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ABSTRACT 

Recent studies have revealed that the deterioration of Louisiana coastal wetlands with the 

loss of soil organic matter could be one of the main reasons leading to the hypoxia in the 

northern Gulf of Mexico. In this study, Atchafalaya basin undergoing land building and Barataria 

basin experiencing land loss were evaluated for soil organic matter (SOM) chemistry and 

relation to carbon source and degradation dynamics. Both lignin biomarkers and SOM molecular 

compositions from wetland soil profiles up to 50 cm depth of the two contrasting basins were 

characterized and compared. Lignin monomers  were determined using alkaline CuO oxidation 

followed by gas chromatography-mass spectrometry (GC/MS) detection and SOM compositions 

were measured directly by pyrolysis-GC/MS. Results showed that Barataria basin wetland soil 

profiles were dominated by nonwoody angiosperms, whereas Atchafalaya basin wetland soil 

profiles were dominated by both nonwoody gymnosperms and nonwoody angiosperms. The 

SOM degradation of the two basin wetland soils was influenced by different factors. Soil acidity 

had a strong negative effect on the SOM degradation in the Atchafalaya basin, whereas high N 

contents inhibited lignin degradation in the Barataria basin. Soil electrical conductivity (EC) 

negatively affected organic matter degradation in the profiles of low salinity wetlands but 

positively influenced SOM decomposition in higher salinity wetlands. Wetland ecosystems along 

an increasing salinity gradient of Louisiana coast also exhibited a large variation in SOM 

composition. Freshwater marsh conditions influenced the amount of N-containing compounds of 

SOM, whereas brackish and saline marshes exerted more influence on the presence of lignin and 

aliphatic compounds in SOM, respectively. Overall, coastal wetland SOM compositions were 

mainly influenced by vegetation sources of specific ecosystems with different salinity tolerance 

and degradation status that was facilitated by specific environmental factors. 
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CHAPTER 1: GENERAL INTRODUCTION 

1.1 Coastal Wetland 

Wetland are distinct ecosystems, either permanently or seasonally saturated with water, 

providing valuable ecological services such as water purification, floods control, and coastal 

protection (Mitsch et al., 2013, Woodward and Wui, 2001). Despite comprising a relatively small 

part, about 5-8% of the total land area (Mitsch, 2009), wetlands play an important role in 

terrestrial carbon cycling, contributing to 20 to 25% of terrestrial soil carbon storage (Amthor 

and Huston, 1998). Furthermore, wetlands have a significant impact on global carbon cycle and 

future climate change (Amthor and Huston, 1998, Dodla et al., 2012b, Wang et al., 2011). 

Moreover, wetland soils serve as important C sinks for atmospheric CO2 (Wang et al., 2015). 

With high organic matter input rates coupled with slow mineralization rates, organic matter 

accumulates extensively in the wetland ecosystems (Davidson and Janssens, 2006). Among all 

wetlands, coastal wetlands are located at interface between ocean and terrestrial, and subjected to 

constant tidal influence that can have significant effects on the health and function of wetlands.  

The Louisiana coastal wetlands account for 40% of the wetlands in the United States and 

are one of the most complex and anthropogenically modified coastal ecosystems in the world 

(Bianchi et al., 2011). Louisiana wetlands range from forested swamps, freshwater marsh, 

intermediate marsh, and brackish marsh to saline marshes (Dodla, 2009). Coastal wetlands, 

especially marshlands, are among the most productive ecosystems and sequester a lot of organic 

matter through vertical accretion (Nyman et al., 1990). Anthropogenic impact, sediment 

subsidence, sea level rise and wave attack of open-water have caused a rapid loss of these 

wetlands at a rate of 26 to 30 km2 yr−1 (Dodla et al., 2008a, Bianchi et al., 2009). Moreover, 

Louisiana wetland loss accounts for 80% of the total coastal wetland loss in the United States 
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(Dodla, 2009). In order to slow wetland loss, various Louisiana coastal restoration programs and 

massive diversion projects have been executed to reintroduce freshwater and sediments from the 

Mississippi River into these wetlands (Reddy and DeLaune, 2008). Recent studies have indicated 

that the deterioration of wetlands could also be one of the reasons leading to the hypoxia in the 

northern Gulf of Mexico along the Louisiana coast (Dodla et al., 2012b).  

The coastal zone of Louisiana consists of the Mississippi Deltaic Plain to the east and the 

Chenier Plain to the west (Day et al., 2000). Within the Louisiana coastal wetlands, two basins 

are particularly representative, Atchafalaya and Barataria. Atchafalaya basin is undergoing rapid 

land building, whose sediment accretion rates are among the highest wetland accretion rates in 

the US (Hupp, 2000). And this provides a substantial contrast to most of the remaining Louisiana 

coastal area, which is experiencing coastal erosion and land loss (Hupp, 2000). By comparison 

with Atchafalaya basin’s expanding, Barataria basin is undergoing accelerated land loss due to 

the limited freshwater and sediment input in conjunction with seawater intrusion. In addition, 

Barataria basin is a representative basin of Louisiana coastal wetlands, containing wetland 

systems with a salinity gradient from freshwater wetland in the north to the saline marsh 

bordering the Gulf of Mexico (Chmura et al., 1987). In recent decades, the marshes have 

changed to the more saline sites as the expansion of salt and brackish marsh into freshwater 

environments to some extent in the Barataria basin. In contrast, Atchafalaya basin is located in 

the relatively flat inner shelf west of Atchafalaya delta, such salinity is negligible (Boesch et al., 

1994). Obviously, such two different wetlands represent as an example of what may occur in the 

other coastal wetlands. How organic carbon dynamics are compared with respect to source and 

environmental impacts are especially interesting in order to elucidate cause-effect and source-

sink carbon relationships. 
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1.2 Lignin Chemistry 

Lignin is considered to be the biomarker to trace the origin and degradation state of soil 

organic matter in the soil profiles (Hedges and Ertel, 1982). Vascular plants and vascular plant-

derived soil humus account for around 75% of the soil organic matter (SOM) reservoirs (Goñi 

and Hedges, 1992).  Lignin, a three-dimensional and macromolecular compound found uniquely 

in vascular plants, represents the most abundant aromatic biomass input to the soil in the 

terrestrial ecosystem (Bahri et al., 2006, Otto and Simpson, 2006, Thevenot et al., 2010, Tareq et 

al., 2004). Because of its macromolecular and aromatic structure, lignin has been long assumed 

to be chemically recalcitrant to the degradation by microorganisms. While lignin could be 

biodegraded by a small group of fungi (white rot fungi and partially by brown rot fungi), the 

process is generally much slower compared with mineralization of cellulose, hemicellulose and 

other biopolymers (Dignac et al., 2005). On the other hand, lignin is less possibly used as sole 

carbon sources for organisms. Therefore, it has been suspected to be one of the best preserved 

constituents of the vascular plants during the litter decomposition and is considered as the ideal 

tracer of organic carbon source input from plant residues to the soil and sediment environment as 

well as degradation state of soil organic matter (Kuo et al., 2008). 

Lignin yields three groups of lignin monomers, namely vanillyl (V), syringyl (S), and 

cinnamyl (C) phenols upon CuO oxidation (Hedges and Ertel, 1982). Total carbon-normalized 

yields of these three groups of lignin monomers have been used to measure the relative amount 

of terrestrial soil organic matter in soils (Goñi and Hedges, 1992, Hedges and Mann, 1979b). The 

relationship between S/V and C/V have been extensively used to source the origin of organic 

matter (OM) in the wetland soils due to the changes of the ratios were found in accordance with 

their source plants (Bianchi et al., 2007, Hedges and Mann, 1979a, Thevenot et al., 2010). Since 
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only vascular plants produce vanilly phenols (V>0) upon oxidation with cupric oxide, vascular 

plants are differentiated from nonvascular plants in such application (Hedges and Mann, 1979a).  

The changes of S/V ratios with soil depth have been widely used to distinguish sources of 

OM derived from either angiosperms or gymnosperms (Tareq et al., 2004). Gymnosperms are 

primarily composed of lignin monomers with V type, however, angiosperms contain relatively 

equal amount of S and V type lignin units (Bahri et al., 2006). Therefore, gymnosperms are 

characterized by low S/V ratios (≈0), while angiosperms are characterized by high S/V ratios 

ranging from 0.6 to 4 (Goñi, 1997). C/V ratios could be used to differentiate lignin sources of 

nonwoody (grasses, leaves, needles) and woody tissues (Goñi and Thomas, 2000).  Cinnamyl 

phenols are absent from woods while they are predominant lignin monomers in most herbaceous 

tissues (Opsahl and Benner, 1995). Consequently, woody tissues are characterized by low C/V 

ratios (<0.05), by comparison, non-woody tissues have relative high C/V ratios from 0.1 to 0.8 

(Goñi, 1997). 

The acid/aldehyde ratios of vanillyl and syringyl  phenols (Ad/Al)v and (Ad/Al)s have 

been recognized as important factors in the qualitative estimate of  lignin polymers degradation 

state in a variety of geochemical samples due to the elevated acid/aldehyde ratio with fungal 

degradation  (Kuo et al., 2008, Goñi and Hedges, 1992). Although,  the ratios change also can be 

induced by OC source alteration (Hernes et al., 2007) and  some degraded lignin structures are 

excluded from the CuO oxidation (Bahri et al., 2006). Higher (Ad/Al)v and (Ad/Al)s ratios 

indicate more degradation, while lower ratios represent less degradation (Bianchi et al., 2013). 

While both (Ad/Al)v and (Ad/Al)s have almost identical trend for the samples along the salinity 

gradient, (Ad/Al)s is preferred for its sensitivity due to the selective degradation of syringyl over 
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vinillyls observed in dissolved organic matter (DOM) and humic acid (HA) lignin residues 

observed in wetland soils (Bianchi et al., 2009, Dodla et al., 2012a).  

1.3 Soil Organic Matter Characterization 

Soil organic matter (SOM) plays an important role in wetland ecosystems, affecting soil 

respiration, denitrification, and phosphorus sorption (Bruland and Richardson, 2006). It is a 

complex mixture of different molecules, having variable molecular structure and elemental 

composition (Dodla et al., 2012b, Fang et al., 2005). The major sources for the soil organic 

matter formation are plant litter and microbial biomass (Kögel-Knabner, 2002). In wetland 

environments, the organic materials are mainly derived from the remains of vascular plants, such 

as sedges, rushes, and grasses (Collins and Kuehl, 2000). On the other hand, soil organic matter 

is subject to physical, chemical and biological transformation, which results in changes of its 

composition (Schellekens et al., 2009). 

Its composition is determined by a variety of factors, environmental change, vegetation, 

and microbial activity (Kelleher and Simpson, 2006, Vancampenhout et al., 2009), and at any 

time reflects the change in vegetation and hydrology over the time of its development 

(Schellekens et al., 2009). For the wetland soils, high aromatic carbon and O-alkyl C contents 

occurred in peat and ombrotrophic peat bogs, respectively (Gondar et al., 2005, Mao et al., 2000, 

Wang et al., 2015). In contrast, a higher proportion of aliphatics and aromatics were found in 

Louisiana coastal plain forest swamp and freshwater marsh of the same region, separately (Dodla 

et al., 2012a). Furthermore, SOM composition has been shown to extensively affect SOM 

formation and turnover in different environments (Ferreira et al., 2009, KÖGEL et al., 1988, 

Kögel-‐Knabner et al., 2006). The degradation and stabilization of SOM is primarily controlled 

by microbial activity and organic compounds with simple structures such as polysaccharide, 
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which is rapidly used by microbes compared with compounds with recalcitrant structures such as 

lignin and aromatics (Dodla et al., 2012a, Wang et al., 2015).  

1.4 Analytic Techniques  

Lignin is a complex and macromolecular biopolymer of vascular plants, and the cupric 

oxide (CuO) oxidation technique was considered as the most appropriate method for soil lignin 

study (Bahri et al., 2006, Kögel and Bochter, 1985). The CuO oxidation method was originally 

developed by Hedge and Ertel in 1982 (Hedges and Ertel, 1982) and the method cleaves ether 

bonds and releases phenolic monomers that are indicative of lignin content and composition 

(Otto and Simpson, 2006). Several drawbacks such as complex procedures, time consuming have 

limited the wider application of this method. And some modifications have been carried out to 

increase the efficiency of CuO oxidation method. Kögel and Bochter utilized the C18 solid phase 

extraction (SPE) to replace the traditional liquid-liquid phase extraction to clean up samples 

(Kögel and Bochter, 1985). Goñi and Montgomery increased the geochemical sample throughput 

by using the microwave oxidation system and a modified extraction procedure (Goñi and 

Montgomery, 2000). In order to minimize reaction time and increase sample size, Kaiser and 

Benner used C18 solid phase extraction (SPE) as cleanup sorbent, and 12-sample carousel to 

replace original 4-sample carousel (Kaiser and Benner, 2011).  

On the other hand, a relatively new technique was introduced by Clifford et. al (1995) for 

the analysis of  lignin. In order to increase the effectiveness of gas chromatographic analysis of 

polarized compounds, tetramethylammonium hydroxide (TMAH) was used to methylate the 

hydroxyl and carboxylic functional groups (Chefetz et al., 2000). TMAH method gained a lot of 

attention in the lignin characterization, because of its ease, rapidity and small sample size 

requirements (Clifford et al., 1995). Generally, there is a similar trend for the widely used CuO 
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and the new rapid TMAH methods in the application of characterizing lignin chemistry (Hatcher 

et al., 1995). 

Chemical, physical, and spectroscopic methods have been extensively used to determine 

SOM composition and structures in the mineral and organic soils (Ferreira et al., 2009). Among 

these methods, solid state 13C nuclear magnetic resonance (NMR) and pyrolysis GC/MS are 

commonly used. NMR is a nondestructive composition method (Wang et al., 2015, Dodla, 2009, 

Nelson and Baldock, 2005), whereas pyrolysis GC/MS provides detailed information on 

composition and structure, enabling separation, identification and relative quantification of 

individual SOM fragments (Vancampenhout et al., 2008, Vancampenhout et al., 2009). Not 

possible with NMR, NMR measure functional groups instead of molecular fragments, which 

makes it difficult to interpret in terms of contributing plant, microbial compounds and their 

degradation (González-Pérez et al., 2012). Thus, pyrolysis GC/MS was used in this study to 

differentiate SOM fragments. 

1.5 Objective 

On the one hand, Various research studies, relating to the sources of lignin and its 

degradation status, have been conducted on the samples of fresh plants, water, and soils 

including those from croplands, forests, as well as tropical wetlands, peat, and marine sediments 

(Bahri et al., 2006, Goñi et al., 2000, Hedges et al., 1988, Tareq et al., 2004, Williams et al., 

1998, Ouellet et al., 2009).  For example, Hedges used lignin-derived phenols, as biomarkers to 

trace organic matter sources to the water column and surficial sediments of coastal marine 

environments (Hedges et al., 1988). Goñi found that most lignin products originate from non-

woody angiosperm vascular plants for the samples of arctic sediments from the Mackenzie River 

and Beaufort Shelf (Goñi et al., 2000). Tareq et al. (2004) applied lignin phenol vegetation index 
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(LPVI) as biomarkers to reconstruct paleoenvironment in tropical wetland. However, little work 

has been done to study the lignin chemistry in the coastal wetlands, especially how it is changed 

in the soil profiles of different wetland ecosystems. Therefore, one of the objectives of this study 

was to characterize and compare lignin chemistry of wetland soil profiles in the Atchafalaya and 

Barataria basins, the two most contrasting basins of the Gulf coast. 

 On the other hand, except for the lignin biomarker, other markers such as the carbon 

length of aliphatics, the odd/even ratios of aliphatics, N-containing compounds, and the 

complexity of polysaccharide structure also could be used as biomarkers to give a clue to SOM 

sources and degradation (Amelung et al., 2008). Thus, soil organic matter composition should be 

determined in order to evaluate SOM in the wetland system. The second objective was to 

determine the relationship between SOM composition and environmental conditions in the three 

different coastal wetland systems. Specific objectives were to: 1) identify SOM composition in 

each system and the interrelation between systems; 2) trace the change in SOM composition with 

soil depth; 3) determine the factors that influence SOM composition in Louisiana coastal 

ecosystems. 
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CHAPTER 2: LIGNIN CHEMISTRY OF WETLAND SOIL PROFILES IN 
THE ATCHAFALAYA AND BARATARIA BASINS 

2.1 Introduction 

Despite comprising a relatively small part of the total land area, wetlands play an 

important role in terrestrial carbon cycling, contributing to 20 to 25% of terrestrial soil carbon 

storage (Amthor and Huston, 1998). Wetlands have a significant impact on global carbon cycle 

and future climate change (Dodla et al., 2012b, Wang et al., 2011). With high rates of organic 

matter input coupled with slow mineralization rates, organic matter accumulates extensively in 

the wetland ecosystems (Davidson and Janssens, 2006). Wetland soils serve as important C sinks 

for atmospheric CO2 (Wang et al., 2015). Among all wetlands, coastal wetlands are located at 

interface between ocean and terrestrial, and subjected to constant tidal influence that can have 

significant effect on the health and function of wetlands. 

The Louisiana coastal wetlands account for 40% of the wetlands in the United States and 

are one of the most complex and anthropogenically modified coastal ecosystems in the world 

(Bianchi et al., 2011). While the coastal wetlands, especially marshlands, are among the most 

productive ecosystems and sequester a lot of organic matter through vertical accretion (Nyman et 

al., 1990). Anthropogenic impact, sediment subsidence, sea level rise and wave attack of open-

water have caused a rapid loss of these wetlands at a rate of 26 to 30 km2 yr−1 (Dodla et al., 

2008b, Bianchi et al., 2009). In order to slow wetland loss, various Louisiana coastal restoration 

programs and massive diversion projects have been executed to reintroduce freshwater and 

sediments from the Mississippi River into these wetlands (Reddy and DeLaune, 2008). Recent 

studies have indicated that the deterioration of wetlands could also be one of the reasons leading 

to the hypoxia in the northern Gulf of Mexico along the Louisiana coast (Dodla et al., 2012b).  



	  

15 
	  

The coastal zone of Louisiana consists of the Mississippi Deltaic Plain to the east and the 

Chenier Plain to the west (Day et al., 2000). Within the Louisiana coastal wetlands, two basins 

are particularly representative, Atchafalaya and Barataria. Atchafalaya basin is undergoing rapid 

land building, whose sediment accretion rates are among the highest wetland accretion rates in 

the US (Hupp, 2000). The area provides a substantial contrast to most of the remaining Louisiana 

coastal area including Barataria basin, which is experiencing coastal erosion and land loss (Hupp 

et al., 2008). In comparison to Atchafalaya basin’s expanding, Barataria basin is undergoing 

accelerated land loss, which is primarily due to the limited freshwater inflow and seawater 

intrusion. The marshes within the basin have changed to the more saline sites as the expansion of 

salt and brackish marsh into freshwater environments.  Since the Atchafalaya basin is located in 

the relatively flat inner shelf west of Atchafalaya delta, such salinity change is negligible 

(Boesch et al., 1994). Obviously, the two different wetlands represent as examples of what may 

occur in the other coastal wetlands. How organic carbon dynamics are compared with respect to 

source and environmental impacts are especially interesting in order to elucidate cause-effect and 

source-sink carbon relationships. 

Vascular plants and vascular plant-derived soil humus account for around 75% of soil 

organic matter (SOM) reservoirs (Goñi and Hedges, 1992).  Lignin, a three-dimensional and 

macromolecular compound found uniquely in vascular plants, represents the most abundant 

aromatic biomass input to the soil in the terrestrial ecosystem (Bahri et al., 2006, Otto and 

Simpson, 2006, Thevenot et al., 2010, Tareq et al., 2004). Because of its macromolecular and 

aromatic structure, lignin has been long assumed to be chemically recalcitrant to the degradation 

by microorganisms. While lignin could be biodegraded by a small group of fungi (white rot fungi 

and partially by brown rot fungi), the process is generally much slower compared with 
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mineralization of cellulose, hemicellulose and other biopolymers (Dignac et al., 2005). On the 

other hand, lignin is less possibly used as sole carbon sources for organisms. Therefore, it has 

been suspected to be one of the best preserved constituents of the vascular plants during the litter 

decomposition and is considered as the ideal tracer of organic carbon source input from plant 

residues to the soil and sediment environment as well as degradation state of soil organic matter 

(Kuo et al., 2008, Hedges and Ertel, 1982). Although, it is difficult to perform the chemical 

analysis on lignin due to its intricate, recalcitrant structure and macromolecule (Otto and 

Simpson, 2006), lignin  has been successfully characterized through alkaline oxidation with CuO 

to produce smaller molecules, which could then be analyzed with gas chromatography-mass 

spectrometry (GC/MS) (Goñi and Thomas, 2000, Hedges and Ertel, 1982).  

Various research studies, relating to the sources of lignin and its degradation status has 

been conducted on the samples of fresh plants, water, and soils including those from croplands, 

forests, as well as tropical wetlands, peat, and marine sediments (Bahri et al., 2006, Goñi et al., 

2000, Hedges et al., 1988, Tareq et al., 2004, Williams et al., 1998, Ouellet et al., 2009).  For 

example, Hedges used lignin-derived phenols, as biomarkers to trace organic matter sources 

found in  the water column and surficial sediments of coastal marine environments (Hedges et al., 

1988).  Goñi (2000) reported that most lignin products in samples of arctic sediments from the 

Mackenzie River and Beaufort Shelf originated from non-woody angiosperm vascular plants. 

Tareq et al. (2004) applied lignin phenol vegetation index (LPVI) as biomarkers to reconstruct 

paleoenvironment in tropical wetland.  However, little work has been done on lignin chemistry in 

the coastal wetlands, especially changes in the soil profiles of different wetland ecosystems. 

Therefore, the aim of this study was to characterize and compare lignin chemistry of wetland soil 
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profiles in the Atchafalaya and Barataria basins, the two most contrasting basins of the Gulf 

coast. 

2.2 Materials and Methods 

2.2.1 Site Description and Soil Characterization 

Soil core samples up to 50 cm depth were collected from Atchafalaya and Barataria 

basins, respectively as shown in Figure 2.1. The average sediment accretion rate in the 

Atchafalaya basin was 1.43 cm y-1, suggesting the past 35+ years variation of the soils (Roberts 

et al., 2015). And the accreting rates in the Barataria basin were 0.77 cm y-1 and 0.68-1.00 cm y-1 

for the saltwater and freshwater marshes (Nyman et al., 1990) , which indicates 50-71 years’ 

variation in the collected soil profiles. A total of six representative sampling sites with three at 

each basin were selected for this study. For the Atchafalaya basin, the three sampling sites as 

represented by M1, M2, and M3, respectively (Figure 2.1(a)), were selected along the Hog bayou, 

which was located between the Wax Lake Outlet and Atchafalaya river outlet. The marsh 

vegetation at these three sites was dominated by a mixture of four freshwater species, namely, 

Phragmites australis, Panicum hemitomon, Typha latifolia, and Carex hyalinolepis (Roberts et 

al., 2015). The soils at M1, M2 and M3 sites were silt clay texture. The bulk density ranged from 

0.37 to 0.73 g cm-3 with a mean value of 0.55 g cm-3 for the soil samples from M1, M2 and M3 

sites of Atchafalaya basin. 

For the Barataria basin estuary, the three sampling sites including freshwater marsh (FM), 

brackish marsh (BM) and saline marsh (SM) were selected along a gradient salinity (Figure 

2.1(b)). The vegetation was dominated by a mixture of Sagittari lancifolia and Typha latifolia in 

FM, Spartina patens in BM and Spartina alterniflora in SM. The soils at the FM, BM and SM 

were Lafitte muck (Euic, Thermic Typic Medisaprists), Allemands muck (clayey, smectitic, Euic, 



	  

18 
	  

hyperthermic, Terric Haplosaprists), and Timbalier muck (Euic, hyperthermic, Typic 

Haplosaprists), respectively (Dodla et al., 2012b). The bulk density was 0.09, 0.08 and 0.16 g 

cm-3 for the soil samples from FM, BM and SM, separately (Dodla, 2009). All these wetlands are 

seasonally flooded but stay water-saturated throughout the year.  

 

Figure 2.1. Sample locations of the Atchafalaya basin (a) and Barataria basin (b). 

Two replicates of core samples were collected from 0-50 cm depth at each site. The cores 

were taken back to the lab and kept in the refrigerator (4 °C) until they were processed. Each 

collected core sample was sectioned from the top to the bottom at 5 cm intervals. Soil pH and 

electric conductivity (EC) were measured using soil: water ratio of 1 g: 10 mL. Total C and N 

were determined using a vario EL cube elementar CN analyzer (elementar Americas, Inc., Mt 

Laurel, NJ). All soil measurements were based on freeze-dried samples and selected 

physicochemical properties of these soils are presented in Table 2.1 and 2.2. 
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Table 2.1. Selected physicochemical properties of Atchafalaya basin wetland soils 
 

Soil Depth pH EC Total C Total N C/N ratio 
     cm                                        dS m-1                  g kg-1                  g kg-1 

M1 

0-5 6.82 0.66 43.66 3.70 11.75 
5-10 6.55 0.55 43.95 3.71 11.85 
10-15 6.83 0.57 26.05 2.28 11.41 
15-20 6.73 0.56 28.36 2.56 11.10 
20-25 5.90 0.48 33.57 2.86 11.72 
25-30 6.47 0.46 26.50 2.40 11.04 
30-35 6.38 0.51 30.62 2.68 11.44 
35-40 5.58 0.30 30.32 2.69 11.25 

M2 

0-5 6.59 0.68 41.32 3.42 12.07 
5-10 6.52 0.32 39.42 3.28 12.32 
10-15 6.71 0.51 21.76 1.87 11.79 
15-20 6.50 0.46 27.77 2.54 9.58 
20-25 5.75 0.15 24.70 2.12 11.73 
25-30 6.18 0.44 35.56 3.08 11.09 
30-35 6.21 0.44 31.46 2.61 11.42 
35-40 5.04 0.33 32.10 2.49 13.00 
40-45 5.76 0.70 37.84 3.13 12.56 

M3 

0-5 6.47 0.81 43.60 4.98 9.54 
5-10 6.31 0.43 36.70 3.01 12.18 
10-15 6.61 0.57 30.88 2.66 11.56 
15-20 6.50 0.48 27.84 2.36 11.77 
20-25 5.68 0.18 35.10 2.94 11.93 
25-30 6.08 0.46 42.27 3.44 12.32 
30-35 6.06 0.46 44.54 3.60 12.32 
35-40 5.33 0.13 20.81 1.87 11.13 
40-45 6.09 0.54 39.97 3.46 11.29 
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Table 2.2. Selected physicochemical properties of Barataria basin wetland soils 
 

Soil Depth pH EC Total C Total N C/N ratio 
     cm                                        dS m-1                  g kg-1                  g kg-1 

Freshwater Marsh Profile 

0-5 5.85 1.59 432.89 30.42 14.23 
5-10 5.30 1.11 447.36 29.85 14.98 
10-15 5.21 1.03 470.77 30.38 15.49 
15-20 5.20 1.00 434.80 28.48 15.26 
20-25 5.06 1.29 460.14 30.52 15.08 
25-30 5.05 1.44 385.26 25.52 15.10 
30-35 5.20 1.38 302.08 18.54 16.29 
35-40 5.35 1.08 219.66 12.94 16.97 
40-45 5.57 0.94 233.28 12.67 18.41 
45-50 5.37 1.08 264.87 13.75 19.27 

Brackish Marsh Profile 

0-5 5.65 1.87 359.18 23.14 15.52 
5-10 5.39 1.74 332.01 21.71 15.30 
10-15 5.71 2.03 348.60 22.18 15.72 
15-20 5.75 2.05 369.57 23.51 15.72 
20-25 5.42 2.07 394.83 25.22 15.65 
25-30 5.80 2.31 408.87 28.40 14.40 
30-35 5.72 2.50 406.97 30.06 13.54 
35-40 5.43 2.19 363.59 26.17 13.89 
40-45 5.97 2.67 344.47 23.09 14.92 

Saline Marsh Profile 

0-5 5.73 13.61 123.61 8.14 15.19 
5-10 5.08 7.12 79.01 5.30 14.92 
10-15 5.33 39.94 146.21 9.97 14.66 
15-20 5.35 86.35 228.93 14.47 15.82 
20-25 3.25 62.81 216.33 13.66 15.84 
25-30 3.38 85.20 162.44 9.82 16.54 
30-35 3.60 80.12 224.57 12.85 17.47 
35-40 2.78 25.52 185.48 10.40 17.83 
40-45 3.84 23.21 93.44 5.38 17.36 
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2.2.2 Determination of Lignin Monomers 

Lignin monomers were determined based on CuO oxidation, followed by gas 

chromatography-mass spectroscopy detection. The CuO oxidation was performed using the 

microwave digestion system (MARS, Matthew, NC) according to a method developed by Goñi 

and Montgomery (2000), which is a  modified version of Hedge’s CuO oxidation procedures 

(Hedges and Ertel, 1982). Briefly, soil samples were oxidized with CuO powder and ferrous 

ammonium sulfate under alkaline condition (2 N NaOH) at 150 oC for 90 minutes in the N2-

flushed vessels. After cooling down, 0.5 mL recovery standards of ethylvanillin and trans-

cinnamic acid were added to each vessel and then the samples were centrifuged to obtain the 

hydrolysate, which were acidified to pH 1 using concentrated HCl. The products of CuO 

oxidation were extracted from the aqueous solution by adding 6 mL ethyl acetate, and the 

extraction is repeated once to maximize the recovery of the organic extract. The ethyl acetate in 

each tube was evaporated to dryness in a water bath under constant N2 gas stream. Immediately 

after the solvent was evaporated, the samples were redissolved with 400 µL of pyridine and then 

transferred to the glass vials for GC/MS analysis.  

The samples for GC/MS analysis were prepared in the GC vials by adding 50 µL pyridine 

extracts, 20 µL internal standard and 50 µL (BSTFA + 1% TCMS). The mixtures were then 

allowed to react on a hot plate at 60 oC for 10 minutes to silylate any exchangeable hydrogen 

before being analyized using a Varian 3900 gas chromatograph coupled to a Varian Saturn 

2100T ion trap mass spectrometer (Varian Inc., Palo Alto, CA). The column temperature was 

ramped from 100 oC to 320 oC at 4oC min−1 and hold for 10 minutes, using helium as carrier gas. 

The identification of products was based on a comparison of their mass spectra with those 

of standard compounds, NIST 2005 mass spectral library, literature data and GC–MS 
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characteristics. The relative quantities of the products were estimated using the peak areas of the 

total ion current (TIC) pyrograms. In generally, CuO oxidation yielded a suite of phenolic 

oxidation products, which were classified to three groups including vanillyl (V) phenols (vanillin, 

acetovanillone, vanillic acid), syringyl (S) phenols (syringealdehyde, acetosyringone, syringic 

acid), and cinnamyl (C) phenols (p-coumaric acid, ferulic acid). 

2.2.3 Statistical Analysis	   	  

Statistical differences between lignin yields were evaluated using ANOVA analysis of 

SAS software (SAS 9.4, SAS Institute, Cary, NC). Principal component analysis (PCA) was used 

to assess relations between the dataset of lignin degradation biomarkers and environmental 

factors. The PCA was performed in the form of biplot with RStudio software (Version 

0.98.1028). PCA biplots consist of lines and points. Lines are used to reflect the variables 

(biomarkers and physicochemical characteristics), and points are used to show the observation 

(soil samples) (Kohler and Luniak, 2005). In a biplot, the length of the lines approximates the 

variances of the variables. The longer the line, the higher is the variance. The angle between the 

lines or the cosine of the angle between the lines explains the correlation between the variables. 

Obtuse angle refers to negative correlation, acute angle indicates positive correlation, and right 

angle means less relationship among the two variables. 

2.3 Results and Discussion 

2.3.1 Soil Physical and Chemical Characteristics 

Selected soil physicochemical properties for the two basin marsh sites are shown in 

Tables 2.1 and 2.2. The pH of the soils in the Atchafalaya basin ranged from 5.04 to 6.83 and 

was generally less acidic than that of the soils in the Barataria basin, which ranged from 2.78 to 

5.97. There was less change for the EC values in the Atchafalaya basin with a range from 0.13 to 
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0.81 dS m-1, which was 7 to 100 times lower than that in the Barataria basin. By comparison, soil 

EC values increased from 0.94 dS m-1 in FM to 85.20 dS m-1 in the SM as the sites shifting from 

inland to the seaward sites in the Barataria basin. The amount of SOC was generally lower in the 

Atchafalaya basin than Barataria basin soils with total organic matter (TOC) ranging from 20.81 

to 44.54 g kg-1 in the former as compared to 79.01 to 470.77 in the latter. The TOC was generally 

higher in surface layers than in deeper layers although exceptions did occur especially in 

Barataria basin soil profiles, suggesting turbulence occured in the former of the soils. The 

generally higher organic C in the freshwater marsh soil profile compared with the brackish and 

saline marsh soil profiles confirmed the fact of greater primary production of the freshwater 

marsh in the Barataria basin profile (Wang et al., 2011). The C: N ratios ranged from 9.5 to 12.2 

in the Atchafalaya basin, as compared to 13.54 to 19.27 in the Barataria basin, which could 

indicate the higher organic matter decomposition in the Atchafalaya basin. Overall, these basic 

characteristics were similar to those reported for these coastal wetland soils (Dodla et al., 2012b).  

2.3.2 Lignin Distribution and Source Inputs 

The yields of lignin phenols, as expressed as the sum of V, S and C phenols produced 

from the cupric oxidation of 100 mg of organic carbon, Λ8 within soil profiles in two wetland 

systems are presented in Figure 2.2 (a) and (b). Total lignin (Λ8) in the Atchafalaya basin at the 

M1, M2 and M3 sites ranged from 0.6 to 1.7 mg/100 mg OC (x=1.1, n=8), 0.3 to 0.7 mg/100 mg 

OC (x=0.5, n=10), and 0.4 to 0.8 mg/100 mg OC (x=0.6, n=10), respectively, with the average 

Λ8 at M1 site being 2-fold higher than those at M2 and M3 sites. The elevated concentration of 

Λ8 at M1 site compared to the M2 and M3 sites likely resulted from the plant source difference 

among these three wetland marshes. Since the Λ8 for the major plants’ roots at the M1, M2 and 

M3 sites.  
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(a) 

 

(b) 

 

Figure 2.2. Plot of total yield (mg) of lignin phenols per 100 mg OC (Λ8), versus soil depth (cm) 
for wetland soils of Atchafalaya basin (a) and Barataria basin (b). 
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accounted for 5.6%, 4.1% and 4.6% of SOM, and with the Λ8 values for the plants at M1 site 

being greater than that at M2 and M3 sites. In addition, the Λ8 at the M1 site fluctuates 

irregularly with soil depth, which was likely caused by intrusion of coastal water since M1 is 

much closer to mouth of Atchafalaya bay compared with the other two sites. Our result is in 

general agreement with that reported for the marsh in the same region of a different study 

(Bianchi et al., 2009).  

Total lignin (Λ8) in the Barataria basin at the SM, BM and FM sites ranged from 1.2 to 

2.3 mg/100 mg OC (x=1.8, n=9), 0.9 to 1.3 mg/100 mg OC (x=1.1, n=8), and 2.1 to 4.2 mg/100 

mg OC (x=3.2, n=10), respectively, with the lignin concentration at SM station being greater 

than that at BM station, but 2 times lower as compared with the lignin amount at the FM site. So 

it was likely that source gradient could account for the different lignin concentration among all 

the three sampling sites in the Barataria basin. Our result is consistent with the report of Dodla 

(2009), who found that higher lignin-derived compounds in FM humic acid (HA) than in SM HA 

of the same region based on TMAH pyrolysis method. As previous study, lignin is the most 

important biomarkers in the evaluation of OM in the soils.  Thus, the higher salinity may also 

account for the lower lignin concentration in BM and SM since lower organic matter contents 

were observed in the tidal wetlands with higher salinity (Morrissey et al., 2014). On the other 

hand, the plants in FM are mainly C3 sources, whereas they are C4 in BM and SM. By 

comparison with Mississippi River (MR), Bianchi found that higher lignin phenol yields in Ohio 

River basin, which is the predominant C3 source to the lower MR plain (Bianchi et al., 2007). So, 

C3 lignin sources possibly lead to higher lignin yields, which need further research to confirm. 

By comparing lignin concentration in these two basins, it clearly shows the higher lignin 

contents in the Barataria basin.  
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The relationship between syringyl: vanillyl ratio (S/V) and cinnamyl : vanillyl ratio (C/V)  

have been extensively used to source the origin of organic matter (OM) in the wetland soils due 

to the changes of these ratios were found in accordance with their source plants (Bianchi et al., 

2007, Hedges and Mann, 1979a, Thevenot et al., 2010). Two dimensional compositional plots of 

S/V vs. C/V with ranges of lignin parameters for gymnosperm and angiosperm plants of woody 

and nonwoody tissues for soil profiles of Atchafalaya and Barataria basins are presented in 

Figure 2.3 and Figure 2.4. For the Atchafalaya Basin, it is apparent from the two dimensional 

separation plot that the three sampling sites separates very well (Figure 2.3), indicating lignin 

sources were resolved from each other.  

Based on the evaluation criteria of lignin sources developed by Hedges and Mann 

(1979a) and Goñi (1997), nonwoody angiosperm tissues dominated at the M1 site, which is 

much closer to the mouth of Atchafalaya bay, whereas nonwoody angiosperms and nonwoody 

gymnosperms had almost equal contributions to M2 and M3 sites, respectively. As the sampling 

sites shifting from inland M3 site towards the seaward M1 site, the C/V ratios increased 

significantly, indicating an increasing dominance of inputs of nonwoody vascular plant tissues 

(Hernes et al., 2007). It should be pointed out that smaller C/V ratios at the M2 and M3 sites 

might not be exclusively caused by the source difference since the selective loss of cinnamyl 

phenols could also occur, as the latter was preferentially degraded by microorganisms (Hedges 

and Weliky, 1989). On the other hand, the lower S/V ratios at the M2 and M3 sites as compared 

with the M1 site were likely the results of source inputs. The wider ranges of lignin ratios, C/V 

and S/V at M1 site may be due to dilution effects from the exchange with coastal water, which 

was known to occur to some extent (Bianchi et al., 2009).  
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Figure 2.3. Relationship between S/V and C/V for wetland soils of Atchafalaya basin with means 
and ranges for gymnosperm (G), nonwoody gymnosperm (g), angiosperm (A) and nonwoody 
angiosperm (a). 
 

	  

 
Figure 2.4. Relationship between S/V and C/V for wetland soils of Barataria basin with means 
and ranges for gymnosperm (G), nonwoody gymnosperm (g), angiosperm (A) and nonwoody 
angiosperm (a). 
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For the Barataria Basin, the three sampling sites (SM, BM, and FM) with salinity ranged 

from high to low were also clearly separated in Figure 2.4. However, the vegetation didn’t 

change appreciably at these three sites within the top 50 cm profiles of past 50 to 71 years’ 

accretion. The main source contributor for these three sites was nonwoody angiosperm with a 

mixture of Panicum hemitomon and Sagittaria lancifolia (both C3 plants) in FM, Spartina patens 

(C4 plant) in BM and Spartina alterniflora (C4 Plant) in SM (Wang et al., 2011). The relative 

constant C/V ratios in SM was likely caused by a greater amount of pure and dominant plant 

sources of Spartina alterniflora (Ouellet et al., 2009). The vegetation diversity was found to 

generally decrease when going from freshwater marsh to saline marsh (Chmura et al., 1987). 

Both of C/V ratios and S/V ratios increased in a linear pattern, suggesting the increase of net CO2 

assimilation rates as these sampling sites shifting from brackish marsh to saline marsh. This 

result could be explained by the different nature of the dominant plants in these two marshes. 

Even though Spartina patens and Spartina alterniflora come from the same Spartina Species, they 

have different salt-tolerant ability (S. alterniflora > S. patens) and higher salt-tolerant ability 

results to the increase of net CO2 assimilation rates (Hester et al., 2001).  

2.3.3 Lignin Degradation and Environmental Influence 

The acid/aldehyde ratios of vanillyl phenols (Ad/Al)v and syringyl phenols (Ad/Al)s of 

the CuO oxidation products have been used to characterize the state of degradation of  lignin 

polymers  in a variety of geochemical samples (Kuo et al., 2008). In this study, (Ad/Al)s is 

preferred for its sensitivity due to the selective degradation of syringyl over vinillyls observed in 

dissolved organic matter (DOM) and humic acid (HA) lignin residues observed in wetland soils 

(Bianchi et al., 2009, Dodla et al., 2012a). Figure 2.5 present the soil profile (Ad/Al)s variations 

in the Atchafalaya and Barataria Basin wetlands. The (Ad/Al)s of Atchafalaya basin sediments  
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(a)  

 

(b) 

 

Figure 2.5. The acid/aldehyde ratio of vanillyl units changing with soil depth for the wetlands of 
Atchafalaya basin (a) and Barataria basin (b).  
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ranged consistently from 0.18 to 0.34 (x  = 0.26) for M3 site, 0.17 to 0.36 (x  = 0.26) for M2 site, 

0.14 to 0.26 (x  = 0.18) for M1 site, respectively, with general greater ratios in deeper layers, the 

latter indicated the increasing degradation of lignin although there were large change of the ratios 

at 25-30 cm depth, particularly at M2 and M1 sites. On the other hand, while the bottom layer 

(Ad/Al)s ratios were closer to each other, the M1 site upper layer (Ad/Al)s ratios were lower than 

the M2 and M3 sites, indicating relatively slower lignin degradation, which could be due to 

relatively young soil of M1 site with growth expansion. The relatively lower (Ad/Al)s values in 

these profiles were in accordance with those found in the fresh herbaceous  plants and  

comparatively  fresh soil organic materials (Opsahl and Benner, 1995). In contrast with other 

basins in the coastal zone, the relatively higher sediments accretion rates (about 1.43 cm y-1) in 

the Atchafalaya basin indicate that the much younger soil organic materials in the latter.  And 

our data appeared to support this.  

The Barataria basin soil profiles showed an increasing (Ad/Al)s ratios as the sampling 

sites shifting from inland freshwater marsh to the seaward saline marsh with ranges from 0.19 to 

0.36 (x  = 0.32) for FM site, 0.33 to 0.45 (x  = 0.39) for BM site, 0.46 to 0.61 (x  = 0.53) for SM 

site, respectively.  The relatively higher (Ad/Al)s values in  BM and SM sites indicated general 

stronger lignin degradation as compared with the dominant plants’ (Ad/Al)s values in these two 

wetland systems. The (Ad/Al)s ratio for the major plant in BM was found to be 0.18 and for the 

dominant plant in SM was 0.26. The (Ad/Al)s value 0.26 for the dominant plant, Spartina 

alterniflora in SM, was in general agreement with 0.29 in the fresh Spartina alterniflora reported 

by  Benner (1991). On the other hand, in comparison with the lower degradation of lignin in FM, 

the higher decomposition of lignin occurred in SM. This result suggests the recalcitrant nature of  
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lignin degradation in FM soils as compared to those from SM soils, which is consistent with the 

observed results from the marsh samples in the same region (Dodla et al., 2012a). In addition, the 

higher salinity of saline marsh soil profiles could help to explain higher lignin decomposition in 

SM. Because Hernes and Benner (2003) found that (Ad/Al)s ratios increased dramatically at 

more saline sites along the salinity gradient of Mississippi River plume, which indicates that 

higher EC values will accelerate lignin degradation to some extent. 

There was generally small change of (Ad/Al)s through 0-50 cm soil profile depths of each 

site in the Barataria basin wetlands. This could be due to younger history of the sampling sites, 

which just represents several decades of sediments accretion (DeLaune et al., 1991). On the other 

hand, the little change of (Ad/Al)s could be attributed to the subaqueous environmental factors.  

Lignin degradation in the wetland system is dramatically mediated by the lignin degrading 

bacteria, which suggests that lignin side-chains and ring structure were degraded at similar rates 

in the aquatic system (Benner et al., 1991). However, (Ad/Al)s performs well as the lignin 

degradation biomarkers in the terrestrial environments such as upland soils, where is much 

favored by white-rot fungi and other efficient lignin-degrading organisms (Goñi et al., 1998).  

The relationship between common physicochemical parameters (pH, OC, N, OC/N, EC) 

and lignin degradation biomarker, as expressed by (Ad/Al)s was assessed using PCA analysis for 

the samples from the Atchafalaya and Barataria basins, which are presented in Figures 2.6 and 

2.7, respectively. For the Atchafalaya basin wetland soil profiles, there was a negative relation 

between soil pH and lignin degradation biomarker (Figure 2.6), suggesting that soil acidity was 

the major soil environmental factor to affect lignin alteration. Soil pH is known to have a strong 

impact on the biological activity of fungi and bacteria and can make a great contribution to the 

degradation of lignin (Andersson and Nilsson, 2001). For the Barataria basin wetlands, there was 
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significantly negative relation between N and (Ad/Al)s. This could be due to the generally high 

total N level in these soil profiles (Table 2.2). Such results are general agreement with the results 

reported by Entry (2000), who found that lignin degradation in the wetland system was inhibited 

by the high N content. 

 

Figure 2.6. The Biplot for PCA analysis performed on samples from the Atchafalaya basin. 
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In addition, Osono and Takeda (2001) reported lignin decomposition of beach leaf litter 

was limited by high N concentration as well. While in this study, we did not characterize specific 

N fractions, Dodla et al. (Dodla et al., 2008a) did find inhibiting effect of NO3
- on CO2 

production and inverse relationship between NO3
- and phenolic aldehyde. 

 

 
Figure 2.7. The Biplot for PCA analysis performed on samples from the Barataria basin. 
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Nonetheless, in both of these two basins, the lignin degradative indicator (Ad/Al)s was 

positively related to OC/N. This suggests that although N and OM may have different effect on 

lignin degradation, the ratio of OC relative to N is most important positive factor to affect the 

status of lignin degradation in coastal wetland soils, regardless its growth expansion or loss 

during erosion. On the other hand, the soil EC appeared to have opposite effects on lignin 

degradation in two different wetland systems. It had negative influence on (Ad/Al)s ratios for the 

soil samples from the Atchafalaya basin, but positive effect for the soil samples from the 

Barataria basin. This result was consistent with Hernes and Benner’s (2003), and they found that 

higher salinity of soil profiles accelerated lignin degradation to some extent as compared with 

samples from freshwater marsh in Mississippi River plume. 

These results were particularly interesting and suggest that under the low salinity 

environment EC was generally negatively related to the state of lignin degradation, whereas 

under high salinity condition, lignin degradation was enhanced by high EC. On the other hand, 

under the relative high pH condition or close to neutral (5.01-6.83) condition, pH would 

negatively affect status of lignin degradation, but had little or no effect on lignin degradation 

under relatively low pH (2.78-5.97) condition. 

Wetlands were considered as underrepresented sources of oxygen-consuming organic 

matter to the hypoxia in the northern Gulf of Mexico (Bianchi et al., 2009).  Even though the 

marsh SOC contribution to the organic matter in the shelf is variable, which is subject to the 

liability and recalcitrance of the lost SOC (Dodla et al., 2012b). The decomposition of organic 

matter in the mobile muds (terrestrial deposition in the river or shelf is referred as mobile muds) 

was considered as terrestrial-derived OM sources for the biologically available organic carbon in 

the hypoxia bottom water of Louisiana shelf (Bianchi et al., 2011). In our study, Barataria basin 
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is experiencing land loss, which makes it much easily exposed to wave action and mixing with 

shelf, resulting in higher terrestrially-derived organic carbon deposition and storage in the shelf. 

In addition, organic carbon contents in the Barataria basins were around ten times higher than 

that in the Atchafalaya basin, and (Ad/Al)s ratios indicated higher organic matter decomposition 

in the former.  Therefore, the marshlands in the Barataria basin likely served as a relatively more 

important source of terrestrial organic matter to fueling the hypoxia in the North Gulf of Coast 

than the wetlands in the Atchafalaya basin, although the latter also contributed to the hypoxia 

event

2.4 Conclusions 

The higher lignin contents (Λ8) in Barataria basin were 2-fold higher than those in the 

Atchafalaya Basin, suggesting greater lignin storage capacity. The lower S/V ratios at the M2 

and M3 sites as compared with the M1 site and the other three sites in the Barataria basin are the 

results of source inputs. The marsh source inputs in the Barataria basin wetland soils are 

primarily nonwoody angiosperms, whereas they are the nonwoody gymnosperms and nonwoody 

angiosperms in the Atchafalaya basin. The deep soil profile showed general greater state of 

lignin degradation. Principle component analysis (PCA) showed that different soil environmental 

factors dominated the influence on the status of soil organic matter degradation in the two 

contrasting basin wetland soils.  Soil acidity had a negative effect on the lignin degradation in the 

Atchafalaya basin, whereas high N contents inhibited lignin degradation in Barataria basin. The 

EC parameter negatively affected organic matter in low salinity wetlands but positively 

influenced lignin decomposition in high salinity wetland soil profiles. On the other hand, our 

study implicates that Barataria basin made greater contribution to the oxygen-consuming organic 
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matter to fueling the hypoxia in the North Gulf of Coast than the wetlands in the Atchafalaya 

basin, although the latter also contributed to the hypoxia event. 
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CHAPTER 3: MOLECUAR COMPOSITON OF SOIL ORGANIC MATTER 
IN THE LOUISIANA BARATARIA BASIN WETLAND 

3.1 Introduction 

Despite comprising a relatively small part of the total land area, wetlands play an 

important role in terrestrial carbon cycling, contributing to 20 to 25% of terrestrial soil carbon 

storage (Amthor and Huston, 1998). Moreover, wetland soils also serve as important C sinks for 

atmospheric CO2 because of the high rates of organic matter input and slow mineralization rates 

(Wang et al., 2015). The coastal wetlands of Louisiana account for 40% of the wetlands in the 

United States and are one of the most complex and anthropogenically modified coastal 

ecosystems in the world (Bianchi et al., 2011). On the other hand, Louisiana wetlands are varied, 

ranging from forested swamps, freshwater marsh, intermediate marsh, and brackish marsh to 

saline marshes (Dodla, 2009). The coastal marshlands are among the most productive 

ecosystems and sequester substantial organic matter through vertical accretion (Nyman et al., 

1990). However, they are disappearing rapidly at a rate of 26 to 30 km2 yr−1 (Dodla et al., 2008b, 

Bianchi et al., 2009) over the past several decades. And the wetland loss in the Louisiana coast 

accounts for 80% of the total coastal wetland loss in the United States (Dodla, 2009). Barataria 

basin in coastal Louisiana contains wetland systems with a salinity gradient from freshwater 

wetland in the north to the saline marsh bordering the Gulf of Mexico, which is a representative 

basin of Louisiana coastal wetlands (Chmura et al., 1987). Thus, Barataria basin was chosen for 

the organic matter study. 

Soil organic matter (SOM) plays an important role in wetland ecosystems, affecting soil 

respiration, denitrification, and phosphorus sorption (Bruland and Richardson, 2006). It is a 

complex mixture of different molecules, having variable molecular structure and elemental 

composition (Dodla et al., 2012b, Fang et al., 2005). The major sources for SOM formation are 
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plant litter and microbial biomass (Kögel-Knabner, 2002). In wetland environments, the organic 

materials are mainly derived from the remains of vascular plants, such as sedges, rushes, and 

grasses (Collins and Kuehl, 2000). On the other hand, soil organic matter is subject to physical, 

chemical and biological transformation, which results in changes of its composition (Schellekens 

et al., 2009). 

Its composition is determined by a variety of factors, environmental change, vegetation, 

and microbial activity (Kelleher and Simpson, 2006, Vancampenhout et al., 2009), and at any 

time reflects the change in vegetation and hydrology over the time of its development 

(Schellekens et al., 2009). For the wetland soils, high aromatic carbon and O-alkyl C contents 

occurred in peat and ombrotrophic peat bogs, respectively (Gondar et al., 2005, Mao et al., 2000, 

Wang et al., 2015). In contrast, a higher proportion of aliphatics and aromatics were found in 

Louisiana coastal plain forest swamp and freshwater marsh of the same region, separately (Dodla 

et al., 2012a). Furthermore, soil organic matter composition has been shown to extensively affect 

SOM formation and turnover in different environments (Ferreira et al., 2009, Kögel-‐Knabner et 

al., 2006, Kögel-‐Knabner et al., 1988). The degradation and stabilization of SOM  is primarily 

controlled by microbial activity and organic compounds with simple structures such as 

polysaccharide, which is rapidly used by microbes compared with  compounds with recalcitrant 

structures such as lignin and aromatics (Dodla et al., 2012a, Wang et al., 2015).  

Chemical, physical, and spectroscopic methods have been extensively used to determine 

SOM composition and structures in the mineral and organic soils (Ferreira et al., 2009). Among 

these methods, solid state 13C nuclear magnetic resonance (NMR) and pyrolysis GC/MS are 

commonly used. NMR is a  nondestructive composition method (Wang et al., 2015), whereas 

pyrolysis GC/MS provides detailed information on composition and structure, enabling 
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separation, identification and relative quantification of individual SOM fragments 

(Vancampenhout et al., 2008, Vancampenhout et al., 2009). Not possible with NMR, NMR 

measure functional groups instead of molecular fragments, which makes it difficult to interpret in 

terms of contributing plant, microbial compounds and their degradation (González-Pérez et al., 

2012). Thus, pyrolysis GC/MS was used in this study to differentiate SOM fragments. 

The broad objective of this study was to understand the relationship between SOM 

composition and environmental conditions in the three different coastal wetland systems. 

Specific objectives were to: 1) identify SOM composition in each system and the interrelation 

between systems; 2) trace the change of SOM composition with soil depth; 3) determine the 

factors that influence SOM composition in Louisiana coastal ecosystems. 

3.2 Materials and Methods 

3.2.1 Sampling Sites 

Soil samples were collected from three wetland systems, freshwater marsh (FM), 

brackish marsh (BM), and saline marsh (SM) in the Louisiana coastal Barataria basin. The 

vegetation was dominated by a mixture of Sagittari lancifolia and Typha latifolia in FM, 

Spartina patens in BM and Spartina alterniflora in SM. The soils at the FM, BM and SM were 

Lafitte muck (Euic, Thermic Typic Medisaprists), Allemands muck (clayey, smectitic, Euic, 

hyperthermic, Terric Haplosaprists), and Timbalier muck (Euic, hyperthermic, Typic 

Haplosaprists), respectively (Dodla et al., 2012b). All these wetlands are seasonally flooded but 

stay water-saturated throughout the year. Two soil core replicates were collected from 0-50 cm 

depth at each site. The cores were taken back to the lab and kept in the refrigerator (4 °C) until 

they were processed.  Each core sample was sectioned from top to bottom at 5 cm intervals. 

Electric conductivity (EC) and pH were measured using soil: water ratio of 1 g: 10 mL. Total C 
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and N were determined using a vario EL cube elementar CN analyzer (elementar Americas, Inc., 

Mt Laurel, NJ). All properties were determined using freeze-dried samples. Selected 

physicochemical properties of these soils were shown in Chapter 2. 

3.2.2 Pyrolysis–Gas Chromatography/Mass Spectrometry Analysis 

The molecular composition of soil organic matter in FM, BM and SM soils were 

determined by pyrolysis–GC/MS using a Varian 3900 gas chromatograph coupled to a Varian 

Saturn 2100T ion trap mass spectrometer (Varian Inc., Palo Alto, CA) and a CDS 5000 

pyroprobe platinum heated filament pyrolyser (Chemical Data System, Oxford, USA) (Dodla, 

2009). Pyrolysis analysis was performed at 620 oC for 20 seconds. The temperature of injector 

and transfer line was kept at 300 and 240oC respectively. Mass spectra analyses were recorded in 

the electron impact mode (70 eV) at 1 scans−1 in the 45–600 m/z range. The pyrolysis-GC/MS 

products were performed with TMAH (Tetramethylammonium hydroxide) treatments in order to 

methylate the hydroxyl and carboxylic functional groups from polar compounds, which made 

them more readily analyzed by gas chromatography (Clifford et al., 1995, Dodla et al., 2012a).  

Identification of pyrolysis products was made by comparison their mass spectra with those of 

standard compounds from NIST 2005 mass spectral library. And the relative quantities of the 

products were estimated using the peak areas of the total ion current (TIC) pyrograms.  

The number of pyrolysis products was different for each sample, with a range of 350 to 

450. This number was reduced to 87 by eliminating compounds that could not be identified and 

those that were not common to all samples (see Table 3.1). In addition, pyrolysis products were 

assigned to eight groups based on their probable origin and chemical similarities, including 

aliphatics (Al), alcohols (O.Al), aromatics (Ar), fatty acid (FA), lignin (L), nitrogen containing 

compounds (N), phenols (Ph) and polysaccharides (Ps). 
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Table 3.1. Identified pyrolysis products from the analyzed FM, BM and SM samples 
 

No. Name Flags m/z MW* RT** 
     min 
1 1-Hexacosene (n-C26 alkene) Al 43+97 364 32.31 
2 17-Pentatriacontene(n-C35 alkene) Al 57+97 490 37.64 
3 Nonadecane (n-C19 alkane) Al 57+85 268 33.58 
4 Octadecane (n-C18 alkane) Al 57+71 254 33.73 
5 Heptadecane (n-C17 alkane) Al 43+57 240 35.61 
6 Hexatriacontane (n-C36 alkane) Al 43+57 506 35.73 
7 1-Docosene (n-C22 alkene) Al 55+97 308 37.53 
8 9-Nonadecene (n-C19 alkene) Al 43+55 266 39.35 
9 3-Eicosene, (E) (n-C20 alkene) Al 57+83 286 39.46 
10 Tetracontane, 3,5,24-trimethyl (n-C43 alkane) Al 43+57 604 41.21 
11 10-Heneicosene (c,t)(n-C21 alkene) Al 55+57 294 42.79 
12 Toluene Ar 91+92 92 4.59 
13 Ethylbenzene Ar 91+106 106 7.80 
14 Styrene Ar 103+104 104 8.89 
15 Benzene, methoxy- Ar 65+108 108 9.90 
16 Benzene, 1-ethyl-2-methyl- Ar 106+120 120 11.52 
17 Benzene, 1-methoxy-4-methyl- Ar 121+122 122 13.63 
18 Benzene, 1-isocyano-2-methyl- Ar 90+117 117 17.56 
19 1H-Indene, 3-methyl- Ar 115+130 130 17.70 
20 Benzene, 1-ethenyl-4-methoxy- Ar 119+134 134 17.89 
21 3,4-Dimethoxytoluene Ar 137+152 152 20.50 
22 3,5-Dimethoxytoluene Ar 123+152 152 21.21 
23 1,4-Benzenediol, 2,3,5-trimethyl- Ar 137+152 152 21.56 
24 Benzene, 1-methoxy-4-(1-propenyl)- Ar 117+148 148 21.78 
25 Benzoic acid, 4-methoxy-, methyl ester Ar 135+166 166 24.19 
26 Benzeneacetic acid, 4-methoxy-, methyl ester Ar 121+180 180 25.68 
27 Benzene, 1,4-dimethoxy-2,3,5,6-tetramethyl Ar 179+194 194 27.71 
28 Benzoic acid, 4-hydroxy-3-methoxy-, methyl  Ar 151+182 182 27.88 
29 Propan-2-one, 1-(4-isopropoxy-3-

methoxyphenyl)- 
Ar 137+180 222 28.27 

30 Erucic acid FA 41+55 338 24.43 
31 9-Hexadecenoic acid FA 41+55 254 36.18 
32 11-Hexadecenoic acid, methyl ester FA 55+74 268 36.26 
33 Pentadecanoic acid, 14-methyl-, methyl ester FA 74+87 270 36.43 
34 guaiacol L 95+138 138 17.77 
35 vanillic acid methyl ester L 151+182 182 29.50 
36 4-methylguaiacol L 123+138 138 18.96 
37 4-ethylguaiacol L 137 152 21.64 
38 4-ethenylguaiacol L 149+164 164 24.01 
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(Table 3.1 continued) 
No. Name Flags m/z MW* RT** 

     min 
39 4-methoxyguaiacol L 125+168 168 24.15 
40 4-(1-propenyl)guaiacol L 149+164 164 25.10 
41 4-O-Methylguaiacol L 165+166 166 26.92 
42 4-(2-propenyl)guaiacol L 163+178 178 27.24 
43 syringol L 153+168 168 22.53 
44 4-methylsyringol L 139+182 182 24.96 
45 4-(2-propenyl)syringol L 193+208 208 28.60 
46 4-(1-propenyl)syringol L 193+208 208 29.79 
47 4-[(1E)-prop-1-en-1-yl]syringol L 208 208 30.79 
48 4-(2-propenyl)syringol L 194 194 30.88 
49 4-(1-propenyl)syringol L 194 194 32.00 
50 4-acetylsyringol L 181+196 196 32.80 
51 3-(4-methoxyphenyl)cinnamic acid L 133+161 192 31.35 
52 3,4-Dimethoxycinnamic acid L 191+222 222 35.65 
53 1H-Pyrrole, 1-methyl- N 53+81 81 3.94 
54 1H-Pyrrole, 3,4-dimethyl- N 94+96 95 7.26 
55 1H-Pyrrole, 3-methyl- N 80+81 81 7.57 
56 1H-Pyrrole, 2,3-dimethyl- N 94+96 95 10.45 
57 1H-Pyrrole, 2,3,5-trimethyl- N 108+109 109 11.89 
58 5-Fluoro-2-methylaniline N 124 125 16.06 
59 1H-Indole, 7-methyl- N 131 131 21.32 
60 m-Aminophenylacetylene N 117 117 22.29 
61 Phenyl-1,2-diamine, N,4,5-trimethyl- N 150+151 150 22.69 
62 (5-Chloro-2-methoxyphenyl)carbamic acid, N 154 337 23.75 
63 1H-Indole, 2-methyl- N 130+131 131 24.63 
64 Hydroxylamine, O-decyl- N 43+57 173 27.10 
65 Phenethylamine, 2,4,5-trimethoxy-.alpha. N 44+182 225 28.00 
66 2,5-Dimethoxy-4-ethylamphetamine N 165+180 223 28.98 
67 1-Hexadecanol (C16 alcohol) O.Al 55+69 242 15.91 
68 1-Eicosanol(C20 alcohol) O.Al 43+83 298 41.12 
69 1-Decanol, 2-hexyl-(C16 alcohol) O.Al 41+57 242 42.88 
70 1-Docosanol(C22 alcohol) O.Al 43+57 326 44.41 
71 2-Hexyl-1-octanol(C14 alcohol) O.Al 57+41 214 44.48 
72 Phenol Ph 66+94 94 13.14 
73 Phenol, 2-methyl- Ph 107+108 108 15.38 
74 Phenol, 4-methyl- Ph 107+108 108 16.30 
75 Phenol, 3-propyl- Ph 107+108 108 16.46 
76 Phenol, 3-ethyl-5-methyl- Ph 121+136 136 16.65 
77 Phenol, 3,5-dimethyl- Ph 107+122 122 18.18 
78 Phenol, 4-methoxy-3-methyl- Ph 122+138 138 18.71 
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(Table 3.1 continued) 
No. Name Flags m/z MW* RT** 

     min 
79 Phenol, 4-methoxy-2,3,6-trimethyl- Ph 151 166 22.80 
80 2-Propanoic acid Ps 57+71 114 2.04 
81 4-Cyclopentene-1,3-diol, cis- Ps 43+57 100 2.11 
82 Furan, 2,5-dimethyl- Ps 95+96 96 3.24 
83 Cyclopentene Ps 67+68 68 4.42 
84 acetic acid Ps 60 60 8.36 
85 Furan, 2-ethyl-5-methyl- Ps 43+96 96 9.76 
86 2-Cyclopenten-1-one, 2-hydroxy-3-methyl- Ps 41+112 112 14.45 
87 Benzofuran, 4,7-dimethyl- Ps 146 146 19.72 

* Molecular weight   **Retention time 

3.2.3 Statistical Analysis 

Principal component analysis (PCA) was used to assess relations between different 

groups of SOM compounds in the form of biplot with RStudio software (Version 0.98.1028). 

Factor analysis was used to analyze the interrelationship among SOM compounds of reduced 

dataset using RStudio software (Version 0.98.1028).  

3.3 Results and Discussion 

3.3.1 CuO and TMAH Methods Comparison 

Cupric oxide (CuO) oxidation technique is considered as the most appropriate method for 

soil lignin study (Bahri et al., 2006, Kögel and Bochter, 1985). While TMAH method is popular 

in the lignin characterization, because of its ease, rapidity and small sample size requirements 

(Clifford et al., 1995). In order to compare two methods used in lignin analysis (alkaline CuO 

oxidation versus TMAH thermochemolysis), the correlation between syringyls to vanillyls (S/V) 

and syringyls to guaiaclys (S/G) ratios is presented in Figure 3.1. On the one hand, S/V (S/G) 

ratio has been used to source the origin of organic matter (OM) derived from either angiosperms 

or gymnosperms (Hedges and Mann, 1979a, Tareq et al., 2004). On the other hand, S/V (S/G) 

ratio also can be used as lignin degradation biomarker due to the preferred degradation of 
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syringyls over vanillyls, which lead to smaller S/V ratios during lignin degradation (Thevenot et 

al., 2010). S/V in the CuO oxidation method is termed as S/G in TMAH thermochemolysis 

method. Even though they were expressed as different symbols in two methods, they represented 

analogous lignin monomer groups. So the correlation between S/V and S/G could be used to 

indicate the relation of CuO oxidation and TMAH methods.  

 

Figure 3.1. Relationship between S/V ratios (CuO method) and S/G ratios (pyrolysis-TMAH 
method) for the soil samples from Barataria basin. 

As shown in Figure 3.1, there is a general agreement among the two methods in terms of 

S/G ratios for the soil samples from three sampling sites in the Barataria basin. S/V ratios from 

the CuO methods were around 3 times higher than that from the TMAH method, which is 

consistent with the results from previous research (Wysocki et al., 2008). Wysocki compared 

these two methods for the analysis of lignin in marine sediments and he also found that S/V 

ratios in CuO methods were much higher than that in TMAH method. This could be caused by 

the substantial difference of chemolytic mechanisms, which can lead to the biased selection of 
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some compounds (Klotzbücher et al., 2011). On the other hand, there is a similar trend for the 

widely used CuO and the new rapid TMAH methods in the application of characterizing lignin 

chemistry in woods, leaf, needle and marine sediments (Hatcher et al., 1995). And our research 

found these two methods function similarly for the samples from the coastal wetland systems. 

3.3.2 General Chemistry of SOM 

The general abundance of the eight groups of SOM compounds in the FM, BM and SM 

marshes is presented in Table 3.2. The dominant chemical groups in these three wetland systems 

were lignins, nitrogen containing compounds, and aromatics with average percentages being 

35%, 15% and 13% of all identified compounds respectively.  

3.3.2.1 Aliphatics  

Aliphatic compounds are thought as one of the biomarkers to trace the plant derived-

carbon (Amelung et al., 2008). From Table 3.2, there was no consistent trend for the abundance 

of aliphatic compounds with soil depth in any profiles. For all soil profiles, the middle-chain 

alkanes and alkenes (C14-C26) were more abundant than the short-chain (<C14) and long-chain 

(>C26) members. The middle-chain aliphatics  are probably derived from aliphatic biopolymers 

such as cutan and suberan (Nierop, 1998). Cutan is always found in the cuticle of higher plants 

(leaves, fruits, seeds, etc.), suberin is an important part of the protective layers of higher plants 

(bark, woody stems, etc.) and both are well preserved in soils (Nierop and Verstraten, 2004). 

Long-chain alkanes and alkenes were also an important part of the aliphatic group, with the long-

chain members mostly derived from protective waxes of leaves (González-Pérez et al., 2012). 

Furthermore, the odd-over-even carbon number dominance in the long-chain alkanes and alkenes 

was observed for the three wetland systems, which indicates relative fresh SOM and terrestrial 

higher plants sources (Feng and Simpson, 2007). 
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Table3.2. General abundance of chemical groups of compounds in the FM, BM and SM marsh 
systems. 
 
Depth Al Ar FA L N O.Al Ph Ps C3G/G 

cm  

Fresh Marsh Profile 

 

0-5 13.97 13.16 0.00 25.79 20.14 8.68 15.87 2.40 1.71 
5-10 10.22 15.99 1.05 30.96 21.21 5.65 11.34 3.60 1.32 
10-15 9.33 11.80 2.37 23.98 26.33 8.57 15.76 1.85 1.20 
15-20 10.76 12.21 4.44 20.56 25.96 7.99 15.39 2.70 1.34 
20-25 3.66 13.21 1.87 31.33 29.26 5.61 11.64 3.43 1.12 
25-30 6.39 13.31 2.20 22.85 28.95 8.19 15.34 2.75 0.93 
30-35 10.53 12.02 2.58 27.04 25.07 9.33 9.13 4.30 1.12 
35-40 7.69 9.15 6.50 28.43 13.15 27.14 6.83 1.10 1.38 
40-45 12.83 18.28 4.65 31.93 8.25 14.71 6.15 3.19 0.81 

 
                      Brackish Marsh Profile  

0-5 0.77 9.18 14.48 59.42 10.28 3.31 1.13 1.43 1.01 
5-10 0.60 9.51 12.94 58.84 11.23 3.63 2.40 0.86 0.81 
10-15 2.69 15.69 11.70 47.14 13.93 5.41 3.17 0.26 0.82 
15-20 2.08 13.22 9.68 52.44 12.09 4.82 3.64 2.03 0.63 
20-25 2.87 12.12 12.44 52.80 10.00 5.24 3.12 1.42 0.66 
25-30 3.62 15.58 10.56 36.28 18.23 7.39 7.85 0.48 0.85 
30-35 6.99 12.95 12.16 22.52 24.91 11.70 7.33 1.44 0.80 
35-40 5.61 14.58 12.69 35.56 14.95 9.32 6.89 0.40 0.74 
40-45 5.84 20.01 10.63 33.20 12.59 10.13 6.64 0.97 0.65 

 
                  Saline Marsh Profile  

0-5 11.79 12.53 13.96 30.63 10.58 11.21 8.11 1.20 0.60 
5-10 9.67 10.65 24.27 27.13 7.93 10.74 8.53 1.07 0.52 
10-15 13.36 8.83 20.73 16.17 13.09 20.35 6.30 1.18 0.35 
15-20 1.56 22.34 16.36 34.86 11.71 2.72 9.86 0.60 0.43 
20-25 11.91 10.93 10.03 25.08 17.74 7.78 10.15 6.38 0.32 
25-30 8.15 9.68 14.98 40.84 4.53 6.97 10.57 4.28 0.29 
30-35 6.05 10.72 16.71 42.71 7.78 6.09 8.81 1.13 0.48 
35-40 6.14 6.87 18.51 51.83 6.41 3.70 2.84 3.70 0.33 
40-45 9.18 8.37 19.35 41.29 4.70 8.27 3.92 4.93 0.42 

Al, alkanes and alkenes; Ar, aromatics; FA, fatty acid; L, lignin; N, nitrogen compounds; O.Al, 
alcohols; Ph, phenols; Ps, polysaccharides.  
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3.3.2.2 Aromatics 

Aromatic compounds are traditional pyrolysis products of proteins in SOM (Ferreira et 

al., 2009). Aromatics accounted for 13%, 14% and 11% of the total pyrolysis products in FM, 

BM and SM soil profiles, respectively but there was no consistent trend for aromatic compounds 

with soil depth in any profiles of the three wetland systems. Among the aromatic compounds, the 

most abundant compounds were toluene and 1-methoxy-4-methyl-, whose abundances account 

for almost 30% in the whole aromatic group in the FM, BM and SM. Toluene is probably 

derived from amino acids, which are the structural units of proteins (Buurman et al., 2008).   

3.3.2.3 Lignin 

Lignin was the most abundant of all the eight chemical groups averaging 27%, 44%, and 

35% in FM, BM and SM, respectively. Moreover, the lignin group contained more identifiable 

fragments than any other compound groups. Lignin content with depth varied fluctuating in the 

FM soil profile, decreasing with depth in BM and increasing in SM. Lignin side-chain 

degradation can be expressed by intact side-chains divided by guaiacol (C3G/G) with higher 

ratios indicating less side-chain degradation (Buurman et al., 2008). The C3G/G ratios for FM, 

BM and SM are presented in Table 3.2. The average C3G/G values were 1.23, 0.78, and 0.41 for 

FM, BM and SM soils, respectively. The sequence of decreasing ratios indicates degradation of 

lignin side-chains along the increasing salinity gradient. Such results were consistent with 

intensive degradation of humic acid (HA) lignin side-chain in saline marsh than freshwater 

marsh in the same region (Dodla et al., 2012a). 

3.3.2.4 Nitrogen compounds 

Nitrogen containing compounds accounted for 22%, 14% and 10% of the total pyrolysis 

products in FM, BM and SM soil profiles, respectively. A large abundance of N-compounds in 



	  

52 
	  

SOM are generally linked with a higher degree of decomposition and a significant contribution 

of microbial activity (Yassir and Buurman, 2012). The major sources for the N-compounds in 

soils are higher plants and/or microbial biomass, particularly amino acids and amino sugars 

(Chiavari and Galletti, 1992).  Pyrrole- and indole- compounds were observed in the soil profiles 

of three wetland systems, and are also found in pyrograms of fungi (Calvo et al., 1995). Thus, 

while the N-compounds mainly derived from higher plants, microbial biomass may also have 

contributed to the N-compounds to some extent. 

3.3.3 Correlation between Different Groups of SOM Compounds 

The relationship among the eight groups of chemical compounds for the soil samples 

from Barataria basin is presented in Figure 3.2 (The biplot was based on the dataset of Table 

3.2). The variation of wetland ecosystems did have an impact on the SOM chemical compounds 

composition.  Phenols and N-containing compounds were the dominant compounds in FM, 

lignin compounds in BM and fatty acids in SM. There was a high negative correlation between 

aromatics and polysaccharides in the wetland systems, which indicated microbial degradation of 

polysaccharides in SOM with the increase of plant-derived aromatics into soil (Ferreira, 2011). A 

negative relation between N-containing compounds and lignin was also observed, which 

suggested higher amounts of N-containing compounds inhibited lignin degradation (Entry, 

2000).  

On the other hand, there was a high positive correlation between aliphatics and alcohols. 

Both were mainly constituted of middle-chain n-alkane and n-alkanes, which indicated relatively 

fresh material. The positive correlation between aromatics and phenols may represent a common 

source. Aromatic compounds are the main pyrolysis products of proteins in SOM (Ferreira et al., 

2009) and some of the phenol compounds are signature compounds for proteins (Buurman et al., 
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2007). The positive correlation between aromatics and lignin that was observed could be 

ascribed to the common aromatic structure and hydrology insoluble properties of organic 

compounds with aromatic structures. 

 

Figure 3.2. The biplot for PCA analysis for all soil samples from Barataria basin. 
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3.3.4 Factor Analysis 

Factor analysis was carried out on a matrix of 87 variables (chemical compounds) by 26 

observations (samples) in the reduced dataset. The first four factors explained up to 71.8% of 

total variance, factor1 (FA1) explained 28.7%, factor2 (FA2) explained 24.7%, factor3 (FA3) 

explained 12.8% and factor4 (FA4) explained 5.6%. Thus, the first two factors (FA1 and FA2) 

accounted for 53.4% of the total variance, which is a fair result for a data set with more variables 

than observations. Some chemical compounds also showed high factor loadings on the remaining 

factors, particularly FA3, indicating more sources of variability in the SOM composition of the 

samples. However, less important information was extracted in the analysis of FA3 loadings, 

only FA1 and FA2 were considered in this study. 

The FA1 and FA2 factor loadings’ plot is presented in Figure 3.3. All the aliphatics and 

alcohols compounds showed high positive loadings on FA1, and are plotted together on far right 

hand side of the graph. The aliphatics mainly consisted of middle-chain, long-chain n-alkanes 

and n-alkenes. The alcohols were primarily composed of middle chain alkanes. Since they are 

the main components of higher plants, the right hand side of FA1 represents fresh plant-derived 

materials.  On the other hand, most of the lignin compounds showed high negative loadings on 

FA1 and FA2, and appeared on the lower left hand side of the plot.  From a previous study, the 

accumulation of lignin represents undecomposed organic matter (Ferreira et al., 2009). 

Therefore, if positive FA1 loadings suggest fresh plant derived materials, the negative FA1 

loadings should refer to the lack of fresh input. However, the negative FA1 loadings represent 

the less decomposed lignin, FA1 does not indicate fresh plants input. It could be caused by plant 

source difference due to salinity tolerance. From the underlying score plot of samples, the 

freshwater marsh samplings showed high positive scores on FA1, while brackish and saline 
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marsh samples displayed high negative scores on FA1. The main difference among FM, BM and 

SM is that BM and SM were mainly covered by high salinity tolerance plants, Spartina patens 

and Spartina alterniflora , respectively, however, FM was primarily covered by fresh water 

plants, a mixture of Sagittari lancifolia and Typha latifolia. So, the first factor FA1 reflects plant 

source difference on salinity tolerance. 

 

Figure 3.3. Factor loadings of SOM compounds on the first two ordination axes for the soil 
samples from Barataria basin. 

Aromatic compounds had both positive and negative loadings on FA2, and appeared 

more dispersed in the plot (Figure 3.3). N-containing compounds showed negative loadings on 

FA1 and positive loadings on FA2, and appeared on the upper left corner of the plot. Phenols 
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showed positive loadings on FA2 and appeared on the top of the graph. Most of the 

polysaccharide compounds also appeared on the top of the plot and showed positive loadings on 

FA2. The Ps were dominated by small compounds such furans and acetic acid. The accumulation 

of furans and acetic acid suggest highly degraded plant SOM or microbial matter source 

(Buurman et al., 2007, González-Pérez et al., 2012). Recent papers on pyrolysis-GC/MS of SOM 

reveal that large polysaccharide contents with scarce lignin and aliphatics could indicate rapid 

degradation of litter-derived organic matter (Buurman et al., 2004, Buurman et al., 2007, Nierop 

and Verstraten, 2004). The cluster of N-containing compounds represents relatively decomposed 

SOM, as shown in several studies (Chefetz et al., 2002, Ferreira et al., 2009, Nierop et al., 2001). 

Both N-containing compounds and the most abundant aromatic compound, toluene (Ar1), 

plotted together on the top of the graph, which probably indicated the input of microbial matter 

as reported by Schellekens et al. (2009). Therefore, the positive loadings on FA2 represent 

degraded SOM of higher plants or microbial SOM input and the negative loadings on FA2, 

which was accumulated by macromolecular lignin compounds, refer to fresh SOM input. Thus, 

FA2 was assigned as reflecting SOM degradation. 

The FA1 x FA2 factor scores’ plot is presented in Figure 3.4. The scores represent the 

weight of samples in the loadings’ plot (Figure 3.3), which allows the interpretation of samples 

in terms of SOM characterization. The score plot gives a clear separation of the samples from 

three different wetland systems, FM, BM and SM. The soil samples from BM and SM showed 

high negative scores on FA1 and were significantly separated from the FM samples, which 

showed high positive scores on FA1. The BM samples plot towards the lignin corner, however, 

the FM samples plot towards the middle-chain and long-chain aliphatics, and alcohols on the far 

right part of the plot.  
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Figure 3.4. Factor scores underlying the factor loadings on the first two ordination axes for the 
soil samples from Barataria basin. 

As previously, FA1 reflects a different source of higher plants with different salinity 

tolerance. Comparison of the distribution of BM and SM samples shows that SM samples had 

positive scores on FA2, while BM samples had negative scores on FA2. As FA2 represent the 

degradation status of SOM, the positive part represents the degraded SOM and negative part of 

FA2 indicates fresher SOM. So, it could be concluded that the SOM from SM was more 

degraded than that from BM.  This was supported by more lignin degradation in SM than BM as 

indicated by smaller C3G/G ratios in former than in the latter.  
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3.4 Conclusions 

 There is general agreement between CuO and TMAH pyrolysis methods in terms of 

lignin characterization. Wetland ecosystems along an increasing salinity gradient of Louisiana 

coast exhibited a large variation in SOM composition, as determined by pyrolysis-GC/MS. The 

freshwater marsh closely affected the presence of N-containing compounds of SOM, whereas 

brackish and saline marshes exerted more influence on lignin and aliphatic compounds of SOM, 

respectively.  In addition, lignin was preferably degraded in the seaward saline marsh compared 

with relatively inland FM. Overall, coastal wetland SOM compositions were mainly influenced 

by vegetation sources of specific ecosystems with different salinity tolerance and degradation 

status that was facilitated by specific environmental factors. The effect of soil depth on the SOM 

composition was not apparent in the top 50 cm.  
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CHAPTER 4: CONCLUSIONS 

The higher lignin contents (Λ8) in Barataria basin were 2-fold higher than those in the 

Atchafalaya Basin, suggesting stronger lignin storage capacity in the former. The lower S/V 

ratios at the M2 and M3 sites as compared with the M1 site and the other three sites in the 

Barataria basin are the results of source inputs. The marsh source inputs in the Barataria basin 

wetland soils are primarily nonwoody angiosperms, whereas they are the nonwoody 

gymnosperms and nonwoody angiosperms in the Atchafalaya basin. The deep soil profile 

showed general greater state of lignin degradation. Principle component analysis (PCA) showed 

that different soil environmental factors dominated the influence on the status of soil organic 

matter degradation in the two contrasting basin wetland soils.  Soil acidity had a negative effect 

on the lignin degradation in the Atchafalaya basin, whereas high N contents inhibited lignin 

degradation in Barataria basin. The EC parameter negatively affected organic matter in low 

salinity wetlands but positively influenced lignin decomposition in high salinity wetland soil 

profiles. Lignin sources and degradation state were evaluated to speculate the integrated status of 

soil organic matter in the coastal wetlands.	  The correlation between physicochemical parameters 

and lignin degradation biomarkers showed how the environmental parameters affect the SOM 

degradation in the two contrasting systems. 

There is general agreement between CuO and TMAH pyrolysis methods in terms of 

lignin characterization. Wetland ecosystems along an increasing salinity gradient of Louisiana 

coast exhibited a large variation in SOM composition, as determined by pyrolysis-GC/MS. The 

freshwater marsh closely affected the presence of N-containing compounds of SOM, whereas 

brackish and saline marshes exerted more influence on lignin and aliphatic compounds of SOM, 

respectively.  In addition, lignin was preferably degraded in the seaward saline marsh compared 
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with relatively inland FM. Overall, coastal wetland SOM compositions were mainly influenced 

by vegetation sources of specific ecosystems with different salinity tolerance and degradation 

status that was facilitated by specific environmental factors. Soil organic matter composition 

study allows interpreting the variation of SOM within the wetland ecosystems.	  According to 

factor analysis, the variation among the SOM organic compounds was described and influential 

factors were determined. 
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