, 219 and 222 were synthesized using published procedures. ${ }^{17,25,31,42,103,111,353}$ The NMR spectra of the obtained compounds matched those reported in the literature.
VI.4.1. Synthesis and Characterization of New Compounds

## ( $R, R$ )-1-\{(Diphenylphosphino)methyl\}-7,7-dimethylbicyclo[2.2.1]heptan-2-

one $\boldsymbol{O}$-Methyloxime (205). CPC $177(0.0723 \mathrm{~g}, 0.112 \mathrm{mmol})$ was added to a $25-\mathrm{mL}$ Schlenk flask containing a magnetic stirring bar. The flask was evacuated and filled with Ar 5 times. Abs. THF ( 15 mL ) was then added using a syringe followed by a 0.5 M solution of $\mathrm{KPPh}_{2}(1 \mathrm{~mL}, 0.5 \mathrm{mmol})$. During the dropwise addition of $\mathrm{KPPh}_{2}$ for 5 min , the yellow solution turned dark red. The mixture was stirred at rt for 18 h in Ar. The Schlenk flask was then placed on a rotavapor to remove THF. The dark-red solid residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ and quickly separated into several fractions using preparative TLC (10:1 hexane-ethyl acetate). Fraction 3 corresponded to the pure product ( $0.0492 \mathrm{~g}, 0.135 \mathrm{mmol}$, $21 \%$, colorless oil). $[\alpha]^{22}{ }_{\mathrm{D}}+154,[\alpha]^{22}{ }_{546}+173(c 0.0460, \mathrm{EtOH}) . R_{f} 0.63(10: 1$ hexaneethyl acetate). ${ }^{1} \mathrm{H} \operatorname{NMR}(\delta, \mathrm{ppm}): 0.83\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.94\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.20(\mathrm{~m}, 1 \mathrm{H}$, $\mathrm{H}(5 \mathrm{endo})), 1.64$ (m, 1H, H(6endo)), 1.77 (m, 2H, H(5exo), H(6exo)), $1.84(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}(4))$, $1.95\left(\mathrm{~d}, 1 \mathrm{H},{ }^{2} J_{3 \text { endo,3exo }}=17.6, \mathrm{H}(3\right.$ endo $\left.)\right), 2.15\left(\mathrm{dd}, 1 \mathrm{H},{ }^{2} J_{\mathrm{H}, \mathrm{H}}=15.0,{ }^{3} J_{\mathrm{H}, \mathrm{P}}=4.1, \mathrm{PCH}^{\mathrm{A}}\right)$, $2.48\left(\mathrm{ddd}, 1 \mathrm{H},{ }^{2} J_{3 \mathrm{exo} 0,3 \mathrm{endo}}=17.6,{ }^{3} J_{3 \mathrm{exo}, 4} \approx{ }^{4} J_{3 \mathrm{exo} 0,5 \mathrm{exo}} \approx 4.3, \mathrm{H}(3 \mathrm{exo})\right), 2.52\left(\mathrm{dd}, 1 \mathrm{H},{ }^{2} J_{\mathrm{H}, \mathrm{H}}=\right.$ $\left.15.0,{ }^{3} J_{\mathrm{H}, \mathrm{P}}=4.1, \mathrm{PCH}^{\mathrm{B}}\right), 3.76\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 7.32(\mathrm{~m}, 6 \mathrm{H}, m-$ and $p-\mathrm{PPh}), 7.51(\mathrm{~m}, 4 \mathrm{H}, o-$ PPh). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( $\delta, \mathrm{ppm}$ ): 19.8 and 20.1 (two $\mathrm{CH}_{3}$ ), $27.5\left(\mathrm{~d},{ }^{1} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=18, \mathrm{PCH}_{2}\right.$ ), 27.8 $\left(\mathrm{CH}_{2}, \mathrm{C}(5)\right), 30.9\left(\mathrm{CH}_{2}, \mathrm{~d},{ }^{3} J_{\mathrm{C}, \mathrm{P}}=12, \mathrm{C}(6)\right), 33.7\left(\mathrm{CH}_{2}, \mathrm{C}(3)\right), 44.2(\mathrm{CH}, \mathrm{C}(4)), 49.8$ (quat. C, d, $\left.{ }^{3} J_{\mathrm{C}, \mathrm{P}}=3.9, \mathrm{C}(7)\right), 54.6$ (quat. C, d, $\left.{ }^{2} J_{\mathrm{C}, \mathrm{P}}=14, \mathrm{C}(1)\right), 61.8\left(\mathrm{OCH}_{3}\right), 128.27,128.47$,
128.52, 128.76, 128.81 (all $\mathrm{CH}, m$ - and $p-\mathrm{PPh}$; the signal at 128.81 ppm has a double intensity), $133.0\left(\mathrm{CH}, \mathrm{d},{ }^{2} J_{\mathrm{C}, \mathrm{P}}=19, o-\mathrm{PPh}^{\mathrm{A}}\right), 133.7\left(\mathrm{CH}, \mathrm{d},{ }^{2} J_{\mathrm{C}, \mathrm{P}}=20, o-\mathrm{PPh}^{\mathrm{B}}\right), 141.2$ (quat. $\mathrm{C}, \mathrm{d},{ }^{1} J_{\mathrm{C}, \mathrm{P}}=15$, ipso- $\mathrm{PPh}^{\mathrm{A}}$ ), 141.3 (quat. C, d, ${ }^{1} J_{\mathrm{C}, \mathrm{P}}=17$, ipso- $-\mathrm{PPh}^{\mathrm{B}}$ ), 167.9 (quat. C, $\mathrm{C}=\mathrm{N}$ ). ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}, \delta, \mathrm{ppm}\right):-36.9 .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}, \delta, \mathrm{ppm}\right):-23.2$. HRMS: $[\mathrm{M}+$ $\mathrm{H}]^{+}$calcd for $\mathrm{C}_{23} \mathrm{H}_{28} \mathrm{NOP} 366.1981$, found 366.1979.

## $(R, R)-\mu$-Chloro- $\mu$-(diphenylphosphido)bis\{[2-(methoxyimino)-7,7-

dimethylbicyclo[2.2.1]heptyl]methyl-C,N\}dipalladium(II) (206). The reaction was performed as described above for 205 except that 1 equiv. of $\mathrm{KPPh}_{2}$ was used and the reaction time was 1 h . After solvent removal, the crude product was dissolved in ethyl acetate ( 2 mL ) and separated into several fractions using preparative TLC (10:1 hexaneethyl acetate). Fraction 2 corresponded to complex 206 ( $0.0198 \mathrm{~g}, 0.0249 \mathrm{mmol}, 31 \%$, orange solid). Mp: $194-196^{\circ} \mathrm{C} ; R_{f} 0.50$ (10:1 hexane-ethyl acetate); $[\alpha]^{22}{ }_{\mathrm{D}}-189,[\alpha]^{22}{ }_{546}-$ $190(c 0.0650, \mathrm{EtOH})$. IR (Nujol mull, $\left.v, \mathrm{~cm}^{-1}\right): 1674(\mathrm{C}=\mathrm{N}) .{ }^{1} \mathrm{H}$ NMR $(\delta, \mathrm{ppm}): 0.62(\mathrm{~s}$, $\left.3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.72\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.74\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{PdCH}^{\mathrm{A}}\right), 1.27\left(\mathrm{ddd}, 1 \mathrm{H},{ }^{3} J_{5 \text { endo }, 6 \text { endo }}=13\right.$, $\left.{ }^{2} J_{5 \text { endo, } 5 \mathrm{exo}}=9.6,{ }^{3} J_{5 \mathrm{endo}, 6 \mathrm{exo}}=4.3, \mathrm{H}(5 \mathrm{endo})\right), 1.39\left(\mathrm{~d}, 1 \mathrm{H},{ }^{2} J_{\mathrm{H}, \mathrm{H}}=10, \mathrm{PdCH}^{\mathrm{B}}\right), 1.64(\mathrm{td}, 1 \mathrm{H}$, $\left.{ }^{2} J_{6 \text { exo,6endo }}={ }^{3} J_{6 \text { endo,5endo }}=13,{ }^{3} J_{6 \text { endo,5exo }}=4.5, H(6 \mathrm{endo})\right), 1.79(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}(5 \mathrm{exo})), 1.91(\mathrm{~d}$, $1 \mathrm{H},{ }^{2} J_{3 \text { endo,3exo }}=19, \mathrm{H}(3$ endo $)$ ), $1.96\left(\mathrm{ddd}, 1 \mathrm{H},{ }^{2} J_{6 \text { exo, } 6 \text { endo }}=13,{ }^{3} J_{6 \text { exo }, 5 \text { exo }}=9.6,{ }^{3} J_{6 \text { exo,5endo }}=\right.$ 4.3, $\mathrm{H}(6 \mathrm{exo})), 1.99\left(\mathrm{t}, 1 \mathrm{H},{ }^{3} J_{4,5 \mathrm{exo}}={ }^{3} J_{4,3 \mathrm{exo}}=4, \mathrm{H}(4)\right), 2.37\left(\mathrm{dt}, 1 \mathrm{H},{ }^{2} J_{3 \mathrm{exo}, 3 \mathrm{endo}}=19,{ }^{3} J_{3 \mathrm{exo}, 4}\right.$ $\left.={ }^{4} J_{3 \mathrm{exo}, 5 \mathrm{exo}}=4, \mathrm{H}(3 \mathrm{exo})\right), 3.97\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 7.30(\mathrm{~m}, 6 \mathrm{H}, m$ - and $p-\mathrm{PPh}), 7.84(\mathrm{~m}, 4 \mathrm{H}$, $o-\mathrm{PPh}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $(\delta, \mathrm{ppm}): 18.5$ and $20.2\left(\right.$ two $\left.\mathrm{CH}_{3}\right), 19.4\left(\mathrm{~d},{ }^{1} J_{\mathrm{C}, \mathrm{P}}=2.2, \mathrm{PCH}_{2}\right), 27.3$ $\left(\mathrm{CH}_{2}, \mathrm{C}(5)\right), 33.4\left(\mathrm{CH}_{2}, \mathrm{C}(3)\right), 33.8\left(\mathrm{CH}_{2}, \mathrm{C}(6)\right), 46.8(\mathrm{CH}, \mathrm{C}(4)), 48.2$ (quat. $\left.\mathrm{C}, \mathrm{C}(7)\right), 62.7$ $\left(\mathrm{OCH}_{3}\right), 65.9$ (quat. C, $\left.\mathrm{C}(1)\right), 127.9\left(\mathrm{CH}, \mathrm{d},{ }^{3} J_{\mathrm{C}, \mathrm{P}}=10, m-\mathrm{PPh}\right), 128.5\left(\mathrm{CH}, \mathrm{d},{ }^{4} J_{\mathrm{C}, \mathrm{P}}=2.2\right.$, $p-\mathrm{PPh}), 134.4\left(\mathrm{CH}, \mathrm{d},{ }^{2} J_{\mathrm{C}, \mathrm{P}}=12, o-\mathrm{PPh}\right), 138.3$ (quat. C, d, ${ }^{1} J_{\mathrm{C}, \mathrm{P}}=32$, ipso- PPh ), 186.1
(quat. $\mathrm{C}, \mathrm{C}=\mathrm{N}) .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, \delta, \mathrm{ppm}\right): 4.9 ;{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \operatorname{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}, \delta, \mathrm{ppm}\right): 18.0$. Anal. Calcd for $\mathrm{C}_{34} \mathrm{H}_{46} \mathrm{ClN}_{2} \mathrm{O}_{2} \mathrm{PPd}_{2}$ : C, $51.43 ; \mathrm{H}, 5.84 ; \mathrm{N}, 3.53 \%$. Found: C, $51.14 ; \mathrm{H}, 5.85$; N, 3.49\%.

## (R,R)-Di- $\mu$-(diphenylphosphido)bis\{[2-(methoxyimino)-7,7-

dimethylbicyclo[2.2.1]heptyl]methyl-C,N\}dipalladium(II) (207). The reaction was performed as described above for $\mathbf{2 0 5}$. The purification by preparative TLC was performed using 5:1 hexane-ethyl acetate as an eluent. The use of halogenated solvents, such as $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and $\mathrm{CHCl}_{3}$, was avoided during all steps of the product purification. The upper fraction on the TLC plate corresponded to the product $(0.0163 \mathrm{~g}, 0.0173 \mathrm{mmol}, \mathrm{ca} .26 \%$, brown solid). ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}, \delta, \mathrm{ppm}\right):-76.9 ;{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}, \delta, \mathrm{ppm}\right):-64.3$.
(S,S)-1-\{(Diphenylphosphino)methyl\}-3,3-dimethylbicyclo[2.2.1]heptan-2-one $\boldsymbol{O}$-Methyloxime (210). The reaction was performed as described above for 205 using complex $198(0.0794 \mathrm{~g}, 0.123 \mathrm{mmol})$. The reaction mixture was separated into several fractions using preparative TLC (10:1 hexane-ethyl acetate). Fraction 3 corresponded to compound $210\left(0.0461 \mathrm{~g}, 0.126 \mathrm{mmol}, 51 \%\right.$, colorless oil). $[\alpha]^{24}{ }_{\mathrm{D}}+138,[\alpha]^{24}{ }_{546}+171$, $[\alpha]^{24}{ }_{435}+246(c 0.150, \mathrm{EtOH}) . R_{f} 0.65$ (10:1 hexane-ethyl acetate). ${ }^{1} \mathrm{H}$ NMR ( $\left.\delta, \mathrm{ppm}\right):$ 1.19, $1.25\left(\right.$ two s, $\left.6 \mathrm{H}, 2 \mathrm{CH}_{3}\right), 1.31\left(\mathrm{~d}, 1 \mathrm{H},{ }^{2} \mathrm{~J}_{7 \mathrm{~A}, 7 \mathrm{~B}}=10.1, \mathrm{H}(7 \mathrm{~A})\right), 1.42(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}(6 \mathrm{endo}))$, 1.50 (m, 1H, H(5endo)), 1.58 (br. d, 1H, H(7B)), 1.75 (m, 2H, H(4), H(5exo)), 1.92 (tq, $\left.1 \mathrm{H},{ }^{2} J_{6 \mathrm{exo}, 6 \mathrm{endo}}={ }^{3} J_{6 \mathrm{exo}, 5 \mathrm{endo}}=12.0,{ }^{3} J_{6 \mathrm{exo}, \text { exo }} \approx{ }^{4} J_{6 \mathrm{exo}, \mathrm{P}} \approx 1.8, \mathrm{H}(6 \mathrm{exo})\right), 2.46\left(\mathrm{dd}, 1 \mathrm{H},{ }^{2} J_{\mathrm{H}, \mathrm{H}}=\right.$ $\left.14.7,{ }^{2} J_{\mathrm{H}, \mathrm{P}}=3.5, \mathrm{PCH}^{\mathrm{A}}\right), 2.59\left(\mathrm{dd}, 1 \mathrm{H},{ }^{2} J_{\mathrm{H}, \mathrm{H}}=14.7,{ }^{2} J_{\mathrm{H}, \mathrm{P}}=4.1, \mathrm{PCH}^{\mathrm{B}}\right), 3.73\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right)$, $7.30(\mathrm{~m}, 6 \mathrm{H}, m$ - and $p-\mathrm{PPh}), 7.47(\mathrm{~m}, 4 \mathrm{H}, o-\mathrm{PPh}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}(\delta, \mathrm{ppm}): 22.5$ and 23.1 (two $\left.\mathrm{CH}_{3}\right), 25.0\left(\mathrm{CH}_{2}, \mathrm{C}(5)\right), 30.7\left(\mathrm{~d},{ }^{1} J_{\mathrm{C}, \mathrm{P}}=13.1, \mathrm{PCH}_{2}\right), 33.3\left(\mathrm{~d}, \mathrm{CH}_{2},{ }^{3} J_{\mathrm{C}, \mathrm{P}}=9.2, \mathrm{C}(6)\right)$, $41.2\left(\mathrm{CH}_{2}, \mathrm{C}(7)\right), 44.3(\mathrm{CH}, \mathrm{C}(4)), 48.3(\mathrm{~d}, \mathrm{C}, \mathrm{C}(3)), 52.6\left(\mathrm{~d}, \mathrm{C},{ }^{2} J_{\mathrm{C}, \mathrm{P}}=16.7, \mathrm{C}(1)\right), 61.2$
$\left(\mathrm{OCH}_{3}\right), 128.22,128.27,128.32(m-$ and $p-\mathrm{PPh}), 132.8\left(\mathrm{~d},{ }^{2} J_{\mathrm{C}, \mathrm{P}}=19.2, o-\mathrm{PPh}^{\mathrm{A}}\right), 133.0(\mathrm{~d}$, $\left.{ }^{2} J_{\mathrm{C}, \mathrm{P}}=19.3, o-\mathrm{PPh}^{\mathrm{B}}\right), 139.9\left(\mathrm{~d},{ }^{1} J_{\mathrm{C}, \mathrm{P}}=12.6\right.$, ipso-$\left.-\mathrm{PPh}^{\mathrm{A}}\right), 140.0\left(\mathrm{~d},{ }^{1} J_{\mathrm{C}, \mathrm{P}}=10.8, i p s o-\mathrm{PPh}^{\mathrm{B}}\right)$, $171.9(\mathrm{C}=\mathrm{N}) .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}, \delta, \mathrm{ppm}\right)$ : -37.1. HRMS: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{23} \mathrm{H}_{28} \mathrm{NOP} 366.1981$, found 366.1964 .

## (S,S)- $\mu$-Chloro- $\mu$-(diphenylphosphido)bis\{[2-(methoxyimino)-3,3-

dimethylbicyclo[2.2.1]heptyl]methyl-C, $\boldsymbol{N}\}$ dipalladium(II) (211). The reaction was performed as described above for the preparation of $\mathbf{2 0 6}$ using complex $\mathbf{1 9 8}(0.0817 \mathrm{~g}$, 0.1268 mmol ). The reaction mixture was separated into several fractions using preparative TLC (10:1 hexane-ethyl acetate). Fraction 2 corresponded to complex 211 ( 0.0180 g , $0.0227 \mathrm{mmol}, 56 \%$, orange solid). $[\alpha]^{23}{ }_{\mathrm{D}}-121,[\alpha]^{23}{ }_{546}-147,[\alpha]^{23} 435-204(c 0.222, \mathrm{EtOH})$. Mp: 209-211 ${ }^{\circ} \mathrm{C} ; R_{f} 0.55$ (10:1 hexane-ethyl acetate). ${ }^{1} \mathrm{H}$ NMR ( $\left.\delta, \mathrm{ppm}\right): 1.05$ (dd, 1 H , $\left.{ }^{2} J_{\mathrm{H}, \mathrm{H}}=9.6,{ }^{3} J_{\mathrm{H}, \mathrm{P}}=4.8, \mathrm{PdCH}^{\mathrm{A}}\right), 1.14,1.20\left(\right.$ two s, $\left.6 \mathrm{H}, 2 \mathrm{CH}_{3}\right), 1.17(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}(7 \mathrm{~A})), 1.53$ (m, 2H, H(6endo), 5endo)), 1.63 (m, 2H, H(7B), $\left.\mathrm{PdCH}^{\mathrm{B}}\right), 1.80$ (m, 1H, H(5exo)), 1.91 (m, $2 \mathrm{H}, \mathrm{H}(4), \mathrm{H}(6 \mathrm{exo})), 3.93\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 7.29(\mathrm{~m}, 6 \mathrm{H}, m$ - and $p-\mathrm{PPh}), 7.82(\mathrm{~m}, 4 \mathrm{H}, o-\mathrm{PPh})$. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( $\delta, \mathrm{ppm}$ ): 22.5 and $23.0\left(\right.$ two $\left.\mathrm{CH}_{3}\right), 25.6\left(\mathrm{CH}_{2}, \mathrm{C}(5)\right), 25.7\left(\mathrm{PCH}_{2}\right), 35.1$ $\left(\mathrm{CH}_{2}, \mathrm{C}(6)\right), 43.4\left(\mathrm{CH}_{2}, \mathrm{C}(7)\right), 44.0(\mathrm{C}, \mathrm{C}(3)), 52.3(\mathrm{CH}, \mathrm{C}(4)), 62.6\left(\mathrm{OCH}_{3}\right), 64.3(\mathrm{C}$, $\mathrm{C}(1)), 127.9,\left(\mathrm{~d},{ }^{3} J_{\mathrm{C}, \mathrm{P}}=10.2, m-\mathrm{PPh}\right), 128.4(\mathrm{~s}, p-\mathrm{PPh}), 134.4\left(\mathrm{~d},{ }^{2} J_{\mathrm{C}, \mathrm{P}}=12.2, o-\mathrm{PPh}\right), 138.6$ $\left(\mathrm{d},{ }^{1} J_{\mathrm{C}, \mathrm{P}}=31.1\right.$, ipso-PPh$), 190.6(\mathrm{C}=\mathrm{N}) .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}, \delta, \mathrm{ppm}\right):$ 2.2. Anal. Calcd for $\mathrm{C}_{34} \mathrm{H}_{46} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{PClPd}_{2}$ : C, 51.43 ; H, $5.84 ; \mathrm{N}, 3.53 \%$. Found: C, $51.30 ; \mathrm{H}, 5.84 ; \mathrm{N}, 3.52 \%$.

## $\mu$-Chloro- $\mu$-(diphenylphosphido)bis(8-quinolinylmethyl-C,N)dipalladium

(214). The reaction was performed as described above for preparation of $\mathbf{2 0 6}$ using CPC $212(0.0498 \mathrm{~g}, 0.0693 \mathrm{mmol})$. The reaction mixture was separated into several fractions using preparative TLC (10:1 benzene-acetone). Fraction 1 corresponded to complex 214
$\left(0.0258 \mathrm{~g}, 0.0359 \mathrm{mmol}, 56 \%\right.$, orange powder). Mp: 237-239 ${ }^{\circ} \mathrm{C}$; $R_{f} 0.65(15: 1$ tolueneethyl acetate). ${ }^{1} \mathrm{H}$ NMR $(\delta, \mathrm{ppm}): 3.02\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 7.35(\mathrm{~m}, 6 \mathrm{H}, m$ - and $p-\mathrm{PPh}), 7.40(\mathrm{t}$, $1 \mathrm{H},{ }^{3} J_{\mathrm{H}, \mathrm{H}}=7.5$, arom. CH$), 7.45\left(\mathrm{~d}, 1 \mathrm{H},{ }^{3} J_{\mathrm{H}, \mathrm{H}}=7.0\right.$, arom. CH$), 7.50\left(\mathrm{dd}, 1 \mathrm{H},{ }^{3} J_{\mathrm{H}, \mathrm{H}} \approx 8.3\right.$, ${ }^{4} J_{\mathrm{H}, \mathrm{H}} \approx 4.7$, arom. CH), $7.56\left(\mathrm{~d}, 1 \mathrm{H},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}} \approx 7.7\right.$, arom. CH$), 8.00(\mathrm{~m}, 4 \mathrm{H}, o-\mathrm{PPh}) 8.25(\mathrm{dd}$, $1 \mathrm{H},{ }^{3} J_{\mathrm{H}, \mathrm{H}} \approx 8.2,{ }^{4} J_{\mathrm{H}, \mathrm{H}} \approx 1.3$, arom. CH$), 9.11(\mathrm{~m}, 1 \mathrm{H}$, arom. CH$) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \operatorname{NMR}(\delta, \mathrm{ppm})$ : $25.7\left(\mathrm{CH}_{2}, \mathrm{CH}_{2}\right), 120.9\left(\mathrm{~d},{ }^{4} J_{\mathrm{C}, \mathrm{P}}=2.7, \mathrm{CH}\right), 123.4(\mathrm{~s}, \mathrm{CH}), 127.5(\mathrm{~s}, \mathrm{CH}), 127.9,\left(\mathrm{~d},{ }^{3} J_{\mathrm{C}, \mathrm{P}}\right.$ $=10.0, m-\mathrm{PPh}), 128.2\left(\mathrm{~d},{ }^{4} J_{\mathrm{C}, \mathrm{P}}=2.5, \mathrm{CH}\right), 129.0(\mathrm{~s}, \mathrm{C}), 129.3(\mathrm{~s}, p-\mathrm{PPh}), 134.1\left(\mathrm{~d},{ }^{2} J_{\mathrm{C}, \mathrm{P}}=\right.$ $11.9, o-\mathrm{PPh}), 137.7(\mathrm{~s}, \mathrm{CH}), 137.8\left(\mathrm{~d},{ }^{1} J_{\mathrm{C}, \mathrm{P}}=32.1\right.$, ipso-PPh$), 146.8(\mathrm{~s}, \mathrm{CH}), 149.6(\mathrm{~s}, \mathrm{C})$, $151.0\left(\mathrm{~d},{ }^{4} J_{\mathrm{C}, \mathrm{P}}=1.9, \mathrm{C}\right) .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \quad \mathrm{NMR}\left(\mathrm{CDCl}_{3}, \delta, \mathrm{ppm}\right): 10.2$. Anal. Calcd for $\mathrm{C}_{32} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{PClPd}_{2}$ : C, $53.54 ; \mathrm{H}, 3.65$; N, 3.90\%. Found: C, $53.27 ; \mathrm{H}, 3.80 ; \mathrm{N}, 3.85 \%$.

8-[(Diphenyloxophosphino)methyl]quinoline (216). Complex 212 (0.1636 g, 0.2659 mmol ) was added to an oven dried Ar-filled $50-\mathrm{mL}$ Schlenk flask containing a magnetic stirring bar. The flask was evacuated and filled with Ar 5 times. Then abs. THF $(17 \mathrm{~mL})$ was added followed by a 0.5 M solution of $\mathrm{KPPh}_{2}$ in THF ( $3.2 \mathrm{~mL}, 1.6 \mathrm{mmol}$ ). During the dropwise addition, the orange solution turned dark red, and then black. The mixture was stirred at rt for 48 h in Ar . The reaction mixture was then filtered through celite $(\mathrm{h}=1 \mathrm{~cm})$, and the flask with the filtrate was placed on a rotavapor to remove solvent. The crude product was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and separated into several fractions using preparative TLC (10:1 ethyl acetate-acetone). Fraction 1 corresponded to 8methylquinoline $213(0.0450 \mathrm{~g}, 0.314 \mathrm{mmol}, 48 \%$, colorless oil). Fraction 3 corresponded to compound $216\left(0.0321 \mathrm{~g}, 0.0231 \mathrm{mmol}, 21 \%\right.$, colorless oil). $R_{f} 0.40$ (10:1 ethyl acetateacetone $) .{ }^{1} \mathrm{H} \operatorname{NMR}(\delta, \mathrm{ppm}): 4.56\left(\mathrm{~d}, 2 \mathrm{H},{ }^{2} J_{\mathrm{H}, \mathrm{P}}=14.2, \mathrm{PCH}_{2}\right), 7.28\left(\mathrm{t}, 1 \mathrm{H},{ }^{3} J_{\mathrm{H}, \mathrm{H}}=4.2\right.$, arom. $\mathrm{H}(3)), 7.31(\mathrm{~m}, 4 \mathrm{H}, o-\mathrm{PPh}), 7.38\left(\mathrm{dt}, 2 \mathrm{H},{ }^{3} J_{\mathrm{H}, \mathrm{H}}=7.4,{ }^{4} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=1.3, p-\mathrm{PPh}\right), 7.46\left(\mathrm{t}, 1 \mathrm{H},{ }^{2} J_{\mathrm{H}, \mathrm{P}}\right.$
$=15.4$, arom. $\mathrm{H}(6)), 7.64\left(\mathrm{~d}, 1 \mathrm{H},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{P}}=8.2\right.$, arom. $\left.\mathrm{H}(7)\right), 7.78(\mathrm{~m}, 4 \mathrm{H}, m-\mathrm{PPh}), 8.03(\mathrm{dd}$, $1 \mathrm{H},{ }^{3} J_{\mathrm{H}, \mathrm{H}}=8.2,{ }^{5} J_{\mathrm{H}, \mathrm{H}}=1.6$, arom. $\left.\mathrm{H}(5)\right), 8.05(\mathrm{~m}, 1 \mathrm{H}$, arom. $\mathrm{H}(4)), 8.76\left(\mathrm{dd}, 1 \mathrm{H},{ }^{3} J_{\mathrm{H}, \mathrm{H}}=\right.$ 4.1, ${ }^{5} J_{\mathrm{H}, \mathrm{H}}=1.6$, arom. $\left.\mathrm{H}(2)\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \operatorname{NMR}(\delta, \mathrm{ppm}): 21.2\left(\mathrm{~d},{ }^{1} J_{\mathrm{C}, \mathrm{P}}=67.9, \mathrm{PCH}_{2}\right), 121.2$ (s, arom. $\mathrm{CH}(3)), 126.8\left(\mathrm{~d},{ }^{3} J_{\mathrm{C}, \mathrm{P}}=2.8\right.$, arom. $\left.\mathrm{CH}(6)\right), 127.2\left(\mathrm{~d},{ }^{4} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=1.0\right.$, arom. $\left.\mathrm{CH}(7)\right)$, $128.5\left(\mathrm{~d},{ }^{2} J_{\mathrm{C}, \mathrm{P}}=11.6, o-\mathrm{PPh}\right), 131.2\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=7.7\right.$, ipso-PPh$), 131.55(\mathrm{~s}$, arom. $\mathrm{CH}(5))$, $131.56\left(\mathrm{~d},{ }^{2} J_{\mathrm{C}, \mathrm{P}}=9.2, m-\mathrm{PPh}\right), 131.8\left(\mathrm{~d},{ }^{2} J_{\mathrm{C}, \mathrm{P}}=2.3, p-\mathrm{PPh}\right), 133.0(\mathrm{~s}$, arom. $\mathrm{C}(10)), 133.8$ (two s, (s, arom. $\mathrm{CH}(8)), 136.6(\mathrm{~s}$, arom. $\mathrm{CH}(4)), 146.7\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=5.5\right.$, arom. $\left.\mathrm{CH}(9)\right)$, 149.4 (s, CH , arom. $\mathrm{CH}(2)) .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, \delta, \mathrm{ppm}\right):$ 16.5. IR (Nujol mull, $v, \mathrm{~cm}^{-1}$ ): 1199 $\mathrm{s}(\mathrm{P}=\mathrm{O})$. HRMS: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{22} \mathrm{H}_{19} \mathrm{NOP} 343.1199$, found 344.1108.

## [2-(Di-ortho-tolylphosphino)benzyl]diphenylphosphine oxide (220). Complex

 219 ( $0.0690 \mathrm{~g}, 0.0775 \mathrm{mmol}$ ) was added to an oven dried Ar-filled $25-\mathrm{mL}$ Schlenk flask containing a magnetic stirring bar. The flask was evacuated and filled with $\operatorname{Ar} 5$ times. Then abs. THF ( 10 mL ) was added followed by a 0.5 M solution of $\mathrm{KPPh}_{2}$ in THF ( 0.7 $\mathrm{mL}, 0.3 \mathrm{mmol}$ ). During the dropwise addition, the yellow solution turned dark red, and then brown. The mixture was stirred at rt for 48 h in Ar and then 48 h in air. The reaction mixture was then filtered through celite ( $\mathrm{h}=1 \mathrm{~cm}$ ), and the flask with the filtrate was placed on a rotavapor to remove solvent. The mixture was separated into several fractions using preparative TLC (10:1 ethyl acetate-acetone). Fraction 1 corresponded to tri $(O$ tolyl)phosphine $221(0.001 \mathrm{~g}, 0.003 \mathrm{mmol}, 2 \%$, white powder). Fraction 2 corresponded to product $220\left(0.00147 \mathrm{~g}, 0.0303 \mathrm{mmol}, 20 \%\right.$, pale yellow oil). $R_{f} 0.59$ (10:1 ethyl acetateacetone). ${ }^{1} \mathrm{H}$ NMR ( $\delta, \mathrm{ppm}$ ): $2.26\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3}\right), 4.00\left(\mathrm{~d}, 2 \mathrm{H},{ }^{2} \mathrm{~J}_{\mathrm{H}, \mathrm{P}}=9.6, \mathrm{PCH}_{2}\right), 6.61(\mathrm{dd}$, $2 \mathrm{H},{ }^{3} J_{\mathrm{H}, \mathrm{P}}=7.4,{ }^{3} J_{\mathrm{H}, \mathrm{H}}=4.6$, arom. CH of $\left.\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{CH}_{2} \mathrm{P}\right), 7.00\left(\mathrm{dd}, 1 \mathrm{H},{ }^{3} J_{\mathrm{H}, \mathrm{H}}=7.6,{ }^{4} J_{\mathrm{H}, \mathrm{P}}=3.9\right.$, arom. CH of $\left.\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{CH}_{2} \mathrm{P}\right), 7.05\left(\mathrm{~m}, 3 \mathrm{H}\right.$, arom. $\mathrm{CH}(3), \mathrm{CH}(5)$ of tolyl), $7.20\left(\mathrm{t}, 2 \mathrm{H},{ }^{3} J_{\mathrm{H}, \mathrm{H}}=\right.$6.0, arom. $\mathrm{CH}(4)$ of tolyl), $7.23-7.30(\mathrm{~m}, 3 \mathrm{H}$, arom. $\mathrm{CH}(3), \mathrm{CH}(6)$ of tolyl), 7.35 (td, 4 H , $\left.{ }^{3} J_{\mathrm{H}, \mathrm{P}}=7.5,{ }^{3} J_{\mathrm{H}, \mathrm{H}}=2.8, o-\mathrm{PPh}\right), 7.42\left(\mathrm{t}, 2 \mathrm{H},{ }^{3} J_{\mathrm{H}, \mathrm{H}}=6.9, p-\mathrm{PPh}\right), 7.74\left(\mathrm{dd}, 4 \mathrm{H},{ }^{3} J_{\mathrm{H}, \mathrm{P}}=11.4\right.$, $\left.{ }^{3} J_{\mathrm{H}, \mathrm{H}}=7.4, m-\mathrm{PPh}\right), 7.95\left(\mathrm{t}, 1 \mathrm{H},{ }^{3} J_{\mathrm{H}, \mathrm{H}}=6.3\right.$, arom. CH of $\left.\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{CH}_{2} \mathrm{P}\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $(\delta$, ppm): 21.6, 21.8 (two s, $\mathrm{CH}_{3}$ ), $35.0\left(\mathrm{dd},{ }^{1} J_{\mathrm{C}, \mathrm{P}}=67.2,{ }^{3} J_{\mathrm{C}, \mathrm{P}}=25.9, \mathrm{PCH}_{2}\right), 126.7(\mathrm{~s}$, arom. $\mathrm{CH}(5)$ of tolyl), 127.8 (s, arom. $\mathrm{CH}(3)$ of tolyl), $128.8\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=11.7, o-\mathrm{PPh}\right), 129.3(\mathrm{~s}$, arom. $\mathrm{CH}(6)$ of tolyl), 129.6 (s, arom. $\mathrm{CH}(3)$ of tolyl), 130.5 (d, ${ }^{4} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=4.7$, arom. $\mathrm{CH}(4)$ of tolyl), $131.2\left(\mathrm{t},{ }^{4} J_{\mathrm{C}, \mathrm{P}}=4.3\right.$, arom. CH of $\left.\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{CH}_{2} \mathrm{P}\right), 131.5\left(\mathrm{~d},{ }^{3} J_{\mathrm{C}, \mathrm{P}}=9.4, m-\mathrm{PPh}\right), 132.0$ (s, $p$-PPh), $133.3\left(\mathrm{~d},{ }^{1} J_{\mathrm{C}, \mathrm{P}}=99.3\right.$, arom. $\mathrm{C}(1)$ of tolyl), 133.5 ( s , arom. CH of $\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{CH}_{2} \mathrm{P}$ ), 134.3 (s, arom. CH of $\left.\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{CH}_{2} \mathrm{P}\right), 134.5\left(\mathrm{~d},{ }^{2} J_{\mathrm{C}, \mathrm{P}}=9.3, \mathrm{PPh}\right), 135.0\left(\mathrm{t},{ }^{3} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=8.4\right.$, arom. CH of $\left.\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{CH}_{2} \mathrm{P}\right), 137.7\left(\mathrm{dd},{ }^{1} J_{\mathrm{C}, \mathrm{P}}=26.4,{ }^{3} J_{\mathrm{C}, \mathrm{P}}=6.3\right.$, arom. C of $\left.\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{CH}_{2} \mathrm{P}\right), 142.8(\mathrm{~d}$, ${ }^{1} J_{\mathrm{C}, \mathrm{P}}=25.9, \mathrm{C}(2)$ of tolyl). ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, \delta, \mathrm{ppm}\right):-45.08$ and 15.35 (two d, ${ }^{4} J_{\mathrm{P}, \mathrm{P}}$ = 9.2). IR (Nujol mull, $v, \mathrm{~cm}^{-1}$ ): $1198 \mathrm{~s}(\mathrm{P}=\mathrm{O})$. HRMS: $[\mathrm{M}+\mathrm{Na}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{33} \mathrm{H}_{30} \mathrm{O}_{2} \mathrm{P}_{2} \mathrm{Na} 543.1691$, found 543.1440 .
[6-Methyl-1-(methylthio)benzyl]diphenylphosphine oxide (224). The compound was obtained using the procedure described above for oxide $\mathbf{2 2 0}$ using complex $222(0.1309 \mathrm{~g}, 0.2233 \mathrm{mmol})$. The reaction mixture was separated into two fractions using preparative TLC (10:1 ethyl acetate-acetone). Fraction 1 corresponded to 2,6dimethylthioanisole 225 ( $0.0483 \mathrm{~g}, 0.317 \mathrm{mmol}, 71 \%$, colorless oil). Fraction 2 corresponded to compound $224\left(0.0351 \mathrm{~g}, 0.0996 \mathrm{mmol}, 22 \%\right.$, purple oil). $R_{f} 0.50$ (10:1 ethyl acetate-acetone). ${ }^{1} \mathrm{H} \operatorname{NMR}(\delta, \mathrm{ppm}): 2.04\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.48\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SCH}_{3}\right), 4.24(\mathrm{~d}$, $\left.2 \mathrm{H},{ }^{2} J_{\mathrm{H}, \mathrm{P}}=14.1, \mathrm{PCH}_{2}\right), 7.10(\mathrm{~m}, 2 \mathrm{H}$, arom. $\mathrm{H}(4), \mathrm{H}(5)), 7.33(\mathrm{~m}, 1 \mathrm{H}$, arom. $\mathrm{H}(3)), 7.42$ $\left(\mathrm{dt}, 4 \mathrm{H},{ }^{3} J_{\mathrm{H}, \mathrm{P}}={ }^{3} J_{\mathrm{H}, \mathrm{H}}=7.7,{ }^{4} J_{\mathrm{H}, \mathrm{H}}=2.7, o-\mathrm{PPh}\right), 7.49\left(\mathrm{dt}, 2 \mathrm{H},{ }^{3} J_{\mathrm{H}, \mathrm{H}}=7.4,{ }^{4} J_{\mathrm{H}, \mathrm{H}}=1.3, p-\mathrm{PPh}\right)$, 7.72 (dd, $\left.4 \mathrm{H},{ }^{3} J_{\mathrm{H}, \mathrm{H}}=7.2,{ }^{3} J_{\mathrm{H}, \mathrm{H}}=7.2, m-\mathrm{PPh}\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \operatorname{NMR}(\delta, \mathrm{ppm}): 19.1\left(\mathrm{~s}, \mathrm{CH}_{3}\right), 22.2$
$\left(\mathrm{s}, \mathrm{SCH}_{3}\right), 36.6\left(\mathrm{~d},{ }^{1} J_{\mathrm{C}, \mathrm{P}}=67.0, \mathrm{PCH}_{2}\right), 128.6\left(\mathrm{~d},{ }^{5} J_{\mathrm{C}, \mathrm{P}}=1.7\right.$, arom. $\left.\mathrm{CH}(5)\right), 128.8\left(\mathrm{~d},{ }^{2} J_{\mathrm{C}, \mathrm{P}}\right.$ $=11.8, o-\mathrm{PPh}), 129.0\left(\mathrm{~d},{ }^{3} J_{\mathrm{C}, \mathrm{P}}=4.8, \mathrm{CH}(3)\right), 129.7\left(\mathrm{~d},{ }^{4} J_{\mathrm{C}, \mathrm{P}}=2.7\right.$, arom. $\left.\mathrm{CH}(4)\right)$, $131.7(\mathrm{~d}$, $\left.{ }^{3} J_{\mathrm{C}, \mathrm{P}}=9.1, m-\mathrm{PPh}\right)$ ), $132.1\left(\mathrm{~d},{ }^{4} J_{\mathrm{C}, \mathrm{P}}=2.8, p-\mathrm{PPh}\right), 132.7(\mathrm{~s}, \mathrm{C}(6)), 133.5(\mathrm{~s}, \mathrm{C}(2)), 136.36$ $\left(\mathrm{t},{ }^{1} J_{\mathrm{C}, \mathrm{P}}=9.2\right.$, ipso-PPh), $143.5(\mathrm{~s}, \mathrm{C}(1)) .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, \delta, \mathrm{ppm}\right)$ : 15.03. IR (Nujol mull, $\left.v, \mathrm{~cm}^{-1}\right): 1187 \mathrm{~s}(\mathrm{P}=\mathrm{O})$. HRMS: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{OPS}$ 353.1123, found 353.1005.

## $(R, R)$-1-\{(Diphenyloxophosphino)methyl\}-7,7-dimethylbicyclo[2.2.1]heptan-

2-one $O$-Methyloxime (226). Phosphine 205 was exposed to the air to give the corresponding oxide as an orange-yellow oil in a quantitative yield. $[\alpha]^{23}{ }_{D}-18,[\alpha]^{23}{ }_{546}-13$ (c $0.099, \mathrm{EtOH}) . R_{f} 0.57$ (5:3 hexane-acetone). IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, v, \mathrm{~cm}^{-1}\right): 1671(\mathrm{C}=\mathrm{N}), 1184$ $(\mathrm{P}=\mathrm{O}) .{ }^{1} \mathrm{H} \operatorname{NMR}(\delta, \mathrm{ppm}): 0.81\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.04\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.12(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}(5 \mathrm{endo}))$, $1.30(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}(6 \mathrm{endo})), 1.82(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}(5 \mathrm{exo}), \mathrm{H}(4)), 1.88\left(\mathrm{~d}, 1 \mathrm{H},{ }^{2} \mathrm{~J}_{3 \text { endo, } 3 \text { exo }}=18\right.$, H (3endo) ), $2.15\left(\mathrm{t}, 1 \mathrm{H},{ }^{2} J_{\mathrm{H}, \mathrm{H}}={ }^{3} J_{\mathrm{H}, \mathrm{P}}=16, \mathrm{PCH}^{\mathrm{A}}\right), 2.40(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}(6 \mathrm{exo}), \mathrm{H}(3 \mathrm{exo})), 3.06$ $\left(\mathrm{dd}, 1 \mathrm{H},{ }^{2} J_{\mathrm{H}, \mathrm{H}}={ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{P}}=16, \mathrm{PCH}^{\mathrm{B}}\right), 3.72\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 7.45(\mathrm{~m}, 6 \mathrm{H}, o-$ and $p-\mathrm{PPh}), 7.77$ (m, 2H, m-PPh ${ }^{\mathrm{A}}$ ), $7.95\left(\mathrm{~m}, 2 \mathrm{H}, m-\mathrm{PPh}^{\mathrm{B}}\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \operatorname{NMR}(\delta, \mathrm{ppm}): 19.6$ and 19.9 (two $\left.\mathrm{CH}_{3}\right), 27.3\left(\mathrm{~d},{ }^{1} J_{\mathrm{C}, \mathrm{P}}=73, \mathrm{PCH}_{2}\right), 28.0\left(\mathrm{CH}_{2}, \mathrm{C}(5)\right), 29.4\left(\mathrm{CH}_{2}, \mathrm{~d},{ }^{3} J_{\mathrm{C}, \mathrm{P}}=5.1, \mathrm{C}(6)\right), 33.8$ $\left(\mathrm{CH}_{2}, \mathrm{C}(3)\right), 43.2(\mathrm{CH}, \mathrm{C}(4)), 50.3$ (quat. C, d, $\left.{ }^{3} J_{\mathrm{C}, \mathrm{P}}=4.6, \mathrm{C}(7)\right), 53.2$ (quat. C, d, ${ }^{2} J_{\mathrm{C}, \mathrm{P}}=$ 4.9, C(1)), $61.7\left(\mathrm{OCH}_{3}\right), 128.6\left(\mathrm{CH}, \mathrm{d},{ }^{2} J_{\mathrm{C}, \mathrm{P}}=12, o-\mathrm{PPh}^{\mathrm{A}}\right), 128.8\left(\mathrm{CH}, \mathrm{d},{ }^{2} J_{\mathrm{C}, \mathrm{P}}=12, o-\right.$ $\left.\mathrm{PPh}^{\mathrm{B}}\right), 130.8\left(\mathrm{CH}, \mathrm{d},{ }^{3} J_{\mathrm{C}, \mathrm{P}}=8.9, m-\mathrm{PPh}^{\mathrm{A}}\right), 131.6(\mathrm{CH}$, br. s, $p-\mathrm{PPh}), 131.7\left(\mathrm{CH}, \mathrm{d},{ }^{3} J_{\mathrm{C}, \mathrm{P}}=\right.$ $9.4, m-\mathrm{PPh}^{\mathrm{B}}$ ), 134.9 (quat. C, d, ${ }^{1} J_{\mathrm{C}, \mathrm{P}}=98$, ipso- $\mathrm{PPh}^{\mathrm{A}}$ ), 136.6 (quat. C, d, ${ }^{1} J_{\mathrm{C}, \mathrm{P}}=99$, ipso$\left.\operatorname{PPh}^{\mathrm{B}}\right), 167.5$ (quat. $\left.\mathrm{C}, \mathrm{d},{ }^{4} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=5.3, \mathrm{C}=\mathrm{N}\right) .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, \delta, \mathrm{ppm}\right): 15.1 \cdot{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}, \delta, \mathrm{ppm}\right)$ : 25.0. HRMS: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{23} \mathrm{H}_{28} \mathrm{NO}_{2} \mathrm{P}$ 382.1894, found 382.1894.

APPENDICES

## APPENDIX A

## X-RAY DATA TABLES OF COMPLEX 177

Table 2. Crystal data, data collection, structure solution and structure refinement for $\mathbf{1 7 7}$.

| Empirical formula | $\mathrm{C}_{11} \mathrm{H}_{18} \mathrm{Cl}$ NO Pd |
| :---: | :---: |
| Formula weight | 322.11 |
| Temperature | 173(2) K |
| Wavelength | 0.71073 Å |
| Crystal system | Orthorhombic |
| Space group | P2(1)2(1)2(1) |
| Unit cell dimensions | $a=6.8825(3) \AA \quad \alpha=90^{\circ}$ |
|  | $b=18.1917(7) \AA \quad \beta=90^{\circ}$ |
|  | $c=19.6478(7) \AA \quad \gamma=90^{\circ}$ |
| Volume | 2459.99(17) $\AA^{3}$ |
| Z | 8 |
| Density (calculated) | $1.739 \mathrm{Mg} / \mathrm{m}^{3}$ |
| Absorption coefficient | $1.700 \mathrm{~mm}^{-1}$ |
| $F(000)$ | 1296 |
| Crystal size | $0.29 \times 0.12 \times 0.08 \mathrm{~mm}^{3}$ |
| Theta range for data collection | 1.53 to $30.19^{\circ}$ |
| Index ranges | $-8 \leq h \leq 9,-24 \leq k \leq 25,-27 \leq l \leq 27$ |
| Reflections collected | 35022 |
| Independent reflections | $6869[R(\mathrm{int})=0.0267]$ |
| Completeness to theta $=30.19^{\circ}$ | 98.3\% |
| Absorption correction | None |
| Max. and min. transmission | 0.8831 and 0.6384 |
| Refinement method | Full-matrix least-squares on $F^{2}$ |
| Data / restraints / parameters | 6869 / 0 / 277 |
| Goodness-of-fit on $F^{2}$ | 1.199 |
| Final $R$ indices [ $1>2 \operatorname{sigma}(I)]$ | $R 1=0.0193, w R 2=0.0462$ |
| $R$ indices (all data) | $R 1=0.0228, w R 2=0.0626$ |
| Absolute structure parameter | -0.03(2) |
| Largest diff. peak and hole | 0.601 and -0.486 e. $\AA^{-3}$ |

Table 3. Selected bond lengths for 177.

| Bond | $d / \AA$ | Bond | $d / \AA$ |
| :--- | :--- | :--- | ---: |
| $\operatorname{Pd}(1)-\mathrm{C}(10)$ | $2.024(2)$ | $\mathrm{C}(2)-\mathrm{C}(3)$ | $1.496(4)$ |
| $\operatorname{Pd}(1)-\mathrm{N}(1)$ | $2.027(2)$ | $\mathrm{C}(3)-\mathrm{C}(4)$ | $1.554(4)$ |
| $\operatorname{Pd}(1)-\mathrm{Cl}(2)$ | $2.3311(7)$ | $\mathrm{C}(4)-\mathrm{C}(5)$ | $1.528(4)$ |
| $\operatorname{Pd}(1)-\mathrm{Cl}(1)$ | $2.4793(6)$ | $\mathrm{C}(4)-\mathrm{C}(7)$ | $1.557(4)$ |
| $\operatorname{Pd}(2)-\mathrm{C}(30)$ | $2.013(3)$ | $\mathrm{C}(5)-\mathrm{C}(6)$ | $1.557(4)$ |
| $\operatorname{Pd}(2)-\mathrm{N}(2)$ | $2.046(2)$ | $\mathrm{C}(7)-\mathrm{C}(9)$ | $1.522(4)$ |
| $\operatorname{Pd}(2)-\mathrm{Cl}(1)$ | $2.3292(7)$ | $\mathrm{C}(7)-\mathrm{C}(8)$ | $1.530(4)$ |
| $\mathrm{Pd}(2)-\mathrm{Cl}(2)$ | $2.5199(6)$ | $\mathrm{C}(21)-\mathrm{C}(22)$ | $1.485(4)$ |
| $\mathrm{O}(1)-\mathrm{N}(1)$ | $1.411(3)$ | $\mathrm{C}(21)-\mathrm{C}(30)$ | $1.508(4)$ |
| $\mathrm{O}(1)-\mathrm{C}(11)$ | $1.433(3)$ | $\mathrm{C}(21)-\mathrm{C}(26)$ | $1.551(4)$ |
| $\mathrm{O}(2)-\mathrm{N}(2)$ | $1.415(3)$ | $\mathrm{C}(21)-\mathrm{C}(27)$ | $1.567(4)$ |
| $\mathrm{O}(2)-\mathrm{C}(31)$ | $1.417(3)$ | $\mathrm{C}(22)-\mathrm{C}(23)$ | $1.499(4)$ |
| $\mathrm{N}(1)-\mathrm{C}(2)$ | $1.284(3)$ | $\mathrm{C}(23)-\mathrm{C}(24)$ | $1.545(4)$ |
| $\mathrm{N}(2)-\mathrm{N}(22)$ | $1.274(3)$ | $\mathrm{C}(24)-\mathrm{C}(25)$ | $1.541(5)$ |
| $\mathrm{C}(1)-\mathrm{C}(2)$ | $1.491(4)$ | $\mathrm{C}(24)-\mathrm{C}(27)$ | $1.556(4)$ |
| $\mathrm{C}(1)-\mathrm{C}(10)$ | $1.523(4)$ | $\mathrm{C}(25)-\mathrm{C}(26)$ | $1.542(5)$ |
| $\mathrm{C}(1)-\mathrm{C}(7)$ | $1.571(4)$ | $\mathrm{C}(27)-\mathrm{C}(29)$ | $1.524(4)$ |
| $\mathrm{C}(1)-\mathrm{C}(6)$ | $1.550(4)$ | $\mathrm{C}(27)-\mathrm{C}(28)$ | $1.528(4)$ |

Table 4. Selected angles for $\mathbf{1 7 7}$.

| Bond | angle $/{ }^{\circ}$ | Bond | angle ${ }^{\circ}$ |
| :--- | :---: | :--- | :---: |
| $\mathrm{C}(10)-\mathrm{Pd}(1)-\mathrm{N}(1)$ | $82.14(10)$ | $\mathrm{Cl}(1)-\mathrm{Pd}(2)-\mathrm{Cl}(2)$ | $103.62(6)$ |
| $\mathrm{C}(10)-\mathrm{Pd}(1)-\mathrm{Cl}(2)$ | $90.50(8)$ | $\mathrm{Pd}(2)-\mathrm{Cl}(1)-\mathrm{Pd}(1)$ | $93.37(2)$ |
| $\mathrm{N}(1)-\mathrm{Pd}(1)-\mathrm{Cl}(2)$ | $172.62(6)$ | $\mathrm{Pd}(1)-\mathrm{Cl}(2)-\mathrm{Pd}(2)$ | $92.28(2)$ |
| $\mathrm{C}(10)-\mathrm{Pd}(1)-\mathrm{Cl}(1)$ | $176.00(8)$ | $\mathrm{N}(1)-\mathrm{O}(1)-\mathrm{C}(11)$ | $109.93(19)$ |
| $\mathrm{N}(1)-\mathrm{Pd}(1)-\mathrm{Cl}(1)$ | $100.25(6)$ | $\mathrm{N}(2)-\mathrm{O}(2)-\mathrm{C}(31)$ | $110.6(2)$ |
| $\mathrm{Cl}(2)-\mathrm{Pd}(1)-\mathrm{Cl}(1)$ | $87.13(2)$ | $\mathrm{C}(2)-\mathrm{N}(1)-\mathrm{O}(1)$ | $113.9(2)$ |
| $\mathrm{C}(30)-\mathrm{Pd}(2)-\mathrm{N}(2)$ | $82.39(10)$ | $\mathrm{C}(2)-\mathrm{N}(1)-\mathrm{Pd}(1)$ | $116.47(18)$ |
| $\mathrm{C}(30)-\mathrm{Pd}(2)-\mathrm{Cl}(1)$ | $87.76(9)$ | $\mathrm{O}(1)-\mathrm{N}(1)-\mathrm{Pd}(1)$ | $129.58(15)$ |
| $\mathrm{N}(2)-\mathrm{Pd}(2)-\mathrm{Cl}(1)$ | $170.14(6)$ | $\mathrm{C}(22)-\mathrm{N}(2)-\mathrm{O}(2)$ | $113.1(2)$ |
| $\mathrm{C}(30)-\mathrm{Pd}(2)-\mathrm{Cl}(2)$ | $173.98(9)$ | $\mathrm{C}(22)-\mathrm{N}(2)-\mathrm{Pd}(2)$ | $115.73(18)$ |
| $\mathrm{N}(2)-\mathrm{Pd}(2)-\mathrm{Cl}(2)$ | $103.62(6)$ | $\mathrm{O}(2)-\mathrm{N}(2)-\mathrm{Pd}(2)$ | $129.79(17)$ |


| $\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(10)$ | $111.0(2)$ | $\mathrm{C}(22)-\mathrm{C}(21)-\mathrm{C}(30)$ | $112.0(2)$ |
| :--- | :---: | :--- | :---: |
| $\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(6)$ | $104.3(2)$ | $\mathrm{C}(22)-\mathrm{C}(21)-\mathrm{C}(26)$ | $105.0(2)$ |
| $\mathrm{C}(10)-\mathrm{C}(1)-\mathrm{C}(6)$ | $117.1(2)$ | $\mathrm{C}(30)-\mathrm{C}(21)-\mathrm{C}(26)$ | $115.8(3)$ |
| $\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(7)$ | $99.1(2)$ | $\mathrm{C}(22)-\mathrm{C}(21)-\mathrm{C}(27)$ | $98.9(2)$ |
| $\mathrm{C}(10)-\mathrm{C}(1)-\mathrm{C}(7)$ | $120.6(2)$ | $\mathrm{C}(30)-\mathrm{C}(21)-\mathrm{C}(27)$ | $120.7(2)$ |
| $\mathrm{C}(6)-\mathrm{C}(1)-\mathrm{C}(7)$ | $102.1(2)$ | $\mathrm{C}(26)-\mathrm{C}(21)-\mathrm{C}(27)$ | $102.1(2)$ |
| $\mathrm{N}(1)-\mathrm{C}(2)-\mathrm{C}(1)$ | $117.0(2)$ | $\mathrm{N}(2)-\mathrm{C}(22)-\mathrm{C}(21)$ | $118.0(3)$ |
| $\mathrm{N}(1)-\mathrm{C}(2)-\mathrm{C}(3)$ | $132.7(2)$ | $\mathrm{N}(2)-\mathrm{C}(22)-\mathrm{C}(23)$ | $132.0(3)$ |
| $\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$ | $110.3(2)$ | $\mathrm{C}(21)-\mathrm{C}(22)-\mathrm{C}(23)$ | $109.8(2)$ |
| $\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$ | $99.4(2)$ | $\mathrm{C}(22)-\mathrm{C}(23)-\mathrm{C}(24)$ | $99.8(2)$ |
| $\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(3)$ | $106.7(3)$ | $\mathrm{C}(25)-\mathrm{C}(24)-\mathrm{C}(23)$ | $106.9(3)$ |
| $\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(7)$ | $102.9(2)$ | $\mathrm{C}(25)-\mathrm{C}(24)-\mathrm{C}(27)$ | $102.2(2)$ |
| $\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(7)$ | $102.8(2)$ | $\mathrm{C}(23)-\mathrm{C}(24)-\mathrm{C}(27)$ | $103.0(2)$ |
| $\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$ | $103.4(2)$ | $\mathrm{C}(24)-\mathrm{C}(25)-\mathrm{C}(26)$ | $103.1(2)$ |
| $\mathrm{C}(1)-\mathrm{C}(6)-\mathrm{C}(5)$ | $103.4(2)$ | $\mathrm{C}(25)-\mathrm{C}(26)-\mathrm{C}(21)$ | $104.0(2)$ |
| $\mathrm{C}(9)-\mathrm{C}(7)-\mathrm{C}(8)$ | $107.9(3)$ | $\mathrm{C}(29)-\mathrm{C}(27)-\mathrm{C}(28)$ | $107.8(3)$ |
| $\mathrm{C}(9)-\mathrm{C}(7)-\mathrm{C}(4)$ | $114.1(2)$ | $\mathrm{C}(29)-\mathrm{C}(27)-\mathrm{C}(24)$ | $114.5(2)$ |
| $\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{C}(4)$ | $114.1(2)$ | $\mathrm{C}(28)-\mathrm{C}(27)-\mathrm{C}(24)$ | $114.7(2)$ |
| $\mathrm{C}(9)-\mathrm{C}(7)-\mathrm{C}(1)$ | $113.8(2)$ | $\mathrm{C}(29)-\mathrm{C}(27)-\mathrm{C}(21)$ | $113.5(2)$ |
| $\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{C}(1)$ | $113.4(2)$ | $\mathrm{C}(28)-\mathrm{C}(27)-\mathrm{C}(21)$ | $112.9(2)$ |
| $\mathrm{C}(4)-\mathrm{C}(7)-\mathrm{C}(1)$ | $93.1(2)$ | $\mathrm{C}(24)-\mathrm{C}(27)-\mathrm{C}(21)$ | $93.1(2)$ |
| $\mathrm{C}(1)-\mathrm{C}(10)-\mathrm{Pd}(1)$ | $109.25(17)$ | $\mathrm{C}(21)-\mathrm{C}(30)-\mathrm{Pd}(2)$ | $110.95(18)$ |

## APPENDIX B

## X-RAY DATA TABLES OF COMPLEX 186

Table 5. Crystal data, data collection, structure solution and structure refinement for 156.

| Empirical formula | $\mathrm{C}_{24} \mathrm{H}_{42} \mathrm{Cl}_{2} \mathrm{~N}_{4} \mathrm{Pd}_{2}$ |
| :---: | :---: |
| Formula weight | 670.31 |
| Temperature | 123(2) K |
| Wavelength | 0.71073 A |
| Crystal system | Monoclinic |
| Space group | P21 |
| Unit cell dimensions | $a=12.1816(17) \AA \quad \alpha=90^{\circ}$ |
|  | $b=7.1564(10) \AA \quad \beta=109.964(2)^{\circ}$ |
|  | $c=16.823(2) \AA \quad \gamma=90^{\circ}$ |
| Volume | 1378.4(3) $\AA^{3}$ |
| Z | 2 |
| Density (calculated) | $1.615 \mathrm{Mg} / \mathrm{m}^{3}$ |
| Absorption coefficient | $1.517 \mathrm{~mm}^{-1}$ |
| $F(000)$ | 680 |
| Crystal color, morphology | Yellow, Block |
| Crystal size | $0.220 \times 0.200 \times 0.180 \mathrm{~mm}^{3}$ |
| Theta range for data collection | 1.779 to $27.617^{\circ}$ |
| Index ranges | $-15 \leq h \leq 15,-9 \leq k \leq 9,-21 \leq l \leq 21$ |
| Reflections collected | 16179 |
| Independent reflections | $6351[R(\mathrm{int})=0.0329]$ |
| Observed reflections | 5902 |
| Completeness to theta $=25.242^{\circ}$ | 100.0\% |
| Absorption correction | Multi-scan |
| Max. and min. transmission | 0.4915 and 0.4383 |
| Refinement method | Full-matrix least-squares on $F^{2}$ |
| Data / restraints / parameters | 6351 / 1 / 299 |
| Goodness-of-fit on $F^{2}$ | 1.040 |
| Final $R$ indices [ $1>2 \operatorname{sigma}(I)$ ] | $R 1=0.0298, w R 2=0.0570$ |
| $R$ indices (all data) | $R 1=0.0336, w R 2=0.0596$ |
| Absolute structure parameter | -0.04(2) |
| Largest diff. peak and hole | 0.680 and -0.503 e. $\AA^{-3}$ |

Table 6. Selected bond lengths for 186.

| Bond | $d / \AA$ | Bond | $d / \AA$ |
| :--- | :--- | :--- | :---: |
| $\operatorname{Pd}(1)-\mathrm{C}(3)$ | $1.982(5)$ | $\mathrm{C}(4)-\mathrm{C}(7)$ | $1.545(7)$ |
| $\operatorname{Pd}(1)-\mathrm{N}(2)$ | $2.076(5)$ | $\mathrm{C}(5)-\mathrm{C}(6)$ | $1.551(8)$ |
| $\operatorname{Pd}(1)-\mathrm{Cl}(1 \mathrm{~A})$ | $2.3331(14)$ | $\mathrm{C}(7)-\mathrm{C}(9)$ | $1.533(8)$ |
| $\operatorname{Pd}(1)-\mathrm{Cl}(1)$ | $2.5012(13)$ | $\mathrm{C}(7)-\mathrm{C}(10)$ | $1.536(8)$ |
| $\operatorname{Pd}(1 \mathrm{~A})-\mathrm{C}(3 \mathrm{~A})$ | $2.007(5)$ | $\mathrm{N}(1 \mathrm{~A})-\mathrm{C}(2 \mathrm{~A})$ | $1.267(7)$ |
| $\operatorname{Pd}(1 \mathrm{~A})-\mathrm{N}(2 \mathrm{~A})$ | $2.079(5)$ | $\mathrm{N}(1 \mathrm{~A})-\mathrm{N}(2 \mathrm{~A})$ | $1.489(6)$ |
| $\operatorname{Pd}(1 \mathrm{~A})-\mathrm{Cl}(1)$ | $2.3416(14)$ | $\mathrm{N}(2 \mathrm{~A})-\mathrm{C}(11 \mathrm{~A})$ | $1.468(8)$ |
| $\operatorname{Pd}(1 \mathrm{~A})-\mathrm{Cl}(1 \mathrm{~A})$ | $2.4799(14)$ | $\mathrm{N}(2 \mathrm{~A})-\mathrm{C}(12 \mathrm{~A})$ | $1.492(7)$ |
| $\mathrm{N}(1)-\mathrm{C}(2)$ | $1.271(7)$ | $\mathrm{C}(1 \mathrm{~A})-\mathrm{C}(2 \mathrm{~A})$ | $1.501(7)$ |
| $\mathrm{N}(1)-\mathrm{N}(2)$ | $1.495(6)$ | $\mathrm{C}(1 \mathrm{~A})-\mathrm{C}(8 \mathrm{~A})$ | $1.507(8)$ |
| $\mathrm{N}(2)-\mathrm{C}(11)$ | $1.474(7)$ | $\mathrm{C}(1 \mathrm{~A})-\mathrm{C}(6 \mathrm{~A})$ | $1.550(9)$ |
| $\mathrm{N}(2)-\mathrm{C}(12)$ | $1.475(8)$ | $\mathrm{C}(1 \mathrm{~A})-\mathrm{C}(7 \mathrm{~A})$ | $1.576(7)$ |
| $\mathrm{C}(1)-\mathrm{C}(8)$ | $1.507(7)$ | $\mathrm{C}(2 \mathrm{~A})-\mathrm{C}(3 \mathrm{~A})$ | $1.491(8)$ |
| $\mathrm{C}(1)-\mathrm{C}(2)$ | $1.521(7)$ | $\mathrm{C}(3 \mathrm{~A})-\mathrm{C}(4 \mathrm{~A})$ | $1.535(7)$ |
| $\mathrm{C}(1)-\mathrm{C}(7)$ | $1.557(8)$ | $\mathrm{C}(4 \mathrm{~A})-\mathrm{C}(5 \mathrm{~A})$ | $1.542(8)$ |
| $\mathrm{C}(1)-\mathrm{C}(6)$ | $1.569(7)$ | $\mathrm{C}(4 \mathrm{~A})-\mathrm{C}(7 \mathrm{~A})$ | $1.565(8)$ |
| $\mathrm{C}(2)-\mathrm{C}(3)$ | $1.501(8)$ | $\mathrm{C}(5 \mathrm{~A})-\mathrm{C}(6 \mathrm{~A})$ | $1.539(8)$ |
| $\mathrm{C}(3)-\mathrm{C}(4)$ | $1.548(7)$ | $\mathrm{C}(7 \mathrm{~A})-\mathrm{C}(9 \mathrm{~A})$ | $1.511(7)$ |
| $\mathrm{C}(4)-\mathrm{C}(5)$ | $1.513(8)$ | $\mathrm{C}(7 \mathrm{~A})-\mathrm{C}(10 \mathrm{~A})$ | $1.534(8)$ |

Table 7. Selected angles for 186.

| Bond | angle/ ${ }^{\circ}$ | Bond | angle $/{ }^{\circ}$ |
| :---: | :---: | :---: | :---: |
| $\mathrm{C}(3)-\mathrm{Pd}(1)-\mathrm{N}(2)$ | 80.8(2) | $\mathrm{C}(3 \mathrm{~A})-\mathrm{Pd}(1 \mathrm{~A})-\mathrm{Cl}(1 \mathrm{~A})$ | 175.46(16) |
| $\mathrm{C}(3)-\mathrm{Pd}(1)-\mathrm{Cl}(1 \mathrm{~A})$ | 93.87(18) | $\mathrm{N}(2 \mathrm{~A})-\mathrm{Pd}(1 \mathrm{~A})-\mathrm{Cl}(1 \mathrm{~A})$ | 96.00(13) |
| $\mathrm{N}(2)-\mathrm{Pd}(1)-\mathrm{Cl}(1 \mathrm{~A})$ | 174.12(12) | $\mathrm{Cl}(1)-\mathrm{Pd}(1 \mathrm{~A})-\mathrm{Cl}(1 \mathrm{~A})$ | 88.40(4) |
| $\mathrm{C}(3)-\mathrm{Pd}(1)-\mathrm{Cl}(1)$ | 174.36(17) | $\mathrm{Pd}(1 \mathrm{~A})-\mathrm{Cl}(1)-\mathrm{Pd}(1)$ | 91.34(5) |
| $\mathrm{N}(2)-\mathrm{Pd}(1)-\mathrm{Cl}(1)$ | 97.45(13) | $\operatorname{Pd}(1)-\mathrm{Cl}(1 \mathrm{~A})-\mathrm{Pd}(1 \mathrm{~A})$ | 92.08(5) |
| $\mathrm{Cl}(1 \mathrm{~A})-\mathrm{Pd}(1)-\mathrm{Cl}(1)$ | 88.08(4) | $\mathrm{C}(2)-\mathrm{N}(1)-\mathrm{N}(2)$ | 108.5(4) |
| $\mathrm{C}(3 \mathrm{~A})-\mathrm{Pd}(1 \mathrm{~A})-\mathrm{N}(2 \mathrm{~A})$ | 80.8(2) | $\mathrm{C}(11)-\mathrm{N}(2)-\mathrm{C}(12)$ | 110.1(5) |
| $\mathrm{C}(3 \mathrm{~A})-\mathrm{Pd}(1 \mathrm{~A})-\mathrm{Cl}(1)$ | 94.68(18) | $\mathrm{C}(11)-\mathrm{N}(2)-\mathrm{N}(1)$ | 106.4(4) |
| $\mathrm{N}(2 \mathrm{~A})-\mathrm{Pd}(1 \mathrm{~A})-\mathrm{Cl}(1)$ | 175.21(14) | $\mathrm{C}(12)-\mathrm{N}(2)-\mathrm{N}(1)$ | 104.0(4) |


| $\mathrm{C}(11)-\mathrm{N}(2)-\mathrm{Pd}(1)$ | $113.7(4)$ | $\mathrm{C}(2 \mathrm{~A})-\mathrm{C}(1 \mathrm{~A})-\mathrm{C}(7 \mathrm{~A})$ | $96.5(4)$ |
| :--- | ---: | :--- | ---: |
| $\mathrm{C}(12)-\mathrm{N}(2)-\mathrm{Pd}(1)$ | $110.1(4)$ | $\mathrm{C}(8 \mathrm{~A})-\mathrm{C}(1 \mathrm{~A})-\mathrm{C}(7 \mathrm{~A})$ | $117.9(5)$ |
| $\mathrm{N}(1)-\mathrm{N}(2)-\mathrm{Pd}(1)$ | $112.1(3)$ | $\mathrm{C}(6 \mathrm{~A})-\mathrm{C}(1 \mathrm{~A})-\mathrm{C}(7 \mathrm{~A})$ | $101.2(5)$ |
| $\mathrm{C}(8)-\mathrm{C}(1)-\mathrm{C}(2)$ | $116.6(5)$ | $\mathrm{N}(1 \mathrm{~A})-\mathrm{C}(2 \mathrm{~A})-\mathrm{C}(3 \mathrm{~A})$ | $126.5(5)$ |
| $\mathrm{C}(8)-\mathrm{C}(1)-\mathrm{C}(7)$ | $120.0(5)$ | $\mathrm{N}(1 \mathrm{~A})-\mathrm{C}(2 \mathrm{~A})-\mathrm{C}(1 \mathrm{~A})$ | $124.7(5)$ |
| $\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(7)$ | $101.0(5)$ | $\mathrm{C}(3 \mathrm{~A})-\mathrm{C}(2 \mathrm{~A})-\mathrm{C}(1 \mathrm{~A})$ | $108.0(5)$ |
| $\mathrm{C}(8)-\mathrm{C}(1)-\mathrm{C}(6)$ | $115.6(5)$ | $\mathrm{C}(2 \mathrm{~A})-\mathrm{C}(3 \mathrm{~A})-\mathrm{C}(4 \mathrm{~A})$ | $101.5(4)$ |
| $\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(6)$ | $99.7(4)$ | $\mathrm{C}(2 \mathrm{~A})-\mathrm{C}(3 \mathrm{~A})-\mathrm{Pd}(1 \mathrm{~A})$ | $106.3(4)$ |
| $\mathrm{C}(7)-\mathrm{C}(1)-\mathrm{C}(6)$ | $100.6(5)$ | $\mathrm{C}(4 \mathrm{~A})-\mathrm{C}(3 \mathrm{~A})-\mathrm{Pd}(1 \mathrm{~A})$ | $129.2(4)$ |
| $\mathrm{N}(1)-\mathrm{C}(2)-\mathrm{C}(3)$ | $125.6(5)$ | $\mathrm{C}(3 \mathrm{~A})-\mathrm{C}(4 \mathrm{~A})-\mathrm{C}(5 \mathrm{~A})$ | $105.5(5)$ |
| $\mathrm{N}(1)-\mathrm{C}(2)-\mathrm{C}(1)$ | $125.5(5)$ | $\mathrm{C}(3 \mathrm{~A})-\mathrm{C}(4 \mathrm{~A})-\mathrm{C}(7 \mathrm{~A})$ | $103.5(5)$ |
| $\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(1)$ | $108.6(5)$ | $\mathrm{C}(5 \mathrm{~A})-\mathrm{C}(4 \mathrm{~A})-\mathrm{C}(7 \mathrm{~A})$ | $101.3(4)$ |
| $\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$ | $100.2(4)$ | $\mathrm{C}(6 \mathrm{~A})-\mathrm{C}(5 \mathrm{~A})-\mathrm{C}(4 \mathrm{~A})$ | $102.1(5)$ |
| $\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{Pd}(1)$ | $105.9(4)$ | $\mathrm{C}(5 \mathrm{~A})-\mathrm{C}(6 \mathrm{~A})-\mathrm{C}(1 \mathrm{~A})$ | $105.6(5)$ |
| $\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{Pd}(1)$ | $129.4(4)$ | $\mathrm{C}(9 \mathrm{~A})-\mathrm{C}(7 \mathrm{~A})-\mathrm{C}(10 \mathrm{~A})$ | $107.3(5)$ |
| $\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(7)$ | $103.9(5)$ | $\mathrm{C}(9 \mathrm{~A})-\mathrm{C}(7 \mathrm{~A})-\mathrm{C}(4 \mathrm{~A})$ | $115.9(5)$ |
| $\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(3)$ | $108.0(5)$ | $\mathrm{C}(10 \mathrm{~A})-\mathrm{C}(7 \mathrm{~A})-\mathrm{C}(4 \mathrm{~A})$ | $112.6(4)$ |
| $\mathrm{C}(7)-\mathrm{C}(4)-\mathrm{C}(3)$ | $100.5(4)$ | $\mathrm{C}(9 \mathrm{~A})-\mathrm{C}(7 \mathrm{~A})-\mathrm{C}(1 \mathrm{~A})$ | $113.5(4)$ |
| $\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$ | $103.7(4)$ | $\mathrm{C}(10 \mathrm{~A})-\mathrm{C}(7 \mathrm{~A})-\mathrm{C}(1 \mathrm{~A})$ | $113.9(5)$ |
| $\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(1)$ | $103.7(5)$ | $\mathrm{C}(4 \mathrm{~A})-\mathrm{C}(7 \mathrm{~A})-\mathrm{C}(1 \mathrm{~A})$ | $93.4(4)$ |
| $\mathrm{C}(9)-\mathrm{C}(7)-\mathrm{C}(10)$ | $106.8(5)$ |  |  |
| $\mathrm{C}(9)-\mathrm{C}(7)-\mathrm{C}(4)$ | $112.6(5)$ |  |  |
| $\mathrm{C}(10)-\mathrm{C}(7)-\mathrm{C}(4)$ | $116.2(5)$ |  |  |
| $\mathrm{C}(9)-\mathrm{C}(7)-\mathrm{C}(1)$ | $114.0(5)$ |  |  |
| $\mathrm{C}(10)-\mathrm{C}(7)-\mathrm{C}(1)$ | $112.6(5)$ |  |  |
| $\mathrm{C}(4)-\mathrm{C}(7)-\mathrm{C}(1)$ | $94.7(4)$ |  |  |
| $\mathrm{C}(2 \mathrm{~A})-\mathrm{N}(1 \mathrm{~A})-\mathrm{N}(2 \mathrm{~A})$ | $108.9(4)$ |  |  |
| $\mathrm{C}(11 \mathrm{~A})-\mathrm{N}(2 \mathrm{~A})-\mathrm{N}(1 \mathrm{~A})$ | $104.8(4)$ |  |  |
| $\mathrm{C}(11 \mathrm{~A})-\mathrm{N}(2 \mathrm{~A})-\mathrm{C}(12 \mathrm{~A})$ | $109.7(5)$ |  |  |
| $\mathrm{N}(1 \mathrm{~A})-\mathrm{N}(2 \mathrm{~A})-\mathrm{C}(12 \mathrm{~A})$ | $107.6(4)$ |  |  |
| $\mathrm{C}(11 \mathrm{~A})-\mathrm{N}(2 \mathrm{~A})-\mathrm{Pd}(1 \mathrm{~A})$ | $109.5(4)$ |  |  |
| $\mathrm{N}(1 \mathrm{~A})-\mathrm{N}(2 \mathrm{~A})-\mathrm{Pd}(1 \mathrm{~A})$ | $112.9(3)$ |  |  |
| $\mathrm{C}(12 \mathrm{~A})-\mathrm{N}(2 \mathrm{~A})-\mathrm{Pd}(1 \mathrm{~A})$ | $112.1(4)$ |  |  |
| $\mathrm{C}(2 \mathrm{~A})-\mathrm{C}(1 \mathrm{~A})-\mathrm{C}(8 \mathrm{~A})$ | $116.4(5)$ |  |  |
| $\mathrm{C}(2 \mathrm{~A})-\mathrm{C}(1 \mathrm{~A})-\mathrm{C}(6 \mathrm{~A})$ | $107.5(5)$ |  |  |
| $\mathrm{C}(8 \mathrm{~A})-\mathrm{C}(1 \mathrm{~A})-\mathrm{C}(6 \mathrm{~A})$ | $114.9(4)$ |  |  |
|  |  |  |  |

## APPENDIX C

## X-RAY DATA TABLES OF COMPLEX 199a

Table 8. Crystal data, data collection, structure solution and structure refinement for 199a.

| Empirical formula | $\mathrm{C}_{28} \mathrm{H}_{31} \mathrm{ClN}$ O P Pd |
| :---: | :---: |
| Formula weight | 570.36 |
| Temperature | 173(2) K |
| Wavelength | 0.71073 Å |
| Crystal system | Monoclinic |
| Space group | C2/c |
| Unit cell dimensions | $a=27.051(2) \AA \quad \alpha=90^{\circ}$ |
|  | $b=11.8212(11) \AA \quad \beta=121.429(1)^{\circ}$ |
|  | $c=19.0231(17) \AA \quad \gamma=90^{\circ}$ |
| Volume | 5190.7(8) $\AA^{3}$ |
| Z | 8 |
| Density (calculated) | $1.460 \mathrm{Mg} / \mathrm{m}^{3}$ |
| Absorption coefficient | $0.900 \mathrm{~mm}^{-1}$ |
| $F(000)$ | 2336 |
| Crystal color, morphology | colourless, needle |
| Crystal size | $0.40 \times 0.13 \times 0.10 \mathrm{~mm}^{3}$ |
| Theta range for data collection | 1.764 to $27.508^{\circ}$ |
| Index ranges | $-34 \leq h \leq 32,-15 \leq k \leq 15,-24 \leq l \leq 24$ |
| Reflections collected | 23130 |
| Independent reflections | $5932[R(\mathrm{int})=0.0502]$ |
| Observed reflections | 4451 |
| Completeness to theta $=25.242^{\circ}$ | 99.9\% |
| Absorption correction | Multi-scan |
| Refinement method | Full-matrix least-squares on $F^{2}$ |
| Data / restraints / parameters | 5932 / 0 / 301 |
| Goodness-of-fit on $F^{2}$ | 1.005 |
| Final $R$ indices [ $1>2 \operatorname{sigma}(I)$ ] | $R 1=0.0432, w R 2=0.0918$ |
| $R$ indices (all data) | $R 1=0.0659, w R 2=0.1021$ |
| Largest diff. peak and hole | 1.815 and -1.026 e. $\AA^{-3}$ |

Table 9. Selected bond lengths for 199a.

| Bond | $d / \AA$ | Bond | $d / \AA$ |
| :--- | :--- | :--- | ---: |
| Pd1-C1 | $2.051(4)$ | $\mathrm{P} 1-\mathrm{C} 23$ | $1.822(4)$ |
| Pd1-N1 | $2.064(3)$ | $\mathrm{C} 11-\mathrm{C} 12$ | $1.381(5)$ |
| Pd1-P1 | $2.2218(10)$ | $\mathrm{C} 11-\mathrm{C} 16$ | $1.395(5)$ |
| $\mathrm{Pd} 1-\mathrm{Cl} 1$ | $2.4019(9)$ | $\mathrm{C} 12-\mathrm{C} 13$ | $1.385(6)$ |
| $\mathrm{C} 1-\mathrm{C} 2$ | $1.526(5)$ | $\mathrm{C} 13-\mathrm{C} 14$ | $1.378(6)$ |
| $\mathrm{C} 2-\mathrm{C} 3$ | $1.502(5)$ | $\mathrm{C} 14-\mathrm{C} 15$ | $1.371(6)$ |
| $\mathrm{C} 2-\mathrm{C} 7$ | $1.539(6)$ | $\mathrm{C} 15-\mathrm{C} 16$ | $1.373(6)$ |
| $\mathrm{C} 2-\mathrm{C} 8$ | $1.550(6)$ | $\mathrm{C} 17-\mathrm{C} 22$ | $1.391(6)$ |
| $\mathrm{C} 3-\mathrm{N} 1$ | $1.273(5)$ | $\mathrm{C} 17-\mathrm{C} 18$ | $1.391(6)$ |
| $\mathrm{C} 3-\mathrm{C} 4$ | $1.507(5)$ | $\mathrm{C} 18-\mathrm{C} 19$ | $1.391(7)$ |
| $\mathrm{N} 1-\mathrm{O} 1$ | $1.391(4)$ | $\mathrm{C} 19-\mathrm{C} 20$ | $1.379(9)$ |
| $\mathrm{C} 4-\mathrm{C} 9$ | $1.521(6)$ | $\mathrm{C} 20-\mathrm{C} 21$ | $1.371(9)$ |
| $\mathrm{C} 4-\mathrm{C} 10$ | $1.545(7)$ | $\mathrm{C} 21-\mathrm{C} 22$ | $1.369(6)$ |
| $\mathrm{C} 4-\mathrm{C} 5$ | $1.556(7)$ | $\mathrm{C} 23-\mathrm{C} 24$ | $1.378(5)$ |
| $\mathrm{C} 5-\mathrm{C} 6$ | $1.522(8)$ | $\mathrm{C} 23-\mathrm{C} 28$ | $1.390(5)$ |
| $\mathrm{C} 5-\mathrm{C} 8$ | $1.548(7)$ | $\mathrm{C} 24-\mathrm{C} 25$ | $1.395(5)$ |
| $\mathrm{C} 6-\mathrm{C} 7$ | $1.540(7)$ | $\mathrm{C} 25-\mathrm{C} 26$ | $1.366(7)$ |
| $\mathrm{P} 1-\mathrm{C} 17$ | $1.814(4)$ | $\mathrm{C} 26-\mathrm{C} 27$ | $1.352(7)$ |
| $\mathrm{P} 1-\mathrm{C} 11$ | $1.820(3)$ | $\mathrm{C} 27-\mathrm{C} 28$ | $1.388(6)$ |

Table 10. Selected angles for 199a.

| Bond | angle $/{ }^{\circ}$ | Bond | angle/ ${ }^{\circ}$ |
| :--- | :---: | :---: | :---: |
| C1-Pd1-N1 | $81.43(14)$ | C3-C2-C8 | $99.5(3)$ |
| C1-Pd1-P1 | $89.70(11)$ | C1-C2-C8 | $119.9(3)$ |
| N1-Pd1-P1 | $171.11(9)$ | C7-C2-C8 | $101.2(4)$ |
| C1-Pd1-Cl1 | $167.92(12)$ | N1-C3-C2 | $115.3(3)$ |
| N1-Pd1-Cl1 | $87.18(9)$ | N1-C3-C4 | $133.6(4)$ |
| P1-Pd1-Cl1 | $101.61(4)$ | C2-C3-C4 | $111.1(3)$ |
| C2-C1-Pd1 | $106.2(3)$ | C3-N1-O1 | $117.9(3)$ |
| C3-C2-C1 | $112.0(3)$ | C3-N1-Pd1 | $116.4(3)$ |
| C3-C2-C7 | $104.8(3)$ | O1-N1-Pd1 | $125.6(2)$ |
| C1-C2-C7 | $116.9(4)$ | C3-C4-C9 | $113.2(3)$ |


| C3-C4-C10 | $109.8(4)$ | $\mathrm{C} 14-\mathrm{C} 13-\mathrm{C} 12$ | $119.8(4)$ |
| :--- | :---: | :--- | :--- |
| C9-C4-C10 | $108.4(4)$ | $\mathrm{C} 15-\mathrm{C} 14-\mathrm{C} 13$ | $120.0(4)$ |
| C3-C4-C5 | $97.7(3)$ | $\mathrm{C} 14-\mathrm{C} 15-\mathrm{C} 16$ | $120.5(4)$ |
| C9-C4-C5 | $114.9(4)$ | $\mathrm{C} 15-\mathrm{C} 16-\mathrm{C} 11$ | $120.1(4)$ |
| C10-C4-C5 | $112.6(4)$ | $\mathrm{C} 22-\mathrm{C} 17-\mathrm{C} 18$ | $119.8(4)$ |
| C6-C5-C8 | $99.6(5)$ | $\mathrm{C} 22-\mathrm{C} 17-\mathrm{P} 1$ | $119.3(3)$ |
| C6-C5-C4 | $111.0(4)$ | $\mathrm{C} 18-\mathrm{C} 17-\mathrm{P} 1$ | $120.9(3)$ |
| C8-C5-C4 | $103.1(4)$ | $\mathrm{C} 19-\mathrm{C} 18-\mathrm{C} 17$ | $119.7(5)$ |
| C5-C6-C7 | $104.8(4)$ | $\mathrm{C} 20-\mathrm{C} 19-\mathrm{C} 18$ | $119.2(5)$ |
| C6-C7-C2 | $102.5(5)$ | $\mathrm{C} 21-\mathrm{C} 20-\mathrm{C} 19$ | $121.1(5)$ |
| C5-C8-C2 | $93.8(3)$ | $\mathrm{C} 20-\mathrm{C} 21-\mathrm{C} 22$ | $120.1(6)$ |
| C17-P1-C11 | $103.65(16)$ | $\mathrm{C} 21-\mathrm{C} 22-\mathrm{C} 17$ | $120.0(5)$ |
| C17-P1-C23 | $106.15(17)$ | $\mathrm{C} 24-\mathrm{C} 23-\mathrm{C} 28$ | $118.0(3)$ |
| C11-P1-C23 | $107.01(16)$ | $\mathrm{C} 24-\mathrm{C} 23-\mathrm{P} 1$ | $124.2(3)$ |
| C17-P1-Pd1 | $115.83(13)$ | $\mathrm{C} 28-\mathrm{C} 23-\mathrm{P} 1$ | $117.7(3)$ |
| C11-P1-Pd1 | $113.28(12)$ | $\mathrm{C} 23-\mathrm{C} 24-\mathrm{C} 25$ | $120.7(4)$ |
| C23-P1-Pd1 | $110.25(12)$ | $\mathrm{C} 26-\mathrm{C} 25-\mathrm{C} 24$ | $120.4(5)$ |
| C12-C11-C16 | $119.0(3)$ | $\mathrm{C} 27-\mathrm{C} 26-\mathrm{C} 25$ | $119.4(4)$ |
| C12-C11-P1 | $123.0(3)$ | $\mathrm{C} 26-\mathrm{C} 27-\mathrm{C} 28$ | $121.3(4)$ |
| C16-C11-P1 | $117.5(3)$ | C27-C28-C23 | $120.2(4)$ |
| C11-C12-C13 | $120.4(4)$ |  |  |

## APPENDIX D

## X-RAY DATA TABLES OF COMPLEX 199b

Table 11. Crystal data, data collection, structure solution and structure refinement for 199b.

| Empirical formula | $\mathrm{C}_{29} \mathrm{H}_{33} \mathrm{Cl}$ N O P Pd |
| :---: | :---: |
| Formula weight | 584.38 |
| Temperature | 123(2) K |
| Wavelength | 1.54178 A |
| Crystal system | monoclinic |
| Space group | P 21 |
| Unit cell dimensions | $a=10.9541(7) \AA \quad \alpha=90^{\circ}$ |
|  | $b=9.1372(7) \AA \quad \beta=108.297(4)^{\circ}$ |
|  | $c=13.8615(9) \AA \quad \gamma=90^{\circ}$ |
| Volume | 1317.25(16) $\AA^{3}$ |
| Z | 2 |
| Density (calculated) | $1.473 \mathrm{Mg} / \mathrm{m}^{3}$ |
| Absorption coefficient | $7.353 \mathrm{~mm}^{-1}$ |
| $F(000)$ | 600 |
| Crystal color, morphology | colorless, Needle |
| Crystal size | $0.186 \times 0.117 \times 0.042 \mathrm{~mm}^{3}$ |
| Theta range for data collection | 3.358 to $74.506^{\circ}$ |
| Index ranges | $-13 \leq h \leq 13,-11 \leq k \leq 9,-17 \leq l \leq 17$ |
| Reflections collected | 34115 |
| Independent reflections | $5246[R(\mathrm{int})=0.0417]$ |
| Observed reflections | 5083 |
| Completeness to theta $=67.679^{\circ}$ | 100.0\% |
| Absorption correction | Multi-scan |
| Max. and min. transmission | 0.4709 and 0.3395 |
| Refinement method | Full-matrix least-squares on $F^{2}$ |
| Data / restraints / parameters | 5246 / 1/310 |
| Goodness-of-fit on $F^{2}$ | 1.042 |
| Final $R$ indices [ $1>2 \operatorname{sigma}(1)$ ] | $R 1=0.0289, w R 2=0.0696$ |
| $R$ indices (all data) | $R 1=0.0305, w R 2=0.0707$ |
| Absolute structure parameter | -0.020(9) |

Largest diff. peak and hole $\quad 0.578$ and -0.594 e. $\AA^{-3}$
Table 12. Selected bond lengths for 199b.

| Bond | $d / \AA$ | Bond | $d / \AA$ |
| :--- | :--- | :--- | ---: |
| Pd1-C1 | $2.063(5)$ | $\mathrm{P} 1-\mathrm{C} 24$ | $1.843(5)$ |
| Pd1-N1 | $2.115(4)$ | $\mathrm{C} 12-\mathrm{C} 13$ | $1.379(6)$ |
| Pd1-P1 | $2.2250(12)$ | $\mathrm{C} 12-\mathrm{C} 17$ | $1.398(6)$ |
| Pd1-C11 | $2.3822(11)$ | $\mathrm{C} 13-\mathrm{C} 14$ | $1.388(7)$ |
| N1-C3 | $1.273(6)$ | $\mathrm{C} 14-\mathrm{C} 15$ | $1.380(7)$ |
| $\mathrm{N} 1-\mathrm{O} 1$ | $1.414(5)$ | $\mathrm{C} 15-\mathrm{C} 16$ | $1.388(7)$ |
| $\mathrm{O} 1-\mathrm{C} 11$ | $1.430(7)$ | $\mathrm{C} 16-\mathrm{C} 17$ | $1.383(7)$ |
| C1-C2 | $1.517(6)$ | $\mathrm{C} 18-\mathrm{C} 19$ | $1.392(7)$ |
| C2-C3 | $1.500(6)$ | $\mathrm{C} 18-\mathrm{C} 23$ | $1.408(7)$ |
| C2-C7 | $1.547(7)$ | $\mathrm{C} 19-\mathrm{C} 20$ | $1.397(8)$ |
| C2-C8 | $1.561(6)$ | $\mathrm{C} 20-\mathrm{C} 21$ | $1.384(8)$ |
| $\mathrm{C} 3-\mathrm{C} 4$ | $1.519(6)$ | $\mathrm{C} 21-\mathrm{C} 22$ | $1.383(8)$ |
| $\mathrm{C} 4-\mathrm{C} 9$ | $1.534(7)$ | $\mathrm{C} 22-\mathrm{C} 23$ | $1.385(8)$ |
| C4-C10 | $1.541(7)$ | $\mathrm{C} 24-\mathrm{C} 25$ | $1.379(8)$ |
| C4-C5 | $1.562(7)$ | $\mathrm{C} 24-\mathrm{C} 29$ | $1.383(7)$ |
| C5-C6 | $1.537(7)$ | $\mathrm{C} 25-\mathrm{C} 26$ | $1.389(7)$ |
| C5-C8 | $1.538(7)$ | $\mathrm{C} 26-\mathrm{C} 27$ | $1.383(9)$ |
| C6-C7 | $1.557(7)$ | $\mathrm{C} 27-\mathrm{C} 28$ | $1.372(10)$ |
| P1-C12 | $1.825(5)$ | $\mathrm{C} 28-\mathrm{C} 29$ | $1.392(8)$ |
| P1-C18 | $1.825(5)$ |  |  |

Table 13. Selected angles for $\mathbf{1 9 9 b}$.

| Bond | angle/ ${ }^{\circ}$ | Bond | angle/ ${ }^{\circ}$ |
| :--- | :---: | :---: | :---: |
| C1-Pd1-N1 | $79.25(17)$ | O1-N1-Pd1 | $130.9(3)$ |
| C1-Pd1-P1 | $90.25(13)$ | N1-O1-C11 | $108.9(4)$ |
| N1-Pd1-P1 | $167.59(11)$ | C2-C1-Pd1 | $105.5(3)$ |
| C1-Pd1-Cl1 | $174.23(13)$ | C3-C2-C1 | $110.7(4)$ |
| N1-Pd1-Cl1 | $95.05(11)$ | C3-C2-C7 | $106.3(4)$ |
| P1-Pd1-Cl1 | $95.31(4)$ | C1-C2-C7 | $117.6(4)$ |
| C3-N1-O1 | $114.9(4)$ | C3-C2-C8 | $98.5(4)$ |
| C3-N1-Pd1 | $112.9(3)$ | C1-C2-C8 | $121.0(4)$ |


| C7-C2-C8 | $100.3(4)$ | $\mathrm{C} 13-\mathrm{C} 12-\mathrm{P} 1$ | $119.7(3)$ |
| :--- | :---: | :--- | :--- |
| N1-C3-C2 | $117.3(4)$ | $\mathrm{C} 17-\mathrm{C} 12-\mathrm{P} 1$ | $121.0(3)$ |
| N1-C3-C4 | $132.1(4)$ | $\mathrm{C} 12-\mathrm{C} 13-\mathrm{C} 14$ | $120.4(4)$ |
| C2-C3-C4 | $110.6(4)$ | $\mathrm{C} 15-\mathrm{C} 14-\mathrm{C} 13$ | $120.2(5)$ |
| C3-C4-C9 | $112.1(4)$ | $\mathrm{C} 14-\mathrm{C} 15-\mathrm{C} 16$ | $119.8(5)$ |
| C3-C4-C10 | $111.3(4)$ | $\mathrm{C} 17-\mathrm{C} 16-\mathrm{C} 15$ | $120.1(4)$ |
| C9-C4-C10 | $109.3(4)$ | $\mathrm{C} 16-\mathrm{C} 17-\mathrm{C} 12$ | $120.2(4)$ |
| C3-C4-C5 | $98.3(4)$ | $\mathrm{C} 19-\mathrm{C} 18-\mathrm{C} 23$ | $119.2(5)$ |
| C9-C4-C5 | $114.3(4)$ | $\mathrm{C} 19-\mathrm{C} 18-\mathrm{P} 1$ | $123.5(4)$ |
| C10-C4-C5 | $111.2(4)$ | $\mathrm{C} 23-\mathrm{C} 18-\mathrm{P} 1$ | $117.3(4)$ |
| C6-C5-C8 | $100.8(4)$ | $\mathrm{C} 18-\mathrm{C} 19-\mathrm{C} 20$ | $120.0(5)$ |
| C6-C5-C4 | $110.6(4)$ | $\mathrm{C} 21-\mathrm{C} 20-\mathrm{C} 19$ | $120.2(5)$ |
| C8-C5-C4 | $102.8(4)$ | $\mathrm{C} 22-\mathrm{C} 21-\mathrm{C} 20$ | $120.1(5)$ |
| C5-C6-C7 | $102.9(4)$ | $\mathrm{C} 21-\mathrm{C} 22-\mathrm{C} 23$ | $120.3(5)$ |
| C2-C7-C6 | $104.0(4)$ | $\mathrm{C} 22-\mathrm{C} 23-\mathrm{C} 18$ | $120.1(5)$ |
| C5-C8-C2 | $94.5(4)$ | $\mathrm{C} 25-\mathrm{C} 24-\mathrm{C} 29$ | $119.3(5)$ |
| C12-P1-C18 | $105.7(2)$ | $\mathrm{C} 25-\mathrm{C} 24-\mathrm{P} 1$ | $118.7(4)$ |
| C12-P1-C24 | $102.1(2)$ | $\mathrm{C} 29-\mathrm{C} 24-\mathrm{P} 1$ | $121.9(4)$ |
| C18-P1-C24 | $105.6(2)$ | $\mathrm{C} 24-\mathrm{C} 25-\mathrm{C} 26$ | $120.6(5)$ |
| C12-P1-Pd1 | $116.17(15)$ | $\mathrm{C} 27-\mathrm{C} 26-\mathrm{C} 25$ | $119.8(5)$ |
| C18-P1-Pd1 | $110.21(16)$ | C28-C27-C26 | $119.7(4)$ |
| C24-P1-Pd1 | $116.07(16)$ | C27-C28-C29 | $120.5(5)$ |
| C13-C12-C17 | $119.3(4)$ | C24-C29-C28 | $120.0(5)$ |

## APPENDIX E

SELECTED SPECTRA


Figure 10. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 7 4 b}$.


Figure 11. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathbf{1 7 4 b}$.


Figure $12 .{ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 7 7}$.


Figure 13. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of 177 .


Figure $14 .{ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 7 8}$.


Figure $15 .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathbf{1 7 8}$.


Figure 16. ${ }^{1} \mathrm{H}$ NMR spectrum of endo- $\mathbf{1 8 8}$.


Figure $17 .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of endo- $\mathbf{1 8 8}$.


Figure 18. ${ }^{1} \mathrm{H}$ NMR spectrum of exo-188.


Figure 19. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of exo-188.


Figure 20. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 9 6 a}$.


Figure 21. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathbf{1 9 6 a}$.


Figure 22. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 9 6 b}$.


Figure 23. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathbf{1 9 6 b}$.


Figure $24 .{ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 9 8 a}$.


Figure $25 .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of 198a.


Figure $26 .{ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 9 8 b}$.


Figure 27. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathbf{1 9 8 b}$.


Figure $28 .{ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 9 9 a}$.


Figure 29. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathbf{1 9 9}$ a.


Figure $30 .{ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 9 9 b}$.


Figure $31 .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathbf{1 9 9 b}$.


Figure $32 .{ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{2 0 5}$.


Figure $33 .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of 205 .


Figure $34 .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of 205 .


Figure $35 .{ }^{1} \mathrm{H}$ NMR spectrum of 206.


Figure $36 .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of 206.


Figure $37 .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathbf{2 0 6}$.


Figure $38 .{ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{2 1 0}$.


Figure $39 .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathbf{2 1 0}$.


Figure $40 .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathbf{2 1 0}$.


Figure $41 .{ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{2 1 1}$.


Figure $42 .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathbf{2 1 1}$.


Figure $43 .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathbf{2 1 1}$.


Figure $44 .{ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{2 1 4}$.


Figure $45 .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of 214.


Figure $46 .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of 214.


Figure $47 .{ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{2 1 6}$.


Figure $48 .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of 216.


Figure $49 .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathbf{2 1 6}$.


Figure $50 .{ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{2 2 0}$.


Figure $51 .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathbf{2 2 0}$.


Figure $52 .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathbf{2 2 0}$.


Figure $53 .{ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{2 2 4}$.


Figure $54 .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of 224.


Figure $55 .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of 224.


Figure $56 .{ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{2 2 6}$.


Figure $57 .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathbf{2 2 6}$.


Figure $58 .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathbf{2 2 6}$.

## REFERENCES

1. Kleiman, J. P.; Dubeck, M. J. Am. Chem. Soc. 1963, 85, 1544-1545.
2. Cope, A. C.; Siekman, R. W. J. Am. Chem. Soc. 1965, 87 (14), 3272-3273.
3. Cope, A. C.; Kliegman, J. M.; Friedrich, E. C. J. Am. Chem. Soc. 1967, 89 (2), 287-291.
4. Dupont, J.; Consorti, C. S.; Spencer, J. Chem. Rev. 2005, 105 (6), 2527-2571.
5. Dunina, V. V.; Zalevskaya, O. A.; Potapov, V. M. Russian Chemical Reviews 1988, 57 (3), 250.
6. Ryabov, A. D. Chem. Rev. 1990, 90 (2), 403-424.
7. Dyker, G. Angewandte Chemie International Edition 1999, 38 (12), 1698-1712.
8. Albrecht, M. Chem. Rev. (Washington, DC, U. S.) 2010, 110 (2), 576-623.
9. Dick, A. R.; Sanford, M. S. Tetrahedron 2006, 62 (11), 2439-2463.
10. Chen, X.; Hao, X.-S.; Goodhue, C. E.; Yu, J.-Q. J. Am. Chem. Soc. 2006, 128 (21), 6790-6791.
11. Dangel, B. D.; Johnson, J. A.; Sames, D. J. Am. Chem. Soc. 2001, 123 (33), 8149-8150.
12. Lin, M.; Shen, C.; Garcia-Zayas, E. A.; Sen, A. J. Am. Chem. Soc. 2001, 123 (5), 1000-1001.
13. Sen, A. Acc. Chem. Res. 1998, 31 (9), 550-557.
14. Korte, N. J.; Stepanova, V. A.; Smoliakova, I. P. J. Organomet. Chem. 2013, 745-746, 356-362.
15. Stepanova, V. A.; Dunina, V. V.; Smoliakova, I. P. J. Organomet. Chem. 2011, 696 (4), 871-878.
16. Stepanova, V. A.; Smoliakova, I. P. American Chemical Society: 2011; pp CATL-16.
17. Dickmu, G. C.; Stahl, L.; Smoliakova, I. P. J. Organomet. Chem. 2014, 756, 2733.
18. Smoliakova, I. P.; Wood, J. L.; Stepanova, V. A.; Mawo, R. Y. J. Organomet. Chem. 2010, 695 (3), 360-364.
19. McNally, A.; Haffemayer, B.; Collins, B. S. L.; Gaunt, M. J. Nature 2014, 510 (7503), 129-133.
20. Jazzar, R.; Hitce, J.; Renaudat, A.; Sofack-Kreutzer, J.; Baudoin, O. Chem. - Eur. J. 2011, 16 (9), 2654-2672.
21. Crabtree, R. H. 4th edn, John Wiley \& Sons, Inc., Hoboken, New Jersey 2005.
22. Dupont, J.; Pfeffer, M.; Editors, Palladacycles Synthesis, Characterization and Applications. Wiley-VCH Verlag GmbH \& Co. KGaA: 2008; p 417 pp.
23. Alonso, M. T.; Juanes, O.; De Mendoza, J.; Rodriguez-Ubis, J. C. J. Organomet. Chem. 1992, 430 (3), 349-355.
24. Fuchita, Y.; Hiraki, K.; Matsumoto, Y. J. Organomet. Chem. 1985, 280 (2), C51C54.
25. Balavoine, G.; Clinet, J. C. J. Organomet. Chem. 1990, 390 (3), C84-C88.
26. Pfeffer, M.; Wehman, E.; Van Koten, G. J. Organomet. Chem. 1985, 282 (1), 127-131.
27. Mutet, C.; Pfeffer, M. J. Organomet. Chem. 1979, 171 (2), C34-C36.
28. Crawforth, C. M.; Fairlamb, I. J. S.; Kapdi, A. R.; Serrano, J. L.; Taylor, R. J. K.; Sanchez, G. Adv. Synth. Catal. 2006, 348 (4 + 5), 405-412.
29. Serrano, J. L.; Fairlamb, I. J. S.; Sanchez, G.; Garcia, L.; Perez, J.; Vives, J.; Lopez, G.; Crawforth, C. M.; Taylor, R. J. K. Eur. J. Inorg. Chem. 2004, (13), 2706-2715.
30. Diez, L.; Espinet, P.; Miguel, J. A.; Rodriguez-Medina, M. P. J. Organomet. Chem. 2005, 690 (2), 261-268.
31. Beller, M.; Fischer, H.; Herrmann, W. A.; Brossmer, C. US5831107A, 1998.
32. Dunina, V. V.; Gorunova, O. N.; Livantsov, M. V.; Grishin, Y. K.; Kochetkov, K. A.; Churakov, A. V.; Kuz'mina, L. G. Polyhedron 2011, 30 (1), 27-32.
33. Ryabov, A. D. Koord. Khim. 1985, 11 (11), 1532-1538.
34. Lamb, J. R.; Stepanova, V. A.; Smoliakova, I. P. Polyhedron 2013, 53, 202-207.
35. Yoshida, G.; Kurosawa, H.; Okawara, R. J. Organomet. Chem. 1976, 113 (1), 8589.
36. McPherson, H. M.; Wardell, J. L. Inorg. Chim. Acta 1983, 75 (1), 37-43.
37. Goel, R. G.; Montemayor, R. Inorg. Chem. 1977, 16 (9), 2183-2186.
38. Clark, H. C.; Goel, A. B.; Goel, R. G.; Goel, S.; Ogini, W. O. Inorg. Chim. Acta 1978, 31 (2), L441-L442.
39. Clark, H. C.; Goel, A. B.; Goel, S. Inorg. Chem. 1979, 18 (10), 2803-2808.
40. Hartwell, G. E.; Lawrence, R. V.; Smas, M. J. J. Chem. Soc. D 1970, (15), 912.
41. Sokolov, V. I.; Sorokina, T. A.; Troitskaya, L. L.; Solov'eva, L. I.; Reutov, O. A. J. Organometal. Chem. 1972, 36 (2), 389-390.
42. Deeming, A. J.; Rothwell, I. P. J. Organomet. Chem. 1981, 205 (1), 117-131.
43. Deeming, A. J.; Rothwell, I. P. J. Chem. Soc., Chem. Commun. 1978, (8), 344-345.
44. Dupont, J.; Halfen, R. A. P.; Zinn, F. K.; Pfeffer, M. J. Organomet. Chem. 1994, 484 (1-2), C8-C9.
45. Holcomb, H. L.; Nakanishi, S.; Flood, T. C. Organometallics 1996, 15 (20), 4228-4234.
46. Sokolov, V. I.; Bashilov, V. V.; Musaev, A. A.; Reutov, O. A. J. Organomet. Chem. 1982, 225 (1), 57-61.
47. Deeming, A. J.; Rothwell, I. P.; Hursthouse, M. B.; Malik, K. M. A. J. Chem. Soc., Dalton Trans. 1979, (12), 1899-911.
48. Maassarani, F.; Pfeffer, M.; Le Borgne, G.; Jastrzebski, J. T. B. H.; Van Koten, G. Organometallics 1987, 6 (5), 1111-1118.
49. Maassarani, F.; Pfeffer, M.; Spek, A. L.; Schreurs, A. M. M.; Van Koten, G. J. Am. Chem. Soc. 1986, 108 (14), 4222-4224.
50. Maassarani, F.; Pfeffer, M.; Le Borgne, G.; Wehman, E.; Van Koten, G. J. Am. Chem. Soc. 1984, 106 (25), 8002-8004.
51. Albert, J.; Granell, J.; Sales, J.; Solans, X.; Font-Altaba, M. Organometallics 1986, 5 (12), 2567-2568.
52. De Munno, G.; Ghedini, M.; Neve, F. Inorg. Chim. Acta 1995, 239 (1-2), 155-8.
53. Vazquez-Garcia, D.; Fernandez, A.; Lopez-Torres, M.; Rodriguez, A.; GomezBlanco, N.; Viader, C.; Vila, J. M.; Fernandez, J. J. Organometallics 2010, 29 (15), 3303-3307.
54. Albert, J.; Ceder, R. M.; Gomez, M.; Granell, J.; Sales, J. Organometallics 1992, 11 (4), 1536-1541.
55. Gomez, M.; Granell, J.; Martinez, M. J. Chem. Soc., Dalton Trans. 1998, (1), 3744.
56. Dehand, J.; Mutet, C.; Pfeffer, M. J. Organomet. Chem. 1981, 209 (2), 255-270.
57. Chen, C.-L.; Liu, Y.-H.; Peng, S.-M.; Liu, S.-T. Tetrahedron Lett. 2005, 46 (3), 521-523.
58. Constable, A. G.; McDonald, W. S.; Sawkins, L. C.; Shaw, B. L. J. Chem. Soc., Chem. Commun. 1978, (23), 1061-1062.
59. Baldwin, J. E.; Najera, C.; Yus, M. J. Chem. Soc., Chem. Commun. 1985, (3), 126-127.
60. Nishiyama, H.; Matsumoto, M.; Matsukura, T.; Miura, R.; Ito, K. Organometallics 1985, 4 (10), 1911-1912.
61. Baldwin, J. E.; Jones, R. H.; Najera, C.; Yus, M. Tetrahedron 1985, 41 (4), 699711.
62. Ramos, S. S.; Almeida, P.; Santos, L.; Motherwell, W. B.; Sheppard, T. D.; Costa, M. d. C. Tetrahedron 2007, 63 (51), 12608-12615.
63. Constable, A. G.; McDonald, W. S.; Sawkins, L. C.; Shaw, B. L. J. Chem. Soc., Dalton Trans. 1980, (10), 1992-2000.
64. Wells, A. P.; Kitching, W. Organometallics 1992, 11 (8), 2750-2752.
65. Carr, K.; Sutherland, J. K. J. Chem. Soc., Chem. Commun. 1984, (18), 1227-1228.
66. Galli, B.; Gasparrini, F.; Maresca, L.; Natile, G.; Palmieri, G. J. Chem. Soc., Dalton Trans. 1983, (8), 1483-1487.
67. Cardenas, D. J.; Echavarren, A. M.; Vegas, A. Organometallics 1994, 13 (3), 882-889.
68. Cardenas, D. J.; Echavarren, A. M. Organometallics 1995, 14 (9), 4427-4430.
69. Mawo, R. Y.; Smoliakova, I. P. American Chemical Society: 2006; pp ORGN552.
70. Fuchita, Y.; Hiraki, K.; Uchiyama, T. J. Chem. Soc., Dalton Trans. 1983, (5), 897-899.
71. Hiraki, K.; Nakashima, M.; Uchiyama, T.; Fuchita, Y. J. Organomet. Chem. 1992, 428 (1-2), 249-258.
72. Fuchita, Y.; Nakashima, M.; Hiraki, K.; Kawatani, M.; Ohnuma, K. J. Am. Chem. Soc. 2009, 131 (40), 14142-14143.
73. Thomas, H. R.; Deeth, R. J.; Clarkson, G. J.; Rourke, J. P. Organometallics 2011, 30 (21), 5641-5648.
74. Holton, R. A.; Kjonaas, R. A. J. Am. Chem. Soc. 1977, 99 (12), 4177-4179.
75. Dunina, V. V.; Gorunova, O. G. N.; Averina, E. B.; Grishin, Y. K.; Kuz'mina, L. G.; Howard, J. A. K. J. Organomet. Chem. 2000, 603 (2), 138-151.
76. Dunina, V. V.; Golovan, E. B. Inorg. Chem. Commun. 1998, 1 (1), 12-14.
77. Pregosin, P. S.; Wombacher, F. Magn. Reson. Chem. 1991, 29 (Spec. Issue), S106-S117.
78. Dupont, J.; Halfen, R. A. P.; Schenato, R.; Berger, A.; Horner, M.; Bortoluzzi, A.; Maichle-Moessmer, C. Polyhedron 1996, 15 (20), 3465-3468.
79. Holton, R. A.; Zoeller, J. R. J. Am. Chem. Soc. 1985, 107 (7), 2124-2131.
80. Takahashi, Y.; Tokuda, A.; Sakai, S.; Ishii, Y. J. Organometal. Chem. 1972, 35 (2), 415-421.
81. Holton, R. A.; Kjonaas, R. A. J. Organomet. Chem. 1977, 142 (1), C15-C18.
82. Kasahara, A.; Tanaka, K.; Izumi, T. Bull. Chem. Soc. Jap. 1969, 42 (6), 1702-1704.
83. Holton, R. A. J. Am. Chem. Soc. 1977, 99 (24), 8083-8085.
84. Delis, J. G. P.; Aubel, P. G.; Vrieze, K.; van Leeuwen, P. W. N. M.; Veldman, N.; Spek, A. L. Organometallics 1997, 16 (19), 4150-4160.
85. Hiraki, K.; Fuchita, Y.; Nakashima, M.; Hiraki, H. Bull. Chem. Soc. Jpn. 1986, 59 (10), 3073-3077.
86. Henderson, W.; Fawcett, J.; Kemmitt, R. D. W.; Proctor, C.; Russell, D. R. J. Chem. Soc., Dalton Trans. 1994, (21), 3085-3090.
87. Henderson, W.; Nicholson, B. K.; Oliver, A. G. Polyhedron 1994, 13 (22), 30993104.
88. Henderson, W.; Oliver, A. G.; Rickard, C. E. F.; Baker, L. J. Inorg. Chim. Acta 1999, 292 (2), 260-265.
89. Gill, D. F.; Shaw, B. L., Internal metalation of tertiary and secondary carbon atoms. J. Chem. Soc., Chem. Commun. 1972, (2), 65-66.
90. Gill, D. F.; Mann, B. E.; Shaw, B. L. J. Chem. Soc., Dalton Trans. 1973, (3), 270-278.
91. Luo, F.-T.; Jeevanandam, A.; Basu, M. K. Tetrahedron Lett. 1998, 39 (43), 79397942.
92. Joshaghani, M.; Daryanavard, M.; Rafiee, E.; Nadri, S. J. Organomet. Chem. 2008, 693 (19), 3135-3140.
93. Beller, M.; Fischer, H.; Herrmann, W. A.; Oefele, K.; Brossmer, C. Angew. Chem., Int. Ed. Engl. 1995, 34 (17), 1848-1849.
94. Herrmann, W. A.; Brossmer, C.; Reisinger, C.-P.; Riermeier, T. H.; Oefele, K.; Beller, M. Chem. - Eur. J. 1997, 3 (8), 1357-1364.
95. Herrmann, W. A.; Brossmer, C.; Oefele, K.; Reisinger, C.-P.; Priermeier, T.; Beller, M.; Fischer, H. Angew. Chem., Int. Ed. Engl. 1995, 34 (17), 1844-1847.
96. Frey, G. D.; Schuetz, J.; Herrmann, W. A. J. Organomet. Chem. 2006, 691 (11), 2403-2408.
97. Elgazwy, A. S. S. H.; Ismail, N. S. M.; Atta-Allah, S. R.; Sarg, M. T.; Soliman, D. H. S.; Zaki, M. Y.; Elgamas, M. A. Curr. Med. Chem. 2012, 19 (23), 3967-3981.
98. Webster, D. E. Adv. Organomet. Chem. 1977, 15, 147-188.
99. Dunina, V. V.; Gorunova, O. g. N.; Kuz'mina, L. G.; Livantsov, M. V.; Grishin, Y. K. Tetrahedron: Asymmetry 1999, 10 (20), 3951-3961.
100. Mo, D.-L.; Chen, B.; Ding, C.-H.; Dai, L.-X.; Ge, G.-C.; Hou, X.-L. Organometallics 2013, 32 (16), 4465-4468.
101. Dias, S. A.; Alyea, E. C. Transition Met. Chem. (Weinheim, Ger.) 1979, 4 (3), 205-206.
102. Alyea, E. C.; Malito, J. J. Organomet. Chem. 1988, 340 (1), 119-126.
103. Falvello, L. R.; Fornies, J.; Martin, A.; Navarro, R.; Sicilia, V.; Villarroya, P. Inorg. Chem. 1997, 36 (27), 6166-6171.
104. Shaw, B. L.; Truelock, M. M. J. Organomet. Chem. 1975, 102 (4), 517-525.
105. van der Sluis, M.; Beverwijk, V.; Termaten, A.; Bickelhaupt, F.; Kooijman, H.; Spek, A. L. Organometallics 1999, 18 (8), 1402-1407.
106. Bottomley, A. R. H.; Crocker, C.; Shaw, B. L. J. Organomet. Chem. 1983, 250 (1), 617-626.
107. Portnoy, M.; Ben-David, Y.; Milstein, D. J. Organomet. Chem. 1995, 503 (1), 149-153.
108. Youngs, W. J.; Mahood, J.; Simms, B. L.; Swepston, P. N.; Ibers, J. A.; Shang, M.; Huang, J.; Lu, J. Organometallics 1983, 2 (7), 917-921.
109. Kraus, H. W. H. J. J. Organomet. Chem. 1981, 204, 415-422.
110. Dupont, J.; Beydoun, N.; Pfeffer, M. J. Chem. Soc., Dalton Trans. 1989, (9), 1715-1720.
111. Dupont, J.; Pfeffer, M. J. Chem. Soc., Dalton Trans. 1990, (11), 3193-3198.
112. Vicente, J.; Abad, J.-A.; Hernandez-Mata, F. S.; Jones, P. G. J. Am. Chem. Soc. 2002, 124 (15), 3848-3849.
113. Vicente, J.; Abad, J.-A.; Hernandez-Mata, F. S.; Jones, P. G. Organometallics 2001, 20 (6), 1109-1114.
114. Albeniz, A. C.; Espinet, P.; Lin, Y.-S. Organometallics 1996, 15 (23), 50105017.
115. Grinter, T. J.; Leaver, D.; O'Neil, R. M. Inorg. Nucl. Chem. Lett. 1980, 16 (3), 145-147.
116. Dunina, V. V.; Zalevskaya, O. A.; Smolyakova, I. P.; Potapov, V. M. Zh. Obshch. Khim. 1984, 54 (10), 2290-2298.
117. Dunina, V. V.; Gorunova, O. N.; Kuznetsova, E. D.; Turubanova, E. I.; Livantsov, M. V.; Grishin, Y. K.; Kuz'mina, L. G.; Churakov, A. V. Russ. Chem. Bull. 2006, 55 (12), 2193-2211.
118. van Asselt, R.; Gielens, E. E. C. G.; Rulke, R. E.; Vrieze, K.; Elsevier, C. J. J. Am. Chem. Soc. 1994, 116 (3), 977-985.
119. Groen, J. H.; Elsevier, C. J.; Vrieze, K.; Smeets, W. J. J.; Spek, A. L. Organometallics 1996, 15 (15), 3445-3455.
120. Brumbaugh, J. S.; Whittle, R. R.; Parvez, M.; Sen, A. Organometallics 1990, 9 (6), 1735-1747.
121. Mecking, S.; Johnson, L. K.; Wang, L.; Brookhart, M. J. Am. Chem. Soc. 1998, 120 (5), 888-899.
122. Yagyu, T.; Osakada, K.; Brookhart, M. Organometallics 2000, 19 (11), 21252129.
123. Venkatesan, C.; Singh, A. P. Catal. Lett. 2003, 88 (3-4), 193-197.
124. Lindsell, W. E.; Palmer, D. D.; Preston, P. N.; Rosair, G. M.; Jones, R. V. H.; Whitton, A. J. Organometallics 2005, 24 (6), 1119-1133.
125. Catellani, M.; Cugini, F. Tetrahedron 1999, 55 (21), 6595-6602.
126. Catellani, M. In Arene substitution involving temporary incorporation and removal of carbon tethers via carbopalladation and decarbopalladation, John Wiley \& Sons, Inc.: 2002; pp 1479-1489.
127. Catellani, M. Pure Appl. Chem. 2002, 74 (1), 63-68.
128. Catellani, M.; Motti, E.; Faccini, F.; Ferraccioli, R. Pure Appl. Chem. 2005, 77 (7), 1243-1248.
129. Hashmi, A. S. K.; Naumann, F.; Bolte, M. Organometallics 1998, 17 (12), 23852387.
130. Hashmi, A. S. K.; Grundl, M. A.; Bats, J. W. Organometallics 2000, 19 (21), 4217-4222.
131. Fernandez, J. J.; Fernandez, A.; Vazquez-Garcia, D.; Lopez-Torres, M.; Suarez, A.; Gomez-Blanco, N.; Vila, J. M. Eur. J. Inorg. Chem. 2007, (34), 5408-5418.
132. Yoneda, A.; Hakushi, T.; Newkome, G. R.; Fronczek, F. R. Organometallics 1994, 13 (12), 4912-4918.
133. Hiraki, K.; Fuchita, Y.; Matsumoto, Y. Chem. Lett. 1984, (11), 1947-1948.
134. Saxena, P.; Thirupathi, N.; Nethaji, M. Organometallics 2014, 33 (12), 31823197.
135. Alsters, P. L.; Engel, P. F.; Hogerheide, M. P.; Copijn, M.; Spek, A. L.; van Koten, G. Organometallics 1993, 12 (5), 1831-1844.
136. Alsters, P. L.; Boersma, J.; van Koten, G. Organometallics 1993, 12 (5), 1629-38.
137. Newkome, G. R.; Puckett, W. E.; Kiefer, G. E.; Gupta, V. K.; Fronczek, F. R.; Pantaleo, D. C.; McClure, G. L.; Simpson, J. B.; Deutsch, W. A. Inorg. Chem. 1985, 24 (6), 811-826.
138. Zucca, A.; Cinellu, M. A.; Pinna, M. V.; Stoccoro, S.; Minghetti, G.; Manassero, M.; Sansoni, M. Organometallics 2000, 19 (21), 4295-4304.
139. Cocco, F.; Zucca, A.; Stoccoro, S.; Serratrice, M.; Guerri, A.; Cinellu, M. A. Organometallics 2014, 33 (13), 3414-3424.
140. Newkome, G. R.; Kawato, T.; Kohli, D. K.; Puckett, W. E.; Olivier, B. D.; Chiari, G.; Fronczek, F. R.; Deutsch, W. A. J. Am. Chem. Soc. 1981, 103 (12), 3423-3429.
141. Lopez, C.; Perez, S.; Solans, X.; Font-Bardia, M. J. Organomet. Chem. 2002, 650 (1-2), 258-267.
142. Bennett, M. A.; Johnson, R. N.; Robertson, G. B.; Tomkins, I. B.; Whimp, P. O. J. Am. Chem. Soc. 1976, 98 (12), 3514-3523.
143. Bennett, M. A.; Clark, P. W. J. Organomet. Chem. 1976, 110 (3), 367-381.
144. Bennett, M. A.; Clark, P. W.; Robertson, G. B.; Whimp, P. O. J. Organometal. Chem. 1973, 63, C15-C18.
145. Errington, R. J.; McDonald, W. S.; Shaw, B. L. J. Chem. Soc., Dalton Trans. 1982, (9), 1829-1835.
146. Al-Salem, N. A.; McDonald, W. S.; Markham, R.; Norton, M. C.; Shaw, B. L. J. Chem. Soc., Dalton Trans. 1980, (1), 59-63.
147. Sjoevall, S.; Wendt, O. F.; Andersson, C. J. Chem. Soc., Dalton Trans. 2002, (7), 1396-1400.
148. Juanes, O.; De Mendoza, J.; Rodriguez-Ubis, J. C. J. Organomet. Chem. 1989, 363 (3), 393-399.
149. Fang, X.; Scott, B. L.; Watkin, J. G.; Kubas, G. J. Organometallics 2000, 19 (21), 4193-4195.
150. Newkome, G. R.; Gupta, V. K.; Fronczek, F. R. Organometallics 1982, 1 (7), 907-910.
151. Fedorov, B. S.; Golovina, N. I.; Strukov, G. V.; Kedrov, V. V.; Arakcheeva, V. V.; Trofimova, R. F.; Shilov, G. V.; Atovmyan, L. O. Russ. Chem. Bull. (Transl. of Izv. Akad. Nauk, Ser. Khim.) 1997, 46 (9), 1626-1627.
152. Cheney, A. J.; Shaw, B. L. J. Chem. Soc., Dalton Trans. 1972, (7), 860-865.
153. Venkatesan, C.; Singh, A. P. Stud. Surf. Sci. Catal. 2004, 154C (Recent Advances in the Science and Technology of Zeolites and Related Materials), 2795-2802.
154. Herrmann, W. A.; Cornils, B. Angew. Chem., Int. Ed. Engl. 1997, 36 (10), 10491067.
155. Beller, M.; Riermeier, T. H. Tetrahedron Lett. 1996, 37 (36), 6535-6538.
156. Albisson, D. A.; Bedford, R. B.; Scully, P. N. Tetrahedron Lett. 1998, 39 (52), 9793-9796.
157. Brody, M. S.; Finn, M. G. Tetrahedron Lett. 1999, 40 (3), 415-418.
158. Ryabov, A. D.; Yatsimirskii, A. K. Inorg. Chem. 1984, 23 (6), 789-790.
159. Ryabov, A. D. Inorg. Chem. 1987, 26 (8), 1252-1260.
160. Ryabov, A. D.; Kazankov, G. M. Koord. Khim. 1986, 12 (4), 540-542.
161. Lafrance, M.; Gorelsky, S. I.; Fagnou, K. J. Am. Chem. Soc. 2007, 129 (47), 14570-14571.
162. Dunlop-Briere, A. F.; Budzelaar, P. H. M.; Baird, M. C. Organometallics 2010, 31 (5), 1591-1594.
163. Crosby, S. H.; Clarkson, G. J.; Deeth, R. J.; Rourke, J. P. Organometallics 2010, 29 (8), 1966-1976.
164. Sauriol, F.; Sonnenberg, J. F.; Chadder, S. J.; Dunlop-Briere, A. F.; Baird, M. C.; Budzelaar, P. H. M. J. Am. Chem. Soc. 2010, 132 (38), 13357-13370.
165. Stoccoro, S.; Soro, B.; Minghetti, G.; Zucca, A.; Cinellu, M. A. J. Organomet. Chem. 2003, 679 (1), 1-9.
166. Lyons, T. W.; Sanford, M. S. Chem. Rev. 2010, 110 (2), 1147-1169.
167. Ackermann, L. Chem. Rev. 2011, 111 (3), 1315-1345.
168. Colby, D. A.; Bergman, R. G.; Ellman, J. A. Chem. Rev. (Washington, DC, U. S.) 110 (2), 624-655.
169. Gorunova, O. N.; Keuseman, K. J.; Goebel, B. M.; Kataeva, N. A.; Churakov, A. V.; Kuz'mina, L. G.; Dunina, V. V.; Smoliakova, I. P. J. Organomet. Chem. 2004, 689 (14), 2382-2394.
170. Desai, L. V.; Hull, K. L.; Sanford, M. S. J. Am. Chem. Soc. 2004, 126 (31), 95429543.
171. Desai, L. V.; Malik, H. A.; Sanford, M. S. Org. Lett. 2006, 8 (6), 1141-1144.
172. Kalberer, E. W.; Whitfield, S. R.; Sanford, M. S. J. Mol. Catal. A: Chem. 2006, 251 (1-2), 108-113.
173. Tan, Y.; Barrios-Landeros, F.; Hartwig, J. F. J. Am. Chem. Soc. 134 (8), 36833686.
174. Agnus, Y.; Gross, M.; Labarelle, M.; Louis, R.; Metz, B. J. Chem. Soc., Chem. Comтии. 1994, (8), 939-940.
175. Suzuki, K.; Jindo, A.; Hanaki, K. Inorg. Chim. Acta 1993, 210 (1), 57-61.
176. Chivers, T.; Timms, P. L. J. Organomet. Chem. 1976, 118 (2), C37-C40.
177. Yoshida, G.; Matsumura, Y.; Okawara, R. J. Organomet. Chem. 1975, 92 (3), C53-C55.
178. Osakada, K.; Yamamoto, T. Coord. Chem. Rev. 2000, 198, 379-399.
179. Urriolabeitia, E. P. In Oxidative addition and transmetallation, Wiley-VCH Verlag GmbH \& Co. KGaA: 2008; pp 35-67.
180. Schildbach, D.; Arroyo, M.; Lehmen, K.; Martin-Barrios, S.; Sierra, L.; Villafane, F.; Strohmann, C. Organometallics 2004, 23 (13), 3228-3238.
181. Mateo, C.; Cardenas, D. J.; Fernandez-Rivas, C.; Echavarren, A. M. Chem. - Eur. J. 1996, 2 (12), 1596-1606.
182. Campora, J.; Lopez, J. A.; Palma, P.; del Rio, D.; Carmona, E.; Valerga, P.; Graiff, C.; Tiripicchio, A. Inorg. Chem. 2001, 40 (17), 4116-4126.
183. Motoyama, Y.; Kawakami, H.; Shimozono, K.; Aoki, K.; Nishiyama, H. Organometallics 2002, 21 (16), 3408-3416.
184. Sole, D.; Vallverdu, L.; Solans, X.; Font-Bardia, M.; Bonjoch, J. Organometallics 2004, 23 (6), 1438-1447.
185. Campora, J.; Palma, P.; del Rio, D.; Lopez, J. A.; Valerga, P. Chem. Commun. (Cambridge, U. K.) 2004, (13), 1490-1491.
186. Catellani, M. Synlett 2003, (3), 298-313.
187. Ding, Y.; Zhang, Y.; Li, Y.; Pullarkat, S. A.; Andrews, P.; Leung, P.-H. Eur. J. Inorg. Chem. 2010, (28), 4427-4437.
188. Sabater, S.; Mata, J. A.; Peris, E. Organometallics 2013, 32 (4), 1112-1120.
189. Bauer, J. M.; Frey, W.; Peters, R. Angew. Chem., Int. Ed. 2014, 53 (29), 76347638.
190. Albert, J.; Granell, J.; Muller, G. J. Organomet. Chem. 2006, 691 (10), 21012106.
191. Dunina, V. V.; Gorunova, O. N.; Zykov, P. A.; Kochetkov, K. A. Russ. Chem. Rev. 2011, 80 (1), 51-74.
192. Aydin, J.; Kumar, K. S.; Sayah, M. J.; Wallner, O. A.; Szabo, K. J. J. Org. Chem. 2007, 72 (13), 4689-4697.
193. Hao, X.-Q.; Huang, J.-J.; Wang, T.; Lv, J.; Gong, J.-F.; Song, M.-P. J. Org. Chem. 2014, 79 (20), 9512-9530.
194. Dunina, V. V. Curr. Org. Chem. 2011, 15 (18), 3415-3440.
195. Vila, J. M.; Pereira, M. T. In The Pd-C building block of palladacycles: a cornerstone for stoichiometric $C-C$ and $C-X$ bond assemblage, Wiley-VCH Verlag GmbH \& Co. KGaA: 2008; pp 87-108.
196. Lagerlund, O.; Larhed, M. J. Comb. Chem. 2006, 8 (1), 4-6.
197. Pfeffer, M.; Rotteveel, M. A.; Le Borgne, G.; Fischer, J. J. Org. Chem. 1992, 57 (7), 2147-2154.
198. Whitcombe, N. J.; Hii, K. K.; Gibson, S. E. Tetrahedron 2001, 57 (35), 74497476.
199. Ohff, M.; Ohff, A.; van der Boom, M. E.; Milstein, D. J. Am. Chem. Soc. 1997, 119 (48), 11687-11688.
200. Otsuka, S.; Nakamura, A.; Kano, T.; Tani, K. J. Amer. Chem. Soc. 1971, 93 (17), 4301-4303.
201. Durand, J.; Gladiali, S.; Erre, G.; Zangrando, E.; Milani, B. Organometallics 2007, 26 (4), 810-818.
202. Zhang, T.-K.; Mo, D.-L.; Dai, L.-X.; Hou, X.-L. Org. Lett. 2008, 10 (17), 36893692.
203. Sokolov, V. I.; Troitskaya, L. L.; Reutov, O. A. J. Organomet. Chem. 1977, 133 (2), C28-C30.
204. Allen, D. G.; McLaughlin, G. M.; Robertson, G. B.; Steffen, W. L.; Salem, G.; Wild, S. B. Inorg. Chem. 1982, 21 (3), 1007-1014.
205. Sokolov, V. I.; Troitskaya, L. L. Chimia 1978, 32 (4), 122-123.
206. Dunina, V. V.; Razmyslova, E. D.; Gorunova, O. g. N.; Livantsov, M. V.; Grishin, Y. K. Tetrahedron: Asymmetry 2003, 14 (16), 2331-2333.
207. Mawo, R. Y.; Mustakim, S.; Young, V. G., Jr.; Hoffmann, M. R.; Smoliakova, I. P. Organometallics 2007, 26 (7), 1801-1810.
208. Keuseman, K. J.; Smoliakova, I. P.; Dunina, V. V. Organometallics 2005, 24 (17), 4159-4169.
209. Hollis, T. K.; Overman, L. E. Tetrahedron Lett. 1997, 38 (51), 8837-8840.
210. Dupont, J.; Gruber, A. S.; Fonseca, G. S.; Monteiro, A. L.; Ebeling, G.; Burrow, R. A. Organometallics 2001, 20 (1), 171-176.
211. Dunina, V. V.; Gorunova, O. N.; Stepanova, V. A.; Zykov, P. A.; Livantsov, M. V.; Grishin, Y. K.; Churakov, A. V.; Kuz'mina, L. G. Tetrahedron: Asymmetry 2007, 18 (17), 2011-2015.
212. Cohen, F.; Overman, L. E. Tetrahedron: Asymmetry 1998, 9 (18), 3213-3222.
213. Hollis, T. K.; Overman, L. E. J. Organomet. Chem. 1999, 576 (1-2), 290-299.
214. Navarro, R.; Urriolabeitia, E. P.; Cativiela, C.; Diaz-de-Villegas, M. D.; Lopez, M. P.; Alonso, E. J. Mol. Catal. A: Chem. 1996, 105 (3), 111-116.
215. Gosiewska, S.; Martinez, S. H.; Lutz, M.; Spek, A. L.; van Koten, G.; Gebbink, R. J. M. K. Eur. J. Inorg. Chem. 2006, (22), 4600-4607.
216. Gosiewska, S.; Martinez Herreras, S.; Lutz, M.; Spek, A. L.; Havenith, R. W. A.; van Klink, G. P. M.; van Koten, G.; Klein Gebbink, R. J. M. Organometallics 2008, 27 (11), 2549-2559.
217. Gimenez, R.; Swager, T. M. J. Mol. Catal. A: Chem. 2001, 166 (2), 265-273.
218. Morales-Morales, D.; Cramer, R. E.; Jensen, C. M. J. Organomet. Chem. 2002, 654 (1-2), 44-50.
219. Baber, R. A.; Bedford, R. B.; Betham, M.; Blake, M. E.; Coles, S. J.; Haddow, M. F.; Hursthouse, M. B.; Orpen, A. G.; Pilarski, L. T.; Pringle, P. G.; Wingad, R. L. Chem. Commun. (Cambridge, U. K.) 2006, (37), 3880-3882.
220. Takenaka, K.; Minakawa, M.; Uozumi, Y. J. Am. Chem. Soc. 2005, 127 (35), 12273-12281.
221. Kocovsky, P.; Vyskocil, S.; Cisarova, I.; Sejbal, J.; Tislerova, I.; Smrcina, M.; Lloyd-Jones, G. C.; Stephen, S. C.; Butts, C. P.; Murray, M.; Langer, V. J. Am. Chem. Soc. 1999, 121 (33), 7714-7715.
222. Brunker, T. J.; Moncarz, J. R.; Glueck, D. S.; Zakharov, L. N.; Golen, J. A.; Rheingold, A. L. Organometallics 2004, 23 (10), 2228-2230.
223. Mawo, R. Y.; Johnson, D. M.; Wood, J. L.; Smoliakova, I. P. J. Organomet. Chem. 2008, 693 (1), 33-45.
224. Meyers, A. I.; Shipman, M. J. Org. Chem. 1991, 56 (25), 7098-7102.
225. Sokolov, V. I.; Troitskaya, L. L.; Reutov, O. A. J. Organomet. Chem. 1979, 182 (4), 537-546.
226. Gunay, M. E.; Richards, C. J. Organometallics 2009, 28 (19), 5833-5836.
227. Peterson, D. L.; Keuseman, K. J.; Kataeva, N. A.; Kuz'mina, L. G.; Howard, J. A. K.; Dunina, V. V.; Smoliakova, I. P. J. Organomet. Chem. 2002, 654 (1-2), 6673.
228. Smoliakova, I. P.; Keuseman, K. J.; Mawo, R. Y.; Dunina, V. V. In Optically active oxazoline-based endo- and exo-palladacycles formed through (sp3)C-H bond activation, American Chemical Society: 2005; pp ORGN-120.
229. Sokolov, V. I.; Bulygina, L. A.; Borbulevych, O. Y.; Shishkin, O. V. J. Organomet. Chem. 1999, 582 (2), 246-251.
230. Vicente, J.; Saura-Llamas, I.; Garcia-Lopez, J.-A.; Calmuschi-Cula, B.; Bautista, D. Organometallics 2007, 26 (10), 2768-2776.
231. Nieto, S.; Arnau, P.; Serrano, E.; Navarro, R.; Soler, T.; Cativiela, C.; Urriolabeitia, E. P. Inorg. Chem. 2009, 48 (24), 11963-11975.
232. Ryabov, A. D.; Panyashkina, I. M.; Polyakov, V. A.; Howard, J. A. K.; Kuz'mina, L. G.; Datt, M. S.; Sacht, C. Organometallics 1998, 17 (16), 3615-3618.
233. Roca, F. X.; Motevalli, M.; Richards, C. J. J. Am. Chem. Soc. 2005, 127 (8), 2388-2389.
234. Dunina, V. V.; Gorunova, O. N. Russ. Chem. Rev. 2005, 74 (10), 871-913.
235. Chew, R. J.; Huang, Y.; Li, Y.; Pullarkat, S. A.; Leung, P.-H. Adv. Synth. Catal. 2013, 355 (7), 1403-1408.
236. Lu, J.; Ye, J.; Duan, W.-L. Org. Lett. 2013, 15 (19), 5016-5019.
237. Cassar, D. J.; Ilyashenko, G.; Ismail, M.; Woods, J.; Hughes, D. L.; Richards, C. J. Chem. - Eur. J. 2013, 19 (52), 17951-17962.
238. Ma, M.; Yu, Z.; Zhu, L.; Pullarkat, S. A.; Leung, P.-H. J. Organomet. Chem. 2014, 756, 34-37.
239. Yap, J. S. L.; Li, B. B.; Wong, J.; Li, Y.; Pullarkat, S. A.; Leung, P.-H. Dalton Trans. 2014, 43 (15), 5777-5784.
240. Chen, S.; Chiew, J. X.; Pullarkat, S. A.; Li, Y.; Leung, P.-H. Eur. J. Inorg. Chem. 2013, 2013 (31), 5487-5494.
241. Aguilar, D.; Cuesta, L.; Nieto, S.; Serrano, E.; Urriolabeitia, E. P. Curr. Org. Chem. 2011, 15 (18), 3441-3464.
242. Troitskaya, L. L.; Starikova, Z. A.; Demeshchik, T. V.; Sokolov, V. I. Russ. Chem. Bull. 1999, 48 (9), 1738-1743.
243. Figge, A.; Altenbach, H. J.; Brauer, D. J.; Tielmann, P. Tetrahedron: Asymmetry 2002, 13 (2), 137-144.
244. Duran, E.; Gordo, E.; Granell, J.; Font-Bardia, M.; Solans, X.; Velasco, D.; Lopez-Calahorra, F. Tetrahedron: Asymmetry 2001, 12 (14), 1987-1997.
245. Dunina, V. V.; Kuz'mina, L. G.; Rubina, M. Y.; Grishin, Y. K.; Veits, Y. A.; Kazakova, E. I. Tetrahedron: Asymmetry 1999, 10 (8), 1483-1497.
246. Dunina, V. V.; Kuz'mina, L. G.; Parfyonov, A. G.; Grishin, Y. K. Tetrahedron: Asymmetry 1998, 9 (11), 1917-1921.
247. Dunina, V. V.; Gorunova, O. N.; Livantsov, M. V.; Grishin, Y. K. Tetrahedron: Asymmetry 2000, 11 (14), 2907-2916.
248. Kyba, E. P.; Rines, S. P. J. Org. Chem. 1982, 47 (24), 4800-4801.
249. Bohm, A.; Seebach, D. Helv. Chim. Acta 2000, 83 (12), 3262-3278.
250. McFarlane, W.; Swarbrick, J. D.; Bookham, J. L. J. Chem. Soc., Dalton Trans. 1998, (19), 3233-3238.
251. Aw, B.-H.; Selvaratnam, S.; Leung, P.-H.; Rees, N. H.; McFarlane, W. Tetrahedron: Asymmetry 1996, 7 (6), 1753-1762.
252. Jiang, Q.; Rueegger, H.; Venanzi, L. M. J. Organomet. Chem. 1995, 488 (1-2), 233-240.
253. Tani, K.; Brown, L. D.; Ahmed, J.; Ibers, J. A.; Nakamura, A.; Otsuka, S.; Yokota, M. J. Am. Chem. Soc. 1977, 99 (24), 7876-7886.
254. Blaser, H. U. Chem. Rev. 1992, 92 (5), 935-952.
255. Donde, Y.; Overman, L. E. J. Am. Chem. Soc. 1999, 121 (12), 2933-2934.
256. Prasad, R. S.; Anderson, C. E.; Richards, C. J.; Overman, L. E. Organometallics 2005, 24 (1), 77-81.
257. Sokolov, V. I.; Troitskaya, L. L.; Reutov, O. A. J. Organomet. Chem. 1980, 202 (2), C58-C60.
258. Bolm, C.; Wenz, K.; Raabe, G. J. Organomet. Chem. 2002, 662 (1-2), 23-33.
259. Chen, W.; Mbafor, W.; Roberts, S. M.; Whittall, J. J. Am. Chem. Soc. 2006, 128 (12), 3922-3923.
260. Horner, L.; Simons, G. Phosphorus Sulfur 1983, 15 (2), 165-175.
261. Payne, N. C.; Stephan, D. W. Inorg. Chem. 1982, 21 (1), 182-188.
262. Malik, K. M. A.; Newman, P. D. Dalton Trans. 2003, (18), 3516-3525.
263. Watson, A. A.; House, D. A.; Steel, P. J. J. Organomet. Chem. 1986, 311 (3), 387-397.
264. Constable, A. G.; McDonald, W. S.; Odell, B.; Shaw, B. L. J. Chem. Soc., Dalton Trans. 1983, (11), 2509-2511.
265. Thu, H.-Y.; Yu, W.-Y.; Che, C.-M. J. Am. Chem. Soc. 2006, 128 (28), 90489049.
266. Jennequin, T.; Labat, S.; Toupet, L.; Caille, J.-C.; Mauduit, M. Synlett 2008, (11), 1669-1672.
267. Booth, S. E.; Jenkins, P. R.; Swain, C. J.; Sweeney, J. B. J. Chem. Soc., Perkin Trans. 1 1994, (23), 3499-3508.
268. Singh, A. K.; Verma, S. M. Indian J. Chem., Sect. B 1981, $20 B$ (1), 33-35.
269. Smoliakova, I. P.; Keuseman, K. J.; Haagenson, D. C.; Wellmann, D. M.; Colligan, P. B.; Kataeva, N. A.; Churakov, A. V.; Kuz'mina, L. G.; Dunina, V. V. J. Organomet. Chem. 2000, 603 (1), 86-97.
270. Yao, W.; Eisenstein, O.; Crabtree, R. H. Inorg. Chim. Acta 1997, 254 (1), 105111.
271. Barr, N.; Dyke, S. F.; Frost, R. L. W. Org. Magn. Reson. 1984, 22 (5), 277-279.
272. Guel, N.; Nelson, J. H. Organometallics 2000, 19 (1), 91-104.
273. Kuchin, A. V.; Gur'eva, Y. A.; Frolova, L. L.; Alekseev, I. N.; Zalevskaya, O. A. Chem. Bull. 2013, 62 (3), 745-750.
274. Y. A. Gur'eva, O. A. Z., L. L. Frolova, I. N. Alekseev, P. A. Slepukhin, A. V. Kuchin, , Zh. Obshch. Khim. 2012, 82.
275. Suggs, J. W.; Lee, K. S. J. Organomet. Chem. 1986, 299 (3), 297-309.
276. Galli, B.; Gasparrini, F.; Mann, B. E.; Maresca, L.; Natile, G.; Manotti-Lanfredi, A. M.; Tiripicchio, A. J. Chem. Soc., Dalton Trans. 1985, (6), 1155-1161.
277. Barr, N.; Dyke, S. F.; Smith, G.; Kennard, C. H. L.; McKee, V. J. Organomet. Chem. 1985, 288 (1), 109-117.
278. Crispini, A.; De Munno, G.; Ghedini, M.; Neve, F. J. Organomet. Chem. 1992, 427 (3), 409-414.
279. Navarro-Ranninger, C.; Lopez-Solera, I.; Alvarez-Valdes, A.; Rodriguez, J. H.; Masaguer, J. R.; Garcia-Ruano, J. L.; Solans, X. J. Organomet. Chem. 1994, 476 (1), 19-24.
280. Dunina, V. V.; Kuz'mina, L. G.; Kazakova, M. Y.; Grishin, Y. K.; Veits, Y. A.; Kazakova, E. I. Tetrahedron: Asymmetry 1997, 8 (15), 2537-2545.
281. Chelucci, G.; Delogu, G.; Gladiali, S.; Soccolini, F. J. Heterocycl. Chem. 1986, 23 (5), 1395-1399.
282. Chelucci, G.; Orru, G.; Soccolini, F. ARKIVOC (Gainesville, FL, U. S.) 2004, (14), 44-50.
283. Perera, S. D.; Shaw, B. L.; Thornton-Pett, M. J. Chem. Soc., Dalton Trans. 1991, (5), 1183-1188.
284. Fischer, D. F.; Barakat, A.; Xin, Z.-q.; Weiss, M. E.; Peters, R. Chem. - Eur. J. 2009, 15 (35), 8722-8741, S8722/1-S8722/524.
285. Kirsch, S. F.; Overman, L. E.; Watson, M. P. J. Org. Chem. 2004, 69 (23), 81018104.
286. Ng, J. K. P.; Chen, S.; Tan, G. K.; Leung, P.-H. Tetrahedron: Asymmetry 2007, 18 (10), 1163-1169.
287. Peters, R.; Xin, Z.-q.; Fischer, D. F.; Schweizer, W. B. Organometallics 2006, 25 (12), 2917-2920.
288. Weber, M.; Klein, J. E. M. N.; Miehlich, B.; Frey, W.; Peters, R. Organometallics 2013, 32 (20), 5810-5817.
289. Gur'eva, Y. A.; Zalevskaya, O. A.; Alekseev, I. N.; Frolova, L. L.; Slepukhin, P. A.; Kuchin, A. V. Chem. Nat. Compd. 2014, 50 (4), 648-651.
290. Schantl, J. G.; Karpellus, P.; Prean, M. Tetrahedron 1982, 38 (17), 2643-2652.
291. Harger, M. J. P. J. Chem. Soc., Chem. Commun. 1979, (17), 768-769.
292. Harger, M. J. P. J. Chem. Soc., Perkin Trans. 1 1981, (12), 3284-3288.
293. Jennings, W. B.; Lovely, C. J. Tetrahedron 1991, 47 (29), 5561-5568.
294. White, W. A.; Weingarten, H. J. Org. Chem. 1967, 32 (1), 213-214.
295. Moretti, I.; Torre, G. Synthesis 1970, No. 3, 141.
296. Jennings, W. B.; Al-Showiman, S.; Tolley, M. S.; Boyd, D. R. J. Chem. Soc., Perkin Trans. 2 1975, (14), 1535-1539.
297. Scheibye, S.; Shabana, R.; Lawesson, S. O.; Roemming, C. Tetrahedron 1982, 38 (7), 993-1001.
298. Polshettiwar, V.; Kaushik, M. P. Tetrahedron Lett. 2004, 45 (33), 6255-6257.
299. Kolehmainen, E.; Laihia, K.; Korvola, J.; Kauppinen, R.; Manttari, P.; Rissanen, K. Magn. Reson. Chem. 1991, 29 (3), 267-272.
300. Basu, P. K.; Gonzalez, A.; Lopez, C.; Font-Bardia, M.; Calvet, T. J. Organomet. Chem. 2009, 694 (22), 3633-3642.
301. Sierra, M. A.; del Amo, J. C.; Mancheno, M. J.; Gomez-Gallego, M. J. Am. Chem. Soc. 2001, 123 (5), 851-861.
302. Singh, J.; Kumar, D.; Singh, N.; Elias, A. J. Organometallics 2014, 33 (4), 10441052.
303. Vicente, J.; Lagunas, M. C.; Bleuel, E.; Ramirez de Arellano, M. C. J. Organomet. Chem. 2002, 648 (1-2), 62-71.
304. Galvao, A. M.; Carvalho, M. F. N. N.; Grilo, A. L. J. Mol. Struct. 2014, 10651066, 108-112.
305. Jazzar, R.; Hitce, J.; Renaudat, A.; Sofack-Kreutzer, J.; Baudoin, O. Chem. - Eur. J. 2010, 16 (9), 2654-2672.
306. Watanabe, T.; Oishi, S.; Fujii, N.; Ohno, H. Org. Lett. 2008, 10 (9), 1759-1762.
307. Bunescu, A.; Piou, T.; Wang, Q.; Zhu, J. Org. Lett. 2015, 17 (2), 334-337.
308. Musaev, D. G.; Figg, T. M.; Kaledin, A. L. Chem. Soc. Rev. 2014, 43 (14), 50095031.
309. Williams, T. J.; Fairlamb, I. J. S. Tetrahedron Lett. 2013, 54 (23), 2906-2908.
310. Neufeldt, S. R.; Sanford, M. S. Acc. Chem. Res. 2012, 45 (6), 936-946.
311. Stokes, B. J.; Driver, T. G. Eur. J. Org. Chem. 2011, 2011 (22), 4071-4088.
312. Collet, F.; Dodd, R. H.; Dauban, P. Chem. Commun. (Cambridge, U. K.) 2009, (34), 5061-5074.
313. Chen, X.; Engle, K. M.; Wang, D.-H.; Yu, J.-Q. Angew Chem Int Ed Engl 2009, 48 (28), 5094-5115.
314. Alberico, D.; Scott, M. E.; Lautens, M. Chem. Rev. (Washington, DC, U. S.) 2007, 107 (1), 174-238.
315. Campeau, L.-C.; Fagnou, K. Chem. Commun. (Cambridge, U. K.) 2006, (12), 1253-1264.
316. Wasa, M.; Engle, K. M.; Yu, J.-Q. Isr. J. Chem. 2010, 50 (5-6), 605-616.
317. Gu, H.; Qiu, Z.; Zhang, Z.; Li, J.; Yan, B. Dalton Trans. 2015, 44 (21), 98399846.
318. Dong, C.-G.; Hu, Q.-S. Angew. Chem., Int. Ed. 2006, 45 (14), 2289-2292.
319. Ren, H.; Knochel, P. Angew. Chem., Int. Ed. 2006, 45 (21), 3462-3465.
320. Ren, H.; Li, Z.; Knochel, P. Chem. - Asian J. 2007, 2 (3), 416-433.
321. Crabtree, R. H. Chem. Rev. 1985, 85 (4), 245-269.
322. Giri, R.; Lan, Y.; Liu, P.; Houk, K. N.; Yu, J.-Q. J. Am. Chem. Soc. 2012, 134 (34), 14118-14126.
323. Ma, B.; Wang, Y.; Peng, J.; Zhu, Q. J. Org. Chem. 2011, 76 (15), 6362-6366.
324. Romero-Revilla, J. A.; Garcia-Rubia, A.; Gomez Arrayas, R.; Fernandez-Ibanez, M. A.; Carretero, J. C. J. Org. Chem. 2011, 76 (22), 9525-9530.
325. Zhao, X.; Yeung, C. S.; Dong, V. M. J. Am. Chem. Soc. 2010, 132 (16), 58375844.
326. Lu, Y.; Wang, D.-H.; Engle, K. M.; Yu, J.-Q. J. Am. Chem. Soc. 2010, 132 (16), 5916-5921.
327. Shabashov, D.; Daugulis, O. J. Am. Chem. Soc. 2010, 132 (11), 3965-3972.
328. Chan, C.-W.; Zhou, Z.; Chan, A. S. C.; Yu, W.-Y. Org. Lett. 2010, 12 (17), 39263929.
329. Spencer, J. In C-H activations via palladacycles, Wiley-VCH Verlag GmbH \& Co. KGaA: 2008; pp 109-121.
330. Choi, G.; Morris, J.; Brennessel, W. W.; Jones, W. D. J. Am. Chem. Soc. 2012, 134 (22), 9276-9284.
331. Dunina, V. V.; Gorunova, O. N. Russ. Chem. Rev. 2004, 73 (4), 309-350.
332. Stoccoro, S.; Chelucci, G.; Cinellu, M. A.; Zucca, A.; Minghetti, G. J. Organomet. Chem. 1993, 450 (1-2), C15-C16.
333. Dunina, V. V.; Gorunova, O. N.; Grishin, Y. K.; Kuz'mina, L. G.; Churakov, A. V.; Kuchin, A. V.; Howard, J. A. K. Russ. Chem. Bull. 2005, 54 (9), 2073-2082.
334. Maassarani, F.; Pfeffer, M.; Le Borgne, G. Organometallics 1987, 6 (10), 20292043.
335. Bahsoun, A.; Dehand, J.; Pfeffer, M.; Zinsius, M.; Bouaoud, S. E.; Le Borgne, G. J. Chem. Soc., Dalton Trans. 1979, (4), 547-556.
336. Albert, J.; Granell, J.; Sales, J. Polyhedron 1989, 8 (22), 2725-2726.
337. Giri, R.; Chen, X.; Hao, X.-S.; Li, J.-J.; Liang, J.; Fan, Z.-P.; Yu, J.-Q. Tetrahedron: Asymmetry 2005, 16 (21), 3502-3505.
338. Honda, T.; Janosik, T.; Honda, Y.; Han, J.; Liby, K. T.; Williams, C. R.; Couch, R. D.; Anderson, A. C.; Sporn, M. B.; Gribble, G. W. J. Med. Chem. 2004, 47 (20), 4923-4932.
339. Rocherolle, V.; Cristobal Lopez, J.; Olesker, A.; Lukacs, G. J. Chem. Soc., Chem. Comтии. 1988, (8), 513-514.
340. Louie, J.; Hartwig, J. F. Angew. Chem., Int. Ed. Engl. 1996, 35 (20), 2359-2361.
341. Stepanova, V. A.; Dunina, V. V.; Smoliakova, I. P. Organometallics 2009, 28 (22), 6546-6558.
342. Mazzeo, M.; Lamberti, M.; Massa, A.; Scettri, A.; Pellecchia, C.; Peters, J. C. Organometallics 2008, 27 (22), 5741-5743.
343. Glueck, D. S. Coord. Chem. Rev. 2008, 252 (21+22), 2171-2179.
344. Wicht, D. K.; Paisner, S. N.; Lew, B. M.; Glueck, D. S.; Yap, G. P. A.; LiableSands, L. M.; Rheingold, A. L.; Haar, C. M.; Nolan, S. P. Organometallics 1998, 17 (4), 652-660.
345. Zhuravel, M. A.; Glueck, D. S.; Zakharov, L. N.; Rheingold, A. L. Organometallics 2002, 21 (15), 3208-3214.
346. Stepanova, V. A., Synthesis of Bidentate Ligands Using Cyclopalladated Complexes. Ph.D. Dissertation 2011.
347. Vicente, J.; Arcas, A.; Galvez-Lopez, M.-D.; Julia-Hernandez, F.; Bautista, D.; Jones, P. G. Organometallics 2008, 27 (7), 1582-1590.
348. Vicente, J.; Arcas, A.; Bautista, D.; Jones, P. G. Organometallics 1997, 16 (10), 2127-2138.
349. Kawaguchi, S.-i.; Nagata, S.; Nomoto, A.; Sonoda, M.; Ogawa, A. J. Org. Chem. 2008, 73 (20), 7928-7933.
350. Nagata, S.; Kawaguchi, S.-i.; Matsumoto, M.; Kamiya, I.; Nomoto, A.; Sonoda, M.; Ogawa, A. Tetrahedron Lett. 2007, 48 (38), 6637-6640.
351. Greenberg, S. S., D. W., Chem. Soc. Rev. 2008, 37.
352. Dickmu, G. C.; Smoliakova, I. P. J. Organomet. Chem. 2014, 772-773, 42-48.
353. Kwong, F. Y.; Chan, K. S. Organometallics 2001, 20 (12), 2570-2578.
354. L.D. Quin, A. J. W., Practical Interpretation of P-31 NMR Spectra and ComputerAssisted Structure Verification. Advanced Chemistry Development, Inc., Toronto, Canada 2004.
355. Guiry, P. J. Synthesis 1997, (10), 1214.
356. R. M. Silverstein, F. X. W., D. Kiemle, Spectrometric Identification of Organic Compounds. 7th ed., Wiley, Hoboken, NJ 2005.
357. Cartwright, S. J.; Dixon, K. R.; Rattray, A. D. Inorg. Chem. 1980, 19 (5), 11201124.
358. Chaouche, N.; Fornies, J.; Fortuno, C.; Kribii, A.; Martin, A.; Karipidis, P.; Tsipis, A. C.; Tsipis, C. A. Organometallics 2004, 23 (8), 1797-1810.
359. Alonso, E.; Fornies, J.; Fortuno, C.; Martin, A.; Rosair, G. M.; Welch, A. J. Inorg. Chem. 1997, 36 (20), 4426-4431.
360. V.V. Dunina, L. G. K. m., J.A.K. Howard, N.A. Kataeva, M.Y. Rubina, A.G. Parfyonov, Y.A. Veits, Y.K. Grishin, Direct Route from Chiral Palladacycles to Enantioselective Aminophosphine Palladium(0) Catalysts, in 10th IUPAC Symposium on Organo-Metallic Chemistry Directed toward Organic Synthesis (OMCOS-10). Versailles, France 1999, P-124.
361. Giannandrea, R.; Mastrorilli, P.; Nobile, C. F. Inorg. Chim. Acta 1999, 284 (1), 116-118.
362. Brandon, J. B.; Dixon, K. R. Can. J. Chem. 1981, 59 (8), 1188-1200.
363. Ara, I.; Chaouche, N.; Fornies, J.; Fortuno, C.; Kribii, A.; Tsipis, A. C. Organometallics 2006, 25 (5), 1084-1091.
364. Fornies, J.; Fortuno, C.; Navarro, R.; Martinez, F.; Welch, A. J. J. Organomet. Chem. 1990, 394 (1-3), 643-658.
365. Mastrorilli, P. Eur. J. Inorg. Chem. 2008, (31), 4835-4850.
366. Diez, A.; Fornies, J.; Garcia, A.; Lalinde, E.; Moreno, M. T. Inorg. Chem. 2005, 44 (7), 2443-2453.
367. Ara, I.; Chaouche, N.; Fornies, J.; Fortuno, C.; Kribii, A.; Tsipis, A. C.; Tsipis, C. A. Inorg. Chim. Acta 2005, 358 (5), 1377-1385.
368. Suzuki, A. Pure Appl. Chem. 1985, 57 (12), 1749-1758.
369. Biajoli, A. F. P.; Schwalm, C. S.; Limberger, J.; Claudino, T. S.; Monteiro, A. L. J. Braz. Chem. Soc. 2014, 25, 2186-2214.
370. Kirchhoff, J. H.; Dai, C.; Fu, G. C. Angew. Chem., Int. Ed. 2002, 41 (11), 19451947.
371. Van de Weghe, P. Lett. Org. Chem. 2005, 2 (2), 113-117.
372. Dalby, A.; Mo, X.; Stoa, R.; Wroblewski, N.; Zhang, Z.; Hagen, T. J. Tetrahedron Lett. 2013, 54 (21), 2737-2739.
373. Bedford, R. B. In Palladacyclic pre-catalysts for Suzuki coupling, BuchwaldHartwig amination and related reactions, Wiley-VCH Verlag GmbH \& Co. KGaA: 2008; pp 209-225.
374. Najera, C.; Alonso, D. A. In Application of cyclopalladated compounds as catalysts for Heck and Sonogashira reactions, Wiley-VCH Verlag GmbH \& Co. KGaA: 2008; pp 155-207.
375. Bedford, R. B.; Cazin, C. S. J.; Holder, D. Coord. Chem. Rev. 2004, 248 (21-24), 2283-2321.
376. Zhang, B.-S.; Wang, W.; Shao, D.-D.; Hao, X.-Q.; Gong, J.-F.; Song, M.-P. Organometallics 2010, 29 (11), 2579-2587.
377. Takemoto, T.; Iwasa, S.; Hamada, H.; Shibatomi, K.; Kameyama, M.; Motoyama, Y.; Nishiyama, H. Tetrahedron Lett. 2007, 48 (19), 3397-3401.
378. Li, H.; Wu, Y.; Yan, W. J. Organomet. Chem. 2006, 691 (26), 5688-5696.
379. Gorunova, O. g. N.; Livantsov, M. V.; Grishin, Y. K.; Ilyin, M. M., Jr.; Kochetkov, K. A.; Churakov, A. V.; Kuz'mina, L. G.; Khrustalev, V. N.; Dunina, V. V. J. Organomet. Chem. 2013, 737, 59-63.
380. Bruce, R. L.; Humffray, A. A. Aust. J. Chem. 1971, 24 (5), 1085-1088.
381. Cammidge, A. N.; Crepy, K. V. L. Tetrahedron 2004, 60 (20), 4377-4386.
