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ABSTRACT 

 

 

The propargyl radical, the most stable isomer of C3H3, is very important in 

combustion reactions. However, theoretical calculations have never been able to find a 

strong absorption around 242 nm as seen in experiments. In this study, we calculated the 

electronic energy levels of the propargyl radical using highly accurate multireference 

methods, including multireference configuration interaction singles and doubles method 

with triples and quadruples treated perturbatively [denoted as MRCISD(TQ)], as well as 

second and third order generalized Van Vleck perturbation theories (GVVPT2 and 

GVVPT3). Calculations indicate that this absorption can be solely attributed to a Franck-

Condon-allowed transition from the ground B1 state to the Rydberg-like first A1 excited 

state. Calculations also show that GVVPT2 with a relatively small active space fails to 

capture enough Rydberg character of this excited state, while it can be recovered by 

GVVPT3, MRCISD, and MRCISD(TQ). 

  In order to speed up MRCISD(TQ) calculations, the triple and quadruple (TQ) 

perturbative corrections, the most time-consuming part of MRCISD(TQ) calculations, 

were parallelized using Message Passing Interface (MPI). The MRCISD(TQ) method is 

organized in the framework of macroconfigurations, which allows the use of incomplete 

reference spaces and provides an efficient means of screening large number of non-



xix 

 

interacting configuration state functions (CSFs). The test calculations show that the parallel 

code achieved close to linear speed-up when the number of CSFs in each 

macroconfiguration is small. The speed-up suffers when large numbers of CSFs exist in 

only a few macroconfigurations. 

The computer algorithm for second-order generalized van Vleck multireference 

perturbation theory (GVVPT2) was similarly parallelized using the MPI protocol, 

organized in the framework of macroconfigurations. The maximum number of CSFs per 

macroconfiguration is found to have less influence on the MPI speedup and scaling than in 

the case of MRCISD(TQ). 

It was previously found that unrestricted local density approximation (LDA) 

orbitals can be used in place of MCSCF to provide orbitals for GVVPT2. This inspired us 

to use the more controllable restricted density functional theory (DFT) to provide unbiased 

orbitals for GVVPT2 calculations. In this study, the relationship between restricted DFT 

and unrestricted DFT were explored and the restricted DFT results were obtained by 

utilizing subroutines from unrestricted DFT calculations. We also found that the DIIS 

technique drastically sped up the convergence of RDFT calculations. 

Plane wave DFT methods are commonly used to efficiently evaluate solid state 

materials. In this work, the electronic properties of pristine graphene and Zn-

phthalocyanine tetrasulfonic acid (Zn-PcS) physisorbed on single-layer graphene were 

calculated using plane wave DFT. The Perdew-Burke-Ernzerhof functional with dispersion 



xx 

 

correction (PBE-D2) was used. The densities of states were obtained for both pristine and 

absorbed graphene, and the disappearance of the characteristic dip in the density of states 

of the adsorbed system was attributed to the lowest unoccupied molecular orbital of the 

adsorbed molecule. A small charge transfer from graphene to the molecule was found. We 

present comparison of DFT results with Scanning Tunneling Microscopy/Spectroscopy 

data. 
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CHAPTER I 

INTRODUCTION 

Modern computational chemistry is widely used in predicting the reactive and 

spectroscopic properties of chemical systems. For sufficiently small systems, such 

calculations usually begin with electronic structure calculations that generate potential 

energy curves or surfaces, followed by dynamic calculations to study the state-to-state rate 

of reaction and possibly macroscopic behavior. Traditional electronic structure methods 

can be classified as semi-empirical methods (such as AM1, PM6),1 mean-field methods 

(including Hartree–Fock and density functional methods),2–5 single reference perturbation 

methods6 (for example the second order Møller–Plesset perturbation theory (MP2)7 ) and 

their multireference extensions,8,9 multiconfigurational self-consistent field method,10 

single reference configuration interaction including single and double excitations and their 

multireference extensions (multireference configuration interaction11 ), single reference 

coupled cluster12,13 including single and double excitation operators, and their 

multireference extensions,14–16 etc. For larger molecules, which cannot be treated by 

electronic structure methods, force field methods17,18 (molecular mechanics methods) can 

be useful.  For instance, force fields can treat systems composed of more than 10,000 

atoms, whereas mean field methods are typically limited to treating molecules containing 
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less than 1000 atoms.19 Multireference methods are typically restricted by the size of active 

spaces, which determines how many N-electron basis functions are used to expand the 

Hamiltonian. 

Various techniques can be used to speed up the calculation, although a common 

feature is the introduction of intermediate quantities that reduce unnecessary repeated 

calculations; these techniques are mostly method dependent, and generally involve a 

balance between the central processing unit (CPU) resources and memory (or disk) 

resources.  In contrast, one common technique that can be applied to all computational 

methods is the parallel implementation of the computational program.  In this dissertation, 

recent progress made to improve the efficiency of large hybrid variational-perturbational 

multireference calculations are described. 

The dissertation is organized as follows.  This chapter provides an overview of 

traditional computational chemistry methods that are relevant to the dissertation, including 

Hartree–Fock, density functional theory (DFT), single reference perturbation method, 

single reference configuration interaction (CI), multiconfigurational self-consistent field 

method (MCSCF), multireference configuration interaction (MRCI),  multireference 

perturbation theory (MRPT), and finally the basics of solid state calculations involving 

periodic boundary conditions. Chapter II discusses the propargyl radical system, whose 

excitations prove to be so difficult to predict accurately that the computationally expensive 

method multireference configuration interaction method including single and double 

excitations corrected by triple and quadruple excitations (MRCISD(TQ)) are required. 

Chapter III discusses the parallel implementation of the MRCISD(TQ) method. Chapter 

IV describes the parallelization of a widely applicable multireference perturbation theory, 
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i.e., the second order generalized van Vleck perturbation theory (GVVPT2) that uses many 

of the parallelization techniques developed for MRCISD(TQ).  Chapter V describes the 

implementation of a spin-restricted density functional theory, which, among other uses, 

can be used to replace the computationally expensive MCSCF method to provide orbitals 

for GVVPT2 calculations.  Chapter VI discusses calculation of the Zn-pthalocyanine 

tetrasulfonic acid adsorbed on graphene system using DFT with a plane wave basis, which 

provides insight into directions for extending traditional quantum chemistry techniques to 

the nano- and meso-scales. 

 

Hartree–Fock 

The Hartree–Fock method is the most basic ab initio method used in modern 

computational chemistry.2–4,19–22 The Hartree–Fock method treats electron-electron 

interaction in a mean field way, such that each electron in the system feels an averaged 

potential generated by the other 𝑁 − 1 electrons. It is an extension of the simple product 

function (called the Hartree method) in that the electron wave function is represented by a 

Slater determinant such that the wave function is antisymmetric upon exchanges of 

electrons.  

Without considering the nature of spin orbitals (other than orthonormality 

conditions), the Hartree–Fock ground state energy can be written as  

 
[1.1] 

where 𝑎 and 𝑏 are spin-orbitals, and ℎ is the one-electron operator for the kinetic energy 

and nucleus-electron interactions.  

E0 = y0 H y0 = ca h ca + 1
2a

N

å caca cbc b  cacb cbc a( )
b

N

å
a

N

å
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 The best spin-orbitals should minimize the energy in the expression above, this 

leads to the Hartree–Fock equations for the spin orbitals 

    
[1.2] 

After the definition of the Coulomb and exchange operator, the Hartree–Fock equation 

above can be rewritten as 

   
[1.3] 

 from which a Fock operator can be defined as  

   
[1.4] 

All equations above use spin orbitals, thus are general for both the spin-restricted 

case and the spin-unrestricted case. By including conditions of spin restriction, the above 

equations can take different forms when expanded in spatial orbitals multiplied by spin-

dependent coefficients, which will be discussed in detail in Chapter V.  

 Another way to look at the Hartree–Fock method is from the orbital rotation point 

of view.20 It provides a compact way of representing orbital optimization at the Hartree–

Fock level. Since the transformation of the orbital coefficient matrices are done by 

multiplications of unitary matrices (e.g., unitary operators expressed in a suitable basis), so 

that such multiplication can be written in an exponential form 

     
[1.5] 

where 𝜅 is the anti-Hermitian one-electron operator 

     
[1.6] 

h(1)ca (1)+ dr2 cb(2) 2 r12
1òéë ù
ûca (1)

b¹a
å  dr2c b

*(2)c a (2)r12
1òéë ùûcb (1)

b¹a
å = aca (1)

h(1)+ Jb (1)
b¹a
å  Kb(1)

b¹a
å

é

ë
ê

ù

û
úca (1) = aca (1)

f (1) = h(1)+ Jb (1)
b¹a
å  Kb (1)

b¹a
å

k = exp(k ) 0

k = kPQaP
+aQ

PQ
å
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Since the Hartree–Fock method uses a mean-field treatment, electron correlation effect is 

not considered for the electrons of the opposite spin, but somewhat included (by virtue of 

the Pauli Exclusion Principle) for those with the same spin. Correlation effects can be 

further separated into dynamic and static correlation effects. Static correlation effects come 

from the degeneracy and near degeneracy of multiple Slater determinants at the ground 

state. Since Hartree–Fock method only uses one Slater determinant, it is qualitatively 

wrong when such effects are present. The MCSCF method is designed primarily to treat 

the static correlation error by including multiple determinants in the calculation. The 

dynamic correlation arises from the instantaneous nature of electron interactions. 

Perturbation theories such as MP2 are primarily designed to capture the dynamic 

correlation effect. Typically, the neglect of static correlation leads to larger errors than the 

neglect of dynamic correlation, and the most common way to treat both types of correlation 

effect is to treat the static correlation first, followed by dynamic correlation correction. 

 

 

Density Functional Theory 

In 1964, Hohenberg and Kohn23 proved two theorems which set the foundation of 

density functional theory. The existence theorem states that the external potential and thus 

the total energy is a unique function of electron density. The variational theorem states the 

electron density, with appropriate boundary conditions (i.e., N-representability), that 

minimizes the energy is the ground state density. This means that the complicated 

electronic interaction can be efficiently solved by approximating the external potential 

electrons feel as a mean-field. A year later, Kohn and Sham24 devised a method to carry 
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out DFT calculations by representing electronic densities with orbitals (Eq. 1.7), retaining 

the exact nature of constraints for DFT. By using this method, the Schrodinger equation 

takes the form of Eq 1.8, usually referred to as the Kohn–Sham equation; the orbitals 

obtained are usually called Kohn–Sham orbitals. The one-electron Kohn–Sham 

Hamiltonian can be expressed as the summation of the classical non-interacting electron 

kinetic term, the nuclear attraction potential, the classical mean-field electronic repulsion 

potential, and the exchange-correlation potential which accounts for both the non-classical 

corrections to the electron-electron repulsion energy, and the non-classical correction to 

the kinetic energy deriving from the interacting nature of the electrons. Unlike the Hartree–

Fock method, the Hohenberg–Kohn theorems show that DFT is an exact method. However, 

the exact form of the exchange correlation potential is unknown. Various approximations 

are used to approximate it, and the expression of this potential uniquely defines the DFT 

method. 

     
[1.7] 

     
[1.8] 

   
[1.9] 

     
[1.10] 

 

 
[1.11]  

r = c i c i
i=1

N

å

hi
KSc i = ic i

hi
KS =  1

2
Ñi

2  Zk

ri  rkk

nuclei

å + r(r ')
ri  r 'ò dr '+VXC

VXC =
dEXC

dr

E[r(r)]= c i 
1
2
Ñi

2 c i  c i
Zk

ri  rkk

nuclei

å c i + c i
1
2

r(r ')
ri  r 'ò dr ' c i

æ

è
çç

ö

ø
÷÷

i

N
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The expression for exchange correlation potential is usually separated linearly into 

an exchange term and a correlation term. Each term is usually constructed by 

parameterizations. Certain DFT methods are constructed only based on physical 

constraints, such as obtaining the correct uniform electron gas limit. In these cases, the 

parameters have physical meanings and are not empirical. The X-α method25 and PBE26 

are both of this type. Other DFT methods contain parameters that are optimized to 

minimize the error of certain types of data set. Typically, these methods are designed to 

incorporate physical constraints as well.  

Based on what local characteristics the exchange correlation potential depends on 

(e.g., density, density gradient, kinetic energy density), most DFT methods can be assigned 

to a Jacob’s ladder of increasing accuracy.27 The first rung of the ladder is the least accurate 

type and is called the local density approximation (LDA), with the exchange and 

correlation functionals depending on the local density only. Required to obtain the correct 

uniform electron gas limit, the LDA exchange functional takes the form of Eq 1.12. 

   
[1.12] 

LDA typically gives an error of 1% of total energy, making it impractical for 

chemical purposes, since the total bonding energy is of comparable magnitude. The local 

spin density approximation (LSDA) is a spin polarized extension of LDA; it employs both 

spins densities separately, 

   
[1.13] 

  The second rung, generalized gradient approximation (GGA), depends on the 

gradient of electron density in addition to the electron density itself, and is thus considered 

EX
LDA[r]=  3

4
3
p
æ
è
ç

ö
ø
÷

1/3

r(r)4/3 drò

EXC
LSDA[r­,r¯]= XC[r­,r¯]r(r)drò
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semi-local (in the sense of a Taylor expansion of the density). The most common way to 

construct GGA is to add a term related to the dimensionless reduced gradient, see Eq 1.14. 

   
[1.14] 

    
[1.15] 

The third rung, meta-GGA, is constructed by considering the dependence of the 

Laplacians of electron density, such as TPSS,28 or the Kohn–Sham orbital kinetic energy 

densities, such as the Minnesota functionals.29–32 These types of calculations are more 

commonly used in molecular calculations than in plane wave calculations.  

The fourth rung, hyper-GGA, adds the exact exchange energy density as a local 

ingredient. Widely used global hybrid functionals include B3LYP,33–35 PBE0,36 etc., 

whereas some other DFT methods like CAM-B3LYP37 and ωB97X-D38 use different 

parameters for Hartree–Fock exchange at different distances. Hybrid GGA methods are the 

most commonly used DFT methods in molecular calculations because the inclusion of the 

Hartree–Fock exact exchange can drastically improve the calculation accuracy without 

much increase of computational time. The most famous DFT method (i.e., B3LYP33) has 

an expression of Eq 1.16. 

  
 [1.16] 

The fifth and last rung of Jacob’s ladder utilizes both the occupied and unoccupied 

Kohn–Sham orbitals. These types of functionals require large basis sets (comparable to 

those needed in wave function calculations) and are not yet practical for general use.  

EXC
GGA[r­,r¯]= XC (r­,r ,̄Ñr­,Ñr¯)r(r)drò

XC
GGA[r(r)]= XC

LSDA[r(r)]+DXC
Ñr(r)
r(r)4/3

é

ë
ê

ù

û
ú

EXC
B3LYP = (1 a)EX

LSDA + aEX
HF + bDEC

B + (1 c)EC
LSDA + cEC

LYP
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Typically, DFT methods are reliable in predicting geometry and ground state 

energies of molecules. The challenges reside in the calculation of reaction barriers, excited 

states, systems of multireference character, long-range dispersion, charge transfer systems, 

hydrogen bonding, strong correlation, etc. In order to treat multireference character cases, 

non-collinear DFT methods39,40 and multideterminantal DFT41–44 were developed over the 

years. Excited states can be treated by time-dependent DFT,45–47 real time time-dependent 

DFT,48 or spin-flip DFT methods.49 Dispersion can be treated by adding van der Waals 

corrections to the Kohn–Sham Hamiltonian.50,51  

In the area of DFT methods, it is worth pointing out that there are other variations 

of DFT methods that are fundamentally different from the above mentioned ones. For 

example, the orbital-free DFT method52 follows the Hohenberg–Kohn theorem without 

using Kohn–Sham orbitals; the DFT+U method53 has an empirical parameter U to describe 

the electron localization, which can be important in systems like Mott insulators; various 

versions of density functional tight binding methods54 solve the secular equation in self-

consistant55,56 or non-self-consistant57,58 ways to treat large molecules, clusters, nano-

structures, and condensed-matter systems; the recently developed machine learning DFT 

method59,60 can learn from density matrix renormalization group method data to obtain the 

kinetic energy as a functional of electron densities in an orbital-free manner. 
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Figure 1. Jacob’s ladder [Fig. 1 from Reference 27] 

 

Single-Reference Perturbation Method 

 Perturbation methods are used to recover dynamic correlations. Commonly seen 

types of perturbation methods include the Rayleigh–Schrodinger perturbation theory and 

the less commonly used Brillouin–Wigner perturbation theory.6  In perturbation theories, 

the Hamiltonian 𝐻 is written as the sum of two terms: one being the zero order Hamiltonian 

which contains the majority of the interaction 𝐻଴ , and the other being the “small” 

perturbation 𝑈.  

     
[1.17] 

The term 𝐻଴ should be exactly solvable with eigensolutions 

    
[1.18] 

The exact solution of the exact Hamiltonian that we look for can be expressed as  

H = H0 +U

H0 i(0) = Ei
(0) i(0)
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[1.19] 

By choosing the Fock operator (vide supra) as the zero-order Hamiltonian in Rayleigh-

Schrodinger perturbation theory, the ubiquitous Møller–Plesset perturbation theory (i.e., 

MPn, where n is the order of perturbation) can be constructed. It is useful to note that the 

Hartree–Fock energy is correct through the first order in Moller–Plesset perturbation 

theory. After expanding the exact solutions into summations of all orders of the 

perturbation results,  

    
[1.20] 

     
[1.21] 

the Schrodinger equation can be written as  

 

    
[1.22] 

The Rayleigh–Schrodinger perturbation theories are derived by collecting terms of the 

same order 𝑛 

   
 [1.23] 

Since the inversion of 𝐻଴ + 𝐸(଴) is well-defined for states other than the reference, 

the n-th order wave function correction can be written as  

  
[1.24] 

H 0 = E 0

E 0 = 0(k )
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This relationship can be used recursively to generate the perturbation equations of higher 

order. Using a projection operator 𝑃 = 1 − ห0(଴)ൿൻ0(଴)ห to circumvent the nonsensical self-

perturbation, the low-order wave functions can be written as  

 

  
[1.25] 

 

And their energy corrections are  

 

                                                      [1.26] 

 

 It can be proven that Rayleigh–Schrodinger equation obeys the so-called 2𝑛 + 1 

rule,61 meaning the 𝑛-th order wave function can give the energy of the order 2𝑛 + 1. 

 

Configuration Interaction 

The single-reference configuration interaction method improves Hartree–Fock results by 

solving a variational problem that includes more Slater Determinants in the calculations. 

The Hartree–Fock N-electron wave function is used as the reference, and additional 

determinants are generated by exciting electrons from occupied orbitals into virtual 

orbitals. The importance of determinants is decided by variationally optimizing the total 

energy, while the Hartree–Fock orbitals are kept without further optimization.  

0(1) = P(H0 +E (0))1PU 0(0)

0(2) = P(H0 +E (0))1 P(U E (1)) 0(1)

0(3) = P(H0 +E (0))1 P (U E (1)) 0(2) E (2) 0(1)é
ë

ù
û

E (1) = 0(0) U 0(0)

E (2) = 0(0) U 0(1)

E (3) = 0(0) U 0(2)
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[1.27] 

    
[1.28] 

This leads to the eigenvalue problem  

     
[1.29] 

If all possible electron configurations are included in the calculation, the CI method 

is referred to as full-CI. The full-CI method provides the variational limit of non-relativistic 

electronic structure calculations; the full-CI limit for a relativistic Hamiltonian is possible 

but requires additional approximations (e.g., “no pairs”). Unfortunately, the full-CI method 

is impossible to apply to large molecules since the number of configurations increases 

drastically (e.g., more than exponentially) with the system size. For a fixed number of 

electrons 𝑘, the number of determinants increases as 𝑛௞ with the number of orbitals 𝑛.  In 

practice, the full-CI method is rarely used except for model problems, and the truncated CI 

methods are used instead. 

The CI methods are usually truncated based on the level of excitations. If only 

determinants generated from double electron excitations are included in the CI matrix, the 

CI method is usually referred to as CID. Truncated CI methods lose their size-extensivity, 

meaning the energy of the sum of separate systems A and B does not equal to the energy 

of a combined system A+B even though A and B are far enough apart so that they don’t 

interact with each other. When the Hartree–Fock reference wavefunction fails 

qualitatively, the other determinants generated from the reference by a tractable finite 

number of replacements will also fail to effectively describe the excited states. Thus by 

C = Ci i
i
å

¶
¶Ci

C H C
C C

= 0

HC = EC
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directly using Hartree–Fock orbitals without optimization, the tightly truncated CI methods 

are not the most effective for calculating systems with high static correlation effects. On 

the other hand, dynamic correlations depend more on the nodal structure and the overall 

shape of orbitals, so that careful orbital optimization is not necessary. The truncated CI 

method can capture dynamic correlation to a reasonable amount.  

The CI space can be expanded in either Slater determinants or Configuration State 

Functions (CSFs). CSFs are linear combinations of spin-symmetry-adapted Slater 

determinants, and thus are more compact than determinants but more importantly 

guarantee that wave functions are eigenfunctions of both S2 and Sz. For the same 

configuration space of a singlet, the dimension of the set of CSFs is about a quarter of that 

of determinants. For a full-CI expansion, the rigorous ratio of the number of spin-adapted 

CSFs and determinants can be calculated by62 

    
[1.30] 

 

Multiconfigurational Self-Consistent Field Theory 

In some chemical systems, multiple electron configurations are important in the 

qualitative description. These systems usually exhibit resonance structures or have low-

lying excited states. Some studies are interested in the energy of excited states instead of 

the ground state. Still other studies look at a reaction path, where electronic configurations 

change from before to after a reaction, and the relative importance of electronic 

configurations change (sometimes dramatically) along the reaction path. For these systems, 

multiple electron configurations must be included, and the orbitals need to correctly 

NCSF

Ndet

= (2S +1)(n+1)

(S +1+ N
2

)(n+ S +1 N
2

)
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represent each configuration without bias. This requires simultaneous optimization of the 

orbital coefficients and the configuration coefficients.   

Following the notations from the subsections describing Hartree–Fock and CI, the 

MCSCF wave function can be written in the form 

    
[1.31] 

EMCSCF =min
k ,C

k,C H k,C
k,C k,C     

[1.32] 

The optimization of the MCSCF function is much more difficult than that of single-

reference methods. The reason is there generally are multiple local stationary points that 

satisfy some optimization convergence criteria, and even some that satisfy all criteria, but 

they may still not be the global minima or are not physical. One must investigate the nature 

of orbitals carefully to make sure the calculation makes sense. Another very important way 

to reduce this problem is in the selection of active spaces; in other words, in the selection 

of which orbitals and what configurations are optimized in the calculation. If certain 

orbitals are always doubly occupied, for example the 1s orbital of oxygen in a ground 

electronic state calculation of H2O, the Hartree–Fock orbitals should be accurate enough 

and do not need to be further optimized or require minimal changes. Similarly, high energy 

virtual orbitals do not need much optimization because they are almost never occupied. 

Furthermore, not only is it not necessary to optimize them, but their inclusion in the active 

(or variable occupancy) space destabilizes a calculation. Where optimization is most 

valuable is in connection with the valence orbitals and low energy virtual orbitals. These 

orbitals and their occupation schemes define the active spaces. Moreover, and in homage 

k,C = exp(k ) Ci i
i
å
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to the chemical intuition of Valence Bonds, a common rule of generating efficient active 

spaces is to include pairs of bonding and anti-bonding orbitals.  

Active spaces can be classified as complete or incomplete, depending on whether 

all determinants (or CSFs) consistent with specified symmetries that can be generated from 

a given set of orbitals are included in the many body basis.  There are two schemes in 

common use to select active spaces: complete active space (CAS) and restricted active 

space (RAS). The CAS method allows the electrons to occupy the active orbitals in all 

possible ways consistent with the Pauli exclusion principle and other symmetries. This can 

be viewed as a full-CI in the active space. The RAS method further divides the set of active 

orbitals into three categories RAS1, RAS2, and RAS3. The RAS1 space can be fully 

occupied or have a maximum of two electrons excited from the RAS1 orbitals. The RAS3 

space can have a maximum of two electrons in the RAS3 orbitals. The RAS2 orbitals can 

host the rest of the electrons in the system. Typically, the orbitals in the RAS1 and RAS3 

spaces are bonding and the corresponding anti-bonding orbitals, respectively. In our 

approach, active spaces can be defined based on a macroconfiguration scheme,63 which is 

more flexible than the traditional approaches. This approach provides an easy and 

mathematically well-defined way to divide the orbitals into an arbitrary number of groups 

with arbitrary occupancies.  Computationally, use of macroconfigurations leads to efficient 

algorithms and, of specific interest here, provides a convenient way to parallelize 

multireference calculations. The macroconfiguration method is described in detail in 

Chapter III.  
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Multireference Configuration Interaction Method 

Multireference configuration interaction methods (MRCI) are similar to single-

reference configuration interaction methods, except that more than one many-electron 

function is used as the reference, as opposed to Hartree–Fock. Typically, MCSCF functions 

from a previous calculation are used.  This method can capture both static and dynamic 

correlation effects.  

 Similar to single-reference CI methods, the configuration (or CI) space in which 

the N-electron wavefunction is expanded is represented as antisymmetrized product 

functions (i.e., Slater determinants) or linear combinations of them (e.g., CSFs). The 

expansion coefficients over the many electron basis can be organized into a vector (referred 

to as the CI vector) and the integrals over the Hamiltonian operator as a matrix (called the 

CI matrix or simply as the Hamiltonian). The size of the CI space can reach the order of 

billions of CSFs or more. If the CI space is expanded in determinants, its size is usually a 

few times larger than expanding by CSFs. Considering the overall size of the CI matrix 

and the complexity of diagonalizing this matrix (even for only a few lowest eigenpairs), 

expanding the Hamiltonian by CSFs is usually advantageous even though programming 

CSF-based code is more complicated.  

 Like single reference CI methods, MRCI diagonalizes part of the CI matrix. 

Considering the dimension of CI matrices, conventional diagonalization techniques that 

are useful for “smaller” matrices (i.e., up to maybe 103 or 104 dimensional) cannot be 

applied. Luckily, we are not interested in the fully diagonalized matrix. Instead, the 

physical problems in which we are interested require us to only calculate a few states that 

have the lowest energy. In this way, the problem of diagonalizing 
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[1.33] 

restricts the range of “i”, and algorithms for finding the lowest eigenpairs of large, sparse 

matrices can be applied.  Essentially all algorithms are of the Preconditioned Conjugate 

Gradient variety, of which Lanczos64 and Arnoldi65 are the best known (for symmetric and 

asymmetric, respectively).  For quantum chemistry problems, the eponymous variety 

introduced by Davidson (or more generally Davidson-Jacobi) is the most effective and the 

most used.66  

 In the Davidson algorithm, some trial vectors are selected to start the calculation. 

The number of trial vectors is usually around the number of eigenpairs desired. Then the 

matrix product  is calculated. A matrix eigenvalue problem in a subspace can be 

formed by multiplying , and this subspace has the same dimension as 

the number of trial vectors, which is considerably smaller than the original CI matrix. By 

diagonalizing this submatrix , eigenvectors  and eigenvalues  can be 

obtained. At this point, a residual can be formed that measures how accurately the CI matrix 

is approximated by the submatrix, using . It should be zero if the subspace 

perfectly approximates the CI matrix. Using this residual, a set of additional basis vectors 

can be generated and constrained to be orthogonal to the original one, and the next iteration 

can be carried out until convergence. For practical reasons, e.g., limitation of available disk 

space, the expanding set of basis vectors sometimes needs to be contracted into a new set 

of trial vectors and the whole process repeated. 

 In the calculation of the CI matrix, the most time-consuming step is the calculation 

of the matrix product . Due to the size of the Hamiltonian matrix, storing it in 

HCi = CiEi

Ci

s i = HCi

x i ri

ri = (H riI)x i

s i = HCi
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memory or even disk becomes impractical. Instead, direct CI was developed to calculate 

the Hamiltonian matrix on-the-fly during the diagonalization step.67  In practice, the most 

efficient programs only store the trial vectors and the sigma vectors on disk.  Many 

approaches can be used to improve the efficiency of this calculation. The most commonly 

seen ones for CSF-based Hamiltonians are Table-CI,68,69 symmetric group approach 

(SGA),70–73 unitary group approach (UGA),74,75 and its graphical presentation, the so-called 

graphical unitary group approach (GUGA).76,77 These methods not only provide efficient 

ways to arrange and label the CSFs, but also provide ways to organize the calculation steps.  

 Both UGA and SGA couple electrons successively; i.e., they look at the change of 

quantum numbers with the increase of number of electrons, and determine how to add 

electrons to achieve the desired (spin-)symmetry.  It was shown that the UGA and SGA 

methods are inherently related.78 The Yamanouchi–Kotani states often used as basis 

functions in SGA methods are equivalent (up to overall phase) to the Gelfand–Tsetlin states 

normally used as basis functions in UGA. GUGA can be implemented in various ways, 

with well-known codes by Brooks and Schaefer,79–81 Siegbahn,82,83 Shavitt and 

coworkers,84 and Wen and coworkers85,86 to name a few. GUGA is regarded as arguably 

the most efficient approach, especially when the orbital spaces have many singly occupied 

orbitals and when the basis functions are limited to single and double electron excitations. 

 The most popular formalism of GUGA was developed by Shavitt.41,84,87,88 It was 

shown earlier that the intrinsic structure of spin-adapted CSFs can be compactly 

represented by a Paldus tableau.74,89,90 In any genealogical coupling scheme, each CSF can 

be thought as constructed by putting in one orbital at a time into the vacuum space. Each 

new orbital can be unoccupied, doubly occupied, or singly occupied with an increase or 
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decrease in total spin (S2). In a Paldus tableau, the CSF can be represented by recording 

each step of the generation using 𝑛 sets of three numbers 

      
[1.34] 

where 

 

     
[1.35] 

 

representing the number of coupled pairs, total spin increasing, and empty orbitals at step 𝑖. 𝑁௜ and 𝑆௜ are the cumulative number of electrons and total spin at step 𝑖. Following this 

procedure, a step number 𝑑௜ can be defined to represent how to get from step 𝑖 to 𝑖 + 1.  

Table 1. Definition of step numbers in DRT 

𝒅 ∆𝒂∆𝒄തതതത ∆𝒂∆𝒄 ∆𝑺 ∆𝑵 

0 0 1 0 0 0 0 

1 0 0 0 1 12 1 

2 1 1 1 0 − 12 1 

3 1 0 1 1 0 2 

 

All possible ways to generate Paldus tableaux can be collected together in tables known as 

distinct row tables (DRT). 

[aibici ], (i =1, 2,...,n)

ai =
1
2

Ni  Si

bi = 2Si

ci = i ai  bi
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 Shavitt translated the DRT representation into a graph, called the Shavitt graph.84 

Each row in a Paldus tableaux is a node point in the Shavitt graph.  Each arc connecting 

the nodes denotes one step taken (i.e., the occupancy and spin coupling of a given orbital), 

and the slope of the arc is related to the step number 𝑑௜.  Following a set of arcs from 

bottom to top would generate a Paldus tableau, and thus a CSF. The number of paths from 

the bottom node to the top node gives the number of CSFs of the desired spin- (and often 

point group) symmetry. Following the Shavitt graph, it is easy to calculate the number of 

CSFs related to any node. By using the nodal information, the CSFs can be indexed easily. 

The indices are called the arc weights. 

 

Figure 2. The Shavitt graph for the (2, 1, 02) irreducible representation of the U(4) group. 
This corresponds to the configurations with 3 electrons occupied in 4 orbitals, generating 
one electron pair and one unpaired electron. S=1/2, N=3, n=4. 91 
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 The GUGA method provides further ways to organize the CI calculation. Making 

maximal use of the nodal structures, calculations can be organized into contributions to 

large numbers of CSF pairs simultaneously, rather than the interaction of two CSFs at a 

time.  Realization of this concept gives rise to loop driven,79,80 shape driven,92,93 integral 

driven82,83 and other approaches depending on particulars. This versatility can potentially 

help utilize varieties of computer infrastructures by distributing realizations of the GUGA 

formalism in different ways. 

 In the current version of UNDMOL, MRCI uses a configuration-driven GUGA 

method. In this method, the CI vectors are first arranged by configurations and then by 

macroconfigurations. This separates the CI vectors into two levels of coarse-grained 

groups. This enables the use of macroconfigurations to identify large sets of configurations 

that can possibly interact with each other, following the idea that the Hamiltonian operator 

is a two-electron operator. Subsequently, configurations can be used to screen possibly 

interacting CSFs, which outnumber configurations (sometimes substantially). This 

drastically decreases the calculation time compared to conventional CSF-based algorithms, 

especially when arcane incomplete model spaces are needed. One particular drawback of 

conventional GUGA is that the global lexical order of CSFs belonging to a single 

configuration is distributed diffusely. This restricts the application to some perturbation 

theories if explicit treatment of configurations is required. The macroconfiguration 

approach is also helpful in this respect. For each macroconfiguration, a DRT can be 

generated. Using macroconfigurations not only provides a clean and flexible way to define 

incomplete active spaces, but also solves the problem that the conventional Shavitt graph 

is inefficient in treating complicated incomplete active spaces.  Conventional restricted 
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active spaces, which are not even particularly complicated incomplete spaces, are 

generated by removing the unwanted configuration state functions from the complete 

active space, which is not convenient in MRCI especially when triple and quadruple 

excitations are needed.  

 In addition to using macroconfigurations, the configuration-driven CI program in 

UNDMOL utilizes a modified DRT (mDRT), which ignores the spin information of 

electrons, in some stages of the calculation. In other words, cases where step number 𝑑௜ =1 and  𝑑௜ = 2 are combined. This is reminiscent of the occupancy graphs that are used in 

high efficiency SGA programs.73 The spin coupling of the CSF can be treated separately, 

when needed, with an abbreviated DRT that considers only the open shell part. 

 

Multireference Perturbation Theory 

A common way to approximate multireference CI methods is to treat part of the 

MRCI perturbatively as opposed to variationally. This is gives rise to multireference 

perturbation theories (MRPT), although there are other ways of deriving MRPTs.  MRPT 

methods, as do many other MR techniques, also use variational wave functions in a smaller 

space as reference functions.  Since second-order MRPTs have seen the most development 

and use, MCSCF wave functions are the appropriate variational references.  And since the 

Hamiltonian is a (one- and) two-electron operator, the first order correction generates a CI 

matrix with the same excitations as those found in MRCISD. However, the coefficients of 

the CSFs are calculated perturbatively instead.  MRPTs based on simple reference spaces 

(e.g., complete) are often amenable to resummation techniques so that CSF coefficients are 
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not explicitly calculated.  This option is generally not available to incomplete model space 

based MRPTs, like ours. 

Like all perturbation methods, MRPTs separate the Hamiltonian into two parts. The 

dominant part is often treated variationally, usually by MCSCF (as in the case of GVVPT2) 

or MRCISD (in the case of MRCISD(TQ)). The perturbation part evaluates how the 

external space part of the Hamiltonian affects the Hamiltonian of the model space. This 

can be visualized by Lowdin partitioning,94 although additional steps are generally needed 

and define the various different MRPTs. 

The complete CI matrix can be written in the blocked form  

   
[1.36] 

or the separate equations 

   
[1.37] 

    
[1.38] 

The external wave function can be expressed formally in terms of the model space 

wavefunction by 

    
[1.39] 

Eliminating the external space wave function , a new effective Hamiltonian with 

dimension of the model space can be found  

    
 [1.40] 
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From this equation, it can be seen that if the model space Hamiltonian 𝐻ெெ  is the 

donminant part, then the  part is the perturbation.  

 

Ab Initio Calculation of Solids 

 Molecular electronic structure methods that expand electron orbitals by linear 

combinations of Gaussian or Slater type orbitals can only treat systems as large as 

thousands of atoms (even with severe approximations to the Hamiltonian operator). 

However, a solid crystal contains as many as Avogadro’s number of atoms or ions, thus 

cannot be directly calculated using a local orbital basis. However, crystals exhibit 

symmetry not found in molecules. By utilizing their translational invariance, a crystal can 

be represented by a Bravais lattice,95 with each point of the lattice representing a repeating 

unit of the crystal. With the definition of Bravais lattices and reciprocal lattices, it can be 

easily seen that planewaves can be used as a natural basis in the calculation of crystals. 

 A three-dimensional lattice is composed of all points with position vector  

R = n1a1 + n2a2 +n3a3, where a1 a2 and a3 are three non-coplanar basis vectors, and ,  

and  are integers. Basis vectors , , and  define a parallelepiped called a primitive 

unit cell. The length and angles between , , and are called cell parameters.  

 
 
 

HMQ(E HQQ )1 HQM

n1 n2

n3 a1 a2 a3

a1 a2 a3
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Figure 3. A two-dimensional Bravais lattice of no particular symmetry ( |𝒂𝟏| ≠|𝒂𝟐|, 𝜃𝒂𝟏𝒂𝟐 ≠ 60° ). Primitive vectors and are shown. All points are linear 
combinations of them with integral coefficients, for example, 𝑃 = 2𝒂𝟏 + 3𝒂𝟐, 𝑄 = −𝒂𝟏 +2𝒂𝟐. 
  

The lattice defined by real space (or position space) vectors , , and are 

called the direct lattice. Each direct lattice also admits a reciprocal lattice, constructed by 

the reciprocal lattice basis vectors , , and  ,following the orthogonality condition  

     
[1.41] 

The space in which the reciprocal lattice lives is called the reciprocal space. Due to its 

connection to momentum  in the planewave formulation, it is also called momentum 

space or k space. For any  vector in the reciprocal space k = k1b1 + k2b2 + k3b3 , where 

, , and  are integers, the planewave  will have a periodicity of the reciprocal 

lattice,  

     
[1.41] 

Recognizing that the reciprocal vectors , , and  make the reciprocal lattice, unit 

cells can also be found in the reciprocal space. The most commonly used way to define a 

reciprocal unit cell is the first Brillouin zone. It is constructed by first connecting one 

a1 a2

a1 a2 a3

b1 b2 b3

aibj = 2p ×dij

k

k k1

k2 k3 eik×r

eik×(r+R) = eik×r

b1 b2 b3
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reciprocal lattice point to all its nearest neighbors and then letting orthogonal planes pass 

through their midpoints. The area enclosed by these planes is called the first Brillouin zone.  

 

Figure 4. The first Brillouin zone of a face centered cubic crystal and the high symmetry 
points.96 
 

The correspondence relationship of real space and reciprocal space provides us a 

good way to represent planes in real space. A plane normal to the reciprocal lattice vector 

 can be represented by Miller indices h, k, l.  

 

Figure 5. Miller indices in a simple cubic Bravais lattice.96 

 

hb1 + kb2 + lb3
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 Due to the periodicity of a crystal, the potential energy of such a crystal must be 

periodic as well. In other words, for all direct space lattice vectors R 

     
[1.42] 

Using this condition, it can be seen that the eigenstates 𝜓 of a system with such a periodic 

potential can be chosen to have the form of a plane wave times a function with the 

periodicity of the Bravais lattice  

yn,k (r) = eik×run,k(r)
     

[1.43] 

where   

un,k(r+R) = un,k(r)
     

[1.44] 

This is the foundationally important Bloch’s theorem in solid state physics and chemistry. 

It also suggests  

 
yn,k(r+R) = eik×Ryn,k(r)

    
[1.45] 

An equivalent way to write Bloch’s theorem is  

 
y(r+R) = eik×Ry(r)

     
[1.46] 

In this way, all cell periodic functions can be written as a linear combination of plane wave 

basis functions eiG×r , where 𝐺 is the wave vector of the plane wave basis function. 

un,k (r)= 1
W1/2 cGnk

G
å eiG×r

    
[1.47] 

yn,k (r) = 1
W1/2 cGnk

G
å ei(G+k )×r

    
[1.48] 

 
r(r) = rG

G
å eiG×r

     
[1.49] 

V(r + R) =V (r)
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V (r) = VG
G
å eiG×r

     
[1.50] 

In practice, only those plane waves G+k  are included for which 

1
2

G+k 2 < Ecutoff

     
[1.51] 

where the right hand side is called the cut-off energy, representing the maximum of the 

kinetic energy of the plane wave basis function used in the calculation. 

Given a function f (r)of the same periodicity as that of a crystal, the average value 

of the function can be calculated by integrating within the first Brillouin zone: 

f (k, k') = [yk'(r)]* f (r)ò [yk (r)]dr
    

 [1.52] 

Using the plane wave expansion above, we can expand the wave functions and the periodic 

function as  

yn,k (r) = eik×run,k (r)= cG
G
å ei(k+G)×r

    
 [1.53] 

yn,k '(r) = eik '×run,k '(r) = cG '
G '
å ei(k '+G ')×r  

   
 [1.54] 

 
f (r) = CG ''e

iG''r

G ''
å

     
 [1.55] 

The integral can be evaluated using the following sum, which is non-zero only when k = k ' 

  

f (k, k ') = cG cG' cG''
G ''
å

G '
å ei(k+G+G'')rò ei(k'+G')rdr

G
å

= cG cG' cG''
G ''
å

G '
å ei(k+G+G'')rò ei(k+G')rdr = f (k)

G
å

   [1.56] 

Following the method above, a set of quantum mechanical equations can be 

constructed for each k point. Each equation can be solved for a set of energy solutions. 

Connecting the energies of high symmetry k points and those of the k points in between, a 
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band structure can be obtained. An example of the high symmetry k points in a face center 

cubic crystal can be found in Figure 4. 

 

Figure 6. Band structure of face centered cubic silicon crystal. Calculation inspired by 
Reference 97.  97  
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CHAPTER II 

THEORETICAL CALCULATIONS ON THE UV ABSORPTION OF 
PROPARGYL RADICAL AROUND 242 NM 

Introduction 

The propargyl radical (H2CCCH) is the most stable isomer of .98,99 Its 

formation and reactions have attracted much attention because it is an important precursor 

in the formation and growth of polycyclic aromatic hydrocarbons,100 which are pollutants 

of concern due to the potency of their adverse health impacts. Such reactions are important 

not only in the studies of combustion reactions, but also planetary atmospheres and 

interstellar media.101–103  Previous spectral104–108 and computational109–112 studies were 

carried out to study the ionization potential and vibrational properties of propargyl. The 

kinetics of propargyl photodissociation was also studied using experimental106,113 and 

theoretical114–116 methods. Its heat of formation,117 electron spin resonance,118 bond 

dissociation energy119 and the properties of its cation120 and anion121 forms were also 

studied extensively.  

 Propargyl radical has a strong ultraviolet (UV) absorption band at 240 nm.122,123 

After absorption, propargyl radical can go through a photodissociation process and break 

down into , , , or .118,124 (See Figure 7) It 

was shown that at 240 nm the majority of propargyl radicals go through the 

channel.115 However, not all dissociation paths were observed in all experiments, 

depending on the precursors used to obtain the radicals. Based on MCSCF calculations, 

3 3C H

HCCCH H+ 3 2c C H H + 2CCCH H+ 3 2C H H+

HCCCH H+
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the 240 nm peak was initially assigned to be the  transition with a single 

electron excited from the  into the  orbital.123 Eisfeld125,126 performed more 

extensive MRCISD+Q calculations and claimed that the only transition of propargyl 

radical in the 240 nm region is the  dipole-forbidden transition. Because this 

transition cannot produce a strong peak, he concluded that that peak must come from 

another species. After subsequent experimental studies, similar results were obtained no 

matter how propargyl was prepared, while the peaks predicted by Eisfeld were never found. 

The consensus from experimental studies is that it is indeed propargyl radicals that are 

responsible for the peak at 240 nm.122,127,128 Moreover, it is generally believed that the 

original assignment was correct. The conundrum is that there is no theoretical 

calculation that matches this result within 10 kcal/mol, including the original MCSCF 

calculation.  

 

Figure 7. The most important unimolecular reaction channels for the propargyl radical 
together with the heats of reaction. 113 

 

2 2
1 11 3B B

2( )bp 2*( )bp

2 2
1 21 2B B

2 2
1 11 3B B



33 

 

 We report and analyze the results of the most complete description of the electronic 

structure of the low-lying states of propargyl to date. The MRCISD(TQ) method,129,130 

which is a multireference CI method that includes all single and double excited 

configurations variationally and the contributions of the triple and quadruple excitations 

perturbatively, was used.  Also see Chapter III of this dissertation for additional 

information about MRCISD(TQ).  Our implementation of MRCISD(TQ) is with 

uncontracted singly and doubly excited CSFs, so that full flexibility of the excited 

configuration is retained. The inclusion of triple and quadruple excitations not only reduces 

the size extensivity error but also includes correlation for states that are not well-

represented qualitatively using a valence active space (e.g., Rydberg states).  

MRCISD(TQ) is free of “intruder states” problems, and allows for simultaneous 

calculations of several electronic states of the same space and spin symmetry. To further 

understand the electronic structure of the propargyl radical, we also carried out calculations 

with multireference perturbation methods GVVPT29,131 and GVVPT3,132 both of which 

build dynamic correlation upon an MCSCF description of the static correlation and 

determination of orbitals.  

 The rest of the chapter is organized as follows. In the Methods section, we begin a 

description of the calculation methods and the active spaces used in all calculations. The 

next section reports out results and discussions, and the Rydberg character is analyzed. We 

also present here our results calculated by MRCISD, MRCISD(TQ), GVVPT2, and 

GVVPT3, as well as the effect of active spaces on GVVPT2 calculations. Finally, our 

conclusions are given in the last section.  
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Methods 

MRCISD(TQ) 

The MRCISD(TQ) method used in this study, also referred to as the nR-

MRCISD(TQ) method, was developed in our group.129 It can simultaneously calculate the 

energies of multiple low-energy states, as opposed to single-state methods, such as most 

internally contracted methods and the original MRCISD(TQ) method130 developed in our 

group. As the nR-MRCISD(TQ) method is described in detail in Chapter III, we only 

mention here that only one iteration of this method is used in this study, because it has been 

shown that the subsequent iterations do not improve the calculation results much.129 

Rydberg orbitals and Rydberg states 

 In this work, we refer to molecular orbitals that are dominated by atomic orbitals 

with higher principle quantum numbers than those of valence orbitals as Rydberg orbitals. 

For example, the 3s and 3p orbitals of a carbon atom would contribute to Rydberg orbitals. 

More precisely, the Rydberg orbitals in this work are determined based on the size of 

isodensity surfaces of the orbitals and their nodal structures.  

 Physically speaking, Rydberg states are electronic states in which an electron is 

excited into a Rydberg orbital. However, in electronic structure calculations, it is possible 

to obtain a Rydberg state without the involvement Rydberg orbitals. This can be done by 

having multiple configurations that have high energy orbitals occupied. Since the electron 

distribution in Rydberg states is in general much more diffuse than valence states, this is 

used as the main character used in this work to distinguish Rydberg states. Another 

criterion used is the basis set dependency of Rydberg states. The detail is presented in the 

results and discussion section.  
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Computational theories used in the calculations of propargyl radical 

It was shown in previous studies that geometries optimized from B3LYP 

calculations are more reliable than those from MCSCF ones.133 Due to the computational 

cost of MRCISD, the geometry of propargyl radical was optimized using DFT with the 

B3LYP functional using the aug-cc-pVTZ(AVTZ)134 basis set. MRCISD(TQ) calculations 

were performed for the two lowest A1 states, the four lowest B1 states, and the three lowest 

B2 states. All states are weighted equally in each calculation. All MRCISD and 

MRCISD(TQ) calculations are performed with the AVTZ basis set. The molecular orbitals 

used in MRCISD and MRCISD(TQ) calculations were obtained from MCSCF 

calculations: the frozen core space always contained seven a1 orbitals and one b2 orbital, 

which are the 1s electrons of carbons and the 𝜎-type backbone of the structure; the active 

spaces of the B1 and B2 states had five electrons occupying three b1 orbitals and two b2 

orbitals in a complete active space manner, all of which are valence type 𝜋  orbitals; 

whereas the A1 states calculations used a macroconfiguration63 approach that confined four 

electrons in those orbitals and one electron in a group of active orbitals composed of two 

diffuse a1 orbitals. The MRCISD and MRCISD(TQ) calculations used the same active 

space configurations and correlated all but the three lowest a1 orbitals of the MCSCF in the 

frozen core; i.e., the remaining higher lying four a1 and one b2 orbitals were placed into the 

active core space.  

Similar complete active spaces are used in GVVPT2 and GVVPT3 calculations. 

The lowest A1 and A2 states were calculated with a CAS containing one a1 Rydberg-like 

orbital, three b1 orbitals, and two b2 orbitals; the four B1 states had a CAS composed of 

four b1 orbitals and two b2 orbitals, where the third b1 orbital is Rydberg-like; the two B2 
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states had three b1 orbitals and two b2 orbitals in the CAS. Similar to the MRCISD(TQ) 

calculations, GVVPT2 and GVVPT3 calculations had three a1 orbitals in the frozen core, 

and four a1 orbitals and one b2 orbital in the active core, whereas the CASSCF calculations 

that these calculations were based on had them all in the frozen core.  
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Table 2. Active spaces and electron occupations used in the calculations. 

  A1 A2 B1 B2 

MRCISD & 

MRCISD(TQ) 

AOG1 (1b12b13b12b23b2)4  (1b12b13b12b23b2)5 (1b12b13b12b23b2)5 

AOG2 (8a19a1)1    

GVVPT2 & 

GVVPT3 
CAS (8a11b12b13b12b23b2)5 (8a11b12b13b12b23b2)5 (1b12b13b14b12b23b2)5 (1b12b13b12b23b2)5 

GVVPT2, 2-

level 

AOG1 (4a15a16a17a11b1)10 (4a15a16a17a11b1)10 (4a15a16a17a11b1)10 (4a15a16a17a11b1)10 

AOG2 (8a11b12b13b12b23b2)5 (8a11b12b13b12b23b2)5 (1b12b13b14b12b23b2)5 (1b12b13b12b23b2)5 

GVVPT2, 3-

level 

RAS1 (4a15a16a17a11b1)10 (4a15a16a17a11b1)10 (4a15a16a17a11b1)10 (4a15a16a17a11b1)10 

RAS2 (8a11b12b13b12b23b2)5 (8a11b12b13b12b23b2)5 (1b12b13b14b12b23b2)5 (1b12b13b12b23b2)5 

RAS3 (9a110a112a112a14b1)0 (9a110a112a112a14b1)0 (8a19a110a111a14b1)0 (8a19a110a111a14b1)0 
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Calculations were performed using AVTZ, aug-cc-pCVTZ(ACVTZ)135 and aug-

cc-pVQZ(AVQZ) 134 basis sets. The AVTZ and AVQZ results allowed extrapolation to the 

complete basis set (CBS) limit. The static and dynamic correlations were extrapolated 

separately. The former used the MCSCF energy and extrapolated based on the exponential 

scheme: 136,137  

,      [2.1] 

with  being the fitting parameter and , as suggested by Halkier et al., 138 tested 

by our research group.139–141 The dynamic correlation energies were defined as the 

differences between the larger variational or perturbation theory results and the MCSCF 

ones, and they were extrapolated based on the extrapolation scheme proposed by Schwartz 

et al.,142 Halkier  et al.143 and Helgakar et al.144  

 ,        [2.2]  

where is the fitting parameter.  

To further investigate the effect of active spaces on the calculations, GVVPT2 

calculations were also performed with incomplete active space methods achieved by 

extended macroconfiguration methods. The 3-level active space calculations used a RAS-

type arrangement with RAS1 including four a1 and one b2 type orbitals that were originally 

in the active core space, RAS2 being the original CAS, and RAS3 being the corresponding 

anti-bonding orbitals of RAS1. Each RAS level allowed for a maximum of two 

electrons/holes. The 2-level active space calculations only allowed electrons to occupy the 

RAS1 and RAS2 spaces with single and double excitations in between. Both incomplete 

lim exp( )MCSCF MCSCF
XE E B X= + 

B 1.63 =

3
lim

corr corr
XE E AX = +

A
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active space schemes include extra correlation by including extra CSFs. The 2-level active 

space calculations only included extra core-valence interactions, whereas the 3-level active 

space calculations included extra correlation from virtual orbitals.  

 

 

 
Figure 8. (a–c) b1 valence orbitals. (d–g) b2 valence orbitals. 1b2 is treated as a core orbital 
except in the extended calculations, while 2b2 and 3b2 are in the active space. (g) is always 
in the virtual space. (h) 8a1 Rydberg orbital included in the calculations of A1 and A2 states. 
(i) b1 Rydberg orbital included in B1 state calculations. 
 

 

Results and discussions 
It can be seen from Table 3 that the geometries obtained from B3LYP calculations 

agree reasonably well with previous calculations and were the precise geometry used in 

this study. The DFT results were obtained with the AVTZ basis set. The biggest difference 

(a) (b) (c) 

(g) (f) (e) (d) 

(i) (h) 
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lies in the length of the CC single bond, which B3LYP slightly underestimates compared 

with the others. We also performed a geometry optimization with GVVPT2, and the result 

agrees very well with CCSD(T*)-F12 calculation, and note that the B3LYP geometry is 

fairly similar to it. We do not expect large differences to be induced by using the B3LYP 

geometry.  

 

Figure 9. Equilibrium structure of propargyl radical optimized by B3LYP/AVTZ. 
 

Table 3.  Geometry parameters obtained from current and previous calculations. (In 
angstroms and degrees) 

 R1 R2 R3 R4 A 

B3LYP/AVTZ 1.061 1.220 1.365 1.081 118.3 

RCCSD(T)/AVTZ109 1.064 1.228 1.382 1.081 119.1 

GVVPT2/AVTZ 1.060 1.227 1.374 1.078 119.0 

CCSD(T*)-F12a/VQZ28 1.063 1.225 1.377 1.080 119.1 

 

Rydberg orbital analysis with MCSCF  

Based on the MCSCF calculations reported herein and additional attempts, it was 

observed that MCSCF descriptions of higher lying B1 or B2 states do not produce heavily 

occupied Rydberg-orbitals. These states were best obtained if they are not heavily weighted 

during the MCSCF optimization. MCSCF calculations also suggest that the third and fourth 

 R2 R3 
R4 

A 

R1 
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B1 states are nearly degenerate (separated by 1.5 kcal/mol). However, this disagrees with 

all our higher-level calculations, which predict an energy difference of at least 7 kcal/mol 

with the opposite order. Not surprisingly, it was found that MCSCF energies are not 

reliable for Rydberg states. We also alert the reader that the states are labeled according to 

the energy predicted by higher level method, in order to be consistent throughout the entire 

paper. 

Although the MCSCF energies cannot be trusted for quantitative results, it seems 

that qualitative understanding of states that have Rydberg character can be obtained. It can 

be seen from the MCSCF calculations the third B1 state is qualitatively described by an 

electron excitation from the second b2 π bonding orbital into the third b2 π* anti-bonding 

orbital, and that the Rydberg-like third b1 orbital is occupied in the fourth B1 state. The 

average distance of electrons to the C-C-C-H axis was calculated to elucidate the Rydberg 

characters of the states. It can be seen from Table 5 that this distance is dramatically larger 

in the first A1, first A2, and fourth B1 states, corroborating their Rydberg character.  

Table 4. Main configurations of the excited states. 

 Main configuration 

1A1 8a1
(1)1b1

(2)2b2
(2) 

1A2 8a1
(1)1b1

(2) 2b1
(1)2b2

(1) 

1B1 1b1
(2)2b1

(1)2b2
(2) 

2B1 1b1
(1)2b1

(2)2b2
(2) 

3B1 1b1
(2)2b1

(1)2b2
(1) 3b2

(1)  

4B1 1b1
(2)2b1

(0) 3b1
(1)2b2

(2) 

1B1 1b1
(2)2b1

(2)2b2
(1) 

2B1 1b1
(2)2b1

(0)2b2
(2) 3b2

(1) 
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Table 5. Average distance of electrons to the C-C-C-H axis (Bohr). 

 1A1 1A2 1B1 2B1 3B1 4B1 1B2 2B2 

Average distance (Bohr) 8.68 8.87 6.19 6.17 6.55 8.28 6.28 6.34 

 

MRCISD(TQ) and Rydberg states 

Because the singles and doubles subspaces (and of course the reference) are treated 

variationally, the MRCISD(TQ) method can include the effect of Rydberg orbitals 

perturbatively even though they are not in the active space. With this method, a 

conventional valence-like active space can be used while accounting for the effect of 

Rydberg orbitals, should they be important. It is useful to recall that, in general, Rydberg 

states have relatively small correlation energy (e.g., large spatial extent) so that perturbative 

treatment should be efficacious once they are included in the variational space. In test 

studies, this was indeed found to be the case numerically.129 The MRCISD(TQ) calculation 

results for the A1, B1, and B2 states are listed in Table 6 together with MRCISD results. 

From these calculations, we can see MRCISD and MRCISD(TQ) are similar, with the 

largest deviations, not surprisingly, occurring for the most high-lying B1 state. This means 

the correlations are mostly captured by MRCISD and the approximations made in the 

MRCISD(TQ) method can be expected to be valid. Our results agree with Eisfeld’s that 

the dipole forbidden  transition is located around 242 nm. However, our 

calculations identify another, hitherto not discussed, transition in the vicinity: the dipole 

allowed transition  is also within 0.2 eV error of the experimental value. This 

suggests that the 242 nm absorption is very likely the vertical excitation from the ground 

state to the Rydberg-like A1 state. It is worth noting that to our knowledge, Eisfeld125 is the 

2 2
1 21 2B B

2 2
1 11 1B A
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only one that considered the possibility of excitations to A1 states, but the active spaces of 

choice are very different from ours. 

 

Table 6. MRCISD(TQ) and MRCISD calculation results. 
 MRCISD(TQ)/AVTZ  MRCISD/AVTZ

eV nm  eV nm 
1B1 0   0  
1B2 3.461 358.2  3.588 345.6 
2B1 4.080 303.9  4.120 300.9 
2B2 5.086 243.8  5.220 237.5 
1A1 5.325 232.8  5.162 240.2 
3B1 6.078 204.0  6.126 202.4 
4B1 6.882 180.2  7.146 173.5 
3B2 7.755 159.9  7.822 158.5 

Experiment123 5.123 242  5.123 242 
 

GVVPT2 and GVVPT3 results 

 The GVVPT2 and GVVPT3 calculations were performed using various basis sets 

and choices of active spaces, and the results are summarized in Table 7. Judging from the 

calculations using the ACVTZ basis set, the inclusion of core-valence correlation does not 

have any significant impact. The results are different by 0.004 eV or less for either 

GVVPT2 or GVVPT3. This might be expected because the Rydberg character of states, 

which is critical to the description of this system, is much more strongly affected by virtual 

orbitals than by core orbitals. It is also evident that the differences between AVTZ and 

AVQZ non-Rydberg states are extremely small in both GVVPT2 and GVVPT3 

calculations, whereas the Rydberg states tend to have larger basis set effect, with GVVPT2 

more so than GVVPT3. In the case of Rydberg states 1A1, 1A2 and 4B1, larger basis sets 

tend to change GVVPT2 and GVVPT3 energies in opposite directions. We believe this is 
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another indicator of their Rydberg character. This behavior is also evident in the 3B1 state, 

which is a non-Rydberg state based on the MCSCF calculation. Since the GVVPT2 and 

GVVPT3 calculations are more reliable than MCSCF, we believe the 3B1 state may also 

have some Rydberg character. 

 

Table 7. Basis set effect of GVVPT2 and GVVPT2 calculations. 

nm GVVPT2 GVVPT3 
/AVTZ /ACVTZ /AVQZ /CBS /AVTZ /ACVTZ /AVQZ /CBS 

1B1 - - - - - - - - 
1B2 338.2 338.3 336.4 334.8 333.9 334.1 334.6 334.8 
2B1 311.8 311.9 311.8 311.8 292.2 292.1 291.2 290.4 
2B2 236.3 236.3 235.5 234.8 231.6 231.7 231.7 231.6 
1A1 214.1 214.0 211.8 209.9 240.6 240.7 241.0 241.1 
3B1 198.2 198.0 200.7 201.1 201.4 201.5 199.8 197.1 
4B1 180.6 180.6 175.0 121.1 191.6 191.6 195.8 198.9 
1A2 157.2 157.2 155.9 154.8 167.8 167.9 167.9 167.7 

eV GVVPT2 GVVPT3 
/AVTZ /ACVTZ /AVQZ /CBS /AVTZ /ACVTZ /AVQZ /CBS 

1B1 0 0 0 0 0 0 0 0 
1B2 3.666 3.665 3.685 3.703 3.713 3.711 3.705 3.703 
2B1 3.976 3.975 3.976 3.976 4.243 4.244 4.258 4.270 
2B2 5.246 5.246 5.265 5.281 5.352 5.352 5.352 5.353 
1A1 5.791 5.793 5.855 5.907 5.153 5.150 5.144 5.142 
3B1 6.257 6.261 6.177 6.166 6.155 6.152 6.205 6.290 
4B1 6.866 6.866 7.083 7.245 6.470 6.471 6.331 6.234 
1A2 7.887 7.888 7.952 8.007 7.387 7.384 7.386 7.393 

 
It can be seen from Table 8 that GVVPT3 can almost reproduce the results obtained 

from MRCISD(TQ) and MRCISD, with an error of less than 0.06 eV from the 

MRCISD(TQ) results, while GVVPT2, with the same active spaces, is only accurate to less 

than 0.04 eV for non-Rydberg states, and to 0.1 eV for Rydberg states. Similar to all results 

reported in the literature,109,111,123,125 the energy of the non-Rydberg 3B1 state is around 200 
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nm, which is too high to be the absorption in question; the 2B2 state is at the correct energy 

level, but since this transition is dipole forbidden it shouldn’t result in a strong UV peak. 

Our results also show that the Rydberg state 4B1 is close to the 3B1 state in energy. Other 

calculations show that including the 4B1 state into our calculation does not have a great 

effect on the accuracy of 3B1 state calculation.  

The 2-level active space calculations were performed by putting the 𝜎 bonding 

orbitals in a macroconfiguration in the active space, allowing a maximum of two electrons 

to be excited to the original CAS. These results showed changes of energies of less than 

0.15 eV, which is less than the improvement induced by changing 2-level GVVPT2 to 3-

level. This improvement exhibits no significant differences between Rydberg and non-

Rydberg states. These results are consistent with the calculations with core-valence basis 

set calculations in Table 7. Both of these two calculations only improve core-valence 

electronic interactions, and both results show that this interaction is not as critical as the 

valence-virtual correlation for our system.  

In the 3-level active space calculations, anti-bonding 𝜎 orbitals are included in an 

additional macroconfiguration (RAS3), allowing a maximum occupancy of two electrons. 

This largely improves the results from 2-level GVVPT2 calculations, particularly for the 

Rydberg states where the improvements can be as large as 0.32 eV in the case of the first 

A1 state. When comparing lower level method with higher level ones, the largest 

differences almost always involve the Rydberg states. For instance, comparing 

GVVPT2/CAS with GVVPT2/3-level calculations, the energy differences for Rydberg 

states are larger than 0.13 eV; GVVPT2/CAS with GVVPT3 are larger than 0.27 eV; 

GVVPT2/2-level with GVVPT2/3-level are larger than 0.08 eV; and any method with 
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MRCISD and MRCISD(TQ) are typically larger than 0.2 eV. This suggests that the 

inclusion of the correlation introduced by virtual orbital is of critical importance in the 

propargyl system. We can also see from the calculations that GVVPT2 calculations with 

small active spaces are not reliable to characterize Rydberg states. Expanding the active 

space to include more virtual orbitals can be helpful. In some cases, GVVPT3 can help 

successfully correct the correlation with a small active space. 
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Table 8. GVVPT3 and extended GVVPT2 in AVTZ basis set results. 

nm 
Dipole 

Allowed 
Transition? 

GVVPT2/CAS GVVPT2/2-lvl GVVPT2/3-lvl GVVPT3 MRCISD MRCISD(TQ) 

1B1  - - - - - - 
1B2 No 338.2 350.8 351.0 333.9 345.6 358.2 
2B1 Yes 311.8 313.3 313.5 292.2 303.9 303.9 
2B2 No 236.3 236.5 236.6 231.6 237.5 243.7 
1A1 Yes 214.1 217.5 223.1 240.6 240.2 232.8 
3B1 Yes 198.2 201.4 201.5 201.4 202.4 204.0 
4B1 Yes 180.6 179.4 179.5 191.6 173.5 180.2 
1A2 Yes 157.2 160.2 162.5 167.8   

eV 
Dipole 

Allowed 
Transition? 

GVVPT2/CAS GVVPT2/2-lvl GVVPT2/3-lvl GVVPT3 MRCISD MRCISD(TQ) 

1B1  0 0 0 0 0 0 
1B2 No 3.666 3.534 3.585 3.713 3.588 3.461 
2B1 Yes 3.976 3.957 4.044 4.243 4.120 4.080 
2B2 No 5.246 5.243 5.161 5.352 5.220 5.086 
1A1 Yes 5.791 5.699 5.557 5.153 5.162 5.325 
3B1 Yes 6.257 6.157 6.125 6.155 6.126 6.078 
4B1 Yes 6.866 6.911 6.589 6.470 7.146 6.882 
1A2 Yes 7.887 7.741 7.630 7.387   
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Conclusions 
 Based on the MRCISD(TQ), MRCISD, and GVVPT3 studies on the 

electronic states of propargyl radical, we conclude that the vertical excitation from the 

ground B1 state to the Rydberg-like first A1 excited state is responsible for the strong 

absorption band around 242 nm observed in experiments. We also show that the 

calculations performed before ours on non-Rydberg states are generally correct. However, 

our study has included a more accurate description of electronic structure, using 

MRCISD(TQ), than had previously been applied to this molecule, capturing the Rydberg 

character of the excitation around 240 nm. These calculations were performed with the 

generally reliable aug-cc-pVTZ basis. It is notable that these calculations involved 

considerations of 32 to 93 million CSFs at the MRCISD level with 1.6 to 4.5 trillion CSFs 

with inclusion of triple and quadruple excitations, and are easily the largest calculation to 

date using MRCISD(TQ). It is also worth noting that the calculations were performed on a 

single workstation. GVVPT2 calculations with small active spaces are not reliable to 

characterize Rydberg states. Expanding the active space to include more virtual orbitals 

can be helpful. In some cases, GVVPT3 can help successfully correct the correlation even 

with a small active space. Both MRCISD and MRCISD(TQ) could recover the Rydberg 

character even though the Rydberg orbitals are not considered explicitly.  When the 

Rydberg orbitals are included, GVVPT3 results are within reasonable errors to the 

MRCISD and MRCISD(TQ) results.  
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CHAPTER III. 

PARALLELIZATION OF TRIPLE AND QUADRUPLE PERTURBATION 
CORRECTIONS TO MULTIREFERENCE CISD 

Introduction 

Multireference variational methods are widely regarded as one of the most accurate 

methods in computational chemistry, especially when entire potential energy surfaces 

(PESs) and/or excited electronic states are of interest. The inclusion of large numbers of 

configuration state functions can correctly capture a large amount of both the dynamical 

and static correlation effects, giving highly accurate results. Moreover, such calculations 

are able to address several electronic states in a single run. Unfortunately, the number of 

CSFs (or determinants) increases rapidly (in fact, more than exponentially) with excitation 

level, and the method is not strictly size-extensive (although the size-extensivity errors are 

generally smaller than other sources of error). In previous work,129,130 it was shown that 

fully variational considerations of reference functions and single and double excitations, 

and perturbative treatments of triple and quadruple excitations provides highly accurate 

results. Moreover, the inclusion of triple and quadruple (TQ) perturbation added to 

multireference configuration interaction with single and double excitation method 

(MRCISD), can largely eliminate the size-extensivity error in singles and doubles 

configuration interaction methods. Although the method has not yet been used for 

“production,” it is to be expected (and calculations on pilot systems confirmed) that this 
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method is particularly appropriate for application to excited states and highly 

multireference systems (such as multi-radicals) with delocalized electrons. This method is 

particularly helpful if qualitatively reliable reference functions are difficult to obtain. In 

these cases, a large number of CSFs is typically necessary, but variational determination 

of all coefficients is not. 

 MRCISD(TQ) based on uncontracted CI is a very expensive method, since all 

many-electron basis functions in the singles and doubles subspace would need to be 

dressed. Various methods have been used to speed up the calculation. By using GUGA to 

organize the CSFs80,129 instead of Table-CI, large increases in the efficiency of evaluating 

the Hamiltonian matrix elements can be realized. The use of symbolic external orbitals145 

was used to avoid the complicated GUGA formalisms in the triple and quadruple space. 

Both methods are implemented in the UNDMOL program. Another way to reduce the time 

of calculation would be to use either internally82,146 or externally85,147 contracted CI 

functions. However, this approximation may lead to the loss of correlation energy, and in 

particular can fail in the treatment of states with many singly occupied orbitals. 

One commonly used method to reduce the run time of any computational program 

is through program parallelization. All modern computers including personal ones 

nowadays are multi-core computers. In computational sciences, supercomputers are used 

more and more in all disciplines of sciences. Supercomputers not only provide more 

multiple cores to run processors, they also provide access to the memory spaces of multiple 

nodes. Computational chemistry software including Gaussian,148 GAMESS,149 

COLUMBUS,150 MOLPRO,151 etc. use tools like Linda,152 Distributed Data Interface,153 

Global Array154 to manage the usages of distributed-memory. However, these packages 
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were developed decades ago. The current supercomputers are equipped with large memory 

on each node, usually around 64G or more. With smart partitioning of the data, it is possible 

for a parallel program to access the local memory only for the majority of a calculation, 

avoiding the communication of nodes at the memory level. With this hope in mind, tools 

for shared-memory programming on distributed-memory are not used in this study. In the 

current work, in order to use multiple computer nodes in the same calculation, a message 

passing interface (MPI) approach realized by the Open MPI library is used. This allows us 

to use supercomputers that are built on either shared or distributed memory access 

infrastructure. 

The aim of this research is to parallelize the TQ perturbation part of MRCISD(TQ) 

calculations, called tqcorr.exe in the UNDMOL software suite. The parallel code was 

developed based on the configuration driven GUGA approach of nR-MRCISD(TQ), with 

the CSFs arranged by configurations and by macroconfigurations. Since the size of 

macroconfigurations vary drastically, it is not a good idea to assign macroconfigurations 

to processors naively based on the index of the macroconfigurations. Instead, a 

master/slave type parallelization scheme was used to assign macroconfigurations 

dynamically to the slave processors, depending on which slave is available at a given time.  

 

MRCISD(TQ) Method 

 The MRCISD(TQ) method used in this study was also referred to as the nR-

MRCISD(TQ) method.129 It is an iterative method that can simultaneously calculate the 

energies of multiple low-energy states, as opposed to the previous MRCISD(TQ) method2 

developed in our group.  
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 The MRCISDTQ subspace can be divided into three subspaces: a reference 

subspace R specified by a given set of reference configurations; a Q1 subspace that is 

related to the R space configurations by all single and double excitations that are not 

already included in R space; and a Q2 subspace related to R space by triple and quadruple 

excitations. R and Q1 spaces form the model space M, which has all configurations in 

MRCISD space. The exact, self-consistent primary space P is defined by projecting the 

exact MRCISDTQ wavefunction to the target low-lying states , 

such that the vectors from its orthogonal space in M (referred to as the secondary space S) 

make no contributions to .155,156 Of course, this would be unrealistically expensive in 

practice and a primary space spanned by the MRCISD vectors of interest is used.  In this 

way, the parts of the model space are concentrated to a much smaller P space. The exact S 

space doesn’t have any interaction with the Q2 space and an approximate S space can be 

assumed to have sufficiently small interactions with the Q2 space for the primary states of 

interest. 

A wave operator Ω that maps the optimal primary space basis 

to  

can be generated while satisfying the orthonormalization condition 

.     [3.1] 

where  

and .     [3.2] P PPP =  W Ω
 

22
PQQ P c= W Ω

 
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This wave operator is formally defined for the primary space, but it is useful to extend its 

domain to the entire model space. This is done by defining it to act as the identity operator 

within the secondary space, i.e., W(P+ S) = S +PWP +Q2WP .  

The Schrodinger equation for the Np lowest energy states in the model space is  

.       [3.3] 

Following the above definitions, a Hermitian effective Hamiltonian can be 

generated for the model space by  

,        [3.4] 

which satisfies 

 .       [3.5] 

The effective Hamiltonian can be calculated by blocks: effSH S SHS= ;

2
effSH P SHP P SHQ P= W + W  ; 1 11 [( ) ( ) ]

2
effPH P P P H P P HP P P + = W W + W W .  

  

 

Figure 10. Subspace arrangement in MRCISD(TQ) method. R: reference space. Q1: SD 
excitation space. Q2: TQ excitation space. P: Primary space. S: secondary (orthogonal) 
space.  
 

P P PHW  =W  E
 

H eff = MW+HWM

eff
P P PH  =  E

 
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In CSF basis  matrix form, its Np-lowest roots can be solved by 

.        [3.6] 

The  matrix rotates the reference part of the nonoptimal wave function into the 

optimal one and thereby generates a new wave operator by 

.   

 We point out that the new wave functions  can also be used as basis functions 

to generate new wave operators ΩPP
(n)  and ΩQ2P

(n)  and new effective Hamiltonian matrices

,. In this way, if the S subspace of the effective Hamiltonian 

were to be calculated, the full MRCISDTQ wave function could be approximated 

perturbatively in an iterative manner, using  

 
[3.7] 

which is variationally optimal at each iteration for given wave operators ΩPP
(n)  ΩQ2P

(n) . 

Similarly, the total MRCISDTQ energy is approximated by  

 
[3.8] 

When all quasidegenerate states of interest are included in the primary space, we 

can expect the coupling between the primary space and secondary space to be 

negligible. Consequently, as noted earlier, it should be sufficient to construct and 

diagonalize the effective Hamiltonian in the primary space, and solve  

HPP
eff(n-1)WPP

(n) = WPP
(n)EP

(n)
       [3.9] 

instead. Similarly, the new estimate of the primary space projection of the wavefunction 

can be calculated by 

1
,M R Qc c c=

  

eff
MM MP MP PH C = C E

MPC

1 1P M MP R RP Q Q Pc c c = = +C C C
   

effSH P
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    [3.10] 

Because of its huge size, the Hamiltonian for Q2 space must be approximated. One 

approximation is to project blocks that include the diagonal, with each block corresponding 

to the Hamiltonian matrix elements of a set of CSFs that belong to a specific configuration. 

A more drastic approximation is to the pure diagonal, which results in an Epstein-Nesbet 

approximation. In an earlier investigation,130 we showed that a modified Epstein-Nesbet 

(i.e., configurationally averaged) gave approximately the same results as did the block 

diagonal variant. The part of the wave operator that calculates the effect of all CSFs 

generated from a given configuration (a set of vectors in Q2 space, denoted as e2) into part 

of the primary space wavefunction can be expressed as 

 We2I
(n) =  1

e2
EI

(n) He2P
(n)WPI

(n1)     [3.11] 

where I is a state in the P space, and is the average energy of configuration  in the Q2 

space.  

e2
= 1

dim(Le2
)

cq2
H cq2

q2ÎLe2

å
    

[3.13] 

 

 Since the model space is separated into the P space and the S space and the Q2 space, and 

the primary space is separated by a large space of CSFs that mostly originate from the Q1 

space, the energy differences between the P space and the Q2 space is large. Consequently, 

MRCISD(TQ) method should not face any intruder state problem.  

 

2e 2e
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Macroconfigurations 

 The concept of macroconfigurations was first developed in our group to describe 

the electron distribution in active spaces.63 A macroconfiguration is defined by the groups 

of orbitals and the number of electrons in those groups, such that each group of orbitals 

can be anywhere from empty to fully occupied, as long as the total number of electrons 

match to the number of active electrons.  

(group 1)n1 (group 2)n2 (group 3)n3  ... (group g)ng  

0 £ ni £ 2´dim(groupi )     [3.14] 

nact = ni
i£g
å  

For example, a complete active space12 is the simplest macroconfiguration, which 

specifies only one group of orbitals and the number of electrons that occupy them. A model 

space calculation with restricted active space13 include three groups of orbitals called 

RAS1, RAS2, and RAS3. If allowing a maximum of two electrons and two holes in the 

RAS3 and RAS1 orbital groups respectively, the active space would include the following 

six macroconfigurations: (RAS1)nRAS1(RAS2)nRAS2(RAS3)nRAS3, (RAS1)nRAS1-

1(RAS2)nRAS2+1(RAS3)nRAS3, (RAS1)nRAS1-1(RAS2)nRAS2(RAS3)nRAS3+1, (RAS1)nRAS1-

2(RAS2)nRAS2+2(RAS3)nRAS3, (RAS1)nRAS1-2(RAS2)nRAS2+1(RAS3)nRAS3+1, (RAS1)nRAS1-

2(RAS2)nRAS2(RAS3)nRAS3+2.  

Macroconfigurations do not have any restrictions on the number of electrons in any 

group of orbitals; the idea of macroconfigurations is more similar to the generalized active 

space14, but is more structured than it. Similar to what is done in RAS partitioning, orbitals 

having similar energies can be put into a group and given total occupancies to form 

macroconfigurations, such as putting the orbitals with bonding character into RAS1, and 
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the anti-bonding characters into RAS3. However, sometimes it can be more advantageous 

to put orbitals with the same spatial extent into the same group, combining both bonding 

and antibonding type orbitals, in a generalization of valence bonds.  

Inside of the UNDMOL software suite, CSFs are always arranged by 

macroconfigurations. As a result, parallelization of nR-MRCISD(TQ) can be achieved by 

assigning CSFs to the CPUs in packages of macroconfigurations.  

The nR-MRCISD(TQ) calculation is programed using a macroconfiguration-driven 

GUGA. When evaluating the interaction of the primary and the Q2 space, a screening 

process is carried out first to speed up the calculation. Since the Hamiltonian is at most a 

two-electron operator, macroconfigurations that differ by more than two electron 

excitations do not interact with each other, thus no calculation is needed.  

The original GUGA is not very effective for complicated incomplete active space 

calculations.  Macroconfigurations provide a clean, elegant, yet flexible way of treating 

incomplete active spaces. In the calculations, each macroconfiguration has an orbital 

distinct row table (DRT), and the interaction of macroconfigurations can be calculated by 

the overlay of the orbital DRT.  When needed, the orbital paths can be expanded into sets 

of Shavitt step vectors.  

From a programming point of view, arranging CSFs into groups according to 

macroconfigurations divides the large CI vector of CSFs into smaller chunks, allowing the 

computer to read only a small portion into the memory at a time, eliminating the 

requirement of large memory. Even when the calculation system gets large, the memory 

attached to a single CPU should be large enough such that tools for shared-memory 

programming on distributed-memory Global Array154 are not necessary. 
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It is possible to separate the CSFs in a single macroconfiguration into several 

macroconfigurations. This is proven very useful in order to parallelize nR-MRCISD(TQ) 

efficiently.  For example, a CAS(2, 2) can be represented in a single macroconfiguration 

that assigns two electrons into a group of two orbitals a and b, which can be denoted as (a, 

b)2, but it can also be represented by three macroconfigurations (a)2(b)0, (a)1(b)1, and 

(a)0(b)2. These two ways contain the same number of CSFs, but the number of CSFs in 

each macroconfiguration is reduced in the second case, as are the related single-, double-, 

triple and quadruple excitations, thus allowing for more efficient parallelization.  

 

Parallelization scheme 

 The most time-consuming part in the TQ perturbation calculation is the formation 

of HQ2P . In practice, the matrix product HPP
eff (n1)WPP

(n)  is updated right after the formation 

of the HQ2P  matrix of a particular macroconfiguration. This is realized in the routine mkhw. 

The macroconfigurations in the Q2 space only interact with the model space, but not with 

each other (in the perturbation approximation we use), and each macroconfiguration 

updates the HPP
eff (n1)WPP

(n)  matrix with the same weight, as a result, it is possible to divide 

this task by macroconfigurations in the Q2 space. However, since the numbers of CSFs 

vary drastically in each macroconfiguration, distributing macroconfigurations to 

processors simply based on their indices is not very efficient. Instead, we decide to use a 

master/slave type MPI scheme to assign the next macroconfiguration calculation to the 

next available processor. This sacrifices the level of parallelization of the program by 1 

processor but limits the occurrences of the worst-case scenarios.  After all servant 

processors finish calculating the contributions from all macroconfigurations in the Q2 
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space, the master processor collects the results from all slave processors and continues with 

the rest of the calculation that involves diagonalizing the HPP
eff (n1)WPP

(n)  matrix which is 

small (typically no more than ten by ten in size). The parallelization scheme is represented 

in Figure 10.  

In the calculation of mkhw, the matrix HQ2P  is only calculated in the first iteration. 

In the serial code, this result is written in a scratch file called scrfile, and they are read in 

subsequent iterations. This brings a new challenge if all processors need to write to the 

same file. In a supercomputer, it is usually a lot faster to write scratch files in the scratch 

space local to each node. But without knowing which macroconfigurations are assigned to 

which node ahead of time, it is difficult to find the correct scratch file or the correct location 

of the data in the file. In this regard, we decided to generate one scratch file for each 

processor, and request each processor to read the local scratch file.  However, this requires 

that all the information used by the following iterations have to be calculated by the same 

processor in the first iteration, which means the assignments of macroconfigurations to 

processors must stay the same across iterations. Since all processors need to start working 

on mkhw at the same time in each iteration, when the updated energy array is successfully 

broadcasted, so that the calculation time is largely determined by the size of 

macroconfigurations. We expect the calculation time of macroconfigurations to be slightly 

different across iterations, but the most time-consuming macroconfiguration in the first 

iteration should be the most time-consuming one in later iterations. In other words, the 

relative expenses of each macroconfiguration should stay roughly the same. As a result, 

the availability of all processors should be roughly the same in each iteration. This 

approach should not have a significant impact on the calculation time.  
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 When the memory of the computer is less than what is needed to complete the TQ 

calculation, it is possible to write the formula tape into a scratch file called ciftfile. It 

contains the sequence number of the interacting configurations for a particular matrix 

element, the sequence number of the integrals entering this matrix element and the 

coefficients for the integrals in the matrix element. However, since this file gets re-written 

for each macroconfiguration, it suffices to simply generate a local ciftfile for each 

processor.  

The subroutine initci initializes the CI space information for the entire calculation, 

including generating DRTs for the R space. This subroutine generates multiple arrays and 

arrays of complicated indexing structures for mkhw calculations. It is not easy to broadcast 

these data types to servant processors, and because this subroutine is not a time-limiting 

one, we have all processors run it once before the iterations start. 

Since the program is embarrassingly parallel, and each macroconfiguration is quite 

large in the MRCISD(TQ) calculation, we don’t expect the communication time to be the 

time-limiting step. In this code, while waiting for the slaves to finish calculating the 

contribution of each Q2 space macroconfiguration, the master processor does not do 

anything except printing to the output file about which macroconfiguration is currently 

calculated by which processor. This should take a negligible amount of time compared with 

the work done at slave processors, even if as many as 1000 processors may work at the 

same time. In the current test cases, the maximum number of macroconfigurations in 

MRCISD(TQ) calculations is slightly over 1000. This means we can only use a maximum 

of the same number of cores for parallelization.  
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In some parallel programs, if a core can work on other things while waiting for the 

results from others, the non-blocking communication MPI_iSend and MPI_iRecv can be 

used. This allows the processor to initiate the data transfer process, but also work on 

something else while waiting for the data to go through. Since in the case of MRCISD(TQ) 

code, the master has nothing much to do anyway, we only use the blocking communication 

MPI_Send and MPI_Recv instead of MPI_iSend and MPI_iRecv.  

In the current implementation of MRCISD(TQ), all scratch files are stored on the 

scratch disk space local to the computational nodes. The only files stored at the user’s work 

directory are the input and output files, and the infofile undmol.dat. This arrangement 

should take the maximum benefit of the fast local disk drives on the nodes.  
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Master Slave 
Read user input 
Read infofile about general information on calculation 
Read CI array from cifile 

Read infofile about general information on calculation 

MPI_Bcast: Send variables based on user input  
MPI_Bcast: Send CI array 

MPI_Bcast: Receive variables based on user input  
MPI_Bcast: Receive CI array 

Initialize CI space (size construction) Initialize CI space (size construction) 
Start TQ iterations Start TQ iterations 
Re-initialize relevant variables 
MPI_Bcast: Send energy array 

Re-initialize relevant variables 
MPI_Bcast: Receive energy array 

Work on routine mkhw (assign macroconfigurations to 
slave processors) 

Work on routine mkhw (calculate the contribution of 
macroconfigurations assigned by the master) 

MPI_Reduce: sum arrays hwpp, wwpp results from all 
processors MPI_Reduce: send arrays hwpp, wwpp results 

Diagonalize hwpp matrix 
Obtain energy from the current iteration Idle 

Convergence Test Idle 
MPI_Bcast: send convergence test result to all processors 
Go to “Start TQ iterations” if not converged 

MPI_Bcast: receive convergence test result  
Go to “Start TQ iterations” if not converged 

MPI_Finish MPI_Finish 
 

 

Figure 11. Parallelization scheme of the parallelized tqcorr program. 
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Figure 12. Structure of subroutines in the serial tqcorr program. Blue lines represent the calling of subroutines; orange dashed lines 
represent the accessing of variables; and green dotted lines represent the accessing of arrays. The arrows indicate read and write direction. 
In order to simplify the graph, the accessing relationship of outfile and the main function is ignored. 
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The parallelization was performed using one of the most commonly used open 

source MPI libraries: Open MPI. It supports InfiniBand which provides the inter-node 

communication on the test supercomputer. 

 

Machine Specifications 

 The calculations reported here were all performed on the local Linux 

supercomputer at the University of North Dakota: “Hodor”. The 32 Dell PowerEdge 720 

computer nodes are connected through the PCIe 3.0 expansion bus. Each node is 

configured with dual 64bit, Intel E5-2643 3.3GHz SandyBridge processors, giving a total 

of 8 cores per node. Each node also has 64GB of random access memory. The file system 

has two 146GB 15K revolutions per minute drives in Mirror Raid configuration. The 

nodes communicate through a private 1Gbit Ethernet Administration Network and a 

private 56Gbit FDR one-to-one InfiniBand Research Network. 

 

Results 

 The systems used in the test calculations are summarized in Table 9 below. Water, 

the oxygen molecule, singlet and triplet methylene, and propargyl are selected to test the 

parallelization efficiency. The reference space active spaces are selected to be the CAS 

style in all calculations, represented by collections of macroconfigurations. The reference 

spaces remain the same in MCSCF, MRCISD, and MRCISD(TQ) calculations. All core 

orbitals are held “frozen” (i.e., unchanged from the final orbitals of the MCSCF calculation 

and doubly occupied) in the MRCISD and subsequent MRCISD(TQ) calculations. The 

MCSCF calculations are used to provide the orbitals and the MRCISD calculations are 
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used to generate the model space. Neither MCSCF nor MRCISD calculations are 

parallelized, and they are calculated by UNDMOL1.2. All TQ perturbation calculations are 

performed with the new tqcorr.exe program.  

It can be seen from Figure 13 that the scaling is almost linear up to 8 cores in cases 

A, B, C, and G; but in the case of D and F, the scaling is nearly linear to about 16 cores. In 

cases A, B, C, and G, the total speedup can be as large as 4-5 times. In cases D and F, the 

speedup can be as large as 14-15 times. The worst case is E, where barely any improvement 

is achieved.  

 Since each node of the supercomputer “Hodor” has eight processors, it is naturally 

expected that the performance curve would change more drastically at multiples of 8 

processors. This is caused by the inter-node communication. This trend is observed in all 

test cases except case H. 

 Since the partitioning of the CSFs used in parallelization is done by 

macroconfigurations, the relative sizes of macroconfigurations determined if the 

distribution is even or not, which impacts the parallelization efficiency. Test cases G, H, 

and I in Figure 14 are designed to investigate this. All three calculations work on the same 

O2 system using the same aug-cc-pVTZ basis set with the same model space CAS 

composed of 8 electrons occupying all six p type orbitals. The calculation results agree to 

10-12, which is the energy tolerance of choice.  The only thing different is the definition of 

macroconfigurations. Test H assigns all six orbitals as a group, then generates the CAS. 

Test G further divides the six orbitals into three groups based on if the orbitals are generated 

from px, py, or pz orbitals, then the CAS is generated by occupying these three groups. Test 

I divides all six orbitals into six groups, with each group containing only one orbital. With 
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this treatment, the total number of macroconfigurations is different in all cases, even though 

the number of CSFs stays the same. The larger macroconfigurations are further divided 

into smaller ones, allowing multiple processors to work on the original same 

macroconfiguration.  It can be seen that Test I scales the best, while Test H scales the worst.  

 To investigate this behavior, a variable called the granularity index can be defined 

to measure the characteristic of the calculation. It’s defined as the maximum number of 

CSFs in a single macroconfiguration divided by the total number of CSFs.  

GranularityIndex = MaxNumCSFsPerMacroconfiguration
TotalNumCSFs   

[3.15] 

The smaller the granularity index is, the more evenly CSFs are divided into 

macroconfigurations, and the better scaling should be achieved. If the largest grain of 

calculation takes 50% of the entire workload, the program can only speed up by a factor of 

two, no matter how many processors are used. Similarly, if the largest grain of calculation 

takes 5% of the entire workload, the maximum of speed up one can expect to achieve is 

20. It should be mentioned here that the granularity index is not an exact measure of the 

parallelization workload, due to the fact that not all CSFs in the Q2 space interact with all 

CSFs in the primary space. But since each calculation is different, and we can’t always 

look into the code to find out which macroconfigurations interact with which, this provides 

a convenient way to roughly estimate the parallelization efficiency. Also, this information 

is generated by mcrcfgs_tq.exe, a fast program run before the tqcorr.exe that can provide a 

warning before the heavy calculation of TQ perturbation is executed.  

 It can be seen from Figure 13 that calculations with similar granularity indices scale 

similarly with respect to the increase of cores.  In cases E, F, and I, in order to achieve high 

parallelization efficiency, all reference space macroconfiguration groups are defined to 
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contain only one orbital such that the maximum number of configurations are generated.  

Based on these test calculations, it is recommended to use as many macroconfigurations as 

possible in MRCISD(TQ) calculations. 

 

Conclusions 

 The MRCISD(TQ) method, a triple and quadruple correction to the MRCISD 

method, was parallelized in the computational chemistry software UNDMOL. The 

program was implemented and tested on the supercomputer “Hodor” which has 32 

PowerEdge 720 computer nodes connected through the PCIe 3.0 expansion bus. Each node 

is configured with dual 64bit, Intel E5-2643 3.3GHz SandyBridge processors, giving a total 

of 8 cores per node. Each node also has 64GB of random access memory. The program 

uses macroconfigurations to divide the configuration space into smaller sections and the 

interactions between the Q2 and the primary spaces are evaluated macroconfiguration by 

macroconfiguration. A master/slave type of parallelization scheme is used in the 

programming. The program is embarrassingly parallel.  

 Our test results show that the parallelization scaling is better when the CSFs are 

divided into more macroconfigurations. This can be done by including less orbitals in 

macroconfiguration orbital groups. This allows the each macroconfiguration to contain less 

CSFs, especially the most computationally expensive macroconfigurations that dominate 

the total speed up of the calculations. Based on the test examples, it is recommended to use 

the maximum number of macroconfigurations when defining the active space in 

MRCISD(TQ) calculations. 
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Table 9. Details of the molecules used in benchmark MRCISD(TQ) calculations. 

 A B C D* E F* G H I 

System CH2 CH2 H2O C3H3 C3H3 C3H3 O2 O2 O2 

State 1A1 3B1 A1 B1 B1 B1 B1g B1g B1g 

Basis AVTZ AVTZ AVTZ VDZ VDZ VTZ AVTZ AVTZ AVTZ 

Active Space 6e, 6o 6e, 6o 8e, 6o 5e, 5o 5e, 5o 5e, 5o 8e, 6o 8e, 6o 8e, 6o 
No. 

Macroconfigurations 117 111 133 1294 44 1294 113 9 735 

No. CSFs 5.98E8 1.11E9 1.59E9 4.39E9 4.39E9 2.34E11 2.53E8 2.53E8 2.53E8 
Max. CSFs per 

Macroconfiguration 1.19E8 2.23E8 2.58E8 2.27E8 2.31E9 1.31E10 4.25E7 2.31E8 6.46E6 

Granularity Index 0.20 0.20 0.16 0.051 0.53 0.056 0.17 0.91 0.026 

 

* Only the first iteration is calculated.  
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Figure 13. Speedup curves of MRCISD(TQ) test cases. 

 

2 4 6 8 10 12 14 16
1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

 A, singlet CH2

 B, triplet CH2

 C, H2O
 G, O2

Sp
ee

du
p

Number of Cores

Granularity Index ~ 0.18

0 10 20 30 40 50 60 70 80

0

2

4

6

8

10

12

14

16

18

Sp
ee

du
p

Number of Cores

 E, Granularity Index=0.52
 D, Granularity Index=0.051
 F, Granularity Index=0.056



 70

 

Figure 14. Speedup management based on the macroconfigurations granularity. 
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CHAPTER IV.  

PARALLELIZATION OF THE SECOND ORDER GENERALIZED VAN VLECK 
PERTURBATION THEORY 

Introduction 

Multireference perturbation methods are considered among the most efficacious 

methods in electronic structure calculations. They are normally built on top of MCSCF 

wave functions which qualitatively capture the multireference character in the system, and 

singly and double excited configurations from the MCSCF configurations are included to 

quantitatively correct the energy and wave function of the system. Since multi-state 

multireference methods can calculate multiple electronic states in the same calculation, and 

they are considerably cheaper than the MRCI methods, they are widely used in the 

calculation of entire potential energy surfaces. 

However, the most commonly used multireference perturbation theories, such as 

the popular CASPT28 and MCQDPT2157 methods, suffer from the intruder state 

problem.158 Figure 15 illustrates a famous example of the potential energy surface 

calculation of the manganese dimer in which CASPT2 not only provides quantitatively 

wrong results, but that the energy curves are discontinuous at numerous geometries. This 

problem arises from the near zero-order degeneracy of the reference electronic states and 

the zero-order external space electronic states, or the so-called “intruder state problem”.158 

By using a matrix representation of the primary-external interaction operator X and a 



 72

hyperbolic tangent matrix function, the GVVPT2 variant of quasidegenerate perturbation 

theory is able to solve intruder state problem and always give a finite, physically sensible 

result.9,131,155,159  

The aim of this research is to parallelize the configuration-driven GUGA-based 

GVVPT2 calculation (called gvvpt2cfg.exe). Similar to MRCISD(TQ), the CSFs in 

GVVPT2 are also arranged by configurations and ultimately by macroconfigurations. The 

master/slave type parallelization scheme is used to assign macroconfigurations 

dynamically to the slave processors, depending on which slave is available.  

 

 

Figure 15. The potential energy curve of Mn2 calculated by MCQDPT.  Reproduced with 
permission from Figure 3 of Reference 158.158 

 

GVVPT2 Method 

GVVPT29,156,159 can be derived from block-diagonal (self-consistent) 

quasidegenerate perturbation theory,131,155 which is similar to the so-called CEPA160 
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methods, although at least an order of magnitude less computationally demanding. Similar 

to MRCISD(TQ), the Hamiltonian subblocks of GVVPT2 can also be spanned by a 

configuration space composed of orthonormal CSFs. This configuration space can be 

further partitioned into a model space , and an external space . The model space is 

usually MCSCF type, and the  space contains all CSFs that are generated by single and 

double excitations from the LM space. The target wave functions of the lowest energy 

electronic states can be expanded in the antisymmetrized basis generated from the 

configuration space above, and they can be expressed as , where P 

labels the primary space, which contains all CSFs in which the users are interested. A 

secondary space, labeled S,  can be constructed to be the orthogonal 

complement of the primary space in the model space. Using the Van Vleck formalism,161 

a unitary wavelike operator can be used to transform a given set of reference wave 

functions  into , which satisfies the generalized 

Bloch equation . Here,  is the effective Hamiltonian, and 

is a projection operator on the primary  space. In the optimal primary 

subspace, where the subspace coincides with the projection of the exact wave function on 

the model space, a transformation matrix can be used to connect the many electron basis 

set , and the operator X only describes the interaction of the primary  

space and the external space.  

  [4.1] 

LM LQ

LQ

LM = LP Å LS

W= e X

HWP =WPH eff P H eff = eX He X
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LQ
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where is a CSF in the external  space, and is the projection operator 

on the external  space.  

In this way, it can be seen that 

     [4.2] 

     [4.3] 

where S is the projection operator on the secondary space. In this construction, the P–S 

interaction can be solved variationally, allowing one to consider strongly quasidegenerate 

primary and secondary states. The Q–S interaction wave operator does not need to be 

constructed, and the X operator directly transfers the effect of the  space on the  

space.  

 

Figure 16. Subspace arrangement in GVVPT2 method. M: model space. Q: SD excitation 
space (external space). P: Primary space. S: secondary (orthogonal) space. 
 

 The operator X can be expressed in a perturbation series.  The unperturbed 

Hamiltonian is chosen as , and the perturbation part is the off-diagonal 
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block . Expanding the X operator to the first order in the wave functions, 

the model space effective Hamiltonian can be constructed using a blocked form  

   [4.4] 

    [4.5] 

     [4.6] 

Without further approximation, the P–Q interaction in a block-diagonal quasidegenerate 

perturbation theory satisfies the relationship155,156 

   [4.6] 

where  is the energy of the p-th reference state, which as mentioned 

above is selected to be the MCSCF eigenvectors within the model space.  

 In order to solve above, several types of approximations can be made. The most 

naïve one is to define each element as  

,    [4.7] 

where ,  is the Møller-Plesset type energies of the unperturbed states 

in the primary space, and  is the state specific zeroth-order energy of CSF q in the 

external space, which is the same for all CSFs belonging to the same external configuration, 

expressed as . They can be calculated from the state-specific one-particle reduced 

density matrix  

   [4.8] 

V = PHQ +QHP

HMM
eff

HPP
eff = HPP +

1
2

(HPQXQP +XQP
+ HQP )

HSP
eff =HSQXQP

HSS
eff = HSS

(HQQ  E0
p )XQP = HQP , p Î [1, NP ]

E0
p =  p H p

XQP

Xqp
(X ) =

Hqp

p
(0) q

p =
Hqp

DXq
p p Î LP, q Î LQ

Hqp = Fq H p  p
(0)

q
p

me

p

Dab
p = p Eab p = CmpCnp Fm Eab Fn

mn
å



 76

and the state dependent orbital energies  

   [4.9] 

where , are occupied orbitals, and is any orbital. 

    [4.10] 

,    [4.11] 

where is the occupation number of orbital in configuration . From this 

approximation, the energy contribution to the p-th electronic state from each external 

configuration can be written as  

DEX
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However, when the energy difference is small, the energy correction 

approaches singularity, and the approximation above fails drastically. Still following the 

general derivation of the response parameter , another approximation (denoted 

by Y instead of the original X) was designed by explicitly diagonalizing the Hamiltonian 

matrices involving uncoupled (p, ) interactions, instead of treating them perturbatively. 

This leads to the energy difference of the primary and external states as 

  [4.13] 
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 [4.14] 

 By plotting out the energy correction as a function of primary-external state energy 

differences, it can be seen that when , the energy correction calculated by 

approximation Y is unlimitedly large, which is unphysical. This corresponds to the case 

where the external configurations dominate the wave function instead of the model space 

configurations. Although this condition is rarely reached, it can be approached by Rydberg-

type configurations, since usually only configurations generated by valence orbitals are 

included in MCSCF calculations. In order to solve this problem, a hyperbolic tangent 

function is used to bind the energy correction to a finite number, generating the final form 

of the GVVPT2 rotation parameter. 
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Figure 17. Schematic diagram of the dependence of the correction energies on the energy 
difference . The blue curve correspond to scheme X, the red one correspond to 
scheme Y, and the black one correspond to scheme Z.159 

 

Parallelization scheme 

 Assuming reliable orbitals are provided in a previous calculation (e.g., MCSCF), a 
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partial integral transformation realized by mctrans.exe (which is the same as the integral 
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executed subsequently to printout the detailed information of configurations and orbitals.  

Among all executable files, the gvvpt2cfg.exe takes the longest amount of time, followed 

by aoints.exe. With the increase of active space and the number of basis functions, the 

calculation of gvvpt2cfg.exe increases dramatically, whereas aoints.exe is only affected by 

the increase of basis functions.  Thus, gvvpt2cfg.exe is the program that was chosen to be 

parallelized first.  

Similar to the situation encountered with in MRCISD(TQ) method, where the 

external configuration contributions to the primary space configurations are independent 

of other external configurations, the GVVPT2 method can also be partitioned in an 

embarrassingly parallel manner. Since GVVPT2 also arranges the CSFs based on 

macroconfigurations, and these macroconfigurations are different in size as well, following 

the same argument as used with MRCISD(TQ), the master/slave partitioning technique is 

also applied to the parallelization of GVVPT2. Since macroconfiguration partitioning of 

CSFs reduces the amount of memory used in the program, and we know that the serial 

GVVPT2 program works on a single core, we think that it is not necessary to access 

memory across nodes, and thus global memory libraries are not used. 

The most time-consuming part in the GVVPT2 perturbation calculation is the 

evaluation of the effect of the external space. This is done by calculating ,

where each element , and finally where each element 

. This is realized in the routine mkhx. The algorithm used in 

mkhx is listed in Figure 18. 

XQP (X+X)PP

(X +X)ij = Xiq
+ Xqj
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As can be seen from examination of Figure 19, the subroutines init (which initialize all 

subspaces and allocates memory space from the heap for arrays), mkorben (which 

generates and stores orbital energies), mkopdm (which generate the one-particle density 

matrices) and offdiag (which generates the off-diagonal Hamiltonian of the model space), 

all calculate data that needs to be used later in the calculations. Since these data are of 

complicated structure and hard to be broadcasted to all processors, and these calculations 

don’t take much time, we ask them to be performed on all processors, such that each 

processor has a copy of the same calculation results. The majority of the changes in the 

serial code needed to achieve parallelization were done in the subroutine mkhx.  

 

 

 

 

 

 



 81

 

Figure 18. Algorithm used in the mkhx routine. 
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Figure 19. Structure of subroutines in the serial gvvpt2cfg program. Blue lines represent the calling of subroutines; orange dashed lines 
represent the accessing of variables; and green dotted lines represent the accessing of arrays. The arrows indicate read and write direction. 
In order to simplify the graph, subroutines after the perturbation calculations are ignored and their accessing relationship is absorbed by 
their parent routines. The accessing relationship of outfile and the main function are also ignored. 
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Figure 20. Parallelization scheme of the parallelized gvvpt2cfg program. 
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In MRCISD(TQ) calculations, the model space wave function is usually 

perturbatively corrected in an iterative manner, although a single iteration suffices in many 

cases. This requires that the Hamiltonian of the primary-external space interaction be saved 

in the scratch files (called scrfile). Since the sizes of these files are large, they are saved on 

individual nodes, and the partitioning of the data in these files must remain the same across 

iterations. However, GVVPT2 calculations require a different way to handle this scratch 

file. Because the GVVPT2 vector can be used in subsequent GVVPT3 calculations or can 

be used as the initial guess vector in MRCISD calculations, it is still necessary to save the 

vectors in the scratch space. But in order for the subsequent calculations to read in the 

data, considering that these calculations are unrelated to GVVPT2 and are not yet 

parallelized, it is much more advantageous to save the data to a single file. This is done by 

transferring the vectors to the master processor and having the master node write the 

vectors to the appropriate locations in the file. This allows the master to work on the I/O 

duty whereas the slave nodes work on the calculation duty, relieving the workload from 

the slaves. Currently, the blocking communications MPI_Send and MPI_Recv are used to 

transfer the vectors from the slaves to the master processor. We estimate the calculation 

time on slaves should be much longer than the file writing by the master; as a result, little 

time would be wasted while waiting for the data to come through. If this step turns out to 

create a blocking barrier for the efficient parallelization, a non-blocking data transfer with 

MPI_iSend and MPI_iRevc can be easily implemented to allow the master to write the 

scratch file while truly waiting for the next data to come through. When the subsequent 

calculation is MRCISD, this information is copied into another file called xqifile. 

Xqi

Xqi

Xqi
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In order to take advantage of the speed of the scratch space distributed to the 

computing nodes, all scratch files are stored there. The only files stored in the user’s work 

directory are the input and output files, and the infofile undmol.dat. The parallelization was 

performed using one of the most commonly used open source MPI libraries: OpenMPI. It 

supports InfiniBand which provides the inter-node communication on the test 

supercomputer. 

The serial version of macroconfiguration-driven GVVPT2 programed in 

UNDMOL1.3 was parallelized in this work. This version of the GVVPT2 program also 

takes advantage of sparse storage of electron repulsion integrals over molecular orbitals, 

and this can reduce the memory usage in GVVPT2 calculations.  

 

Machine Specifications 

 The calculations reported here were also performed on the local Linux 

supercomputer in the University of North Dakota: “Hodor”. The 32 Dell PowerEdge 720 

computer nodes are connected through their PCIe 3.0 expansion buses. Each node is 

configured with dual 64bit, Intel E5-2643 3.3GHz SandyBridge processors, totaling 8 cores 

per node. Each node also has 64GB of random access memory. The file system has two 

146GB 15K revolutions per minute drives in a Mirror Raid configuration. The nodes 

communicate through a private 1Gbit Ethernet Administration Network and a private 

56Gbit FDR one-to-one InfiniBand Research Network. Due to the stability of the 

supercomputer, all test calculations presented below write their scratch files to the head 

node, thus the I/O efficiency is not as ideal as it can be, but we believe the test results can 

still provide enough insights to the performance of the parallelization. 
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Results 

 The systems used in the test calculations are summarized in Table 10 below. Ozone, 

nitrogen dioxide, and sulfur dioxide molecules were selected to test the parallelization 

efficiency. All calculations are performed using the aug-cc-pVTZ basis set.134 MCSCF 

calculations were used to provide the initial orbitals for the subsequent GVVPT2 

calculations. In both MCSCF and GVVPT2 calculations, full-valence CAS style active 

spaces are selected to be the model space, represented by collections of 

macroconfigurations. All core orbitals are frozen (i.e., held doubly occupied after MCSCF 

optimization) in the GVVPT2 calculations. The MCSCF calculations are not parallelized, 

and were calculated using UNDMOL1.3. All GVVPT2 calculations are performed with the 

new gvvpt2cfg.exe program, and the results are presented below. It is worth noting that all 

calculations times presented here are the calculation of gvvpt2cfg.exe, not the entire 

GVVPT2 calculations which also include programs aoints.exe, orbord.exe, mctrans.exe, 

mcrcfgs.exe, and printcfg.exe. 

 Since the parallelization scheme is based on macroconfigurations, the size 

distributions of CSFs in the macroconfigurations has a large impact on the load balancing 

of the parallel program. An easy way to control the size of macroconfigurations is by 

tailoring macroconfigurations to be larger or smaller in calculations. Similar to the 

investigation of parallelized MRCISD(TQ), several definitions of macroconfigurations 

were used to achieve various granularity indices, which are defined as the maximum 

number of CSFs in a single macroconfiguration divided by the total number of CSFs. The 

selections of macroconfiguration groups are summarized in Table 10. To avoid extremely 
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inefficient parallelization, all CAS orbital groups are broken down to at least three groups. 

But since GVVPT2 only considers singly and doubly excited configurations in the external 

space, the model space can be much larger than the reference space of MRCISD(TQ) 

calculations. In MRCISD(TQ) calculations, in order to obtain a large number of 

macroconfigurations, all reference space macroconfiguration groups only have one orbital. 

This is unnecessary in the GVVPT2 calculations because simple manual separation of 

macroconfigurations groups can generate very low granularity indices. In the test 

calculations of NO2, breaking all twelve CAS orbitals into 3 groups in the way indicated 

in Table 10 can generate a granularity index of 0.13, further dividing them into 4 groups 

can lower the granularity index by about 50%, whereas breaking them down to 11 groups 

further lowers granularity index down by 99%. In the test calculations of O3, breaking all 

twelve CAS orbitals into 3 groups can give a granularity index of 0.11, and breaking them 

into 6 groups can reduce the index to 15 times smaller.  
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Table 10. Details of the molecules used in GVVPT2 benchmark calculations. 

Molecule O3 O3 NO2 NO2 NO2 SO2 

Grain Size fine coarse medium fine coarse medium 

Point Group Cs Cs C2v C2v C2v C2v 

Target State A’ A’ A1 A1 A1 A1 

Grouping of 
active orbitals 

2 A’,  
2 A’, 
2 A’, 
2 A’, 
1 A’, 
3 A’’ 

4 A’, 
4 A’, 

1 A’ 3 A’’ 
 

5 A1, 
1 A2, 
2 B1, 
4 B2 

2 A1, 
2 A1, 
2 A1, 
2 A1, 
1 A1, 
1 A2, 
2 B1, 
1 B2, 
1 B2, 
1 B2, 
1 B2 

5 A1, 
1 A2 2 B1, 

4 B2 

5 A1, 
1 A2, 
2 B1, 
4 B2 

Total CSFs 7.0E+08 7.0E+08 1.0E+09 1.0E+09 1.0E+09 1.1E+09 

Total MCRs 1625 108 213 13710 104 213 

Max CSFs per 
macroconfigu

ration 
5.0E+06 7.8E+07 6.6E+07 4.9E+05 1.3E+08 7.1E+07 

Max CSF / 
Ave CSF 11.56 12.06 14.09 6.66 13.81 14.18 

Granularity 
Index 0.0071 0.1117 0.0662 0.0005 0.1327 0.0666 

 

 

It can be seen from Figure 21 that the scaling is different for different systems. All 

calculations speed up by at least 2.7 times when using 3 slave cores (N.B. 4 processors 

need to be used in total), and in the calculation of fine grained O3 and SO2, a 12 times 
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speedup can be achieved using 31 slave cores, and the curves keep increasing. But in other 

cases, such as the coarse-grained ozone and all NO2 calculations, the performances do not 

increase much after 15 slave cores are used, when the efficiency was increased by only 

about 6 times. In practice, it was also observed that running the same calculation multiple 

times could take different amounts of time, and this difference can be fairly drastic. This is 

most readily apparent in the coarse grain O3 calculation. One possibility is that because this 

calculation has a relatively small number of macroconfigurations, and if the assignment of 

macroconfigurations is different in each run, then the total run time may different more 

significantly than others. Another possible explanation is the read-write traffic at the time 

of execution. Especially because the scratch files are written to the head node, the program 

performance can depend on how many users are reading or writing on the head node at the 

time. The numbers presented in Table 11 and Figure 21 below are the average results. 

 

Figure 21. Speedup of the gvvpt2cfg.exe program 
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 In all three calculations of NO2, the speedup curves behave in a very similar 

fashion. This means that in some calculation cases, in which a considerable amount of 

macroconfigurations are included, load balancing with separating macroconfiguration 

groups stops being the limiting factor for GVVPT2 calculations. When the model active 

space is large (in our test cases, 17 electrons in 12 orbitals), it might be sufficient to only 

separate the active orbitals to a limited number of groups. In the case of O3, dividing the 

active orbitals into smaller groups is better.  

In MRCISD(TQ) calculations, we recommend that the users divide orbitals into 

groups such that as many macroconfigurations as possible are used. This is not the case in 

GVVPT2 calculations. It can be seen from Table 11 that in some calculations, breaking the 

active orbitals into more groups almost always increases the total calculation time, 

assuming the same number of cores are used. This is because the program needs to search 

for macroconfigurations, and this search is quadratically dependent on the number of 

macroconfigurations. Implementation of more efficient NlogN searches are possible, but 

have not been investigated yet.  The more macroconfigurations there are, the more 

expensive the calculation gets. Since in GVVPT2 calculations, the parallel efficiency may 

not be bound by load balancing, it is not necessary to break down macroconfigurations to 

the finest level. Even though the search for macroconfigurations also depends quadratically 

on the number of macroconfigurations in MRCISD(TQ) calculations, the MRCISD(TQ) is 

still bound by load balancing and the ability to break down macroconfigurations to contain 

fewer CSFs. Thus different strategies are recommended.   

 We would like to point out here that if the granularity index is 0.1, the maximum 

speedup that can be achieved is 10 times, and because the large macroconfigurations are 
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usually evaluated in the later calculations, a realistic expectation of speedup from using 10 

cores is possibly only 5 times. In order to achieve a speedup of 10, it’s safer to start with 

active orbital grouping that generates a granularity index of 0.05. Or in other words, if an 

expected speedup is N times with N cores, it’s recommended to make the granularity index 

around 1
2N

. 

Since each node of the supercomputer “Hodor” has eight processors, the inter-node 

communication can slow down the calculations. We believe that this may be the cause of 

the leveling of the speedup curves of NO2 and coarse grained O3 curves.  

Table 11. Calculation times (in seconds) test cases. 

No. Processors O3 O3 NO2 NO2 NO2 SO2 
 fine large regular fine large regular 

1 122.93 121.03 212.91 231.36 220.24 152.38 

3 43.73 40.27 81.83 85.03 81.43 56.59 

7 23.25 20.18 42.1 51.19 41.04 24.4 
15 12.7 19.16 33.21 37.54 34.95 15.63 
23 9.97 12.82 33.13 34.4 32.79 14.47 

31 8.94 8.22 33.4 34.18 31.75 12.67 
 

 

Conclusions 

 The GVVPT2 method, a quasidegenerate perturbation theory that does not have the 

intruder state problem, was parallelized in the computational chemistry software suite 

UNDMOL. The program was implemented and tested on the supercomputer “Hodor”, 

which has 32 PowerEdge 720 computer nodes connected through PCIe 3.0 expansion 

buses. Each node is configured with dual 64bit, Intel E5-2643 3.3GHz SandyBridge 
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processors, totaling 8 cores per node. The program divides the configuration space into 

macroconfigurations and evaluates the interactions between the external and the primary 

spaces macroconfiguration by macroconfiguration. A master/slave type of parallelization 

scheme is used to assign each external space macroconfigurations to slave cores, and a 

master core to gather and organize the results after all macroconfigurations are evaluated. 

The program is embarrassingly parallel.  

 Our test results show that the parallelization scaling can be better when the 

configuration space CSFs are divided into more macroconfigurations. But after a certain 

number of macroconfiguration is generated, the parallelization efficiency doesn’t improve 

any further. Instead, more macroconfigurations can actually slow down the calculation. 

Generally speaking, if an expected speedup is N times with N cores, it is recommended to 

make the granularity index around 1
2N

.
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CHAPTER V. 

IMPLEMENTATION OF RESTRICTED DENSITY FUNCTIONAL THEORY IN 
UNDMOL 

Introduction 

 Since perturbation theories are generally most effective in low-order, 

multireference perturbation theories usually require relatively large model spaces to 

expand the Hamiltonian, such that the perturbation corrections are small. This is 

traditionally done using large CASSCF calculations. However, the number of variational 

parameters of MCSCF calculations grows more than exponentially with the number of 

orbitals; using incomplete active space calculations requires the users to select orbitals 

based on each individual system studied, and expert testing may be required to make sure 

the results make sense, even though the calculations converge which is difficult by itself. 

The expensive MCSCF calculation is usually the time-limiting step in order to perform 

MRPT2 calculations. This also limits the size of systems that can be calculated with 

MRPT2. 

 Realizing that the essential results obtained from MCSCF calculations are sets of 

molecular orbitals to expand the many-electron wave functions, either in building linear 

combinations of Slater determinants or CSFs, alternative molecular orbitals become of 

interest. Ideally, these orbitals should have been determined in the presence of some 

electron correlation, so that GVVPT2 can calculate the correlation based on perturbations. 
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Fortunately, MCSCF is not the only theory that can include modest amounts of electron 

correlation when determining molecular orbitals. According to the Hohenberg–Kohn 

theorem,23 which states that electron density can uniquely determine the energy of any 

ground state system, the dynamic correlations that are usually recovered using 

multireference wave function methods can also be represented in single reference DFT. It 

was found that LDA molecular orbitals can be used to expand the many electron wave 

function in GVVPT2 calculations, although the pilot implementation tests were limited to 

complete active model spaces and small molecules.162 Assuming that the hypothesis holds 

true for larger systems, it would allow us to avoid the expensive and user-biased MCSCF 

calculations to generate orbitals for GVVPT2, thus saving tremendous time in the 

calculations. In the pilot study, alpha orbitals from LDA were used, because only spin-

unrestricted DFT calculations were supported at the time in available computer programs. 

However, a cleaner and more well-defined procedure is to use restricted DFT orbitals. 

Spin-restricted quantum mechanical methods are of great theoretical importance. 

The wavefunctions of restricted methods are eigenfunctions of the total spin operator S2, 

spin projection operator Sz (or time-reversal operator Θ) and group operators Pi of the 

molecular point group, whereas unrestricted wavefunctions break symmetry under of S2 

operators. Even though restricted wavefunction cannot correctly describe the breaking of 

bonds, which intrinsically can be viewed as a multireference problem, it offers clean and 

well-defined orbitals on which one can build multireference methods. 
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Methods 

 One-electron orbitals used in electronic structure calculations are functions of four 

variables: three spatial variables (x, y, z or r, ,  , etc., depending on the coordinate 

system used) and the spin variable. The spin functions can be represented in a basis of two 

functions: spin up and spin down. The complete four-variable one-electron wave function 

is called a (molecular) spin orbital. Since the nonrelativistic Hamiltonian operator does not 

explicitly contain spin, the one-electron spin wave function can be cleanly separated from 

the spatial wave function.  

     [5.1] 

The spin functions20 are very simple, and lend themselves to a 2-vector representation over 

a base 2 (i.e., binary) field, 

   [5.2] 

It is much easier to write the treat the spin function separately and expand operators in 

matrices of spatial wave functions. Or in another way of thinking, all operators and values 

are written with the spin wave function already integrated. 

The two most commonly used ways of treating spin in many-electron systems lead 

to spin-restricted and spin-unrestricted wave functions.21,163  To explain the differences 

between restricted and unrestricted DFT methods, we first look at the differences between 

the restricted Hartree–Fock (RHF) method and the unrestricted Hartree–Fock (UHF) 

method.  

 In the UHF method, the alpha and beta spin orbitals are allowed to have different 

spatial parts,  
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ቐ      [5.3] 

The full electronic energy can be expressed as21  

  [5.4] 

 

 

 

Each spin has one set of the SCF equations  

    [5.5] 

    [5.6] 

It is well known21 that the Fock operators and  can be written as  

   [5.7] 

   [5.8] 
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. This means that and  must be updated together with both r  and rb in each self-

consistent field iteration.   

 In closed-shell systems,21 RHF restricts all orbitals to be doubly occupied, and the 

spin-up and spin-down orbitals to have the same spatial part. This also has the 

computational advantage that the indices in Eq. (1.1) do not need to run through all N spin-

orbitals, but N/2 spatial orbitals. 

  [5.9] 

similarly, the Fock operator can be defined as  

   [5.10] 

In the basis {fm}, each element of the Fock matrix takes the form 

Fmu
C = dr1fm
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 [5.11] 

where the core-Hamiltonian matrix is defined as  

Hmu
core = dr1fm

* (1)h(1)fu (1)ò     [5.12] 

 When only unpaired electrons exist in the system and the spin coupling maximizes 

the total spin (e.g., so-called high-spin states), there is only one shell in the entire system, 

which is the open shell. Spin restricted HF does not place any restriction on the one-electron 

functions of the unpaired electrons, the spatial wave function is conjugate to the spin wave 

function (i.e., it is an antisymmetrized single product of spatial functions).  The total energy 
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takes a form that is similar to the spin-orbital Hartree–Fock expression, and can be 

expressed as  

 [5.13] 

The open-shell Fock operator is 

    [5.14] 

 When both paired and unpaired electrons exist in the system (two-shell system), 

and the system is required to be an eigenfunction of S2, the method is referred to as 

restricted open-shell Hartree–Fock (ROHF). The total energy of the system can be written 

as the sum of a closed-shell part, an open-shell part, and a coupling. 

  [5.15] 
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parts have their own electron densities, and the Fock matrices for the closed, , and the 

open-shell part, , are calculated separately.  

 In order to obtain the optimal orbitals that result in the Hartree–Fock energy, a 

necessary condition must be met. 

     [5.16] 

Applying orthogonality conditions among orbitals, it can be proven164,165 that the condition 

above reduces to  

yi (Fi Fj ) y j = 0      [5.17] 

  When both i  and j  orbitals are in the closed-shell space or the high-spin open-

shell space, Fi Fj = 0  is met trivially. However, when they are not in the same shell, 

additional steps must be taken to make sure the variational requirement is met. So far, we 

have two different Fock matrices for the two shells, which cannot be diagonalized with the 

same set of eigenvectors. We have a variational condition that has to be satisfied at the 

same time. Our resulting wave functions also need to be orthonormal. This can be done in 

a variety of ways, but is most commonly done by constructing an effective Fock 

matrix,163,164,166 whose closed-shell eigenvectors of the effective Fock matrix are the same 

as those of , and the open-shell ones the same as those of .   

 The approach implemented in UNDMOL follows the idea of Edwards and 

Zerner.164 Since Hartree–Fock theory always fills orbitals starting from the lowest energy 

ones,167 arranging the Fock matrix based on the magnitude of eigenvalues, the Fock matrix 

can be separated into a block form, corresponding to the paired electron (closed-shell) 

block, the un-paired electron (open-shell) block, and the virtual block. (Figure 22) Within 
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each block, unitary rotations of orbitals do not change the eigenvalue or the energy of the 

system. Focusing on the open-shell block, the derivation is based on the idea of expression 

the wave functions of the open-shell in terms of those of the closed-shell. A Fock-like 

matrix can be defined as 

Fmu = LmuFu + (1Lmu )Fm      [5.18] 

where m  represent the closed-shell, u  represent the open-shell, and the arbitrary constants 

Lmu ¹ 0 . A projecting operator Pu = yk
u yk

u

kÎu
å  can be used to project it to the open-shell 

block. Satisfying the variational condition, a Hermitian effective Fock matrix can be 

defined as 

    [5.19] 

This is the effective Fock matrix used in our program. The constants Lmu are chosen as 1, 

and only one u shell exists, which is the open-shell. 

 Comparing the effective Fock matrix and the closed-shell matrix, we notice that the 

only difference is in the open-shell block. Since the effective Fock matrix is symmetric, it 

is only necessary to evaluate the upper triangle (or the lower triangle) throughout the entire 

calculation. As a result, only the shaded triangle area of the Fock matrix is updated.  
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Figure 22. The blocked structure of the Fock matrix. 

 

Relationship between ROHF and UHF Fock Matrices 

 UNDMOL 1.2 is capable of calculating unrestricted DFT. This is done by 

calculating the DFT Fock matrices for alpha, and beta, spins. However, in RODFT, 

the most natural matrix variables are the Fock operators for the closed-shell part and 

open-shell part , which are different. The computationally efficient way of calculating 

RODFT is to generate and from the closed-shell and open-shell electron densities. 

But, this would involve modifying each DFT functional from a dependence on spin-up and 

spin-down densities (and their gradients for GGA) to a dependence on closed-shell and 

open-shell densities. A less error-prone procedure to implement RODFT is to use existing 

UDFT expressions and computer code, which was the procedure followed in my work. 

Once the alpha and beta spin densities  and  are extracted from the total density 
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and open-shell electron density , the unrestricted DFT code can be used to calculate the 

and . Subsequently, these are converted into and , the initial Fock matrices 

of each iteration are updated, and the energy of the current iteration calculated. If the result 

is not converged, the next iteration can be carried out. This way we avoided re-writing the 

DFT calculations with  and .  The extra computational overhead is the memory 

needed for , , and , in addition to F c , F o , r and r o , which is a small 

fraction of the available memory for a modern computer.  

Since electron density is an additive property, the relationship of ROHF and UHF 

density matrices is not difficult to obtain. Following the expressions used in Methods of 

Molecular Quantum Mechanics by R. McWeeny,163 the subscript 1 denotes the closed 

shell, and the subscript 2 denotes the open shell. To cleanly express the electron density 

in open- and closed-shells, a matrix R is defined as , with  denoting the coefficient 

of basis functions. The matrix R has no dependency on electron occupation. In the case of 

UHF and UDFT, the alpha and beta R matrices R and Rb  are the same as the density 

matrices, i.e. R = r  and Rb = rb . However, in the case of closed-shell RHF, the matrix 

R is only half of the total density matrix r . In the cases of ROHF and RODFT, the total 

electron density r = r +rb = R + Rb = 2R1 + R2  and the open-shell electron density 

r o = r  rb = R Rb = R2  are calculated. The following relationship of electron density 

matrices can be used to convert the RHF information to the UHF format. 

R = R2 + R2 =
1
2

(r +r 0 )

Rb = R1 =
1
2

(r  r0 )
    [5.20] 

ro

F F b cF oF

r ro

F F b R Rb

†CC C



 103

Unlike the density matrices, the Fock matrices of RODFT and UDFT are not 

additive. Realizing that Fock matrices are calculated based on electron density matrices, 

we expressed the Fock matrices as functions of density matrices. The example is given for 

the alpha electron UHF case (the other cases can be calculated in similar manners). 

      Fmu
 = dr1fm

*(1) f  (1)ò fu (1)        [5.21] 

 

 

 

Continuing to follow the expressions used in Methods of Molecular Quantum 

Mechanics by R. McWeeny,163 a G matrix can be introduced to represent the total effect 

of the Coulomb and the exchange terms. It is the matrix representation of the regular two-

electron operator. In one-shell systems, the expression of the G matrix is different for 

high-spin open-shell systems and closed-shells systems. The high-spin open-shell G’ 

matrix takes the form '( ) ( ) - ( )G R J R K R= , whereas the pure closed-shell G matrix takes 

the form 1( ) ( ) - ( )
2

G R J R K R= , as can be seen from the previous section.  

The benefit of using the G and the unusual density R matrices is that when both 

shells exist in the system, they can cleanly separate the effect of the two shells. Following 

these notations, the ROHF energy can be expressed as the sum of the closed- and open-

shell contributions: 
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where and are the occupation numbers of each shell, so we have , .  

 The expressions that relate the Fock matrices in both shells are summarized in 

Table 12 below. For both shells, the Fock matrices are always the sum of the core 

Hamiltonian matrix and the G matrix. The G matrices in both shells G1 and G2  can 

always be separated into two parts that depend on closed-shell electrons R1  and the open-

shell electrons R2 . But in the closed-shell G1 , both R1  and R2  contribute in the form of 

G, whereas in the open-shell G2 , electrons in the open-shell R2  contribute in the form of 

G’.  

 

Table 12. Expanding Fock matrices of closed- and open-shell parts in ROHF 

Closed-shell part in ROHF Open-shell part in ROHF 

  

 G2 =G(u1R1)+G '(u2R2 )  

1( ) ( ) - ( )
2

G R J R K R=  1( ) ( ) - ( )
2

G R J R K R=
   

'( ) ( ) - ( )G R J R K R=  

 

For UHF, the expression for the Fock matrices are simpler:  

F = h+G , F b = h+Gb     [5.23] 

G = J(R +Rb )K(R ) , Gb = J(R + Rb )K(Rb )  [5.24] 

Using the following density matrix relationships,  

R1 = Rclosed = Rb  , R2 = Ropen = R  Rb    [5.25] 

we can write the Fock matrices for UHF as 

1u 2u 1 2u = 2 1u =

1 1F h G= + 2 2F h G= +

1 1 1 2 2( ) ( )G G R G Ru u= +
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F = h+ J(R + Rb )K(R )
F b = h+ J(R + Rb )K(Rb )

    [5.26] 

and write the Fock matrices for ROHF as 

Fo = h+ J(2R1 +R2 ) 1
2

K(2R1)K(R2 )

= h+ J(R + Rb ) 1
2

K(2Rb )K(R  Rb )

= h+ J(R + Rb )K(Rb )K(R  Rb )
= h+ J(R + Rb )K(R )
= F

F c = h+ J(2R1 +R2 ) 1
2

K(2R1 + R2 )

= h+ J(R + Rb ) 1
2

K(R + Rb )

  [5.27] 

Since  

F +F b = 2h+ 2J(R + Rb )K(R + Rb )    [5.28] 

we have 

F o = F

F c = 1
2

(F + F b )

F diff = F c  F o = 1
2

(F b  F )

    [5.29] 

With these equations above, we can transform the UHF Fock matrices into the ones for 

ROHF. 

 Since DFT methods can also be expressed in terms of effective Fock matrices, the 

relationship above will also exist for DFT calculations. Instead of the Hartree–Fock 

exchange term, DFT uses an exchange-correlation term, but the main idea remains the 

same. All equations above can be directly applied to DFT, except  stands for the effective 

Fock matrices and K stands for the exchange-correlation term.  

F
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 We note that hybrid DFT methods use both the Hartree–Fock exchange and the 

DFT exchange. In the subroutine dft_energy, the effective alpha and beta Fock matrices 

only contain the DFT exchange. The full effective Fock matrices also need to include the 

Hartree–Fock exchange weighted by a fraction called the Hartree–Fock exchange 

percentage.  

F diff = 1
2

(Ffull
b  Ffull

 )

= 1
2

[(FDFT
b  FDFT

 )+wHF (FHF
b  FHF

 )]

= 1
2

[(FDFT
b  FDFT

 )+wHF KHF (R  Rb )]

= 1
2

[(FDFT
b  FDFT

 )+wHF KHF (r o )]

   [5.30] 

Here, we use KHF to denote the true Hartree–Fock exchange. This equation is used to 

satisfy the variational condition. 

The direct inversion in the iterative subspace (DIIS) technique168,169is commonly 

used to increase the rate of convergence of self-consistent field iterations. Since this 

technique does not change the physical meaning of the Fock matrices, it is possible to apply 

the RODFT-UDFT transformation with DIIS calculated Fock matrices. 

 

Test calculation results 

 To test if our implementation is correct, we tested some molecules using both this 

code and GAMESS. Throughout the comparisons, we used the integration grid as similar 

as possible for atomic integral calculations, and we also used the same version of DFT 

functionals (the VWN5 version of B3LYP). It can be seen from Table 13 that RDFT and 

UDFT results agree with each other for small closed-shell molecules. This is expected 
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because breaking spin symmetry usually does not lead to great improvements for the 

ground states of stable molecules in their optimized geometry. UNDMOL RODFT results 

agree with GAMESS149 results to the order of 100 micro-Hartree, no worse than the 

agreement of UDFT. The small disagreement might come from factors such as differences 

in the calculation of electron repulsion integrals.  

Table 13. Test calculation on single point energies  

System Method DFT Basis UNDMOL GAMESS 
H2 UDFT Slater (or LDA) 3-21G -1.0337149 

 

 RDFT Slater 3-21G -1.0337149 
 

 UDFT B3LYP(VWN5) 3-21G -1.1638084 -1.1638097 
 RDFT B3LYP(VWN5) 3-21G -1.1638084 -1.1638097 
 RHF 

 
3-21G -1.1229403 -1.1229403 

H2
+ RDFT Slater 3-21G -0.5046374 

 

H2O RHF 
 

3-21G -75.585499 -75.585499 
 UDFT Slater 3-21G -74.743438 -74.743461 
 RDFT Slater 3-21G -74.743438 -74.743461 
H2O+ RDFT Slater 3-21G -74.367235 

 

 UDFT Slater 3-21G -74.367235 
 

CH2 (triplet) RDFT Slater 3-21G -38.064857 
 

 UDFT Slater 3-21G -38.067433 
 

  

 

We also tested the effect of using DIIS to improve the iteration efficiency. It was 

found that DIIS can efficiently reduce the cost of calculations. For some calculations that 

require 40 iterations to converge (i.e., a typical value), DIIS can converge the calculation 

in less than 10 iterations. This drastically reduced the calculation time. 
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Conclusions 

 By using the UDFT routine, RODFT was implemented in UNDMOL. This was 

achieved by converting the total and open-shell electron densities into the corresponding 

alpha and beta electron densities and using the UDFT routine to calculate the alpha and 

beta effective Fock matrices. The effective Fock matrices are subsequently converted to 

those of the closed- and open-shell parts.  The variational condition is satisfied by 

constructing an effective Fock matrix and diagonalizing it. The calculation results agree 

with those calculated by GAMESS.  We also found that the DIIS technique drastically 

speeds up the convergence of RODFT calculations. This code can be used to investigate 

other interesting topics in electronic structure theories, such as using DFT orbitals to 

expand model spaces in GVVPT2 calculations.  
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CHAPTER VI. 

A DFT STUDY ON ZINC(II)-PTHALOCYANINE TETRASULFONIC ACID ON 
MONO-LAYER EPITAXIAL GRAPHENE ON SILICON CARBIDE(0001) 

Introduction 

Graphene has the structure of single sheet graphite. It is a true two-dimensional 

sheet of carbon atoms.170,171 It is strong yet light-weight, and an excellent electrical and 

thermal conductor, and almost optically transparent.172,173 Graphene-based materials have 

received much attention recently in areas of energy storage, 174,175 electronics, 176 biological 

engineering,177,178 and photovoltaics.179,180 One of the unique properties of graphene is its 

Dirac point, which is where the conduction and valence bands of graphene meet in a cone 

in the momentum space. At this Dirac point, the electrons can be described formally by the 

massless Dirac equation; the dispersion relationship is linear, and the density of states 

(DOS) of graphene is zero.181 Because of these, it is of interest to modify the electronic 

properties of graphene by modifying the Dirac point. One way to do this is to create 

vacancies and substitutional impurities, but this was shown to affect the charge carrier 

mobility and significantly alter the electrical properties of graphene.182,183 Another 

commonly used way to functionalize graphene is to physisorb organic or inorganic 

compounds onto the graphene surface. This adsorption, in many cases, keeps the essential 

electronic properties of graphene intact. 
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In order to make sure that the molecule can be adsorbed sufficiently strongly to the 

graphene surface, molecules with large π systems are usually selected due to their strong 

π-π interaction towards graphene. Phthalocyanines are of this type. (See Figure 23) The 

molecules have a near-square-shaped two-dimensional structure, and their delocalized π 

electrons run through the entire molecule. Phthalocyanines are structurally related to 

porphyrins, which are the active centers of many biologically active molecules, including 

chlorophyll and heme.184,185 Traditionally, phthalocyanines are extensively used as dyes 

and pigments, such as the phthalocyanine blue and phthalocyanine green paints commonly 

used in oil paintings. Recently, their unique properties have been discovered and applied 

for a variety of different purposes: redox reaction catalysis, molecular electronics, and 

quantum computing,186–189 which inspired extensive studies focusing on phthalocyanine 

thin films on substrates.190–194 In the experiment that inspired our computational studies,195 

zinc(II)-phthalocyanine tetrasulfonic acid (Zn-PcS; see Figure 24) was selected due to its 

photodynamic and photothermal properties. Zn-PcS also has potential in treating cancer 

because its high affinity towards tumors over healthy tissue.185 

 

Figure 23. Structure of phthalocyanine. 
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Figure 24. Structure of the Zn-PcS molecule. 

 

There have been some studies on the adsorption of phthalocyanine/porphyrin 

molecules on graphene,196–199 including some studies with scanning tunneling 

microscopy/scanning tunneling spectroscopy (STM/STS), but since these studies were 

carried out at low temperatures, the room temperature results were not available.  Since 

most applications require performance at the room temperature or higher, Dr. Oncel in 

UND’s physics department used STM/STS to study the graphene system physisorbed with 

Zn-PcS, where the graphene was supported by SiC.170 It was discovered that the surface 

coverage of Zn-PcS is very low. Instead of a layered structure, Zn-PcS molecules only 

individually adsorbed on the graphene sheet. Moreover, Zn-PcS molecules only adsorbed 

on bi-layer graphene, but not mono-layer graphene. It was also observed that the Dirac 

point of graphene disappears in the adsorbed system. We tried to use theoretical 

calculations to understand these results. 
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Methods 

Calculations of periodic systems 

Rather than Gaussian or Slater type orbitals, plane waves are more commonly used 

in the calculation of crystals. Then, instead of imposing the periodic condition on the wave 

function in the calculations, plane waves satisfy the boundary conditions by building in 

periodicity from the beginning (i.e., with the basis set). They are also naturally orthogonal 

with each other, making integrals easy to calculate. Plane waves also provide a natural way 

to extend the number of basis functions. One can simply include more basis functions of 

higher momentum to expand the basis, which is very convenient when deciding if a 

calculation is converged with respect to the number of basis function. From a historical 

point of view, plane waves in the free electron model were first applied to study the metallic 

solid materials made from s- and p-block elements.  From a practical point of view, the 

development of fast Fourier transformation algorithms makes the plane wave calculations 

exceedingly efficient.  

Core electrons in a chemical system have stronger attraction to the nucleus than do 

valence electrons, and thus have higher momentum. To correctly describe them with basis 

functions, (very) high momentum functions are necessary, which would render the 

calculations too expensive. However, since core electrons are rarely involved in chemical 

bonding or in conduction bands, it is possible to describe the effect of core electrons as a 

potential which screens the attraction felt by outer electrons. Pseudopotentials were 

developed for this reason.200,201 In such calculations, pseudopotentials are constructed from 

all-electron calculations of atoms, and they are kept the same in the other systems whether 
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or not the same atom is covalently bonded or is an ion in the chemical system. The 

pseudopotentials are generated such that above a “cut-off radius” the all-electron wave 

function “overlaps” with the wave function under the pseudopotential. The wave function 

that uses pseudopotentials should also conserve the scattering properties of the original 

atom in the atomic configuration. Generally speaking, each DFT method has a unique set 

of pseudopotentials for each atom, and these potentials can be parameterized with and 

without considering relativistic effects.  

There are three types of commonly used pseudopotentials, namely norm-

conserving, ultrasoft, and projected augmented wave (PAW) pseudopotentials. The norm-

conserving potential is the “hardest”, meaning it requires higher cut-off energy or smaller 

cut-off radius. The ultrasoft potential relaxes the condition that the charge integrated inside 

the cut-off radius has to be the same in the pseudopotential and the all-electron cases, and 

charge augmentation is sometimes used. The PAW potential is the most accurate and has 

the lowest cut-off energy. It also depends less on the specific exchange-correlation 

functional used. It is generally recommended to use a PAW potential in calculations, which 

was done in our calculations. 

 In the modeling of surfaces and interfaces, the natural system is only periodic in 

two directions. It is not feasible to directly apply the program designed for modeling 

crystals, which are periodic in all three directions. One work around is to use a program 

that only has periodicity in two directions, but such programs are not as well developed as 

are the programs for 3-D periodicity. The other way of enforcing 2-D periodicity is to use 

a slab model while forcing a 3-D periodicity. By generating an array of slabs repeating 

along one direction, separated by sufficient vacuum, one can insure that the slabs have 
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negligible interaction between the slabs. (See Figure 25) In the simulation of surfaces, a 

few top layers of atoms are usually kept to generate the properties of the bulk material 

underneath, making sure the system under study is not a single layer of atoms. 

 

Figure 25. Three-layer slab models of the MgO (100) surface. (a) With 2-D periodic 
boundary conditions. (b) 3-D supercell approximation of the slab model as adopted in plane 
wave calculations. 96 
 

All properties of a crystal can be obtained by integrating in the first Brillouin zone. 

Each point in the Brillouin zone is called a k point. Theoretically speaking, integrating the 

entire first Brillouin zone requires knowledge of all possible k points. But in practice, only 

a limited number k points are sampled, and is it hoped that they can correctly represent the 

properties of their neighboring k points in the reciprocal space. Monkhorst-Pack meshes 

are usually used to select the k points. They are equally spaced k points in the first Brillouin 

zone. (See Figure 26) Since crystals have translational symmetry, it is advantageous to use 

this symmetry to reduce the number of k points. Using the symmetry in reciprocal space, 

the example below shows how the number of k points can be reduced from 16 to 3.  
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Figure 26. A two-dimensional Monkhorst-Pack mesh in the first Brillouin zone. 96 

 

Parameters used in the current study 

In order to treat the periodic system, the Density Functional Theory (DFT) method 

using a plane wave basis with PAW pseudopotentials was carried out with the Quantum-

ESPRESSO package.202 Since the graphene system is only periodic in two directions (say 

x and y), we needed to use the slab model to design “supercells” that are periodic in the z 

direction. In the experimental results, it was observed that Zn-PcS molecules did not form 

a continuous layer when adsorbed to graphene; this means that in our simulation, we 

needed to create a large distance between Zn-PcS molecules so that they did not interact 

with each other. This was accomplished by placing Zn-PcS molecules periodically in the 

x and y directions but far away from each other, while the graphene layer underneath was 

continuous. In our calculation, the vacuum space was set to 21 Å along the z-direction; Zn-

PcS molecules were set 16.8 Å and 16.46 Å apart from each other in the x- and y-directions.  

This makes our unit cell fairly large in comparison with other calculations of the same type. 

As mentioned earlier, to efficiently describe the electronic structure of the system, 

we chose the DFT method. The Perdew–Burke–Enzerhof (PBE)26 functional is an efficient 

yet relatively accurate exchange-correlation functional for use in the Generalized Gradient 

Approximation of DFT, and it was used to describe the system. To better describe the π-π 
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interaction, the second version of the dispersion correction developed by Grimme202 was 

added to the PBE functional, so that our functional can be denoted as PBE-D2. While the 

effects of the core electrons and nuclei of the non-metal atoms were captured by the 

projected augmented wave method,203 and ultra-soft pseudopotentials were used in the 

description of Zn.204 The single electron states were expanded in plane waves with kinetic 

energy cutoffs of 47 and 188 Ry for the wave function and the charge density, respectively. 

In order to keep the size of the unit cell manageable, we considered only a single layer of 

graphene. During the geometry optimization process, the convergence criterion for the total 

energies was chosen as 10ିସ  a.u. between the consecutive self-consistent field 

calculations, and the maximum force allowed on each atom was set to 0.001 a.u. Among 

the possible adsorption structures, we chose the one in which the center of Zn-PcS was 

oriented above the center of the graphene ring. (See Figure 32) We believe that due to the 

low adsorption energy and the relatively large size of Zn-PcS compared with a graphene 

ring, the relative positioning of Zn-PcS and graphene would not make a difference. 

Experimentally,170 it was observed that the Zn-PcS molecule can be moved around by the 

STM tip, which suggests that the π-π interaction between Zn-PcS and graphene is too weak 

to pin the molecule to a precise orientation with the surface. To get the optimized structure 

of the adsorbed system, the graphene sheet was frozen in space while all atoms in the Zn-

PcS molecule were allowed to relax. The self-consistent field calculations were done at the 

gamma point, and the Density of States calculations were carried out on a 3×3×1 grid. 
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Results and discussion 

A calculation of pure graphene was performed to test the parameters selected in the 

study. Based on the plot of the DOS in Figure 27, it can be seen that the PBE-D2 method 

can correctly capture the Dirac point of the graphene layer, and our method of choice is 

reasonably accurate.  

 

Figure 27. DOS of monolayer graphene calculated by PBE-D2170 

Our calculations show that the Zn-PcS molecule is about 13 Å in width and length, 

and about 18 Å diagonally. This confirms that the height change in the experimental scan 

in Figure 28 belongs to the Zn-PcS molecule. We also observed that Zn-PcS changes from 

a planar structure into a slightly bent one upon adsorption. The center of the molecule 

becomes closer to the graphene surface. This is also confirmed in the scan below. This is 

partly due to the fact that Zn-PcS is not completely planar. The sulfonic acid groups keep 

the edges of the molecule away from the graphene surface. From our calculations, it can 

be seen that the center Zn atom is 3.1 Å away from the graphene layer, similar to the 
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distance between the oxygen atoms to the graphene layer, which is 3.07 Å. The H atoms 

are the farthest from the graphene, with the distance of 5.5 Å. These agree with the 

experimental results fairly well.  

 
Figure 28. (a) 9nm × 9nm experimental STM image of Zn-PcS molecules. V=-0.93 V, 
I=0.78nA. Green and blue arrows indicate line scan directions. (b) corresponding line scans 
across each of the Zn-PcS molecules. Red arrows indicate the center of Zn-PcS 
molecules.170 

The adsorption energy in this study was defined as the differences between the 

summed energies of the individual systems and the energy of the adsorbed system. But the 

geometry of the isolated Zn-PcS molecule was taken as that of the adsorbed molecule. Use 

of the optimized geometry of the molecule in vacuum might make a small difference. 

 

Our calculations show that the adsorption energy of Zn-PcS is as low as 3.13eV. 

The adsorption energy of the free Zn-PcS molecule should be smaller than this value, since 

the free Zn-PcS molecule should be more stable. For comparison purposes, we observe that 

Eadsorption = EZnPcS +Egraphene Eabsorbed
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the adsorption energies of hexadecafluorophthalocyanine on monolayer and bilayer 

graphene are 3.19eV and 3.17eV respectively.198 At these energies, 

hexadecafluorophthalocyanine can form uniform overlayers on graphene. Experimentally, 

only individual Zn-PcS molecules were found adsorbed to the surface, and adsorptions 

were only observed on bi-layer graphene. We believe that the low adsorption energy is the 

reason. Zn-PcS does not have a planar structure, which makes it unfavorable for the π-π 

interaction. In turn, this means that the molecule cannot be effectively stabilized by the 

substrate. Furthermore, the three-dimensional sulfonic acid group does not provide a 

convenient orientation for hydrogen bonding of Zn-PcS molecules. This means the 

molecule cannot by effectively stabilized by another neighboring one. The bi-layer 

graphene sheets are smoother than mono-layer sheets, and we believe that this difference 

offers the possibility of having some Zn-PcS adsorbed on bi-layer graphene sheets but not 

on mono-layer sheets.  

To study the effect of Zn-PcS adsorption on the Dirac point, the DOS of the 

adsorbed system was studied both experimentally and theoretically.170 In STM/STS 

experiments, the local DOS is measured by a dI/dV curve. With the STM tip pinned to the 

molecule, applied voltage can be varied, and the resulting change in the electrical current 

is recorded to reflect the DOS of that particular point on the molecule. It was concluded 

(see Figure 29) that the dI/dV curves measured on the bi-layer graphene exhibit a 

characteristic dip at about 0.3 eV below the Fermi level. The dip is known to originate from 

the band gap opening around the K-point.202 After the Zn-PcS molecule were adsorbed on 

the surface, this characteristic dip disappears.  This suggests that the Zn-PcS molecule has 
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states that energetically coincide with the band gap of the bilayer graphene and promote 

higher tunneling rates at around -0.3eV. 

In order to explain the disappearance of the dip in the dI/dV curve, we analyzed the 

DOS curved produced by the simulation.170 In the theoretical calculations, the total DOS 

are calculated using all atoms in the cell, whereas the local DOS only contains the 

contribution from a particular set of atoms. We calculated both DOS contribution from the 

Zn-PcS molecule and that from the carbon atoms directly below the Zn-PcS molecule. In 

order to compare with the experimental result of SiC-supported graphene, the DOS graphs 

were shifted to the left, so that the Dirac point of monolayer graphene is at 0.4 below the 

Fermi level. The results are summarized in Figure 30. 

 

Figure 29. (a) dI/dV curves measured on mono-(top)/bi-layer (middle) epitaxial graphene 
(MEG/BEG) and on Zn-PcS (bottom) molecule. (b) Section of the same dI/dV curves in 
(a), near the characteristic dip of BEG (~-0.3eV). 170 
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We found that the DOS around the Dirac point is heavily modified by the adsorbed 

Zn-PcS molecule.170 The original Dirac point dip of mono-layer graphene (blue curve) is 

replace by a peak (black curve) upon adsorption.  Our calculations also show that the 

highest occupied molecular orbital – lowest unoccupied molecular orbital (HOMO–

LUMO) gap of the Zn-PcS molecule is about 1.4 eV, which corresponds to the gap between 

the peaks around ~1.2 eV below and 0.18 eV above the Dirac point in the projected DOS 

of the adsorbed system. The HOMO and LUMO of the Zn-PcS molecule are shown in 

Figure 31. The LUMO peak happens to line up with the Dirac point of graphene, and the 

Dirac point disappears as a result. The LUMO of isolated Zn-PcS is by definition an 

unoccupied orbital. After adsorption it is below the Fermi level, meaning that it is partially 

occupied. This suggests that there must be some charge transfer from graphene to the 

molecule. To prove this, we also performed a calculation to analyze the charge transfer 

upon adsorption. 

 

Figure 32 shows the charge transfer between the molecule and graphene.170 The red 

bubbles represent electron accumulation, and the blue ones represent electron depletion. It 

was found that the molecule is mostly negatively charged, while the graphene surface is 

largely positively charged. The transferred charge mainly localizes around the central Zn 

atom and the sulfonic acid groups on the perimeter of the molecule (see Figure 32a and 

32b).  The charge-density difference is integrated in the x-y planes normal to the graphene 

surface, and plotted along the z direction. This plot shows a small charge transfer (approx. 



 122

0.22e) from graphene to the molecule (see Figure 32c). Therefore, the Dirac point of the 

graphene under Zn-PcS does not exhibit any noticeable shift.   

  

Figure 30. Total DOS (black solid line), projected DOS on the Zn-PcS molecule (red solid 
line) and projected DOS on graphene (solid blue line). HOMO and LUMO of Zn-PcS 
molecule are indicated by arrows. In order to simulate the charging effect of the underlying 
SiC surface, the curves are shifted so that the Dirac point of MEG is at 0.4 eV below the 
Fermi level. 170 
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Figure 31. HOMO and LUMO of a Zn-PcS molecule adsorbed on graphene. 170 
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 Figure 32. (a) top view and (b) side view of the charge density difference on Zn-PcS adsorbed on graphene system at contour levels of ±0.0003 𝑒/𝑅𝑦ଷ. The blue/black and red/gray bubbles represent regions with electron depletion and accumulation, respectively. (c) The 
plane-averaged charge density difference along the direction normal to the graphene surface. Arrows are drawn to guide the eye and 
they correspond to the position of graphene and the Zn-PcS molecule. 170 
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Conclusions 

In order to understand the adsorption of Zn-PcS on bi-layer graphene observed 

experimentally with STM/STS, theoretical calculations with the PBE density functional 

were performed using the plane wave basis set with pseudopotentials. It was found that the 

adsorption energy of Zn-PcS is very low on mono-layer graphene, which explains why the 

experimental surface coverage is very low and only adsorption on bi-layer graphene was 

observed. It was also found that the LUMO orbital of Zn-PcS overlaps with the Dirac point 

of monolayer graphene, which explains the experimental finding that the characteristic dip 

of bi-layer graphene at -0.3eV disappears upon adsorption. It was also calculated that there 

is charge transfer from graphene to the molecule so that the molecule is partially negatively 

charged.  
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