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a b s t r a c t

Analysis of emission from laser-induced plasma has a unique capability for quantifying the major and
minor elements present in any type of samples under optimal analysis conditions. Chemometric tech-
niques are very effective and reliable tools for quantification of multiple components in complex
matrices. The feasibility of laser-induced breakdown spectroscopy (LIBS) in combination with multi-
variate analysis was investigated for the analysis of environmental reference materials (RMs). In the
present work, different (Certified/Standard) Reference Materials of soil and plant origin were analyzed
using LIBS and the presence of Al, Ca, Mg, Fe, K, Mn and Si were identified in the LIBS spectra of these
materials. Multivariate statistical methods (Partial Least Square Regression and Partial Least Square
Discriminant Analysis) were employed for quantitative analysis of the constituent elements using the
LIBS spectral data. Calibration models were used to predict the concentrations of the different elements
of test samples and subsequently, the concentrations were compared with certified concentrations to
check the authenticity of models. The non-destructive analytical method namely Instrumental Neutron
Activation Analysis (INAA) using high flux reactor neutrons and high resolution gamma-ray spectrometry
was also used for intercomparison of results of two RMs by LIBS.
© 2017 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Analysis of certified/standard reference materials (CRMs/SRMs)
is essential to validate an analytical method. The accuracy of the
technique and methodology can be evaluated using CRMs which
enhances the confidence when the same is employed for unknown
samples. Since CRMs are not easily accessible for a number of
matrices in various laboratories, it is necessary to employ suitable
methodologies to evaluate the accuracy of analytical methods. The
analytical techniques play a major role for detecting essential ele-
ments in a variety of materials that are of key importance for direct
analysis of materials in diverse scenarios. Numerous analytical
techniques like Inductively Coupled Plasma Emission Spectrometry
(ICPAES), Inductively Coupled Plasma Mass Spectrometry (ICP-MS),
X-ray Fluorescence (XRF), Instrumental Neutron Activation Anal-
ysis (INAA) etc have been extensively explored for the composi-
tional analysis [1e4]. These techniques have excellent analytical
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performance, but most of the techniques are destructive as a sig-
nificant amount of the samples are consumed. Furthermore, the
sample preparation methods are also time-demanding. On the
otherhand, nuclear analytical techniques like INAA and IBA are non-
destructive in nature and have multielement determination capa-
bilities. However, INAA needs high flux research reactor and IBA
needs tandem particle accelerator, which are not easily accessible
for routine analysis of materials.

Laser induced breakdown spectroscopy (LIBS) is a multi-
elemental analytical technique based on emission spectroscopy
for obtaining the data on various elements simultaneously. This
technique has certain potential advantages over conventional
techniques that require pretreatment. The emission spectroscopy
approach is minimally invasive having simple or compact experi-
mental setup with avoiding sample preparation. It is relatively non-
destructive in nature and can also provide remote in-situ analysis in
hostile environments or inaccessible targets using suitable exper-
imental arrangements [5e8].

In this method, a powerful laser pulse is focused on the sample
surface, resulting in the formation of plasma plume, dissociating all
molecules and fine particulates within the highly energetic micro
nder the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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plasma. The resulting plasma emission can be correlated to the
elemental concentration in the sample surface and LIBS spectrum
can provide a detailed elemental fingerprint of the material being
analyzed. The accuracy of the method can be evaluated by
analyzing suitable matrix matched certified reference materials.
For quantitative analysis, it is necessary to prepare standards that
are similar to the matrix of the unknown (test) sample and obtain a
calibration curve for the different elements.

The LIBS spectra usually very complex and contain significant
information where the spectral information consists of thousands
of data points that can be collected in less than one second. For
complex spectra such as that of soils and plants, it is always not
possible to compare the analytical results for elements using every
possible emission line for that element in such chemically-complex
matrix. Thus a promising method is necessary to resolve these
challenges in addition to prevent any loss of useful spectral infor-
mation. Multivariate analysis (MVA) is a well-established chemo-
metric analytical tool that takes into account all the possible
variables, removes the redundant and correlated variables, and
fully utilizes the LIBS spectral information. Many studies have
applied MVA on LIBS to utilize the abundant spectral information
from the elemental compositions of the sample [9,10]. Multivariate
techniques like partial least square regression (PLSR) and partial
least square discriminant analysis (PLSDA) are useful methods to
compensate the data points for different deviations [11e13]. These
methods are coupled with LIBS to build the calibration models and
can be used to predict concentrations of different elements for
unknown samples. With the development and optimization of
various robust statistical analytical methods, LIBS is more prom-
ising for the qualitative and as well as the quantitative analysis of
various elements in a wide range of samples [14e21]. In this study,
LIBS spectra of environmental samples (plant and soil RMs) were
obtained and the chemometric analysis was performed using PLSR
and PLSDA. The results of IAEA RM SL-1 and NIST SRM 1632a were
compared with the results obtained from INAA using higher
neutron flux irradiation position of Dhruva Research reactor. The
predicted concentrations for test samples by these approaches are
compared with their certified values.

2. Material and methods

2.1. Experimental setup

For recording the LIBS spectra, pellets of each sample and RM
were prepared using hydraulic press machine (H-Br Press MODEL
M-15). To form the pellets, one grams of each sample was poured
into a pellet die (20 mm diameter and 3 mm high) and then
compressed with 6 tons of pressure for one minute. Experimental
setup for obtaining the LIBS spectra is shown in Fig. 1. A frequency
doubled Q switched pulsed laser source Nd: YAG (continuum
surelite III-10), pulse width FWHM (full width at half maximum) of
4 ns (variable repetition rate 1e10 Hz) with maximum deliverable
laser energy of 425 mJ per pulse was used. A beam of 532 nm laser
was focused on the surface of sample using a converging lens
(f ¼ 15 cm). The laser pulse energy (measured with an energy
meter, Genetec-e model UP19K- 30 H-VM-DO) and pulse repetition
rate were optimized and the best signal to background ratio were
observed with an energy of 20 mJ at repetition rate of 4 Hz. Focal
spot for a laser beam of diameter 9mm is about 11 mmcalculated by
[D ¼ 4lf/pd), where l is the wavelength, f is the focal length of the
lens, and d is the aperture, i.e. unfocused (original) beam diameter].
The power density of the laser beam (fluence) is 5.24� 1012Wcm�2

(laser pulse with energy of 20 mJ and a pulse width of 4 ns). The
emission from plasmawas first collected by lens (diameter 5 mm, f-
number is f/2) fixed at the tip of the optical fiber bundle, adjusted to
maximize the collection of emission signal (at about 45� with
respect to the laser beam). The other end of the optical fiber was at
the entrance slit of the CzernyeTurner (CeZ) spectrometer (Ocean
Optics LIBS 2000 þ with fixed gate delay of 1.5 ms). The spec-
trometer has four modules. The first three modules covering the
spectral range of 200 nme510 nm have spectral resolution of
0.1 nm (FWHM) to provide high resolution, while the fourth
module covering the spectral range 200e900 nm has low resolu-
tion of 0.75 nm (FWHM). A gated charge coupled device (CCD)
equipped with the spectrometer having 14,336 pixels was
employed as a detector to obtain the spectra.

The experimental parameters were optimized and the opti-
mized parameters were employed for the analysis of all samples in
the experiment. In this manuscript total five environmental sam-
ples (three soils and two plants) have been analyzed. An average of
20 laser shots was recorded to enhance the signal-to-noise ratio.
Seven spectra of each sample are recorded to reduce statistical
error due to laser shot-to shot fluctuations as well as to account for
the sample heterogeneity. The resultant spectra were analyzed
using OOI LIBS 2000 þ software.

Powder samples (RMs) were sealed in polythene pouches along
with a reference standard each of about 10 mg and were irradiated
for 1 min in Pneumatic Carrier Facility (PCF) of Dhruva reactor,
BARC, Trombay, Mumbai. This irradiation helped to get Al, Ca, K and
Mn in samples. Another set of samples 100 mg each with reference
standard were irradiated for 1d irradiation in tray rod facility of
Dhruva reactor for obtaining Fe concentration. After irradiation,
samples were assayed for gamma activity using a 30% relative ef-
ficiency HPGe detector. Peak areas were determined using peak fit
software PHAST and concentration calculation was carried out by
standard relative method.

2.2. Statistical treatment

LIBS spectra of different samples were arranged in form of a
matrix containing several variables (spectral emission lines corre-
sponding to various wavelengths) for statistical comparison. The
Unscrambler-X software (CAMO software India Pvt. Ltd.) was used
for performing the multivariate methods using this LIBS spectral
data matrix. We have two types of samples (plants and soils)
therefore data sets were further divided into two matrices, one for
plants (14 � 5855) and another for soil samples (21 � 5855).
Multivariate techniques are applied for both matrices. PLSDA and
PLSR are the most often used multivariate approaches for analysis
of data. These techniques work on the principle of partial least
square (PLS), which is widely employed for analysis of large data.
PLS is used to minimize the residuals of the calibration model for
effectively utilizing the spectral information to reduce the possi-
bility of over fitting and thus improving the accuracy of the model.
In essence, PLS is a technique for modeling a linear relationship
between input and output variables. The fundamental limitation
for applying the PLS technique on the spectral data is that it ne-
glects any underlying physical principles and focus purely on the
mathematical correlation in the data. PLSR is a data decomposition
method that involves a mathematical procedure for creating latent
variables (factors). Latent variables transform a large number of
correlated independent variables into a smaller number of uncor-
related independent variables orthogonally. PLSR can interpret the
interrelationships among different variables and uncover unknown
trends. PLSR linearly relates the variations of dependent variables
to the independent variables, which works especially well when
independent variables carry common information like correlations.
It simplifies the interpretation of the relationship between inde-
pendent variables and dependent variables. The performance of the
PLSR model is then validated using a set of unknown samples. For



Fig. 1. Schematic diagram of LIBS experimental setup.

Fig. 2. LIBS spectra of cabbage leaf in spectral range 200e500 nm.

Table 2
Certified concentrations of different elements for plant RMs with predicted con-
centrations of unknownplant samples (inwhich Fe is in ppm and others are inwt %).

Element Cabbage (P1) Tea (P2)

Certified Predicted Certified Predicted

Al (%) 0.0166 ± 0.0022 0.0184 ± 0.0076 0.094 ± 0.009 0.092 ± 0.006
Ca (%) 0.70 ± 0.02 0.70 ± 0.04 0.326 ± 0.008 0.296 ± 0.037
Fe(ppm) 98 ± 10 104 ± 10 242 ± 18 246 ± 10
K(%) 1.55 ± 0.06 1.56 ± 0.01 1.63 ± 0.07 1.60 ± 0.01
Mg(%) 0.241 ± 0.015 0.242 ± 0.007 0.186 ± 0.011 0.181 ± 0.005
Si(%) 0.024 ± 0.005 0.024 ± 0.006 0.099 ± 0.008 0.099 ± 0.006
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this PLSDA model is constructed based on the PLSR calibration
model. In this technique classes of unknown samples can be pre-
dicted. It determines the optimal variance between each class.
Validation test sets are used to compare the effectiveness of PLSDA
model. The main purpose of this work is to construct robust cali-
bration models relating concentration of different elements in a
variety of samples and to use themodel to predict concentrations of
these elements in unknown samples. The application of MVA in
extracting and analyzing the LIBS spectral information will defi-
nitely improve the quantitative analytical ability of LIBS andmake it
more promising.

3. Results and discussion

Table 1 shows the description of samples analyzed by LIBS for
the multivariate analysis. Fig. 2 shows the typical LIBS spectrum of
cabbage leaf CRM in spectral range of 200 nme500 nm which
clearly shows the presence of prominent lines of Mg, Ca, Fe, K, Al, Si
etc. Similarly spectral lines of Mg, Ca, Fe, K, Al, Mn etc. are present in
the LIBS spectra of all other analyzed standard RMs. The wave-
lengths of different atomic and ionic species present in the spectra
were identified using atomic spectroscopy database of NIST [22]
and chemical spectroscopy by W R Brode [23]. Certified values of
concentrations of different elements for RMs are given in Table 2
and Table 3 for plant and soil RMs respectively.

PLSR is employed here to construct the calibration model for
RMs. These are predicted vs. reference plots of PLSRmodel. To draw
the calibration models of various elements having different con-
centrations, typical wavelength regions containing the majority of
the emission lines of corresponding elements are chosen for each
sample. Fig. 3(a) and (b) show typical PLSR calibration models of Al
for plant and soil samples respectively. Similarly PLSR models are
plotted for all other elements. The performance of the model is
Table 1
Description of different reference materials used for analysis.

S. No. RM code Matrix Sample code Approved by

1 NCSZC73012 Cabbage leaf P1 China National Analysis Center for Iron and Steel
2 NCSZC73014 Tea Leaf P2 China National Analysis Center for Iron and Steel
3 SRM 2704 River Sediment S1 National Bureau of Standards (NBS)/NIST
4 SRM 1632a Bituminous Coal S2 National Bureau of Standards (NBS)/NIST
5 RM SL-1 Buffalo River Sediment S3 International Atomic Energy Agency (IAEA)



Table 3
Certified concentrations (wt %) of different elements for soil CRMs with predicted concentrations of unknown soil samples.

Element SRM 2704 (S1) SRM 1632a (S2) IAEA-RM-SL-1 (S3)

Certified Predicted Certified* Predicted Certified** Predicted

Al 6.11 ± 0.16 6.14 ± 0.26 (3.1) 2.9 ± 0.20 (8.9) 9.02 ± 0.50
Ca 2.60 ± 0.03 2.36 ± 0.16 0.23 ± 0.03 0.29 ± 0.11 (0.25) 0.26 ± 0.01
Fe 4.11 ± 0.10 3.74 ± 0.39 1.11 ± 0.02 1.45 ± 0.40 6.74 ± 0.20 6.75 ± 0.75
K 2.00 ± 0.04 1.93 ± 0.15 0.42 ± 0.02 0.33 ± 0.18 (1.5) 1.87 ± 0.30
Mg 1.20 ± 0.02 1.10 ± 0.11 (0.1) 0.12 ± 0.02 (2.9) 2.82 ± 0.22
Mn 0.0555 ± 0.0019 0.0307 ± 0.0127 0.0028 ± 0.0002 0.0029 ± 0.0001 0.346 ± 0.017 0.339 ± 0.031

Uncertainties quoted on certified values are at 95.5% confidence level.
* Values given in ( ) are recommended values from NIST.
** Values given in ( ) are recommended values from IAEA.
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assessed by the coefficient of determination (R2) and root mean
square error (RMSE). It is observed that the R2 values are almost
equal to 1 while RMSE is close to 0, revealing a strong correlation
between the predictions and references. Ideally, the predicted
values should be equal to the reference values. With slopes tending
to 1 one can qualify this model as good enough for running the
regression. We have recorded 14 spectra of two plant samples (7
spectra of each). Out of 14 spectra, 10 spectra are chosen as training
set to prepare PLSR model and rest 4 spectra are chosen as test set.
For soil samples 21 spectra of three soil samples (7 spectra of each)
are recorded. Out of 21 spectra, 15 spectra are chosen as training
(known) set and rest 6 spectra as test (unknown) set. Cross-
validation strategy is used to validate the PLS model. Test sets
give the indications about strengths and weakness of the model.
We used the concentrations of different elements given in Tables 2
and 3 to construct the PLSR model. Furthermore, the best fits of
calibration (blue one) and validation (red one) deviate very little
from each other due to the high value of R2, showing that R2 for
calibration (Cal) is close to the validation (Val). If there are large
differences between Cal and Val, the model cannot be trusted. The
root-mean square error of calibration and prediction (RMSEC&P)
Fig. 3. (a & b). Predicted vs. Reference plots for
for the model is close to 0 for all elements in both matrices. RMSEC
for the model are used to evaluate the PLSR calibration model and
using these calibration models, test sets are predicted. RMSEP is
used to verify the prediction capabilities of these PLSR calibration
models. As a result, we can evaluate the accuracy of the determi-
nation based on the predictions from a PLS model if the matrix of
the measured samples is not varying away from that of the cali-
bration sample set. It is seen that the PLSR model is more accurate
and reliable for all samples as RMSE is low while R2 remains high,
showing the overall robustness of the proposed model (Fig. 3(a)
and (b)). This approach is capable of compensating for matrix ef-
fects as well as to overcome the issues of conventional internal
standard calibration methods.

Fig. 4 shows the three dimensional scatter plot of three specified
factors for both types of samples. From score plot, we get a map
about samples such that closer the samples are in this plot, the
more similar they are with respect to each other. Samples are
clustered into two groups in first matrix and in second matrix, the
samples are divided into three clusters. It can be seen that most of
the elements are the same in all the samples in both matrices but
they are clustered separately. This, interestingly, shows the
concentration of Al for plant and soil RMs.



Fig. 4. Three dimensional score plots for plant and soil CRMs.

Fig. 6. Explained variance plot in PLSR model.
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dissimilar composition of samples as the elements present in the
samples differ in terms of concentration, as can be seen from the
concentration data in Tables 2 and 3 of samples. These plots (Fig. 4)
give the information about patterns in samples by computing the
factors.

Fig. 5 depicts the regression coefficient corresponding to the
wavelength performed on the spectral range chosen for Mg for soil
samples; similarly this plot was also drawn for other elements. The
peaks shown in Fig. 5 have strong influence on the variation of Mg
concentrations and are used to build the PLS calibration models.
The regression coefficients represent a direct linear relationship
between the LIBS spectra and the elemental concentrations. The
peaks assigned here show the emission lines that are relevant to
the changes of the elemental concentrations. In order to reduce the
interference of irrelevant emission lines and to make the PLS
models practically reasonable, a smaller spectral range is selected
to build the PLS models where the most intense peaks of particular
element are shown based on the regression coefficient plot.

Fig. 6 describes the relationship of the cumulative explained
variance as a function of the number of factors. This variance curve
describes how explained variance of an individual variable evolves
Fig. 5. Regression coefficient vs. wavelength plot for Mg element in soil samples.
with the number of factors in the model. This figure indicates that
two factors are enough to obtain a calibration model with the op-
timum predictability. From this plot we can obtain the variation in
the responses that is described by each of the component. Two
types of variance are shown: The blue line is the calibration vari-
ance and the red line is the validation variance. Calibration variance
is based on fitting the calibration data to the model that were used
to build the model. Validation variance is computed by testing the
model on data. If the validation variance is different or much
smaller than the calibration variance, the model does not describe
new data clearly. On the contrary, if these curves are close together,
the model is representative. From the plot it can be seen that the
validation variance is close to the calibration variance.

On seeing the robustness of PLSR model it is applied to predict
the concentrations of test samples. Results shown in Fig. 7(a) and
(b) are PLSDA models for test set of Al for plant and soil samples
respectively. Similarly these models are plotted for all other ele-
ments. These plots show the predicted concentrations for all test
(unknown) samples. To evaluate the performance of the calibration
model, test sets are used here then determine the concentrations of
different elements. The predicted values are shown by horizontal
lines and the boxes around the values indicate the deviations from



Fig. 7. (a & b). PLSDA models for test set of Al for plant and soil samples.
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training set of the data (Fig. 7 (a)& (b)). If training sets used to form
calibration model are not very similar to the test sets in which the
predictions are applied, boxes indicate the large deviation. Tables 2
and 3 show the predicted concentrations of all elements with RSD
for plant and soil samples. It is noticed here that the concentration
values of different elements predicted for unknown samples are
almost similar to the certified concentrations given in Tables 2 and
3 with small deviations in values. This shows the robustness of the
proposed model for unknown samples that they are very similar to
the known samples.

Table 4 gives a comparison of results of LIBS with that obtained
by instrumental NAA (INAA), which is also one of the non-
destructive analytical methods employed widely. The % un-
certainties on results from four independent sample analyzed by
INAA are in the range of 3.0e9.5%. It can be seen that the INAA
results obtained for the IAEA RM SL-1 and NIST SRM 1632a are in
good agreement (within 3.3% for SL-1 and within 10% for 1632a)
with the certified values as well as with respect to each other
(within 10% except for a few elements of 1632a). INAA has a
capability of providing data on various elements with widely
varying concentration range simultaneously, but a high flux
neutron source like nuclear reactor is necessary for conducting the
Table 4
Comparison of elemental concentration (wt %) results of IAEA RM SL-1 and NIST SRM 16

Element IAEA RM SL-1

LIBS INAA Certifiedb

Al 9.02 ± 0.50 9.0 ± 0.3 (8.9)
Ca 0.26 ± 0.01 0.24 ± 0.01 (0.25)
Fe 6.75 ± 0.75 6.81 ± 0.19 6.74 ± 0.20
K 1.87 ± 0.30 1.45 ± 0.11 (1.5)
Mn 0.339 ± 0.031 0.35 ± 0.01 0.346 ± 0.017

a Values given in ( ) are recommended values from NIST.
b Values given in ( ) are recommended values from IAEA.
experiments. LIBS is advantageous since the data can be obtained
with a reasonably compact experimental system as well as on non-
destructive way.

4. Conclusion

In this study, the ability of LIBS as a rapid technique for analysis
of RMs of environmental samples based on multivariate statistical
analysis of data is addressed. The model for the multivariate anal-
ysis was built using certified reference materials. The developed
model was then applied to unknown samples. The results clearly
demonstrate that PLSR and PLSDA are powerful for implementation
of multivariate approaches in analyzing the LIBS spectral data. The
calibration models are developed here relating concentrations of
different elements. In case of the RMs, the predicted concentrations
by LIBS are comparable to the certified concentrations. This
methodology provides a viable approach for the determination of
elemental concentrations in a variety of samples which is
extremely difficult to achieve in case of the traditional calibration
curve method. The methodology also is helpful to check the
robustness of the technique, even in the absence of the RMs for the
same matrix. Due to the robust and powerful analytical ability of
32a by LIBS with INAA.

NIST SRM 1632a

LIBS INAA Certifieda

2.9 ± 0.2 3.3 ± 0.2 (3.1)
0.38 ± 0.17 0.21 ± 0.02 0.23 ± 0.03
1.45 ± 0.40 1.15 ± 0.05 1.11 ± 0.02
0.33 ± 0.18 0.46 ± 0.02 0.42 ± 0.02
0.0029 ± 0.0001 0.0027 ± 0.0002 0.0028 ± 0.0002
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multivariate methods, these approaches yield better results.
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