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ABSTRACT 

Wood is a versatile and cost-effective building material found in everyday life. However, 

it has a disadvantage of readily absorbing both water vapor from the surrounding air and liquid 

water when in direct contact. The absorption of water increases the rate of the wood decaying and 

can also affect the physical properties, such as warping and swelling. Previous research has looked 

into defining the rate of absorption by modeling it based on Fick’s second law. Fick’s second law 

bases the rate of absorption on a diffusion coefficient; a constant that changes with time. Herein, 

a new empirical model is proposed that has constants that stay fixed with time as a way to avoid 

using diffusion coefficients. Furthermore, the empirical model’s validity will be examined for 

water vapor and the effect of paint coatings, liquid water at different wood densities and 

temperature, and the application of the model to organic solvents.  
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CHAPTER I. INTRODUCTION 

I.1 Wood absorption 

The International Union of Pure and Applied Chemistry (IUPAC) defines absorption as the 

process of one material being retained by another by physical forces.1 For most cases, this is the 

study of a dissolved solid, liquid, vapor, or gas being bound throughout a solid. This is an important 

distinction from adsorption, which only takes places on the surface of a solid. Conversely, because 

absorption is a physical process, there can also be desorption; in which the retained material is 

released. In general, both absorption and desorption can be described as the single process of 

sorption. Many materials exhibit sorption, including activated carbon, various media gels, and 

zeolites.2 However, the most abundant material is one that is used in nearly every building and 

found in copious amounts in nature: wood. 

Wood is a common material used by nearly everyone on a daily basis; window frames, 

desks, house frames, doors, and dressers to name a few. There are many advantages to using wood 

as a building material as it is plentiful, inexpensive, easy to cut and shape, and is considered a 

green, renewable material. However, wood does have the property of absorbing both liquid water 

and water vapor, which can accelerate the rate at which it decays. 

 The absorption of water vapor is a process that proceeds towards equilibrium that is both 

temperature and relative humidity dependent.3 This final absorption value is commonly referred 

to as equilibrium moisture content (EMC) and has different values with each species of wood. 

Furthermore, EMC exhibits a hysteresis phenomenon, in which EMC values are higher when 

desorption occurs after an initial absorption (Figure 1). Overall, water vapor sorption is a relatively 

slow process that takes days to reach equilibrium.  
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Figure 1. Left: Equilibrium moisture content of wood (labeled contours) as a function of 
temperature and relative humidity. Right: Moisture content and relative humidity relationship for 

wood under various sorption conditions.3 [Copied from Wood Handbook – Wood as an 

Engineering Material (2010), U.S. Department of Agriculture. Figures 4-1 and 4-2.]  

 

Compared to water vapor, liquid water absorption is a significantly faster process and has 

multiple mechanisms of absorption. The primary mechanism is driven by capillary action, also 

known as wicking, that happens within the xylem and phloem channels inherent in the wood. 

Consequently, the penetration of absorption goes much farther along these channels and much less 

perpendicular to them.3,4  

The way in which wood sorbs both water vapor and liquid is categorized by bound water 

and free water.3,5 Bound water is defined by having an intermolecular attraction to the cellulose 

found in the cell walls and the point at which all available bonding sites are full is referred to the 

fiber saturation point (FSP).6 Free water is all other water that is not bound to the cell walls and 

only occurs after the FSP has been reached.5 In the case of water vapor, free water does not occur 
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as the vapor cannot “push” past the FSP. Moreover, the rate of both water vapor and liquid water 

absorption predictably changes while reaching the FSP; and in the case of liquid water, experiences 

another rate change after the FSP.  

To better understand how wood absorption is occurring, various models have been 

developed. The two main approaches to developing these models is based on mathematical 

derivation of physics concepts or through experimental data to build an empirical model. Both of 

these approaches will be explored in the following section.  

I.2 Fickian versus empirical modelling 

Most of the models describing diffusion (absorption) of water in wood are Fickian (i.e., 

they follow Fick’s Law), as this is a traditional treatment based on sound physics of diffusion.7–12 

However, the Fickian model assumes constant diffusion coefficients over specific time frames, 

and this is not observed in real measurements. Absorption must, and does, reach a near-zero rate 

as equilibrium is reached and the main diffusion paths become filled.3,4,7–10,12–15  

The general diffusion constant equation for a non-steady state, one-dimensional analysis is 

defined by Fick’s second law (Eq.1). This equation relates the rate of change in concentration 

(weight) with respect to the time between parallel planes at points x and x + dx.  

     
𝜕𝐶𝜕𝑡 = 𝐷 𝜕2𝐶𝜕𝑥2            Eq. 1 

The solutions of Fick’s second law are based on a set of boundary conditions and have 

been used in similar studies.4,8,9,13,14,16,17 When measuring diffusion by mass uptake bounded by 

two parallel planes, Eq. 1 can be solved to result in Eq. 2. 
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𝑤𝑡−𝑤0𝑤∞−𝑤0 = 1 − 8𝜋∑ 1(2𝑛+1)2∞𝑛=0 𝑒−𝐷(2𝑛+1)2𝜋2𝑡/𝐿2    Eq. 2 

where Wt is the weight (g) at time t (min), W∞ is the weight at time infinity, W0 is the initial 

weight, L is the length of the wood block, and D is diffusion (m2/min). For short time spans and 

rectangular blocks of wood, Eq. 2 can be simplified to Eq. 3.4,12 

    
𝑤𝑡−𝑤0𝑤∞−𝑤0 = 2√𝜋 (𝐴𝑉)√𝐷𝑡       Eq. 3 

where A is the surface area (m2) and V is the volume (m3) that is exposed to water vapor. 

A = 2(wl + hl + hw) and V = hwl. By redefining Wt – W0 and W∞ – W0 as H2O(t) and H2Omax, 

respectively, Eq. 3 can be rearranged to give an equation that describes water uptake at time (t) if 

both the H2Omax and diffusion constant are known (Eq. 4).  

    𝐻2𝑂(𝑡) = 𝐻2𝑂(𝑚𝑎𝑥) 2√𝜋 (𝐴𝑉)√𝐷𝑡      Eq. 4 

where H2Omax is the maximum amount of absorption that is eventually achieved from the 

equilibrium process. With this equation, the diffusion constant is constantly changing with time in 

order to match real measurements (Figure 2). Initial diffusion is rapid until it peaks and then begins 

to slow down to essentially zero. This poses a rather difficult problem of finding meaning out of a 

diffusion coefficient, as it changes either rapidly or infinitesimally depending on the length of time 

and makes H2Omax difficult to know or predict without doing it experimentally. Furthermore, the 

time in which it takes to reach H2Omax is only defined via the diffusion coefficients, which for 

reasons previously mentioned, are not ideal.  
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Figure 2. Ideal model diffusion. 

 

The current traditional adjustment of the Fickian model to this scenario is to use several 

constant diffusion coefficients for several phases of diffusion.4,12 However, this treatment sets 

significant limitations. First, the abrupt switches from one phase to another are set arbitrarily. 

Second, it assumes that all samples will show the same number of phases, which may not be true. 

Third, the actual changes of diffusion rates are gradual and continuous, contradicting the idea of 

several distinct phases. Fourth, having several drastically different values of diffusion coefficients, 

as it is inherent for wood, hinders accurate modelling. 

As a result, the predictability of Fickian models is limited to systems exhibiting similar 

diffusion features, e.g., wood samples obtained from one batch, with a similar extent of drying and 

just one diffusing chemical or their defined mixture.3,9,18 The targeted use of both painted and 
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unpainted samples, varied pollutants, and even their varied physical phase (vapor versus liquid) 

would be inconsistent with this approach. 

However, the alternate use of empirical, non-Fickian models has even greater limitations. 

For example, Baglayeva, et al., incorporated new empirical constants based on drying the wood 

with high temperatures, which can further increase the variability between measurements as wood 

extracts could be evaporated from the wood.12 Other works, such as those of Murr, et al., and 

Wadsö, focus on modeling slow and fast steps of sorption based on fitting exponential 

equations.13,17 They may offer an advantage of using fewer parameters (ideally – just one) to 

describe the entire time-course of absorption of a chemical by a matrix. However, as these 

empirical equations are not based on sound physical laws, their predictability to even slightly 

differing systems is questionable at its basis. 

Thus, the ideal case would be finding an empirical model with continuously decreasing 

diffusion rates that would still be reconcilable with the Fickian model. In the ideal case, such a 

model would describe the entire process, although having several phases, each corresponding to a 

different physical process (e.g., capillary action vs. molecular diffusion), could be acceptable.  
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I.3 Construction of an empirical model 

 As previously mentioned, the current Fickian model (Eq. 3) has several issues. The 

significant ones that have the potential to be addressed by an empirical model are replacing 

diffusion coefficients with a different constant and potentially predicting H2Omax. In order to do 

so, we propose incorporating a new constant that defines the time it takes to reach half-saturation, 

Ʈ1/2, which can be seen in Equation 5. 

    𝐻2𝑂(𝑡) = 𝐻2𝑂(𝑚𝑎𝑥) ( 𝑡𝜏1/2+𝑡)      Eq. 5 

There are several advantages to using this empirical equation. First, from experimental data 

it creates the same saturation curves as Fick’s second law (Eq. 3). Second, Ʈ1/2 replaces the 

diffusion coefficient; this is advantageous because it does not change with time. Moreover, Ʈ1/2 

has only units of time, which is straightforward compared to diffusion’s meters squared per time. 

Lastly, as the two equations are set to be equal to each other, diffusion coefficients can still be 

calculated if desired from Equation 6. 

    𝐷 = 𝑡𝜋𝑉24(𝜏1/2+𝑡)2𝐴2        Eq. 6 

In the following chapters, this empirical model will be tested in various conditions. For the 

first circumstance, the simplest absorption system of water vapor will be evaluated, including the 

effect that paint has on its absorption. Secondly, liquid water absorption will be evaluated. 

Furthermore, the effect of the wood’s density and the temperature of the water and their 

interactions will be statistically analyzed to see what effect they may have on H2Omax and Ʈ1/2. 

Lastly, the application of the model to other, non-polar, chemicals will be assessed.  
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I.4 Various approaches to sigmoidal models 

Both Fick’s second law and the empirical model describe the positive portion of a 

sigmoidal curve. However, there are many examples of chemical and physical systems that exhibit 

this kind of trend; including Michaelis-Menten enzyme kinetics, Fermi-Dirac statistics, Weibull 

distributions, and steady-state chemical reactions, to name a few. Moreover, with these different 

applications come different, yet similar, mathematical ways to describe these curves (Figure 3). 

 

 

Figure 3. Sigmoidal curves via various formulas. 

 

Most of the equations seen in Figure 3 are abstract in the realm of chemistry, with the 

exception of the first. This equation is the same format as the Michaelis-Menten equation and has 
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maximum rate (KM).19 However, the way to calculate these constants has been demonstrated to be 

problematic before the advent of adequate computational methods (i.e., nonlinear regression).20 

One common approach to solve for these constants was to make a double reciprocal plot of the 

Michaelis-Menten graph, commonly referred to as a Lineweaver-Burk plot (Figure 4). 

 

 

Figure 4. Example of Michaelis-Menten and Lineweaver-Burk plots. Data taken from Ritchie, et 
al.20 
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The linearization provided by Lineweaver-Burk plots, and other similar transformations, 

has demonstrated the capability of calculating constants with more ease than from the original 

Michaelis-Menten formula. Unfortunately, each of these transformations has the disadvantage of 

being more inaccurate at smaller values, due to the nature of taking the inverse of a small number. 

Therefore, having inaccurate or imprecise measurements at the start of an experiment can cause 

the resulting constants to be significantly incorrect. Fortunately, nonlinear regression can be 

applied directly to Michaelis-Menten plots and used to calculate the constants without having to 

transform the data, resulting in an overall more accurate result.20 Therefore, all the cases of water 

absorption, and the application of the empirical model, will be evaluated by nonlinear regression.  
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CHAPTER II. THE EFFECT OF PAINT ON WATER VAPOR ABSORPTION  

AND 14C-TEBUCONAZOLE LEACHING 

As water vapor only has one step of absorption that takes place within wood, it makes 

logical sense to see if the empirical model can work in this simple system. Furthermore, in 

association with Marvin Windows & Doors, the effect of various paints was evaluated to see if 

they had an impact on the water vapor absorption. The effect of paint and the rate of which 

radiolabeled fungicide was leached was also monitored. Previous work had shown that painted 

wood that was exposed to simulated rain demonstrated that both the maximum amount and the 

rate of fungicide leaching was reduced.21 However, the effect of water vapor and leaching had not 

been explored.  

II.1 Materials 

II.1.1 Chemicals 

 Uniformly 14C-labeled tebuconazole (TAZ) was obtained from the Commerce 

Institute of Isotopes Co., Ltd. (Budapest, Hungary) with a radioactivity of 7.4 MBq mL-1, which 

was added to a commercial wood preservative formulation, Woodlife 111 TRU from Kop-Coat, 

Inc. (Pittsburgh, PA, USA) as a tracer; resulting in a radioactivity of 0.74 MBq L-1 and 14C-TAZ 

concentration of 0.12 mg L-1. Woodlife 111 additionally contains 0.21% of nonradioactive TAZ, 

propiconazole, and 3-iodo-2-propynylbutylcarbamate. Thus, the ratio of 14C-TAZ to TAZ was 

1:14,000. Two different scintillation cocktails were used. Betamax, obtained from MP 

Biomedicals, LLC (Solon, OH, USA), and Ultima Gold, obtained from PerkinElmer, Inc. 

(Waltham, MA, USA), were used for organic and aqueous solvents, respectively. Acetone (ACS 

grade) was purchased from VWR (Arlington Heights, IL, USA). Sodium bromide (99+%) and 
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potassium iodide (99%) were purchased from Alfa Aesar (Haverhill, MA, USA). All water used 

was deionized water from a Direct-Q 3 UV system purifier (Millipore, Billerica, MA, USA).   

II.1.2 Wood treatment 

Ponderosa pine sapwood blocks (4 in x 1 in x 0.5 in) were dip treated with a radiolabeled 

Woodlife 111 solution for 1.0 min. The wood blocks were then dried on wooden skewers in a hood 

for a week before being painted. Samples were weighed 13 days after initial Woodlife treatment 

and priming/painting for their initial weight.  

II.1.3 Liquid scintillation counting 

The liquid scintillation counter used was a Beckman Coulter LS 6500 purchased from 

Beckman Coulter, Inc. (Fullerton, CA, USA). The analyses were run in duplicate for 10.0 min in 

disintegrations per minute (DPM) mode, which is directly proportional to the 14C-TAZ 

concentration.  

Liquid scintillation counting is based on a principle that is similar to any luminescence 

technique. For example, fluorescence occurs after exciting a fluorophore with an incident beam of 

light, followed by the excited molecule returning to the ground and emitting light. For liquid 

scintillation counting, the incident light source is replaced with a radiation source (specifically 14C 

beta radiation for this experiment). Then rather than the fluorophore being excited directly, the 

beta particles excite the SC, which then transfers that energy to the fluorophore. The now excited 

fluorophore will return to the ground state and give off photons, which are detected by a 

photomultiplier tube (Figure 5).22,23 The amount of fluorescence is proportional to the amount of 

beta-emitting isotope present. Beta radiation from 137Cs was used for standardization. 
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Figure 5. Schematic of liquid scintillation counter. 

 

II.2 Exposure conditions 

A saturated salt solution of sodium bromide or potassium iodide was utilized to keep a 

constant relative humidity (~60%) at room temperature and 65 °C, respectively, inside a glass jar, 

Figure 6. The wood blocks were then placed on top of a perforated plastic platform with no direct 

contact to the salt solution below. Gravimetric measurements were taken weekly for the first three 

weeks and biweekly for the last two measurements, for a total water vapor exposure of 52 days.  

The remaining solution inside the chambers was collected at the same time as gravimetric 

measurements to measure the rate of 14C-TAZ depletion. The chambers were rinsed several times 

with acetone to collect any residual 14C-TAZ. Lastly, the humidity chambers were washed and 

refilled with the saturated salt solution and wood blocks were reintroduced to continue the 

experiment.  

137Cs Beta 

radiation

Sample

Visible light Photomultiplier tube

Readout
14C

sc
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Figure 6. Schematic of humidity chamber. 

 

II.3 Method development of 14C-extraction from simulated humidity chamber 

To simulate the water collected in the humidity chamber and assure recovery, several 

experimental designs were tested (Table 1). Each protocol tested used 5 µL of 14C-TAZ to verify 

recovery.  

Table 1. Protocols tested for 14C-TAZ extraction. 

Sample Protocol Matrix SC 

Aqueous control 
Aqueous 
samples 

Water & sodium 
bromide 

Ultima 
Gold 

Organic control 
Organic  
samples 

Acetone Betamax 

Aqueous control LLEH Acetone Betamax 
Aqueous control + wood 

matrix 
LLEH 

Acetone & Wood 
matrix 

Betamax 

  

1 2 3 4
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The protocol for aqueous samples included the same saturated salt solution used in a 

humidity chamber, 14C-TAZ, and diluting it to 30 mL to dissolve excess salt. Next, aliquots of SC 

were separated with a ratio of 1:2 (H2O:SC) and equilibrated for 3 days before being analyzed with 

the scintillation counter. The organic samples consisted of 2 mL acetone, 2 mL of SC, and the 14C-

TAZ.  

Liquid–liquid extraction with hexane (LLEH) consisted of the same conditions as the direct 

water measurement, but was halted before addition to the SC. From there, ~4 mL of n-hexane was 

added and vortexed. The solution was allowed to separate into two layers and the top layer was 

transferred into a scintillation vial with a glass Pasteur pipette. Hexane was added, vortexed, and 

collected three times. The combined hexane fractions were then dried to completion under a gentle 

stream of nitrogen. Lastly, 2.0 mL each of acetone and SC were added and vortexed. This protocol 

was repeated with the addition of wood matrix present in a separate set of solutions to determine 

the effects of the sample matrix.  

Wood matrix extract was obtained by performing Soxhlet extraction on untreated 

ponderosa wood block samples for 24 hours with acetone. A rotary evaporator was then used to 

concentrate the acetone to ca. 10 mL, which was then transferred to the vial used to simulate the 

humidity chamber, and dried to completion using nitrogen. The previously mentioned LLEH 

protocol was then performed and the sample vials were equilibrated overnight before being 

analyzed.  
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II.4 Extraction and analysis 

II.4.1 Water samples 

Water collected from the humidity chambers was diluted to 30 mL (to dissolve any excess 

salt) and ~4 mL of n-hexane were added and vortexed. The solution was allowed to separate into 

two layers and the top layer was transferred into a scintillation vial. Hexane was added, vortexed, 

and collected three times. The combined hexane fractions were then dried under a gentle stream 

of nitrogen till dry. Lastly, 2.0 mL of acetone and scintillation cocktail were added and vortexed. 

These samples then equilibrated over night before being run on the scintillation counter.  

II.4.2 Acetone samples 

The acetone rinsed samples collected from the humidity chambers were evaporated with a 

gentle stream of nitrogen until dry. After reconstitution with three 3 mL washes with acetone, they 

were transferred to scintillation vials. The acetone was dried under nitrogen to completion and 

reconstituted in 2.0 mL of acetone and scintillation cocktail were added and vortexed. The samples 

were allowed to equilibrate overnight before being analyzed with the scintillation counter.   

II.5 Estimate of maximum water uptake and half saturation time 

H2Omax and Ʈ1/2 were solved using nonlinear regression in Minitab® Statistical Software24 

from the gravimetric measurements taken. Each wood sample was weighed weekly for three weeks 

and then every two weeks. The total exposure time was 52 days.  
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II.6 Results and Discussion 

II.6.1 Gravimetric analysis of water vapor adsorption 

The individual nonlinear confidence plots can be found in Appendix F. The calculated 

values for H2Omax and Ʈ1/2 can be seen in Table 2. 
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Table 2. Summary of H2Omax and Ʈ1/2. Following the value is the standard error calculated in Minitab. Any 0.00 standard error should 
be considered as <0.001.  

Paint coat H2Omax Ʈ1/2 

Diamond Vogel SDL (one coat) 5.2 ± 0.21 3.6 ± 0.85 

DBK (prime and top-coat) 4.9 ± 0.66 12.1 ± 4.83 

White Painted Interior Finish (prime and top-coat) 3.8 ± 0.00 6.3 ± 0.00 

White Painted Interior Finish (one coat) 5.0 ± 0.18 5.2 ± 0.89 

Marvin White Prime (one coat) 4.5 ± 0.23 10.4 ± 1.66 

Marvin Espresso Conditioner Stain and Clear Coat (prime and two top-coats) 4.3 ± 0.20 5.2 ± 1.11 

Clear Prime and Clear Paint (prime and top-coat) 4.8 ± 0.29 7.8 ± 1.76 

Sherwin Williams Exterior Paint  (prime and top-coat) 4.7 ± 1.44 19.1 ± 14.70 

Kilz Premium Extra Primer with Sherwin Williams Exterior Paint (prime and top-coat) 5.7 ± 0.19 8.7 ± 1.01 

Benjamin Moore Superior Primer with Regal Exterior Paint (Prime and top-coat) 5.7 ± 0.57 8.1 ± 2.91 

Control 4.6 ± 0.00 2.6 ± 0.06 
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Figure 7. H2Omax and Ʈ1/2 values. Error bars are one standard deviation. 
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Each paint coat observed a statistically significant increase in H2Omax when compared to 

the control; with an average increase of ~30% (Figure 7). It could be proposed that the increase of 

water absorbed could be contained in the paint itself but a method of ascertaining it would be 

difficult to develop. The process of removing the paint from the wood by either physical or 

chemical methods, without losing water, is currently not available.  

Ʈ1/2 is also increased by the addition of paint and varied significantly between the different 

paint coats. Whereas the control took ~2 days to reach half saturation, the addition of paint, at 

minimum, increased this to ~4 days. Most other paints had even larger increases in half saturation 

time; most between a 3 – 11 fold increase in time.  

The increase in Ʈ1/2 means that the paint acts as a protective vapor barrier that helps keep 

the wood dry and prevents swelling/damage. Conversely, once the water has been absorbed it takes 

longer for the water to desorb out; thus paint might promote faster wood decay.  

II.6.2 Optimization of 14C-TAZ extraction 

As seen in Figure 8, the LLEH protocol was observed to have the same DPM as the controls 

that had no extraction preformed on them. Furthermore, the addition of wood matrix also had no 

effect on the recovery of 14C-TAZ. Therefore, the LLEH protocol was used for all water samples.  



21 

 

Figure 8. Comparison of extraction techniques on samples. 

 

II.6.3 14C-TAZ depletion  

The amounts of 14C-TAZ recovered from the collected water and acetone are shown in 

Figure 9. When the amount of wood blocks is factored into the amount of 14C-TAZ collected, there 

is no statistical difference in the amount collected. Notably, this includes comparing the painted 

wood to the control (unpainted). Furthermore, the accumulative amount of 14C-TAZ would suggest 

that the amount being desorbed is removed at a rate significantly slower when compared to samples 

that were exposed directly to liquid water.  
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Figure 9. Sum of water and acetone 14C-TAZ washes. Left display shows individual measurements. Right side display accumulative. 
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The total amount of 14C-TAZ collected in our previous study on the effect of simulating 

rain, on both painted and unpainted wood, and the leaching of 14C-TAZ was evaluated for 

comparison.21 After the first two days of simulating rain (flow rate of ~0.1 mL min-1) the amount 

found in the collected water was three orders of magnitude higher after two days when compared 

to the amount collected from water vapor after 52 days. Furthermore, the total average amount 

collected from each block in the current study was less than 0.37 ng (~650,000,000,000 atoms). 

Therefore, the amount of 14C-TAZ desorbed from water vapor should be considered negligible.  

II.6.4 Diffusion coefficients comparison 

As previously mentioned, diffusion coefficients can be calculated from both the Fickian 

and empirical equations (Figure 10 below).  Both models produce similar values at each time step 

that the coefficients were solved for. However, the Fickian model produces a more erratic picture 

of what is happening; often deviating from ideal model diffusion. Conversely, the empirical model 

appears to “smooth” out these deviations; resulting in diffusion coefficients that do resemble ideal 

model diffusion. Furthermore, the empirical model can also calculate the diffusion coefficients at 

any time without a direct measurement as long as Ʈ1/2 is known. This makes it possible to correct 

for data points that are missing, such as the control beginning and end in this study.  
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Figure 10. Comparison of solved diffusion coefficients for both Fickian and Empirical models. 
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II.6.5 Comparison of different wood batches separated by time 

Due to the high standard deviation and Ʈ1/2 values observed from White Painted Interior 

Finish (prime and top-coat), a duplicate study was preformed from the same cut of wood several 

months later. The same paint and primer were applied by Marvin Windows & Doors and a second 

set of control blocks were used (Figure 11). The results of this duplicate study are inconclusive.  

In all cases, the values for H2Omax and Ʈ1/2 were statistically different from each other. In 

the case of the control, both H2Omax and Ʈ1/2 increased to nearly double. Furthermore, it surpassed 

the H2Omax of the painted sample; the first instance of a non-painted sample to do so including the 

old samples. For the White Painted Interior Finish (prime and top-coat), both the Ʈ1/2 value and 

the standard deviation calculated were reduced significantly.  

A possible explanation for the significant variance could be from the difference in initial 

starting conditions. The University of North Dakota’s chemistry labs do not have constant 

humidity control due to the high air exchange rate needed for its hood system. With the two batches 

starting months apart (in different seasons) the initial starting humidity would be significantly 

different. Therefore, future experiments involving this kind of work should conduct everything in 

close time proximity if a comparison is desired.  
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Figure 11. Comparison of old and new samples. 
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one step of diffusion (further discussed in Chapter III). The double reciprocal plot, however, 

appears to have two steps or possibly a nonlinear step. Furthermore, double reciprocal calculations 

over-estimate both H2Omax and Ʈ1/2 while having worse standard deviations for H2Omax (Table 3). 

 

 

Figure 12. Double reciprocal plot of Clear Prime and Clear Paint (prime and top-coat). 

 

Table 3. Comparison of nonlinear regression and double reciprocal calculations. 
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but most saw a several fold increase in saturation time. The rate of 14C-TAZ depletion via water 

vapor was unaffected by paint coating and insignificant overall when compared to direct water 

exposure.  

The empirical model fit well with water vapor absorption measurements, replicating results 

found with the Fickian model for diffusion coefficients. Moreover, the empirical model was able 

to “smooth” out deviations from ideal model diffusion observed in the Fickian model and made it 

possible to find coefficients for missing data points.  
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CHAPTER III. GRAVIMETRIC ANALYSIS OF LIQUID WATER ABSORPTION 

The previous study demonstrated the ability for the empirical model to be used for 

specifically water vapor absorption in wood (and to a greater extent how paint affected that 

absorption). To further explore the applications of the model, its use in modeling liquid water 

absorption was tested and what types of variables change H2Omax and Ʈ1/2. Density and water 

temperature were both evaluated using a full factorial design to understand all interactions that 

they might have on H2Omax and Ʈ1/2. 

III.1 Materials 

Ponderosa pine sapwood blocks (4 in x 1 in x 0.5 in) were separated into two distinct groups 

based on density (high 0.430 ± 0.0065 & low 0.335 ± 0.0057 g/cm3). All water used was deionized 

water from a Direct-Q 3 UV system purifier (Millipore, Billerica, MA, USA). 

III.2 Exposure conditions 

Each wood block was submerged completely in water to a minimum depth of 2 cm below 

the surface at either 20 or 40 °C, respectively. At regular intervals the sample was removed from 

the water, dried with a lint free wipe, weighed, and then returned to the water for a total submerged 

time of ten minutes. 

III.3 Full factorial design 

A full factorial 2-factor 2-level design was generated using Minitab 18 (Table 4). Using a 

full factorial design allowed for any primary and two-way interaction effects to be evaluated. 
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Table 4. Full factorial design. 

 

 

III.4 Nonlinear regression calculations of Ʈ1/2 and H2Omax 

Nonlinear regression was used to calculate the values of both Ʈ1/2 and H2Omax in Minitab 

18 using Eq. 5. Starting parameters of 1 were used for each constant and a lower bound of greater 

than zero were used for both. The averaged wood saturation plots can be seen in Appendix F – 

Averaged saturation plots. 

III.5 Statistical analysis 

Fractional regression was used to evaluate both responses and their interactions from the 

factors. Furthermore, a general linear model and one-way ANOVA were used to evaluate H2Omax 

and Ʈ1/2, respectively, and can be seen in Appendix C & E. 

 

III.6. Results and discussion 

The raw results of the nonlinear regression for each sample of wood can be seen in Table 

5. Additionally, the plotted accumulative data is shown in Figure 13.     

StdOrder RunOrder CenterPt Blocks Density (g/cm
3
) Temperature (°C)

5 1 1 1 0.335 20

1 2 1 1 0.335 20

9 3 1 1 0.335 20

10 4 1 1 0.430 20

2 5 1 1 0.430 20

6 6 1 1 0.430 20

11 7 1 1 0.335 40

7 8 1 1 0.335 40

3 9 1 1 0.335 40

8 10 1 1 0.430 40

4 11 1 1 0.430 40

12 12 1 1 0.430 40
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Table 5. Raw results of nonlinear regression calculations. 

 

 

Figure 13. Accumulative weight versus time. Left, low density & right, high density. Error bars 
are one standard deviation. 
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3 9 1 1 0.335 40 11.68 1.35

8 10 1 1 0.430 40 12.46 1.20
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III.6.1 H2Omax factors 

Analysis of the normal plot (Figure 14) determined that both of the main effects, density 

and temperature, have an impact on the H2Omax of wood. However, the two-way effect of 

density*temperature was not significant. Removing the two-way interaction, the results of analysis 

of variance are presented in Table 6. The normal probability plot, versus fits, and main effects can 

also be seen in Figure 14. Based on the main effects plot, a higher density and lower temperatures 

both increase the H2Omax. This result corroborates the trends observed in EMC.3  

Table 6. Analysis of variance for H2Omax versus density and temperature. 

 

Source DF Adj SS Adj MS F-Value P-Value

Model 2 7.0605 3.53023 10.57 0.004

  Linear 2 7.0605 3.53023 10.57 0.004

    Density 1 4.8173 4.81726 14.42 0.004

    Temperature 1 2.2432 2.2432 6.71 0.029

Error 9 3.0069 0.3341   

  Lack-of-Fit 1 0.0113 0.01129 0.03 0.866

    Pure Error 8 2.9956 0.37445   

Total 11 10.0673    
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Figure 14. Normal plot, normal probability plot, versus fits, and main effects plots for H2Omax. 

 

III.6.2 Ʈ1/2 factors 

Analysis of the normal plot (Figure 15) determined that the only main effect observed was 

the temperature of water. The results of a reduced model analysis of variance can be seen in Table 

7. The normal probability plot, versus fits, and interval plot can also be seen in Figure 15. Based 

on the interval plot, a higher temperature increases the Ʈ1/2. Increasing the temperature from 20 °C 

to 40 °C doubled the amount of time needed to obtain half saturation; from 0.81 to 1.63 minutes. 

Future research should explore this changing Ʈ1/2 with temperature. This phenomena of decreased 

rate of absorption with higher temperature has not been described in literature. Furthermore, the 
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rate of absorption is rarely described in most absorption experiments; with most focusing on the 

maximum amount able to be absorbed.25,26  

Table 7. Analysis of variance for Ʈ1/2 versus temperature. 

 

 

Figure 15. Normal plot, normal probability plot, versus fits, and interval plot plots for Ʈ1/2. 
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Model 1 2.02024 2.02024 29.57 0.000
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    Temperature 1 2.02024 2.02024 29.57 0.000

Error 10 0.68331 0.06833   

  Lack-of-Fit 2 0.08516 0.04258 0.57 0.587

    Pure Error 8 0.59814 0.07477   

Total 11 2.70354    
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III.6.3 Multiple steps of diffusion  

The previous two sections describe the effects on H2Omax and Ʈ1/2 when each sample was 

analyzed independently, which is beneficial to understanding their impact. However, when 

analyzing the samples in their groups other trends were observed; specifically, two steps of 

diffusion with the high-density wood. All averaged results can be seen in Appendix D.  

High-density wood exposed to both high and low temperature showed multiple steps of 

diffusion. This was concluded based on the “Lack of Fit” error expressed in the nonlinear 

regression statistics, which had a P value of 0. Thus, the model was incapable of being applied to 

the data recorded. However, by systematically “trimming off” data from the longer times to shorter 

the Lack of Fit error P value increased till it was greater than 0.05. Consequently, the model was 

then applicable to both sets of data (untrimmed and trimmed) as seen in Table 8. 

Table 8. H2Omax and Ʈ1/2 averaged values for all conditions. No standard deviations were greater 
than 10-5 for H2Omax and were consequently omitted. 

 

 

 With the separation of first and second step diffusion in the high-density wood, several 

new observations come out. The H2Omax for each high-density first step is similar to its respective 

temperature low-density H2Omax. Furthermore, the H2Omax for high density, second step diffusion 

is also similar in value. Ʈ1/2 still follows the trend described in previously, with lower temperatures 

Factor H2Omax (%) Ʈ1/2 (minutes)

Low density - low temperature 12.17 0.90 ± 0.060

Low density - high temperature 10.56 1.75 ± 0.060

High density - low temperature 0-5 minutes 11.67 0.51 ± 0.023

High density - low temperature 6-10 minutes 17.35 3.16 ± 0.035

High density - high temperature 0-6 minutes 10.74 0.95 ± 0.042

High density - high temperature 7-10 minutes 17.13 4.68 ± 0.013
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having faster rates of half saturation. It can also be noted that the second step diffusion Ʈ1/2 is 

several orders of magnitude higher than the first step. 

III.6.4 Comparison to double reciprocal calculation 

To further demonstrate the advantage of using nonlinear regression, a double reciprocal 

plot was made for the samples that were high density and low temperature (Figure 16). The 

H2Omax and Ʈ1/2 values were based on the times discovered via nonlinear regression. Therefore, 

this should be treated as an optimal data calculation, because double reciprocal plots have no 

indication of when to parse the data.  

 

 

Figure 16. Double reciprocal plot of High density - low temperature. 
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Table 9. Comparison of H2Omax and Ʈ1/2 via nonlinear regression and double reciprocal 
calculations. Standard deviation for H2Omax nonlinear regression was greater than 10-5 and was 

consequently omitted. 

 

 

As seen in Table 9, the values for H2Omax are similar for both methods in step of diffusion. 

However, the standard deviation between the two is significantly different. Nonlinear regression 

calculates the standard deviation being around 10-5, while double reciprocal calculations are at    

10-1. As for Ʈ1/2, double reciprocal underestimates the values and has a significant different 

standard deviation for the second step of diffusion.  

III.7. Conclusion 

Liquid water diffusion was able to be analyzed by the empirical model; further expanding 

its application. Furthermore, the effect of density and temperature were analyzed for H2Omax and 

Ʈ1/2. The maximum amount of water that ponderosa pine sapwood can absorb is influenced by the 

initial density and the temperature of the water it is submerged in. A higher density and lower 

water temperature were observed to raise the amount of water absorbed. The amount of time to 

reach half saturation was only influenced by temperature; in which, higher temperatures lead to 

longer half saturation times. 

Two steps of diffusion were observed in high density wood at both temperatures. The 

values of H2Omax and Ʈ1/2 for each step was calculated using nonlinear regression, which showed 

that the first step of diffusion was similar to that of the low-density wood with respect to 

Method H2Omax (%) Ʈ1/2 (minutes)

High density - low temperature 0-5 minutes | Nonlinear regression 11.67 0.51 ± 0.023

High density - low temperature 6-10 minutes | Nonlinear regression 17.35 3.16 ± 0.035

High density - low temperature 0-5 minutes | Double reciprocal 11.4 ± 0.62 0.46 ± 0.027

High density - low temperature 6-10 minutes | Double reciprocal 17.0 ± 0.65 2.9 ± 0.12
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temperature. The two steps of diffusion were also analyzed via double reciprocal plots, which 

demonstrated the inefficacy of double reciprocal plots even when using the best parsing based on 

nonlinear regression calculations.  
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CHAPTER IV. ABSORPTION OF VARIOUS SOLVENTS INTO A WOOD MATRIX 

As shown in the previous two chapters, both liquid water and water vapor diffuse (absorb) 

into wood in predictable ways that are described previously by Eq. 5. To further investigate the 

applicability of this empirical model, several different solvents were tested. 

IV.1 Materials 

n-Hexadecane was purchased from Alfa Aesar (Ward Hill, Massachusetts). Woodlife 111 

RTU was purchased from Kop-Coat, Inc. (Pittsburgh, Pennsylvania) and is characterized as a 

nonpolar solvent with 0.22% dissolved fungicides for treating wood. Ponderosa pine (3.8 cm x 3.9 

cm x 15 cm) was used for submersion in distilled water, n-hexadecane, and Woodlife.  

IV.2 Exposure conditions 

Each block of wood was partially submerged ~1 cm vertically in a glass container in the 

appropriate solvent. Diffusion takes place significantly in the transversal via capillary action; 

therefore, with only one end submerged, these values should be considered an underestimate of 

the total amount that can be absorbed. The solvent was maintained at the same height with periodic 

refills of solvent. Before each gravimetric measurement, the wood block was wiped with a lint-

free tissue to remove excess solvent. After being weighed, it was returned to the solvent. All 

containers were sealed between measurements to prevent solvent loss. The n-Hexadecane and 

water data was recorded by Ganna Baglayeva and originally published in Forest Products Journal 

(DOI: 10.13073/FPJ-D-15-00086). The Woodlife 111 RTU data was recorded by Klara Kukowski 

and originally published in International Journal of Heat and Mass Transfer (DOI: 

10.1016/j.iheatmasstransfer.016.06.097).4,11 
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IV.3 Estimation of maximum solvent uptake and half saturation time 

The empirical equation from Eq. 5 was used with nonlinear regression to solve for 

Solventmax and Ʈ1/2.  

 

IV.4 Results and discussion 

Non-linear regression incorporating the empirical model was applied to each solvent tested 

and the results for Solventmax and Ʈ1/2 are shown in Table 10 and individual results can be found 

in Appendix G.  

Water had both the highest amount absorbed and the longest saturation time when 

compared to the other (non-polar) solvents; absorbing twice as much as n-hexadecane and nearly 

four times as much as Woodlife, while taking twice and 61 times longer to absorb it, respectively 

(Figure 17). n-Hexadecane and Woodlife are both nonpolar but have significantly different values 

of Ʈ1/2. While Woodlife is a proprietary and its makeup is not public information, the safety data 

sheet refers the solvent as 98% volatile organic compounds (VOCs) with a flash point of 40 °C. In 

comparison, n-hexadecane has a flash point of 135 °C. This would suggest that Woodlife is made 

of lower molecular weight solvents which could give insight into why Ʈ1/2 is faster. Conversely, 

with having smaller molecules, it would be expected that it would have a higher Solventmax, but 

that is not observed. Furthermore, Woodlife is a mixture of different solvents and additives, which 

may have competing absorptions that are not disruptive to the model but still lower the overall 

Solventmax. Lastly, the mechanism of absorption for non-water solvents should be inherently 

different. However, this is beyond the scope of this works and was not investigated.  
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Table 10. Results of nonlinear regression. 

 Water n-Hexadecane Woodlife 

Solventmax (%) 14.2 ± 0.58 6.05776 ± 0.00073 3.476 ± 0.0033 

Ʈ1/2 (min) 55 ± 7.7 13.638600 ± 0.0000036 0.90 ± 0.066 

 

 

 

Figure 17. Saturation graphs of water, n-hexadecane, and Woodlife. a) Comparison of all three. 
b) Zoomed in section comparing n-Hexadecane and Woodlife. c) Comparison of water and n-

hexadecane. 

 

IV.5 Conclusion 

The empirical model was successfully applied to water and two nonpolar solvents which 

demonstrated its applicability to more than water; as demonstrated in previous chapters. Water 

was observed having higher amounts absorbed while also having slower saturation rates when 

compared to the two nonpolar solvents.    
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CHAPTER V. CONCLUSIONS 

The summation of the previous chapters can be categorized into two main topics: the results 

of the wood absorption for various conditions and the model’s applicability to each system. The 

various conditions evaluated were: the measurement of water vapor absorption and how paint 

affected the H2Omax and Ʈ1/2 as well as the possible leaching of 14C-TAZ, liquid water absorption 

and how the density of the wood and temperature of the water affected H2Omax and Ʈ1/2, and the 

potential validity of applying the empirical model to organic solvents in wood absorption.  

Painting wood affected both the maximum amount of water vapor it can absorb and the 

rate at which water vapor is absorbed. For every painted sample tested, the amount of maximum 

water increased compared to the unpainted sample. The rate of saturation varied greatly between 

paint coatings, but most saw a several fold increase in saturation time.  

There is no statistical difference between the painted wood and unpainted wood in regards 

to the rate at which 14C-TAZ leaches. Furthermore, the amount leached is nearly nothing when 

compared to the amount lost from simulated rain. The average total amount collected was less than 

0.37 ng per wood block after 52 days. The amount from simulated rain was thousands of times 

above that.21 

The H2Omax was found to be influenced by both the initial density and the temperature of 

the water it is submerged in. A higher density and lower water temperature were observed to 

maximize the amount of water absorbed. Whereas, the Ʈ1/2 was only influenced by temperature; 

in which, higher temperatures lead to longer half saturation times. 

The empirical model was successfully applied to water and two nonpolar solvents which 

demonstrated its applicability to more than water; as demonstrated in previous chapters. Water 
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was observed having higher amounts absorbed while also having slower saturation rates when 

compared to the two nonpolar solvents.   

The applicability of the empirical model was demonstrated with water vapor, liquid water, 

and organic solvents. In every case, it provided an estimate of estimate of the maximum amount 

of water absorption; something of which was previously only done via direct experimentation over 

very long time scales.4,11,12,18 Furthermore, Ʈ1/2 demonstrated that it can describe the rate of 

absorption (what a single diffusion coefficient cannot); while still being able to solve for diffusion 

coefficients if needed.  
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APPENDICES 

Appendix A – Algebraic proof of solving diffusion coefficients from empirical model 

Fick’s second law of diffusion  𝑤𝑡 −𝑤0𝑤∞ −𝑤0 =  √ (𝐴𝑉)√𝐷𝑡 
 

Empirical formula 

𝐻2𝑂(𝑡) = 𝐻2𝑂(𝑚𝑎𝑥) ( 𝑡𝜏1/2  𝑡) 

 𝑤𝑡 − 𝑤0 = 𝐻2𝑂(𝑡)    𝑤∞ − 𝑤0 = 𝐻2𝑂(𝑚𝑎𝑥) 𝐻2𝑂(𝑡)   𝐻2𝑂(𝑚𝑎𝑥) =  √ (𝐴𝑉)√𝐷𝑡 
 𝐻2𝑂(𝑡)  = [ 2√𝜋 (𝐴𝑉) √𝐷𝑡]𝐻2𝑂(𝑚𝑎𝑥)   
Therefore  [ 2√𝜋 (𝐴𝑉) √𝐷𝑡] =  ( 𝑡𝜏1/2+𝑡) 
 

𝐷 =  𝑡 𝑉24(𝜏1/2  𝑡)2𝐴2 
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Appendix B – Individual Minitab for paint results 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Nonlinear Regression: Accumulative weight (%) = H2O * ... s)' / (T + ...    
Method   
Algorithm Gauss-Newton  
Max iterations 200  
Tolerance 0.00001  
Starting Values for Parameters   
Parameter Value  
H2O 1  
T 1  
Constraints on Parameters   
0 < H2O   
0 < T   
Equation   
Accumulative weight (%) = 5.73805 * 'Time (days)' / (8.10233 + 'Time (days)')   
Parameter Estimates   
Parameter Estimate SE Estimate 

H2O 5.73805 0.0018233     
T 8.10233 0.0008819     
Accumulative weight (%) = H2O * 'Time (days)' / (T + 'Time (days)')       
Lack of Fit       
Source DF SS MS  F P  
Error 18 11.1316  0.618421   
Lack of Fit 3 0.0426  0.014196 0.02 0.996 

Pure Error 15 11.089  0.739266   
Summary       
Iterations 7      
Final SSE 11.1316      
DFE 18      
MSE 0.618421      
S 0.786398      
Fitted Line: Accumulative weight (%) versus Time (days)       

 

    Regression 

   95% CI 

   95% PI 

Benjamin Moore Superior Primer with Regal Exterior Paint (Prime and   top-coat) 
Accumulative weight (%) = 5.73805 * 'Time (days)' / (8.10233 + 'Time (days)') 
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Nonlinear Regression: Accumulative weight (%) = H2O * ... s)' / (T + ...    
Method   
Algorithm Gauss-Newton  
Max iterations 200  
Tolerance 0.00001  
Starting Values for Parameters   
Parameter Value  
H2O 1  
T 1  
Constraints on Parameters   
0 < H2O   
0 < T   
Equation   
Accumulative weight (%) = 4.76184 * 'Time (days)' / (7.77958 + 'Time (days)')   
Parameter Estimates   
Parameter Estimate SE Estimate 

H2O 4.76184 0.0024766     
T 7.77958 0.0007365     
Accumulative weight (%) = H2O * 'Time (days)' / (T + 'Time (days)')       
Lack of Fit       
Source DF SS MS  F P  
Error 18 3.03807  0.168782   
Lack of Fit 3 0.27881  0.092936 0.51 0.685 

Pure Error 15 2.75926  0.183951   
Summary       
Iterations 7      
Final SSE 3.03807      
DFE 18      
MSE 0.168782      
S 0.410831      
Fitted Line: Accumulative weight (%) versus Time (days)       

 

    Regression 

   95% CI 

   95% PI 

Clear Prime and Clear Paint (prime and top-coat) 
Accumulative weight (%) = 4.76184 * 'Time (days)' / (7.77958 + 'Time (days)') 
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Nonlinear Regression: Accumulative weight (%) = H2O * ... s)' / (T + ...    
Method   
Algorithm Gauss-Newton  
Max iterations 200  
Tolerance 0.00001  
Starting Values for Parameters   
Parameter Value  
H2O 1  
T 1  
Constraints on Parameters   
0 < H2O   
0 < T   
Equation   
Accumulative weight (%) = 3.87756 * 'Time (days)' / (1.80793 + 'Time (days)')   
Parameter Estimates   
Parameter Estimate SE Estimate 

H2O 3.87756 0.002237     
T 1.80793 0.112535     
Accumulative weight (%) = H2O * 'Time (days)' / (T + 'Time (days)')       
Lack of Fit       
Source DF SS MS  F P  
Error 14 0.39576  0.0282686   
Lack of Fit 2 0.04742  0.0237099 0.82 0.465 

Pure Error 12 0.348341  0.0290284   
Summary       
Iterations 7      
Final SSE 0.39576      
DFE 14      
MSE 0.0282686      
S 0.168133      
Fitted Line: Accumulative weight (%) versus Time (days)       

 

    Regression 

   95% CI 

   95% PI 

Control 
Accumulative weight (%) = 3.87756 * 'Time (days)' / (1.80793 + 'Time (days)') 
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Nonlinear Regression: Accumulative weight (%) = H2O * ... s)' / (T + ...    
Method   
Algorithm Gauss-Newton  
Max iterations 200  
Tolerance 0.00001  
Starting Values for Parameters   
Parameter Value  
H2O 1  
T 1  
Constraints on Parameters   
0 < H2O   
0 < T   
Equation   
Accumulative weight (%) = 4.9341 * 'Time (days)' / (12.0623 + 'Time (days)')   
Parameter Estimates   
Parameter Estimate SE Estimate 

H2O 4.9341 0.0047434     
T 12.0623 0.0000279     
Accumulative weight (%) = H2O * 'Time (days)' / (T + 'Time (days)')       
Lack of Fit       
Source DF SS MS  F P  
Error 18 9.45664  0.525369   
Lack of Fit 3 0.04103  0.013676 0.02 0.995 

Pure Error 15 9.41561  0.627708   
Summary       
Iterations 6      
Final SSE 9.45664      
DFE 18      
MSE 0.525369      
S 0.724823      
Fitted Line: Accumulative weight (%) versus Time (days)       

 

    Regression 

   95% CI 

   95% PI 

DBK (prime and top-coat) 
Accumulative weight (%) = 4.9341 * 'Time (days)' / (12.0623 + 'Time (days)') 
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Nonlinear Regression: Accumulative weight (%) = H2O * ... s)' / (T + ...    
Method   
Algorithm Gauss-Newton  
Max iterations 200  
Tolerance 0.00001  
Starting Values for Parameters   
Parameter Value  
H2O 1  
T 1  
Constraints on Parameters   
0 < H2O   
0 < T   
Equation   
Accumulative weight (%) = 5.23669 * 'Time (days)' / (3.57642 + 'Time (days)')   
Parameter Estimates   
Parameter Estimate SE Estimate 

H2O 5.23669 0.0011277     
T 3.57642 0.0237293     
Accumulative weight (%) = H2O * 'Time (days)' / (T + 'Time (days)')       
Lack of Fit       
Source DF SS MS  F P  
Error 13 1.60407  0.12339   
Lack of Fit 3 0.03051  0.01017 0.06 0.977 

Pure Error 10 1.57356  0.157356   
Summary       
Iterations 8      
Final SSE 1.60407      
DFE 13      
MSE 0.12339      
S 0.351269      
Fitted Line: Accumulative weight (%) versus Time (days)       

 

    Regression 

   95% CI 

   95% PI 

Diamond Vogel SDL (one coat) 
Accumulative weight (%) = 5.23669 * 'Time (days)' / (3.57642 + 'Time (days)') 
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Nonlinear Regression: Accumulative weight (%) = H2O * ... s)' / (T + ...    
Method   
Algorithm Gauss-Newton  
Max iterations 200  
Tolerance 0.00001  
Starting Values for Parameters   
Parameter Value  
H2O 1  
T 1  
Constraints on Parameters   
0 < H2O   
0 < T   
Equation   
Accumulative weight (%) = 4.26294 * 'Time (days)' / (5.18286 + 'Time (days)')   
Parameter Estimates   
Parameter Estimate SE Estimate 

H2O 4.26294 0.0027628     
T 5.18286 0.0062361     
Accumulative weight (%) = H2O * 'Time (days)' / (T + 'Time (days)')       
Lack of Fit       
Source DF SS MS  F P  
Error 13 1.07711  0.082855   
Lack of Fit 3 0.01092  0.00364 0.03 0.991 

Pure Error 10 1.06619  0.106619   
Summary       
Iterations 7      
Final SSE 1.07711      
DFE 13      
MSE 0.0828546      
S 0.287845      
Fitted Line: Accumulative weight (%) versus Time (days)       
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Nonlinear Regression: Accumulative weight (%) = H2O * ... s)' / (T + ...    
Method   
Algorithm Gauss-Newton  
Max iterations 200  
Tolerance 0.00001  
Starting Values for Parameters   
Parameter Value  
H2O 1  
T 1  
Constraints on Parameters   
0 < H2O   
0 < T   
Equation   
Accumulative weight (%) = 5.74608 * 'Time (days)' / (8.70912 + 'Time (days)')   
Parameter Estimates   
Parameter Estimate SE Estimate 

H2O 5.74608 0.0006062     
T 8.70912 0.0001667     
Accumulative weight (%) = H2O * 'Time (days)' / (T + 'Time (days)')       
Lack of Fit       
Source DF SS MS  F P  
Error 18 1.15847  0.0643595   
Lack of Fit 3 0.10828  0.0360929 0.52 0.678 

Pure Error 15 1.05019  0.0700128   
Summary       
Iterations 8      
Final SSE 1.15847      
DFE 18      
MSE 0.0643595      
S 0.253692      
Fitted Line: Accumulative weight (%) versus Time (days)       

 

    Regression 

   95% CI 

   95% PI 

Kilz Premium  Extra Primer with  Sherwin  Williams Exterior Paint (prime and   top-coat) 
Accumulative weight (%) = 5.74608 * 'Time (days)' / (8.70912 + 'Time (days)') 
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Nonlinear Regression: Accumulative weight (%) = H2O * ... s)' / (T + ...    
Method   
Algorithm Gauss-Newton  
Max iterations 200  
Tolerance 0.00001  
Starting Values for Parameters   
Parameter Value  
H2O 1  
T 1  
Constraints on Parameters   
0 < H2O   
0 < T   
Equation   
Accumulative weight (%) = 4.53201 * 'Time (days)' / (10.3666 + 'Time (days)')   
Parameter Estimates   
Parameter Estimate SE Estimate 

H2O 4.532 0.0024251     
T 10.3666 0.0000522     
Accumulative weight (%) = H2O * 'Time (days)' / (T + 'Time (days)')       
Lack of Fit       
Source DF SS MS  F P  
Error 13 0.725714  0.0558241   
Lack of Fit 3 0.119976  0.0399919 0.66 0.595 

Pure Error 10 0.605738  0.0605738   
Summary       
Iterations 8      
Final SSE 0.725714      
DFE 13      
MSE 0.0558241      
S 0.236271      
Fitted Line: Accumulative weight (%) versus Time (days)       

 

    Regression 

   95% CI 

   95% PI 

Marvin White Prime (one coat) 
Accumulative weight (%) = 4.53201 * 'Time (days)' / (10.3666 + 'Time (days)') 

4.5 
 
 
4.0 
 
 
3.5 
 
 

3.0 
 
 
2.5 
 
 
2.0 
 
 
1.5 
 
 
1.0 

10 20 30 

Time (days) 

40 50 

A
cc

u
m

u
la

ti
ve

 w
ei

g
h
t 

(%
) 



53 

 

  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Nonlinear Regression: Accumulative weight (%) = H2O * ... s)' / (T + ...    
Method   
Algorithm Gauss-Newton  
Max iterations 200  
Tolerance 0.00001  
Starting Values for Parameters   
Parameter Value  
H2O 1  
T 1  
Constraints on Parameters   
0 < H2O   
0 < T   
Equation   
Accumulative weight (%) = 4.67954 * 'Time (days)' / (19.0993 + 'Time (days)')   
Parameter Estimates   
Parameter Estimate SE Estimate 

H2O 4.6795 0.0133425     
T 19.0993 0.0000001     
Accumulative weight (%) = H2O * 'Time (days)' / (T + 'Time (days)')       
Lack of Fit       
Source DF SS MS  F P  
Error 7 3.82463  0.546375   
Lack of Fit 3 0.05193  0.01731 0.02 0.996 

Pure Error 4 3.7727  0.943175   
Summary       
Iterations 7      
Final SSE 3.82463      
DFE 7      
MSE 0.546375      
S 0.739172      
Fitted Line: Accumulative weight (%) versus Time (days)       

 

    Regression 

   95% CI 

   95% PI 

Sherwin Williams Exterior Paint (prime and top-coat) 
Accumulative weight (%) = 4.67954 * 'Time (days)' / (19.0993 + 'Time (days)') 

6 
 
 
5 
 
 
4 
 
 

3 
 
 
2 
 
 
1 

 
 
0 
 
 
-1 

10 20 30 

Time (days) 

40 50 

A
cc

u
m

u
la

ti
ve

 w
ei

g
h
t 

(%
) 



54 

 

  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Nonlinear Regression: Accumulative weight (%) = H2O * ... s)' / (T + ...    
Method   
Algorithm Gauss-Newton  
Max iterations 200  
Tolerance 0.00001  
Starting Values for Parameters   
Parameter Value  
H2O 1  
T 1  
Constraints on Parameters   
0 < H2O   
0 < T   
Equation   
Accumulative weight (%) = 6.27384 * 'Time (days)' / (43.0737 + 'Time (days)')   
Parameter Estimates   
Parameter Estimate SE Estimate 

H2O 6.2738 0.0026234     
T 43.0737 0     
Accumulative weight (%) = H2O * 'Time (days)' / (T + 'Time (days)')       
Lack of Fit       
Source DF SS MS  F P  
Error 16 2.86212  0.178882   
Lack of Fit 3 0.20115  0.067049 0.33 0.806 

Pure Error 13 2.66097  0.20469   
Summary       
Iterations 8      
Final SSE 2.86212      
DFE 16      
MSE 0.178882      
S 0.422945      
Fitted Line: Accumulative weight (%) versus Time (days)       

 

    Regression 

   95% CI 

   95% PI 

White Painted Interior Finish (prime and top-coat) 
Accumulative weight (%) = 6.27384 * 'Time (days)' / (43.0737 + 'Time (days)') 
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Nonlinear Regression: Accumulative weight (%) = H2O * ... s)' / (T + ...    
Method   
Algorithm Gauss-Newton  
Max iterations 200  
Tolerance 0.00001  
Starting Values for Parameters   
Parameter Value  
H2O 1  
T 1  
Constraints on Parameters   
0 < H2O   
0 < T   
Equation   
Accumulative weight (%) = 5.04497 * 'Time (days)' / (5.23674 + 'Time (days)')   
Parameter Estimates   
Parameter Estimate SE Estimate 

H2O 5.04497 0.0011874     
T 5.23674 0.004711     
Accumulative weight (%) = H2O * 'Time (days)' / (T + 'Time (days)')       
Lack of Fit       
Source DF SS MS  F P  
Error 18 1.74139  0.096744   
Lack of Fit 3 0.03556  0.011853 0.1 0.956 

Pure Error 15 1.70583  0.113722   
Summary       
Iterations 10      
Final SSE 1.74139      
DFE 18      
MSE 0.0967439      
S 0.311037      
Fitted Line: Accumulative weight (%) versus Time (days)       

 

    Regression 

   95% CI 

   95% PI 

White Painted Interior Finish (one coat) 
Accumulative weight (%) = 5.04497 * 'Time (days)' / (5.23674 + 'Time (days)') 
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Appendix C – General linear model of H2Omax with Tukey comparison 

General Linear Model: H2Omax versus Density (g/cm3), Temperature 
(°C) 

Method 

Factor coding (-1, 0, +1) 

Factor Information 

Factor Type Levels Values 
Density (g/cm3) Fixed 2 0.335, 0.430 
Temperature (°C) Fixed 2 20, 40 

Analysis of Variance 

Source DF Adj SS Adj MS F-Value P-Value 
  Density (g/cm3) 1 4.8173 4.81726 14.42 0.004 
  Temperature (°C) 1 2.2432 2.24320 6.71 0.029 
Error 9 3.0069 0.33410       
  Lack-of-Fit 1 0.0113 0.01129 0.03 0.866 
  Pure Error 8 2.9956 0.37445       
Total 11 10.0673          

Model Summary 

S R-sq R-sq(adj) R-sq(pred) 
0.578012 70.13% 63.50% 46.90% 

Coefficients 

Term Coef SE Coef T-Value P-Value VIF 
Constant 12.338 0.167 73.94 0.000    
Density (g/cm3)                
  0.335 -0.634 0.167 -3.80 0.004 1.00 
Temperature (°C)                
  20 0.432 0.167 2.59 0.029 1.00 

Regression Equation 

H2O = 12.338 - 0.634 Density (g/cm3)_0.335 + 0.634 Density (g/cm3)_0.430 
+ 0.432 Temperature (°C)_20 
- 0.432 Temperature (°C)_40 
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Comparisons for H2Omax 

Tukey Pairwise Comparisons: Density 

Grouping Information Using the Tukey Method and 95% Confidence 

Density 
(g/cm3) N Mean Grouping 
0.430 6 12.9719 A    
0.335 6 11.7047    B 

Means that do not share a letter are significantly different. 

Tukey Pairwise Comparisons: Temperature (°C) 

Grouping Information Using the Tukey Method and 95% Confidence 

Temperature 
(°C) N Mean Grouping 
20 6 12.7706 A    
40 6 11.9059    B 

Means that do not share a letter are significantly different. 
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Appendix D – Average Minitab results for density and temperature  

 

  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Nonlinear Regression: Accumulative weight (%) = H2O * ... n)' / (T + ... 
Method 
Algorithm Gauss-Newton 
Max iterations 200 
Tolerance 0.00001 
Starting Values for Parameters 
Parameter Value 
H2O 1 
T 1 
Constraints on Parameters 
0 < H2O 
0 < T 
Equation                                                                                         
Accumulative weight (%) = 12.1729 * 'Time (min)' / (0.897451 + 'Time (min)') 
Parameter Estimates 
Parameter Estimate SE Estimate 
H2O 12.1729 0.0000016 
T 0.8975 0.0458194 
Accumulative weight (%) = H2O * 'Time (min)' / (T + 'Time (min)') 
Lack of Fit 
Source DF SS MS F P 
Error 46 36.3477 0.79017 
Lack of Fit 10 10.1168 1.01168 1.39 0.225 
Pure Error 36 26.2309 0.72864 

Summary 
Iterations 10 
Final SSE 36.3477 
DFE 46 
MSE 0.790168 
S 0.888914 
Fitted Line: Accumulative weight (%) versus Time (min) 

Low Density Low Temperature 
Accumulative weight (%) = 12.1729 * 'Time (min)' / (0.897451 + 'Time (min)') 
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Nonlinear Regression: Accumulative weight (%) = H2O * ... n)' / (T + ... 

Method 

Algorithm Gauss-Newton 

Max iterations 200 

Tolerance 0.00001 

Starting Values for Parameters 

Parameter Value 

H2O 1 

T 1 

Constraints on Parameters 

0 < H2O 

0 < T 

Equation                                                                                       

Accumulative weight (%) = 10.5594 * 'Time (min)' / (1.74955 + 'Time (min)') 

Parameter Estimates 

Parameter Estimate SE Estimate 

H2O 10.5594 0.0000148 

T 1.7495 0.0598496 

Accumulative weight (%) = H2O * 'Time (min)' / (T + 'Time (min)') 

Lack of Fit 

Source DF SS MS F P 

Error 46 57.1372 1.24211 

Lack of Fit 10 11.3717 1.13717 0.89 0.548 

Pure Error 36 45.7656 1.27127 

Summary 

Iterations 10 

Final SSE 57.1372 

DFE 46 

MSE 1.24211 

S 1.1145 

Fitted Line: Accumulative weight (%) versus Time (min) 

 
Low Density High Temperature 

Accumulative weight (%) = 10.5594 * 'Time (min)' / (1.74955 + 'Time (min)') 

12 

 
10 

 
8 

 
6 

 
4 

 
2 

 

0 

 
-2 

 
-4 

0 2 4 6 8 10 

Time (min) 

    Regression 

   95% CI 

   95% PI 
A

cc
u
m

u
la

ti
v
e 

w
ei

g
h
t 
(%

) 



60 

 

  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Nonlinear Regression: Accumulative weight (%) = H2O * ... n)' / (T + ... 
Method 
Algorithm Gauss-Newton 
Max iterations 200 
Tolerance 0.00001 
Starting Values for Parameters 
Parameter Value 
H2O 1 
T 1 
Constraints on Parameters 
0 < H2O 
0 < T 
Equation                                                                                         
Accumulative weight (%) = 13.2744 * 'Time (min)' / (0.795714 + 'Time (min)') 
Parameter Estimates 
Parameter Estimate SE Estimate 
H2O 13.2744 0.0000004 
T 0.7957 0.0325474 
Accumulative weight (%) = H2O * 'Time (min)' / (T + 'Time (min)') 
Lack of Fit 
Source DF SS MS F P 
Error 46 22.6418 0.49221 
Lack of Fit 10 15.0792 1.50792 7.18 0 
Pure Error 36 7.5626 0.21007 

Summary 
Iterations 11 
Final SSE 22.6418 
DFE 46 
MSE 0.492214 
S 0.701579 
Fitted Line: Accumulative weight (%) versus Time (min) 

High Density Low Temperature 
Accumulative weight (%) = 13.2744 * 'Time (min)' / (0.795714 + 'Time (min)') 
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Nonlinear Regression: Accumulative weight (%) = H2O * ... n)' / (T + ... 
Method 
Algorithm Gauss-Newton 
Max iterations 200 
Tolerance 0.00001 
3 cases with missing values were not used. 
Starting Values for Parameters 
Parameter Value 
H2O 1 
T 1 
Constraints on Parameters 
0 < H2O 
0 < T 
Equation                                                                                         
Accumulative weight (%) = 11.6713 * 'Time (min)' / (0.511494 + 'Time (min)') 
Parameter Estimates 
Parameter Estimate SE Estimate 
H2O 11.6713 0.0000016 
T 0.5115 0.0226079 
Accumulative weight (%) = H2O * 'Time (min)' / (T + 'Time (min)') 
Lack of Fit 
Source DF SS MS F P 
Error 26 3.68001 0.141539 
Lack of Fit 5 0.97908 0.195815 1.52 0.225 
Pure Error 21 2.70093 0.128616 

Summary 
Iterations 6 
Final SSE 3.68001 
DFE 26 
MSE 0.141539 
S 0.376216 
Fitted Line: Accumulative weight (%) versus Time (min) 

High Density Low Temperature 0-5 minutes 
Accumulative weight (%) = 11.6713 * 'Time (min)' / (0.511494 + 'Time (min)') 
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Nonlinear Regression: Accumulative weight (%) = H2O * ... n)' / (T + ... 
Method 
Algorithm Gauss-Newton 
Max iterations 200 
Tolerance 0.00001 
Starting Values for Parameters 
Parameter Value 
H2O 1 
T 1 
Constraints on Parameters 
0 < H2O 
0 < T 
Equation                                                                                       
Accumulative weight (%) = 17.3506 * 'Time (min)' / (3.15916 + 'Time (min)') 
Parameter Estimates 
Parameter Estimate SE Estimate 
H2O 17.3506 0 
T 3.1592 0.0347589 
Accumulative weight (%) = H2O * 'Time (min)' / (T + 'Time (min)') 
Lack of Fit 
Source DF SS MS F P 
Error 18 4.90866 0.272703 
Lack of Fit 3 0.04699 0.015662 0.05 0.985 
Pure Error 15 4.86167 0.324111 

Summary 
Iterations 10 
Final SSE 4.90866 
DFE 18 
MSE 0.272703 
S 0.52221 
* WARNING * Some parameter estimates are highly correlated. Consider simplifying the 
expectation function or transforming predictors or parameters to reduce collinearities. 
Fitted Line: Accumulative weight (%) versus Time (min) 
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Nonlinear Regression: Accumulative weight (%) = H2O * ... n)' / (T + ... 

Method 

Algorithm Gauss-Newton 

Max iterations 200 

Tolerance 0.00001 

Starting Values for Parameters 

Parameter Value 

H2O 1 

T 1 

Constraints on Parameters 

0 < H2O 

0 < T 

Equation                                                                                       

Accumulative weight (%) = 12.5435 * 'Time (min)' / (1.48925 + 'Time (min)') 

Parameter Estimates 

Parameter Estimate SE Estimate 

H2O 12.5435 0.0000012 

T 1.4893 0.035971 

Accumulative weight (%) = H2O * 'Time (min)' / (T + 'Time (min)') 

Lack of Fit 

Source DF SS MS F P 

Error 34 14.1349 0.41573 

Lack of Fit 10 10.1739 1.01739    6.16 0 

Pure Error 24 3.961 0.16504 

Summary 

Iterations 11 

Final SSE 14.1349 

DFE 34 

MSE 0.415733 

S 0.644773 

Fitted Line: Accumulative weight (%) versus Time (min) 

High Density High Temperature 
Accumulative weight (%) = 12.5435 * 'Time (min)' / (1.48925 + 'Time (min)') 
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Nonlinear Regression: Accumulative weight (%) = H2O * ... n)' / (T + ... 

Method 

Algorithm Gauss-Newton 

Max iterations 200 

Tolerance 0.00001 

8 cases with missing values were not used. 

Starting Values for Parameters 

Parameter Value 

H2O 1 

T 1 

Constraints on Parameters 

0 < H2O 

0 < T 

Equation                                                                                         

Accumulative weight (%) = 10.7363 * 'Time (min)' / (0.949685 + 'Time (min)') 

Parameter Estimates 

Parameter Estimate SE Estimate 

H2O 10.7363 0.0000071 

T 0.9497 0.041719 

Accumulative weight (%) = H2O * 'Time (min)' / (T + 'Time (min)') 

Lack of Fit 

Source DF SS MS F P 

Error 22 5.26163 0.239165 

Lack of Fit 6 2.5087 0.418116 2.43 0.073 

Pure Error 16 2.75294 0.172059 

Summary 

Iterations 8 

Final SSE 5.26163 

DFE 22 

MSE 0.239165 

S 0.489045 

Fitted Line: Accumulative weight (%) versus Time (min) 

High Density High Temperature 0-6 minutes 
Accumulative weight (%) = 10.7363 * 'Time (min)' / (0.949685 + 'Time (min)') 
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Nonlinear Regression: Accumulative weight (%) = H2O * ... n)' / (T + ... 
Method 
Algorithm 
Max iterations 
Tolerance 
Starting Values for Parameters 

Parameter 
H2O 
T 
Constraints on Parameters 
0 < H2O 
0 < T 
Equation                                                                                       
Accumulative weight (%) = 17.1261 * 'Time (min)' / (4.67545 + 'Time (min)') 
Parameter Estimates 
Parameter 
H2O 
T 
Accumulative weight (%) = H2O * 'Time (min)' / (T + 'Time (min)') 
Lack of Fit 
Source 
Error   
Lack of Fit 
Pure Error 
Summary 
Iterations 
Final SSE 
DFE 
MSE 
S 
* WARNING * Some parameter estimates are highly correlated. Consider simplifying the 
expectation function or transforming predictors or parameters to reduce collinearities. 

Fitted Line: Accumulative weight (%) versus Time (min) 
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Appendix E – One-way ANOVA analysis of Ʈ1/2 with Tukey comparison 

One-way ANOVA: Ʈ1/2 (min) versus Temperature (°C) 

Method 

Null hypothesis All means are equal 
Alternative hypothesis Not all means are equal 
Significance level α = 0.05 

Equal variances were assumed for the analysis. 

Factor Information 

Factor Levels Values 
Temperature 
(°C) 

2 20, 40 

Analysis of Variance 

Source DF Adj SS Adj MS F-Value P-Value 
Temperature (°C) 1 2.0202 2.02024 29.57 0.000 
Error 10 0.6833 0.06833       
Total 11 2.7035          

Model Summary 

S R-sq R-sq(adj) R-sq(pred) 
0.261401 74.73% 72.20% 63.60% 

Means 

Temperature 
(°C) N Mean StDev 95% CI 
20 6 0.8086 0.1736 (0.5708, 1.0464) 
40 6 1.629 0.326 (1.391, 1.867) 

Pooled StDev = 0.261401 

Tukey Pairwise Comparisons 

Grouping Information Using the Tukey Method and 95% Confidence 

Temperature 
(°C) N Mean Grouping 
40 6 1.629 A    
20 6 0.8086    B 

Means that do not share a letter are significantly different.  
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Appendix F – Averaged saturation plots  
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Appendix G – Individual Minitab results for water and organic solvents 

 

  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Nonlinear Regression: Accumulative weight (%) = H2O * ... n)' / (T + ... 
Method 
Algorithm Gauss-Newton 
Max iterations 200 
Tolerance 0.00001 
Starting Values for Parameters 
Parameter Value 
H2O 1 
T 1 
Constraints on Parameters 
0 < H2O 
0 < T 
Equation                                                                                       
Accumulative weight (%) = 14.1864 * 'Time (min)' / (55.1563 + 'Time (min)') 
Parameter Estimates 
Parameter Estimate SE Estimate 
H2O 14.1864 0.0000004 
T 55.1563 0 
Accumulative weight (%) = H2O * 'Time (min)' / (T + 'Time (min)') 
Lack of Fit 
Source DF SS MS F P 
Error 25 23.9417 0.95767 
Lack of Fit 7 10.0629 1.43755 1.86 0.136 
Pure Error 18 13.8788 0.77105 

Summary 
Iterations 11 
Final SSE 23.9417 
DFE 25 
MSE 0.957668 
S 0.978605 
Fitted Line: Accumulative weight (%) versus Time (min) 
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Accumulative weight (%) = 14.1864 * 'Time (min)' / (55.1563 + 'Time (min)') 
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Nonlinear Regression: Accumulative weight (%) = H2O * ... n)' / (T + ... 

Method 

Algorithm Gauss-Newton 

Max iterations 200 

Tolerance 0.00001 

6 cases with missing values were not used. 

Starting Values for Parameters 

Parameter Value 

H2O 1 

T 1 

Constraints on Parameters 

0 < H2O 

0 < T 

Equation                                                                                       

Accumulative weight (%) = 6.05764 * 'Time (min)' / (13.6386 + 'Time (min)') 

Parameter Estimates 

Parameter Estimate SE Estimate 

H2O 6.0576 0.0007305 

T 13.6386 0.0000036 

Accumulative weight (%) = H2O * 'Time (min)' / (T + 'Time (min)') 

Lack of Fit 

Source DF SS MS F P 

Error 16 5.45128 0.340705 

Lack of Fit 4 2.39438 0.598594 2.35 0.113 

Pure Error 12 3.0569 0.254742 

Summary 

Iterations 11 

Final SSE 5.45128 

DFE 16 

MSE 0.340705 

S 0.583699 

Fitted Line: Accumulative weight (%) versus Time (min) 
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Nonlinear Regression: Accumulative weight (%) = H2O * ... n)' / (T + ... 
Method 
Algorithm Gauss-Newton 
Max iterations 200 
Tolerance 0.00001 
Starting Values for Parameters 
Parameter Value 
H2O 1 
T 1 
Constraints on Parameters 
0 < H2O 
0 < T 
Equation                                                                                         
Accumulative weight (%) = 3.47581 * 'Time (min)' / (0.899646 + 'Time (min)') 
Parameter Estimates 
Parameter Estimate SE Estimate 
H2O 3.47581 0.0033447 
T 0.89965 0.066005 
Accumulative weight (%) = H2O * 'Time (min)' / (T + 'Time (min)') 
Lack of Fit 
Source DF SS MS F P 
Error 52 8.50789 0.163613 
Lack of Fit 16 1.69814 0.106133 0.56 0.892 
Pure Error 36 6.80975 0.18916 

Summary 
Iterations 9 
Final SSE 8.50789 
DFE 52 
MSE 0.163613 
S 0.404491 
Fitted Line: Accumulative weight (%) versus Time (min) 

Woodlife 
Accumulative weight (%) = 3.47581 * 'Time (min)' / (0.899646 + 'Time (min)') 
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