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ABSTRACT 

A gas chromatographic-mass spectrometric (GC-MS) method has been developed for the 

determination of a broad range of aldehydes (including, hydroxylated and aromatic aldehydes) in 

particulate matter (PM). In this method, the aldehydes are derivatized with O-2, 3, 4, 5-

pentafluorobenzyl hydroxylamine hydrochloride (PFBHA) using various solvents for extraction 

and derivatization including acetonitrile, water, methanol, and 

acetonitrile/dichloromethane/methanol. An ACN/DCM/MeOH mixture with sonication was 

shown to be optimal as it increased the derivatization efficiency in addition to efficient extraction 

for all tested aldehydes. The optimal derivatization conditions were determined and then tested on 

a variety of oxy-PAHs which resulted in a complete derivatization of carboxaldehydes but only 

incomplete derivatization of quinonic species. Application of the extraction protocol to wood 

smoke (WS) PM and comparison to the traditional EPA buffer method resulted in higher 

recoveries (up to 150%) of several aldehydes. This artifact was shown to be due to the presence of 

organics like syringol and levoglucosan in WS PM at higher concentrations and not be caused by 

which were not due to completeness/incompleteness of the analyte derivatization. This effect was 

attributed to a matrix-assisted response enhancement, i.e., loss of analytes upon injection due to 

its adsorption, which may be masked by organics as blocking agents. Further application of the 

optimized method to particulate matter in GC-MS EI and NCI methods resulted in identification 

of up to 30 compounds. The NCI method proved to be more sensitive, with up to 28 compound 

detected with LODs in a range of 0.06 µg – 1.47 µg and comparable quantities (mean ± SD) of 
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aldehydes in all concentrations of WS PM used. By contrast, the EI method was shown to be less 

sensitive, with only 16 compounds being detected. 
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 CHAPTER I 

1. INTRODUCTION 

1.1. Particulate Matter 

Particulate matter (PM) is defined as the mixture of microscopically small solid and liquid 

particles present in the atmosphere.1 PM with diameter less than 2.5 µm (PM2.5) has a significant 

impact on human health (causing asthma, cardio-respiratory decease and lung cancer) and climate 

(scattering of radiation and formation of cloud-condensation nuclei).1-5 Consequently PM2.5 is 

regulated by the United States Environmental Protection Agency (EPA) at concentration of 12 

µg/m3.6 PM consists of both inorganic and organic species, where organic matter may represent a 

significant portion (10–70%) of PM.2 However, the role of organics in climate and health studies 

is not fully understood due to complexity of their characterization and large portion being 

uncharacterized.2  

Various oxidation processes of organic matter lead to formation of Secondary Organic 

Aerosols (SOA) in the atmosphere affecting overall concentrations of PM.1,3 Among the most 

challenging classes of compounds belonging to SOAs are, due to their reactivity and instability, 

aldehydes and carbonyl compounds such as oxy-PAHs (products of PAHs oxidation).  

1.2. Aldehydes in Particulate Matter 

Aldehydes are volatile, polar and reactive organic species, which are ubiquitous 

components of PM.7-11 Aldehydes are released into the atmosphere by both anthropogenic 
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(combustion of organic matter) and natural (emission from plants) sources and are also 

formed as a result of various reactions such as ozonolysis of olefins, and photochemical reactions 

of hydrocarbons.7-11 A wide variety of the aldehydes is associated with adverse health and climate 

effects. For instance, some of the lower molecular weight aldehydes such as formaldehyde, 

acetaldehyde and acrolein cause eye and lung irritation.11 By contrast, dialdehydes (e.g., 

methylglyoxal and glyoxal) received much attention as potential SOA precursors undergoing acid 

catalyzed heterogeneous reactions (aldol condensation, hemiacetal and acetal formation, 

polycondensation of carboxylic and hydroxy-carboxylic acids and alcohols, and hydration of 

aldehydes) in the aerosol phase which result in the formation of higher molecular weight 

compounds.12,13 

1.3. Approaches used for Determination of Aldehydes in PM 

Direct determination of aldehydes in complex matrices is complicated due to their 

occurrence in trace concentrations, volatility and high reactivity.8,9 Reactions of aldehydes can 

occur during sample collection or solvent extraction procedures, which result in deviations of the 

determined aldehyde concentration from the actual concentrations.13 Hastings et.al, reported that 

formation of oligomers from aldehydes may occur during their ionization, an essential step of mass 

spectrometric (MS) analysis.14 These facts indicate the importance of understanding the chemical 

behavior of aldehydes to ensure high accuracy and precision  of both sample preparation and 

analysis. 

1.3.1. Derivatization of Aldehydes 

To ensure high sensitivity and stability of analytes, the preferred methods of aldehyde 

analysis involve derivatization.7,15 Two most commonly used derivatization agents are 2,4-
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dinitrophenyl hydrazine (2,4-DNPH) and O-(2,3,4,5,6-pentafluorobenzyl)hydroxylamine 

hydrochloride (PFBHA).5,7,15 2,4-DNPH derivatization products are typically analyzed by 

HPLC.16 Although 2,4-DNPH derivatives may be analyzed using GC, PFBHA derivatization with 

GC-MS analysis is often preferred due to a better resolution and ability to derivatize aldehydes 

with various functionalities, such as hydroxy carbonyls and dicarbonyls, when characterizing 

atmospheric samples.7,16 Derivatization of aldehydes with PFBHA provides thermally stable and 

volatile oximes (Scheme 1), which have specific mass spectra and high sensitivity in different 

detection systems, such as electron ionization mass spectrometry (EI-MS) and negative-ion 

chemical ionization mass spectrometry (NICI-MS).8 

 

 

 

Scheme 1. Schematic representation of PFBHA derivatization of aldehydes15 

The solvent system used for sample preparation in aldehyde analysis may have an effect on 

derivatization efficiency of aldehydes. Temime et al. compared the PFBHA derivatization 

efficiency of aldehydes of several solvent systems including MeOH, water/ACN (9.875:0.125 v/v), 

and ACN/DCM/MeOH (1:8.5:0.5 v/v/v) and reported comparable derivatization yields in three 

solvent systems.17 In case of derivatization of multifunctional carbonyls involving a two-step 

derivatization (PFBHA followed by N, O-bis (trimethylsilyl)-trifluoroacetamide (BSTFA), the 

presence of water or methanol should be avoided, considering their reactivity with BSTFA.17 
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1.3.2. Extraction of Aldehydes from PM 

Although various protocols for the derivatization and analysis of aldehydes were evaluated, 

no considerable attention was given to the methods for extraction (sample preparation) of 

aldehydes from PM and other matrices. The extraction procedure for solid samples suggested by 

Environmental Protection Agency (method 8315A) proposes 18 h extraction on a rotary shaker 

with acetate-based buffered aqueous solution (EPA Buffer). By contrast, the atmospheric studies 

involving characterization of aldehydes from PM employed various solvent systems as well as 

using different extraction techniques.17-26 The extraction of multifunctional aldehydes from PM2.5 

was shown to be significantly more efficient in polar solvents (providing 50–124% recovery in 

water) and at lower temperatures (up to -8 ºC) compared to DCM and toluene/isopropanol (2:1 

v/v).23 However, the use of polar protic solvents for extraction of aldehydes from PM was shown 

to catalyze aldol condensation reactions.25 On the other hand, non-polar solvents cause 

depolymerization of oligomers, which may potentially overestimate the amounts of free aldehydes 

in PM.26 These findings support the importance of application of an appropriate solvent system 

and extraction conditions. Besides the consideration of reactivity, it is difficult to predict if the 

solvent of choice is able to disrupt analyte-matrix interactions. 

A comprehensive summary of these extraction protocols (using PFBHA for derivatization) 

employed in atmospheric studies is provided in Table 1. In most of the reported methods, sampling 

of aldehydes was done using XAD resin coated denuders (for gas-phase) and quartz fiber filters 

(for PM), which were typically coated with PFBHA dissolved in either MeOH or water (Table 

1).17-23 This sampling method was proven to be efficient in providing reproducible measurements 

with relative standard deviations ranging from 2.2 % to 12.2 %.17 Extraction of the PM was 

conducted using various  polar and non-polar solvent systems including (ACN/DCM/MeOH, 
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ACN/DCM, hexane/DCM, DCM, water and toluene/isopropanol) and employing different 

techniques such as sonication, rotary-shaking and soxhlet extraction.17-24 The most common 

extraction/derivatization solvent system consisted of ACN/DCM/MeOH and was applied 

with/without PFBHA pretreatment.17,18 Temime et al. reported that ACN/DCM/MeOH  is better 

than MeOH and water/ACN as this protocol  is  water-free and minimizes the use of MeOH.17 On 

the other hand, Healy et al. reported the use of ACN/DCM/MeOH for monitoring carbonyl 

compounds in the photoxidation of isoprene.18
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Table 1. Comprehensive overview of the protocols used for extraction of aldehydes from PM with PFBHA derivatization 

Source of PM &  

sampling procedure 

Aldehydes analyzed Sample preparation   Use of IS/RS Analysis 

Method 

Reference 

  Methods Optimized 

parameters 

   

Chamber experiments 
Fluorocarbon coated glass 
fiber filters (47 mm): 
a) Filter directly collecting 
PM 
b) Filter doped with 3 mg 
PFBHA placed after 
denuder  

Carbonyls, dicarbonyls, 
aromatic aldehydes, 
carbonyl- containing furans 
and benzoquinones 

Filters extracted/derivatized with 
PFBHA 3 mg in 10 mL MeOH  for 
72 h, concentrated under N2 to near 
dryness 

Comparable 
derivatization yields in 
three solvent systems. 
ACN/DCM/MeOH 
was selected as it is 
water free and 
minimizes the use of 
MeOH.   

NRa GC-EI-MS 17 

Chamber experiments  
Glass fiber filter (47 mm) 
precoated with PFBHA 
(2 mg/410 µL 14% H2O in 
MeOH) 

Methacrolein, 2-methylbut-3-
enal, glycolaldehyde,  
glyoxal, methylglyoxal , 
oxopropanedial, 
hydroxymethylglyoxal, and  
2,3-dioxobutanal 

Filters extracted in 10 mL of the 
mixture of ACN/DCM/MeOH 
(1:8.5:0.5 v/v/v) overnight in dark,  
evaporated to ~3 mL by rotary 
evaporation and filtered using a 
PTFE membrane 

NR NR GC-EI-MS 18 

Suburban ambient air 
a) Teflon filter pack with 
three quartz fiber filters (47 
mm), impregnated with 
PFBHA 
b) Denuder coated with 40 
mM PFBHA 

glyoxal, methylglyoxal, 
glycolaldehydehyde and 
some bifunctional carbonyls 

Filters sonicated with 5 mL 
ACN/DCM (1:1 v/v) in an ice bath 
for 15 min 
Derivatization with 30 µL of 40 mM 
PFBHA for 24 h at room 
temperature, evaporated to dryness 
and derivatized with BSTFA (50 µL) 

NR IS 1-phenyldodecane GC-EI-MS 19 

Diesel emissions 
a) Quartz fiber filters (47 
mm) 
b) XAD4-coated annular 
denuder for gas-phase 

Aliphatic and aromatic 
carbonyls 

Filters sonicated (15 min) with 3x10 
mL hexane/DCM (1:1 v/v) followed 
by 3x extraction with 10 mL MeOH. 
Combined extracts evaporated to 50 
µL under N2, transferred to 200 µL 
ACN/DCM (9:1 v/v) and derivatized 
with 50 mg/mL PFBHA in MeOH at 
room temperature for 24 h 

NR 2-fluoro-9-fluorenone 
13C6 4-hydroxybenzaldehyde 
and d4 1, 4-benzoquinone 

HPLC-ITMS 20 



Table 1 contd. 
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Ambient PM2.5  
a) 47-mm Zefluor filters 
b) XAD4-coated annular 
denuder for gas-phase 

Ketolimononaldehyde, C4-C6 
linear dicarboxylic acids and 
limonic acid  

Filters soxhlet extracted with 
ACN/DCM (1:1 v/v) for 24 h.  
Solutions evaporated to dryness. 
Derivatization with 1) PFBHA, 2) 
BF3-methanol-PFBHA-BSTFA, 3) 
PFBHA-BSTFA and 4) BF3-
methanol-BSTFA  

NR trans-p-menth-6-ene-2, 8-
diol, bornyl acetate, cis-
ketopinic acid and d50-
tetracosane 

GC-ITMS 3 

Gasoline and diesel motor 
emissions. 47 mm quartz 
fiber filters and 
polyurethane foam 
substrates for PM 

C6-C16 quinones Filters extracted 3x by sonication into 
10 mL DCM/hexane (1:1 v/v) 
followed by 3x extraction with 10 
mL MeOH 
Extracts evaporated to <50 µL and 
transferred to 150 µL ACN/DCM 
(9:1 v/v) followed by addition of a 
200 mM solution of PFBHA in 
MeOH. Left at room temperature for 
24 h 

NR 4-fluorobenzaldehyde, 
benzaldehyde-d6, 2,2’-
difluorobiphenyl, 6-fluoro-
4-chromanone and 2-fluoro-
9-fluorenone 

GC-ITMS 
and HPLC-
APCI-ITMS 

21 

PM2.5.   
Teflon-impregnated glass 
fiber filters (128-mm) 

Carbonyls and hydroxy 
carbonyls 

Filters soxhlet extracted in ACN 
/DCM (1:1 v/v) for 24 h. 
Extracts spiked with 350 µL of 160 
µM/mL PFBHA in water. 
Evaporated to dryness and 
redissolved in 800 µL of 
DCM/hexane (1:2 v/v) followed by 
addition of 50 µL BSTFA and 100 
µL pyridine. Left overnight at room 
temperature and filtered 

NR Benzaldehyde-d5 GC-ITMS 22 

PM2.5 and model 
compounds.  
Two samplers in parallel 
1) 47 mm Teflon filter  
2) 47 mm quartz fiber 
filter.  

Carbonyls and 
multifunctional carbonyls 

Filters sonicated (2 min) with water, 
DCM or toluene/isopropanol (1:1 
v/v). 
Derivatization with 0.1 mM solution 
of PFBHA in water at room 
temperature for 24 h.  
LLE into methyl tert-butyl ether  
Evaporated under N2, dissolved in 
200 µL of BSTFA and allowed to 
react at 42 °C for 12 h 

Recovery of 
multifunctional 
carbonyls followed 
solvent polarity. 
(Water> DCM> 
toluene/isopropanol). 
Lowering the 
sonication bath 
temperature improved 
the % recoveries. 

NR GC/CI-ITMS 23 



Table 1 contd. 
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 PM1 
150 mm quartz fiber filter 

Glyoxal and methylglyoxal 25 % of the filter is extracted into 
water. 
Derivatization with 10000 fold 
excess PFBHA 
LLE into hexane 
Dried over sodium sulfate. 

NR 2-
Trifluormethylbenzaldehyde 

GCMS 24 

aNR  denotes Not reported
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Evaluation of several solvent systems (not including ACN/DCM/MeOH) was reported by Rao et 

al.26 However, no comprehensive comparison of the extraction solvent systems combined with 

PFBHA derivatization was performed.  

1.3.3. Composition of Wood Smoke PM and Effect on Derivatization of Aldehydes 

The possible species which may affect the extraction or derivatization of aldehydes are co-

extracted aldehydes or simply the most abundant organics in PM potentially altering the medium 

polarity and other parameters. Table 2 gives brief evaluation of composition of organics in wood 

smoke PM. The major contribution to PM is from syringol derivatives (47.1 – 144.0 mg/g of PM), 

guaiacol derivatives (5.4 − 57.0 mg/g of PM), and levoglucosan (204 mg/g of PM).32-38 Other 

phenolics in wood smoke PM have concentrations in a range of 6421 – 47800 µg/g of PM.32-39 

Overall, levoglucosan in wood smoke PM has a significantly higher concentration while other 

phenols like syringol and guiacol derivatives have moderate concentrations.32-38 
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Table 2. Previously reported concentrations of syringol, phenols and levoglucosan in wood smoke PM 

 

Source of PM Extraction 

technique/solvent 

Concentration of 

syringol derivatives 

(µg/g) 

Concentration of 

guaiacol derivatives 

(µg/g) 

Conc. of other 

phenols  

(µg/g) 

Conc. of 

Levoglucosan 

(µg/g) 

 Reference 

Wood smoke PM 
collected from a 
chimney, burning mix 
of hardwoods 

Hot pressurized water 
extraction 

19000  3400  3800 µg/g - 32 

Wood smoke PM10, 
beech wood and pine 
wood combustion 
experiments 

Extracted with toluene 
for 30 min by sonication 

260  2.572  - 22868  33 

PM2.5  - Acetonyl syringol - 62.7 
Propionyl syringol - 5.25  

 - 365  34 

Hardwood smoke 
burning 

Extraction by sonication 
for 2 h with 60 mL of 
acetone 

181400  105900  74600  - 35 

Wood smoke (Wood 
combustion 
experiments) 

Extraction with hexane 
(2x) and with benzene/2-
propanol (2:1 mixture, 
3x) by sonication. 

- - - 673 - 1490  36 

Residential wood 
combustion  

Extraction with hexane 
(2x) and with benzene/2-
propanol (2:1 mixture, 
3x) by sonication. 

47150  5375  6421  204210  37 

Residential wood 
combustion 

- 144000  56500  47800  - 38 

Residential wood 
combustion 

Extraction with ethyl 
acetate containing 3.6 
mM trimethylamine by 
sonication. 

- - - 1980-3700 39 
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1.4. Accurate Quantification of Aldehydes in PM 

Aldehydes are reactive and volatile, thus it is essential to employ for their quantification 

appropriate internal standards (IS) and recovery standards (RS). The purpose of the internal 

standard (IS) is to correct for any volume errors that occurred during sample preparation. By 

contrast, the RS are added prior to the sample preparation in order to evaluate matrix effects and 

sample preparation losses. Usually yields of a recovery standard are reported based on 4-5 point 

calibration curves. Two important requirements for RS are 1) the behavior of the RS should mimic 

that of the analytes (chemically identical nature) and 2) if many analytes of differing 

functionalities/properties are involved, one would have to consider using more than one RS.18 In 

the case of aldehyde analysis in PM, deuterated aldehydes such as 4-hydroxybenzaldehyde-d4 and 

benzaldehyde-d6 (one standard for all analytes) were previously used as RSs.20,22 However, since 

a typical PM analysis involves a variety of aldehydes with multi-functional groups, the method 

requires the use of more than one RS which resemble the chemical nature of different groups of 

aldehydes.  

1.5. Derivatization of Oxy-PAHs in Particulate Matter 

Another important class of compounds formed during the oxidation process of organic PM 

matter are oxy-PAHs, which are primarily the oxidation products of PAHs. Previously, the PFBHA 

derivatization of quinones and carboxaldehydes was achieved using different solvent systems 

including MeOH, ACN/DCM and ACN/DCM/MeOH,17,20,21 but no attempts were made to 

optimize the solvent systems and conditions to achieve complete derivatization of oxy-PAHs. A 
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possible reason for this lack of optimization is that carbonyl PAHs can be observed without 

derivatization.21 Nevertheless assessing the effectiveness of derivatization and identification is 

essential when performing the derivatization of carbonyl species in general. 

1.6. Goals & Objectives 

At present, the extraction of aldehydes from PM of different origin is accomplished by a 

variety of different solvent systems (Table 1).17-23 However, to the best of our knowledge, no 

studies providing a comprehensive comparison of solvent effects on the efficiency of aldehyde 

extraction/derivatization from PM have been reported. For this reason, the specific goal of this 

research project was to evaluate derivatization/ extraction efficiencies of a wide range of  

aldehydes in PM using various solvent systems including the buffer used in the EPA method, 

deionized water, ACN, MeOH, and mixture of ACN/DCM/MeOH (1:8.5:0.5 v/v/v). Two different 

extraction techniques (sonication and rotary-shaking) and the impact of PFBHA pre-treatment 

prior to the extraction were evaluated. In this work, we have also used labeled standards as 

recovery standards to fully understand the extraction process and account for possible artifacts 

during extraction/derivatization as well as to ensure accurate quantification in ambient PM 

samples. 
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CHAPTER II 

2. EXPERIMENTAL 

2.1.Materials 

Solvents including MeOH (99.9% Purge & Trap grade), MeOH (LC-MS Optima grade), 

ACN (99.9%, LC-MS Optima grade), DCM (99.9%, LC-MS grade) and acetone (99.9%, LC-MS 

grade) were purchased from Fisher Scientific (Waltham, MA, USA). EPA buffer (64.3 mL 1M 

NaOH + 5.7 mL glacial acetic acid in 900 mL water with final pH of 4.9±0.2) was prepared prior 

to the experiment in the laboratory.28 Deionized water was obtained using a Direct-Q3 water 

purification system with an incorporated dual wavelength UV lamp (Millipore, Billerica, MA, 

USA) for low total organic carbon content (the manufacturer’s claimed purity is less than 5 ng/g). 

The derivatization agent, PFBHA (>99%) and the reagent grade selenium dioxide (SeO2) were 

purchased from Sigma-Aldrich (Milwaukee, WI, USA). The detailed information on a broad range 

of aldehydes (i.e., linear, hydroxylated and aromatic aldehydes), recovery standards (deuterated 

aldehydes) and internal standards employed in this study including supplier names, retentions 

times, quantification (m/z), and confirmation ions used in the GC-NCI-MS (Negative Chemical 

Ionization) and GC-EI-MS (Electron Ionization) analysis is provided in Table 3. Oxy-PAHs 

employed in this study including supplier names, retention times and confirmation ions of both 

derivatized and underivatized oxy-PAHs are listed in Table 4. 
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Table 3. List of aldehydes studied including target ions and confirmation ions of their derivatives used for GC-MS analysis and data 
processing. 

        NCI-MS EI-MS  

Aldehydes Supplier 
MW 

(g/mol) 

MW 

Derivatized 

(g/mol)  

Q iona 

(m/z) 

Confirmation 

Ions (m/z) 

Q Ion 

(m/z) 

Confirmation 

Ions (m/z) 
RS 

Formaldehyde Fisher Scientificb 30 225 225 205 181 195, 225 Formaldehyde-13C-d2 

Acetaldehyde Sigma Aldrichc 44 239 239 218 181 209, 239 Acetaldehyde-d4 

Propanal Sigma-Aldrich 58 253 253 233 181 223, 236 Propanal-d2 

Acrolein Sigma-Aldrich 56 251 231 201 181 221, 251 Propanal-d2 

Isobutanal Sigma Aldrich 72 267 178 247, 267 181 250 Propanal-d2 

Butanal Flukac 72 267 247 267 239 226 Butanal-d2 

Crotonal Chem Serviced 70 265 245 215 181 195, 250 Butanal-d2 

Pentanal Sigma Aldrich 86 281 178 261, 231 181 207, 239 Butanal-d2 

Hexanal Sigma Aldrich 100 295 178 248, 275 181 239, 295 Butanal-d2 

Furaldehyde Sigma Aldrich 96 271 241 271 291 248 Furaldehyde-d4 

trans-2-Hexenal Sigma Aldrich 98 293 273 243 181 250, 293 Furaldehyde-d4 

Heptanal Sigma Aldrich 114 309 178 289, 262 181 207, 239 Furaldehyde-d4 

Octanal Sigma Aldrich 128 323 178 276, 303 181 239, 323 Octanal-d16 

Benzaldehyde Sigma Aldrich 106 301 281 251 301 271 Benzaldehyde-d6 

Phenylacetaldehyde Sigma Aldrich 120 315 178 295, 267 181 91, 315 Benzaldehyde-d6 

Nonanal Fluka 142 337 178 317 181 239 Benzaldehyde-d6 

m-Tolualdehyde Sigma Aldrich 120 315 295 265, 167 181 91, 315 Benzaldehyde-d6 

o-Tolualdehyde Sigma Aldrich 120 315 295 265, 167 181 91, 315 Benzaldehyde-d6 

Hydrocinnamaldehyde Sigma Aldrich 132 329 178 309 181 271, 329 Benzaldehyde-d6 

trans-2-Nonenal Sigma Aldrich 140 335 315 285 181 250, 335 Benzaldehyde-d6 

2-Hydroxy benzaldehyde Chem Service 122 317 136 280 181 300, 317 Benzaldehyde-d6 

Decanal Sigma Aldrich 156 351 178 331 181 239, 351 Benzaldehyde-d6 

2,5-Dimethylbenzaldehyde Sigma Aldrich 134 329 309 279 181 286, 329 Benzaldehyde-d6 

5-Hydroxymethyl furfural Sigma Aldrich 126 321 271 285, 301 181 291, 321 Benzaldehyde-d6 

2,4-Nonadienal Sigma Aldrich 138 333 283 167 181 276, 333 Benzaldehyde-d6 

Glyoxal Sigma Aldrich 58 448 267 167 181 418, 448 Benzaldehyde-d6 



Table 3 contd. 

 

 

1
5

 

Undecanal Sigma Aldrich 170 365 345 318 239 181, 345 Benzaldehyde-d6 

Anisaldehyde Chem Service 136 331 311 281 331 181, 288 p-Anisaldehyde-d3 

Methylglyoxal Sigma Aldrich 72 462 281 167, 392 181 432, 462 p-Anisaldehyde-d3 

4-Hydroxybenzaldehyde Chem Service 122 317 297 267 181 274, 317 4-Hydroxybenzaldehyde-d4 

Dodecanal Sigma Aldrich 184 379 178 332, 359 181 239 4-Hydroxybenzaldehyde-d4 

Glutaraldehyde Sigma Aldrich 100 490 178 450 181 293, 490 4-Hydroxybenzaldehyde-d4 

Syringaldehyde Chem Service 182 377 357 327 377 181 4-Hydroxybenzaldehyde-d4 

Recovery standards (RS) 

Formaldehyde-13C-d2 Isoteche 32 227 228 208 181 198 – 

Acetaldehyde-d4 CDN Isotopesf 48 243 243 222 181 213 – 

Propanal-d2 CDN Isotopes 60 255 255 235 181 238, 225 – 

Butanal-d2 CDN Isotopes 74 269 269 221 181 241 – 

Furaldehyde-d4 CDN Isotopes 100 275 275 245 181 295, 251 – 

Octanal-d16 CDN Isotopes 134 329 319 289 181 243, 339 – 

Benzaldehyde-d6 CDN Isotopes 112 307 287 257 181 307, 277 – 

p-Anisaldehyde-d3 CDN Isotopes 139 334 314 284 181 334 – 

Methylglyoxal – d4 Synthesized 76 271 - - 181 466, 436 – 

4-Hydroxybenzaldehyde-d4 CDN Isotopes 126 321 301 271 181 321 
 

– 

Internal standards (IS) tested 

2-Nitroaniline Acros – 138 – – – – 

1,3-Dinitrobenzene-d4 Sigma Aldrich – 172 – – – – 

Octafluoronaphthalene Sigma Aldrich – 272 – 272 242 – 
a“Q”denotes quantification ion; b(Pittsburgh, PA,USA);  c(St. Louis, MO, USA); d(West Chester, PA, USA);  e(Champaign, IL, USA); 
f(Pointe-Claire, Quebec, Canada)
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For calibration, a defined mixture of aldehydes was prepared with concentrations ranging 

from 0.02 µg/mL to 7.5 µg/mL. Two oxy-PAH mixtures were prepared at ~1 µg/mL and 

~10 µg/mL per compound. 

To evaluate the applicability of the method, a wood smoke PM collected from a chimney 

that vented an airtight wood stove burning a mix of hardwoods was used for extraction and 

determination of aldehydes.28  Silica particles and carbon particles used in this study were 

purchased from Sigma Aldrich (St. Louis, MO, USA).  
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Table 4. List of oxy-PAHs studied including GC-MS retention times (tR) and MS quantification 
and confirmation ions of derivatized and underivatized species. 
 

a Ions in bold denote quantification ions and the other ions were used for confirmation. b ND 
denotes not detected. c NA denotes not applicable as these species were not possible to be 
derivatized 

  Underivatized PFBHA Derivatized 

Oxy-PAHs Supplier MW 

(g/mol) 
tR (min) EI MS ions 

(m/z)a 

MW 

(g/mol) 
tR  (min) EI MS ions 

(m/z)a 

2-Chloranthraquinone Sigma Aldrich 242 16.74 242,214,186 437 NAc - 

1,4-Naphthaquinone Alfa Aesar 158 9.42 158,130,102 353 17.21 181,353 

Anthraquinone Sigma Aldrich 208 15.21 208,180,152 403 - - 

Phenanthraquinone Alfa Aesar 208 17.11 208,180,152 403 - - 

Pentacenequinone Sigma Aldrich 308 27.59 308,280,252 503 - - 

1, 8-Dihydroxyanthraquinone Sigma Aldrich 240 17.30 240,212,184 435 - - 

2-Methylanthraquinone Sigma Aldrich 222 16.46 222,194,165 417 - - 

Bianthrone Sigma Aldrich 384 29.93 384,355, 207 579 - - 

Acetophenone Chem Service 120 6.13     120,105,77 315 12.48 181,315 

1-Indanone Sigma Aldrich 132 8.08 132,104,78 327 14.68 181,327,116 

9-Fluorenone Sigma Aldrich 180 12.86 180,152,126 375 19.07 181,345,375 

Benzophenone Fisher 182 11.65 182,105,77 377 16.47 181,377,196 

3-Methoxyacetophenone Sigma Aldrich 150 8.22 150,135,107 345 14.69 181,345,328 

Phenoxy-2-propanone Sigma Aldrich 150 7.39 150,107,77 345 13.62 181,345,328 

3-Methyl-2-cyclohexen-1-one Sigma Aldrich 110 NDb - 305 11.87 181,305,288 

Xanthone Sigma Aldrich 196 14.11 196,168,139 391 - - 

1, 3-Indandione Alfa Aesar 146 8.82 146,118,104 341 15.95 181,341,324 

9-Phenanthrenecarboxaldehyde Sigma  206 16.63 206,178,151 401 22.15 181,401,358 

Anthrone Alfa Aesar 194 15.00 194,165,139 389 - - 

1-Naphthalaldehyde Sigma Aldrich 156 11.45 156,128 351 17.29 181,351,308 

Anthracene-9-carboxaldehyde Fluka 206 16.86 206,178,151 401 20.30 181,401,220 

1,4-Benzoquinone Sigma Aldrich 108 - - 303 12.64 181,303 

Methyl-1,4-benzoquinone Sigma Aldrich 122 - - 317 13.32 181,317 

1,2-Naphthaquinone Sigma Aldrich 158 11.43 158,130,102 353 18.35 181,336,353 

Perinaphthenone Sigma Aldrich 180 14.54 180,152 375 - - 

2-Methyl-1,4-naphthaquinone Sigma Aldrich 172 10.49 172,115,104 367 - - 

1-Pyrene carboxaldehyde Sigma Aldrich 230 19.88 230,201,100 425 25.11 181,425,244 

Biphenyl-4-carboxaldehyde Sigma Aldrich 182 12.55 182,181,152 377 19.26 181,377,334 

Dicinnamalacetone Sigma Aldrich 286 - - 481 - - 

Pyrene-4,5-dione Sigma Aldrich 232 20.16 204, 232, 176 427 - - 
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2.2. Sample Preparation 

Individual stock solutions of aldehydes were prepared in methanol at a concentration of 20 

mg/mL and stored at -18 °C. Extraction and derivatization of aldehydes was evaluated in several 

solvent systems including EPA buffer, deionized water, ACN, MeOH, and mixture of 

ACN/DCM/MeOH (1:8.5:0.5 v/v/v).  In our initial work, we first evaluated the effectiveness of 

derivatization method. This was followed by comparison of several protocols employing 

simultaneous or sequential extraction and derivatization. The detectable concentration of 

underivatized aldehydes was determined by serial dilutions in a range from 7.5 µg/mL to 250 

µg/mL per compound.  

2.2.1. PFBHA Derivatization in Aqueous Media 

The protocol for derivatization in aqueous media employed either purified water or EPA 

buffer. The derivatization method was first evaluated using a mixture of aldehydes (listed in Table 

2) spiked into 10 mL of either water or buffer resulting in a final total concentration of 0.1–1.5 

mg/L. The mixture of recovery standards (RS) listed in Table 2 (15 µL of 0.2–0.5 mg/mL per RS) 

was added to this solution. PFBHA solutions (15 mg/mL) were prepared freshly in purified water 

prior to the derivatization. The final concentration of PFBHA in 10 mL solution was 1.5 mg/mL 

thus resulting in a minimum 10-fold excess of PFBHA compared to the molar concentration of 

carbonyls. The solutions consisting of target analytes and PFBHA were placed at room 

temperature in the dark overnight under either rotary shaking (for derivatization in EPA buffer) or 

sonication (for derivatization in water) to ensure the complete derivatization of the aldehydes. 

After the reaction, a few drops of concentrated sulfuric acid (1:3 v/v) were added to prevent the 

potential interference from excess PFBHA during the GC analysis. Liquid-liquid extraction (LLE) 

of PFBHA-aldehydes into 3 times 1.0 mL of DCM (each time shaking for 1 min) was employed. 
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DCM was used as it was proven to be an efficient solvent for extraction of PFBHA derivatives of 

carbonyls,29 then by EPA method recommended hexane. The DCM fractions were combined and 

filtered through anhydrous Na2SO4 layered on top of purified glass wool, and filtered over a 0.2 

µm Teflon syringe filter to remove any water residues and solid particles from the extract, 

respectively. Internal standards (5 µL of 10.5 mg/mL) were added prior to the GC analysis. 

Evaluation of purity of solvent systems was performed by adding 15 mg of PFBHA to 10 

mL of pure solvents of different grades and derivatization for 18 hours (no aldehydes were added). 

LLE was performed three times into DCM and the extracts were analyzed using GC-MS.  

2.2.2. PFBHA Derivatization in Organic Media 

The protocol for derivatization in organic media employed MeOH, ACN, or the 

ACN/DCM/MeOH (1:8.5:0.5 v/v/v) mixture. For the optimization of derivatization conditions, a 

mixture of aldehydes (listed in Table 3) was spiked into the solvent resulting in a final 

concentration of 0.1–1.5 µg/mL per analyte. The mixture of recovery standards (RS) listed in Table 

2 (15 µL of 0.2–0.5 mg/mL per RS) was added to this solution. PFBHA solution (15 mg/mL) was 

prepared freshly in methanol prior to the derivatization. A final concentration of PFBHA in 10 mL 

of the derivatizing solutions was 1.5 mg/mL. These solutions were sonicated overnight to ensure 

complete derivatization of the aldehydes. No further processing for extraction of derivatized 

aldehydes was needed since the derivatization was done in an organic solvent. The solutions were 

filtered with 0.2 µm Teflon filter to remove any solid particles in the samples. Internal standards 

(5 µL of 10.5 mg/mL) were added prior to the GC analysis. 
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2.2.3. Derivatization of oxy-PAHs 

The protocol for derivatization of oxy-PAHs (individually at 10 µg/mL per analyte) 

involved the use of ACN/DCM/MeOH (1:8.5:0.5 v/v/v) and MeOH. The PFBHA solution was 

prepared freshly in MeOH. Final concentration of each oxy-PAH in 1 mL of the solution was 10 

µg/mL with 200 µg/mL of PFBHA. The solutions were left at room temperature in the dark 

providing sonication overnight. To the analytes derivatized in MeOH, the ACN/DCM mixture was 

added later prior to the analysis. The solutions were then analyzed on GC-EI-MS.  

2.2.4. Extraction of Aldehydes from PM 

The extraction of aldehydes from PM was performed using 15 mg of wood smoke PM. The 

extraction efficiencies were compared in two solvent systems consisting of ACN/DCM/MeOH 

and EPA buffer. Extraction using ACN/DCM mixture was performed employing sonication for 24 

h and followed the protocol for derivatization in organic media. The extraction using EPA buffer 

was carried out using rotary-shaking for 24 h and followed the protocol for derivatization in 

aqueous media (described in section 2.2.1). 

2.3. Evaluation of Extraction Protocol 

In order to evaluate the extraction/derivatization protocol several experiments were 

designed.  

1) To evaluate the recovery of aldehydes (RS), an experiment was performed by spiking a standard 

solution (15 µL) of deuterated RS aldehydes (listed in Table 1) to 5 mL of the ACN/DCM/MeOH 

solvent system containing 15 mg of WS PM. The analytes were derivatized overnight using 

sonication and analyzed on GC-EI-MS. Further, to compare the recoveries of labeled aldehydes in 
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ACN/DCM/MeOH, another experiment was done using EPA buffer as a solvent. The derivatized 

aldehydes were extracted into DCM by LLE and analyzed on GC-EI-MS. 

2) In order to evaluate completeness of derivatization, the sensitivity and limits of detection for 

the analysis of selected aldehydes in underivatized form were determined. Table 5 shows the list 

of aldehydes analyzed including the quantification ions and LODs (ranging between 2 to 5 ppm) 

of aldehydes (the protocol for determination of LODs is in Section 2.6).  

Table 5. GC-MS analysis of aldehydes in underivatized form and determination of LODs 

Compound name tR (min)a 
Q Ionb 

(m/z) 
Slope Intercept R2 Sy LOD (ppm) 

Butanal 4.00 72 0.2509 1.3522 0.9926 0.3955 5 

Benzaldehyde 9.17 106 0.6286 2.7049 0.9958 0.5769 3 

Octanal 9.77 84 0.1438 0.6688 0.9958 0.1935 4 

Anisaldehyde 13.86 135 0.9465 2.3823 0.9983 1.0828 4 

4-Hydroxybenzaldehyde 15.21 121 0.6651 0.1183 0.9997 0.4924 2 

9-Fluorenone 20.18 180 1.1936 3.9151 0.9977 1.3163 4 
atR denotes retention time             bQ Ion denotes quantification ion 

3) To evaluate possible impact of glassware inertness, the glassware was silanized with 15% (v/v) 

dimethyldichlorosilane (DMDCS) in toluene overnight, washed with MeOH and DCM, and dried. 

The derivatization of selected aldehydes was performed both individually and as a mixture and 

analyzed by GC-EI-MS. 

4) To investigate the effect of PM particles (matrix-analyte interaction) on recoveries of aldehydes, 

the recovery standards (deuterated aldehydes) were derivatized in ACN/DCM/MeOH in presence 

of four different types of particles including carbon, silica and wood smoke particles. The analysis 

was performed on GC-EI-MS within 24 h of derivatization.  



 

22 

 

5) To compare the matrix effect of co-extracted organic matter, the derivatization of RS aldehydes 

was performed in presence of 15 mg of PM, 3.0 mL of extracted organic matter and the remaining 

PM particles without organic matter and compared to those derivatized without PM (controls). To 

extract organic matter from PM, 15 mg of wood smoke PM was dissolved in 5 mL of deionized 

water and the organic matter in PM was extracted into 3 mL of DCM by LLE. The remaining 

aqueous solution of PM was centrifuged and the aqueous part was decanted. The remaining solid 

particles were dried in the oven. The analysis was done by GC-EI-MS.  

6) For sequential extraction/derivatization of aldehydes and carboxylic acids from WS PM three 

steps were employed. In step 1, 2 mg of WS PM was derivatized in 10 mL of MeOH under 

sonication. Second step involves extraction from un-extracted PM residue in step 1 using 10 mL 

of ACN/DCM/MeOH under sonication. Final step is soxhlet extraction from un-extracted PM 

residue in step 2 for 18 h with 90 mL of MeOH. The extracts were filtered on a filteration paper 

between each extraction step to obtain the un-extracted PM residue. The analysis was done by GC-

EI-MS.  

7) For quantification of aldehydes from WS PM the analysis was done in both GC-EI-MS and GC-

NCI-MS. WS PM concentration of 1 mg, 3 mg and 15 mg were used in EI method and 

concentrations of 3 mg and 7 mg were used in NCI method.  The WS PM was dissolved in 5 mL 

of ACN/DCM/MeOH containing the RS and derivatized overnight under sonication. The solid 

particles were removed and the extracts were concentrated to 250 µL and analyzed in EI and NCI 

methods. 
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2.4. Selection of IS & Synthesis of Methylglyoxal-d4 as an RS for Dicarbonyls 

The application of different internal standards (listed in Table 2) to control for volumetric 

changes during the GC injection was evaluated. In addition a series of stable isotope labeled 

aldehydes (listed in Table 2) was employed as recovery standards. However, no labeled dicarbonyl 

was found to be commercially available. Thus, in order to develop a method for synthesis of 

methylglyoxal-d4, a preliminary experiment was done to conduct the oxidation of acetone with 

SeO2 to yield the non-labeled methylglyoxal (MG) (Goswami et al.).29 A schematic representation 

of the synthesis is given in Scheme 2. Briefly, 5 g of SeO2 and 25 mL of acetone were heated at 

reflux for 10–12 h. The yellow liquid product was decanted and the black residue was washed with 

acetone. The whole liquid was fractionally distilled and the distillate up to 80 °C was collected. 

The residual liquid was again fractionally distilled under reduced pressure. The higher boiling 

fraction which condensed as a bright yellow liquid contained a greater portion of MG.  

 

 

 

Scheme 2. Schematic diagram of synthesis of methylglyoxal.32 

The identity of synthesized MG was confirmed by the GC-MS analysis after derivatization with 

PFBHA. The ion with m/z 462 which is the result of a derivatization of both carbonyl groups of 

MG confirmed the identity of MG (Figure 1a). Following the successful synthesis of MG, 

deuterium labeled MG (methylglyoxal-d4) was also synthesized using the same protocol but 

starting with acetone-d6. The identity of synthesized methylglyoxal-d4 was confirmed by 
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derivatization with PFBHA and analysis on GC-EI-MS.  The ion with m/z 466 confirms the 

identity of MG-d4 (Figure 1 b). 

 

 

Figure 1. GC-MS chromatogram and mass spectra showing and confirming the identity of 
synthesized and PFBHA derivatized a) nonlabeled methylglyoxal (MW = 462) and b) deuterated 
methylglyoxal-d4(MW = 466). 
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2.5. Instrumentation 

GC-MS analyses were performed using an Agilent 6890N GC with 5975C inert XL EI/CI 

MSD (Agilent Technologies, Inc., Wilmington, DE, USA) and Gerstel MPS2 autosampler 

(Gerstel, Baltimore, MD, USA). Separations were accomplished using a 30 m long DB-5 MS 

column ((5% phenyl) dimethyl polysiloxane) with 0.25 mm i.d and, 0.25 μm film thicknesses 

(J&W Scientific, Inc., Folsom, CA). The carrier gas was ultra-pure helium (99.999%) with a 

constant flow rate of 1.0 mL/min. Injections were performed in a splitless mode with a splitless 

time of 0.5 min. The injector temperature was held at 250 °C. The chromatographic program 

started with hold at 50 °C for 2 min, then increased at 6 °C/min to 210 °C, then 30 °C/min to 320 

°C and hold for 10 min. The temperatures of MS-NCI source, mass analyzer, and the transfer line 

were 155 °C, 150 °C and 280 °C respectively. The reagent gas used for NCI ionization was 

methane with a flow rate of 3 mL/min and ionization energy of 230 eV. The MS analysis was 

performed in selected ion-total ion (SITI) mode. The ions used for selected ion monitoring (SIM, 

within SITI) are specified in Tables 3 and 4, the total ion current (TIC) mass range was 50–500 

amu.  

2.6. Data Processing 

 All the experiments were performed in triplicate. MSD Chemstation E.01.00.237 software 

was employed for the GC-MS data acquisition and processing. Quantification of aldehydes was 

performed using the internal standard calibration method. The recovery standards were used to 

study the behavior of deuterated (unaffected by matrix) aldehydes in PM samples independently 

of native aldehydes and/or to correct recoveries of native aldehydes extracted from PM.  Thus a 

least square calibration curve was obtained for each recovery standard using Microsoft Office 

Excel to obtain calibration curve parameters. The LOD were calculated using eq 1. 
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            ��� =  
�.� � 	


�
          (1) 

where k is the slope of the calibration curve and Sy is the standard deviation of the linear regression 

residuals which is obtained as a square root of the sums of residual mean square representing the 

unbiased estimate of a calibration curve variance within one order of magnitude of LODs.10 The 

LLOQ were calculated using eq 2. 

             ���� =  
 � 	


�
        (2) 

The final concentrations of aldehydes in PM were reported as those corrected by RS responses. 

The list of the RS used for corresponding aldehydes is provided in Table 3. 
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CHAPTER III 

3. RESULTS AND DISCUSSION 

3.1.Optimization of Derivatization Conditions 

3.1.1. Solvent Purity 

Occurrence of aldehydes in reagents and solvents results in interferences and has thus a negative 

impact on their trace analysis. Therefore, in an initial derivatization experiment, the purity of two 

different grades of methanol solvents (purge & trap grade and LC-MS grade) and deionized water 

was evaluated. Figure 2 shows for methanol (LC-MS grade) a high formaldehyde peak which is 

unacceptable for determination of this compound. This peak has been attributed to the oxidation 

of methanol during manufacturing. The methanol of a purge & trap grade demonstrated the 

comparable and lower formaldehyde content as in deionized water. These levels were considered 

to be acceptable for further work, however should be addressed by control experiments. 
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Figure 2. GC-MS-TIC chromatogram showing the content of PFBHA derivatized formaldehyde 
in  a) MeOH LC-MS grade b) MeOH purge & trap (Sigma-Aldrich) c) MeOH purge & trap 
(Fisher Scientific) and d) Water LC-MS grade  
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3.1.2. Aldehyde Derivatization Optimization 

3.1.2.1. Initial Screening of Derivatization Solvent System 

To our knowledge, only one study reported a comparison of derivatization solvents; 

specifically evaluating MeOH, ACN/water and ACN/DCM/MeOH and showing the last solvent 

system as optimal (Table 1).17 However, no comparison was performed with respect to the EPA 

method (using aqueous buffer system) for solid samples or with exception to MeOH for 

derivatization in individual solvents. Another concern was that the solvent system previously 

reported as optimal17 and used in a number of studies consisting of ACN/DCM/MeOH (1:8.5:0.5 

v/v/v) caused the precipitation of PFBHA (due to its insolubility in DCM).  

In this study, the derivatization efficiency of aldehydes in different solvent systems 

including ACN, water, EPA buffer, MeOH (Purge & Trap grade) and the mixture of 

ACN/DCM/MeOH was evaluated.  The detailed protocols applied for derivatization in organic 

and aqueous media are provided in the sample preparation section 2.2. To ensure the complete 

derivatization of aldehydes, the reaction time was set to 18 h. The analytes derivatized in EPA 

buffer and water were then extracted using LLE into DCM. No further extraction was required for 

those analytes derivatized in ACN, MeOH and ACN/DCM/MeOH mixture. Our results 

corroborate the previously reported higher responses for the majority of aldehydes derivatized in 

the mixture of ACN/DCM/MeOH (Figure 3) indicating that water and EPA buffer protocols are 

unsuitable for derivatization of aldehydes. The insolubility of PFBHA in DCM probably favored 

the (ACN/DCM/MeOH) protocol removing an extra purification step of removing the excess of 

PFBHA. The comparison of organic solvents showed higher recoveries for ACN and 

ACN/DCM/MeOH than for MeOH. In the following sections the possible incomplete 
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derivatization as well as suitability of different solvents for direct GC injection are evaluated and 

whether these factors affect the results.  

 

Figure 3. Comparison of PFBHA derivatization efficiencies (18 h in dark, no sonication) of 
aldehydes using different solvent systems reported as mean and standard deviation of triplicate 
experiments. The derivatization in deionized water and EPA buffer was followed by the LLE into 
DCM, while the systems ACN/DCM/MeOH and MeOH and ACN enabled direct analysis.  

 

3.1.2.2. Factors Affecting Response of Derivatized Aldehydes 

The lower recoveries in MeOH, EPA Buffer and ACN (Fig. 3) may be a result of either 

incomplete derivatization or extra purification step (compared to ACN/DCM/MeOH). The 

verification of completeness of derivatization was performed on the selected set of analytes (listed 

in Table 5) in the concentration range enabling to detect 10 times of LODs of underivatized 

aldehyde. The three different solvent systems, MeOH, ACN, and ACN/DCM/MeOH were 
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purification step. With the exception of 9-fluorenone, which was observed only below LOD, no 

underivatized aldehydes were observed.   

This experiment enabled a comparison of the response in different solvent systems under 

sonication. Similarly as for derivatization without sonication, ACN/DCM/MeOH and ACN 

provided similar responses to each other and higher than that of MeOH (Fig. 4). The lower 

responses (areas) of derivatized aldehydes and the internal standard in MeOH (PT) and ACN 

suggested that the response is affected by the solvent in which the analytes are analyzed and not 

due to the completeness/incompleteness of derivatization. To confirm this assumption, the 

derivatized aldehydes were evaporated to dryness, redissolved in two different solvents, DCM and 

ACN, and analyzed on GC-EI-MS.  This was confirmed by the high responses for the target 

analytes dissolved in DCM and ACN, respectively (Figure 5). This comparison confirms that 

differences in responses of derivatized aldehydes were due to the solvent system used for analysis.  
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Figure 4. Derivatization /sonication of selected aldehydes in various solvent systems with 
concentrations 10 times the LOD of underivatized aldehydes  
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Figure 5. Responses of derivatized aldehydes redissolved (after evaporation to dryness) in two 
solvent systems: DCM and ACN.  

3.1.2.3. Impact of Sonication in ACN/DCM/MeOH 

The extraction protocols for PM characterization typically employ sonication or shaking. 

Often this part of the protocol is used simultaneously with derivatization. Thus the effect of 

sonication on the derivatization was also tested. The results indicate that the derivatization was 

slightly improved for linear aldehydes upon sonication overnight (Figure 6). No statistically 

significant difference was observed for derivatization with or without sonication for the other 

aldehydes (Figure 6). However, since the sonication process is associated with the generation of 

heat, it is also possible that the derivatization of aldehydes was enhanced by temperature rather 

than sonication. 
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Figure 6. Effect of sonication on derivatization of aldehydes with ACN/DCM/MeOH (1:8.5:0.5 
v/v/v). The arrow denotes statistically significant difference between no sonication and overnight 
sonication (t-test at 95 % confidence level). 

In summary, ACN/DCM/MeOH was the optimal solvent system for 

derivatization/extraction of PFBHA derivatives of aldehydes and enhanced further with the 

sonication (or possibly by temperature). 

3.1.2.4.Effect of Active Sites of Glassware on Recoveries of Derivatized Aldehydes 

To ensure consistent recoveries, the possible impact of the active surface of glassware was 

evaluated.  To investigate this effect, an experiment was conducted to compare the derivatization 

of selected aldehydes in silanized and non-silanized glassware. Recoveries of selected aldehydes 

hexanal, nonanal, anisaldehyde and 4-hydroxybenzaldehyde were tested in silanized and non-

silanized glassware employing ACN/DCM/MeOH as the solvent system.  
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Figure 7. % Recoveries of aldehydes derivatized in non-silanized and silanized glassware 
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selected oxy-PAHs was compared in two different solvent systems, ACN/DCM/MeOH and 

MeOH, with and without sonication overnight in the dark (Table 6).  

Sonication of the solvent system during derivatization improved the derivatization 

efficiency. Compounds such as pyrene-4,5-dione, methyl-1,4-benzoquinone, 1-pyrene 

carboxaldehyde, perinaphthenone, dicinnamalacetone, 1,3-indandione, 1-indanone, biphenyl-4-

carboxaldehyde have shown partial or complete increase in derivatization efficiency with 

sonication overnight at room temperature. One possible reason for the improved derivatization 

could be an increase of temperature during sonication. 

The solvent system used for the derivatization makes a considerable impact on 

derivatization efficiency. Most of the compounds showed a considerably improved derivatization 

in MeOH with sonication and adding ACN/DCM after derivatization in comparison to 

derivatization in ACN/DCM/MeOH solvent system with sonication (Table 6). 

   Compounds with a carbonyl group not attached to the aromatic ring such as acetophenone,  

1-naphthaldehyde, and phenanthrene-9-carboxaldehyde were completely derivatized under all 

conditions (Fig. 8 shows the chromatograms and mass spectra of representative compounds. 

acetophenone is shown in App. Fig 1). Some of Oxy-PAHs such as pyrene-4,5-dione (App. Fig 2) 

and methyl -1,4-benzoquinone (App. Fig 3) showed incomplete derivatization in 

ACN/DCM/MeOH but  were completely derivatized in the same solvent system under sonication. 

1-indanone (App. Fig 4), 9-fluorenone showed incomplete derivatization in ACN/DCM/MeOH, 

and required the change of solvent system to MeOH for complete derivatization under sonication. 

The example chromatograms showing derivatization of 9-fluorenone in two solvent systems are 

given in Figure 9. Other compounds such as bianthrone (App. Fig 5) and perinaphtheneone (App. 

Fig 6) were not derivatized at all in ACN/DCM/MeOH, but were completely derivatized in MeOH 
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under sonication. Four compounds including anthraquinone, 2-methyl-anthraquinone, xanthone 

and anthrone (App. Fig 7-10) were only partially derivatized and only in MeOH.  Only 

pentacenequine could not be derivatized at all. This is possibly due to sterically hindered carbonyl 

group in pentacenequinone. The results indicate that sonication and MeOH solvent conditions 

enhance the derivatization efficiency of oxy-PAHs. However, some compounds are still 

incompletely derivatized thus caution must be applied when quantifying these compounds. 
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Table 6. List of oxy-PAHs and their efficiency of PFBHA (10 µg/mL) derivatization in different solvent systems ACN/DCM/MeOH 
and MeOH and sonication conditions.  

Oxy-PAH 

 M. Wt 

M.Wt(mono 

oxime) 

M.Wt 

(dioxime) 

EI ions 

(monooxime) 

EI ions 

(dioxime) 

PFBHA 

Derivatization 

without sonication  

PFBHA Derivatization with 

sonication 

ACN/DCM/MeOH ACN/DCM/MeOH MeOH 

Pyrene 4,5 dione 232.24 427 622 427, 281, 246  Not derivatized Complete NDa 

Methyl -1,4-benzoquinone 122.12 317 512 181, 317 512, 331, 181 Incomplete Complete ND 

1-Pyrene carboxaldehyde 230.26 425  425, 224, 227, 181  Incomplete Complete Complete 

9-Fluorenone 180.21 375  375, 345  Incomplete Incomplete Complete 

Anthraquinone 208.21 403 598 403, 222, 181 598, 417, 181 Not derivatized Not derivatized Incomplete 

2-Methyl-anthraquinone 222.24 417 612 417, 236, 181 612, 431, 181 Not derivatized Not derivatized Incomplete 

Xanthone 196.19 391  391, 181  Not derivatized Not derivatized Incomplete 

Pentacenequinone 308.33 503  -  Not derivatized Not derivatized Not derivatized 

Bianthrone 384.43 579 774 549, 475, 181  Not derivatized Not derivatized Complete 

Perinaphthenone 180.2 375  375, 281, 181  Not derivatized Incomplete Complete 

Dicinnamalacetone 286.37 481  481, 404, 181  Incomplete Complete Complete 

Menadione 172.18 367 562 367, 181  Incomplete Incomplete Complete 

1,3-Indandione 146.14 341 536 341, 324, 181  Incomplete Complete ND 

Anthrone 194.23 389  389, 181  Not derivatized Not derivatized Incomplete 

1,4-Benzoquinone 108.1 303 498 498, 317, 181  Complete Complete Complete 

1,4-Naphthaquinone 158.15 353 548 353, 181  Incomplete Incomplete Complete 

1-Indanone 132.16 327  327, 181  Incomplete Complete Complete 

Benzophenone 182.22 377  377, 196, 181  Incomplete Incomplete Complete 

3-Methoxy-acetophenone 150.12 345  345, 328, 181  Incomplete Complete Complete 

Biphenyl-4-carboxaldehyde 182.22 377  377, 334, 196, 181  Incomplete Complete Complete 

Acetophenone 120.15 315  181, 315, 298  Complete Complete Complete 



Table 6 contd. 
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3-Methyl-2-cyclohexen-1-one 110.15 305  181, 305, 288, 275  Complete Complete Complete 

1-Naphthalaldehyde 156.18 351  181, 351, 334, 308  Complete Complete Complete 

Phenoxy-2-propanone 150.18 345  181, 345, 252  Complete Complete Complete 

Phenanthrene-9-carboxaldehyde 206.24 401  181, 401, 358, 203  Complete Complete Complete 

Anthracene-9-carboxaldehyde 206.24 401  401, 220, 203, 181  Complete Complete Complete 

1,2-Naphthaquinone 158.15 353 548 353, 336, 181   Complete Complete Complete 
aND denotes not detected
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Figure 8. GC-EI-MS (TIC) chromatograms showing completely derivatized a) phenanthrene-9-
carboxaldehyde, 1-naphthaldehyde, and 1,4-benzoquinone in ACN/DCM/MeOH  
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Figure 9. GC-EI-MS total ion current chromatograms showing effectiveness of derivatization of 
9-fluorenone a) underivatized 9- fluorenone, b) partial derivatization in ACN/DCM/MeOH c) 
complete derivatization in MeOH. 
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PM) the recoveries of all deuterated species were ~ 100%. However, the derivatization of 

aldehydes in presence of PM was selectively affected by both solvents system. For a less polar 

organic solvent system (ACN/DCM/MeOH), we observed preconcentration of the deuterated 

aldehydes of higher molecular weight. This effect was not observed for water where increased 

recoveries were observed only for butanal-d2. The mean recovery values (n = 3) from controls and 

from wood smoke PM using ACN/DCM/MeOH and EPA buffer are shown in Figures 10a and 

10b, respectively. It was observed that the recoveries of butanal-d2, furaldehyde-d4, octanal-d16, 

benzaldehyde-d6, p-anisaldehyde-d3 and 4-hydroxybenzaldehyde-d4 were below 100 % in controls 

whereas they had highly enhanced recoveries (close to 150 %) in wood smoke PM samples. 

Especially, 4-hydroxybenzaldehyde which was not detected in controls showed an abnormally 

high recovery in presence of wood smoke PM. This behavior is comparable in both 

ACN/DCM/MeOH and EPA buffer solvent systems. 
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Figure 10. % Recoveries of RS (deuterated aldehydes) from controls (no PM) and wood smoke 
PM using a) ACN/DCM/MeOH (1:8.5:0.5 v/v/v) under sonication and b) EPA buffer under rotary 
shaking28 reported as mean and one standard deviation of triplicate experiments. 
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Overall, the calculated recoveries of analytes in wood smoke samples are far above 100% 

especially for octanal, benzaldehyde, anisaldehyde, hydroxybenzaldehyde and furaldehyde.  

The results suggest that the matrix has a strong impact on recoveries of aldehydes, which 

results in an overestimation of aldehydes concentrations in PM if RSs are not used. Therefore these 

RSs should be used to correct for the extraction/derivatization efficiency. It is important to note 

that previously reported studies did not use or were limited to 1-2 recovery standards.19,20 Still the 

excessively high recoveries of RS raise a concern and require explanation to prevent analytical 

artifacts.  Thus possible reasons for enhanced analyte recoveries were investigated in the following 

sections (3.3.1 – 3.3.4). This has been achieved by studying various factors affecting the recoveries 

of aldehydes in PM. In the sections above we have addressed: 

• Completeness of derivatization (investigated in 3.1.2.2 ) 

• Use of silanized glassware (investigated in section 3.1.2.4)  

The results suggest that glassware did not affecte the results. Similarly we have shown that the 

derivatization under the conditions employed should be complete. Thus the next step was to 

evaluate the matrix effects including PM matrix i.e., particles (3.3.1), co-extracted organic matter 

(3.3.2), and coextracted individual compounds (3.3.3). 

 

3.3.1. Effect of Particles on Recoveries of Derivatized Aldehydes 

The effect of wood smoke particles on derivatization of aldehydes may be another reason 

for the response enhancement of derivatized aldehydes in PM.  The assumption is that the PM 

particles might be acting as a catalyst for the aldehyde-PFBHA reaction further improving 
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derivatization. Figure 11 shows the effect of different types of particles on responses of derivatized 

aldehydes. The results indicate that the responses are significantly higher in presence of PM 

particles and the carbon (graphite) particles showed a similar trend although not for all the tested 

aldehydes. By contrast, silica particles did not cause any significant change in responses of 

derivatized aldehydes. This observation suggests that the response enhancement is not due to the 

catalytic behavior of PM particles. 

The PFBHA derivatized samples are considered to be stable for long time.30 To verify the 

stability of derivatized species and further clarify the sources of the observed artifact, we studied 

the impact of time following the sample derivatization after 24 h, 3 days, 9 days, and 18 days. In 

this study, samples were left in the derivatization media (as is typical for the derivatization process) 

taking a fresh aliquot from the sample containing particles (Fig. 12). The responses of linear 

aldehydes slightly decreased whereas the responses of other aldehydes, e.g., furaldehyde-d4, 

benzaldehyde-d16, p-anisaldehyde-d3 and 4-hydroxybenzaldehyde-d4, have slightly increased over 

the studied time period. These trends were significant, particularly when comparing the immediate 

analysis with the analysis after 18 days. This difference suggests that the effect of PM on responses 

of derivatized aldehydes is kinetic.
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Figure 11. Comparison of effect of particles on derivatization of RS (deuterated aldehydes) derivatized in ACN/DCM/MeOH (1:8.5:0.5 
v/v/v) under sonication reported as mean and one standard deviation of triplicate experiments 
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Figure 12. GC-MS analysis of RS derivatized in DCM/ACN/MeOH (1:8.5:0.5 v/v/v) under sonication in presence of wood 
smoke particles analyzed at different time periods following the sample preparation (derivatization) reported as mean and one 
standard deviation of triplicate experiments
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3.3.2. Effect of Co-Extracted Organic Matter from PM on Responses of Aldehydes 

The experiment in presence of various particles showed that the physical presence of 

particles such as silica (as catalysts) and carbon particles does not fully address the trends in 

recoveries observed with wood smoke PM. This observation suggests that the chemistry of 

particles (e.g., organic matter) may be the reason for higher responses of aldehydes. To test this 

hypothesis, we evaluated the impact of extracted organic matter PM, and residue after extraction 

and unextracted PM on responses of derivatized aldehydes (Fig. 13).  The results confirm the 

hypothesis showing comparable responses of aldehydes derivatized in extracted organic matter to 

those in presence of PM. On the other hand, the responses were significantly lower in presence of 

residual PM particles (extracted) without organic matter. These results indicate that the response 

enhancement of aldehydes is due to the co-extracted organic species in the PM according the effect 

of major species known to be present in WS PM was investigated in the following section. 
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Figure 13. Comparison of recoveries of derivatized aldehydes (RS) derivatized in 
DCM/ACN/MeOH (1:8.5:0.5 v/v/v) under sonication upon derivatization in presence of wood 
smoke PM, wood smoke PM without organic content, and organic extract from wood smoke PM.  

3.3.3. Effect of Co-extracted Species on Recoveries of Derivatized Aldehydes  

We have demonstrated that organic extract matter contributes to the enhanced recoveries 

of aldehydes. Another possible reason for increased responses of derivatized labeled aldehydes 

could be from the co-extracted aldehydes present in higher concentrations in PM. In our previous 

experiments it was observed that the PM has higher abundance of syringaldehyde compared to 

other aldehydes. In order to verify the effect of syringaldehyde on responses of derivatized 

aldehydes, a mixture of aldehydes resembling the recovery standards was derivatized in 

ACN/DCM/MeOH with/without syringaldehyde testing also impact of sonication. Figure 14 

shows that the responses of derivatized aldehydes were comparable in samples with and without 
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syringaldehyde. This result indicates that the presence of co-extracted aldehydes in PM in higher 

concentrations does not have any effect on responses of derivatized aldehydes. 

 

Figure 14. Comparison of responses of derivatized aldehydes (resembling RS) in presence of 
syringaldehyde derivatized in DCM/ACN/MeOH (1:8.5:0.5 v/v/v) under sonication 

 

Since levoglucosan and syringol have higher abundance in PM, we attempted to test the 

effect of these organics on responses of derivatized aldehydes. Syringol was taken as a 

representative of phenolic compounds in PM. Derivatization of aldehydes (RS) was done in 

presence of syringol and levoglucosan with two different concentrations (100 µg and 1 mg) each. 

The derivatized aldehydes were analyzed on GC-EI-MS within 24 h of preparation. Figure 15 

shows the effect of syringol and levoglucosan on responses of derivatized aldehydes (RS). It was 
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furaldehyde-d4, benzaldehyde-d6, p-anisaldehyde-d3 and 4-hydroxybenzaldehyde-d4. Also, the 

responses increased with increasing concentration of syringol and levoglucosan.  These results 

confirm that the response enhancement is at least partially caused by the organics (especially 

levoglucosan and syringol) present in the PM.  

One possible explanation for the higher responses of PFBHA-aldehydes could be matrix 

induced response enhancement due to a splitless injection.40,41 This was first observed in the 

analysis of pesticides and polyflurorinated alkyl substance using splitless injection in gas 

chromatography-mass spectrometry.40 Briefly, the problem consists of the presence of various 

active sites in the injection port (liner) that can be responsible for irreversible adsorption and/or 

catalytic decomposition of analytes.38 Molecules of impurities from the matrix (e.g., syringol and 

levoglucosan), which are most abundant in trace analysis, will effectively compete with the 

analytes for active sites there by reducing interaction of analyte molecules with the liner. Overall, 

the matrix increases the transfer of analytes from a hot injector to the column by reducing the 

thermal stress for labile compounds and by masking the active sites in the injector liner.40,41 These 

results in enhancement of responses of derivatized aldehydes, which can lead to overestimation of 

the measured concentration. A possible approach to eliminate this effect is using a cold on-column 

injection, and using matrix matched calibration standards or analyte protectants which equalize the 

response enhancement for calibration standards and sample extract.41 
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Figure 15. Comparison of responses of derivatized aldehydes (RS) in presence of syringol and 
levoglucosan at different concentrations under sonication 

 

3.4. Sequential Extraction/Derivatization of aldehydes from PM 

To further investigate the applicability of the optimized protocol a sequential 

extraction/derivatization of aldehydes from WSPM was performed using selected isotopically 

labelled aldehydes as recovery standards. The first step of the sequential extraction was sonication 

in MeOH in the presence of PFBHA ensuring derivatization of reactive carbonyls, this step was 

followed by the sonication with ACN/DCM/MeOH and the final step using soxhlet extraction with 

MeOH. 

The chromatograms corresponding to the sequential extraction/derivatization of aldehydes 

from WSPM are shown in Fig 16. The results indicate that most of the aldehydes were extracted 

completely within the first extraction step using MeOH under sonication (Fig. 16 a). 
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Figure 16. GC-EI-MS chromatograms showing composition of extracts obtained by sequential 
extraction of aldehydes from WS PM (2 mg)  a) Sonication with MeOH in the presence of 2 mg 
WS PM under sonication b) Extraction from ACN/DCM/MeOH under sonication c) Soxhlet 
extraction for 18h.  
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3.5. Applications – Determination of Carbonyl Compounds in WS PM 

The optimized method was applied to WS PM. Since the recoveries of RS seemed to be 

affected by the presence of extractable organics, the performance of the method was evaluated by 

extracting different amounts of WS PM. In order to evaluate and ensure the sensitivity of the 

method, the GC-MS analyses were performed in both EI and NCI modes. The calibration 

parameters including instrumental LODs and LLOQs obtained by a least square linear regression 

analysis are shown in Table 7. As expected NCI mode provided lower LODs within range of 0.02 

µg – 0.12 µg in comparison to EI method with LODs within range of 0.05 µg – 0.16 µg. 

The amounts of aldehydes in wood smoke PM reported as mean ± SD quantified are shown 

in Table 8. The results demonstrated significant concentrations of aldehydes in WS PM detected 

from all amounts of wood smoke PM were similar.  

As expected, the repeatability of GC injection of the same sample was improved (RSD 

within range of 1 % – 43 %) compared to repeatability of the sample preparation (RSD within 

range of 2 % – 63 %). The high values of RSDs were characteristic for low concentration of 

aldehydes. For majority of the linear aldehydes such as propanal, pentanal, octanal and nonanal 

some discrepancies were identified between GC repeatability and repeatability of sample 

preparation. These discrepancies were attributed to interference from background.  

For majority of aldehydes (highlighted in gray) similar results were obtained from both 

amounts of PM. However yields for some aldehydes were higher (20-100%) for extraction from 3 

mg compared to 7 mg of wood smoke PM suggesting that the derivatization reagent was all 

consumed. Considering the molar content of PFBHA (provide value) in comparison to overall 

amount of aldehydes in 7 mg WS PM (provide molar value) this cannot be confirmed. However 
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there is a possibility that there additional carbonyls on large MW compounds within wood smoke 

PM which may use up the PFBHA reagent. The recoveries of RSs (Table 9) corresponded to our 

previous findings (shown above) suggesting that discrepancy between data is not due difference 

in extraction efficiencies.
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Table 7: Calibration parameters of aldehydes by GC-MS in EI and NCI mode obtained by a least square linear regression analysis 

  EI NCI 

Aldehyde Slope Intercept R2 Sy 

LOD 

(µg) 

LLOQ 

(µg) Slope Intercept R2 Sy 

LOD 

(µg) 

LLOQ 

(µg) 

Formaldehyde NA NA NA NA NA NA 0.0023 0.002300 0.5434 0.000708 1.0152 1.5382 

Acetaldehyde 0.0071 0.000859 0.9543 0.000482 0.2248 0.3407 0.0009 0.000862 0.9740 0.000041 0.1562 0.2367 

Propanal 0.0060 0.000114 0.9736 0.000276 0.1528 0.2314 0.0006 0.000574 0.9889 0.000009 0.0513 0.0778 

Acrolein 0.0771 0.016258 0.4193 0.026374 1.1285 1.7098 0.0090 0.009010 0.9777 0.000218 0.0800 0.1212 

Isobutanal 0.0118 0.000071 0.9741 0.000637 0.1781 0.2699 0.0020 0.001989 0.9926 0.000025 0.0410 0.0622 

Butanal 0.0135 0.000652 0.9600 0.000818 0.1998 0.3028 0.0012 0.001230 0.9918 0.000019 0.0498 0.0754 

Crotonal 0.0032 0.000038 0.9502 0.000200 0.2076 0.3145 0.0014 0.001376 0.9854 0.000018 0.0433 0.0657 

Pentanal  0.0032 0.000038 0.9502 0.000200 0.2076 0.3145 0.0015 0.001529 0.9956 0.000010 0.0224 0.0339 

trans-2-Pentenal 0.0085 0.000126 0.8353 0.001078 0.4208 0.6376 0.0008 0.000822 0.9898 0.000014 0.0565 0.0856 

Hexanal 0.0051 -0.000008 0.9623 0.000293 0.1889 0.2862 0.0010 0.000962 0.9950 0.000005 0.0176 0.0266 

Furaldehyde 0.0054 -0.000028 0.9662 0.000249 0.1510 0.2287 0.0180 0.018041 0.9798 0.000368 0.0673 0.1020 

trans-2-Hexenal  0.0099 -0.000130 0.9641 0.000486 0.1626 0.2464 0.0194 0.019378 0.9914 0.000191 0.0326 0.0493 

Heptanal  0.0032 -0.000011 0.9585 0.000185 0.1877 0.2843 0.0008 0.000770 0.9967 0.000004 0.0163 0.0247 

Octanal 0.0051 -0.000102 0.9675 0.000281 0.1836 0.2782 0.0010 0.000970 0.9973 0.000005 0.0155 0.0234 

Benzaldehyde 0.0101 -0.000241 0.9866 0.000352 0.1146 0.1737 0.0164 0.016431 0.9922 0.000245 0.0492 0.0745 

Phenylacetaldehyde 0.0115 -0.000235 0.9899 0.000312 0.0893 0.1353 0.0055 0.005526 0.9926 0.000080 0.0480 0.0728 

Nonanal 0.0075 -0.000107 0.9765 0.000316 0.1395 0.2114 0.0019 0.001859 0.9962 0.000007 0.0130 0.0196 

m-Tolualdehyde 0.0069 -0.000265 0.9713 0.000329 0.1567 0.2374 0.0154 0.015417 0.9814 0.000298 0.0638 0.0966 

Hydrocinnamaldehyde 0.0013 -0.000044 0.9756 0.000063 0.1649 0.2499 0.0014 0.001418 0.9902 0.000016 0.0370 0.0560 

trans-2-Nonenal 0.0017 -0.000029 0.9837 0.000065 0.1231 0.1866 0.0008 0.000846 0.9935 0.000013 0.0520 0.0788 

2-Hydroxybenzaldehyde 0.0038 -0.000138 0.9779 0.000167 0.1442 0.2184 0.0130 0.013014 0.9771 0.000307 0.0778 0.1179 

Decanal 0.0035 -0.000063 0.9781 0.000152 0.1419 0.2150 0.0008 0.000850 0.9949 0.000006 0.0229 0.0347 

2,5-Dimethylbenzaldehyde 0.0058 -0.000212 0.9806 0.000244 0.1400 0.2122 0.0076 0.007592 0.9948 0.000061 0.0265 0.0401 

2,4-Nonadienal  0.0006 -0.000008 0.9746 0.000028 0.1605 0.2432 0.0002 0.000171 0.9904 0.000004 0.0855 0.1295 

Glyoxal 0.0025 -0.000090 0.9750 0.000119 0.1562 0.2367 0.0176 0.017622 0.9846 0.000380 0.0711 0.1077 



Table 7 contd. 
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Anisaldehyde 0.0135 -0.000859 0.9894 0.000449 0.1095 0.1659 0.0116 0.011580 0.9860 0.000160 0.0455 0.0689 

Methylglyoxal 0.0042 -0.000253 0.9821 0.000176 0.1393 0.2111 0.0762 0.076244 0.9928 0.001215 0.0526 0.0797 

4-Hydroxybenzaldehyde 0.0012 -0.000141 0.8868 0.000130 0.3492 0.5292 0.0025 0.002459 0.9693 0.000076 0.1014 0.1536 

Dodecanal 0.0029 -0.000055 0.9887 0.000087 0.1002 0.1518 0.0038 0.003809 0.9801 0.000175 0.1519 0.2301 

Syringaldehyde 0.0015 -0.000001 0.9479 0.000110 0.2400 0.3636 0.0010 0.001050 0.8731 0.000027 0.0835 0.1264 
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Table 8. Evaluation of the extraction method using different quantities of wood smoke PM 
reporting concentrations (µg/g) of aldehydes determined in WS PM  GC-MS-NCI mode corrected 
for RS, the concentrations lower LOQ are reported as not detected (ND). 

  Concentration of aldehydes in WS PM (µg/g) 

 3 mg 7 mg 

 Aldehyde 

Replicate 

(Mean ± SD) 

GC 

Repeatability 

(Mean ± SD) 

Replicate 

(Mean ± SD) 

GC 

Repeatability 

(Mean ± SD) 

Formaldehyde 62917 ± 4384 64027 ± 4690 58352 ± 2881 53409 ± 9118 
Acetaldehyde 3590 ± 815 3787 ± 149 2596 ± 404 3017 ± 79 
Acrolein  138 ± 46 153 ± 15 106 ± 21 116 ± 3 
Propanal  526 ± 233 700 ± 9 328 ± 94 429 ± 4 
Isobutanal 34 ± 8 47 ± 15 35 ± 9 33 ± 6 
Butanal  201 ± 99 297 ± 11 103 ± 49 152 ± 5 
Crotonal  234 ± 32 282 ± 11 67 ± 16 74 ± 8 
Pentanal  28 ± 7 41 ± 14 25 ± 9 27 ± 6 
Hexanal  83 ± 30 102 ± 16 65 ± 24 73 ± 12 
Furaldehyde  249 ± 10 253 ± 4 230 ± 14 217 ± 4 
Heptanal 32 ± 10 44 ± 4 31 ± 7 26 ± 1 
Octanal  82 ± 51 145 ± 17 49 ± 24 64 ± 7 
Benzaldehyde 102 ± 2 108 ± 7 97 ± 5 88 ± 4 
Phenylacetaldehyde  101 ± 5 101 ± 6 124 ± 13 105 ± 4 
Nonanal 326 ± 232 577 ± 20 153 ± 40 172 ± 5 
m-Tolualdehyde 33 ± 3 38 ± 10 30 ± 7 29 ± 5 
trans-2-Nonenal 31 ± 4 38 ± 12 33 ± 6 27 ± 7 
Hydrocinnamaldehyde  188 ± 23 178 ± 16 188 ± 14 168 ± 6 
2-Hydroxybenzaldehyde 271 ± 16 262 ± 10 232 ± 10 209 ± 12 
Decanal 104 ± 24 146 ± 15 73 ± 9 72 ± 10 
2,5-Dimethylbenzaldehyde 17 ± 3 23 ± 10 19 ± 6 17 ± 4 
2,4-Nonadienal 357 ± 76 287 ± 74 367 ± 43 344 ± 10 
Glyoxal 556 ± 69 480 ± 20 366 ± 46 316 ± 6 
Anisaldehyde 45 ± 4 50 ± 6 24 ± 3 23 ± 2 
Methylglyoxal 347 ± 34 324 ± 1 172 ± 19 149 ± 3 

4-Hydroxybenzaldehyde 809 ± 68 770 ± 4 635 ± 29 603 ± 3 
Dodecanal 286 ± 50 264 ± 32 275 ± 49 230 ± 13 
Syringaldehyde 2810 ± 61 3079 ± 229 2721 ± 43 2769 ± 32 

aNR not reported    bND not detected, Aldehydes not reported shown in Table 3 are those which 
were below LLOQ. 
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Table 9. % Recoveries of RS from different quantities of wood smoke PM in GC-MS-NCI mode  

  % Recovery of RS 

 3 mg 7 mg 

Aldehyde 

Replicate 

(Mean ± SD) 

GC 

Repeatablity 

(Mean ± SD) 

Replicate 

(Mean ± SD) 

GC 

Repeatablity 

(Mean ± SD) 

Formaldehyde-13C,d2 21 ± 3 20 ± 2 17 ± 1 13 ± 2 
Acetaldehyde-d4 61 ± 17 41 ± 3 82 ± 32 49 ± 3 
Propanal-d2 48 ± 14 34 ± 2 62 ± 21 38 ± 1 
Butanal-d2  79 ± 16 60 ± 4 90 ± 23 68 ± 4 
Furaldehyde-d4  126 ± 7 110 ± 10 123 ± 8 124 ± 8 
Octanal-d16  91 ± 21 65 ± 6 99 ± 33 75 ± 5 
Benzaldehyde-d6 121 ± 7 105 ± 10 115 ± 8 120 ± 9 
p-Anisaldehyde-d3 164 ± 13 141 ± 12 228 ± 14 233 ± 12 

4-Hydroxybenzaldehyde-d4 208 ± 16 178 ± 14 201 ± 10 201 ± 5 
 

 

3.6. Conclusions 

Following the selection of solvent purity, the derivatization efficiency of a variety of 

aldehydes was tested in different solvent systems. Employing the ACN/DCM/MeOH mixture 

increased the derivatization efficiency. Application of sonication to the derivatization protocol 

slightly increased the derivatization of n-aliphatic aldehydes. On the other hand, the derivatization 

of oxy-PAHs using the same solvent system resulted in complete derivatization of 

carboxaldehydes but only incomplete derivatization of quinonic species. Further investigation of 

conditions is required in order to achieve complete derivatization of oxy-PAH. The solvent system 

employed for the derivatization caused higher than expected responses of aldehydes which were 

not due to completeness/incompleteness of the derivatization. The developed protocol was applied 

for the extraction of aldehydes from PM and compared to the traditional method using the EPA 

buffer. The recoveries of isotope labeled aldehydes (RS) in wood smoke were higher than 100% 
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(up to 150%). A possible reasons for the high recoveries is that organics like syringol and 

levoglucosan, which are present in PM at higher concentrations, are causing the higher recoveries 

of derivatized aldehydes. This has been attributed to the matrix-induced response enhancement 

due to the splitless injection in the analysis. Application of the optimized method to particulate 

matter in EI and NCI methods resulted in identification up to 28 compounds. NCI mode was more 

sensitive providing LODs within range of 0.02 µg – 0.12 µg. in comparison to EI method with 

LODs within range of 0.05 µg – 0.16 µg. 28 compound were detected at low concentration of WS 

PM (3 mg) in NCI method indicating the higher sensitivity of the method. The amounts of 

aldehydes are comparable in all concentrations of WS PM used indicating the sensitivity of the 

method. 
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4. APPENDIX  

APPENDIX I: SUPPORTING INFORMATION 

App. Table 1. List of targeted aldehydes and the corresponding RS used for quantification. 

       NCI-MS EI-MS 

Aldehydes RS 
MW 

(g/mol) 

MW  

Derivatized 

(g/mol)  

Q iona 

(m/z) 

Confirmation 

Ions (m/z) 
Q Ion (m/z) 

Confirmation 

Ions (m/z) 

Formaldehyde Formaldehyde-13C-d2 30 225 225 205 181 195, 225 

Acetaldehyde Acetaldehyde-d4 44 239 239 218 181 209, 239 

Propanal Propanal-d2 58 253 253 233 181 223, 236 

Acrolein Propanal-d2 56 251 231 201 181 221, 251 

Isobutanal Propanal-d2 72 267 178 247, 267 181 250 

Butanal Butanal-d2 72 267 247 267 239 226 

Crotonal Butanal-d2 70 265 245 215 181 195, 250 

Pentanal Butanal-d2 86 281 178 261, 231 181 207, 239 

Hexanal Butanal-d2 100 295 178 248, 275 181 239, 295 

Furaldehyde Furaldehyde-d4 96 271 241 271 291 248 

trans-2-Hexenal Furaldehyde-d4 98 293 273 243 181 250, 293 

Heptanal Furaldehyde-d4 114 309 178 289, 262 181 207, 239 

Octanal Octanal-d16 128 323 178 276, 303 181 239, 323 

Benzaldehyde Benzaldehyde-d6 106 301 281 251 301 271 

Phenylacetaldehyde Benzaldehyde-d6 120 315 178 295, 267 181 91, 315 

Nonanal Benzaldehyde-d6 142 337 178 317 181 239 

m-Tolualdehyde Benzaldehyde-d6 120 315 295 265, 167 181 91, 315 

o-Tolualdehyde Benzaldehyde-d6 120 315 295 265, 167 181 91, 315 

Hydrocinnamaldehyde Benzaldehyde-d6 132 329 178 309 181 271, 329 

trans-2-Nonenal Benzaldehyde-d6 140 335 315 285 181 250, 335 

2-Hydroxy benzaldehyde Benzaldehyde-d6 122 317 136 280 181 300, 317 

Decanal Benzaldehyde-d6 156 351 178 331 181 239, 351 

2,5-Dimethylbenzaldehyde Benzaldehyde-d6 134 329 309 279 181 286, 329 

5-Hydroxymethyl furfural Benzaldehyde-d6 126 321 271 285, 301 181 291, 321 

2,4-Nonadienal Benzaldehyde-d6 138 333 283 167 181 276, 333 

Glyoxal Benzaldehyde-d6 58 448 267 167 181 418, 448 

Undecanal Benzaldehyde-d6 170 365 345 318 239 181, 345 

Anisaldehyde p-Anisaldehyde-d3 136 331 311 281 331 181, 288 



App. Table 1 contd. 
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Methylglyoxal p-Anisaldehyde-d3 72 462 281 167, 392 181 432, 462 

4-Hydroxybenzaldehyde 4-Hydroxybenzaldehyde-d4 122 317 297 267 181 274, 317 

Dodecanal 4-Hydroxybenzaldehyde-d4 184 379 178 332, 359 181 239 

Glutaraldehyde 4-Hydroxybenzaldehyde-d4 100 490 178 450 181 293, 490 
Syringaldehyde 

de 
4-Hydroxybenzaldehyde-d4 182 377 357 327 377 181 
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App. Figure 1: GC-EI-MS (TIC) chromatograms showing completely derivatized acetophenone 
in ACN/DCM/MeOH 
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App. Figure 2: GC-EI-MS total ion current chromatograms showing effectiveness of 
derivatization of pyrene-4,5-dione a) underivatized pyrene-4,5-dione, b) Complete derivatization 
in ACN/DCM/MeOH c) complete derivatization in MeOH. 
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App. Figure 3: GC-EI-MS total ion current chromatograms showing effectiveness of 
derivatization of methyl-1,4-benzoquinone a) underivatized methyl-1,4-benzoquinone, b) 
Complete derivatization in ACN/DCM/MeOH c) complete derivatization in MeOH. 
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App. Figure 4: GC-EI-MS total ion current chromatograms showing effectiveness of 
derivatization of 1-Indanone a) underivatized 1-Indanone, b) Complete derivatization in 
ACN/DCM/MeOH c) complete derivatization in MeOH. 
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App. Figure 5: GC-EI-MS total ion current chromatograms showing effectiveness of 
derivatization of bianthrone a) underivatized bianthrone, b) No derivatization in 
ACN/DCM/MeOH c) complete derivatization in MeOH. 
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App. Figure 6: GC-EI-MS total ion current chromatograms showing effectiveness of 
derivatization of perinaphthenone a) underivatized perinaphthenone, b) No derivatization in 
ACN/DCM/MeOH c) complete derivatization in MeOH. 
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App. Figure 7: GC-EI-MS total ion current chromatograms showing effectiveness of 
derivatization of anthraquinone a) underivatized anthraquinone, b) No derivatization in 
ACN/DCM/MeOH c) partial derivatization in MeOH. 
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App. Figure 8: GC-EI-MS total ion current chromatograms showing effectiveness of 
derivatization of 2-methylanthraquinone a) underivatized 2-methylanthraquinone, b) No 
derivatization in ACN/DCM/MeOH c) partial derivatization in MeOH. 
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App. Figure 9: GC-EI-MS total ion current chromatograms showing effectiveness of 
derivatization of xanthone a) underivatized xanthone, b) No derivatization in ACN/DCM/MeOH 
c) partial derivatization in MeOH. 
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App. Figure 10: GC-EI-MS total ion current chromatograms showing effectiveness of 
derivatization of anthrone a) underivatized Anthrone, b) No derivatization in ACN/DCM/MeOH 
c) partial derivatization in MeOH. 
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App. Figure 11: GC-EI-MS total ion current chromatograms showing effectiveness of 
derivatization of 1-pyrene carboxaldehyde a) underivatized 1-pyrene carboxaldehyde, b) 
Complete derivatization in ACN/DCM/MeOH c) complete derivatization in MeOH. 
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