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ABSTRACT 

Characterization of particulate matter (PM), more specifically the carbonaceous fraction, 

is essential for understanding atmospheric processes, source determination, and health impacts. In 

this thesis, a novel approach to both the quantification and characterization of carbonaceous 

atmospheric PM was developed and validated on model compounds and collected ambient PM 

from a local source within Grand Forks, ND. 

Thermal optical analysis (TOA) is a commonly used method for the determination of 

organic (OC) and elemental (EC) carbon within atmospheric PM that yields quantitative results, 

i.e., total concentrations of OC and EC. However, for speciation of OC, there is no universal 

method. Typical approaches include solvent extraction followed by gas chromatography-mass 

spectrometry (GC-MS) or liquid chromatography-mass spectrometry (LC-MS), thermal 

desorption aerosol GC-MS (TAG), aerosol mass spectrometry (AMS), and pyrolysis GC-MS. In 

this thesis, thermal desorption (TD) coupled with pyrolysis (Pyr) GC-MS (TD-Pyr-GC-MS) was 

employed for characterization of carbonaceous PM and determination of specific tracers that were 

used for source apportionment. This method was developed to be used in combination with 

quantitative TOA data and qualitative results for both concentrations of OC, and its 

characterization.   

TOA of PM revealed a wide range of OC that makes up the total PM concentration (25 –

75%), showing a wide variability in composition of atmospheric PM. Quantification by TOA 



xxii 

supported the significance of the pyrolytic fraction, in which 73 – 87 % of the OC evolved at 

temperatures above 400 °C. The comprehensive speciation of OC assessed sequentially with 

thermal TD (evolving at 300 °C)  and Pyr (˃ 400 °C)  coupled to GC-MS enabled the investigation 

of both low and high molecular weight species’ tracers. The TD fraction showed a high abundance 

of long chain alkanes (waxes) with an odd number of carbon atoms, indicating biogenic origin, 

along with fatty acids (FAs) and fatty acid methyl esters (FAMEs). Furthermore, the generally 

ignored Pyr fraction showed a series of homologous compounds, which included n-alkenes, n-

alkylbenzenes, light polycyclic aromatic hydrocarbons (PAHs), n-alkanes, and substituted 

phenols, many of which are thought to be derived from the breakdown of larger molecular weight 

biogenic sources, e.g., plant waxes and triacylglycerides (TGs). The sequential pyrolytic 

temperatures steps used in this thesis were essential in understanding the overall composition of 

PM collected in the Grand Forks area.  

Furthermore, the model compounds analyzed in this study with TD-Pyr-GC-MS, i.e., TGs 

and fatty acids, provided unique insights into the mechanisms of pyrolysis. Moreover, the process 

of decomposition through hydrodeoxygenation vs. decarboxylation were assessed through analysis 

of these compounds. In addition, the Pyr of TGs and fatty acids, were shown to form specific 

homology profiles, mainly n-alkylbenzenes and 2-ring PAHs, which further supported their 

presence in atmospheric PM.   
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CHAPTER I. INTRODUCTION 

I.1. Carbonaceous Atmospheric Particulate Matter 

Atmospheric particulate matter (PM) generated from anthropogenic and biogenic sources 

is known to impose a large effect not only on atmospheric processes but on the health of individuals 

around the world.1-3 PM consists of liquid or solid particles suspended in air, with diameters in the 

micrometer range and smaller. PM is generally differentiated into two categories: PM10 and PM2.5, 

which corresponds to particulate matter smaller than 10 µm (coarse fraction) and those particles 

that are smaller than 2.5 µm (fine fraction), respectively.4 The fine fraction, PM2.5 and smaller, 

generally causes more harm to humans as these particles can enter deeper along the breathing 

pathway. PM may be emitted from direct sources (primary PM), or produced from complex 

chemical reactions in the atmosphere (secondary PM). According to the US EPA, the daily average 

air quality standard for human exposure of PM10 is 150 µg/m3, while the daily average standard 

for PM2.5 is 12 µg/m3
. The World Health Organization’s guidelines are much lower with daily PM10 

levels of 50 µg/m3 and daily PM2.5 of 25 µg/m3.4-5 The chemical composition of PM2.5 varies 

greatly depending on geographical location, however the main constituents usually consist of 

ammoniated sulfates and nitrates, crustal materials, carbonaceous species, and water.6-7 The 

carbonaceous PM fraction in the atmosphere is a major contributor to total PM levels and accounts 

for roughly 10 – 65% of the total mass fraction in the United States, of which a large portion (20 

– 40%) of the fine particulate mass (PM2.5 and smaller) is unidentified.8-9 It is possible for this 
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carbonaceous PM to contribute to climate change depending on the chemical composition of the 

compound. It is also known that some species such as polycyclic aromatic hydrocarbons (PAHs) 

pose serious health risks and have potential mutagenic and carcinogenic effects.10 Due to the 

effects that carbonaceous PM have on our everyday lives and on the climate, it is of utmost 

importance to be able to identify and quantify these carbon compounds in the atmosphere. 

The carbonaceous PM can be further divided into two categories: organic carbon (OC) and 

elemental carbon (EC). OC compounds are represented by a wide range of molecules featuring 

various functional groups that add to the challenge of chemical characterization. These varying 

organic compounds can be formed from primary emission sources as well as from complex 

oxidation reactions in the atmosphere, which are characterized as secondary organic aerosols, i.e., 

SOA.8 Many of the primary emission compounds can be used as tracers to determine if PM 

originates from natural (e.g., dust, forest fires) or anthropogenic processes (e.g., petroleum 

industry) while secondary compounds can be used as tracers for secondary processes.11 A list of 

OC compounds typically found in PM can be seen in Table 1.  

 

 

 

 

 

 

 



3 

Table 1. Representative list of OC tracers commonly found in PM  

 Compound MS Ions (m/z) Source Emission Process Detection Method Ref 

n-Alkanes 57, 71, 85 [M+] 
  

GC-MS/FID, GC-MS, TD-GC-
MS, HRGC-FID, GC-FID 

 

C24-C35 (odd/even)  

 
Plant waxes Direct  12-15 

C12-C35 
 

Vehicles Combustion  16-17 

C13-C32  Heating oil, meat cooking, 
asphalt tar, boilers 

Combustion, heating  18-21 

      

n-Alkenes 55, 69, 83 [M+] 
  

GC-MS, GC-FID 
 

C15-C37 
 

Biomass/coal Combustion  22 

C22-C26 

 
Alkanols Dehydration  23 

C18-C35   Biomass Combustion  24 

      

n-Alkanoic acids 43, 73, 129 [M+] 
  

GC-MS, HRGC-FID, GC-MS, 
GC-MS/FID 

 

C16, C18 

 
Biomass  Combustion  23 

C20-C36 
 

Plant waxes Direct, combustion  12, 25 

C10-C20 
 

Microbes Direct  12 

<C18 
 

Petroleum Combustion  26 

C7-C18   Meat cooking, charbroiling Combustion  19-20 

C7-C24  Asphalt tar, boilers Heating, burning  21 

      

Dicarboxylic acids 87, 115, 100, 129 
[M+] 

  GC-MS, GC-FID  

C2-C9  Hydrocarbons/fatty acids, fossil 
fuels, cooking, wood 

Photolysis, combustion  19, 27-28 

C10-C26  Biogenic lipids Degradation, hydrolysis  29-30 
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Table 1. cont.      

 Compound MS Ions (m/z) Source Emission Process Detection Method Ref 

Aromatic acids [M+]   GC-MS, GC-FID  

C6-C9   Vehicle exhaust, SOA, asphalt 
tar, boilers  

Combustion, photolysis 
of toluene, heating 

 14, 21, 31-32 

      

n-Alkanols 69, 83, 97, [M+]   GC-FID, GC-MS  

C14-C30  Plant waxes Direct  25 

      

n-Alkylbenzenes 92, 91, [M+]   GC-FID, GC-MS  
C13-C26  Fossil fuel, coal, lubricating oil Combustion/heating  33-34 
      

Hopanes/stearanes 149, 151, 217, 
231 

  GC-FID, GC-MS, TD-GC-MS  

C27-C35   Petroleum, diesel, road dust, 
biomass, asphalt tar, boilers 

Combustion, direct, 
heating 

 15-16, 18, 24, 

26, 35-36 
      

Wax esters TR match Plant materials Combustion HTGC-MS, GC-FID, GC-MS  

C38-58   
 

 37-38 

C40-C62   
 

 39 

C21-C33     40 

      

Triacylglycerides TR match Biomass Combustion GC-FID  

C53-C57   
 

 37, 41 

      

Sugars 60, 73, 98  
147, 204, 217 

(TMSa) 

Biomass Combustion GC-MS, GC-FID, GC-MS, 
HPLC-ED 

42-47 

Levoglucosan 
 

   
 

Mannosan 
   

 
 

Galactosan 
   

 
 

a MS ions after derivatizion with BSTFA. Trimethylsilylated derivatives (TMS)  
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Table 1. cont.      

 Compound MS Ions (m/z) Source Emission Process Detection Method Ref 

Methoxyphenols 
 

Biomass Combustion GC-MS, Py-GC-MS 28, 42, 48-49 

Guiacol 81, 109, 124,      

Syringol 96, 154, 139     

Vanillin 81, 151, 152     

      

PAHs 
   

GC-MS, Py-GC-MS, GC-FID, 
TD-GC-MS 

 

LMW (2-3 ring)  [M+] Diesel, biomass, wood, coal, 
charbroiling, asphalt tar, boilers 

Combustion  15-16, 18, 20-

21, 50 
MMW (4-ring) [M+] Diesel, biodiesel, asphalt tar, 

boilers 
Combustion  18, 21, 51 

HMW (5-6 ring) [M+] Gasoline, biomass, natural gas, 
meat cooking, asphalt tar 

Combustion  19, 50, 52-54 

    
 

 

Phthalates 149 Plastic Combustion GC-MS, GC-FID 55-57 

Bis(2-ethylhexyl) 
phthalate (DEHP)  

     

Dibutyl phthalate 
(DBP) 

     

Diisobutyl phthalate      

      

Terpenes & 

derivatives 

   GC-MS, HPLC-MS, GC-FID, 
LC-MS 

 

α-Pinene 41, 93 Coniferous vegetation Direct, combustion  58-60 

β-Pinene 41, 93 Coniferous vegetation Direct, combustion   

d-Limonene 68, 93, [M+]     

Δ3-Carene 93, 121, [M+]     

Pinon aldehyde [M+] Pinene Reaction with O3, NO3, 
OH in atmos. 

  

Pinonic acid 62, 89, 98 Pinene Reaction with O3, NO3, 
OH in atmos. 
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Table 1. cont.      

 Compound MS Ions (m/z) Source Emission Process Detection Method Ref 

Organosulfates    GC-MS, LC-MS  

(2,3-Epoxy- 
2-methyl-1,4-
butanediol) sulfate 
 

[M+] Pinene SOA formation  61-63 

Benzyl sulfate 96, [M+] Anthropogenic Emission  61 

Glycolic acid sulfate 75, 97 [M+] Isoprene Oxidation  61, 64 
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Elemental carbon, also known as black carbon, consists of fused aromatic rings that are 

primarily produced from the combustion and pyrolysis of carbonaceous material.65 Emission 

sources include: residential heating, transportation services, and power production.65 EC strongly 

absorbs light in the visible range and is recognized to have a positive radiative forcing due to the 

heating of the earth’s atmosphere in a similar manner as greenhouse gases.65-66 Furthermore, it 

contributes to the warming of the earth as it can deposit layers on surfaces such as ice, leading to 

reduced reflectivity of solar radiation.65 EC has also been found to have a negative radiative forcing 

due to different interactions of EC with clouds. In some cases EC reduces the amount of high level 

cloud formation, ultimately leading to a negative radiative forcing.66 Although EC affects the 

radiation balance of the atmosphere and the earth in both directions, it is considered to have an 

overall warming effect on the atmosphere.65 

I.2. Approaches to Quantitative and Qualitative Analysis of Carbonaceous PM 

I.2.1. Thermal Optical Analysis of Carbonaceous PM 

To fully understand the effects of carbonaceous PM in the atmosphere, it is necessary to 

be able to quantify both the OC and EC fraction, as well as the total carbon (TC) content. The most 

common method to accomplish this task is with a thermal optical analyzer (TOA); also referred to 

as an OCEC analyzer. Two different methods for analysis are typically used to determine OC, EC, 

and TC; the National Institute for Occupational Safety and Health (NIOSH) protocol and 

Interagency Monitoring of Protected Visual Environment (IMPROVE) protocol.67-68 These 

protocols both use the thermal evolution method but differ in temperature heating profiles and 

optical monitoring for determination of OC, EC, and TC.67 The difference in their heating profiles 

is that the NIOSH protocol uses a higher temperature for evolving organic carbon than IMPROVE. 
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The reason for this higher temperature step is to identify interferences caused from inorganic 

carbon, such as calcium carbonate, which evolves CO2 at high temperatures (650 - 850 °C).69 The 

difference in their optical monitoring process is that the NIOSH protocol mainly uses thermal 

optical transmittance (TOT) while the IMPROVE protocol uses thermal optical reflectance (TOR) 

to determine the “split point” between OC and EC, although both instruments are capable of using 

both TOT and TOR.68 The need for this laser monitoring process (at 660 nm) is that as much as 

30% of OC can be converted to EC through pyrolysis during analysis.70 When a portion of OC 

(assumed to be non-light absorbing) is pyrolyzed to EC (light absorbing), a decrease in the overall 

transmittance or reflectance of the laser occurs, and thus is an indication of pyrolyzed OC. As the 

analysis continues, the laser transmittance or reflectance will continue to decrease until the point 

at which the pyrolyzed OC is evolved.70 At this point, the laser will return to its original value, and 

thus, any of the EC fraction before this point is assumed to be formed by OC pyrolysis. This 

continuous laser transmittance/reflectance monitoring prevents an overestimation of the total 

amount of EC in the sample.  

The NIOSH protocol temperature program works on the basis of heating profiles between 

100-870 °C in steps that evolve all the OC from the sample.67 These steps are done in the absence 

of oxygen, in a helium gas atmosphere. 70 After all OC steps are completed, the instrument is then 

cooled to around 525 °C and oxygen is added to the helium atmosphere. The instrument is heated 

back to 870 °C to evolve all of the elemental carbon under the oxygen atmosphere. To determine 

the amount of carbon present in each analysis, the loaded sample is first transferred to an oxidizing 

oven and oxidized in the presence of catalyst to CO2. The CO2 is then converted to methane in a 

methanizer oven, then the CH4 is analyzed with an FID (Fig. 1) 
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Figure 1. Schematic of the working principle behind the TOA instrument. 

I.2.2. Mass Spectrometric Analysis of Carbonaceous PM 

Although the concentrations of OC and EC in atmospheric PM can be readily found from 

TOA instrumentation, this method cannot provide speciation and detailed characterization of the 

OC (EC cannot be readily speciated through any techniques). Historically, the most common 

method to speciate the OC fraction of PM is through the use of solvent extraction followed by gas 

chromatography-mass spectrometry (GC-MS) or liquid chromatography-mass spectrometry (LC-

MS) analyses.71-74 Solvent extraction techniques are typically time consuming, costly, and are 

mostly limited to analysis of semi-volatile organics.11, 22 

 In recent years, thermal desorption (TD) instruments have been employed that remove the 

need for solvent extraction methods, with the possibility of online monitoring.75-80 These 

instruments generally heat the sample to a maximum of ~ 350 °C in an attempt to thermally desorb 

volatile species from the sample. However both of these approaches (TD and extraction followed 

by GC-MS) are limited by targeting only the volatile fraction of the total OC. Thus, development 

of methods covering a full suite of organic species present in PM and enabling for mass balance 

closure is essential.  
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One approach involves the use of online high resolution aerosol mass spectrometers 

(AMS).81-84 AMSs are typically coupled with vacuum aerodynamic sampling, followed by 

pyrolysis (Pyr) at 600 °C and fragmentation by electron ionization.81, 84 This setup provides the 

overall composition of organics based on oxygen/carbon/hydrogen ratios and some speciation of 

thermally stable species based on molecular [M+] ions.81, 85 However, volatile organics present in 

PM cannot be distinguished from pyrolytic products of higher MW species.83 

Several previous studies have attempted to address both the volatile and non-volatile PM 

fraction through a combination of TD and Pyr instruments.86-89 Streibel et al. evaluated sequential 

temperature steps of 120, 250, and 340 °C (similar to low TOA temperatures) followed by MS 

detection and suggested that a vast amount of products evolved at higher temperatures, thus 

showing need for thorough investigation of Pyr products and mass balance closure.87 Labban et al. 

reported the use of separate TD-GC-MS and Pyr-GC-MS setups to investigate soil dust sources 

showing a significant role of the pyrolytic fraction.86 More recently, studies have shown that TD 

and a full range of Pyr steps (400 – 870°C) can be pursued with one instrumental set up, TD-Pyr-

GC-MS, thus mimicking the full profile of TOA temperature steps for characterization of OC.88-89 

Clearly, both the advantages and limitations of methods described above influence data 

interpretation. As a result, the majority of specific tracers used in source apportionment studies are 

based on TD and solvent extraction data (Table 1). Furthermore, although the value of Pyr has 

been shown, less is known of PM related pyrolytic products.86-88 Still, characteristic markers for 

specific sources may be investigated on the pyrolytic studies of original feedstocks, i.e., 

triacylglycerides (TGs), fatty acids, coal, and cellulose (Table 2).  
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Table 2. Products of pyrolysis of feedstocks including fatty acids, TGs, cellulose, coal 

Compound  MS Key Ions (m/z) Sample Ref 

n-Alkanes 57,71,85 [M+]   

C7-C17 
 Fatty acids 90-91 

C3-C28 
 Coal 92-94 

C3-C24 
 Triacylglycerides 95 

Cycloalkanes 
 Coal, triacylglycerides 94, 96-97 

 
   

n-Alkenes 55, 69, 83 [M+]   

C7-C19 
 Fatty acids 90-91 

< C21  Coal 93 

C7-C12  Coal 96 

Cycloalkenes  Triacylglycerides 97 

    

n-Alkadienes 39, 54, [M+]   

C10-C17  Fatty acids 90-91 

    
    

n-Alkylbenzenes 91, 92, [M+]   

C0-C3 
 Fatty acid salts, coal 90-94, 96 

C1-C18  Triacylglycerides 97 
    

Ketones/Aldehydes 43, 58, 71, [M+]   

C3-C6  Cellulose 98-100 

C6-C18  Fatty acids 90-91 

    

    

Phenols & derivatives 94, [M+]   

C0-C3  
Coal, cellulose, lignin, 

triacylglycerides 
92, 94, 96-97, 99, 101 

    

BTEX 91, 92 [M+] Lignin 101 

    

PAHs    

LMW (2-3 ring)  [M+] Coal, cellulose, 
triacylglycerides, fatty acids 

91-96, 99 

MMW (4-ring) [M+] 
Coal 92-94, 96 

HMW (5-6 ring) [M+] 
Coal 102 
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Table 2. cont.    

Compound  MS Key Ions (m/z) Sample Ref 

Anhydrosugars 
60, 73, 98,  

147, 204, 217 (TMSa) 
Cellulose 98, 100 

Levoglucosan    

Levoglucosenone    

1,4:3,6-Dianhydro-α-d-
glucopyranose 
 

   

    

Alkanoic acids 74, 87, 143   

C2-C3  Cellulose 100 

C2-C16 
 Triacylglycerides 95, 97 

    

Dicarboxylic acids 87, 115, 100, 129 [M+] Triacylglycerides 103 

    
a MS ions after derivatizion with BSTFA. Trimethylsilylated derivatives (TMS) 

The combination of TD and Pyr allows for a unique approach to the investigation of OC 

compounds, their use as tracers, and their TD and Pyr profiles at temperatures of 300, 500, 600, 

700 and 870 °C. This characterization can be used in tandem with quantitative TOA data, which 

uses the same temperature profile, to provide a much broader understanding of PM in the 

atmosphere, mainly the carbonaceous fraction. Furthermore, we are able to identify compounds 

that are not always accessible with the previously mentioned methods that target only a specific 

set of compounds, i.e., volatiles, semi-volatiles, or LMW compounds formed from the pyrolysis 

of their parent compounds.  
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I.3. Statement of Purpose 

The aim of this work was to develop an analytical method, namely TD-Pyr-GC-MS, which 

could be used in tandem with TOA to provide comprehensive characterization of the OC fraction 

of PM. The advantage of using such a method is that it minimizes sample preparation, which is 

both time and cost effective, i.e., eliminating the need for solvent extraction. Furthermore, this 

analytical technique is able to mimic the stepwise temperature profiles of TOA, which no other 

GC or MS sample introduction method is capable of, providing detailed thermal profiles (TD & 

Pyr) for a wide range of organic compounds. 

TD-Pyr-GC-MS was first applied to model compounds such as TGs and FAs, in an attempt 

to understand the pyrolytic nature for their decomposition. Specifically, these compounds were 

chosen as they represent compounds present in the atmospheric PM, but may not be efficiently 

detected (e.g., TGs) and compounds that are widely abundant (e.g., FAs) from a wide range of 

sources. The breakdown products after the pyrolysis of these model compounds were analyzed to 

investigate their proposed mechanism of formation as well as the specific profiles they form after 

pyrolytic decomposition. 

With the aid of the TD-Pyr-GC-MS evolving profiles of model compounds, this method 

was then applied to atmospheric PM collected in the Grand Forks area. Through detailed analysis 

of both the TD and Pyr fractions, determination of specific compounds, that is atmospheric tracers 

with varying volatilities, was enabled, which other methods described in the introduction cannot 

accomplish. The detection of these tracers, and their abundances through TD-Pyr-GC-MS were 

used in an attempt to determine the origin of these species, enabling source apportionment, mainly 

between anthropogenic and biogenic sources.   
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CHAPTER II. EXPERIMENTAL METHODS 

II.1. Materials 

Organic solvents used in this study included dichloromethane (DCM)  and hexane (VWR, 

Arlington Heights, IL, USA) for dissolving standards for use with TD-Pyr-GC-MS. ACS grade 

sucrose (Alfa Aesar, Ward Hill, MA, USA) dissolved in deionized water from a Direct-Q 3 UV 

system purifier (Millipore, Billerica, MA, USA) was used for TOA calibrations. Standards used 

for pyroprobe optimization included nonane, butylbenzene, 1-tridecene, heptadecane and 

dotriacontane (standard mixture 1 (SM1), 1000 ppm (w/v) dissolved in DCM) as well as the 

addition of 1000 ppm (w/v) of benzene, toluene, ethyl benzene, m-xylene (BTEX) to SM1, thus 

creating SM2.  For analysis of model compounds, C21-C40 alkane mix, tristearin, triolein, stearic 

acid, and oleic acid were used. All standard compounds were purchased from Sigma–Aldrich (St. 

Louis, MO, USA). 

II.2. Sampling 

Atmospheric PM2.5 was collected during a 17 week period as part of the Polarimetric Cloud 

Analysis and Seeding Test (POLCAST) from June 21, 2012 - October 19, 2012 in rural North 

Dakota (ND).104 PM2.5 was sampled at Clifford Hall (the roof of the 5 story building) located at 

the University of North Dakota in Grand Forks, near the western outskirts of the city. 

PM2.5 samples were collected weekly on 90 mm (46.56 cm2 exposed area) tissue quartz 

filters 2500QAT-UP (Pall Corp, Port Washington, NY, USA) with a semi-volatile organic aerosol 
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sampler (URG Corp, Chapel Hill, NC, USA) attached to a R224 quad head high-vacuum air pump 

(Air Dimensions Inc., Deerfield Beach, FL, USA). A 16.7 liters per minute (LPM), 10 µm Teflon 

coated aluminum cyclone (URG Corp, Chapel Hill, NC, USA) was used to collect PM2.5 by setting 

the flow rate to 92 LPM.  The quartz filters were heated at 600 °C for 12 hours overnight to remove 

any trace contaminants before PM collection. A mass flow controller (Alicat Scientific, Tucson, 

AZ, USA) was set at a rate of 1533 cm3/s (92 LPM) for PM collection. All 90 mm filters were 

weighed on an analytical balance before and after collection. After collection/analysis, the filters 

were placed in aluminum foil wrapped on the inside of Petri dishes and stored in a freezer to 

minimize the loss of semi-volatile compounds until the analysis.   

II.3. Instrumentation 

II.3.1 Thermal Optical Analyzer 

An OC-EC aerosol TOA analyzer (Sunset Laboratory Inc., Tigard, OR, USA) was used to 

determine concentrations of OC, EC, and TC of collected PM based on a NIOSH protocol.  Quartz 

filters were cut with a 1.5 cm2 filter punch and subsequently placed in the instrument. The quartz 

filters were subject to a temperature profile that began with a 10 s ambient temperature step 

followed with 5 steps; 300 °C for 75 s, 500 °C for 75 s, 600 °C for 75 s, 700 °C for 75 s, and 870 

°C for 120 s, all in a helium atmosphere. This ramp was followed by a cooling step to 525 °C for 

45 s. Five more temperature steps were then introduced under a 5% oxygen in helium atmosphere; 

550 °C, 625 °C, 700 °C, and 775 °C for 45 s each, followed by 890 °C for 120 s. Lastly, a 

calibration gas of 5 % methane/helium was added as an internal standard for 110 s. The total 

analysis time was 885 s. 
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TOA data was acquired through the OCEC 828 software and was subsequently converted 

to a text file. This text file was then converted to an Excel template where further data processing 

took place, including the evaluation of the split point, and concentrations of OC/EC in each 

temperature fraction. 

II.3.2 TD-Pyr-GC-MS 

A CDS Pyroprobe model 5000 (CDS Analytical, Oxford, PA, USA) coupled to an Agilent 

7890 GC-MS (Agilent, Santa Clara, CA, USA) was used to perform TD-Pyr-GC-MS to identify 

different organic compounds within air PM and model compounds (detailed programing is 

described in the following section II.3.2.1). A 38.7 m long HP-5MS column with a 0.25 µm film 

thickness and 0.25 mm diameter was used (Agilent, Santa Clara, CA, USA). The GC temperature 

program started at 40 °C for 2 min, followed by a ramp of 40 °C/min to 80 °C, then immediately 

followed by a ramp to 320 °C at 25 °C/min and held for 4 min. The GC was operated in the split 

mode (10:1) with helium used as the carrier gas at a constant flow of 1.5 mL/min. MS analysis 

with electron ionization (70 eV) was done in total ion current mode with a scanning range of 35-

550 m/z.  

TD-Pyr-GC-MS data was acquired with ChemStation E.02.02.1431 (Agilent, Santa Clara, 

CA, USA). Individual compounds and their homology patterns were investigated using extracted 

ion chromatograms (EIC) for each temperature fraction. The retention times and ions used for 

identification and semi-quantification profile for specific compounds are listed in Appendix F, 

Table F1. Peak identification was done by comparing with the NIST 05 Mass Spectral library with 

80 % match or higher, based on retention profiles of homologous compounds, and/or through 

confirmation by individual standards.88, 105 
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II.3.2.1 Operation of TD-Pyr-GC-MS 

The CDS pyroprobe 5200 model used in this study was designed to either thermally desorb 

or pyrolyze samples within the instrument, or to do both by sequentially running multiple 

sequential temperature steps (the final protocol is shown in Appendix A with pyroprobe 

temperature programs in Table A1). This process was accomplished by spiking either a liquid or 

solid sample onto a piece of quartz wool that sits inside a quartz tube, which was held by a platinum 

filament on the probe (Fig. 2).  

 

Figure 2. Schematic diagram of the pyroprobe filament found on the CDS pyroprobe 5200 model. 

Next, the sample was either dried outside of the instrument (liquid samples) or directly 

inserted into the main body (solid samples) and sealed from the outside atmosphere. The interface, 

a housing that is surrounded by heating wrap, was then heated ballistically to a temperature of 300 

°C which took approximately 45 seconds (Fig. 3). After the interface reached 300 °C, a 6-way 

valve that was heated to 320 °C opened, allowing the flow of the carrier gas (He) for transfer to 

the GC-MS. At the same time the valve opened, the filament began heating to specific temperatures 

(300, 500, 600, 700, or 870 °C) at a ramp rate of 30 °C/s (for optimization of heating rates and 

interface times see next section). At this point the sample was either thermally desorbed (< 350 
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°C) or pyrolyzed (> 400 °C) depending upon the sample temperature. The filament was then held 

at the set temperature for a duration of 30 seconds, after which it was shut off. Lastly, the 6-way 

valve closed and the carrier gas was then once again diverted to waste until the GC-MS finished 

its temperature program. After the GC-MS program was complete, the next pyroprobe temperature 

step could be analyzed and the complete process repeated itself.  

 

Figure 3. Typical thermal process for pyroprobe during analysis of samples.  

II.4. Optimization of TD-Pyr-GC-MS 

 Various parameters for the TD-Pyr instrument affect the performance of the pyroprobe 

and had to be optimized. The parameters in this study that were optimized were the interface time 

and filament heating rate which affect the ability of the instrument to volatilize the sample. These 

parameters were optimized to try to minimize large CO2/air peaks that were observed at the 

beginning of every TD-Pyr GC-MS analysis and can overlap with early eluting compounds as it 
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extends until ~ 4 min into the GC chromatogram (Fig. 4). The reason for the occurrence of the 

large CO2/air peak at the beginning of each chromatogram was thought to be from the formation 

of CO2 within the instrument (if contaminated) as well as possible valve micro leaks. 

a) 

  
b) 

  

Figure 4. TD-Pyr-GC-MS EIC chromatograms of a blank sample corresponding to the occurrence 
of H2O (18 m/z), N2 (28 m/z), O2 (32 m/z), and CO2 (44 m/z) peaks at a) 300 °C and b) 870 °C. 

The initial experiments performed to test different filament heating rates and interface 

times can be seen in Table 3. For each experiment, 5 µL of SM1 was injected, and dried for 60 
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seconds at 50 °C outside of the instrument. For all experiments the pyroprobe final temperature 

was 300 °C. EIC m/z values were used to determine the optimal filament heating rate and interface 

times (Appendix B, Table B1) 

Table 3. Pyroprobe filament heating rates and interface time optimization conditions  

 Experiment 

Parameter 1 2 3 4 5 6 

Filament heating rate (°C/s) 10 15 20 30 ballistica ballistica 

Interface time (min) 2.5 1 0.8 0.6 0.6 0.5 
a The heating rate goes as fast as instrumentally capable 

 After the first set of experiments, further optimization was done using interface times of 

0.9, 1.0 and 1.2 min, respectively, at a filament heating rate of 30 °C/s.  This optimization was 

done with SM2 to understand the behavior of lower MW compounds, namely BTEX compounds. 

Each sample was run in triplicate and their respective average peak abundances were based on 

specific EIC m/z values to evaluate different interface times (Appendix B, Table B1).  

II.5. TD-Pyr-GC-MS of Model Compounds 

 To understand the TD-Pyr behavior of certain compounds and their thermal profiles, 

model compounds were analyzed with the pyroprobe. These model compounds were chosen to 

represent a wide range of compounds of both biogenic and anthropogenic sources that are thought 

to exist in atmospheric PM in a relatively biogenic area such as Grand Forks, ND. They included: 

C21-C40 alkane mix, tristearin, triolein, stearic acid, and oleic acid.  

Quartz wool was first placed inside a quartz tube (CDS Analytical, Inc, Oxford, PA, USA), 

inserted into the filament, and cleaned with a 25 µL DCM spike (x 3). The filament was then 

heated to 870 °C outside of the probe to remove any trace contaminants+ and DCM. A blank run 

was then conducted to ensure the system was clean (determined based in a correct baseline), and 



21 

repeated if necessary. After achieving clear baseline, the model compounds were analyzed by 

injecting 10 µL into the quartz tube, followed by drying for 60 seconds at 50 °C outside of the 

instrument. All model compounds were analyzed with a two-step temperature program, 300 °C 

(TD) followed by 700 °C (Pyr), as well as at 700 °C directly (one-step), to better understand the 

pyrolytic nature of the compounds. Compound identification was done with reference to SM1 and 

SM2 and/or by comparison with the NIST 05 Mass Spectral library. 

II.6. TOA and TD-Pyr-GC-MS of POLCAST Samples 

Collected PM filters from the 17 week POLCAST campaign were analyzed by both TOA 

and TD-Pyr-GC-MS. Quartz filters were cut into 1.5 cm2 for TOA and into ~ 2 x 15 mm strips for 

TD-Pyr-GC-MS analysis, respectively. The quartz filter strips were subjected to the same 

temperature conditions in both instruments: 300, 500, 600, 700, and 870 °C, under an inert He 

atmosphere. All weeks (12-17) were analyzed by TOA, while only weeks 12-17 were subject to 

TD-Pyr-GC-MS, due to instrumental problems.   

Derivatization of the PM on quartz filters was carried out with two different methods to 

assess the occurrence of free acids. First, 100 µL of N,O-bis(trimethylsilyl)trifluoroacetamide 

(BSTFA): trimethylchlorosilane (TMCS) 99:1 (Supelco, Bellefonte, PA, USA) was added to the 

cut quartz filter in an autosampler vial and heated at 70 °C for 2 hours. The sample on the filter 

was then dried under N2 and analyzed on the TD-Pyr-GC-MS. Second, TMAH (1 µL) was added 

to the quartz filter directly on the pyroprobe and analyzed.  
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CHAPTER III. RESULTS AND DISCUSSION 

III.1. Optimization of TD-Pyr-GC-MS 

The initial TD-Pyr-GC-MS method optimization to determine the ideal filament heating 

rate and interface time for the pyroprobe can be seen in Fig. 5, which shows the abundance of the 

quantification ion of each compound obtained from EIC chromatograms (Appendix B, Table B1). 

The highest abundances, that is the most efficient transfer of analytes from the pyroprobe to GC, 

were obtained when using a filament heating rate of 20 and 30 °C/s, and an interface time of 0.8 

and 0.6 minutes, respectively (white dotted bars) and (black bars) (Fig. 5, the conditions are 

detailed in Table 3 in Section II.4). The original method, which had a 2.5 min interface time along 

with a ramp rate of 10 °C/s (white bars), was more favorable to less volatile compounds (i.e., 

dotriacontane) but losses of volatiles species were found. It is of note that the experiments, which 

used ballistic heating of the filament, showed losses for almost all compounds and therefore were 

not suitable. In summary, the results revealed that the 30 °C/s filament heating rate was most 

appropriate, and was used for the rest of the experiments conducted in this study for two reasons. 

First, as shown in Fig. 5, we can see that the 30 °C/s ramp rate gave similar abundances of all 

compounds when compared to lower ramp rates. Furthermore, the use of this faster ramp rate 

allowed for the reduction of the interface time, which in turn reduced the CO2 peak at the beginning 

of the pyroprobe analysis. This reduction of the large CO2 peak at the beginning of every 
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chromatogram was drastically minimized, allowing for the easier identification of volatile 

compounds with TD-Pyr-GC-MS. 

 

Figure 5. EIC abundances of characteristic ion for selected compounds to evaluate different 
filament heating rates and interface times of the pyroprobe with filament desorption temperature 
of 300 °C. 

Further optimization of the pyroprobe interface time was done after the initial optimization 

of the instrument showed that the 30 °C/s filament heating rate produced similar abundances with 

the 20 °C/s rate (Fig. 5, white dotted bars and black bars). Although, these two filament heating 

rates were optimized with interface times of 0.6 and 0.8 min, respectively, this was done with a 

final temperature of the filament set at 300 °C. However, if the filament is set to a high temperature 

such as 700 °C and held for 30 s, or 870 °C for 10 seconds, this would take longer than 0.6 and 

0.8 min; the total time required would be a minimum of 0.9 min. Therefore, a 0.9 min interface 

time was analyzed against 1.0 min and 1.2 to determine if this had any effect, using SM2. The 

results revealed that there was no statistical difference between each interface time (Fig. 6). In 
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general, the 1.0 min interface time showed the highest average abundance for all analytes but 

dotriacontane. The average RSD values for the standard mixtures were however the lowest during 

the 0.9 min interface time, with an average of 15.5 % for all the compounds combined, compared 

to 18.2 and 20.6 % for the 1.0 and 1.2 min interface times, respectively (Appendix C, Table C1). 

Moreover, this difference was most significant in the average abundances of the volatile 

compounds, namely BTEX, showing the best repeatability for volatile species. Furthermore, there 

was no significant difference in the average abundances of each peak for the less volatile 

compounds showing that they all still elute from the system with shorter interface times. Based on 

the fact that the average RSD values for all compounds was the lowest in the 0.9 min interface 

time, along with 0.9 min having the shortest air/CO2 peak on the GC chromatogram (Fig. 7), this 

interface time was deemed to be the most efficient. For all subsequent analyses of model 

compounds and PM samples, these parameters were used. 

 

 

Figure 6. TD-Pyr-GC-MS EIC abundances for selected compounds to evaluate pyroprobe interface 
times. Filament heating rate was set at 30 °C/s with a filament desorption temperature of 300 °C. 
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Figure 7. TD-Pyr-GC-MS EIC of ion 44 m/z to show CO2 peak at different interface times. 

III.2. TD-Pyr-GC-MS of Model Compounds 

The TD (300 °C) and Pyr nature (>400 °C) of model compounds that are of importance to 

the understanding PM in the atmosphere are discussed in the following sections.  

III.2.1 C21-C40 Alkane Mix 

As n-alkanes are among the most abundant species found in PM from all types of emissions 

(Table 1), the understanding of their TD and Pyr behavior was of utmost importance. Furthermore, 

this standard mixture was crucial in evaluating the performance of the pyroprobe and its ability to 

effectively transfer to GC compounds over a broad range of volatility, i.e., low MW and high MW 

compounds, and assess possible discrimination (Fig. 8).  
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a)  

 

b) 

 

Figure 8. TD-Pyr GC-MS TIC chromatograms of C21-C40 alkane mix a) 300 °C TD fraction b) 
sequential 700 °C Pyr fraction. 
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From the above chromatograms, one can see that almost all alkanes except for the last 

three, C37 to C40, were apparent in the 300 °C fraction. The loss of the last three alkanes within the 

chromatogram was thought to be from a cold spot within the instrument or some sort of transfer 

loss from the pyroprobe to the GC-MS (perhaps at the injection port). The TD fraction also 

contained some impurities of unknown origin (not present within the safety data sheet of the alkane 

mix) that were tentatively identified as oxacyclotridecan-2-one (90%), dibromodiphenyl sulfide 

(96 %), and bis(p-bromophenyl) disulfide (93 %) from the NIST 05 database (Appendix D, Fig. 

D1a-c). In the following 700 °C fraction (Pyr fraction of the two-step profile) (Fig. 8b), we 

observed that some of the long chain alkanes carried over from the TD fraction and appeared there 

as well, although their abundance was very low. In the beginning of the Pyr fraction, the 

characteristic CO2 peak could be seen, along with a few peaks that appeared to be either alkenes 

or cycloalkanes, but their identification with the NIST library was below 50 % due to very low 

abundances and significant fragmentation. Altogether, these results confirmed that the pyrolysis 

of alkanes did not result in many smaller MW products forming, the significance of which is 

discussed in further detail in Section III.3.2.  

 The analysis of the alkane mixture using directly one step pyrolysis at 700 °C can be seen 

in Fig. 9. Under pyrolytic conditions, the chromatogram was identical as when it was run under 

TD temperatures, there was no breakdown of alkanes into smaller MW compounds. Once again, 

this finding confirmed that alkanes are very stable, as they tend not to breakdown into smaller MW 

compounds.  
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Figure 9. Pyr-GC-MS TIC chromatogram of alkane mix analyzed following direct pyrolysis at 700 
°C 
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stearic acid acyl radical that attacks itself at a C-H bond 4 carbons from the end of the radical, to 

form the cyclobutyl group, and henceforth the molecule of 2-tetradecylcyclobutanone.  

The alkene profile ranged from C6 to C17, while any smaller MW alkenes were either of 

too small abundance to be detected with the instrumental programming or were not formed readily 

from pyrolysis. C17 was the largest size alkene observed in the chromatogram, which may be 

explained by the decarboxylation of the parent molecule.107 Alkanes (not shown) were also present 

in the pyrolytic profile from C11 to C17, accompanying the corresponding alkenes, however at much 

lower abundances; heptadecane had the highest response, roughly 10 % in height compared to that 

of heptadecene. The observed formation of alkanes may serve as evidence of significant hydrogen 

formation, as alkanes appear to be formed by the reaction of the corresponding alkyl radicals with 

hydrogen (presumably, atomic). The latter appears to be formed in situ when alkenes are formed 

from the same intermediates via hydrogen elimination. 

Aromatic hydrocarbons, namely mono-substituted n-alkylbenzenes (confirmed by standard 

and retention time profile), were also formed with similar abundances to the alkane series (10 % 

of the corresponding alkene peaks) (Fig. 10c). The most abundant n-alkylbenzene was 

dodecylbenzene, which contains 18 carbon atoms. The mechanism in which this compound is 

formed is theorized to be from hydrodeoxygenation (HDO), as no carbons are lost from the parent 

stearic acid molecule.108 Although HDO is typically performed with a catalyst, no catalyst was 

used in this study, showing a novel way in which HDO occurs. This mechanism appears to compete 

with decarboxylation followed by cyclization, which would predominantly form undecylbenzene. 

The driving force of these competing reactions is theorized to be the presence of an abundance of 

hydrogen in the pyroprobe that leads to hydrodeoxygenation as described above. 
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Furthermore, a few PAHs were formed that included naphthalene, substituted 

naphthalenes, phenanthrene, and fluorene. However, all these PAHs were in relatively low 

abundances other than naphthalene. Both n-alkylbenzenes and PAHs have been shown to form as 

TG cracking products, presumably via alkenyl radical cyclization followed by dehydrogenation.97 

However, the C17 size was maximal for these breakdown products conducted under high (~400 

atm) external pressure,97 whereas the maximum n-alkylbenzene in this thesis was of C18. 

Additionally, C17 was the maximum number of carbon atoms found for the alkene series. This 

appears to show that the intermediates of HDO have a greater propensity to cyclization than other 

cracking products. 

 

a) 

 

Figure 10. TD-Pyr-GC-MS chromatograms of stearic acid a) 300 °C TIC b) sequential 700 °C TIC 
c) EIC of ions 92/91 m/z 
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Figure 10 cont. 

b) 

 
c) 

 
Figure 10. TD-Pyr-GC-MS chromatograms of stearic acid a) 300 °C b) sequential 700 °C c) EIC 
of ions 92/91 m/z 
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alkylbenzenes, and PAHs were found to have higher abundances then in the sequential 700 °C 

fraction. Hence, this difference appears to show that there are two different paths of pyrolysis, 

dependent on whether the sample is pyrolyzed directly or sequentially. Under direct pyrolysis it 

appeared that all compounds other than 2-tetradecylcyclobutanone are more readily formed. As 

for the explanation of this difference, it is suggested that there is some process of carryover from 

the 300 °C fraction that leads to the formation of 2-tetradecylcyclobutanone in the sequential 

pyrolytic step by breaking down the adsorbed stearic acid instead of its release into the gas phase. 

When, by contrast, heating to 700 °C was immediate, as opposed to sequential, abundant hydrogen 

formation may “quench” the radical intermediates of 2-tetradecylcylcobutanone formation. 

 

 

Figure 11. Pyr-GC-MS TIC of stearic acid following the direct pyrolysis at 700 °C.  
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III.2.3 Tristearin 

As expected, the TD and Pyr behavior of tristearin was similar to that of stearic acid. At 

300 °C, tristearin decomposed slightly, forming stearic acid at a low abundance (Fig. 12a). The 

subsequent pyrolytic step showed abundances of alkenes and the 2-tetradecylcyclobutanone peak, 

in the same way as observed with stearic acid (Fig. 12a). Heptadecene and dodecylbenzene, were 

the most abundant alkenes and alkylbenzenes, respectively.  The major difference between 

tristearin and stearic acid decomposition product profiles was the formation of an ester, allyl 

stearate, from the suspected cleavage of the glycerol backbone of the triacylglyceride (Fig. 12b). 

Between retention times of 10 to 12 min, there were a slew of new minor peaks compared to that 

of stearic acid (Fig. 12 vs. Fig. 11), but their identification was not easily feasible  based on the 

NIST library.  

a) 

 

Figure 12. Pyr-GC-MS TIC chromatogram of tristearin at a) 300 °C b) sequential pyrolysis at 700 
°C and c) direct  pyrolysis at 700 °C. 
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Figure 12 cont.  

b) 

 

c) 

 

Figure 12. Pyr-GC-MS TIC chromatogram of tristearin at a) 300 °C b) sequential pyrolysis at 700 
°C and c) direct  pyrolysis at 700 °C. 
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In a slight contrast to stearic acid decomposition, direct pyrolysis and sequential (following 

300 °C) pyrolysis of tristearin at 700 °C, resulted in nearly identical TIC chromatograms (Fig. 12b-

c); the alkene/alkane profile showed no significant differences between the one and two step Pyr 

profiles. The one difference observed was that there was a significant amount of stearic acid in the 

chromatogram following the direct pyrolysis, while the sequential step did not show this feature, 

as this would have been removed during the 300 °C desorption step. Notably, the abundance of 

allyl stearate was higher in the direct 700 °C step. This observation suggests that during direct 

pyrolysis, more of tristearin is broken down at the glycerol backbone, while with the sequential 

Pyr step, the FA chain is cleaved in the presence of hydrogen to form stearic acid. 

III.2.4 Oleic Acid 

Following the TD temperature of 300 °C, the profile of oleic acid was similar to that of 

stearic acid as the only compound that observed was unaltered oleic acid (Fig 13a). However, the 

Pyr profile of oleic acid is rather different to that of stearic acid, presumably due to the double 

bond within the molecule. One would expect to see a profile that included alkadienes and alkenes, 

which would match the abundant alkene/alkane profile seen in the TD-Pyr of stearic acid. Yet, 

only two alkadienes were apparent, i.e., isomers of heptadecadiene, observed at a retention time 

of 8.65 mins (Fig. 13b). Furthermore, alkenes were not observed either, which suggests that there 

is less hydrogen generation during the pyrolysis of oleic acid, or perhaps decompositions reactions 

occur more readily and do not require or involve hydrogen formation. Tetradecenylcyclobutanone, 

the unsaturated analog of the 2-alkylcyclobutanone observed with stearic acid decomposition was 

also found, but in very low amounts (Fig. 13b, Appendix D, Fig. D3). Thus, minimal HDO appears 
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to occur for oleic acid decomposition as opposed to its saturated counterparts. This corroborates 

the assumption that more hydrogen formation happens in the case of saturated feedstocks.  

Between the sequential 700 °C step and the direct pyrolysis, there were no significant 

differences except that oleic acid appeared under direct pyrolysis, but did not following the 

sequential step (Fig. 13c). This was reasoned to be that all the intact oleic acid thermal desorbs 

from the filter at 300 °C and there is none left over for the sequential run. The 

tetradecenylcyclobutanone peak appeared in both Pyr analyses, and had very similar abundances. 

 

a) 
 

 
 

Figure 13. TD-Pyr-GC-MS of oleic acid at a) 300 °C b) sequential pyrolysis at 700 °C and c) 
directly pyrolysis at 700 °C. 
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Figure 13 cont.  
 
b) 

 
c) 

 
Figure 13. TD-Pyr-GC-MS of oleic acid at a) 300 °C b) sequential pyrolysis at 700 °C and c) 
directly pyrolysis at 700 °C. 
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remains unknown. Lastly, just as for stearic acid, pyrolysis of oleic acid, yielded several PAHs. 

The most abundant PAH was naphthalene (C10), while other PAHs including substituted C1-

naphthalene (C11) and phenanthrene (C14) were also found but in small amounts.  

 

Figure 14. Pyr-GC-MS EIC of m/z ion 91 showing n-alkylbenzene profile following the direct 
pyrolysis at 700 °C. 
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tristearin which showed a maximum at dodecylbenzene. Tetradecenylcyclobutanone was also 

found in the pyrolytic fractions, with much higher abundances than observed for oleic acid. This 

suggests that the formation of the alkenylcyclobutanone is similar to what was observed with 

tristearin, with the minor exception of the double bond inside the alkyl chain. Cyclooctene was 

also observed in the chromatograms, although the mechanism of formation is not well understood.  

a) 

 
b) 

 

Figure 15. TD-Pyr-GC-MS of triolein at a) 300 °C b) sequential pyrolysis at 700 °C and b) directly 
pyrolysis at 700 °C 
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Figure 15 cont. 

c) 

 

Figure 15. TD-Pyr-GC-MS of oleic acid at a) 300 °C b) sequential pyrolysis at 700 °C and b) 
directly pyrolysis at 700 °C 
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III.3. Application of TOA and TD-Pyr-GC-MS to POLCAST Samples 

III.3.1 PM2.5, OC, and EC Concentrations 

TOA of the POLCAST filter samples showed that OC contributes a significant amount to 

the overall composition of PM2.5 in Grand Forks, ND (Fig. 16a, Appendix E, Table E1) during the 

17 week POLCAST campaign. The average concentration of OC varied between 1.17 and 7.70 

µg/m3, while the average concentration of EC ranged between 0.17 and 0.55 µg/m3 (Fig. 16a); 

levels of EC during the campaign contributed very little to the overall composition of the PM2.5 

and are therefore not discussed further. PM2.5 concentrations determined by filter mass were 

confirmed by on site TEOM measurements (Fig. 16c).109 The peak OC concentration was observed 

in week 4 with a value of 7.7 µg/m3. Week 12 showed the highest contribution of OC to the total 

PM fraction of 74 %.  

The OC portion of PM2.5 was further broken down into temperature fractions to show the 

volatility of compounds collected during the campaign (Fig. 16b). Between 20-40 % of all OC 

evolved at 300 °C, corresponding to TD volatile and semi-volatile organic species. The majority 

of OC evolved only at pyrolytic temperatures of 500 °C (25 %) and 870 °C (33 %), indicating that 

a large OC portion is represented by non-volatiles. Although TOA provided concentrations of OC 

during the entire 17 week campaign, TD-Pyr-GC-MS analysis to determine OC speciation began 

on week 12 due to the development of the method and instrumental difficulties. Thus, the following 

sections discuss the TD-Pyr-GC-MS analysis in weeks 12 – 17. 
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a)  

  
b)  

 

Figure 16. a) Time series plot of the PM2.5 , OC and EC concentrations as well as filter mass, 
TEOM, and EPA PM2.5 measurements collected during POLCAST campaign at Grand Forks, ND, 
from June 21, 2012 (week 1) - October 19, 2012 (week 17). b) Temperature distribution of OC 
collected from TOA c) Correlation between TEOM and PM2.5 filter mass measurements.  
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Figure 16 cont.  

 c)  

 

Figure 16. a) Time series plot of the PM2.5 , OC and EC concentrations as well as filter mass, 
TEOM, and EPA PM2.5 measurements collected during POLCAST campaign at Grand Forks, ND, 
2012. b) Temperature distribution of OC collected from TOA c) Correlation between TEOM and 
PM2.5 filter mass measurements.  
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conversion of some species during pyrolysis to CO2 (which may be under quantified).110-111 The 

significant percentage of compounds observed in the pyrolytic fraction (32-68 %) with TD-Pyr-

GC-MS confirms that the semi-volatile OC fraction, which is usually characterized by either TD 

or solvent extraction GC-MS methods, may not be representative of the overall OC composition 

(Fig. 17b).78 This observation suggests that the Pyr fraction enables a broader characterization of 

the total PM composition.  

Specific profiles for OC compounds and tracers obtained within the TD-Pyr fractions show 

the preference of some analytes (n-alkanes and acids) to show up primarily in the TD fraction, 

whereas other analytes are mostly pyrolytic of origin (n-alkenes, alkylbenzenes, and PAHs) (Fig. 

17 c-g). The following sections discuss these OC compounds, their distribution across the TD - 

Pyr temperature fractions, and their relations to both anthropogenic and biogenic sources. 
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a) TOA  

 
 b) Total TIC 

 
c) n-Alkanes 

 
d) Acids & Esters 

 
Week 

Figure 17. Characteristic OC profiles over 6 week sampling period showing TD and Pyr fractions 
obtained using a) TOA and b-g) TD-Pyr-GC-MS: b) Total TIC (sum) c) n-Alkanes d) Acids & 
Esters e) n-Alkenes f) Alkylbenzenes & BTEX g) PAHs. TD-Pyr abundances were determined as 
EIC peak areas for specific ions (Appendix F, Table F1). 
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Figure 17 cont. 

e) n-Alkenes 
 

 
f) n-Alkylbenzenes & BTEX 

 
g) PAHs 

 
Week 

Figure 17. Characteristic OC profiles over 6 week sampling period showing TD and Pyr fractions 
obtained using a) TOA and b-g) TD-Pyr-GC-MS: b) Total TIC (sum) c) n-Alkanes d) Acids & 
Esters e) n-Alkenes f) Alkylbenzenes & BTEX g) PAHs. TD-Pyr abundances were determined as 
EIC peak areas for specific ions (Appendix F, Table F1). 
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III.3.3.Thermal Desorption OC Fraction 

The most abundant class of compounds found in the TD fraction was a homological series 

of n-alkanes, representing 23-36% of the total TD-Pyr profile and accounting for 40-59 % of the 

TD fraction over the last 6 weeks of sampling (Fig. 17c, Appendix H, Table H3). This class of 

compounds was most abundant in week 15 (59 % of TD) and had a minimum in week 14 (40 % 

of TD). The n-alkanes detected ranged from C21 to C34 and consisted primarily of long chain, odd 

numbered alkanes (C27, C29, C31) (Fig. 18). Their abundance in PM2.5 is known to come from 

biogenic sources, mainly, plant waxes, along with anthropogenic sources such as fossil fuel 

combustion, unburnt heating oil, and biomass/wood burning.12, 16, 18, 28, 42  

To evaluate the source of n-alkanes in the TD fraction, we employed several proven 

indicators, carbon prefix index (CPI), maximum number of carbon atoms (Cmax), and plant wax 

percentages (Wax %) (Table 1).25, 112-113 CPI values between 1 and 2 are generally indicative of 

anthropogenic sources, while CPI values above 2 are indicative of biogenic sources, mainly plant 

waxes.22, 25, 112, 114 In this sampling period, CPI values ranged between 1.51 (week 16) and 7.08 

(week 12) indicating weeks of both biogenic and anthropogenic sources (Table 4). Cmax values 

occurred at C29 for all weeks other than week 16, which had a Cmax of C25. Cmax values of C27, C29, 

and C31 are indicative of plant wax origin while C25 maximum has been reported from unburned 

lubricating oil emission in cars.12, 22, 115 Wax % were above 50 % in all weeks except week 16 (23 

%), with a maximum of 75 % in week 12. From the CPI, Cmax, and Wax % values it is apparent 

that week 16 n-alkanes had anthropogenic sources, while the other 5 weeks all showed strong 

evidence of n-alkanes from biogenic sources, mainly plant waxes. 
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Figure 18. Representative TD-Pyr-GC-MS EIC chromatograms from week 12 showing n-alkane 
profile using target ion 57 m/z.  

Table 4. n-Alkane source criteria for 300 °C TD fraction.  

 
 
 
 
 
 
 
 
 
 

       
      CPI – [Σ(C13-C35)odd/ Σ(C12-C34)even]                 Wax % - [Σ(Cn-0.5 (Cn-1 + Cn+1))/ ΣCn] x 100 % 
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large contributors to the overall OC fraction of PM as they come from a variety of sources 

including plant waxes, cooking and grilling, petroleum and diesel exhaust, and biomass/wood 

burning. 12, 16, 19, 28 FAMEs, on the other hand, are not generally known to be abundant in the 

atmosphere although they have been linked previously to the combustion of wood, coal, or 

biodiesel.25, 34, 116-117 To further investigate the source of these compounds, derivatization agents, 

BSTFA and TMAH, were used. Under BSTFA derivatization (data not shown), all underivatized 

acids including C16 and C18 were trimethylsilylated, while FAMEs were still observed, confirming 

the presence of FAMEs in the original samples. The observed prevalence of C16 and C18 FAMEs 

may indicate that some of them may be biodiesel components.  

Following the TMAH derivatization, no acids were present (Fig. 19c), while the FAMEs 

abundance increased 10-20 times dependent upon the sampling week (Fig. 19d). This suggests that 

along with the FAMEs profile, there is a sizable fraction of n-fatty acids, which are either 

underestimated or not detected without derivatization. Long chain fatty acids, > C22, are indicative 

of plant wax origin and further show that many of the TD fraction contributors are of biogenic 

origin.12 The observed prevalence of those acids that are even carbon numbered (Fig. 3b,d) 

corroborates this assumption. 

 



50 

 

Figure 19. TD-Pyr-GC-MS EIC profiles showing n-fatty acids (FAs) and FAMEs before (a, b) and 
after derivatization with 1 µL of TMAH (c, d).  

Besides n-alkanes, acids, and FAMEs, a wide variety of organic compounds were present 

within the TD fraction that did not exhibit a specific homology profile. Two carbonyl compounds, 

nonanal and 6,10,14-trimethyl-2-pentadecanone (isomeric position tentative and based on NIST 
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fraction other than alkanes and accounted for a maximum of 21 % of the TD fraction in week 13 

and a minimum of 1 % in week 17 (Appendix H, Table H3).118 Phytone, a biogenic secondary 

organic aerosol component formed from the oxidation and heating of phytol, is known to be 

emitted from plants.22 Nonanal, a possible product of atmospheric oxidation of alkanes also being 

emitted from a variety of plant species, was detected but accounted for a very small share of the 

TD fraction.28, 119  

Levoglucosan, one of the most commonly used tracers for the burning of biomass, was 

detected in three of the 6 weeks with a very strong abundance in week 17.120-123 A similar 

compound, levoglucosenone, a product of the dehydration of levoglucosan in acidic conditions,  

occurred in all weeks.124 The process of formation of levoglucosenone is thought to occur within 

the pyroprobe, as levoglucosenone is not readily formed in the atmosphere or without the aid of a 

catalyst.125 In week 16, these two compounds accounted for 17 % of the TD fraction (Appendix 

H, Table H3), suggesting a heavy influence of biomass burning during that sampling period.  

A group of plasticizers, more specifically three phthalate esters, and a plasticizer precursor, 

phthalic anhydride, were also observed. (Appendix G, Table G1-G6). Although it is possible that 

these compounds are from sampling artifacts, we theorize that they may be produced by either 

leaching or thermal decomposition of plastics; their abundance changed from week to week, with 

the highest abundance in week 13. Furthermore, a series of OC compounds that may possibly be 

from contamination or other processes were recovered, but their abundances were very low, 

making them only tentatively identified and their source unknown (Appendix G, Table G1-G6). 

In addition to the mentioned compounds, a series of PAHs were detected in the TD fraction, 

which included naphthalene (NAP), methyl substituted naphthalenes (C1 NPA), biphenyl (BP), 

fluorene (FL), phenanthrene (PHE), anthracene (ANT), fluoranthene (FLA), and pyrene (PYR). 
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These PAHs were not abundant in the TD fraction and only made up between 2 % (week 13) to 

5 % (week 14) of the overall TD profile. Although typically reported as a gas-phase PAH,51, 126 the 

most abundant PAH recovered in this study was naphthalene. Similarly, a study by Ellickson et 

al., showed that gas plus particle phase NAP was the most abundant PAH found in both rural and 

urban areas of Minnesota.127 Moreover, a study by Zhang et al. (2011) showed that gas phase 

naphthalene is readily produced from the burning of crops including rice, wheat, and corn.52 

Although these studies were based upon solvent extraction, the profile of NAP correlates well with 

this study.  

Criteria similar to those applied to n-alkanes were previously developed and can be used 

to distinguish between sourcing of PAHs by using diagnostic ratios of certain PAHs compared to 

others.50, 128-129 FL/(FL+PYR) ratios of < 0.5 are telling of petrol emissions, while > 0.5 is thought 

to be from diesel emissions.128-129 FLA/(FLA+PYR), ratios are generally separated into 3 

categories: < 0.4 for petrogenic emission (incomplete combustion), 0.4 – 0.5 for fossil fuel 

combustion  , and > 0.5 for grass, wood, and coal combustion.129 Furthermore, values above 0.1 

for ANT/(ANT+PHE) indicate pyrogenic origin, compared to those below 0.1 which are thought 

to be from petrogenic sources.50, 129 In this study, the ratio of ANT/(ANT+PHE) varied between 

0.23 and 0.35, while the FLA/(FLA + PYR) ratio ranged from 0.35 to 0.54. Both of the observed 

ratios tend to indicate combustion, e.g., of fossil fuels or grass, wood, and coal (Fig. 20). Fluorene 

was not observed in the TD fractions, and therefore diagnostic ratios were not considered for this 

molecule. 
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Figure 20. Diagnostic ratios for specific PAHs obtained from TD fraction of 6 week TD-Pyr-GC-
MS analysis. 

 Overall, the profiles of the compounds and tracers found in the thermal desorption fraction, 
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than the Pyr fraction and thus, possible sources of Pyr fraction are assessed below. 
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C17) being more abundant. n-Alkylbenzenes featured a similar but narrower molecular size profile, 

with a C9 to C18 distribution in most weeks. Similar to these monoaromatic hydrocarbons, the PAH 

profile in the Pyr fraction contained compounds with a carbon number of 17 or lower. Our previous 

research along with studies by Lappi et al. have shown that both n-alkylbenzenes and PAHs are 

by-products of the thermal cracking or pyrolysis of TGs and fatty acids.90-91, 95, 97, 130 The apparent 

reason for the observed size limit of these compounds (C17-18 or less) is the breakdown of C18 acids 

or triacylglycerides. n-Alkenes may also be formed in this process, although they may also result 

from long-chain alkane cracking, which is evidenced by their broader homology profile (Fig. 21). 

Presumably, alkyl radicals formed upon stearic acid decarboxylation/hydrodeoxygenation 

followed by potential further fragmentation (as well as alkane/wax cracking), end up as alkanes 

and alkenes whereas unsaturated alkenyl radicals formed from oleic and linoleic acids may 

undergo one or two steps of cyclization, to form alkyl benzenes (along with cyclic alkanes/alkenes 

as intermediates) and PAHs (mainly NAP or alkyl substituted NAPs), respectively.130  

Although detected in the Pyr fractions and included in Fig. 21, n-alkanes did not show any 

prevalence of odd-numbered homologs, and thus cannot unequivocally be assigned to a specific 

origin. Furthermore, the n-alkanes observed in the Pyr fraction may be remnants carried over from 

the TD fraction that did not completely desorb from the filter, due to the low volatility of these 

HMW compounds. If this is true, the total abundance of hydrocarbons in PM may be underreported 

if TD is carried out as a stand-alone technique, due to the possibility of strong hydrocarbon or 

HMW compound adsorption. Hence, this may show yet again the importance of using Pyr in 

addition to TD temperature steps, when performing PM speciation. 
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a) 

 

b) 

 

c) 

 

Figure 21. Homological profile of PAHs, alkylbenzenes, alkenes, alkanes, in total Pyr fraction 
based on EIC peak areas from TD-Pyr-GC-MS a) week 12 b) week 13 c) week 14 d) week 15 e) 
week 16 f) week 17. 
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Figure 21 cont. 

d)  

 

e) 

 

f) 

 
 
Figure 21. Homological profile of PAHs, n-alkylbenzenes, alkenes, alkanes, in total Pyr fraction 
based on EIC peak areas from TD-Pyr-GC-MS a) week 12 b) week 13 c) week 14 d) week 15 e) 
week 16 f) week 17. 
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In addition to the PAHs found in the TD fraction (all of which were observed in the Pyr 

fraction), a series of new PAHs were detected, including dimethylated or ethylated NAPs (C2 

NAPs), acenaphthylene (ACY), and also fluorene (FL) (Fig. 22). Furthermore, the PAH profile 

was dominated by 2 ring PAHs, primarily, NAP and C1 NAP. Previous research has shown that 

the combustion of crop residues leads to the formation of LMW PAHs, with NAP being the 

dominant PAH.52, 131 Crop residues are more than likely present within the atmosphere in Grand 

Forks due to agricultural processes, and subsequently would be collected on the quartz filters. After 

TD-Pyr-GC-MS it is likely that these residues would form LMW PAHs. 

 

Figure 22. Representative distribution of PAHs observed during week 15. Abundances shown are 
determined total peak area of molecular ions for each PAH. 

The observation of some PAHs exclusively in the Pyr fraction further suggests the 
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setup allows for obtaining a comprehensive PM profile. Like n-alkylbenzenes, the most likely 

source of these LMW PAHs in this study is from biogenic sources, as underscored by their size 

profile (< C17) and abundance of NAP and alkyl substituted NAPs, which follows the presumed 

formation mechanism described above. Yet, unlike n-alkylbenzenes, the PAH profile in the Pyr 

fraction cannot be pinpointed to just TG pyrolysis, as follows from the occurrence of 3-4 ring 

PAHs. Furthermore, it is possible that some of the PAHs were emitted directly into atmosphere 

and then became tightly adsorbed to the filter or PM, such that their release occurred only at higher 

temperatures, i.e., in the Pyr fraction. 

Along with the homological “fingerprint” of n-alkanes, alkenes, alkylbenzenes, and PAHs, 

all four BTEX compounds were found in the Pyr fractions. However, they were not included in 

the homology profile in Fig. 21 as these compounds dominated the Pyr fraction accounting for 40 

– 66 % of the total Pyr profile (Appendix H, Table H3). Moreover, BTEX compounds have a wide 

range of possible sources, and therefore their origin could not be determined.  

Lastly, phenol, along with its methylated and dimethylated derivatives, were detected 

within the Pyr fractions, with a preference for the 500 and 600 °C temperatures (Appendix G, 

Table G1-6). Phenols, along with methoxy phenols, are known to be formed from wood burning 

along with the pyrolysis of lignin.48-49, 101 Similarly to alkanes and PAHs, some phenols, instead 

of being formed within the pyroprobe, may actually be present in the original PM as tightly 

adsorbed species as we see a small amount in the TD fraction. Then, only the use of Pyr 

temperatures allows for the full recovery of all these three groups of compounds from the 

decomposition of their theorized HMW parent compounds.  
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CONCLUSIONS 

In this thesis, we have developed a novel approach to the comprehensive characterization 

of atmospheric OC PM through the use of TD-Pyr-GC-MS in combination with TOA. The TD-

Pyr-GC-MS method was optimized using standard mixtures of compounds generally found in PM 

(alkanes, FAs) as well as model compounds (TGs) that are theorized to exist in the atmospheric 

PM, but are harder to identify. Furthermore, collected PM samples were analyzed and the 

occurrence of these compounds was semi-quantified across TD-Pyr fractions assessed. More 

importantly, the identification and abundance of specific atmospheric tracers in TD-Pyr fractions 

were used to pinpoint the source of PM in the sampling area during a specific time period.  

The model compounds analyzed by TD-Pyr-GC-MS in this thesis, namely TGs and FAs, 

aided in the understanding of the formation of many Pyr products observed during the PM filter 

analysis. Furthermore, the model compound Pyr homology profiles observed, i.e., alkenes, 

alkylbenzenes, and light PAHs, led to the discovery of competing mechanistic reactions: 

hydrodeoxygenation without a catalyst, which had been considered essential prior to this work, 

and decarboxylation. In addition to helping identify compounds in PM, these Pyr products and 

their mechanisms of formation can have vast implications for industries looking into using these 

compounds as feedstocks for fuels and energy.   

Analysis of PM collected from Grand Forks, ND showed that the select classes of 

compounds occurred in specific TD or Pyr fractions. n-Alkanes, acids, and specific tracers 
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including levoglucosan and 6,10,14-trimethyl-2-pentadecanone dominated the TD fraction, 

whereas homology profiles of n-alkenes, n-alkylbenzenes, PAHs, and substituted phenols 

appeared in Pyr fractions. The compounds and tracers present in the TD fraction over the sampling 

weeks were apparent to be mostly of biogenic origin. The subsequent Pyr fractions, which are 

rarely used for atmospheric chemical composition studies, contributed as much as 30-70 % of the 

total abundance of OC compounds found by GC-MS. This suggested the breakdown of HMW 

compounds, which were also thought to be of mostly biogenic origin. Overall, this combined 

thermal technique showed that well known methods such as solvent extraction, AMS, and thermal 

desorption GC-MS may not give a complete profile of OC PM in the atmosphere unless the Pyr 

fraction is considered. 

Overall, TD-Pyr-GC-MS is a novel approach, which is simple, comprehensive, and 

removes the need for solvent and time consuming steps that more commonly used solvent 

extraction GC-MS methods employ. It allows for a complete characterization of compounds, 

ranging from volatile to non-volatile, through extensive thermal profiles. When used in 

combination with TOA, excessive knowledge of PM, namely the carbonaceous fraction, can be 

determined. 
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Appendix A 

TD-Pyr-GC-MS Protocol and Heating profiles 

Connecting the GC to the Pyroprobe 

1. Turn off the column pressure to the back inlet (split/splitless inlet) via the keypad on the 

front of the GC. Unscrew the big inlet nut to get access to the split/splitless liner, and ensure the 

liner is a split liner with no quartz wool. Replace the gold O-ring if  Unscrew the septa nut from 

the inlet body and remove the green septa (Thermolite 11mm Low Bleed). 

2. Take a new septa and punture the transfer line needle through the middle (If a septa is 

already on the transfer line needle always replace it with a new one). Make sure to center the needle 

on the septa as best as possible, this helps to ensure the needle will be straight when place into the 

liner of the inlet. Take a kim-wipe and methanol and wipe the needle to ensure it is clean.  

3. Now connect the transfer line to GC inlet. Make sure to NOT OVERTIGHTEN the 

septum nut as this will cause leaks to occur around the threading. 

4. Turn both the EPC 3-way valve (directs the He carrier gas to the pyroprobe) located on the 

top of the GC and the 2-way valve for the He auxillary gas to the pyroprobe located behind the 

GC to the right direction (arrows facing the right way). 

5. Turn the column pressure to the back inlet on again. Wait approximately 30-40 mins to 

allow any residual air in the GC system (from exposing the inlet while installing the pyroprobe 

transfer line) to pass through. The vacuum pressure should reach back to the original value within 

5 mins, but it is best to wait longer to purge the system. 

6. Check for air leaks on the MS by performing a manual tune. First go to “instrument” on 

top of Chemstation menu, then “edit tune parameters” for a manual tune.  Go to “more parameters” 
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and then “tune parameters.” Monitor only in range 10-100 m/z. The masses 69 (calibration 

solution), 18 (H2O), and 28 m/z (N2) should be entered.  The relative abundance of the H2O peak 

(18 m/z) should be less than N2 (28 m/z), and both peaks should be less than 5% of the 69 m/z 

PFTBA (large peak).  Let stabilize for 1 min. After viewing, click “stop” and hit the “MS off” 

button. Go to file in the top left tool bar, print the results and add to the tunes and maintenance 

binder. After this, hit “cancel” button. If leak is observed contact operator. Do not start the work 

if N2 is higher than 5 %. 

Creating Sequence and Turning GC to Ready 

1. After ensuring that the system is free of leaks, blank runs can be done to ensure correct 

baseline. In the Chemstation screen, build the sequence of samples to be analyzed in the same 

manner as when an autosampler sequence is built.  Go to “sequence” at the top of the ChemStation 

screen, and then to “edit sequence.”  Erase any previous sequences.  Under method for each 

temperature step for a sample, right click on method and browse for the GC method.  For “data 

file,” start at 1 and give the name that will show up in your Chemstation data file. For “data path” 

at the top of the screen, click browse and go to the present year and month in the central data file, 

and then “make new folder” (button at the bottom), name by date, initials and Py. The first 

analysis of the day should be a blank run at 870 °C to ensure proper baseline (if proper 

baseline is not achieved then repeat this step). 

2. Once sequence is made, make sure to save the sequence under the D drive with the correct 

name and date. Also make a copy of the lines from the sequence into an excel sheet (for each 

month there is a separate excel sheet for the sequences run in that month). 
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3. After your sequence is created properly, click “position and run sequence” and click on the 

data file that you want to start with and click OK. The run file will then show up. Put in operator 

name and a brief description of the sample.  If you are re-doing a sequence, hit the “overwrite 

button”. If process keywords icon shows up, make sure to click “Yes” or the instrument will not 

run. The GC will then go into the waiting mode for the pyroprobe. 

Pyroprobe Setup and Analysis 

1. Switch to pyroprobe software (wand icon).  Select “sequence” at the left.  In the pyroprobe 

software/sequence ensure correct sequence of temperature steps is loaded (it should match the 

same temperatures you set up under the GC sequence). If several temperature steps need to be 

made, the sequence has to be programmed by inserting different methods (by temperature), by 

double clicking on the line to select the method.  When done, click on the method you want to start 

with.  A sequence consisting of several methods can be saved for later use.  Any sequence should 

be saved as an Excel file and saved in a central file indicated as a sequence folder. 

2. To edit a method, go to “tools” then “method editor”- a table opens.  Go to “file” in the 

upper left corner, then “open method” and open the method you want.  Parameters can be changed.  

Save this and go to “file” again and select “send method” so that the indicated method at the top 

now matches your selected method. After your temperature methods on the pyroprobe match the 

ones you set on the GC you are not set to run the pyroprobe. Click run sequence to start your 

samples. 
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Blank and Sample Analysis 

1. Before analysis for the day, make sure that the quartz wool inside the quartz tube is clean 

if using liquid or solid samples. If running PM quartz filters, ensure that the quartz tube is empty 

and clean. If you are unsure, take out another tube and replace the quartz wool. 

2. The first analysis of the day should always be a blank run (870 or 890 °C) to ensure that 

the baseline is correct. Before running, flush the quartz tube 3 times with ~25 µL of DCM for a 

total of 75 µL added (outside of the instrument). Then click dry (under the pyroprobe icon) at 100 

°C for 15 seconds. Follow this up with two to three consecutive cleans of 870 °C for 10 seconds. 

This should allow for the decomposition of some of the contamination on the inside and outside 

of the quart tube. After cleaning three times, run the first blank 870 °C step and analyze the 

baseline. If the baseline does not look proper, repeat all of step 2 to ensure no prior contamination 

before analysis. 

3. After proper baseline is ensured, samples can be run. If analyzing a liquid sample ensure 

the correct concentration before analysis and if a drying step is needed. Drying DCM is usually set 

at 50 °C for 60 seconds prior to analysis to remove the solvent peak. If you do not dry the liquid 

sample make sure to add a solvent delay to the original GC method. To analyze solid samples, 

carefully remove the quartz tube from the filament and weigh the tube on the microbalance. Add 

the solid to the quartz tube and reweigh the quartz tube. Ensure that the sample is from 10-50 ug 

for most samples. If running a quartz filter sample, make sure that the quartz tube has no wool 

inside. Use the cutting device to cut a ~ 2 x 15mm strip of the quartz filter and place it inside the 

quartz tube, carefully with tweezers.  
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Running Test Mix 

1. At least once a week, or for new operators, test mix should be run on the pyroprobe to 

ensure proper working conditions of the instrument. Run a triplicate (sometimes 4 runs are needed 

as the first looks bad usually) of the mixture. 

2. Begin by added 5 µL of the test mix to the quartz tube and dry the sample for 60 seconds 

at 50 °C. Run the test mix at 300 °C. After triplicate or quadruplicate analysis of the test mix, 

process the results in an excel file to ensure that the RSD values look proper and that each peak is 

apparent in the chromatograms (there are normally 17 peaks present). For new users, ensure that 

the operator has seen the test mix and that you can move on to running your samples. 

Tips and Hints 

1. The pyroprobe should be inserted smoothly into the unit, NEVER force it. If it does not 

go easily it is because you are not inserting it straight.  

2. When removing or adding the quartz tube to the filament, never apply pressure or force to 

the tubing. Always all it to fall out on its own. If the tube is stuck, hit the side of the pyroprobe rod 

with tweezers to help remove the quartz tube. When adding a new quartz tube, never push on the 

top of the tube to get it to go into the filament, allow gravity to do its work (do not touch the metal 

filament or bang on the filament itself). 

3. The cost of the pyroprobe rods is ~ $400 or refurbishing $250, so always make sure we 

have a spare one. 

4. Waiting too long before drying and running a sample may cause loss of the sample or 

sample discrimination.  
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5. Introducing sample on just cleaned (too hot probe) may lead to irreproducibility of results 

(wait 5 min). 

6. To fill the tube with quartz wool, place carefully quartz wool (5-7 mm at the center of the 

tube) into the quartz tube and press it from both the ends so that it won’t go down when injecting 

the sample. 
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Table A1. Pyroprobe heating profiles for filament and interface showing initial and optimized conditions. 

 Initial Conditions  Optimized Conditions 

 
300 °C 500 °C 600 °C 700 °C 870 °C 

 
300 °C 500 °C 600 °C 700 °C 870 °C 

Filament initial temp (°C) 40 40 40 40 40 
 

40 40 40 40 40 

Filament initial time (sec) 0 0 0 0 0 
 

0 0 0 0 0 

Filament heating rate (°C/s) 10 10 10 10 10 
 

30 30 30 30 30 

Filament final temp (°C) 300 500 600 700 870 
 

300 500 600 700 870 

Filament final time (sec) 30 30 30 30 10 
 

30 30 30 30 10 

            
Interface rest temp (°C) 40 40 40 40 40 

 
40 40 40 40 40 

Interface initial temp (°C) 40 40 40 40 40 
 

40 40 40 40 40 

Interface initial time (min) 0 0 0 0 0 
 

0 0 0 0 0 

Interface heating rate (°C/s)a 0a 0 0 0 0 
 

0 0 0 0 0 

Interface final temp (°C) 300 300 300 300 300 
 

300 300 300 300 300 

Interface final time (min) 2.5 2.5 2.5 2.5 2.5 
 

0.9 0.9 0.9 0.9 0.9 

            
a Interface heating rate of 0 means the interface was heated ballistically 
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Appendix B 

MS information for compounds used in optimization of TD-Pyr-GC-MS 

Table B1. Standard mixture of compounds for optimization of pyroprobe conditions 

 Compound Ret. Time Key Ions (m/z) 

 Benzene 1.987 78, 77, 51 
 Toluene 3.029 91, 92, 65 

                       SM2 Ethylbenzene 3.919 91, 92, 106 
 m-Xylene 3.983 91, 106, 105 
                        Nonane 4.250 43, 57, 71 
 Butylbenzene 5.450 91, 92, 134 

                   SM1 1-Tridecene 6.840 43, 55, 68 
 Heptadecane 8.890 57, 71, 85 
 Dotriacontane 14.180 57, 71, 85 

                   Bold lettering denotes quantification ion 

 

 

 

 

 

 

 

 

 

 

 

 

 



70 

Appendix C 

TD-Pyr-GC-MS EIC values after analysis of standard mixture 2 

 

Table C1. EIC abundances, STD, and RSD values for SM2 after TD-Pyr-GC-MS analysis. 

  Avg STD RSD  Avg STD RSD  Avg STD RSD 

Benzene 1.13E+07 3.07E+06 27.3  2.02E+07 9.12E+06 45.3  1.30E+07 8.00E+06 61.5 

Toluene 2.76E+07 5.07E+06 18.3  3.80E+07 1.09E+07 28.7  2.75E+07 1.02E+07 37.2 

Ethylbenzene 3.15E+07 4.24E+06 13.4  3.82E+07 8.11E+06 21.2  2.96E+07 7.70E+06 26.0 

m-Xylene 5.12E+07 5.97E+06 11.7  6.10E+07 1.01E+07 16.6  5.13E+07 8.61E+06 16.8 

Nonane 1.22E+07 1.43E+06 11.7  1.45E+07 2.22E+06 15.3  1.21E+07 1.71E+06 14.2 

Butylbenzene 5.58E+07 6.58E+06 11.8  5.81E+07 6.55E+06 11.3  5.43E+07 5.95E+06 10.9 

Tridecene 6.06E+06 9.22E+05 15.2  6.33E+06 8.19E+05 12.9  6.30E+06 5.83E+05 9.3 

Heptadecane 3.13E+07 5.09E+06 16.3  3.27E+07 4.20E+06 12.9  3.20E+07 3.25E+06 10.2 

Dotriacontane 1.85E+07 3.64E+06 19.6  1.82E+07 1.61E+06 8.8  2.10E+07 4.71E+05 2.2 
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Appendix D 

MS identification of compounds based on NIST database 

a) 

 

Figure D1. Mass spectra of select peaks of C21-C40 alkane mix after TD-Pyr-GC-MS a) 
contaminant a b) contaminant b c) contaminant c.  
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Figure D1 cont.  

b) 

 

Figure D1. Mass spectra of select peaks of C21-C40 alkane mix after TD-Pyr-GC-MS a) 
contaminant a b) contaminant b c) contaminant c.  
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Figure D1 cont.  

c) 

 

Figure D1. Mass spectra of select peaks of C21-C40 alkane mix after TD-Pyr-GC-MS a) 
contaminant a b) contaminant b c) contaminant c.  
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Figure D2. Mass spectra of 2-tetradecylcyclobutane peak comparison between sample and NIST 
library. M+ ion can be seen at 266 m/z, which corresponds to the MW of tetradecylcyclobutane.  
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Figure D3. Mass spectra of tetradecenylcyclobutane peak comparison between sample and NIST 
library of 2-tetradecylcyclobutane. Above mass spectra shows loss of 2 m/z from M+ fragment of 
tetradecylcyclobutane, verifying double bond within the molecule. The MW of 
tetradecenylcyclobutane is 264. 
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Figure D4. Mass spectra of 6,10,14-trimethyl-2-pentadecanone peak comparison between sample 
and NIST library. 
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Appendix E 

Table E1. PM2.5 and OC and EC concentrations with % of total PM2.5 collected and measured 
during POLCAST campaign at Grand Forks, ND, 2012 

   
  PM2.5 

 OC/EC conc. and % of PM2.5 

DOY 
 

 conc.  Avg OC conc. % of  Avg EC conc. % of  

Start  End Week   (µg/m3)   (µg/m3) PM2.5 (µg/m3) PM2.5 

173 180 1  3.86  1.74 ± 0.02  45 0.17 ± 0.01 4 

180 187 2  4.98  2.51 ± 0.04 50 0.27 ± 0.02 5 

187 194 3  4.23  2.48 ± 0.12 59 0.20 ± 0.01 5 

194 201 4  13.6  7.70 ± 0.21 57 0.33 ± 0.01 2 

201 208 5  6.44  3.90 ± 0.03 61 0.26 ± 0.01  4 

208 215 6  7.37  3.08 ± 0.01 42 0.22 ± 0.04 3 

215 222 7  4.58  2.47 ± 0.14 54 0.23 ± 0.01  5 

222 229 8  4.51  2.21 ± 0.03 49 0.21 ± 0.01 5 

229 236 9  6.85  2.51 ± 0.15 37 0.35 ± 0.02 5 

236 243 10  7.28  2.88 ± 0.21 40 0.33 ± 0.04 4 

243 250 11  8.64  3.42 ± 0.03 40 0.30 ± 0.01 4 

250 257 12  2.77  2.05 ± 0.04 74 0.22 ± 0.00 8 

257 264 13  5.81  1.69 ± 0.03 29 0.23 ± 0.01 4 

264 271 14  5.68  1.64 ± 0.08 29 0.25 ± 0.03 4 

271 278 15  18.78  5.05 ± 0.29 27 0.55 ± 0.06 3 

278 286 16  3.5  1.17 ± 0.04 33 0.19 ± 0.01 5 

286 293 17  6.9  3.05 ± 0.06 44 0.33 ± 0.02 5 
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Appendix F 

TD-Pyr-GC-MS Compounds 

Table F1. Compounds identified by TD-Pyr-GC-MS during POLCAST campaign, including 
retention times (tR) and MS ions 

Compound tR (min) 
Quant. Ion 

(m/z) 
Confirmation 

Ions (m/z) 
Identification 

(S, R, H) 

Alkanes 

C9 4.23 57 71, 85 S 

C10 5.08 57 71, 85 H 

C11 5.71 57 71, 85 H 

C12 6.30 57 71, 85 H 

C13 6.88 57 71, 85 H 

C14 7.41 57 71, 85 H 

C15 7.92 57 71, 85 H 

C16 8.40 57 71, 85 H 

C17 8.86 57 71, 85 S 

C18 9.30 57 71, 85 H 

C19 9.71 57 71, 85 H 

C20 10.11 57 71, 85 H 

C21 10.49 57 71, 85 H 

C22 10.85 57 71, 85 H 

C23 11.20 57 71, 85 H 

C24 11.53 57 71, 85 H 

C25 11.85 57 71, 85 H 

C26 12.18 57 71, 85 H 

C27 12.47 57 71, 85 H 

C28 12.77 57 71, 85 H 

C29 13.07 57 71, 85 H 

C30 13.39 57 71, 85 H 

C31 13.77 57 71, 85 H 

C32 14.15 57 71, 85 S 

C33 14.60 57 71, 85 H 

C34 15.09 57 71, 85 H 
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Table F1 cont. 

Compound tR (min) 
Quant. Ion 

(m/z) 
Confirmation 

Ions (m/z) 
Identification 

(S, R, H) 

Alkenes 

C9 4.20 55 69, 83 S, H 

C10 5.05 55 69, 83 S, H 

C11 5.68 55 69, 83 S, H 

C12 6.27 55 69, 83 S, H 

C13 6.85 55 69, 83 S, H 

C14 7.38 55 69, 83 S, H 

C15 7.89 55 69, 83 S, H 

C16 8.37 55 69, 83 S, H 

C17 8.83 55 69, 83 S, H 

C18 9.27 55 69, 83 S, H 

C19 9.68 55 69, 83 S, H 

C20 10.08 55 69, 83 S, H 

C21 10.46 55 69, 83 S, H 

C22 10.82 55 69, 83 S, H 

C23 11.17 55 69, 83 S, H 

C24 11.50 55 69, 83 S, H 

C25 11.82 55 69, 83 S, H 

C26 12.15 55 69, 83 S, H 

C27 12.44 55 69, 83 S, H 

C28 12.74 55 69, 83 S, H 

C29 13.04 55 69, 83 S, H 

C30 13.36 55 69, 83 S, H 

C31 13.74 55 69, 83 S, H 

C32 14.12 55 69, 83 S, H 

C33 14.57 55 69, 83 S, H 

C34 15.06 55 69, 83 S, H 
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Table F1 cont. 

Compound tR (min) 
Quant. Ion 

(m/z) 
Confirmation 

Ions (m/z) 
Identification 

(S, R, H) 

Acids and Esters 

C16 FA 9.96 73 43, 129 S, H 
C18 FA 10.75 73 40, 129 S, H 

C16 FAME 9.83 74 87, 153 S, H 
C17 FAME 10.22 74 87, 153 S, H 
C18 FAME 10.60 74 87, 153 S, H 
C19 FAME 10.96 74 87, 153 S, H 
C20 FAME 11.31 74 87, 153 S, H 
C21 FAME 11.65 74 87, 153 S, H 
C22 FAME 11.97 74 87, 153 S, H 
C23 FAME 12.27 74 87, 153 S, H 
C24 FAME 12.59 74 87, 153 S, H 
C25 FAME 12.87 74 87, 153 S, H 
C26 FAME 13.19 74 87, 153 S, H 
C27 FAME 13.52 74 87, 153 S, H 
C28 FAME 13.82 74 87, 153 S, H 

     

PAHs 

Naphthalene  6.34 128 127 S 

1-Methylnaphthalene  6.981 142 141 R 

2-Methylnaphthalene  7.077 142 141 R 

Biphenyl  7.43 154 153 S 

Dimethylnaphthalene  7.582 156 155 R 

Dimethylnaphthalene 2   7.654 156 155 R 

Dimethylnaphthalene 3   7.678 156 155 R 

Dimethylnaphthalene 4   7.766 156 155 R 

Acenaphthylene 7.846 152 151 S 

Fluorene  8.504 166 165 S 

Phenanthrene  9.442 178 176 S 

Anthracene  9.49 178 176 S 

Fluoranthene  10.612 202 200 S 

Pyrene 10.828 202 200 S 
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Table F1 cont. 

Compound tR (min) 
Quant. Ion 

(m/z) 
Confirmation 

Ions (m/z) 
Identification 

(S, R, H) 

BTEX 

Benzene 2.845 78 77,51 S 

Toluene 3.519 91 92, 65 S 

Xylene 4.239 91 106 S 

Ethyl-benzene 4.184 91 106 S 

     

Alkylbenzenes 

C3 benzene 4.833 91 92, 120 S, H 

C3 benzene 4.881 105 120, 91 S, H 

C3 benzene 4.921 105 120, 91 S, H 

C3 benzene 5.001 105 120, 91 S, H 

C3 benzene 5.097 105 120, 91 S, H 

C3 benzene 5.29 105 120, 91 H 

C4 benzene 5.442 105 120, 91 S 

C5 benzene 6.123 91 92, 148 S, H 

C6 benzene 6.708 91 92, 162 S, H 

C7 benzene 7.277 91 92, 176 S, H 

C8 benzene 7.822 91 92, 190 S, H 

C9 benzene 8.327 91 92, 204 S, H 

C10 benzene 8.808 91 92, 218 S, H 

C11 benzene 9.265 92 91, 232 S, H 

C12 benzene 9.698 92 91, 246 S, H 

C13 benzene 10.123 92 91, 260 S, H 

C14 benzene 10.524 92 91, 274 S, H 

C15 benzene 10.892 92 91, 288 S, H 

C16 benzene 11.261 92 91, 302 S, H 

C17 benzene 11.606 92 91, 316 S, H 

C18 benzene 11.942 92 91, 330 S, H 

C19 benzene 12.263 92 91, 344 S, H 

C20 benzene 12.576 92 91, 358 S, H 

C21 benzene 12.872 92 91, 372 S, H 

C22 benzene 13.201 92 91, 386 S, H 

C23 benzene 13.553 92 91, 400 S, H 

C24 benzene 13.866 92 91, 414 S, H 

styrene 4.408 104 103, 78  
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Tabe F1 cont. 

Compound tR (min) Quant. Ion 
(m/z) 

Confirmation 
Ions (m/z) 

Identification 
(S, R, H, T) 

Phenols 

Phenol 4.985 94 66,65 S 

Methyl phenol 5.458 108 107, 77 R 

Methyl phenol 5.594 108 107, 77 R 

C2 phenol 5.979 107 122, 77 R 

C2 phenol 6.051 107 122, 77 R 

C2 phenol 6.171 107 122, 77 R 

C2 phenol 6.227 107 122, 77 R 

Butylated hydroxytoluene 8.047 205 145, 57 T 

     

Ketones/aldehydes 

Nonanal 5.73 57 43, 70 T 
6,10,14-Trimethyl-2-

pentadecanone 
9.5 58 71, 43 T 

     

Sugars 

Levoglucosan 7.927 60 73, 98 S 

Levoglucosenone 5.851 98 96, 126 T 

     

Phthalates 

Dibutyl phthalate 9.642 149 205 S 

Diiosobutyl phthalate 10.027 149 223 S 

Dioctyl phthalate 12.078 149 167, 279 S 

Phthalic anhydride 7.085 148 104, 76 T 

1-Isobenzofuranone  7.277 134 105, 77 T 

     

Nitrogen based 

Diethyltoluamide 8.399 119 190, 91 T 
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Appendix G 

TD-Pyr-GC-MS Compounds 

Table G1. Compounds identified by TD-Pyr-GC-MS during POLCAST campaign week 12 

Week 12 

Alkanes 

Compound 300 °C 500 °C 600 °C 700 °C 870 °C TD Pyr Total 

         

C9 0 0 0 0 0 0 0 0 

C10 0 0 11148 0 0 0 11148 11148 

C11 0 11293 13220 0 0 0 24513 24513 

C12 0 13850 13049 3044 0 0 29943 29943 

C13 0 11359 15030 3063 0 0 29451 29451 

C14 0 13941 12787 3159 0 0 29886 29886 

C15 0 18146 16082 4435 0 0 38662 38662 

C16 0 13059 12295 1695 0 0 27049 27049 

C17 0 14394 11911 1673 0 0 27978 27978 

C18 0 13156 9139 0 0 0 22295 22295 

C19 0 8249 9432 0 0 0 17681 17681 

C20 0 9176 9961 0 0 0 19137 19137 

C21 17357 12914 15575 0 0 17357 28489 45845 

C22 26665 11226 8972 0 0 26665 20198 46864 

C23 82957 22975 12549 0 0 82957 35523 118480 

C24 71095 22653 10096 0 0 71095 32749 103845 

C25 200465 19557 7561 0 0 200465 27118 227583 

C26 111918 31242 11502 0 0 111918 42744 154662 

C27 362417 17644 4007 0 0 362417 21651 384068 

C28 94787 16775 5250 0 0 94787 22025 116813 

C29 1050510 27442 2953 0 0 1050510 30395 1080905 

C30 35267 8670 0 0 0 35267 8670 43937 

C31 830154 16828 0 0 0 830154 16828 846982 

C32 24850 0 0 0 0 24850 0 24850 

C33 38033 0 0 0 0 38033 0 38033 

C34 0 0 0 0 0 0 0 0 

         

Total 2946475 334548 212518 17068 0 2946475 564134 3510609 
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Table G1 cont. 

Week 12 

Alkenes 

Compound 300 °C 500 °C 600 °C 700 °C 870 °C TD Pyr Total 

C9 0 0 0 0 0 0 0 0 

C10 0 0 0 0 0 0 0 0 

C11 0 0 37043 13324 0 0 50367 50367 

C12 0 28269 29166 11059 0 0 68493 68493 

C13 0 24820 32148 12553 0 0 69521 69521 

C14 0 26238 29762 9038 0 0 65038 65038 

C15 0 26997 28125 7547 0 0 62669 62669 

C16 0 25868 23837 4555 0 0 54261 54261 

C17 0 19638 20882 4156 0 0 44676 44676 

C18 0 18395 24286 3306 0 0 45987 45987 

C19 0 16214 14088 0 0 0 30302 30302 

C20 0 14641 8898 0 0 0 23538 23538 

C21 0 15571 11068 0 0 0 26639 26639 

C22 0 15377 9173 0 0 0 24550 24550 

C23 0 21155 0 0 0 0 21155 21155 

C24 0 0 0 0 0 0 0 0 

         

Total 0 253183 268476 65539 0 0 587198 587198 

         

Acids & Esters 

C16 FA 122569 0 0 0 0 122569 0 122569 

C18 FA 25229 0 0 0 0 25229 0 25229 

C16 FAME 71323 0 0 0 0 71323 0 71323 

C17 FAME 0 0 0 0 0 0 0 0 

C18 FAME 44697 0 0 0 0 44697 0 44697 

C19 FAME 0 0 0 0 0 0 0 0 

C20 FAME 5405 0 0 0 0 5405 0 5405 

C21 FAME 0 0 0 0 0 0 0 0 

C22 FAME 14282 0 0 0 0 14282 0 14282 

C23 FAME 4147 0 0 0 0 4147 0 4147 

C24 FAME 15761 0 0 0 0 15761 0 15761 

C25 FAME 0 0 0 0 0 0 0 0 

C26 FAME 5848 0 0 0 0 5848 0 5848 

C27 FAME 0 0 0 0 0 0 0 0 

C28 FAME 0 0 0 0 0 0 0 0 

         

Total 309261 0 0 0 0 309261 0 309261 
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Table G1 cont. 

Week 12 

PAHs 

Compound 300 °C 500 °C 600 °C 700 °C 870 °C TD Pyr Total 

Naphthalene 21702 18793 55067 59922 0 21702 133782 155483 

1-Methylnaphthalene 11190 7369 24764 17829 0 11190 49961 61151 

2-Methylnaphthalene 7961 7264 21211 17914 0 7961 46390 54351 

Biphenyl 15565 7297 9110 0 0 15565 16407 31972 

Dimethylnaphthalene 0 0 0 0 0 0 0 0 

Dimethylnaphthalene 2 0 0 0 0 0 0 0 0 

Dimethylnaphthalene 3 0 0 0 0 0 0 0 0 

Dimethylnaphthalene 4 0 0 0 0 0 0 0 0 

Acenaphthylene 0 0 0 0 0 0 0 0 

Fluorene 0 3635 16897 0 0 0 20532 20532 

Phenanthrene 24107 5696 12741 0 0 24107 18437 42544 

Anthracene 10501 2048 5393 0 0 10501 7441 17943 

Fluoranthene 25163 1943 3206 0 0 25163 5149 30312 

Pyrene 20984 1440 5651 0 0 20984 7090 28075 

         

Total 137174 55485 154039 95665 0 137174 305189 442362 

 

BTEX 

Benzene 0 43209 156272 197017 110395 0 506893 506893 

Toluene 0 229941 424111 271709 81268 0 1007029 1007029 

Xylene 0 79580 152432 80614 0 0 312625 312625 

Ethylbenzene 0 23485 61566 25609 0 0 110660 110660 

         

Total 0 376215 794381 574948 191663 0 1937207 1937207 
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Table G1 cont. 

Week 12 

Alkylbenzenes 

Compound 300 °C 500 °C 600 °C 700 °C 870 °C TD Pyr Total 

C3 benzene 0 0 12030 0 0 0 12030 12030 

C3 benzene 0 11528 40336 0 0 0 51864 51864 

C3 benzene 0 27457 23348 0 0 0 50805 50805 

C3 benzene 0 15727 28459 0 0 0 44187 44187 

C3 benzene 0 27992 40353 0 0 0 68344 68344 

C3 benzene 0 18305 23780 0 0 0 42084 42084 

C4 benzene 0 9840 13992 0 0 0 23832 23832 

C5 benzene 0 11665 15036 0 0 0 26701 26701 

C6 benzene 0 7963 9585 0 0 0 17549 17549 

C7 benzene 0 10547 9236 0 0 0 19782 19782 

C8 benzene 0 9197 7688 0 0 0 16885 16885 

C9 benzene 0 5762 5533 0 0 0 11295 11295 

C10 benzene 0 7575 5555 0 0 0 13131 13131 

C11 benzene 0 3921 3765 0 0 0 7685 7685 

C12 benzene 0 7638 5281 0 0 0 12919 12919 

C13 benzene 0 0 0 0 0 0 0 0 

Styrene 0 80996 82672 0 0 0 163668 163668 

         

Total 0 256112 326648 0 0 0 582760 582760 

         

Phenols 

Phenol 0 78133 85933 0 0 0 164066 164066 

Methyl phenol 20232 26656 40512 0 0 20232 67168 87400 

Methyl phenol 35304 57002 67630 0 0 35304 124631 159936 

C2 phenol 0 0 10344 0 0 0 10344 10344 

C2 phenol 0 0 12380 0 0 0 12380 12380 

C2 phenol 0 0 10321 0 0 0 10321 10321 

C2 phenol 0 0 9018 0 0 0 9018 9018 
Butylated 

hydroxytoluene 
0 0 0 0 0 0 0 0 

         

Total 55537 161790 236137 0 0 55537 397927 453463 
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Table G1 cont. 

Week 12 

Ketones/Aldehydes 

Compound 300 °C 500 °C 600 °C 700 °C 870 °C TD Pyr Total 

Nonanal 69252 0 0 0 0 69252 0 69252 

6,10,14-trimethyl-2-
pentadecanone 

800295 0 0 0 0 800295 0 800295 

         

Total 869547 0 0 0 0 869547 0 869547 

         

Sugars 

levoglucosan 45749 0 0 0 0 45749 0 45749 

levoglucosenone 371649 0 0 0 0 371649 0 371649 

         

Total 417398 0 0 0 0 417398 0 417398 

         

Phthalates 

         

Dibutyl phthalate 200854 0 0 0 0 200854 0 200854 

Diosobutyl phthalate 265935 0 0 0 0 265935 0 265935 

Dioctyl phthalate 144571 0 0 0 0 144571 0 144571 

phthalic anhydride 27061 8642 0 0 0 27061 8642 35703 

1-isobenzofuranone  20943 0 0 0 0 20943 0 20943 

         

Total 659364 8642 0 0 0 659364 8642 668006 

         

Nitrogen Based 

         

Diethyltoluamide 35165 0 0 0 0 35165 0 35165 
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Table G2. Compounds identified by TD-Pyr-GC-MS during POLCAST campaign week 13 

Week 13 

Alkanes 

Compound 300 °C 500 °C 600 °C 700 °C 870 °C TD Pyr Total 

         

C9 0 0 0 0 0 0 0 0 

C10 0 0 0 0 0 0 0 0 

C11 0 9502 10558 0 0 0 20060 20060 

C12 0 13177 8670 0 0 0 21846 21846 

C13 0 12031 10916 0 0 0 22947 22947 

C14 0 13476 12367 0 0 0 25844 25844 

C15 0 11258 14595 0 0 0 25853 25853 

C16 0 9047 8068 0 0 0 17115 17115 

C17 0 15019 6400 0 0 0 21419 21419 

C18 0 8419 4861 0 0 0 13280 13280 

C19 0 11070 7246 0 0 0 18316 18316 

C20 0 8331 8247 0 0 0 16578 16578 

C21 19462 9569 6124 0 0 19462 15693 35155 

C22 31225 17775 6059 0 0 31225 23834 55059 

C23 106732 16149 5328 0 0 106732 21477 128209 

C24 83722 22744 5694 0 0 83722 28438 112160 

C25 307702 15968 4190 0 0 307702 20157 327859 

C26 135235 26662 5902 0 0 135235 32564 167799 

C27 359342 20246 0 0 0 359342 20246 379588 

C28 146877 13890 0 0 0 146877 13890 160767 

C29 725672 20409 0 0 0 725672 20409 746081 

C30 49197 5874 0 0 0 49197 5874 55071 

C31 545471 11797 0 0 0 545471 11797 557268 

C32 21547 0 0 0 0 21547 0 21547 

C33 27592 0 0 0 0 27592 0 27592 

C34 0 0 0 0 0 0 0 0 

         

Total 2559776 292412 125225 0 0 2559776 417637 2977413 
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Table G2 cont. 

Week 13 

Alkenes 

Compound 300 °C 500 °C 600 °C 700 °C 870 °C TD Pyr Total 

C9 0 0 0 0 0 0 0 0 

C10 0 0 0 0 0 0 0 0 

C11 0 0 32963 0 0 0 32963 32963 

C12 0 25871 24285 0 0 0 50156 50156 

C13 0 15944 27544 0 0 0 43487 43487 

C14 0 16955 27405 0 0 0 44360 44360 

C15 0 20799 21949 0 0 0 42747 42747 

C16 0 19801 13279 0 0 0 33079 33079 

C17 0 12777 11416 0 0 0 24192 24192 

C18 0 11011 14019 0 0 0 25030 25030 

C19 0 17423 10311 0 0 0 27734 27734 

C20 0 10400 9529 0 0 0 19929 19929 

C21 0 14796 0 0 0 0 14796 14796 

C22 0 11568 0 0 0 0 11568 11568 

C23 0 0 0 0 0 0 0 0 

         

Total 0 177342 192699 0 0 0 370041 370041 

         

Acids & Esters 

C16 FA 82260 0 0 0 0 82260 0 82260 

C18 FA 0 0 0 0 0 0 0 0 

C16 FAME 61385 0 0 0 0 61385 0 61385 

C17 FAME 5249 0 0 0 0 5249 0 5249 

C18 FAME 54835 0 0 0 0 54835 0 54835 

C19 FAME 0 0 0 0 0 0 0 0 

C20 FAME 7215 0 0 0 0 7215 0 7215 

C21 FAME 0 0 0 0 0 0 0 0 

C22 FAME 19186 0 0 0 0 19186 0 19186 

C23 FAME 4260 0 0 0 0 4260 0 4260 

C24 FAME 24678 0 0 0 0 24678 0 24678 

C25 FAME 0 0 0 0 0 0 0 0 

C26 FAME 8438 0 0 0 0 8438 0 8438 

C27 FAME 0 0 0 0 0 0 0 0 

C28 FAME 0 0 0 0 0 0 0 0 

         

Total 267508 0 0 0 0 267508 0 267508 
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Table G2 cont. 

Week 13 

PAHs 

Compound 300 °C 500 °C 600 °C 700 °C 870 °C TD Pyr Total 

Naphthalene 21617 20516 62648 67448 62314 21617 212927 234544 

1-Methylnaphthalene 10808 10248 33234 23150 0 10808 66631 77440 

2-Methylnaphthalene 8163 9918 25232 25436 0 8163 60586 68749 

Biphenyl 14510 7297 17660 0 0 14510 24956 39466 

Dimethylnaphthalene 0 3848 10152 0 0 0 14000 14000 

Dimethylnaphthalene 2 0 5716 14719 0 0 0 20435 20435 

Dimethylnaphthalene 3 0 5715 14513 0 0 0 20228 20228 

Dimethylnaphthalene 4 0 2873 11010 0 0 0 13883 13883 

Acenaphthylene 0 0 12081 0 0 0 12081 12081 

Fluorene 0 6640 17647 0 0 0 24287 24287 

Phenanthrene 30745 7525 11922 0 0 30745 19447 50192 

Anthracene 9313 3078 7759 0 0 9313 10838 20151 

Fluoranthene 24053 0 0 0 0 24053 0 24053 

Pyrene 27873 0 0 0 0 27873 0 27873 

         

Total 147081 83375 238577 116035 62314 147081 500301 647382 

 

BTEX 

Benzene 0 74963 174584 234530 189298 0 673375 673375 

Toluene 0 180577 471871 308108 129971 0 1090527 1090527 

Xylene 0 109933 169116 107881 0 0 386930 386930 

Ethylbenzene 0 32735 58347 27661 0 0 118742 118742 

         

Total 0 398207 873918 678180 319269 0 2269574 2269574 
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Table G2 cont. 

Week 13 

Alkylbenzenes 

Compound 300 °C 500 °C 600 °C 700 °C 870 °C TD Pyr Total 

C3 benzene 0 0 18553 0 0 0 18553 18553 

C3 benzene 0 0 33045 0 0 0 33045 33045 

C3 benzene 0 0 34347 0 0 0 34347 34347 

C3 benzene 0 0 27570 0 0 0 27570 27570 

C3 benzene 0 31265 48448 0 0 0 79713 79713 

C3 benzene 0 19835 21236 0 0 0 41070 41070 

C4 benzene 0 13058 17801 0 0 0 30859 30859 

C5 benzene 0 14527 15296 0 0 0 29823 29823 

C6 benzene 0 9695 13298 0 0 0 22993 22993 

C7 benzene 0 0 9737 0 0 0 9737 9737 

C8 benzene 0 0 6578 0 0 0 6578 6578 

C9 benzene 0 0 4346 0 0 0 4346 4346 

C10 benzene 0 0 5926 0 0 0 5926 5926 

Styrene 0 70330 91715 0 0 0 162045 162045 

         

Total 0 158710 347895 0 0 0 506605 506605 

         

Phenols 

Phenol 0 64715 87228 0 0 0 151943 151943 

Methyl phenol 18858 30832 42024 0 0 18858 72856 91714 

Methyl phenol 43488 59263 60841 0 0 43488 120105 163593 

C2 phenol 0 0 0 0 0 0 0 0 

C2 phenol 0 15010 16201 0 0 0 31210 31210 

C2 phenol 0 6633 0 0 0 0 6633 6633 

C2 phenol 0 7245 10504 0 0 0 17749 17749 

Butylated 
hydroxytoluene 

24841 0 0 0 0 24841 0 24841 

         

Total 87187 183699 216797 0 0 87187 400495 487683 
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Table G2 cont. 

Week 13 

Ketones/Aldehydes 

Compound 300 °C 500 °C 600 °C 700 °C 870 °C TD Pyr Total 

Nonanal 107722 0 0 0 0 107722 0 107722 

6,10,14-trimethyl-2-
pentadecanone 

1247540 0 0 0 0 1247540 0 1247540 

         

Total 1355262 0 0 0 0 1355262 0 1355262 

         

Sugars 

levoglucosan 0 0 0 0 0 0 0 0 

levoglucosenone 457991 17961 0 0 0 457991 17961 475952 

         

Total 457991 17961 0 0 0 457991 17961 475952 

         

Phthalates 

         

Dibutyl phthalate 355130 0 0 0 0 355130 0 355130 

Diosobutyl phthalate 432363 0 0 0 0 432363 0 432363 

Dioctyl phthalate 189486 0 0 0 0 189486 0 189486 

phthalic anhydride 31000 15048 0 0 0 31000 15048 46049 

1-isobenzofuranone  15721 0 0 0 0 15721 0 15721 

         

Total 1023701 15048 0 0 0 1023701 15048 1038749 

         

Nitrogen Based 

         

Diethyltoluamide 63960 0 0 0 0 63960 0 63960 
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Table G3. Compounds identified by TD-Pyr-GC-MS during POLCAST campaign week 14 

Week 14 

Alkanes 

Compound 300 °C 500 °C 600 °C 700 °C 870 °C TD Pyr Total 

         

C9 0 0 0 0 0 0 0 0 

C10 0 0 0 0 0 0 0 0 

C11 0 0 8703 0 0 0 8703 8703 

C12 0 10431 8067 0 0 0 18498 18498 

C13 0 8206 7457 0 0 0 15662 15662 

C14 0 13268 9088 0 0 0 22356 22356 

C15 0 12346 8302 0 0 0 20648 20648 

C16 0 6591 5374 0 0 0 11965 11965 

C17 0 8629 5956 0 0 0 14585 14585 

C18 0 4954 4855 0 0 0 9809 9809 

C19 0 7022 5547 0 0 0 12569 12569 

C20 0 7304 3039 0 0 0 10343 10343 

C21 0 7344 0 0 0 0 7344 7344 

C22 20167 4278 0 0 0 20167 4278 24445 

C23 95979 9016 0 0 0 95979 9016 104995 

C24 64145 7688 0 0 0 64145 7688 71833 

C25 183917 7494 0 0 0 183917 7494 191411 

C26 89118 10842 0 0 0 89118 10842 99960 

C27 192868 6305 0 0 0 192868 6305 199173 

C28 59774 0 0 0 0 59774 0 59774 

C29 271865 0 0 0 0 271865 0 271865 

C30 34210 0 0 0 0 34210 0 34210 

C31 192442 0 0 0 0 192442 0 192442 

C32 10157 0 0 0 0 10157 0 10157 

C33 14856 0 0 0 0 14856 0 14856 

C34 0 0 0 0 0 0 0 0 

         

Total 1229498 131719 66386 0 0 1229498 198105 1427602 

         

 

 

 

 



94 

Table G3 cont. 

Week 14 

Alkenes 

Compound 300 °C 500 °C 600 °C 700 °C 870 °C TD Pyr Total 

C9 0 0 0 0 0 0 0 0 

C10 0 0 0 0 0 0 0 0 

C11 0 0 25776 0 0 0 25776 25776 

C12 0 17556 18675 0 0 0 36231 36231 

C13 0 14085 20772 0 0 0 34858 34858 

C14 0 19807 18646 0 0 0 38453 38453 

C15 0 17093 17757 0 0 0 34850 34850 

C16 0 15623 13969 0 0 0 29592 29592 

C17 0 9872 10089 0 0 0 19961 19961 

C18 0 9434 10148 0 0 0 19582 19582 

C19 0 6186 0 0 0 0 6186 6186 

C20 0 6974 0 0 0 0 6974 6974 

C21 0 0 0 0 0 0 0 0 

         

Total 0 116630 135833 0 0 0 252463 252463 

         

Acids & Esters 

C16 FA 91354 0 0 0 0 91354 0 91354 

C18 FA 19202 0 0 0 0 19202 0 19202 

C16 FAME 59449 0 0 0 0 59449 0 59449 

C17 FAME 0 0 0 0 0 0 0 0 

C18 FAME 49509 0 0 0 0 49509 0 49509 

C19 FAME 0 0 0 0 0 0 0 0 

C20 FAME 3149 0 0 0 0 3149 0 3149 

C21 FAME 0 0 0 0 0 0 0 0 

C22 FAME 9557 0 0 0 0 9557 0 9557 

C23 FAME 3442 0 0 0 0 3442 0 3442 

C24 FAME 9325 0 0 0 0 9325 0 9325 

C25 FAME 0 0 0 0 0 0 0 0 

C26 FAME 4958 0 0 0 0 4958 0 4958 

C27 FAME 0 0 0 0 0 0 0 0 

C28 FAME 0 0 0 0 0 0 0 0 

         

Total 249946 0 0 0 0 249946 0 249946 
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Table G3 cont. 

Week 14 

PAHs 

Compound 300 °C 500 °C 600 °C 700 °C 870 °C TD Pyr Total 

Naphthalene 25667 20348 64079 41510 0 25667 125937 151604 

1-Methylnaphthalene 9622 8076 29255 9927 0 9622 47258 56879 

2-Methylnaphthalene 7886 7162 22309 17431 0 7886 46902 54788 

Biphenyl 13321 7916 9864 0 0 13321 17781 31102 

Dimethylnaphthalene 0 0 11608 0 0 0 11608 11608 

Dimethylnaphthalene 2 0 0 12943 0 0 0 12943 12943 

Dimethylnaphthalene 3 0 0 9704 0 0 0 9704 9704 

Dimethylnaphthalene 4 0 0 11414 0 0 0 11414 11414 

Acenaphthylene 0 0 0 0 0 0 0 0 

Fluorene 0 0 15861 4745 0 0 20606 20606 

Phenanthrene 33312 0 0 0 0 33312 0 33312 

Anthracene 12593 0 0 0 0 12593 0 12593 

Fluoranthene 25364 0 4122 0 0 25364 4122 29486 

Pyrene 27249 0 4827 0 0 27249 4827 32076 

         

Total 155012 43502 195986 73613 0 155012 313101 468113 

 

BTEX 

Benzene 0 0 199301 196439 90188 0 485928 485928 

Toluene 0 191854 247900 242210 61111 0 743075 743075 

Xylene 0 62801 134149 68738 0 0 265688 265688 

Ethylbenzene 0 27806 35155 21609 0 0 84571 84571 

         

Total 0 282461 616505 528997 151299 0 1579262 1579262 
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Table G3 cont. 

Week 14 

Alkylbenzenes 

Compound 300 °C 500 °C 600 °C 700 °C 870 °C TD Pyr Total 

C3 benzene 0 0 14216 0 0 0 14216 14216 

C3 benzene 0 0 0 0 0 0 0 0 

C3 benzene 0 0 0 0 0 0 0 0 

C3 benzene 0 0 0 0 0 0 0 0 

C3 benzene 0 31876 44959 19338 0 0 96173 96173 

C3 benzene 0 14787 24793 0 0 0 39579 39579 

C4 benzene 0 0 0 0 0 0 0 0 

C5 benzene 0 11908 11935 0 0 0 23843 23843 

C6 benzene 0 10672 8308 0 0 0 18980 18980 

C7 benzene 0 9785 4002 0 0 0 13787 13787 

C8 benzene 0 7462 6271 0 0 0 13732 13732 

C9 benzene 0 5358 7378 0 0 0 12736 12736 

C10 benzene 0 10402 5936 0 0 0 16337 16337 

C11 benzene 0 4598 4206 0 0 0 8804 8804 

C12 benzene 0 5906 4199 0 0 0 10105 10105 

Styrene 0 88771 83650 0 0 0 172421 172421 

         

Total 0 201524 219851 19338 0 0 440713 440713 

         

Phenols 

Phenol 0 68203 81486 0 0 0 149688 149688 

Methyl phenol 20079 31633 43180 0 0 20079 74813 94892 

Methyl phenol 40687 51103 38196 0 0 40687 89299 129986 

C2 phenol 0 0 0 0 0 0 0 0 

C2 phenol 0 0 0 0 0 0 0 0 

C2 phenol 0 0 0 0 0 0 0 0 

C2 phenol 0 0 0 0 0 0 0 0 
Butylated 

hydroxytoluene 9346 0 0 0 0 9346 0 9346 

         

Total 70112 150938 162862 0 0 70112 313800 383913 
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Table G3 cont. 

Week 14 

Ketones/Aldehydes 

Compound 300 °C 500 °C 600 °C 700 °C 870 °C TD Pyr Total 

Nonanal 136040 0 0 0 0 136040 0 136040 
6,10,14-trimethyl-2-

pentadecanone 344244 0 0 0 0 344244 0 344244 

         

Total 480284 0 0 0 0 480284 0 480284 

         

Sugars 

levoglucosan 0 0 0 0 0 0 0 0 

levoglucosenone 235922 0 0 0 0 235922 0 235922 

         

Total 235922 0 0 0 0 235922 0 235922 

         

Phthalates 

         

Dibutyl phthalate 223440 0 0 0 0 223440 0 223440 

Diosobutyl phthalate 270629 0 0 0 0 270629 0 270629 

Dioctyl phthalate 93774 0 0 0 0 93774 0 93774 

phthalic anhydride 19863 9343 0 0 0 19863 9343 29206 

1-isobenzofuranone  13318 0 0 0 0 13318 0 13318 

         

Total 621025 9343 0 0 0 621025 9343 630367 

         

Nitrogen Based 

         

Diethyltoluamide 32910 0 0 0 0 32910 0 32910 
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Table G4. Compounds identified by TD-Pyr-GC-MS during POLCAST campaign week 15 

Week 15 

Alkanes 

Compound 300 °C 500 °C 600 °C 700 °C 870 °C TD Pyr Total 

         

C9 0 0 0 0 0 0 0 0 

C10 0 0 36913 11078 0 0 47991 47991 

C11 0 17409 27683 10169 0 0 55262 55262 

C12 0 18928 34786 10628 0 0 64342 64342 

C13 0 17230 36760 10796 0 0 64786 64786 

C14 0 24386 34601 10294 0 0 69281 69281 

C15 0 27584 36524 7326 0 0 71435 71435 

C16 0 18923 31080 7064 0 0 57066 57066 

C17 0 26987 29594 7892 0 0 64473 64473 

C18 0 19027 29685 6295 0 0 55006 55006 

C19 0 27648 28467 5915 0 0 62030 62030 

C20 41523 20352 27036 4880 0 41523 52267 93790 

C21 44738 26225 20851 3941 0 44738 51017 95755 

C22 74645 23458 20809 4946 0 74645 49213 123857 

C23 208177 48938 25062 3088 0 208177 77088 285265 

C24 178137 52581 31337 3717 0 178137 87636 265773 

C25 455019 45162 26710 4355 0 455019 76226 531245 

C26 236882 67081 28967 4425 0 236882 100473 337355 

C27 586826 31927 14155 0 0 586826 46082 632908 

C28 166451 31116 11758 0 0 166451 42873 209324 

C29 883152 33615 8616 0 0 883152 42232 925384 

C30 64448 13867 4296 0 0 64448 18163 82611 

C31 641635 20710 4220 0 0 641635 24930 666565 

C32 47615 4966 0 0 0 47615 4966 52581 

C33 63879 6685 0 0 0 63879 6685 70564 

C34 11934 0 0 0 0 11934 0 11934 

         

Total 3705061 624805 549910 116808 0 3705061 1291523 4996584 
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Table G4 cont. 

Week 15 

Alkenes 

Compound 300 °C 500 °C 600 °C 700 °C 870 °C TD Pyr Total 

C9 0 0 46024 0 0 0 46024 46024 

C10 0 0 84105 0 0 0 84105 84105 

C11 0 0 51905 20821 0 0 72726 72726 

C12 0 34369 52413 17119 0 0 103902 103902 

C13 0 35710 54239 18833 0 0 108782 108782 

C14 0 35608 49155 14383 0 0 99146 99146 

C15 0 31204 42645 13174 0 0 87023 87023 

C16 0 32661 39557 8831 0 0 81048 81048 

C17 0 28409 32747 9022 0 0 70178 70178 

C18 0 31471 30895 5967 0 0 68333 68333 

C19 0 22028 25274 6975 0 0 54277 54277 

C20 0 28567 20963 5958 0 0 55487 55487 

C21 0 31569 18464 0 0 0 50033 50033 

C22 0 29549 19015 0 0 0 48564 48564 

C23 0 17010 0 0 0 0 17010 17010 

         

Total 0 358155 567401 121082 0 0 1046638 1046638 

         

Acids & Esters 

C16 FA 141565 0 0 0 0 141565 0 141565 

C18 FA 28378 0 0 0 0 28378 0 28378 

C16 FAME 96385 12177 0 0 0 96385 12177 108562 

C17 FAME 7972 0 0 0 0 7972 0 7972 

C18 FAME 51487 5747 0 0 0 51487 5747 57235 

C19 FAME 5230 0 0 0 0 5230 0 5230 

C20 FAME 21732 0 0 0 0 21732 0 21732 

C21 FAME 10283 0 0 0 0 10283 0 10283 

C22 FAME 90695 4733 0 0 0 90695 4733 95428 

C23 FAME 28871 0 0 0 0 28871 0 28871 

C24 FAME 129458 5556 0 0 0 129458 5556 135014 

C25 FAME 12850 0 0 0 0 12850 0 12850 

C26 FAME 68738 0 0 0 0 68738 0 68738 

C27 FAME 0 0 0 0 0 0 0 0 

C28 FAME 22704 0 0 0 0 22704 0 22704 

         

Total 716350 28213 0 0 0 716350 28213 744563 
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Table G4 cont. 

Week 15 

PAHs 

Compound 300 °C 500 °C 600 °C 700 °C 870 °C TD Pyr Total 

Naphthalene 26471 39586 160407 183658 57565 26471 441216 467687 

1-Methylnaphthalene 7022 18524 89527 57437 0 7022 165487 172509 

2-Methylnaphthalene 6270 20126 72474 47433 0 6270 140033 146302 

Biphenyl 28805 17936 41599 34753 0 28805 94288 123093 

Dimethylnaphthalene 0 0 29869 13113 0 0 42982 42982 

Dimethylnaphthalene 2 0 0 22739 21816 0 0 44555 44555 

Dimethylnaphthalene 3 0 0 27087 13700 0 0 40788 40788 

Dimethylnaphthalene 4 0 0 12906 9348 0 0 22254 22254 

Acenaphthylene 0 0 23669 20961 0 0 44630 44630 

Fluorene 0 18975 67289 45366 0 0 131630 131630 

Phenanthrene 27223 14849 38307 34703 0 27223 87860 115083 

Anthracene 12675 4180 11133 8171 0 12675 23483 36157 

Fluoranthene 20522 8141 18304 12383 0 20522 38828 59350 

Pyrene 37161 7194 18137 16216 0 37161 41547 78709 

         

Total 166148 149511 633448 519059 57565 166148 1359582 1525729 

 

BTEX 

Benzene 0 124175 534134 506875 263340 0 1428524 1428524 

Toluene 111117 545561 1126360 722857 209931 111117 2604709 2715826 

Xylene 0 186520 391180 221348 46086 0 845134 845134 

Ethylbenzene 0 52882 92977 48194 12274 0 206326 206326 

         

Total 111117 909138 2144651 1499274 531631 111117 5084693 5195810 
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Table G4 cont. 

Week 15 

Alkylbenzenes 

Compound 300 °C 500 °C 600 °C 700 °C 870 °C TD Pyr Total 

C3 benzene 0 28117 49309 21648 0 0 99074 99074 

C3 benzene 0 54978 91309 23674 0 0 169960 169960 

C3 benzene 0 41702 77079 24448 0 0 143229 143229 

C3 benzene 0 29442 65746 18476 0 0 113664 113664 

C3 benzene 0 51375 108163 41319 0 0 200857 200857 

C3 benzene 0 37497 44627 23710 0 0 105834 105834 

C4 benzene 0 15093 29510 13845 0 0 58448 58448 

C5 benzene 0 15871 24245 11957 0 0 52073 52073 

C6 benzene 0 19688 22199 9890 0 0 51777 51777 

C7 benzene 0 25892 18061 7053 0 0 51006 51006 

C8 benzene 0 17048 16184 7521 0 0 40753 40753 

C9 benzene 0 13647 12381 6486 0 0 32513 32513 

C10 benzene 0 10548 11980 0 0 0 22528 22528 

C11 benzene 0 8861 8102 0 0 0 16963 16963 

C12 benzene 0 10742 11623 0 0 0 22365 22365 

C13 benzene 0 8686 6613 0 0 0 15299 15299 

C14 benzene 0 9029 6532 0 0 0 15561 15561 

C15 benzene 0 11297 4984 0 0 0 16280 16280 

C16 benzene 0 11565 0 0 0 0 11565 11565 

C17 benzene 0 7272 0 0 0 0 7272 7272 

Styrene 0 155494 193369 70790 0 0 419653 419653 

         

Total 0 598802 802016 280815 0 0 1681633 1681633 

         

Phenols 

Phenol 128403 407540 436173 200720 0 128403 1044433 1172836 

Methyl phenol 25188 108106 138641 30027 0 25188 276774 301962 

Methyl phenol 52524 194779 216031 41425 0 52524 452235 504759 

C2 phenol 0 22649 30504 0 0 0 53153 53153 

C2 phenol 0 49311 64164 0 0 0 113475 113475 

C2 phenol 0 41325 50174 0 0 0 91499 91499 

C2 phenol 0 12784 21617 0 0 0 34401 34401 

Butylated 
hydroxytoluene 

18520 0 0 0 0 18520 0 18520 

         

Total 224636 836494 957303 272172 0 224636 2065969 2290605 
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Table G4 cont. 

Week 15 

Ketones/Aldehydes 

Compound 300 °C 500 °C 600 °C 700 °C 870 °C TD Pyr Total 

Nonanal 81714 0 0 0 0 81714 0 81714 
6,10,14-trimethyl-2-

pentadecanone 278936 0 0 0 0 278936 0 278936 

         

Total 360650 0 0 0 0 360650 0 360650 

         

Sugars 

levoglucosan 186212 0 0 0 0 186212 0 186212 

levoglucosenone 230937 0 0 0 0 230937 0 230937 

         

Total 417149 0 0 0 0 417149 0 417149 

         

Phthalates 

         

Dibutyl phthalate 111899 0 0 0 0 111899 0 111899 

Diosobutyl phthalate 200080 0 0 0 0 200080 0 200080 

Dioctyl phthalate 194072 0 0 0 0 194072 0 194072 

phthalic anhydride 40216 20805 0 0 0 40216 20805 61021 

1-isobenzofuranone  35231 18866 0 0 0 35231 18866 54097 

         

Total 581498 39671 0 0 0 581498 39671 621169 

         

Nitrogen Based 

         

Diethyltoluamide 0 0 0 0 0 0 0 0 
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Table G5. Compounds identified by TD-Pyr-GC-MS during POLCAST campaign week 16 

Week 16 

Alkanes 

Compound 300 °C 500 °C 600 °C 700 °C 870 °C TD Pyr Total 

         

C9 0 0 0 0 0 0 0 0 

C10 0 0 0 0 0 0 0 0 

C11 0 0 0 0 0 0 0 0 

C12 0 0 0 0 0 0 0 0 

C13 0 0 0 0 0 0 0 0 

C14 0 0 0 0 0 0 0 0 

C15 0 4003 0 0 0 0 4003 4003 

C16 0 3726 0 0 0 0 3726 3726 

C17 0 4932 0 0 0 0 4932 4932 

C18 0 2623 0 0 0 0 2623 2623 

C19 0 1996 0 0 0 0 1996 1996 

C20 31081 0 0 0 0 31081 0 31081 

C21 28043 0 0 0 0 28043 0 28043 

C22 56322 0 0 0 0 56322 0 56322 

C23 116840 0 0 0 0 116840 0 116840 

C24 120761 0 0 0 0 120761 0 120761 

C25 165939 0 0 0 0 165939 0 165939 

C26 142002 0 0 0 0 142002 0 142002 

C27 148128 0 0 0 0 148128 0 148128 

C28 72723 0 0 0 0 72723 0 72723 

C29 151784 0 0 0 0 151784 0 151784 

C30 28779 0 0 0 0 28779 0 28779 

C31 70633 0 0 0 0 70633 0 70633 

C32 0 0 0 0 0 0 0 0 

C33 0 0 0 0 0 0 0 0 

C34 0 0 0 0 0 0 0 0 

         

Total 1133035 17280 0 0 0 1133035 17280 1150315 
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Table G5 cont. 

Week 16 

Alkenes 

Compound 300 °C 500 °C 600 °C 700 °C 870 °C TD Pyr Total 

C9 0 0 0 0 0 0 0 0 

C10 0 0 0 0 0 0 0 0 

C11 0 0 0 0 0 0 0 0 

C12 0 15895 11619 0 0 0 27514 27514 

C13 0 26105 8537 0 0 0 34642 34642 

C14 0 10676 8234 0 0 0 18910 18910 

C15 0 8349 6629 0 0 0 14978 14978 

C16 0 7716 4724 0 0 0 12440 12440 

C17 0 5494 0 0 0 0 5494 5494 

C18 0 4520 0 0 0 0 4520 4520 

C19 0 0 0 0 0 0 0 0 

         

Total 0 78755 39743 0 0 0 118498 118498 

         

Acids & Esters 

C16 FA 61268 0 0 0 0 61268 0 61268 

C18 FA 0 0 0 0 0 0 0 0 

C16 FAME 32786 0 0 0 0 32786 0 32786 

C17 FAME 0 0 0 0 0 0 0 0 

C18 FAME 32037 0 0 0 0 32037 0 32037 

C19 FAME 0 0 0 0 0 0 0 0 

C20 FAME 5267 0 0 0 0 5267 0 5267 

C21 FAME 0 0 0 0 0 0 0 0 

C22 FAME 15257 0 0 0 0 15257 0 15257 

C23 FAME 3148 0 0 0 0 3148 0 3148 

C24 FAME 11672 0 0 0 0 11672 0 11672 

C25 FAME 0 0 0 0 0 0 0 0 

C26 FAME 5128 0 0 0 0 5128 0 5128 

C27 FAME 0 0 0 0 0 0 0 0 

C28 FAME 0 0 0 0 0 0 0 0 

         

Total 166563 0 0 0 0 166563 0 166563 
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Table G5 cont. 

Week 16 

PAHs 

Compound 300 °C 500 °C 600 °C 700 °C 870 °C TD Pyr Total 

Naphthalene 17771 12154 29335 0 0 17771 41489 59260 

1-Methylnaphthalene 7150 4855 13181 0 0 7150 18037 25187 

2-Methylnaphthalene 6312 5300 12179 0 0 6312 17479 23790 

Biphenyl 8830 5467 0 0 0 8830 5467 14297 

Dimethylnaphthalene 0 0 0 0 0 0 0 0 

Dimethylnaphthalene 2 0 0 0 0 0 0 0 0 

Dimethylnaphthalene 3 0 0 0 0 0 0 0 0 

Dimethylnaphthalene 4 0 0 0 0 0 0 0 0 

Acenaphthylene 0 0 0 0 0 0 0 0 

Fluorene 0 2364 7148 0 0 0 9511 9511 

Phenanthrene 16721 0 0 0 0 16721 0 16721 

Anthracene 8715 0 0 0 0 8715 0 8715 

Fluoranthene 23244 0 0 0 0 23244 0 23244 

Pyrene 27844 0 0 0 0 27844 0 27844 

         

Total 116586 30140 61842 0 0 116586 91982 208568 

 

BTEX 

Benzene 0 49226 102958 72726 84888 0 309797 309797 

Toluene 0 101105 205406 112309 57543 0 476363 476363 

Xylene 0 48262 67853 0 0 0 116115 116115 

Ethylbenzene 0 18821 16858 0 0 0 35679 35679 

         

Total 0 217413 393075 185035 142431 0 937954 937954 
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Table G5 cont. 

Week 16 

Alkylbenzenes 

Compound 300 °C 500 °C 600 °C 700 °C 870 °C TD Pyr Total 

C3 benzene 0 0 0 0 0 0 0 0 

C3 benzene 0 0 0 0 0 0 0 0 

C3 benzene 0 0 0 0 0 0 0 0 

C3 benzene 0 0 0 0 0 0 0 0 

C3 benzene 0 0 27436 0 0 0 27436 27436 

C3 benzene 0 0 0 0 0 0 0 0 

         

Total 0 598802 802016 280815 0 0 1681633 1681633 

         

Phenols 

Phenol 0 41970 0 0 0 0 41970 41970 

Methyl phenol 23232 9877 0 0 0 23232 9877 33109 

Methyl phenol 39077 22808 0 0 0 39077 22808 61885 

C2 phenol 0 0 0 0 0 0 0 0 

C2 phenol 0 0 0 0 0 0 0 0 

C2 phenol 0 0 0 0 0 0 0 0 

C2 phenol 0 0 0 0 0 0 0 0 
Butylated 

hydroxytoluene 0 0 0 0 0 0 0 0 

         

Total 62309 74655 0 0 0 62309 74655 136964 

         

Ketones/Aldehydes 

Nonanal 45654 0 0 0 0 45654 0 45654 
6,10,14-trimethyl-2-

pentadecanone 159219 0 0 0 0 159219 0 159219 

         

Total 204873 0 0 0 0 204873 0 204873 

         

Sugars 

levoglucosan 0 0 0 0 0 0 0 0 

levoglucosenone 729830 35443 0 0 0 729830 35443 765273 

         

Total 729830 35443 0 0 0 729830 35443 765273 
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Table G5 cont. 

Week 16 

Phthalates 

Compound 300 °C 500 °C 600 °C 700 °C 870 °C TD Pyr Total 

         

Dibutyl phthalate 103762 0 0 0 0 103762 0 103762 

Diosobutyl phthalate 149805 0 0 0 0 149805 0 149805 

Dioctyl phthalate 91854 0 0 0 0 91854 0 91854 

phthalic anhydride 27554 0 0 0 0 27554 0 27554 

1-isobenzofuranone  0 0 0 0 0 0 0 0 

         

Total 372975 0 0 0 0 372975 0 372975 

         

Nitrogen Based 

         

Diethyltoluamide 0 0 0 0 0 0 0 0 
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Table G6. Compounds identified by TD-Pyr-GC-MS during POLCAST campaign week 17 

Week 17 

Alkanes 

Compound 300 °C 500 °C 600 °C 700 °C 870 °C TD Pyr Total 

         

C9 0 0 0 0 0 0 0 0 

C10 0 0 0 0 0 0 0 0 

C11 0 0 14630 0 0 0 14630 14630 

C12 0 10159 11128 0 0 0 21288 21288 

C13 0 16386 13764 4169 0 0 34319 34319 

C14 0 14698 15963 3853 0 0 34514 34514 

C15 0 17313 14818 4993 0 0 37123 37123 

C16 0 14054 11613 1823 0 0 27491 27491 

C17 0 15061 12078 2924 0 0 30062 30062 

C18 0 12816 12137 2947 0 0 27900 27900 

C19 0 10023 11622 1557 0 0 23202 23202 

C20 0 16579 13918 0 0 0 30498 30498 

C21 14344 15841 14058 0 0 14344 29899 44243 

C22 46883 16930 9474 0 0 46883 26405 73288 

C23 90119 13390 16568 0 0 90119 29958 120077 

C24 132476 25127 11586 0 0 132476 36712 169188 

C25 290013 19149 8177 0 0 290013 27326 317339 

C26 207990 28203 11485 0 0 207990 39687 247677 

C27 412925 16719 5067 0 0 412925 21786 434711 

C28 147014 14054 5441 0 0 147014 19494 166508 

C29 787030 17013 0 0 0 787030 17013 804043 

C30 76770 9356 0 0 0 76770 9356 86126 

C31 515923 8116 0 0 0 515923 8116 524039 

C32 23583 0 0 0 0 23583 0 23583 

C33 52225 0 0 0 0 52225 0 52225 

C34 0 0 0 0 0 0 0 0 

         

Total 2797295 310985 213528 22264 0 2797295 546778 3344073 
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Table G6 cont. 

Week 17 

Alkenes 

Compound 300 °C 500 °C 600 °C 700 °C 870 °C TD Pyr Total 

C9 0 0 0 0 0 0 0 0 

C10 0 0 0 0 0 0 0 0 

C11 0 0 45694 17968 0 0 63663 63663 

C12 0 25595 45271 11462 0 0 82328 82328 

C13 0 29068 31485 12172 0 0 72725 72725 

C14 0 32099 35425 7867 0 0 75391 75391 

C15 0 29659 32681 9241 0 0 71581 71581 

C16 0 31536 24343 6097 0 0 61976 61976 

C17 0 21748 21572 3602 0 0 46922 46922 

C18 0 18909 21234 0 0 0 40143 40143 

C19 0 19397 17125 0 0 0 36522 36522 

C20 0 16808 15231 0 0 0 32039 32039 

C21 0 20765 19043 0 0 0 39808 39808 

         

Total 0 245584 309104 68409 0 0 623097 623097 

         

Acids & Esters 

C16 FA 144919 0 0 0 0 144919 0 144919 

C18 FA 19761 0 0 0 0 19761 0 19761 

C16 FAME 46564 0 0 0 0 46564 0 46564 

C17 FAME 0 0 0 0 0 0 0 0 

C18 FAME 18237 0 0 0 0 18237 0 18237 

C19 FAME 0 0 0 0 0 0 0 0 

C20 FAME 21558 0 0 0 0 21558 0 21558 

C21 FAME 7719 0 0 0 0 7719 0 7719 

C22 FAME 66775 0 0 0 0 66775 0 66775 

C23 FAME 34737 0 0 0 0 34737 0 34737 

C24 FAME 82996 0 0 0 0 82996 0 82996 

C25 FAME 6090 0 0 0 0 6090 0 6090 

C26 FAME 25044 0 0 0 0 25044 0 25044 

C27 FAME 0 0 0 0 0 0 0 0 

C28 FAME 10448 0 0 0 0 10448 0 10448 

         

Total 484847 0 0 0 0 484847 0 484847 
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Table G6 cont. 

Week 17 

PAHs 

Compound 300 °C 500 °C 600 °C 700 °C 870 °C TD Pyr Total 

Naphthalene 27826 26913 63889 81868 30977 27826 203647 231472 

1-Methylnaphthalene 12394 11859 43972 36300 0 12394 92131 104525 

2-Methylnaphthalene 6197 12667 36509 27325 0 6197 76501 82697 

Biphenyl 11207 10207 16074 13281 0 11207 39562 50769 

Dimethylnaphthalene 0 8487 20917 7321 0 0 36725 36725 

Dimethylnaphthalene 2 0 6686 12801 9022 0 0 28509 28509 

Dimethylnaphthalene 3 0 7382 17999 10413 0 0 35794 35794 

Dimethylnaphthalene 4 0 8283 15384 5309 0 0 28977 28977 

Acenaphthylene 0 0 14262 10714 0 0 24975 24975 

Fluorene 0 12358 36829 23239 0 0 72426 72426 

Phenanthrene 26581 12610 18262 18266 0 26581 49138 75719 

Anthracene 10915 4562 10019 9029 0 10915 23610 34525 

Fluoranthene 29093 0 8148 5363 0 29093 13511 42604 

Pyrene 27441 0 8213 5093 0 27441 13305 40746 

         

Total 151653 122013 323277 262544 30977 151653 738810 890463 

 

BTEX 

Benzene 0 112097 182250 234935 158030 0 687312 687312 

Toluene 0 285121 659161 375472 102187 0 1421941 1421941 

Xylene 0 113605 218482 121033 0 0 453120 453120 

Ethylbenzene 0 36493 69935 23479 0 0 129907 129907 

         

Total 0 547316 1129828 754919 260217 0 2692280 2692280 
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Table G6 cont. 

Week 17 

Alkylbenzenes 

Compound 300 °C 500 °C 600 °C 700 °C 870 °C TD Pyr Total 

C3 benzene 0 10860 22256 0 0 0 33116 33116 

C3 benzene 0 35156 36505 0 0 0 71661 71661 

C3 benzene 0 27702 35311 0 0 0 63013 63013 

C3 benzene 0 16709 34124 15010 0 0 65843 65843 

C3 benzene 0 28609 53618 25771 0 0 107997 107997 

C3 benzene 0 19579 27906 11360 0 0 58845 58845 

C4 benzene 0 15985 26970 0 0 0 42955 42955 

C5 benzene 0 13882 33424 0 0 0 47306 47306 

C6 benzene 0 14986 15842 0 0 0 30828 30828 

C7 benzene 0 6662 12961 0 0 0 19623 19623 

C8 benzene 0 9205 9767 0 0 0 18972 18972 

C9 benzene 0 11286 7647 0 0 0 18933 18933 

C10 benzene 0 13525 9338 0 0 0 22863 22863 

C11 benzene 0 5262 4134 0 0 0 9396 9396 

C12 benzene 0 8824 5734 0 0 0 14558 14558 

C13 benzene 0 5873 3739 0 0 0 9612 9612 

C14 benzene 0 5000 0 0 0 0 5000 5000 

C15 benzene 0 4853 0 0 0 0 4853 4853 

Styrene 0 87864 107362 48230 0 0 243457 243457 

         

Total 0 341824 446637 100371 0 0 888832 888832 

         

Phenols 

Phenol 0 243564 242008 136395 0 0 621967 621967 

Methyl phenol 20053 60707 81308 28980 0 20053 170994 191047 

Methyl phenol 48735 108601 123367 41414 0 48735 273382 322117 

C2 phenol 0 11855 13074 0 0 0 24929 24929 

C2 phenol 0 29214 31358 0 0 0 60572 60572 

C2 phenol 0 22832 29189 0 0 0 52022 52022 

C2 phenol 0 7347 12886 0 0 0 20233 20233 

Butylated 
hydroxytoluene 

591007 0 0 0 0 591007 0 591007 

         

Total 659794 484120 533191 206789 0 659794 1224100 1883894 
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Table G6 cont. 

Week 17 

Ketones/Aldehydes 

Compound 300 °C 500 °C 600 °C 700 °C 870 °C TD Pyr Total 

Nonanal 70361 0 0 0 0 70361 0 70361 

6,10,14-trimethyl-2-
pentadecanone 

41531 0 0 0 0 41531 0 41531 

         

Total 111893 0 0 0 0 111893 0 111893 

         

Sugars 

levoglucosan 676491 0 0 0 0 676491 0 676491 

levoglucosenone 241323 23516 0 0 0 241323 23516 264839 

         

Total 917814 23516 0 0 0 917814 23516 941330 

         

Phthalates 

         

Dibutyl phthalate 31398 0 0 0 0 31398 0 31398 

Diosobutyl phthalate 29402 0 0 0 0 29402 0 29402 

Dioctyl phthalate 173916 0 0 0 0 173916 0 173916 

phthalic anhydride 70500 13862 0 0 0 70500 13862 84362 

1-isobenzofuranone  28896 0 0 0 0 28896 0 28896 

         

Total 334113 13862 0 0 0 334113 13862 347975 

         

Nitrogen Based 

         

Diethyltoluamide 0 0 0 0 0 0 0 0 

         

 

 

 

 

 

 



113 

Appendix H 

TD-Pyr-GC-MS Normalized Data 

Table H1. TD-Pyr-GC-MS data normalized to its own week 

 Week 12  Week 13  Week 14 

Compound TD Pyr Total  TD Pyr Total  TD Pyr Total 

n-Alkanes Odd 26.3 3.0 29.4  20.0 2.1 22.1  15.4 1.7 17.1 

n-Alkanes Even 3.7 2.7 6.4  4.5 1.9 6.4  4.5 1.5 6.0 

n-Alkenes 0.0 6.0 6.0  0.0 3.5 3.5  0.0 4.1 4.1 

Acids & esters 3.2 0.0 3.2  2.6 0.0 2.6  4.0 0.0 4.0 

PAHs 1.4 3.1 4.5  1.4 4.8 6.2  2.5 5.1 7.6 

BTEX 0.0 19.7 19.7  0.0 21.7 21.7  0.0 25.5 25.5 

Alkylbenzenes 0.0 5.9 5.9  0.0 4.8 4.8  0.0 7.1 7.1 

Phenol 0.6 4.1 4.6  0.8 3.8 4.7  1.1 5.1 6.2 

Ketone/aldehyde 8.9 0.0 8.9  13.0 0.0 13.0  7.8 0.0 7.8 

Sugars 4.3 0.0 4.3  4.4 0.2 4.6  3.8 0.0 3.8 

Phthalates 6.7 0.1 6.8  9.8 0.1 9.9  10.0 0.2 10.2 

Nitrogen Based 0.4 0.0 0.4  0.6 0.0 0.6  0.5 0.0 0.5 

            

Total 55.3 44.7 100.0  57.0 43.0 100.0  49.7 50.3 100.0 

      

      

      

 Week 15  Week 16  Week 17 

Compound TD Pyr Total  TD Pyr Total  TD Pyr Total 

n-Alkanes Odd 15.3 3.4 18.7  16.2 0.3 16.5  17.7 2.2 20.0 

n-Alkanes Even 4.4 3.4 7.8  10.7 0.2 10.9  5.2 2.2 7.4 

n-Alkenes 0.0 5.5 5.5  0.0 2.8 2.8  0.0 5.1 5.1 

Acids & esters 3.8 0.1 3.9  4.0 0.0 4.0  4.0 0.0 4.0 

PAHs 0.9 7.2 8.1  2.8 2.2 5.0  1.2 6.1 7.3 

BTEX 0.6 26.9 27.5  0.0 22.3 22.3  0.0 22.1 22.1 

Alkylbenzenes 0.0 8.9 8.9  0.0 3.3 3.3  0.0 7.3 7.3 

Phenol 1.2 10.9 12.1  1.5 1.8 3.3  5.4 10.0 15.4 

Ketone/aldehyde 1.9 0.0 1.9  4.9 0.0 4.9  0.9 0.0 0.9 

Sugars 2.2 0.0 2.2  17.4 0.8 18.2  7.5 0.2 7.7 

Phthalates 3.1 0.2 3.3  8.9 0.0 8.9  2.7 0.1 2.9 

Nitrogen Based 0.0 0.0 0.0  0.0 0.0 0.0  0.0 0.0 0.0 

            

Total 33.3 66.7 100.0  66.3 33.7 100.0  44.7 55.3 100.0 
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Table H2. TD-Pyr-GC-MS data normalized to sample week 15 (most abundant week) 

 
Week 12  Week 13  Week 14 

Compound TD Pyr Total  TD Pyr Total  TD Pyr Total 

n-Alkanes Odd 13.7 1.6 15.3  11.1 1.2 12.2  5.0 0.5 5.6 

n-Alkanes Even 1.9 1.4 3.3  2.5 1.1 3.5  1.5 0.5 2.0 

n-Alkenes 0.0 3.1 3.1  0.0 2.0 2.0  0.0 1.3 1.3 

Acids & Esters 1.6 0.0 1.6  1.4 0.0 1.4  1.3 0.0 1.3 

PAHs 0.7 1.6 2.3  0.8 2.6 3.4  0.8 1.7 2.5 

BTEX 0.0 10.3 10.3  0.0 12.0 12.0  0.0 8.4 8.4 

Alkylbenzenes 0.0 3.1 3.1  0.0 2.7 2.7  0.0 2.3 2.3 

Phenols 0.3 2.1 2.4  0.5 2.1 2.6  0.4 1.7 2.0 

Ketone/aldehyde 4.6 0.0 4.6  7.2 0.0 7.2  2.5 0.0 2.5 

Sugars 2.2 0.0 2.2  2.4 0.1 2.5  1.2 0.0 1.2 

Phthalates 3.5 0.0 3.5  5.4 0.1 5.5  3.3 0.0 3.3 

Nitrogen Based 0.2 0.0 0.2  0.3 0.0 0.3  0.2 0.0 0.2 

            

Total 28.8 23.2 52.0  31.6 23.8 55.4  16.3 16.5 32.7 

            

            

            

 Week 15  Week 16   Week 17  

Compound TD Pyr Total  TD Pyr Total  TD Pyr Total 

n-Alkanes Odd 15.3 3.4 18.7  3.6 0.1 3.7  11.5 1.4 12.9 

n-Alkanes Even 4.4 3.4 7.8  2.4 0.0 2.4  3.4 1.4 4.8 

n-Alkenes 0.0 5.5 5.5  0.0 0.6 0.6  0.0 3.3 3.3 

Acids & Esters 3.8 0.1 3.9  0.9 0.0 0.9  2.6 0.0 2.6 

PAHs 0.9 7.2 8.1  0.6 0.5 1.1  0.8 3.9 4.7 

BTEX 0.6 26.9 27.5  0.0 5.0 5.0  0.0 14.3 14.3 

Alkylbenzenes 0.0 8.9 8.9  0.0 0.7 0.7  0.0 4.7 4.7 

Phenols 1.2 10.9 12.1  0.3 0.4 0.7  3.5 6.5 10.0 

Ketone/aldehyde 1.9 0.0 1.9  1.1 0.0 1.1  0.6 0.0 0.6 

Sugars 2.2 0.0 2.2  3.9 0.2 4.1  4.9 0.1 5.0 

Phthalates 3.1 0.2 3.3  2.0 0.0 2.0  1.8 0.1 1.8 

Nitrogen Based 0.0 0.0 0.0  0.0 0.0 0.0  0.0 0.0 0.0 
            

Total 33.3 66.7 100.0  14.8 7.5 22.3  28.9 35.8 64.7 
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Table H3. TD-Pyr-GC-MS data normalized to TD and Pyr fractions 

 Week 12  Week 13  Week 14 

Compound TD Pyr Total  TD Pyr Total  TD Pyr Total 

n-Alkanes Odd 47.5 6.8 29.4  35.1 4.9 22.1  31.0 3.3 17.1 

n-Alkanes Even 6.7 6.1 6.4  7.8 4.4 6.4  9.0 3.1 6.0 

n-Alkenes  0.0 13.4 6.0  0.0 8.2 3.5  0.0 8.1 4.1 

Acids & Esters  5.7 0.0 3.2  4.5 0.0 2.6  8.1 0.0 4.0 

PAHs  2.5 7.0 4.5  2.5 11.1 6.2  5.0 10.1 7.6 

BTEX 0.0 44.2 19.7  0.0 50.5 21.7  0.0 50.8 25.5 

Alkylbenzenes  0.0 13.3 5.9  0.0 11.3 4.8  0.0 14.2 7.1 

Phenols  1.0 9.1 4.6  1.5 8.9 4.7  2.3 10.1 6.2 

Ketone/aldehyde  16.0 0.0 8.9  22.7 0.0 13.0  15.6 0.0 7.8 

Sugars 7.7 0.0 4.3  7.7 0.4 4.6  7.7 0.0 3.8 

Phthalates  12.1 0.2 6.8  17.2 0.3 9.9  20.2 0.3 10.2 

Nitrogen Based 0.6 0.0 0.4  1.1 0.0 0.6  1.1 0.0 0.5 
            

Total 100.0 100.0 100.0  100.0 100.0 100.0  100.0 100.0 100.0 
            

            

            

 Week 12  Week 13  Week 14 

Compound TD Pyr Total  TD Pyr Total  TD Pyr Total 

n-Alkanes Odd 45.9 5.1 18.7  24.5 0.8 16.5  39.6 4.1 20.0 

n-Alkanes Even 13.1 5.2 7.8  16.2 0.4 10.9  11.6 4.0 7.4 

n-Alkenes  0.0 8.3 5.5  0.0 8.4 2.8  0.0 9.2 5.1 

Acids & Esters  11.4 0.2 3.9  6.0 0.0 4.0  8.9 0.0 4.0 

PAHs  2.6 10.8 8.1  4.2 6.5 5.0  2.8 10.9 7.3 

BTEX 1.8 40.4 27.5  0.0 66.2 22.3  0.0 39.9 22.1 

Alkylbenzenes  0.0 13.3 8.9  0.0 9.9 3.3  0.0 13.2 7.3 

Phenols  3.6 16.4 12.1  2.2 5.3 3.3  12.1 18.1 15.4 

Ketone/aldehyde  5.7 0.0 1.9  7.4 0.0 4.9  2.1 0.0 0.9 

Sugars 6.6 0.0 2.2  26.2 2.5 18.2  16.8 0.3 7.7 

Phthalates  9.3 0.3 3.3  13.4 0.0 8.9  6.1 0.2 2.9 

Nitrogen Based 0.0 0.0 0.0  0.0 0.0 0.0  0.0 0.0 0.0 

            

Total 100.0 100.0 100.0  100.0 100.0 100.0  100.0 100.0 100.0 
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