lN’) University of North Dakota
2 UND Scholarly Commons
Theses and Dissertations Theses, Dissertations, and Senior Projects

January 2018

Relativistic Multireference Perturbation Theor
With Applications To D And F Block Metal
Systems

Eric Timian

Follow this and additional works at: https://commons.und.edu/theses

Recommended Citation

Timian, Eric, "Relativistic Multireference Perturbation Theory With Applications To D And F Block Metal Systems" (2018). Theses
and Dissertations. 2365.
https://commons.und.edu/theses/2365

This Dissertation is brought to you for free and open access by the Theses, Dissertations, and Senior Projects at UND Scholarly Commons. It has been
accepted for inclusion in Theses and Dissertations by an authorized administrator of UND Scholarly Commons. For more information, please contact
zeinebyousif@library.und.edu.


https://commons.und.edu?utm_source=commons.und.edu%2Ftheses%2F2365&utm_medium=PDF&utm_campaign=PDFCoverPages
https://commons.und.edu/theses?utm_source=commons.und.edu%2Ftheses%2F2365&utm_medium=PDF&utm_campaign=PDFCoverPages
https://commons.und.edu/etds?utm_source=commons.und.edu%2Ftheses%2F2365&utm_medium=PDF&utm_campaign=PDFCoverPages
https://commons.und.edu/theses?utm_source=commons.und.edu%2Ftheses%2F2365&utm_medium=PDF&utm_campaign=PDFCoverPages
https://commons.und.edu/theses/2365?utm_source=commons.und.edu%2Ftheses%2F2365&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:zeineb.yousif@library.und.edu

RELATIVISTIC MULTIREFERENCE PERTURBATION THEORY WITH
APPLICATIONS TO d AND fBLOCK METAL SYSTEMS

by

Eric Benjamin Timian
Bachelor of Science, University of North Dakota, 2011

A Dissertation
Submitted to the Graduate Faculty

of the
University of North Dakota

in partial fulfillment of the requirements

for the degree of

Doctor of Philosophy

Grand Forks, North Dakota

August
2018



This dissertation, submitted by Eric B. Timian in partial fulfillment of the
requirements for the Degree of Doctor of Philosophy from the University of North
Dakota, has been read by the Faculty Advisory Committee under whom the work has

been done and is hereby approved.
Dr. Mark R. Hoffmann, Chairperson

Dr. Harmon B. Abrahamson

SV =, O

Dr. Katﬁr@]‘hon'lasson

T o Sl
Dr. Jérome Delhommelle

Dr. William Schwalm ~

having met all of thé requjrements of the School of Graduate Studies at the University of
North Dakota

Grant-McGirrpse
Dean of the Sc of Graduate Studies
Tl 27,241 F

Date



PERMISSION

Title Relativistic Multireference Perturbation Theory with Applications to d and
fblock Metal Systems

Department ~ Chemistry

Degree Doctor of Philosophy

In presenting this dissertation in partial fulfillment of the requirements for a
degree from the University of North Dakota, I agree that the library of this University
shall make it freely available for inspection. I further agree that permission for extensive
copying for scholarly purposes may be granted by the professor who supervised my
dissertation work or, in his absence, by the Chairperson of the department or the dean of
the School of Graduate Studies. It is understood that any copying or publication or other
use of this dissertation or part thereof for financial gain shall not be allowed without my
written permission. It is also understood that due recognition shall be given to me and to
the University of North Dakota in any scholarly use which may be made of any material
in my dissertation.

Eric Timian
August 2018

il



TABLE OF CONTENTS

LIST OF FIGURES ...ttt ettt et ene e vi
LIST OF TABLES ... ..ottt ettt ettt ettt snaenseenne s vii
ACKNOWLEDGEMENTS ..ottt st viii
ABSTRACT ...ttt ettt sttt ettt et e e eatesbe e e eneenaeenee ix
CHAPTER T INTRODUCTION ......cccttiitiiiiiieiesitete ettt sttt 1
Scalar-Relativistic Effects .......c.ooiuiiiiiiiiiiiieeeee e 2
SPIN-OTbit COUPIING....ceeiiiiiiiiieiiee ettt ettt et 3
Relativistic Hamiltonians ............cooueiiiiiiiiiiiiee e 6
Symmetry in Relativistic SYSteMS. .......cccviieiiiiiiieiieeeeeee e 8
Single Molecule Magnets..........cocuiieriiieiiieeiie ettt iree e e saeeeens 9
CHAPTER II METHODS ..ottt st ne e 15
The Exact Two-Component Approach ..........cccceeeevierieniiiienienieieniesieeeeeese e 15
The Douglas-Kroll-Hess Approach............c.oocueeiiieiieniieniieeieeieee et 21
The Atomic Mean Field ApproXimation............cccveeecveeeriieeniieenieeeeiee e esereeeeeee e 24
Generalized van Vleck Second-Order Perturbation Theory ........c.ccoecvvevviieinieeinennee, 26

v



Double Group SYMMEITY .....ccocuiiiiiiieeiieeeiieeciee et eeraeeeeteeereeesreeesseeeseseeessseeesseeennns 29

CHAPTER III SPIN-DEPENDENT RELATIVISTIC GVVPT2 .....ccoveiiieiiiieeieeinen 36
The Two-Electron Spin-Orbit INtegrals ...........cccceevieriieiieiiieiieeeeeee e 36
Construction of the sf-X2C+so-DKH3 Hamiltonian ............cccccceevevievieniienienieeieenen. 43
Spin-Dependent GV VPT2......c.oooiiiiiiiiieeeceee ettt 45

CHAPTER IV RELATIVISTIC GVVPT2 STUDY OF GROUND AND LOW-LYING

EXCITED STATES OF THE GADOLINIUM DIMER .......cccoiiiiiiiiiiiiiieieeeeieeee 53
INEEOAUCTION ...ttt ettt et ettt et esnee e 53
Computational DetailS..........cccuiiiiiiieiiiecieece e e e e 55
RESULLS ..ttt ettt 59

CHAPTER V RELATIVISTIC GVVPT2 STUDY OF GROUND AND LOW-LYING

EXCITED STATES OF THE DYSPROSIUM DIMER .......cccocooiiiiiiiiinienieeeieeeene 65
INEEOAUCTION ...ttt ettt e st e et e saee e 65
Computational Details..........cccoriiiiiiiiiiiniii e 68

CHAPTER VI FUTURE WORK: GVVPT2 STUDY OF THE SCANDIUM TRIMER 73

APPENDIX A THE SPIN-ORBIT TERM .....cccooiiiiiiiiiiiieeeieteee e 77

REFERENCES ...ttt st 83



LIST OF FIGURES

Figure 2.1. Partitioning of the Hamiltonian within SC-QDPT. .........cccceeviiviiieiieeeen. 26
Figure 3.1. Flow diagram for calculating the two-electron spin-orbit integrals. ............. 48

Figure 3.2. Flow diagram for calculating elements of the effective one-electron
Hamiltonian generated by the AMFI approXimation.............cccuevveevieeneeeiieenieesieenneeneens 51

Figure 4.1. Valence electronic configuration of the Gadolinium atom. .........c.ccceceevueenene 53

Figure 4.2. Dissociation of Gd; to ground state atoms. The change in the valence electron
configuration upon dissociation indicates an avoided CrosSing. ...........cceceeeveeevverreeenneenne 55

Figure 4.3. Potential energy curves for the ground and low-lying 19-plet excited states,

X%y, 1P2y, 1'%, of Gd, obtained at the GVVPT2 level of theory..........ccccovueveee.. 60
Figure 4.4. Potential energy curves for the low-lying 17-plet excited states, 1'7Zy", 1''TI,,

of Gd; obtained at the GVVPT2 level of theory. .......cccoveviiiiiiiniiiiiiccicc 63
Figure 5.1. Valence electron configuration of the Dysprosium atom.............ccccceeuveenneee. 65

Figure 5.2. Valence orbital diagram for Dy>. The higher energy molecular 7 (or ) orbital
is possibly generated by empty S5d atomic orbitals. ..........ccceecviieriiiiiniiiieniie e 68

Figure 6.1. Valence electron configuration of the Scandium atom. ...........ccccceeverveneennens 73

Vi



LIST OF TABLES

Table 2.1. The Coy dOUDIE GrOUP. ....ccociiieiie ettt e eaaeeens 31
Table 2.2. Group chains used in the construction of symmetry functions........................ 33
Table 4.1. Details of the active space used to describe Gda. .....cccevevvieiviieiciieiieeeiee 56

Table 4.2. Electronic transitions and corresponding irreps and valence orbital
configurations for the ground and excited states considered for Gda. ....c..ccoeevenieiennnene 58

Table 4.3. Macroconfigurations for each electronic state used for the GVVPT2
CaAlCUIAtIONS OF G2 .eiiiiiieiie ettt e e e sab e eabeeeareeenaeaens 58

Table 4.4. Equilibrium distances (R.), binding energies (De), and vibrational frequencies
(we) for the ground and low-lying 19-plet and 17-plet excited states of Gd: calculated at

the GVVPT2 1eVel Of thEOTY. ..ooviiiiiiiiieiieceeeee ettt 61
Table 5.1. Details of the MCSCEF active space used to generate optimized orbitals for

Dy ettt s 70
Table 5.2. Details of the GVVPT2 active space used for the X ''II, state of Dyx............ 70

Table 5.3. Macroconfigurations used for the MCSCF and GVVPT?2 calculations of the X
MY Ty StAte OF DIY2. ouvieceiiecee ettt 71

vii



ACKNOWLEDGEMENTS
I would like to express my sincerest appreciation and gratitude to the members of
my advisory Committee for their guidance and support during my graduate career at the
University of North Dakota, to the funding agencies that supported my research, to
members of my research group for helpful discussions and insight, and to my family and

friends for their continued moral support, motivation, and some really fun times.

viii



ABSTRACT

Electronic structure theory programs strive to be as widely applicable as possible.
In order to account for effects exhibited by heavier elements, relativistic considerations
must be incorporated into these programs. The methods developed in recent years
generally succeed in describing the relativistic nature of systems containing heavier
elements with reasonable accuracy, but have limited application due to their complexity
and computational demand. Highly correlated systems exhibiting significant relativistic
effects remain as a challenge to quantum chemical methods.

In this thesis, I present the application of a well-defined relativistic Hamiltonian to
a high-level electronic structure theory to generate a relativistic variant of a high-level
multireference electronic structure theory capable of obtaining accurate results for highly
correlated relativistic systems. This theory applies the exact two-component (X2C)
relativistic Hamiltonian and a third-order Douglass-Kroll-Hess (DKH3) transformation for
the spin-free and spin-orbit terms, respectively. The spin-orbit integrals are contracted into
an effective one-electron Hamiltonian using the atomic mean field (AMFI) approximation,
which increases computational efficiency with little loss in accuracy. By applying this
scheme to the second-order generalized van Vleck perturbation theory (GVVPT2), which
offers appropriate treatment of electron correlation, a theory providing an accurate analysis

of chemical systems with strong relativistic effects is obtained.
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The method developed in this work is used to explore ground and low-lying excited
states of the lanthanide dimer systems Gd, and Dy>. Results from scalar relativistic studies
show that GVVPT2 can accurately characterize these systems. The ground electronic
states obtained (Gda: "Xy ; Dya: !'Ilg) match literature and theoretical results. The
spectroscopic data obtained for the ground state of Gda (Re = 2.826 A; De =2.48 eV; we =
153.0 cm™!) are in excellent agreement with literature values (R. = 2.877 A; Dp=2.1+0.7
eV; we = 138-149 cm™). Inclusion of spin-orbit coupling in these studies is expected to
improve the results to agree with literature values to within chemical accuracy. Future

work is planned to extend this method to transition metal trimers.



CHAPTER 1
INTRODUCTION

Computational chemistry serves as a cornerstone to modern chemistry research. As
new molecules and materials are developed, theoretical calculations on them are necessary
in order to gain a more complete understanding. The methods used to perform these
calculations must treat the more important effects with sufficient accuracy in order to
provide a decent description of the system. While the largest electronic effects in chemical
problems are Coulomb and exchange correlation, an accurate description of the electron
correlation is essential in order to achieve chemical accuracy (~1 kcal/mol), even though it
accounts for only a small amount of the total energy (<1%).! When considering molecules
and materials containing heavier elements, other physical effects become more
pronounced, such as relativity. For example, scalar relativistic effects in gold reduce the
energy gap between the 5d and 6s orbitals, which allows the electronic transitions between
these orbitals to occur within the visible spectrum, giving it a lustrous and brilliant color.
Otherwise, gold would have the same color as silver.”? For materials exhibiting large
relativistic effects, it is as equally important as electron correlation to have an accurate
description of these effects.® Therefore, more sophisticated methods that go beyond the
simple nonrelativistic limit are required in order to gain a full understanding of the system
under study. Such methods are in general more sophisticated than their nonrelativistic

counterparts and, as a result, have seen less computational development.



Scalar-Relativistic Effects
The main relativistic effects present within chemical systems can be categorized as
either scalar-relativistic or spin-dependent contributions, of which spin-orbit contributions
are most important. Scalar-relativistic effects primarily manifest as changes in orbital sizes
due to a relativistic mass increase in the electron. The mass of a 1s electron is represented

352

me

NN (1.1)

where the velocity of a 1s electron is equal to the nuclear charge in atomic units

m:’}/me=

(vis =Za.u.) and ¢ = 137.0359998 a.u. The Bohr radius is inversely proportional to
the electron mass

Arregh?
ap = TO (1.2)

So, as the atomic number increases to a size such that Z2 is comparable to ¢?, relativity
will contract a one-electron atom. This concept can be extended to many-electron atoms
by considering the relativistic correction to the orbitals. It has been shown that, for a
property a of atomic orbital u, for inner core as well as outer valence orbitals of a given

symmetry type [, j,*

Z 2
Sa, = cf; (—) , (1.3)



where Z is the unshielded nuclear charge. Thus, the relativistic correction for heavier
atoms is larger than predicted by the hydrogenic model. This direct relativistic effect leads
to a predominant stabilization and consequential contraction of the s and p atomic orbitals.

The relativistic change of the inner atomic orbitals induces a change of electronic
shielding of the nuclear attraction, which results in a change in the potential energy of the
orbitals. Due to the relativistically contracted inner core orbitals, this indirect relativistic
effect arises as an energetic destabilization and consequential expansion of the outer core
orbitals. The effect becomes most prevalent for orbitals in close proximity of each other,
such as for valence orbitals with core shells near their maxima. Relativistically contracted
semi-core s and p shells have a similar radial extent but much lower energy than valence d
and f orbitals and thus exert a strong indirect effect on the valence shell, whereas the direct
relativistic stabilization of the valence d and forbitals is rather weak. Therefore, relativistic
expansion remains predominant for the d and f'atomic orbitals.?>™

Spin-Orbit Coupling

The other main contribution to relativistic effects is spin-orbit interactions. The
basic mechanism of spin-orbit interactions can be interpreted as magnetic induction. More
definitively, for an electron moving in a molecular field, spin-orbit coupling (SOC)
describes the interaction of the spin of the electron with the magnetic field due to the
relative motion of the charges. This interaction can be expressed more explicitly by

considering a nonzero electrostatic potential contribution to the Hamiltonian, such is the



case for interactions between the electron and a nucleus in an atom. This potential can be

represented by ¢ = V(7). The electric field due to V is®

rdv
E=-V/=———: (1.4)
rdr

Since the charges are in relative motion with respect to each other, a magnetic field is

induced and experienced by the electron given by

B=-—

vxE 1.5
- (15)

where v is the velocity of the electron. This magnetic field will interact with the intrinsic

magnetic moment of the electron and can be represented in the Hamiltonian as
H =-u-B (1.6)
. . h . .
Representing the magnetic moment as p = %S, where § is the spin operator, and

substituting the expression for the magnetic field into the Hamiltonian, the interaction is

then re-expressed as

eh P rdv
s 21 ()
mc mc rdr

m2cZrdr (1.7)




where L = r X p is the angular momentum. This is defined as the spin-orbit interaction,
and must be included in the interaction Hamiltonian. A more formal derivation of the spin-
orbit term presented by Desai within the Dirac framework® is given in Appendix A.

With the inclusion of spin-orbit interactions, [ and s are no longer good quantum
numbers (even for a central potential), and only the total angular momentum j =l + s is
conserved. Orbitals are then characterized by the quantum numbers j and m;

J2j,mj) = 2% + D]j,m;) (1.8)

Jo|j,mj) = hmjj, m;). (1.9)
This gives rise to orbital splitting (p > (P1/2,P3/2),d = (d3/2,ds/2), etc.) and,
consequently, splitting of molecular energy states. The spin-orbit interaction allows for
coupling between otherwise non-interacting states, e.g. states with different multiplicities.
New relaxation pathways thus open up for electronically excited states via inter-system
crossing, and new reaction channels are permitted.”® Reactions of O(*P) or 0>(*Zy) with
unsaturated hydrocarbons typical in combustion processes proceed through triplet diradical
formation, and the closed-shell singlet products can only be formed through inter-system

crossing.!%18

Sensitization processes producing singlet oxygen widely used in
photochemistry and biomedical applications are driven by spin-orbit coupling.'

Phosphorescence, an effect resulting from triplet emission, arises due to spin-orbit

coupling, and is essential in organic light-emitting devices.?’



Relativistic Hamiltonians

While relativistic effects are far less pronounced in lighter elements, they have
proven to be phenomena that cannot be neglected in molecules containing heavier
elements, such as 5d and 6d transition metals, lanthanides, and actinides.>*!'** Not only
do relativistic effects provide a contribution to the overall energy that is on the order of
electron correlation, but a relativistic description of the system under consideration is
required to provide an accurate characterization of its physical and chemical properties,
such as the orbital picture, bond lengths, or binding energy.*>> Moreover, relativistic effects,
such as NMR coupling constants, are prominent in elements as light as carbon.*®*” In order
to account for these effects nonperturbatively in quantum chemical calculations, the four-

dimensional Dirac operator is (usually) applied

YHou (1.10)

1 0 ; 0 o
ve= 0 = Jy) yl=( | ol>' (1.11)

1
0 = (000y.0,,20;), (1.12)

where o; are the Pauli spin matrices. Application of this operator to the generalized
eigenvalue problem gives the four-dimensional Dirac Hamiltonian

H=ca-p+ fmyc? (1.13)
While this yields an accurate description of relativistic effects that includes spin-free and

spin-orbit interactions, it necessitates the development of four-component quantum
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chemical methods, which are computationally expensive relative to their nonrelativistic
counterparts due, for example, to the required evaluation and storage of more two-electron

integrals than in the nonrelativistic case.’®*°

Furthermore, solving for the relativistic
wavefunction introduces complications, such as taking into account the existence of
negative energy (positronic) states which are not present for nonrelativistic treatments of
electronic structure.*® The latter can be overcome through a decoupling scheme which
eliminates the small component resulting in two-component theories yielding only
electronic solutions, which allows the eigenvalue equation to be expressed in terms of the

large component only.*!!

Additional approximations can be made concerning the
omission (or approximation) of individual contributions to the Dirac-Coulomb-Breit
(DCB) Hamiltonian. The one of central interest to this dissertation is the contraction of the
two-electron spin-orbit operator to an effective one-electron operator.>> Approximations
to the DCB operator can significantly reduce computational cost while still capturing spin-
orbit interactions for chemical systems for which the approximation is valid.

Several two-component approaches have been developed to approximate the four-
dimensional Dirac Hamiltonian. The Douglas-Kroll-Hess (DKH) approach,**#*4> which
starts with a Foldy-Wouthuysen (FW) transformation,*' aims to block-diagonalize the
Hamiltonian through a series of unitary transformations. Since the transformations have

regular forms for higher-order terms, it has been widely used. The Barysz-Sadlej-Snijders

(BSS) approach*’ perturbatively expands a two-component Hamiltonian and then follows



a two-step block-diagonalization, the first transformation generating the spin-free part of
the Hamiltonian, and the subsequent transformation generating the spin-dependent part.
This block-diagonalization can, however, be achieved in one-step following the exact two-
component (X2C) approach.”!  Alternatively, perturbative expansions, called regular
approximations (RA), to the Hamiltonian may also be considered. Different levels of the
perturbative truncations of the operator give rise to the different orders of the RA, such as
zeroth-order (ZORA), first-order (FORA), etc.***® This dissertation is focused on
approximations in the X2C framework.

There have been many efforts to incorporate SOC into methods of electronic
structure theory (CI, CC, EOM-CC, MRCC, DFT, CASSCF, CASPT2, MRCI)> %
applying a number of different two- or four-component approaches. A study by Liu et al.*
surveyed the application of various relativistic Hamiltonians to systems exhibiting large
relativistic effects. One of the results of that study showed that an X2C treatment of the
spin-free terms and a third-order DKH (DKH3) —like treatment of the spin-orbit terms is
most practical. Implementing this relativistic Hamiltonian into electronic structure theory
methods allows a much larger variety of chemical systems to be studied with reasonable
accuracy.

Symmetry in Relativistic Systems
For chemical systems exhibiting relativistic behavior, fundamental characteristics

differ significantly from a nonrelativistic representation. Therefore, the symmetry of these



systems must also be reevaluated. While the orbital and spin angular momentum [ and s
are conserved in a nonrelativistic framework, the total angular momentum j = I + s is the
conserved quantity in relativistic systems, yielding either integer (boson) or half-integer
(fermion) values. Consequently, the symmetry operation of a rotation through an angle of
2m for a fermionic state returns an inversion of the original state. Thus, the number of
symmetry elements for a relativistic system is doubled, and the symmetry group
representing the system extends to a double group. Exploitation of symmetry of a chemical
system reduces computational cost, so incorporating double group symmetry into
electronic structure theories for relativistic systems is sensible. A more detailed discussion
of double group symmetry is given in Chapter 2.
Single Molecule Magnets

Materials, whose properties depend strongly on chemical structure, have become
of greater and greater interest within the chemistry community in recent years. One of
these types of materials is single molecule magnets (SMMs). These materials generally
contain a few heavy atoms at their core, commonly consisting of d or f block elements.
Since elements of the 5™ period and below are strongly affected by relativity, high-level
relativistic electronic structure calculations, at least on the isolated cores, are necessary in
order to understand their properties. The research presented in this work focuses on

lanthanide dimers.



In its ground state, the gadolinium atom displays the highest spin multiplicity of
any atom, with an electronic configuration of [Xe]4/ 5d'6s%, resulting in a ground state
with atomic symbol of °D,.%7 Consequently, Gd-containing molecules also exhibit high
spin multiplicities, generating interest in, for example, pharmaceutical industries for use as
magnetic resonance imaging (MRI) signal enhancers and radiation sensitizers for cancer
radiation therapy.®® As a dimer, the Gd> molecule has a ground state electronic
configuration of (4/7)(4f)6s0.°6s0y'5dos'5dn,>.  Electron spin resonance (ESR)
spectroscopy has revealed that the spectral lines of Gd, are best fitted to an § =9
Hamiltonian,%® indicating that there are 18 unpaired electrons that are ferromagnetically
coupled, including the 14 inner 4f electrons. This results in a '°Z,” ground electronic state
for the Gd, molecule. When considering the dissociation of Gd; into separate ground state
atoms, a correlation diagram shows that there are four 6s electrons and two 5d electrons at
the dissociation limit. Therefore, Gd, will experience an avoided crossing upon
dissociation from the ground state. This implies the existence of numerous low-lying
excited states which can also be deduced from the atomic energy levels, and, since atomic
states with different 54 and/or 4f occupation may mix in the molecules, careful treatment
of electron correlation must be applied.

There have been few previous experimental or theoretical studies of Gdo.
Theoretical calculations for Gdz have mainly been published by Dolg and co-workers using

a variety of methods. In 1992, Dolg and co-workers performed configuration interaction
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(CI) and energy density functional theory (DFT) calculations using scalar-relativistic
energy-adjusted ab initio pseudopotentials.’® In that study, the 4/’ subshells were treated
as part of the core. Their results indicated that the valence substate of the ground electronic
state was °X,. The atomlike 4f subshells were expected to be coupled to an ®S state,
meaning that, overall, Gd> consists of 18 total unpaired electrons. The obtained
spectroscopic data (R. = 3.015 A, D. = 0.98 eV), are in disagreement with later
experimental data. The same authors improved upon their earlier results in a 2000 study
using configuration interaction including single and double excitations (CISD) and the
averaged coupled-pair functional approach (ACPF), and explicitly correlating the 4f
orbitals.”!  The results obtained in this study produced a X, ground state with
spectroscopic data (R = 3.006 A, we = 117 cm™, De = 1.41 eV) that is in closer agreement
with experimental results. Perhaps the best theoretical results obtained for Gd, were by
the same author in 2003.7> In that study, relativistic energy-consistent small-core
pseudopotentials were applied to the core 1s-3d shells, while atomic natural orbital (ANO)
valence basis sets were used to span the valence shells. Calculations were performed at
the coupled cluster level of theory with single, double, and perturbative triple excitations
(CCSD(T)). The results from that study showed a ', ground electronic state with
spectroscopic data (Re =2.877 £ 0.020 A, De=1.60 £ 0.18 eV, w. = 149 £ 2 cm™!) in better
agreement with experimental data. Due to the large number of low-lying excited states and

complexity of the electron correlation, it is clear that a multireference treatment of Gd:
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would be highly desired. However, currently available theoretical results have only used
single-reference methods, and no full potential energy curves have been generated for this
system.

Numerous studies have been conducted involving SMMs containing dysprosium
cores. Two underlying conditions for SMM behavior (i.e., doubly-degenerate ground
states with high m; values and large separation between ground and excited states)’* are
easily achieved for Dy-based compounds, which make them favorable targets for use in
magnetic applications, such as magnetic resonance imaging (MRI) and SMMs.”
Furthermore, the SMM behavior of Dy> systems can be tuned effectively by the dipolar
interactions and exchange coupling, giving polynuclear Dy-based SMMs advantages over
their mononuclear counterparts.”” The dysprosium atoms within these SMM cores
commonly exist as trivalent ions and usually are bridged by some other species. Given that
the properties of a directly bonded Dy> species have not yet been investigated, either
experimentally or theoretically, this dissertation addresses this hole in understanding.

The dysprosium atom has a ground electronic configuration of [Xe]4/'%s?, and
results in a ground state with atomic term symbol of °Is (/= 6). The first excited state with
odd parity corresponds to promoting an electron from the f manifold, giving it an electronic
configuration of [Xe]4/°5d6s* with a term symbol of "Hs (I = 5) lying 0.94 eV above the
ground state, while the first excited state with even parity corresponds to promoting an

electron from the s manifold, giving it an electronic configuration of [Xe]4/'°5d6s with a
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7 Dimeric species of

term symbol of 3Ky (I = 8) lying 2.17 eV above the ground state.
dysprosium yield a ground state molecule with a multiplicity of 11, and excited states with
multiplicities of 9 (even) and 13 (odd) in addition to 11. The large number of open
subshells, especially those arising from more than one subshell, as well as the large angular
momentum values, make it an interesting but difficult target for computational study. As
stated above, no previous theoretical studies of Dy are in the literature.

For the materials considered for magnetic applications, it is not uncommon for these
systems to contain metallic clusters of more than two atoms, providing motivation for
studies into these clusters. A logical first step toward these clusters is to consider the
scandium trimer, Scs, which also proves to be a remarkable and challenging compound to
study. The scandium atom contains only one unpaired electron in its valence shell.
Therefore, if the three lone electrons remain localized to their respective atomic sites, Sc3
will have an electronic state subject to spin frustration. Such systems can be extended into
lattices with interesting magnetic properties, and also exhibit unusual behavior at low
temperatures.

In summary, I describe advances necessary for a relativistic variant of GVVPT2,
which provides appropriate treatment of electron correlation, that is both accurate and
efficient. The methods used to develop the relativistic theory are reviewed in Chapter 2.

Implementation of the sf-X2C+so-DKH3 Hamiltonian capable of describing scalar and

spin-orbit relativistic effects, as well as an effective one-electron spin-orbit Hamiltonian

13



into the GVVPT2 electronic structure theory is described in Chapter 3. Studies of the
gadolinium dimer, the dysprosium dimer, and the scandium trimer, using new programs

that incorporate relativistic effects, are presented in Chapters 4, 5, and 6, respectively.
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CHAPTER 11

METHODS
Efforts to extend the GVVPT2 method to include relativistic effects have been in
progress in recent years. W. Jiang determined nonvanishing one-electron spin-orbit
Hamiltonian matrix elements in cartesian coordinates for CI and GVVPT2 theories.”® The
integrals discussed in that work have since been implemented within the UNDMOL
electronic structure package, and used by P. Tamukong in a scalar-relativistic GVVPT2
study that successfully characterized transition metal dimers.”” The work presented in this
dissertation extends on the current scalar-relativistic implementation within UNDMOL to
include two-electron spin-orbit coupling effects. Here, I will start with a review of the

different methods supplementary to these developments.
The Exact Two-Component Approach

The formulation of the X2C approach presented here follows that of Liu and co-
workers.”® First, consider the Dirac equation for an electron in the presence of an external

potential V'

hPy = E, @.1)
h = (C&V- p ch é’iz) 22
v=(") @3)
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where the rest mass energy mc? of the electron has been subtracted. The wavefunction is
a four-component vector consisting of two bispinors, the large component ¥~, which
corresponds to electronic states, and the small component 15, which corresponds to the
positronic state. The Dirac Hamiltonian h? could be separated into spin-free and spin-
dependent parts simply by partitioning h” into a diagonal and off-diagonal term. However,
transforming the Dirac equation according to some metric to form an equivalent modified
Dirac equation and then performing the partition is more beneficial. The transformation is
chosen such that the small-component spinor 1° is expressed in terms of a pseudo-large
spinor @’ while leaving the large-component spinor ¥’ unchanged. This allows 1 and
¢! to be expanded in the same basis set. Thus, the transformation can be written as
T=<1 aop> ¢S=R@<p% (2.4)
2c
where R is independent of spin. The modified Dirac equation can then be expressed as
hMyM = EMyM, (2.5)
with
1, s =
v 5(@-PR(@G-P)

WM = FHROT = ,

. , (2.6
@ PRIGP) — (6 PRV ~2DRE F)

1 0
M=TT= a 2o ) 2.7
(o G PRIRG- p)> 7

16



M =Tty = (f) 2.8)

Here, R =1 is chosen, which corresponds to the original modified Dirac equation
introduced by Kutzelnigg and later studied by Dyall. The transformed Hamiltonian and

metric can then be reduced to

14 T
hM = (T a? W — T>, (2.9
4
ﬁz
1 0
1\/1=<0 a_2T>. (2.11)
2

The spin dependence now only appears in W within h™, and so spin separation is easily

achieved by using the Dirac identity

hM = h; + hi, (2.12)
V , T 0 2O
hif = (T %st B T), hY, = (o %Wsd) (2.13)
where
Wr = p-Vp, (2.14)
Wsq = ic - (BV X )

= - [(VV) x 7. (2.15)

For the nuclear attraction V = — é, (V) = i—:, SO
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o- (7 xp)

Il
ﬂwl N
Qu
~l

27

=35k (2.16)

o~

This shows that W, is directly connected to spin-orbit coupling.
The previous derivation was carried out within the restricted kinetic balance
(RKB).” Under the RKB, the large and small components are expanded in the basis sets

{9,} and {f, }, respectively

2NE 2NE

V= guhu VS = fuBu 2.17)
u=1 u=1

A relation is then imposed directly between the individual basis functions

- -

g-p
fu = G0 (2.18)

allowing for evaluation of relativistic properties following the above derivation while
avoiding variational collapse.

Although these derivations were carried out at the operator level, it can readily be
verified that the matrix representation of h™ in the basis { gu} U { gu} and that of h? in the
basis {g#} U {fu} are the same. The corresponding matrix equations can be expressed as

h°C = MCE, (2.19)
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\ T
h? = (T a? W T) = hJ +h2, (2.20)

4
' T 0 0
W= a2 o= a? 2.21)
sf (T T sf_T> sd (0 Twsd)
S o0
_ 2 _ (A
M = (o %T> c_(B). (2.22)

Now that spin separation has been achieved, the large and small components can
be decoupled and the small component eliminated. For simplicity, the generic generalized

eigenvalue problem is considered

hC = MCE, (2.23)
with
h.. h
h= ( 11 12) — ht, 204
hy hsy 2.24)
Sy 0y
M = ( . Szz) - Mt (2.25)

and C remains as defined previously. A decoupling matrix X is now introduced by

imposing the key relation between the small and large component coefficients

B = XA (2.26)
or
X = BA™!
= (BAT)(AAT) ™. (2.27)
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This leads to a normalized elimination of the small component

LNESCA = S AE, (2.28)
LI_Y_ESC = hll + h12X + X-l-th + X-I-hzzx, (2.29)
S, =S, +XTS,,X. (2.30)

Currently, this problem remains in the Dirac picture. A unitary transformation must

be applied in order to change into the Schrodinger picture

U= UNUDI

where

g_ = Szz + XTSlli,

X == _SI]_]'XTSzz.

2.31)

(2.32)

(2.33)

(2.34)

(2.35)

(2.36)

(2.37)

Constructing the unitary transformation matrix in this way allows the Hamiltonian to be

decoupled (achieved by Up) and renormalized (achieved by Uy). Therefore, applying this

transformation to the Hamiltonian and the metric gives
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b
UhU (0 N

), UMUTz(SO+ S°_>. (2.38)

Substituting these relations into the matrix Dirac equation yields
Uhut(UH~1c = uMUt(UT)ICE, (2.39)
which gives
h, 0\, 0\ (S, 0\/C, O\(E; O
(o )& c)=(c s)(o )l &) (2.40)

Choosing the upper-left block of this equation yields an expression for the electrons only

h,C, = S,,C,E,, (2.41)
h, = RTLNESCR,, (2.42)
C, = R{’A,. (2.43)

Following this scheme, the small component has been removed from the equation, thus
producing a two-component theory (in this case, X2C) within a no-pairs approximation
from the initial four-component problem. This greatly reduces computational overhead by
eliminating the evaluation of the negative energy (positronic) states without sacrificing
accuracy of the desired positive energy (electronic) states.
The Douglas-Kroll-Hess Approach

Another technique developed to decouple the Dirac Hamiltonian is the DKH

method.*>*** This approach aims to block-diagonalize the Hamiltonian step-wise through

a series of unitary transformations’®
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hkH = ... U,U,U, U hPufutulu] ... (2.44)
The first transformation in this scheme is defined to be the free-particle FW (fpFW)
transformation*!
h; = Uoh?U] (2.45)
=&+ & +0;. (2.46)

The unitary operator Uy in this equation can be expressed as®

Uy = (_iQ Q;Q), (2.47)

where P and Q are kinematical operators defined by

1

23
p_(BFcY (2.48)

2 )’

co'p
= ) 2.49
9 g + c? (2:49)
with

1

gy = (p2c? + c*)2. (2.50)

The resultant Hamiltonian h; in equation (2.45) is identified as the fpFW Hamiltonian,
which is also referred to as the no-pair Hamiltonian. The terms &, £;, and O, are given

by

(&% O
& = (o _80), (2.51)
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&g 0
& = (0 81), (2.52)
(0 o
0, = (—01 0 ) (2.53)
where
& =PVP + PQVQP, (2.54)
0, = PQVP — PVQP. (2.55)

The unitary matrices U,, in equation (2.44) are chosen such that the off-diagonal
terms are successively diminished as each transformation is applied. At each step, even
(block-diagonal) terms, denoted as €, and odd (off-diagonal) terms, denoted as O, are
produced that form the Hamiltonian. Ifthis process is carried out to infinite order, complete
decoupling of the Hamiltonian is achieved and a truly block-diagonal form (all odd terms

vanish) is obtained®!

_N(ELrEs o
= of : (2.56)
0 &L+ &4

Performing the block-diagonalization this way supplants a well-defined two-component

formalism that consist of matrices bounded below so that variational collapse is avoided.
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Since carrying this out to infinite order is not practical, the series is truncated at a
pre-defined order, giving rise to the DKHn (n = 1, 2, ...) schemes, where n is the index of

the last unitary transformation considered. This leads to a partially transformed

Hamiltonian
n o
hpt = Z gk + Z gk (257)
k=0 k=n+1

= h2KHr 4 (V™). (2.58)

Each unitary matrix U,, is parameterized in terms of an anti-hermitian operator 4,, as a
series expansion in 4, given by
u, = z Al =1+ z @y AL (2.59)
i=0 i=1
The zeroth-order term in this series expansion is defined to be the identity operator to
ensure that all €, of lower order remain unchanged by subsequent transformations.
Unitarity of U, is governed by the set of expansion coefficients {an,i}, which can be
optimized in order to (generally) fulfill this condition for a given truncation of the series
expansion.
The Atomic Mean Field Approximation

Although two-component methods save a considerable amount of overhead

generated from computing negative energy solutions, they are still quite computationally

demanding due to the integrals involved in evaluating spin-orbit coupling, i.e., the two-
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electron spin-orbit integrals. While one can neglect the spin-orbit coupling and instead
perform scalar relativistic calculations, which is a fine approximation for lighter elements
and singlet ground states isolated from the rest of the spectrum, these effects cannot be
ignored for heavier atoms, where spin-dependent relativistic effects provide a significant
contribution to the overall energy and characteristics of the system. In order to reduce
computational cost while preserving the spin-orbit coupling effects, an approximation must
be made to the spin-orbit Hamiltonian.

One of the more useful approximations that can be made is to consider a mean-
field. In general, a mean-field approximation is defined by any set of occupation numbers
by means of a corresponding Fock operator matrix element. By applying an atomic mean-
field to the integrals, the two-electron spin-orbit operator can be approximated as an
effective one-electron operator by contracting the two-electron spin-orbit integrals against
the one-particle density matrix.>> The approximate spin-orbit operator is defined by

HG = (iHS° (D)1))

+3 3 mlGKHADIK) = (kI (1.2)1k) ~ PR (260
k

where the set {n,} represents the values of the one-particle density matrix. This

approximation is applicable to virtually any choice of H59(1,2).
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Generalized van Vleck Second-Order Perturbation Theory
The mathematical foundation of the multireference generalized van Vleck second-
order perturbation theory (GVVPT2) stems from self-consistent quasidegenerate
perturbation theory (SC-QDPT),%? where the total Hilbert Space (L) is partitioned into a
model (Ly) and external (Lg) space (L =Ly € Lg). The overall Hamiltonian is
partitioned in the same manner. In order to avoid problems with quasidegeneracy and
intruder states, the model space is further partitioned into a primary (Lp) and secondary

(Ls) space (L, = Lp o Lg). This partitioning scheme is illustrated in Figure 2.1.

Ly Lo Lp L Lo
Hpp | Hps Hpg
HMM HMO
HSP HSS HSO
—
Hom Hoo Hop| Hps Hoo

Figure 2.1. Partitioning of the Hamiltonian within SC-QDPT.

In SC-QDPT, the block-diagonal part of the Hamiltonian is then defined as the
unperturbed Hamiltonian (H,), whereas the off-diagonal blocks are treated as a

perturbation (V)%

26



Hy = PHP + QHQ = Hpp + Hyg,  V = PHQ + QHP
(2.61)
== HPQ + HQP

An effective Hamiltonian matrix is then formed with four matrix blocks defined as

1
H) = Hpp + > (HpoXgp + XbpHgp), (2.62)
HY = HgXgp, (2.63)

HY/ = Hg,. (2.64)

In GVVPT?2, the rotation matrix X is defined in terms of a nonlinear energy shift A; together

with a hyperbolic tangent function, which plays the role of a switching function between

degenerate and nondegenerate regimes®*

tanh(4A;
qi = —l) Hqi
A;

tanh(Ai)
BTy D, HanCne (2.65)

MELpy

et} 4T e

q€e

where eé and ei(o) are the Moller-Plesset-type energies computed from the state-specific
one-particle density matrix and state-dependent orbital energies. The elements C,,; stem

from the transformation matrix Cyp that connects the set of orthonormal eigenvectors of
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the unperturbed Hamiltonian in the model space |®p) = [P, Py, ..., P Np> to the many-

electron basis set Fy; = |F1, F,, ..., FNm)

|®@p) = [Fpy)Cpp. (2.67)
Use of a resolvent in this manner results in ground and excited state potential energy
surfaces generated from GVVPT2 calculations that are rigorously continuous and
differentiable. Coupling this with an implementation that is inherently spin-adapted and
supports both complete and incomplete active spaces, allows GVVPT2 to study
challenging problems, such as d- and f~-block metal systems.

Although these systems are computationally demanding, applying
macroconfigurations, which allow active spaces to be partitioned into an arbitrary number
of groups and electrons to be arbitrarily distributed among those groups, reduces this cost
while increasing flexibility within the calculation.®> Configuration spaces of separate
macroconfigurations are orthogonal, so the entire configuration space, L(X), induced by a
set of macroconfigurations is generated through a direct sum

L(X) = L(Xo) @ L(X1) ®L(X2) D ... (2.68)
Within the framework of an Abelian subgroup, each configuration m creates configuration
state functions (CSFs) of the same nondegenerate, irreducible representation I'(m), so the
subspace L(N;TI,5,M) of all the CSFs can be expanded over subspaces

{l(m;T'(m), S, M) };nex () given the spatial (') and spin (S, M) symmetries
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Kmax (N)

L(N;T,$,M) = z 2 @ l(m; T (m), S, M). (2.69)

K=Kz, (N) mek(N)
(k(m)=k,T (m)=T)

Double Group Symmetry
As was discussed in Chapter 1, orbital and spin angular momenta are no longer
good quantum numbers with the inclusion of spin-orbit interactions, i.e., [ and s are no
longer conserved quantities. Rather, the total angular momentum j = I + s, which can be
an integer or half integer value, is considered in relativistic chemistry. In this spirit, j is
substituted for [ when considering the character of the representation of a state
wavefunction under a symmetry operation.®® Such operations y defined by a rotation by

an angle a are given by the equation

sin [ (2]

)

(2.70)

If instead a proper rotation through an angle of a + 2m is considered, then

sin [(2]2—+1) (a+ Zn)]
[(a +227T)]

x(a+2m) =
sin

sin I(M) +[(2j + 1)”]]
_ | @2.71)

@+
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By applying the relation sin(a + b) = sina cos b + cos a sin b, and eliminating sin nr (=
0) terms, equation 2.70 can be rewritten as
sin [(ZJ-I_TDQ] cos[(2j + 1)m]

sin (%) COST

= (-D¥x(@). (2.72)

x(a+2m) =

By analyzing this equation against different j values, it can be seen that

j=n - y(a+2n) = y(a) (2.73)

j= g - x(a+2m) = —x(a). (2.74)

This behavior occurs because state functions are represented as bispinors (the product of
an orbital and a spin function) rather than vectors. Therefore, a new symmetry element is
defined
E = R(2m,n), (2.75)

which is a rotation of 27 radians about axis n. In relativistic chemistry, the element E is
included into the ordinary point groups, leading to the formation of double groups. The
double groups then contain twice the number of symmetry elements compared to their
single group counterparts, as well as additional irreducible representations (irreps)
describing behavior under the symmetry element E.

As an example, the Ca," double group is shown in Table 3.1.8” The double group

contain eight symmetry elements: E, C,(z), 0,(xz), 0,(yz), E, C,(2)E, 0,(xz)E, and
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0,(yz)E. The new doubly degenerate irrep E appears in this group, describing the behavior

of functions when j = % (fermions). The four original irreps, corresponding to the behavior

of functions when j = n (bosons), remain invariant under the operation of E. Furthermore,
the cartesian components of a triplet-spin function, sy, sy, and s:, span the B>, B, and A>
irreps, respectively, whereas the singlet-spin function spans the totally symmetric irrep A4.
The Kramers pair®® (a, f) together span the doubly degenerate irrep E. Similar
considerations can be made to generate symmetry tables for other double groups.

Table 2.1. The Cay double group.

G E E O®@,CGRE ovixy, ovxx)E ov(yz), ov(yg)E

Ai 1 1 1 1 1 af-Po.

A2 1 1 1 -1 -1 R, 8-, af+po
B 1 1 -1 1 -1 Ry, S, aatpp
B 1 1 -1 -1 1 Ry, Sx, aa-pf
E 2 -2 0 0 0 (a, B)

Following the procedure presented by Visscher,®® construction of the symmetry
functions )(f vz where I7 and [, are irreps for an associated symmetry group, for the

fermionic irreps can be done by introducing a new character projection operator

A~

PE =

N =

(E - R). (2.76)

By considering a product of character projection operators, the symmetry functions for the

bosonic irreps can be projected out from a trial function. These symmetry functions are
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used to define the matrix representations of the operations of their corresponding double
group.

The matrix representations may differ in phase of the off-diagonal elements.
Multiplying the symmetry functions by an appropriate phase factor will standardize the
representations, leading to reduction in cost for double group symmetry-adapted relativistic
calculations.

In order to assure that the integrals are real, a constraint is imposed on the basis
functions, requiring them to be Kramers pairs. Applying the anti-unitary Kramers operator

K to a symmetry function of one bosonic irrep transforms it according to the relation
Rafr = xFT, 2.77)
RxP™" = —xBr, (2.78)
where I and I'"" are bosonic irreps. If the Kramers operator is applied to an integral over
these functions, two effects may result: either (1) the functions are transformed according
to the above relation, or (2) the value of the integral is changed into its complex conjugate.
Performing a symmetry operation on the same integral has the same effect as the Kramers
operator, but instead of changing the value to its complex conjugate, the integral retains
the original real value. Since these operations yield the same result, the complex-valued
integral and the real-valued integral must be equal. Therefore, the integrals must be real.

The symmetry functions of groups with higher-order symmetry can be treated using

a product of two character projection operators: one for the highest point group irrep, and
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one for the highest Abelian subgroup irrep to resolve the degeneracy of the highest irrep.
The group chains and their correspondence of representations used in constructing these
symmetry functions are given in Table 3.2.3¢ Note that the same chains are used for groups
that are direct products of the groups listed with the inversion group.

Table 2.2. Group chains used in the construction of symmetry functions.

Point Group Irrep Abelian subgroup Irrep
Dy’ E G’ E.E
' E G E,E
Cay' En Cs E\,El
E E), B
Dy E Cy E\,El'
E> E), E)
Dad’ Ey S’ Ei, E\
E E), Ey
74" E Sa* Ei\,E
E E), Ey
U El,E,E),E)
o E Cs" E\,El
E> E), B
U El,E\,E),Ey
T E G5 E,E
U B,E
U B, E
T E C' E,E
U E.E
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Implementation of these double groups can be accomplished following a rather
simple procedure. First, the highest order Abelian group is considered to produce
orthogonal symmetry function, using character projection operators defined by
corresponding pairs of irreps (I', I'"). A spin orbital is chosen as a trial function from which
basis functions for each of the irreps are projected. Operating on these basis functions with
K gives the Kramers partner for each of these basis functions, and representation matrices
for each of the symmetry operations within that group are defined by these Kramers pairs.
Phase factors are included where appropriate in order to maintain consistency in the matrix
representations.

In the case that a particular irrep is spanned more than once by a group of symmetry-
related trial functions, the Kramers partner is generated by operating on the basis function
with a symmetry element of the group rather than K. This gives a proper representation of

the matrices. It is found that, in general,

ET’ Er"
Kx;” Z Uijx;" (2.79)

ET" T ET"
Kx;" Z Uix;" (2.80)

where U is a unitary matrix. When U is not the unit matrix, a transformation of the initial

Er"

r' 1. : .
symmetry functions )(f © and y; by Uz is necessary. This transformation does not
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change the representation matrices, but instead provides a new satisfactory set of functions
and gives real integrals.®

By following this process, no other special procedures need to be implemented in
order to treat the objects within this formulation. The same real algebra is followed, and,
therefore, the same conditions that were imposed on the basis functions are fulfilled. As
symmetry exploitation leads to reduction in computational cost, incorporation of double

group symmetry is a decent addition to any relativistic method.
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CHAPTER III
SPIN-DEPENDENT RELATIVISTIC GVVPT2
The Two-Electron Spin-Orbit Integrals
In order to derive the expressions for the relativistic integrals to be evaluated,
consider the Breit-Pauli (BP) Hamiltonian, which is separated into one- and two-electron

parts
Hgo = Hgo(1) + Hso(1,2)
e’h Zg s _
= omZc? ZZ,,T[rak -s(k)] - Z Tij [rej X pic] - [s(K) + 25D, (B.1)
kK a 9k k,j£k
where
Tak =Tk — T Tij =T — T (3.2)

The indices £, j represent the electrons, and o represents the nucleus. Now, the one- (which

will be denoted as L(k, a)) and two-electron (which will be denoted as J(k, j)) operators

in the BP Hamiltonian can be defined

Zq
L, @) = |55 (s X i)

ak m
h{Z
= lTa (Tare X Vk)l , (3.3)
LT
ak m
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JaCk)) = K% x pk)

kj

m

(3.4)

)

hf1
:7 %(Tijvk) N

where m = x,y, z.
The one-electron relativistic integrals have previously been derived and
implemented into UNDMOL, so this discussion will focus on the two-electron relativistic

integrals. Following the method by King and Furlani,®® first (arbitrarily) consider the z-

component of the two-electron operator

R[1
1.k, j) = 7 r_3(rkj X Vi)

kj 2
= Jo(k, J). (3.5)
Carrying out the cross product yields
x y Z
X — X; Yk — Vj Zy — Z;
(Tijvk)=(ka ]) (ka J) (ka 1)
dxi Vi 9z
9] 9]
[Ge=2) 5= (ae=5) 57
9] 9]
= (Zk—zj)a_xk_(xk_xj)a_zk (36)

0 0
(xk—xj)a—(yk—yj 9%,

So the expression for the z-component becomes
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af1 0 0
J.(k,j) = 7 [%((xk - XJ)E - (v — ;) 0_xk>] (3.7)

Using this form of the operator, the expression for the two-electron spin-orbit
integrals can be obtained. Similar to the electron repulsion integrals (ERIs), a four-center

integral is constructed

(ab|J;|cd) = (a(k)b(DI],(k, DIc(k)d())
:ff (), () E i (x _x.)i
Da Pp i r]?j k j ayk

; i
= (k=) E) (k) pa(j) dzy dz;

0
Yk

=7 ] 55 o000 (=)
9]
= (e —») E] () pa () dzy dz;
(xk
j ¢a(k)¢b Dz F3v (Pc(k)QDd(]) dzy dz;

ﬂ ()’k 3’1 <pa(k)<Pb(l) 0. () pa()) dzy. dz; |
0% (3.8)

While evaluating the integrals in terms of derivative ERIs would be sufficient in
determining the two-electron spin-orbit integrals, the expression can be further derived to

express these integrals in terms of the ERIs themselves. Since the ERIs are computed in a
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quantum chemical calculation, this would bypass the need to evaluate derivative ERIs
simply to compute the two-electron spin-orbit integrals.

The basis functions ¢; are defined as generic Gaussians
Pa (k) = Pa (Fki Car a, C/_i)
_ a Xy a > 7\
= (x = AN (y — A,) 7 (2 = A)%exp |~ L(Fe = A) | (3.9)

The derivatives of these functions can then be expressed as

a s - - = N - -
ﬁ(pa(k) = Nm(“)‘/)a(rk'(al a— 1m'Uq) - ZZa(pa(rk' (@ + 1m'c’q)
i

= Ny (@) g1, (k) = 2{a P41, k), (3.10)
where Ny, (&) = @y, By letting f,,(@) = Np(@)@g-1,, (k) — 20490 q+1,,(k), the two-

electron spin-orbit integrals can be re-expressed as

(ab|J;|cd) = U (o —2) <Pa(k)<pb(1)[fy(6)]<ﬂa(1) dz) dz;

f (yk G o 00 D@0t dze a5 (3.11)

It 1s sufficient to say (and can be shown) that

[ (m" 1) g K)o (00

1 .. 1 .
= fr_-[fm(a)]%(k) dmy +J—.<pa(k)[fm(c)] dme, (3.12)
kj T‘kj

so, by defining the ERI as
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1
(@bled) = [[ 0ut)0sG) = 9e(00paG) i (3.13)
j
and defining changes to the angular momentum of the components as
Ny ,
(a1mbled) = f f Va1, (k) 05 () — @c(k)a () dric dry (3.14)
j
the two-electron spin-orbit expression given in equation (3.11) can be rewritten
h - > >
(abl],|cd) = T{Nx(a)Ny(c)(a_xb|c_yd) — 204Ny (D{asxb|c_,d)
- ZZch(&)(a—xblcﬂzd) + 4’(a(e<a+xblc+yd)
— Ny (&N, (D){a_yb|c_xd) + 20N, (E){ayyb|c_,d)
+ ZZch(a)<a—yb|C+xd> - 4(a(c(a+yblc+xd>
+ NX(E)Ny(f)(ab|c_x’_yd) - ZCCNy(E)(ab|c+x,_yd)
- ZZCNx(E)<ab|C—x,+yd> + 4(g<ablc+x,+yd)
- NX(E)Ny(f)(ab|c_x’_yd) + Z(CNy(E)(ab|c+x,_yd)

+ ZZCNx(E)<ab|C—x,+yd> - 4(§<ablc+x,+yd)}- (3.15)

The last eight terms of this expression cancel out, which, after rearranging, yields
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h
(abl],|cd) = Y{Nx(&)Ny(B)(a_xbk_yd) - Ny(d)Nx(E)(a_yb|c_xd)
+ 20, [N(©){asyb|c_xd) — Ny (E){ayb|c_,d)]
+ 20 [Ny (@) {a_yb|cird) — Ny (@){a_xb|cyyd)]

+ 4’(a€c [<a+xblc+yd> - (a+yblc+xd)]}- (3.16)
This derivation was carried out in “physicist notation” and must be converted to “chemists

notation.” This can be achieved using the relation

(ik|j1) = (ij|kL), (3.17)
since
1
(ikljl) = j j P (DY) =0 (Dei(2) dry dr (3.18)
and
1
jlkl) = j j P (D9, (1)— i@ (2) dr, dry (3.19)

Thus, the final expression for the z-component of the two-electron spin-orbit integrals is

given by
h > >
(ablJ;led) = < {Ny(@Ny(b)(axb—y|cd) — Ny(@N () (a—yb_x|cd)

+ 24, [Nx(g)(a+yb—x|Cd) - Ny(B)(a+xb—y|Cd)]
+ 2, [Ny(d’)(a_yb+x|cd) - Nx(d’)(a_xb+y|cd)]

+ 40,0 [(arxbiy|cd) = (asybix|cd)]}: (3.20)
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A similar derivation can be done for the x- and y-components of the two-electron operator.

The resulting equations are given by
h N - N -
(ab|],lcd) = n {Ny (a)NZ(b)(a_yb_Z|cd) — N (a)N, (b)(a_zb_y |cd)

2, () sy ) — M, B) sy el
+ 28, [N, (@) (a—,bsy|cd) — Ny(@) (a—yby,|cd)]

+ 4(a(b [(a+yb+Z|Cd) - (a+zb+y|Cd)]} (3.21)

and
(ablsy|cd) = ?{Nz(d)Nx(I;)(a_zb_xlcd) — Ny (@)N,(b)(a_xb_slcd)

+ 244 [N, (b) (@4xb_slcd) = N(b)(@szb—ylcd)]
+ 28 [Ny (@) (a-xbyzlcd) — Ny (@) (a-zb4xlcd)]
+4040p[(a1,D1xlcd) = (@4 lcd)]}. (3.22)
Within this derivation, the spin-orbit integrals are constructed by coordinate
through combinations of ERIs of the other coordinates, with the angular momentum of the
components of the ERIs is augmented or diminished by one with respect to the
corresponding spin-orbit integral. Therefore, only the ERIs must be produced in order to
generate the correct auxiliary functions to be used for the construction of the two-electron
spin-orbit integrals, which are computed at the beginning of the calculation. Thus, by
retrieving the corresponding ERIs, the two-electron spin-orbit integrals may be constructed

at any point after the integrals evaluation during a calculation.
42



Construction of the sf-X2C+so-DKH3 Hamiltonian

After the two-electron spin-orbit integrals have been computed, the spin-orbit
Hamiltonian can be constructed from them. Using this Hamiltonian directly is
computationally demanding. Rather, as found in a survey of relativistic Hamiltonians by
Liu et al., an X2C treatment of the spin-free terms with a DKH3 treatment of the spin-
dependent terms is most practical, resulting in a sf-X2C+so-DKH3 Hamiltonian.”® This
Hamiltonian can be constructed following the general ansatz outlined in Chapter 2. The
resultant Hamiltonian in equation (2.42) must then be block-diagonalized, which can be
achieved through a series of DKH-like unitary transformations. This results in a
Hamiltonian of the form

h, =E;+E,;+E;,+E,3 (3.23)

which here is truncated at third-order in compliance with the results of Liu et al. The first
term corresponds to the spin-free part, with the remaining three terms corresponding to the

spin-dependent part. Each term can be expressed as

E+,O = h+,sf = R-I-;-_oi-‘I-Y-,L?)SCR+,o, (3.24)
az

E,,= TRi,Oxgwsdx0R+,O, (3.25)
1 -1nT

E,,= E(wlT 0l +c.c.), (3.26)
1 10t

E,;= ?(WlT‘ 0l +c.c.), (3.27)
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where

. a?
LYESC =V + TX, + XIT + X{ <Twsf - T) Xo, (3.28)
(XZ
W, = 7S(:ﬁL,OwlciloT, (3.29)
[0,]
i (e o I et (3.30)
-0 q +,0 p
a’ bt
0; = Ry (XgWeaR_, (3.31)
2 -1 -1
0, = ?Wfr E_ 1 —E 1STW, (3.32)
aZ
E_, = TR*_,Owst_,o. (3.33)

with R, o, R_ , defined by equations (2.34) and (2.35), respectively, the decoupling matrix
X, defined by equation (2.27), and the coefficient matrix C; o defined by equation (2.43),
whereas C_ j 1s defined by

C_o=RI'B_. (3.34)
By applying the Dirac identity, each of the expressions for E, ;, E, ,, and E, 5 can be
written in the form E, , = Eif p T 0 Ei‘?k. Therefore, for E, ,, the expressions for the

spin-free and spin-dependent parts become

1 —> —, — —>
EY, = — (W, - T710] + 0, - T7'W[), (3.35)
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ESS = %(v_\i1 x T~107 + 0, x T"'W/).
Similarly, O, can be further separated into spin-free and spin-dependent parts
0 = —(2¢2W, - T 'E_, — E, , - ST'W)),
03¢ = —(2c?W;y x T 'E_; — E,; x STIW)),
so that the spin-free and spin-dependent parts of E 5 can be expressed as
sf 1 — —-1n~sd,T | ~sd -1z T
Els =?(W1'T 0" +03°-T W1),
ES% = % (W,T710" — 0/ T-'W] + W, x T103*"

+ 034 x TW/),

(3.36)

(3.37)

(3.38)

(3.39)

(3.40)

Thus, the sf-X2C+so-DKH3 Hamiltonian can be written in a fully spin-separated form

h, = (Ey o+ EY, + EL) +i6 - (Eoq + ESS + ES%).

Spin-Dependent GVVPT2

(3.41)

While there are several different ways of incorporating relativistic effects into

quantum chemical calculations, defining the relativistic Hamiltonian according to equation

(3.41) allows the spin-dependent relativistic effects to be included into the calculations

perturbatively. Since the mathematical details of this approach have been presented

previously in this thesis, a description of the computational details of this method, as well

as an alternative method (relativistic corrections to the Hamiltonian from the elements of

the transition one-particle density matrix), is discussed in the following paragraphs.
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In order to generate the transition one-particle density matrix, determinants must
be calculated from configuration state functions (CSFs) of the system under consideration.
The CSFs are retrieved at the end of the calculation, since the relativistic corrections can
be introduced as a perturbative correction. The step vectors, as promulgated by Shavitt,
for each CSF are stored in an array and used as input to a Harter-Patterson routine®® to
convert the strings into determinants. The corresponding coefficients of the CSFs are also
stored in an array to be used later. Once the Harter-Patterson routine calculates the
determinants and amplitudes from the step vectors, elements of the transition one-particle
density matrix y can then be found from the equation

vit=). (Z c}a}") (dmeijldn) (Z cfa?) (3.42)

mn \ I J
where cj; are the coefficients of the corresponding CSFs, al’f,’, are amplitudes of the
determinants d,, and e;; is determined from the equation
ey = XiaXja + XigXjp. (3.43)

This matrix can then be used to make corrections to the Hamiltonian to account for low-
order relativistic effects.

While this method provides a more quick and simple way to incorporate low-order
relativistic effects, higher-order effects that have a significant impact on the overall energy
are missed. A way to improve on this method is to make use of the two-electron spin-orbit

interactions, as is done in this research and previously described. The arithmetic describing
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the evaluation of the two-electron spin-orbit integrals, the X2C method, and the AMFI
approximation is discussed in detail in the previous chapters of this thesis. Therefore, the
following discussion will describe more of the computational details.

The two-electron spin-orbit integrals are constructed from combinations of electron
repulsion integrals (ERIs). Therefore, these integrals can be evaluated on the fly at any
time during a calculation as long as the ERIs have been constructed previously. Since the
relativistic effects are considered as a perturbation to the Hamiltonian, they will be included
at the end of the calculation, which is when the spin-orbit integrals will be evaluated. This
way, the integrals can remain in the L2 cache during the calculation, allowing for fast
access speeds while being large enough for storage purposes.

The two-electron spin-orbit integrals are evaluated in a similar way to the ERIs.
Loops are arranged so that the integrals are stored as a row-packed array, beginning with
(001]/]00), where J is the spin-orbit operator, and incrementing indices in reverse order
(i.e., for (ij|J|kl), the loop for [ is the inner-most loop, and the loop for i is the outer-most
loop). The integrals are constructed coordinate-wise based on the arithmetic outlined in
equations (3.20), (3.21), and (3.22) and placed into a structure which identifies the separate
indices and associated coordinate-based integral values. After evaluating these integrals,
basis function contributions to the integrals, beginning with the left most index, are
computed in the same manner as the integral evaluations. A flow diagram demonstrating

this procedure is shown in Figure 3.1.
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Figure 3.1. Flow diagram for calculating the two-electron spin-orbit integrals.
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Using the two-electron spin-orbit integrals directly in a quantum chemical
calculation demand significant memory space and time. The AMFI approximation serves
as a suitable approximation of the relativistic effects. This method captures the significant
two-electron relativistic contributions while reducing time and memory requirements by
contracting the two-electron integrals against elements of the one-particle density matrix.
Mathematical details about the AMFI approximation are described in Chapter 2 of this
thesis.

The elements of the AMFI approximated Hamiltonian are computed by combining
one-electron relativistic integrals with the two-electron integrals contracted against the
elements of the one-particle density matrix based on separate cartesian coordinates. The
loops for the indices are set up so that k is the inner-most loop, and i is the outer-most loop.
The set of indices for each of the two-electron integrals used in the evaluation of the
Hamiltonian elements are defined within the k-loop. The appropriate integrals are then
combined according to (2.60) and contracted against the respective element of the one-
particle density matrix. The result is then combined with the corresponding one-electron
integral and stored in a row-packed array, similar to the storage of the two-electron
integrals. The resulting effective one-electron Hamiltonian provides a reasonable

approximation to the relativistic contributions to the system that captures the two-electron
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interactions, while significantly reducing computational cost by storing the values within
the L2 cache, requiring less dedicated memory necessary for the calculations. A flow

diagram detailing the AMFI approximation procedure is shown in Figure 3.2.

50



Lo‘op i
;@
] Reteve (1] |

Loop k

Define indices for two-electron
S0 integrals

l

Retrieve two-electron SO integrals
using predefined indices according
to equation (2.60)

l

Compute {ik|H5(2)|jk) —
(ik|HSO(2) |kj) = (ki] HSO(2)| k)
for each coordinate x, y, z

l

Contract against
corresponding one-particle
density matrix element

Calculate Hl-‘}MF ! from
equation (2.60)

i

Store in row-
packed array

Max k? I

Max j? )4

|

Figure 3.2. Flow diagram for calculating elements of the effective one-electron
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By applying this Hamiltonian as a perturbative correction within the calculation, a
relativistically accurate description of the system under consideration with chemically
accurate results will be obtained. The result of this research can be applied to a wide variety
of chemical systems that exhibit significant two-electron spin-orbit effects, in particular,
lanthanide dimer systems, as presented in the following chapters of this thesis.

The ansatz outlined in this chapter will produce an electronic structure theory
method that satisfies the two main challenges faced by computational approaches for
chemical systems containing heavy atoms; (i) scalar- and spin-orbit relativistic effects are
accounted for in an accurate and efficient manner through the use of the sf-X2C+so-DKH3
Hamiltonian, and (ii) dynamic and nondynamic electron correlation are treated accurately
within GVVPT2, to which this relativistic Hamiltonian will be applied. This relativistic
variant of multireference perturbation theory will allow systems containing heavy elements
to be studied with the capability of producing chemically accurate results. Such systems
under consideration that have applications to single molecule magnets and quantum bits
are the d- and f-block metal dimers and trimers. The following chapters in this dissertation
provide a theoretical investigation on a few select systems that have gained considerable
interest for use in these applications: the gadolinium dimer Gdz (Chapter 4), the dysprosium

dimer Dy, (Chapter 5), and the scandium trimer Sc3 (Chapter 6).
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CHAPTER IV
RELATIVISTIC GVVPT2 STUDY OF GROUND AND LOW-LYING EXCITED
STATES OF THE GADOLINIUM DIMER

Introduction
Recent advances in single molecule magnet (SMM) technology has sparked interest
within the chemistry community, both with experimentalists and theoreticians. These
materials contain a metallic-based core with large magnetic moments surrounded by
nonmetallic ligands. Several studies have focused around SMMs with gadolinium-based
cores, showing them to be among some of the more promising candidates for these types

of materials.

The gadolinium atom has a ground state electronic configuration of [Xe]4f 5d'6s*
(shown in Figure 4.1).°! Each of the seven felectrons as well as the single d electron remain
unpaired in the ground state, which results in an atomic term symbol of °D;, giving it the

highest spin multiplicity of any ground state atom in the periodic table.

§ b f———— 5 g

Figure 4.1. Valence electronic configuration of the Gadolinium atom.

This high spin multiplicity, along with a relatively large effective magnetic moment

gf I = 6.5), makes it highly attractive for use in magnetic applications.
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Gadolinium has recently been studied as a dimer, Gd>. Electron spin resonance
(ESR) spectroscopy has shown that the spectral lines of Gd, must be fitted to an S =9
Hamiltonian.%® This implies that the ground state of Gd> contains 18 unpaired electrons
which are ferromagnetically coupled, including the 14 electrons of the inner 4f shell.
Therefore, the ground state (valence and sub-valence) electronic configuration of Gd; is
(most sensibly) (4f)(4f")6s04 650, 5do,! 5dm,?, which results in a '°Z," ground electronic
state.

Spectroscopic data for Gd, were obtained in 2000 by Lombardi and co-workers via

Raman and absorption spectroscopy in Ar matrices.’?

In this study, the ground state
vibrational constant w. was measured to be 138.7 £ 0.4 cm™!, and from this, along with the
anharmonicity yewe, the dissociation energy was determined to be 2.1 £0.7 eV. This value,
however, differs significantly from the thermochemically determined dissociation energy
of 1.784 £ 0.35 eV.” Other experimental studies have explored gadolinium in a variety of
different environments to observe its magnetic properties. Schuh and co-workers measured
the magnetic anisotropy energy (MAE) of gadolinium atoms and dimers on platinum and
copper surfaces, finding possible application to quantum bit assembly due to the quantum
nature of the spins in the localized 4f states.”* Chang and co-workers synthesized Gda4
nanocapsules and observed an entropy change of 46.12 J kg™! K'!, making it a promising

1.95

candidate as a molecular magnetic cryogenic material.”” Gadolinium has also been studied

in different manganese clusters which exhibited SMM behavior.”®*
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A peculiarity that arises for the gadolinium dimer occurs upon dissociation into
separate atoms (illustrated in Figure 4.2). The electronic configuration shows that, when
bonded, three electrons exist within each of the s and 4 manifolds. However, for two
noninteracting atoms, the electronic distribution changes. Instead, four electrons are

contained in the s manifold, and only two electrons occupy the d manifold.

(65026504 5do,'Sdm,?) (6525d" (6s25d")

Figure 4.2. Dissociation of Gd; to ground state atoms. The change in the valence electron
configuration upon dissociation indicates an avoided crossing.

This circumstance confirms the presence of an avoided crossing upon dissociation, and
also implies the existence of numerous low-lying excited states. For multiple states that
are energetically proximate, mixing among atomic states with different 54 and/or 4f
occupancy may occur, indicating that electron correlation is a sensitive property in this
system and must be treated carefully in theoretical considerations.
Computational Details

A model space was constructed by partitioning the molecular orbitals into eight
orbital groups, using a macroconfiguration method, which imposes restrictions on group
occupancy. Within each orbital group, all possible electronic configurations subject to the

given symmetry and multiplicity restrictions are allowed. The Gd> molecule was
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considered in Dy, in order to make use of Abelian point group symmetry, and additional
specialized angular momentum based routines ensured D.n symmetry. The 46 orbitals
corresponding to the 1s-4d shells were considered in the core and remained doubly
occupied throughout the calculations. At the MCSCEF level, the 5s and 5p shells were also
placed in the core to remain doubly occupied; however, at higher levels of correlation, i.e.,
the GVVPT2 level, these orbitals were placed in an active core group with single and
double excitations allowed to the active orbital groups. The 4f orbitals were grouped based
on the nature of the orbital, i.e., four different orbital groups for the 4f orbitals (4fo, 4fx,
410, 4fp) were generated as part of the active space. The 6so and 5do orbitals were placed
in one active orbital group, while the 5d7 orbitals were placed in a separate active orbital
group. This orbital partitioning scheme is presented in more detail in Table 4.1.

Table 4.1. Details of the active space used to describe Gd..

Orbital Group ag big b2g bsg au b1u b2u b3u
GFrozen Core 11 2 5 5 2 11 5 5
Gactive Core 2 0 1 1 0 2 1 1

Gufs 1 0 0 0 0 1 0 0
Gufe 0 0 1 1 0 0 1 1
Gup 1 1 0 0 1 1 0 0
Gufp 0 0 1 1 0 0 1 1
G6s+5d)o 2 0 0 0 0 2 0 0
Gsar 0 0 1 1 0 0 1 1
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For the ground state, a single reference macroconfiguration was used. The 14
electrons within the f'shell were distributed so as to remain ferromagnetically coupled. The
six valence electrons were distributed among the valence orbital groups so as to reflect the

ground state electronic configuration, viz.,

kSUN) = (4f0)?(4fn)* (4 6)* (4f 9)* ((65 + 5d)o) " (5dm)2.
By imposing the spin restriction to ensure 19-plet multiplicity, the electron distribution
within the Giestsayo orbital group breaks down as ((6s+55)0)* = (650¢)*(6s0u)'(5dog)!, in
agreement with the ground state electronic configuration.

Beyond the ground state, low-lying 19-plet and 17-plet excited states corresponding
to various electronic transitions to and/or from the ¢ manifold were also considered in the
study of Gd>. Comparable to the ground state, a single macroconfiguration was used to
describe the model space, with a similar treatment of the f'electrons. The electronic states
under consideration with their corresponding electronic transition are summarized in Table

4.2, while the macroconfigurations used to describe each of the states are given in Table

4.3.
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Table 4.2. Electronic transitions and corresponding irreps and valence orbital
configurations for the ground and excited states considered for Gdo.

Transition Dan State Doh State Valence Orbital Configuration

Ground State By, RN 6505°6564' 5dog' Sdm,’
og—o* YA, o 65056562 5d0os 5dmy*
o7 B3y 11, 6505 6504 5dog! 5dm,’
cg—90 YA, By,* 65056564 5dos' 5dm*5d6!
o* —>o A, 73y 65042656.°5d0>Sdr,’
T—o* "By, 1, 6505°656.>5dos' Sdrm,!
T—0 B3y 1, 65042650y 5do>Sdr,!

Table 4.3. Macroconfigurations for each electronic state used for the GVVPT2
calculations of Gd>.

State Macroconfiguration

15y KSIN) = (47 0)?(4fm)* (47 6)* (4f @)*((65 + 5d)0)* (5dm)?
23 kSN = (4f0)2 (4fm)*(4F6)* (4 9)*((65 + 5d)0)  (5dm)?
P kSUN) = (4f0)*(4f1)* (4£6)* (4f 9)*((65 + 5d))’ (5dm)?

%," k$I(N) = (4f0)?(4fm)*(4f8)*(4f p)*((6s + 5d)a)3(5dn)2(5d6)1

5y K§IN) = (47 0)*(4fm)* (47 6)* (4f @)*((65 + 5d)0)* (5dm)?
"Il kSUN) = (4f0)2(4f)* (4 6)* (4f 9)*((65 + 5d)o)’ (5dr)*
"l kSIN) = (4f0)*(4f1)* (41 6)* (4f 9)*((65 + 5d)a)  (5dn)"

Potential energy curves for the electronic states of Gd» described above were

constructed using GVVPT2 from MCSCF wavefunctions within the UNDMOL electronic

structure software package. The GVVPT2 method is known to provide a very accurate

58



treatment of electron correlation among a variety of chemical systems, including transition
metal dimers recently characterized by Tamukong et al., which provides impetus for
GVVPT?2 to produce accurate descriptions for lanthanide dimer systems as well. Scalar
relativistic effects were included through the use of the spin-free X2C Hamiltonian. The
basis set employed to perform these calculations was an ANO-type VTZ basis set,
consisting of a (25s22p15d11f4g) primitive set contracted to [8s7p4d3f2g]. The system
was considered within the Don point group in order to make use of Abelian point group
symmetry. Additional specialized angular momentum based routines ensured that Dep
symmetry was preserved.
Results

The potential energy curves obtained for the ground and low-lying 19-plet excited
states (X'"Zy, 12y, 1PZ,") of Gda from the scalar relativistic GVVPT2 calculations are
shown in Figure 4.3. The leading configuration contributing to the ground electronic state
wavefunction was found to be (4f7)(4f)6s0,>6s04'5do,' 5dm,* with a weight of 0.96 at the
calculated minimum. This predicts the ground state to be °Big in D2y symmetry, which
corresponds to "Xy in Den symmetry, in agreement with previous experimental and

theoretical results.
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Figure 4.3. Potential energy curves for the ground and low-lying 19-plet excited states,
X%y, 1P2y, 1'%, of Gd, obtained at the GVVPT2 level of theory.

The corresponding spectroscopic constants characterizing the curves in Figure 4.3
are displayed in Table 4.4. The equilibrium bond length for the ground state determined
from these calculations is only slightly shorter than those obtained in previous theoretical
studies (2.826 A vs. 2.877 A). The vibrational frequency obtained (w. = 153 cm™) is also
in reasonable agreement with the values obtained from other theoretical (we = 149 =2 cm’

1) and experimental (w. = 138.7 + 0.4 cm™!) work. While the dissociation energy differs
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largely from the CCSD(T) results (2.48 eV vs. 1.60 £ 0.18 eV), it is well within the error
bars of the experimentally determined energy (2.1 £0.7 eV). Upon inclusion of spin-orbit
coupling, it is expected that these results will coalesce with the experimental values.”! This
implies that the model chosen for Gd> is accurate, and also that GVVPT2 characterizes this
system exceptionally well.

Table 4.4. Equilibrium distances (R.), binding energies (De), and vibrational frequencies

(we) for the ground and low-lying 19-plet and 17-plet excited states of Gd> calculated at
the GVVPT?2 level of theory.

State R: (A) D¢ (eV e (cm’!
192g' 2.826 2.48 153.0
By." 2.983 2.01 136.7
O 2.959 1.08 132.5
78y 2.841 1.96 153.8
11, 3.251 0.90 107.4

Upon dissociation, the '°Z,” curve experiences a small hump around 4.5 A. This is
where the avoided crossing with an excited state is expected to take place. As Gd>
dissociates, the valence electron configuration changes. The shape of the ground state
curve obtained from the GVVPT2 calculations reflects that change.

The "X, curve also exhibits small variations in energy within the range of 3.5-4.5
A. Since the gadolinium atom has several accessible energy levels within a small energy

range, many low-lying excited states may exist. It is expected that these changes in the
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potential energy curve are due to close approaches or avoided crossings with other low-
lying excited states.

The X" and %, states are more weakly bound and have a broader minimum than
the Y%, state (PZg": De =2.01 eV, we = 136.7 cm™!; 1°Zy: De = 1.08 eV, we = 132.5 cm™).
The equilibrium bond length for these states is slightly longer than the ground state (R. =
2.983 A for X,", R. = 2.959 A for 1°%,"). This is due to a possible decrease in the bond
order since these excited states promote an electron out of the 650, bonding orbital to anti-
bonding orbitals. The potential energy curve for the 1°Z, state correlates with the same
dissociation limit as the ground state. However, the curve for the 1°Z," state dissociates to
a limit that is 0.49 eV higher in energy than the ground state. This behavior is expected as
the 19X, state corresponds to an electronic transition of 6 — 6*, meaning that the number
of electrons in the respective s and d manifolds does not change relative to the ground state.
The X" state corresponds to an electronic transition of ¢ — §, requiring one of the s
electrons to be promoted to the d manifold. Therefore, the dissociated atoms are expected

to be at a higher energy than the ground state, and this is reflected in the GVVPT2 results.
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Figure 4.4. Potential energy curves for the low-lying 17-plet excited states, 1'7%,", 1T,
of Gd; obtained at the GVVPT2 level of theory.

Similar to the 19-plet excited states, the "%, and ", states (Figure 4.4) are more
weakly bonded compared to the ground state ("Zy: De = 1.96 eV, "TIg: De = 0.90 eV).
While the potential well is much broader for the "Il state (we = 107.4 cm™), the
vibrational frequency for the "%, state (we = 153.8 cm™) is comparable to the ground state.
The equilibrium bond length for the 7%, state (R. = 2.841 A) is also very similar to the

ground state, which coincides with the corresponding type of electronic transition (¢* —
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o). The "I, state shows a significant increase in bond length (R. = 3.251 A). Since, for
this state, population of the 6so.* anti-bonding orbital is increased attributable to the
associated electron transition, bond order obviously decreases and bond length increases.
The dissociation limits for these states both lie within 0.5 eV of the ground state. As the
gadolinium atom is known to have a large number of easily accessible energy levels, it
follows that the dimer will have a significant number of low-lying excited states, as is
observed from the results of the GVVPT2 calculations.

These results represent the first full potential energy curves generated for the
ground and low-lying excited states of Gdz. Although these calculations only include
scalar relativistic effects, the close agreement achieved by these calculations for the ground
state with experimental data further demonstrates the applicability of the GVVPT2 method
to metal dimer systems. It also shows that the model space presented in this work is
sufficient in describing ground and low-lying excited states of Gd», incentivizing GVVPT2
studies on other f-block metal dimer systems (such as Dy presented in Chapter 5).
Potential energy curves for other excited states corresponding to electronic transitions to
and from the 7 manifold (i.e., °I1, and '"I1,) are currently being constructed. Calculations
including spin-orbit relativistic effects at the GVVPT2 level on these systems need to be

performed in order to obtain a more complete understanding of them.
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CHAPTER V
RELATIVISTIC GVVPT2 STUDY OF GROUND AND LOW-LYING EXCITED
STATES OF THE DYSPROSIUM DIMER
Introduction
Among some of the other lanthanides receiving considerable attention as SMM
cores is dysprosium. In its ground state, the dysprosium atom has a ground electronic
configuration of [Xe]4/'%s? (shown in Figure 5.1).”® With four unpaired electrons all in
the f'shell, the ground state has an atomic term symbol of °Is, giving dysprosium one of the

highest angular momentum values of any atom (I = 6) in its ground state.

BBt ————— 4 446

Figure 5.1. Valence electron configuration of the Dysprosium atom.
It also exhibits a very large effective magnetic moment (,u,egf I~ 10.5), which, along with
its relatively high ground state spin multiplicity, makes it a good candidate to be used in
SMMs.

A 2006 study by Powell et al. synthesized oxo-bridged dysprosium triangles and
showed that although the ground state is nearly non-magnetic, the thermally populated
excited states exhibit SMM behavior with a slow relaxation of the magnetization.” In
2013, Zheng et al. studied the magnetic properties of a hydrated and dehydrated oxo-
bridged dinuclear dysprosium complex.'” The results showed that the dehydrated

complex had an enhanced magnetic anisotropy over the hydrated complex, and that the
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relaxation processes were extremely sensitive to the degree of dehydration, allowing a
reversible change of the magnetic properties through desorption and absorption cycles of
solvent water. This outcome suggests that responsive functional materials based on
lanthanide complexes could be designed. A comparative study of different homodinuclear
lanthanide complexes (Gd, Tb, Dy, and Eu) was performed by Chandrasekhar et al. in
2015.19"  Of the complexes studied, the Dy-based complex showed the greatest SMM
behavior with a two-step relaxation of magnetization process, indicated by the presence of
two distinct peaks appearing in alternating current susceptibility measurements. After
Arrhenius analysis, effective energy barriers of Urr = 8.96 K and 35.5 K were found with
respective pre-exponential factors of 7, = 8.81 X 107 s and 1.48 x 10 s (when fit to the
Arrhenius expression T = Toexp(Ue £/ kT)) , corresponding to the fast and slow
relaxations, respectively. By examining the relationship between the natural logarithm of
the relaxation times with the inverse temperature, proportionality was observed for
temperatures above 4.5 K, but a weaker dependency was observed for temperatures below
4.5 K. This behavior is characteristic of a crossover from a thermally activated Orbach
mechanism above this temperature to a quantum tunneling process for the lower
temperatures. Further analysis of this data using a generalized Debye model and Cole-Cole
plots found a broader distribution of obtained a values in the range of 2-5.2 K, supporting
the theory of two relaxation processes in operation in this range. A more narrow

distribution was found at temperatures above 5.6 K, suggesting that the relaxation at higher
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temperatures is dominated by a Raman process. The results also revealed a large
discrepancy between the theoretical (20 ug) and experimental (11.5 up) magnetization
values at 7 T, which implies a significant magnetic anisotropy and/or the presence of low-
lying excited states that are partially populated. Direct-current magnetic susceptibility
studies supported this claim. At room temperature, the y7 value was measured as 29.2 cm?
K mol! and decreased gradually with temperature down to 40 K. Below this temperature,
however, the yT value falls abruptly to 5.0 cm® K mol™! at 2 K. This indicates progressive
depopulation of excited Stark sublevels generated by the ligand field. Similar behavior,

which is characteristic of SMMs, was observed in several other Dy-based complexes.!**
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Although these complexes mainly consist of bridged dysprosium cores, it would be
apposite to investigate a directly bonded Dy> species, as the properties of this system
remain unexplored. As a dimer, the electrons within the 6s atomic orbitals redistribute
among the molecular orbitals, with one electron moving into the z (or J) manifold, as

shown in Figure 5.2.
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Figure 5.2. Valence orbital diagram for Dy,. The higher energy molecular z (or 9)
orbital is possibly generated by empty 5d atomic orbitals.

The f'subvalence shell corresponds to a totally symmetric nonet substate. Therefore, it is
expected that the ground state of this molecule will be ''IT,. Nonet excited states could
arise from this ground state from either an electron pairing (°Z¢") or spin-flip (°ILg) process.
Generation of a 13-plet excited state would require an excitation from the bonding o orbital
to the empty 7 (or J) orbital and result in a 3%, state. However, this excitation is much
higher in energy and will not be considered in this investigation.
Computational Details

A model space was constructed for the X ''TI, state by partitioning the molecular
orbitals into separate orbital groups, also using a macroconfiguration method. Similar to
the Gd, molecule, Dy> was considered in Dy, in order to make use of Abelian point group
symmetry, with additional specialized angular momentum based routines to ensure Do
symmetry. Atthe MCSCEF level, the 54 orbitals corresponding to the 1s-4d along with the
5s and 5p shells and a single bonding ¢ orbital were considered in the core and remained

doubly occupied. The 4f shell was separated according to double and single occupation.
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Therefore, the doubly occupied 4/ orbital group consisted of six orbitals, while the singly
occupied 4f orbital group consisted of eight orbitals. The last orbital group contained the
antibonding ¢* orbital and a single bonding 7 (or ) orbital. Single and double electron
excitations were considered between the 4/ orbital groups to allow for sufficient correlation
within the f'shell. This model space was used to generate an optimized set of orbitals for
use at higher levels of correlation, i.e., GVVPT2.

In order to accurately characterize this system, correlation of the 5s and 5p shells is
necessary. Therefore, at the GVVPT2 level, the 8 orbitals corresponding to the 55 and 5p
shells were included in the calculations as a valence group rather than in the core. By
treating the other valence orbitals similar to the MCSCF organization, this model space
would be sufficient in providing an accurate description of Dy>. However, due to the large
degeneracy within the f'shell with this level of correlation, the number of CSFs generated
by each macroconfiguration exceeds the number of the variables that can be used within
the calculation. Consequently, the active space must be broken down in order to reduce
the number of CSFs. The orbital group containing the 5s and 5p orbitals was separated
into two orbital groups based on the character of the molecular orbital (¢ vs. 7). The orbital
group containing the doubly occupied 4f orbitals was treated similarly. This active space
sufficiently reduced the number of CSFs generated by each macroconfiguration so that the
calculations completed smoothly. A summary of the MCSCF and GVVPT?2 active spaces

used are provided in Tables 5.1 and 5.2, respectively.
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Table 5.1. Details of the MCSCF active space used to generate optimized orbitals for

Dys.
Orbital Group ag b1g b2g bsg au b1u b2u b3u
GFrozen Core 14 2 6 6 2 13 6 6
Gafdouble 0 1 0 0 0 1
Gafsingle 1 1 2 1 2 1
Ghbonding 0 0 0 0 0 0 1
Table 5.2. Details of the GVVPT2 active space used for the X !'TI, state of Dyx.
Orbital Group ag big bag b3g au b1iu b2u b3u
GFrozen Core 12 2 5 5 2 11 5 5
Gsoft Core o 2 0 0 0 0 2 0 0
Gsoft Core 7 0 0 1 1 0 0 1 1
G double 2 0 0 0 0 2 0 0
G double 0 0 1 0 0 0 0 1
Gafsingle 0 1 1 2 1 0 2 1
Gbonding 0 0 0 0 0 1 0 1

The ''TI, valence electronic configuration is expected to be (6s0¢)*(650u)!(5dny)",
with the 8 electrons within the singly occupied 4f orbital group and the 2 unpaired valence
electrons being ferromagnetically coupled. This corresponds to an electron distribution

(and reference macroconfiguration) of

KOS (N) = (Gay olbl)12 (Gay sngl)S(Gbnd)Z

at the MCSCEF level, and

8 4 8
k50 FT(N) = (Gsc 6)%(Gsc n)®(Gagoav) (Gapmap) (Gafsng) (Gona)?
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at the GVVPT2 level. The other macroconfigurations used in the calculations were
generated from single and double electron excitation within the f'shell from the reference
macroconfiguration. The macroconfigurations used to describe the ground state at the
MCSCF and GVVPT?2 levels are given in Table 5.3.

Table 5.3. Macroconfigurations used for the MCSCF and GVVPT?2 calculations of the X
T, state of Dys.

Method Macroconfiguration

MCSCF KOSSCE(N) = (Gyy dbl)lZ(G4f sngl)g(Gbnd)Z

K{ISSCF(N) = (Gyy db1)11(64f sngl)g(Gbnd)z

KYESCE(N) = (Gyy dbl)lO(G4f sngl)lO(Gbnd)Z

GVVPT2 | k§yVPT(N) = (Gs¢ 6)°(Gse )8 (Gago dbl)B(G4fn db1)4(G4f sngl)B(Gbnd)z
k§6VPT(N) = (Gsc 5)®(Gse )°(Gago db1)8(54fn dbl)3 (Gay sngl)g(Gbnd)z
kS0P (N) = (Gsc )% (Gsc )% (Gaso dbl)7(G4-fn db1)4(G4-f sngl)g(Gbnd)z
k50" PT(N) = (Gse 6)%(Gsc ) (Gago dbl)s(G4fn dbl)z (Gay sng1)10 (Gona)?
K§0VPT(N) = (Gsc )% (Gsc )% (Gaso dbl)7(G4-fn dbl)3(G4f sngl)lO(Gbnd)z
kEGVPT(N) = (Gsc 5)®(Gsc )8 (Gago dbl)6(04fn dbl)4(G4f sngl)g(Gbnd)Z

Similar to Gd2, GVVPT2 calculations on the ground state of Dy» were performed
using MCSCF reference wavefunctions within the UNDMOL electronic structure software
package. The basis set employed throughout the calculations was an ANO-type TZP basis
set, consisting of a (25s22p15d11f4g2h) primitive set contracted to [8s7p4d3f2glh].!"’
Scalar relativistic effects were included through the use of the spin-free X2C Hamiltonian.

The system was considered within the Do, point group in order to make use of Abelian
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point group symmetry, with additional specialized angular momentum based routines that
ensured the preservation of D.n symmetry.

Since this scheme is sufficient in producing potential energy curves for the X ''IT,
state of Dy», a similar treatment would be expected to successfully characterize the X"
and °I1g excited states. However, the reduction in multiplicity of this system allows for the
generation of many more CSFs within the previously defined macroconfigurations, and
results in exceeding the variable range. Therefore, a different construction of the model
space is required for the nonet excited states.

Scalar relativistic potential energy curves for the X !l state of Dy, will be
generated at the GVVPT2 level. Upon determination of a suitable model space for the
nonet excited states, potential energy curves will be produced for these states using

GVVPT2 as well. Spin-orbit effects will be included in future considerations.
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CHAPTER VI
FUTURE WORK: GVVPT2 STUDY OF THE SCANDIUM TRIMER
Although the previous two chapters focused on dimeric species, metallic trimers
also provide a difficult yet interesting challenge, which also have their place in materials
science applications.!? '8 The scandium atom has a ground state electronic configuration
of [Ar]3d'4s* (shown in Figure 6.1).!!° While this element may seem to have a rather
trivial configuration, the electronic structure becomes much more complicated when
considering molecules formed with scandium atoms due to the degeneracy and

accessibility of the 3d orbitals.!?°

3d 1_____ 1.; 4_:

Figure 6.1. Valence electron configuration of the Scandium atom.

Upon formation of a trimer, a rather interesting property arises. Considering that if
the lone unpaired electron for each of these atoms remains localized to their respective
atomic sites, two cases may arise: (i) the spin of the electrons remain aligned, forming a
spin-coupled quartet, or (ii) one of the electrons will have a spin opposite of the other two,
forming a spin frustrated doublet. An active area of research within condensed matter

12134 Therefore, a theoretical

physics focuses on these spin frustrated systems.
understanding of Scz will not only provide a base model for considering other metallic

trimer systems, but also deliver supplementary information on spin frustrated systems.
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The scandium trimer has been previously studied both experimentally and
theoretically. In 1983 using ESR spectroscopy, Knight et al.!*> found that Scs exists as an
equilateral triangle, the lone unpaired electron being delocalized in the 3d orbitals among
the Sc atoms, with a ground electronic state of 241. A year later, Moskovits et al.!3
reported a ground electronic state of 2E using resonance Raman spectroscopy for Scs,
having what the authors describe as an equilateral or near equilateral triangular structure.
The vibrational frequencies found in that study were 246 cm™ for the symmetric stretch
(1), 151 cm! for the asymmetric stretch (w2), and 145 cm! for the bending mode (w3). A
CASSCF/CCI study was conducted in 1985 by Walch and Bauschlicher!*? in an attempt to
resolve this discrepancy. The results of that study showed the ground electronic state to be
24," with a Sc-Sc bond length of 3.04 A. The authors also report that Scs is rather strongly
bound with a well depth of 1.0 eV. In 1997, P4pai and Castro'*® performed DFT
calculations on Scs and found a ground electronic state of >4, , with the 24> and *E " states
lying about 0.2 eV higher in energy. The equilibrium structures for the 24, and 24> " states
were determined to have Dsn symmetry, while the 2E state was determined to undergo a
Jahn-Teller distortion and have an apex angle of 57.1°. The spectroscopic data presented
in that study were in relative agreement with previous experimental data (Rsc-sc = 2.83 A,
w1 =272 cm™, w2 =153 cm’!, w3 =153 cm™). Bérces also performed DFT calculations on
Scs in 1997'%% and found a ?4; ground state with D3, symmetry. Although the bond length

was in relative agreement with other literature values (Rscsc = 2.81 A), the vibrational
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frequencies showed significant deviation (w1 = 292 cm™, w2 = 238 cm’!, w3 = 238 cm™).
Another DFT study by Wu et al. in 2004!!7 found results contradictory to previous work,
with a ground state reported to be a Cy quartet (6.2° distortion) that was 0.26 eV more
stable in energy than the lowest doublet (also with C>y symmetry). In 2005, Papas and
Schaefer conducted a DFT study on Sc3.!'® The results of that study showed the ground
electronic state to be 241 with a Sc-Sc bond length of 2.83 A, in qualitative agreement with
other DFT results. The vibrational frequencies (w1 = 267 cm™, w2 = 139 ecm™!, w3 = 140
cm™!) were also in reasonable agreement with the experimental results found by Moskovits
et al. Furthermore, seven other low-lying excited states were found to exist within 0.403
eV of the ground state, exhibiting the complexity of the system. Although several studies
have been performed on Scs, there is no clear consensus among the results. Previous
studies have also focused on the system having a single unpaired delocalized electron, so
the nature of the spin frustrated system remains virtually unexplored.

Previous success by Tamukong et al. in characterizing transition metal dimers with
the GVVPT2 method””'*’ suggests that similar success can be obtained for the trimers as
well. The planned investigation into Scz will aim to accomplish three main objectives.
First, the GVVPT2 method will be used to generate potential energy curves for the
dissociation Sc3 — Scz + Sc, as well as to supplement previous results on Scs. Second, the
theoretical study will provide a model successful in describing Scs that will serve as a

prototype when constructing models for 4d or 4f metal trimers. Lastly, the accuracy of the
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results will be analyzed to determine the practicality of perturbation theory on spin

frustrated transition metal systems.
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APPENDIX A
THE SPIN-ORBIT TERM
A derivation of the spin-orbit term is presented here following the procedure
demonstrated by Desai.®
Consider the Dirac equation for a particle in the presence of a spherically symmetric
potential V (r) (as is the case for electrons near nuclei in atoms)

[E—a p—-pm—-V(N)]er) =0, (A.1)
where E is the energy eigenvalue for the particle. The operator p is understood to be
represented by - iV, and a and S are given in standard representation. The term ¢ () is a
four-component column matrix represented by a large component ¢; and a small

component @g. In block matrix form, equation (A.1) reads

E—-m-V —o'p AN
( —o'p E+m—V> (fps)_o' (A-2)

This matrix equation can be broken down into a series of equations given by
(E-m—-V)p,—0 pps=0, (A.3)
—o-pp,+(E+m—-V)ps=0. (A.4)
Let |[V| « m and consider the nonrelativistic limit E = m, with the kinetic energy E being
expressed as
E—m = E;. (A.5)

Then equation (A.3) becomes
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(Er = V), =0 pgs. (A.6)
Since in the nonrelativistic limit both E and V << m, equation (A.4) can be rewritten as
2m+E; —V)ps =0 po;. (A.7)

The small component of ¢ (1) can be expressed in terms of the large component from this

equation
_ o'p
1 ET - V
~—»(1= . A9
Zm( 2m ) o PoL (A.9)
o'p (Er— V) ]
~ — . ) A.10
Substituting this relation into equation (A.6) allows one to rewrite the equation as
_o'p Er — V>]
Er=Vp. =22 [1-(Z=)|o-po (A11)
_[@p»o-p) o pkop o pVo-p
B 2m 4m?2 4m?2 Pr (A.12)
(12 2
_|p p o pVo-p
Cl2m oam2 T amz | Pm (A.13)
In this derivation, ¢ (1) is considered to be normalized, so
Jd3r ptT(Me(r) =1. (A.14)
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The product within the integrand can be re-expressed as @@ = |@|? = |¢.|? + |@s|?. By
making the substitution according to equation (A.10), the normalization condition can be

rewritten as

pZ
fd3r<|(pL|2 + 4m2 |(PL|2> = 1! (AIS)

or

p?
fd3r <1 + 4m2> loL1? =1, (A.16)

4
where terms of order (E) have been neglected (as will be done throughout the remainder

of this derivation). Note that while excluding these terms is not necessarily practical, it is
sufficient for the purposes of this derivation.

A new wavefunction 1 is defined to be

pz

which also meets the normalization condition. Considering a Taylor series expansion of

the square root, the new wavefunction can be expressed as

2
l/J=<1+ P )(pL. (A.18)

8m?

Rewriting ¢; in terms of Y, then
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2
P = <1 - %) Y. (A.19)

Rearranging equation (A.13) gives

p* p*
Er(1+=)p =|—
T( + >(pL [2m+V+

o-pVo-'p

By substituting the relationship for ¢; according to equation (A.19) into equation (A.20),

an expression in terms of the new wavefunction 1) is obtained

p’ P>\, p’
B, <1 ; W) <1 _ _8m2)¢ _E, <1 + 8m2> v

_[p? o pVo-p p’
_[EHH—ZI(l_ >¢. (A21)

4m 8m?2

2

Multiplication on the left by (1 - 8”?) is performed on both sides of equation (A.21) and

2
then expanded through terms of order (E)

2 2 2
_ p p o-pVo-p 14
Eqp = <1 8m2> [ SV — l <1 8m2> P (A.22)
_[p* P* , oo, G pVao-p
ol i (Vp? + p?V) + o |¢ (A23)

This takes the form of the eigenvalue equation Hy = E;1, where the Hamiltonian is given

by

2 4

P P
H=-—- +V -
2m 8ms3 8m?2

o pVo-p

— (A.24)

(Vp? + p?V) +

This expression can be simplified by the relation o - pVo - p = —io - (VV)o - p + Vp?
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_pr* p 1 . - (VW)o-p
= +V - (p°V —Vp*) o :

A.25
2m 8m3 ( )

Also, since H operates on the wavefunction 1, it can be shown by application of the product
rule that
(P*V —Vp* )y = —(V2V)yp — 2VV - (Vi)
= —(V2V)y + 2iVV - (py). (A.26)
Furthermore, the Dirac identity can be applied to show that
o (VW)o-p=VV -p+io-(VV Xp). (A.27)
Therefore, the Hamiltonian can then be re-expressed as

p?> pt 1 o-(VV Xp)
S +V+—=VV +————" A.28
2m 8m3 8m?2 4m?2 ( )

The potential V = V(r) is defined to be spherically symmetric, so the gradient of

the potential can be written as

VW =r——r7y (A.29)
rdr
so then

1dV
) 4. A.30
o-(VV xXp) i (r xp) ( )

1dVv
Y5, (A31)

rdr

where L is the angular momentum operator. By making the substitution S§ = %0 for the

spin-operator, the Hamiltonian can finally be expressed as
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p?> p* 1 1 dv
- T —V2y —L-S. A.32
2m 8m3 A 8m + 2m2r dr ( )

The last term in this expression corresponds to the spin-orbit coupling commonly observed

for spherically symmetric potentials.
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