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Principal component analysis for geographical data:
the role of spatial effects in the definition of composite
indicators

Alfredo Cartonea and Paolo Postiglione b

ABSTRACT
This paper investigates the role of spatial dependence, spatial heterogeneity and spatial scale in principal
component analysis for geographically distributed data. It considers spatial heterogeneity by adopting
geographically weighted principal component analysis at a fine spatial resolution. Moreover, it focuses on
dependence by introducing a novel approach based on spatial filtering. These methods are applied in order to
derive a composite indicator of socioeconomic deprivation in the Italian province of Rome while considering
two spatial scales: municipalities and localities. The results show that considering spatial information uncovers
a range of issues, including neighbourhood effects, which are useful in order to improve local policies.

KEYWORDS
spatial filtering, spatial dependence, geographically weighted principal component analysis (GWPCA), modifiable
areal unit problem (MAUP), deprivation index
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INTRODUCTION

Nowadays, the increasing availability of large data sets and Big Data is shining the spotlight onto
multivariate statistical techniques. To simplify the interpretation of this large amount of data,
many researchers try to describe complex phenomena by combining sets of different variables.
Synthesizing multivariate phenomena is indicated as a proper way to represent economic, social
and environmental problems in the world (OECD, 1993).

Particular attention is given to the derivation of composite indicators in a policy perspective
because of the idea that those indicators can be used to rank geographical units (Kuc-Czarnecka
et al., 2020; Nardo et al., 2005). Ideally, a composite indicator should be founded on a theoretical
framework, which permits single indicators to be selected.

Principal component analysis (PCA) (Jolliffe, 2002) has often been adopted to obtain compo-
site indicators. Demšar et al. (2013) point out that one of the future challenges for this technique
will be the explicit consideration of spatial effects (Anselin, 1988). From a methodological point of
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view, discarding spatial effects from the analysis may lead to misspecification and inappropriate
interpretation of the phenomenon under investigation (Jombart et al., 2008). Moreover, taking
into account the effects of heterogeneity and spatial scale makes possible the definition of more
accurate local actions (Rodríguez-Pose, 2018).

The present paper directly addresses the issues connected to the spatial nature of the data in the
definition of a composite indicator using PCA. We introduce a novel approach to PCA for geo-
graphically distributed data that is based on the use of spatial filtering (Getis & Griffith, 2002).
This innovative methodology is discussed in detail in the third section, with clear reference to
different filtering approaches.

In order to evaluate the influence of spatial effects and spatial scale in the definition of com-
posite measures, we derive a deprivation index for local territories in the province of Rome, the
capital city of Italy. Deprivation may be defined ‘as a state of observable and demonstrable disad-
vantage relative to the local community or the wider society or nation to which an individual,
family or group belongs’ (Townsend, 1987, p. 125), and it can be calculated on a refined scale
to return information on disparities affecting each area (Caranci et al., 2010). Local deprivation
is selected here as an appealing example to show that only an analysis based on the consideration
of the spatial effects can lead to an effective examination of the multivariate phenomenon under
investigation. This also adds value to the existing literature studying the effects of space in
measures for disparities (Márquez et al., 2019; Panzera & Postiglione, 2020), but in a multivariate
scenario.

The paper is structured as follows. The next section overviews the problems related to the use
of PCA to define composite indicators for spatial data. Sections three summarizes the method-
ologies adopted in the paper to investigate the spatial effects in composite indicators. The fourth
section reports the results of an application in the province of Rome performed at two levels of
spatial resolution: municipalities and localities. Finally, the fifth section concludes.

COMPOSITE INDICATORS AND PRINCIPAL COMPONENT ANALYSIS FOR
GEOGRAPHICAL DATA

A composite indicator evaluates multidimensional concepts that cannot be captured by a single
indicator. Different methods can be used to calculate a composite indicator. For an overview of
these techniques, see Decancq and Lugo (2013).

PCA is often used to define composite indicators (e.g., Greyling & Tregenna, 2016; McGil-
livray, 2005). In this case, the loadings represent the weights of the composite measure. De Muro
et al. (2011) criticize the use of PCA for building composite indicators because weights are based
on a ‘pure’ statistical technique and may not reflect the relevance of single variables in the under-
lying phenomenon. However, weights from PCA may be less ‘subjective’ because these are data
driven and not assigned by the researcher, in contrast to the case of the ‘normative’ weights (Bel-
landi & Ruiz-Fuensanta, 2010).

Despite its popularity in geographical data applications, an aspect that has been only recently
studied with PCA is related to the presence of spatial effects. For example, ad hoc analyses for
units located in different areas should be considered (Lloyd, 2010). Moreover, it is necessary to
assess the influence of neighbours on component scores. For these reasons, the spatial effects
should be further explored, relaxing the assumptions of homogeneity and independence at differ-
ent spatial scales of analyses.

Three different types of spatial information should be considered in the definition of compo-
site indicators when using PCA: heterogeneity, dependence and scale of analysis.

Spatial heterogeneity may cause the misspecification of the model, leading to problems in the
interpretation of the results. This issue has been considered in linear regression models only in
recent years (Postiglione et al., 2013). The geographically weighted approach (Fotheringham
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et al., 2002) is extended to PCA, as geographically weighted PCA (GWPCA), to consider the
presence of spatial heterogeneity (Harris et al., 2011).

The problem of spatial dependence has been faced in factorial analyses using multivariate kri-
ging (Wackernagel, 2003). However, multivariate factorial kriging represent a model-based
approach that is different from PCA.

The possible presence of spatial dependence cannot be ignored in analyses when using PCA
for geographically distributed data.

Spatial autocorrelation in PCA has been discussed by Jombart et al. (2008) through an
approach called spatial PCA (i.e., sPCA). This method is used to investigate spatial patterns
by an objective function obtained combining Moran’s I with standard PCA decomposition of
the variance matrix. This function is highly positive when the variable has a large variance and
positive spatial autocorrelation; conversely, it is largely negative when the variable has a high var-
iance and shows negative spatial autocorrelation.

This tool may be considered an advancement of multivariate spatial techniques (Wartenberg,
1985). By using sPCA, the positive definite structure of the variance–covariance matrix is modi-
fied, andWartenberg (1985) points out that techniques based on Moran’s Imatrix decomposition
may lead to negative eigenvalues. Eigenvectors related to positive eigenvalues describe states of
positive autocorrelation, while eigenvectors associated with negative eigenvalues explain cases of
negative autocorrelation. Therefore, the main aim of sPCA is to help the researcher to define pat-
terns in the spatial structure of the phenomenon.

Another important issue in geographical studies is the choice of an appropriate spatial scale for
the analysis (Fernández-Vazquez &Rubiera-Morollòn, 2012). In many cases, empirical applications
are performed at a coarse spatial resolution. While analysing different spatial levels, the effects of the
modifiable areal unit problem (MAUP) (Fotheringham&Wong, 1991; Openshaw&Taylor, 1979)
on statistical analyses can be severe (for the case of spatial econometric models, see Arbia & Petrarca,
2011). Hence, the effect of the MAUP can bring puzzling statistical results, and it often leads to
difficulties in interpreting the phenomenon under investigation (Purtauf et al., 2005).

Since these features are commonly ignored in the use of PCA, in this paper we contribute to
the scientific debate about the importance of using spatial information when PCA is applied to
geographically distributed data, particularly in the derivation of composite indicators.

The first step of this study is based on reconsidering the use of GWPCA in spatial composite
indicators (Harris et al., 2015). This tool is widely used as a spatial approach to PCA (Saib et al.,
2015). However, this method explicitly addresses only spatial heterogeneity (in the sense of non-
stationarity), neglecting the role of spatial dependence.

In order to analyse and display spatial dependence, we introduce a new methodology based on
spatial filtering techniques (Getis & Griffith, 2002). All variables are split into a spatial com-
ponent and in an idiosyncratic (i.e., filtered) component by spatial filtering. The spatial com-
ponents are multiplied for the loading values obtained by overall PCA to calculate the spatial
scores linked to neighbourhood effects.

Finally, the problem of the spatial scale is effectively considered by analysing the phenomenon
under investigation at two different spatial scales to address the potential effects of the MAUP at a
very fine spatial resolution (Bonneu & Thomas-Agnan, 2015). The selection of the spatial scale
can produce major changes in the components scores as well in the loadings. Our analysis high-
lights the need to consider refined scale (i.e., finer than NUTS 3), when data are available, in order
to allow a deeper knowledge of local peculiarities and to identify ad hoc policies.

Note that our approach for handling spatial dependence in PCA differs in many aspects from
sPCA. First, our methodology, in contrast to that proposed by Jombart et al. (2008), allows direct
comparisons with standard PCA useful for the purpose of ranking different spatial units in an
intuitive way for regional scientists. In fact, eigenvalues from sPCA may be positive as well nega-
tive. Therefore, this may bring the practitioners to face problems in the selection of the
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components under investigation. In PCA, those problems have not to be faced thanks to the struc-
ture of the variance–covariance matrix which leads to a descending representativeness of com-
ponents in terms of accounted variance (Jolliffe, 2002). Another problem is related to the
definition of the composite indicator itself. In fact, if sPCA could perform well in an explorative
sense, this technique does not allow one to split the spatial and non-spatial part from the global
indicator. sPCA individuates spatial indicators that cannot be easily compared with the overall
indicator as these rely on a different system of eigenvectors (i.e., weights) from the overall
PCA. Lastly, sPCA does not decompose the total variance into decreasing additive components
as PCA.

One of the main purposes of this paper is to highlight the importance of spatial component in
the definition of composite indicators obtained through PCA. In particular, we aim to assess how
much of the composite indicator obtained is due to the effects of spatial contagion between geo-
graphical units. For these reasons, to manage spatial dependence in PCA, we choose a new
approach based on spatial filtering. This methodology may complement an analysis based on
the use of GWPCA, and offers a new tool to evaluate the presence of spatial dependence in com-
posite indicators.

METHODOLOGY

PCA is based on the analysis of a data matrix Xij , where i = 1, . . . , n denotes the statistical units
and j = 1, . . . , p denotes the variables. The variance–covariance matrix S may be decomposed
into its eigenstructure as (Jolliffe, 2002):

S = ALAt (1)

where L is the diagonal matrix of eigenvalues; A is the corresponding matrix of loadings (i.e., the
eigenvectors); S is the variance–covariance matrix; and the superscript t indicates the transpose.
The eigenvalues in L represent the variance of the principal component Y r defined as:

Y r = XAr (2)

where Ar is the r-th column of the loading matrix A of S and represents the contribution of each
variable in X to the r-th principal component Y r . The entries of Y r are defined as scores and rep-
resent our composite indicator. In PCA not all principal components are usually considered.
Hence, the essence of data reduction is to select a certain number of components that account
for the largest part of the variance.

As pointed out by (1) and (2), the composite indicator is synthesized according to the loadings
of the variance–covariance matrix S. It follows that the relevance of each phenomenon is based on
the structure of the whole-map variance–covariance matrix. Standard PCA is not appropriate in
order to analyse geographically distributed data. Considering the presence of spatial heterogeneity,
we can use GWPCA, as described below.

Reappraisal of geographically weighted principal component analysis (GWPCA)
GWPCA (Fotheringham et al., 2002; Harris et al., 2011; Lloyd, 2010) may be considered as a
valid alternative for localized sets of weights used in the building of composite indicators, consid-
ering spatial heterogeneity. It allows non-stationarity of eigenvalues and eigenvectors across spatial
units. In GWPCA, principal components are calculated using a local variance–covariance matrix.
Given the (ui, zi) coordinates for each location i, the local variance–covariance matrix S(ui, zi) is:

S(ui, zi) = XtW (ui, zi)X (3)

whereW (ui, zi) is a diagonal matrix of spatial weights that depends on the number of observations
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considered as a neighbour of a particular unit (ui , zi) and are calculated according to a convenient
kernel function. Equation (1) can be generalized for the local case as:

S(ui, zi) = A(ui , zi)L(ui , zi)A(ui, zi)
t (4)

where A(ui , zi) is the matrix of the local loadings; and L(ui, zi) is the matrix of the local
eigenvalues.

In this paper, in order to calculate geographical weights, we use a Gaussian kernel:

wij = exp − 1

2

dij

g

( )2
( )

(5)

where wij is the entry of the matrix W (ui, zi); dij is the geographical distance between the units;
and g is the bandwidth. Generally, in geographically weighted approaches, the results are robust to
the choice of the kernel. Nevertheless, great care should be given to bandwidth selection (Fother-
ingham et al., 2002). To this end, we use a cross-validation (CV) function built considering the
residuals from the data (Harris et al., 2011). For further details about the definition of the good-
ness-of-fit (GOF) measure used in the CV function, see Harris et al. (2015).

The interpretation of GWPCA results is challenging due to the very large volume of infor-
mation produced. Harris et al. (2011, 2015) suggest some possible visualization methods to sup-
port the interpretation: mapping the proportion of variance explained by the local PCs, mapping
thewinning variable of each local PC, and using multivariate glyphs to represent the loadings at all
locations.

In equation (2), it is evident that standard PCA defines composite indicators using loadings as
global weights (i.e., defined following the same rule for all spatial units). To consider the
peculiarity of the spatial information inherent in geographically distributed data, we may use a
weighting scheme that changes locally (i.e., different loadings for each spatial unit) derived
through GWPCA.

Following this idea, we define a first principal component composite local indicator, for unit i,
as:

y1i = Xt
iA1(ui, zi) (6)

where Xi represents the vector of p variables measured at location i; and A1(ui , zi) is the first col-
umn of the local loading matrix A(ui, zi). Our approach to spatial composite indicators with
GWPCA is similar to that of Trogu and Campagna (2018) and Kallio et al. (2018).

Unfortunately, GWPCA only considers the influence of spatial heterogeneity. To evaluate the
extent of the spatial dependence in composite indicators for geographically distributed data, we
need to move a step ahead by proposing a novel methodology based on spatial filtering.

Novel approach for screening the spatial dependence in PCA
In this section we define a measure to account for neighbourhood effects in component score. In
standard PCA, the score for the first principal component (i.e., the first composite indicator), for a
location i, is defined as:

y1i = Xt
iA1 (7)

where Xi represents the vector of the p variables measured at location i; and A1 is the first column
of the loading matrix A. The variables included in X may be characterized by a certain degree of
spatial autocorrelation, which may be different from a variable to another.

To capture the spatial component of each variable, it seems appropriate to use spatial filtering
techniques (Getis & Griffith, 2002). Among others, two different approaches can be developed
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for screening the spatial autocorrelation by using spatial filtering. The first approach, introduced
by Griffith (2000, 2003), exploits an eigenvector decomposition associated with Moran’s I to
remove nuisances due to spatial dependence. The second approach is based on a multistep pro-
cedure based on the Getis’ statistic Gi (Getis, 1990, 1995).

The Griffith’s filtering is based on the eigenvectors decomposition of the matrix:

I − 11t

n

( )
C I − 11t

n

( )

where I is an n × n identity matrix; 1 is n × 1 vector of ones; and C is a binary spatial weight matrix
(Griffith, 2008; Griffith & Chun, 2014). Using this methodology, the spatial part of the variable is
identified in order to minimize the degree of spatial autocorrelation in the model residuals. The
spatial autocorrelation model for the generic variable X 1 is defined as:

xi = mX + V t
ibV + ei (8)

where xi is the variable at each location i; mX is the mean of the variable X ; V is are the values
associated to unit i included into the matrix of the q , n selected eigenvectors V of the matrix

I − 11t/n
( )

C I − 11t/n
( )

; bV is the set of parameters associated to the eigenvectors; and 1i is

an independent and identically distributed error term. Tiefelsdorf and Boots (1995) demonstrates

that each of the eigenvalues of I − 11t/n
( )

C I − 11t/n
( )

is a Moran index value. The eigenvec-

tors V s describe latent spatial autocorrelation included in each of variable.
Following Getis and Griffith (2002), the spatially filtered variable obtained with the eigenvec-

tors approach is:

x∗iE = ei (9)

with ei = xi − x̂i, where the model prediction x̂i is obtained estimating the parameters of equation
(8).

For every spatial location i, each variable can be rewritten as the sum of the filtered part x∗iE and
its spatial component siE as:

xi = x∗iE + siE (10)

where: siE = xi − x∗iE = xi − ei = x̂i.
In other words, the predicted values from the regression (8) x̂i constitute the spatial component

for the variable, while the residuals ei are the spatially filtered component.
Consider now, for each spatial location i, a vector of the p filtered variables, X ∗

iE , and the vector
of the spatial components of the p variables, SiE , and plug equation (10), expressed in matrix nota-
tion, into equation (7) the following decomposition for first component:

y1i = (X ∗
iE + SiE)

tA1 (11)

y1i = X ∗t
iEA1 + StiEA1 (12)

The first term on the right side of equation (12) is the filtered first component score X ∗t
iEA1 and the

second part StiEA1 accounts for the presence of spatial dependence.
Using the Getis’ approach, for each spatial location i, every variable can be filtered out by:

x∗iG = xi
Ci

n− 1

[ ]
/Gi(d ) (13)

where the x∗iG represents the filtered part of the variable at each observation i, Ci is the sum of the
geographical connections cil (for every location i, with l = 1, . . . , n) that are the elements of a
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binary contiguity matrix C, andGi(d ) is the Getis–Ord statistic (Getis & Ord, 1992) measured for
every variable as:

Gi(d ) =
∑

l=i cil (d )xl∑
l=i xl

(14)

In equation (13), Ci/(n− 1) is the expected value of equation (14), so that the filter is obtained
from the ratio between the expected value of the Gi(d ) statistic and the value of the statistic itself.

To measure spatial connectivity throughout the paper, we follow standard practices for all
techniques. In the GW approaches proximity is mostly defined according to a distance-decay
function that allow to smoothly model variance–covariance structure and the use of binary weights
is less frequent (Fotheringham et al., 2002). Conversely, adopting the filtering approaches, the use
of binary contiguity matrix is common (Getis & Griffith, 2002; Griffith, 2008). In our study, for
simplicity, the proximity is defined according to a k-nearest rule for both filtering approaches.

Also in this case, for every spatial location i, each variable can be rewritten as the sum of the
filtered part x∗iG and its spatial component siG as follows (Getis & Griffith, 2002):

xi = x∗iG + siG (15)

The spatial component siG assumes positive values when the difference xi − x∗iG is positive, a cir-
cumstance linked to the presence of autocorrelation among high values of the variable. When the
spatial association is due to autocorrelation among low values, the spatial component siG is
expected to assume negative values.

By plugging (15), expressed in matrix notation, into (7), we obtain the following equivalence
for the first composite indicator:

y1i = (X ∗
iG + SiG)

tA1 (16)

y1i = X ∗t
iGA1 + StiGA1 (17)

The interpretation of the terms on the right side of equation (17) is analogous to those of equation
(12). Thus, the score components can be split into two parts that sum the initial composite indi-
cator obtained from standard PCA. In equation (17), X ∗t

iGA1 is the filtered first composite indi-
cator and StiGA1 is the first spatial composite indicator.

Following the rationale of Getis and Griffith (2002), the magnitude of the spatial indicator will
increase in two circumstances. The first occurs when spatial associations are present in high values
(i.e., hot spots) for variables positively linked to the multivariate phenomenon (i.e., positive values
of the weights). The second one is linked to a concentration of low values (i.e., cold spots) for vari-
ables negatively linked to the composite indicator by negative weights. Conversely, the spatial
indicator will tend to assume negative values. In this sense, the spatial composite indicator is a
measure of the effect of spatial associations on the multivariate phenomenon that will differ
from zero when the concentration of high (or low) values of the variable (i.e., xi) have the relevant
effect on the composite indicator.

It is noteworthy that the Getis (1990) approach is based on the use of positive variables that
have a natural origin. Since, in the present study, each variable respect these conditions, this
method can be correctly implemented to extract the spatial part of each variable.

The properties of the two filtering approaches and the properties of these estimators are further
explored in Griffith (2003, ch. 4). In the context of the screening spatial dependence in PCA, the
Getis’ approach seems to be preferable for many reasons. First, the spatial indicator obtained is
directly connected to the extent of the spatial association exhibited by the geographical units, mak-
ing the interpretation easier. Second, the Getis’ filtering approach could be easily implemented,
and it presents lower computational costs. In fact, in large data set applications, the Griffith’s
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methodology could be performed at a high computational efforts due to the time needed to select
the relevant eigenvectors. Finally, the Getis’ approach offers a practical rule for the decision about
the weighting matrix (Getis &Griffith, 2002). Hence, practitioners may simply try different num-
bers of neighbourhoods, until the filtered component shows no autocorrelation.

Sensitivity analysis for composite indicators
Defining a composite indicator involves a number of steps in which the researcher deals with sub-
jective decisions regarding the variables to include and how to aggregate them (Kuc-Czarnecka
et al., 2020). Generally, the first step is devoted to the definition of a conceptual framework on
which the composite indicator is based, while the second step concerns the aggregation of the
simple variables (Becker et al., 2017).

In the aggregation phase, two main aspects should be considered. First, the users have to define
the aggregation method to synthetize the variables. In this step, inputs are combined through a
simple or weighted average. Second, users have to choose values of the weights.

Besides the choice of a robust theoretical framework, a deeper understanding of the impor-
tance of each variable for the composite indicator is relevant, especially in the weighting process.
This issue can be investigated using the sensitivity analysis (Saisana et al., 2005; Saltelli et al.,
2004). If several measures can be defined to estimate sensitivity, here we rely on a popular
approach, which uses the dependence of the composite indicator Y on each of the input variables
Xj .

Following Becker et al. (2017), it is possible to define a measure of the importance of the input
variable Xj on the composite indicator Y using a correlation ratio Sj , j = 1, . . . , p, that can be
estimated as follows:

Ŝj =
∑n

i=1 (mij − �mj)
2∑n

i=1 (yi − �Y )
2

(18)

where mij = f̂j (xij) is the fitted value of a regression of Y on Xj (for a particular point of Xj); and

�mj = n−1
∑n

i=1 (mij).
Therefore, the correlation ratio Sj is an index of dependence of Y on Xj and it can be estimated

by fitting a regression of Y on Xj , taking the variance of this regression, and dividing it by the
variance of Y. The statistic (18) is also known as the first-order sensitivity index. If the form of
the regression function fj (xij) is linear, the index Ŝj reduces to the well-known R-squared index.

In this paper, a sensitivity analysis is developed to evaluate the importance that each variable
has on the indicator. In fact, if the set of variables used here is able to include different aspects in
the dimensions of socioeconomic deprivation, it is also useful to assess the importance that each
used variable may have on the final composite indicator. Particularly, we estimate if the obtained
weight (i.e., the loadings) considerably differ from the relevance attributed by sensitivity analysis.
Furthermore, besides the linear case, the relevance of omitted non-linear relationships between the
composite indicators and the input variables is also considered through a non-parametric local
non-linear kernel regression (Becker et al., 2017).

AN APPLICATION IN THE PROVINCE OF ROME

The empirical application considers two different levels of spatial resolution, to investigate differ-
ences in terms of correlation structures, interpretation of components, and spatial patterns. In fact,
if aggregation is expected to increase representativeness, it could potentially lead to a difficulty of
individuation of local pockets of deprivation that can only be captured by a lower spatial scale.
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The spatial scales adopted are municipalities and localities, both based on administrative par-
titions. Localities are defined by the Italian Statistical Institute (ISTAT) as ‘more or less large
areas where inhabited houses are situated’ and they represent a level between census tracts and
municipalities. We use data from the 2011 General Census of Population and Housing with refer-
ence to 797 localities and 121 municipalities in the province of Rome.2

The data set is inspired by Pampalon and Raymond (2000) and Pampalon et al. (2009), but it
has been integrated with additional variables similarly to Havard et al. (2008). In fact, these
authors suggest using a small set of variables capable of capturing socioeconomic deprivation.
Accordingly, the rate of people without a high school diploma (School), the rate of individuals liv-
ing alone (Mono), the proportion of individuals separated, divorced or widowed (SDV), and the
rate of single-parent families (Sin Par) are included. The proportion of people living in a rented
house (No House Prop) is added as a proxy for house property. The unemployment rate (Unemp)
and the population aged 70 and above on the total population (Age) are also used. We do not con-
sider income and productivity, as this information is not provided at our fine spatial scale.

In the first step, standard PCA is used to obtain composite indicators at municipality and
locality levels. Table 1 reports the cumulative proportion of variance for five PCs for both spatial
scales.

At municipality level, the first component explains about 67% of the overall variance, while the
first two components describe around the 80% of the total information. At the lower level, the first
component accounts for the 50%, while including the second one representativeness reaches the
69% of the total variance. Those features confirm how many multivariate analyses tend to worsen
representativeness at more refined scales (Fotheringham & Wong, 1991). The first two com-
ponents are considered as indicators of socioeconomic deprivation at both levels. Table 2 presents
the loadings of the first two components at municipality level.

First component suggests that the main effect is due to the number of people living alone
(Mono) and the share of older people (Age). At the same time, economic variables tend to be
less relevant. Additionally, the variable No House Prop has a negative sign. This combination
points out how the first component is an indicator more connected to a social and demographic
sphere. The second component indicator suggests a positive link to No House Prop. Moreover, this
component is negatively related to Age and School. Not surprisingly, the picture changes at locality
level because of the scaling effects. Table 3 shows loadings for localities.

In the first component indicator at locality level, School is negatively related to deprivation,
together with the strong influence of social variables (i.e.,Mono and Sin Par), which show negative
association. This result appears in line with previous studies that point out how an increasing
number of people living especially in middle-class and educated families could have been suffering
over the last years, especially in the peripheral areas (De Muro et al., 2011). The second com-
ponent is negatively related to Mono, but positively related to a lack of school attainment.

We also perform a sensitivity analysis in order to assess what relevance each variable has on the
final output. The measure Sj of sensitivity is calculated for two different functional forms fj . The
first one Ŝ j,Lin is obtained by simple linear regression, while the second one, Ŝ j,LocLin, for a non-
linear local regression (Becker et al., 2017). Table 4 reports the results for the first component (see
Appendix A in the supplemental data online for the sensitivity analysis of the second components)

Table 1. Cumulative proportion of the variance of the first five principal components for 121
municipalities and 797 localities in the province of Rome.

PC1 PC2 PC3 PC4 PC5

Municipality level 0.674 0.795 0.873 0.919 0.963

Locality level 0.503 0.685 0.793 0.867 0.932
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which confirm, in absolute values, variable relevance from PCA loadings. This circumstance does
not happen for all weighting techniques, as for example in equal weighting methods (Becker et al.,
2017). Additionally, with only a few exceptions, the importance that each variable has for the
values of sensitivity Ŝ j,Lin in the linear case do not differ from Ŝ j,LocLin, calculated by local linear
regression. Only slighter discrepancies between linear and non-linear cases emerge at locality level.

Figure 1 shows the spatial distributions of the two first indices of deprivation at municipality
scale obtained with standard PCA. We can observe that the municipality of Rome presents a
higher level of the two indicators (i.e., dark grey and black colour in the centre of the map).
This counterintuitive evidence can be explained by the fact that very different situations are con-
sidered (and aggregated) within the municipality of Rome, including the peripheries and the
downtown. Therefore, indicators at this level cannot highlight differences within the municipality.

To obtain a better analysis of the phenomenon under investigation, we consider the locality
scale. Figure 2 outlines the spatial distribution of the two composite indicators at locality level
obtained with standard PCA. The indices tend to worsen in some of the peripheral areas of
the province and they improve in the downtown area of Rome (in the centre of the map). This
aspect shows a dualism between downtown and periphery and suggests that going spatially deeper
can reveal information that was hidden at a coarse spatial resolution.

The first spatial effect considered in this paper is spatial heterogeneity. Before investigating
spatial heterogeneity by GWPCA, we perform a Monte Carlo test to verify significant non-sta-
tionarity of the eigenvalues (Harris et al., 2011). Figure 3 summarizes the result. Looking at the
distribution obtained from Monte Carlo randomization, the hypothesis of stationarity is rejected
at the lower spatial scale (p-value = 0.040). Instead, the hypothesis of stationarity of the eigen-
values is accepted at the municipality level (p-value = 0.200).

Table 2. Loadings for the first and second principal components for 121 municipalities in the province
of Rome.
Variables PC 1 PC 2

Unemp 0.024 −0.038

School 0.150 −0.422

No House Prop −0.210 0.772

Age 0.357 −0.245

Mono 0.862 0.348

Sin Par −0.147 0.130

SDV 0.203 0.162

Table 3. Loadings for the first and second principal components for 797 localities in the province of
Rome.
Variables PC 1 PC 2

Unemp −0.146 0.020

School −0.751 0.395

No House Prop −0.135 −0.111

Age −0.172 −0.017

Mono −0.397 −0.842

Sin Par −0.422 0.232

SDV −0.174 −0.260
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Therefore, the evidence from Figure 3 suggests exploring spatial heterogeneity only at locality
level.

In applying GWPCA, the research on the optimal bandwidth is crucial. Figure 4 shows the
CV functions for different numbers of components at locality level.

Owing to the presence of an irregular spatial configuration of the province of Rome, an adap-
tive kernel is preferred in this study (Fotheringham et al., 2002). As can be observed from the plot,
for q = 5 the CV function shows a clear global minimum of g = 40. This combination is chosen in
the analysis. However, coherently with the rest of the analysis, only the first two components are
reported in this section.

Table 4. Results from sensitivity analysis for first component at municipality and locality level.
Variable Weight (PCA) Ŝ j,Lin Ŝ j,LocLin

Municipality level

Unemp 0.024 0.009 0.009

School 0.150 0.189 0.191

No House Prop −0.210 0.234 0.483

Age 0.357 0.683 0.692

Mono 0.862 0.961 0.963

Sin Par −0.147 0.246 0.253

SDV 0.203 0.491 0.493

Locality level

Unemp −0.146 0.151 0.181

School −0.751 0.863 0.905

No House Prop −0.135 0.086 0.090

Age −0.172 0.221 0.260

Mono −0.397 0.370 0.463

Sin Par −0.422 0.583 0.650

SDV −0.174 0.271 0.301

Figure 1. Quantile maps of the first (A) and second (B) socioeconomic deprivation index for 121 muni-
cipalities in the province of Rome.
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Results from GWPCA are often summarized using the winning variables (Harris et al., 2011)
that can be defined as the variables indicating the highest local loading in absolute value. In terms
of composite indicators, the winning variables suggest what is the most important variable influ-
encing the final indicator. Figure 5 includes maps of the winning variables at locality level for the
first two components. The effects of different kernels choice (i.e., exponential and bi-square) on
the winning variables map has been also considered and reported in Appendix B in the sup-
plemental data online. The similarities in the first component patterns confirm the robustness
of the results to the choice of the kernel.

Figure 5 highlights local instabilities. For the first composite indicator, the lack of school
attainment largely influences socioeconomic deprivation. This result is very similar to that
obtained with standard PCA. However, the map highlights the importance of Mono and No
House Prop in several localities at the northern border. In the second composite indicator, the

Figure 2. Quantile maps of the first (A) and second (B) socioeconomic deprivation index for 797
localities in the province of Rome.

Figure 3. Monte Carlo test for the stationarity of eigenvalues for municipalities (left) and localities
(right).
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Figure 4. Cross-validation (CV) functions in the case of adaptive bandwidth for several choices of
retained components at locality level.

Figure 5.Map of the winning variables for the first (A) and second (B) socioeconomic deprivation index
calculated by the GWPCA, with a Gaussian kernel, for 797 localities in the province of Rome.
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relevance of the house property affects the peripheral areas of the municipality of Rome, while
unemployment is important at the east border.

Considering potential heterogeneity produces a general increase in the proportion of variance
accounted. The performance of GWPCA (Figure 6), in terms of the variance explained by the first
five components, is better in 680 out of 797 localities (i.e., 85% of the units under study) compared
with that obtained with standard PCA.

Investigating local deprivation using GWPCA cannot directly evidence the amount of the
neighbourhood effects. This information might help practitioners to evaluate spatial dependence
in the composite indicator (Atkinson & Kintrea, 2001).

The first and second terms of the right side of equations (12) and (17) show the calculation of
filtered indicators of deprivation and their spatial counterparts. Results allows us to evaluate spatial
effects in multivariate deprivation by different filtering techniques. In both the filtering processes,
different connectivity matrices were analysed and a k = 5 is finally used at both levels.3

Figure 7 shows spatial and filtered indicators at municipality scale by Griffith’s filtering pro-
cedure, while Figure 8 reports spatial and filtered indicators obtained using Getis’ technique.

In both Figures 7 and 8, the spatially filtered components (A and B) attribute an idiosyncratic
level (not influenced by dependence) of deprivation to the city of Rome. This result suffers from
the impossibility to detect in both components differences between peripheries and downtown.

Figure 6. Proportion of variance (POV) of the first five components for the GWPCA (black points), over-
all standard PCA (line) and the GWPCA mean (dotted) in 797 localities in the province of Rome.
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However, at this level it is already clear that spatial dependence has consequences on the effects of
the global deprivation.

Figure 8(C, D) shows spatial terms for the first two component obtained by the Getis’ filtering
procedure. For the first component (Figure 8C), we have that areas out of the municipality of
Rome are characterized by higher values of the spatial part. In the second component (Figure
8D), we note that spatial dependence has effects on Rome and its surrounding municipalities.
For Griffith’s filtering (Figure 7D), the spatial term of second component returns lower levels
in Rome than in the conterminous areas.

By comparing Figures 7 and 8, we can note differences between the two approaches. Maps
from Getis’ filtering seems to evidence very accurate patterns of the spatial terms. This aspect is
justified by a clear east–west polarization for the Getis’ filtering between the mountain municipa-
lities and the more densely inhabited areas closer to the sea.

Figures 9 and 10 summarize the results at locality level. At this level, we appreciate how lower
scale helps us to regain a more detailed picture. For the first component, both filtering approaches
(Figures 9A and 10A) show that downtown Rome is affected by lower levels of idiosyncratic
deprivation, which increases in the peripheral areas. In the second component, the filtered part

Figure 7. Quantile maps of the filtered (A) and spatial part (C) of the first and of the filtered (B) and
spatial part (D) of the second socioeconomic deprivation index for 121 municipalities in the province
of Rome adopting Griffith’s filtering.
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from Getis’ (Figure 10B) is higher in the downtown, differently from the level indicated by the use
of Griffith’s filtering (Figure 9B).

Moving to the spatial terms, spatial dependence influences many areas of the province. Local
pockets where the effects of spatial dependence are better highlighted by the Getis’ filtering
(Figure 10C) than in the Griffith’s procedure (Figure 9C). Moreover, in both solutions, the spatial
indicator is also very relevant for a set of small localities situated at the East and South. In the
second component, the spatial indicator changes its pattern from the Griffith’s (Figure 9D) to
the Getis’ approach (Figure 10D). In fact, the last pattern points out again a core–periphery pat-
tern. This issue is more tenuous using Griffith’s filtering.

The results at this level present more evident changes between the two filtering techniques.
Again, by the use of Griffith’s approach is more difficult to spot very local features and differences,
as the pattern is more homogenous throughout the whole map. This evidence confirms that, also
at locality scale, the maps from the Getis’ filtering allows a clearer interpretation of spatial
components.

The use of the two filtering techniques also suggests that, for a larger number of units and sev-
eral variables, the Griffith’s filtering for PCA tends to slow down due to computational efforts for

Figure 8. Quantile maps of the filtered (A) and spatial part (C) of the first and of the filtered (B) and
spatial part (D) of the second socioeconomic deprivation index for 121 municipalities in the province
of Rome adopting Getis’ filtering.
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eigenvectors selection. Furthermore, at locality level, the filtered indicators from the Getis’ pro-
cedure are less connected in terms of Pearson correlation to the composite indicator obtained
by PCA. In fact, the Griffith’s filtered indicators are more correlated to the ones from standard
PCA (Pearson correlation is about 0.80 for the two components). Hence, the filtered indicators
obtained with the Getis’ approach could be considered as more informative. Those empirical
issues lead us to prefer the Getis’ approach.

Compared with GWPCA, splitting spatial and non-spatial components helps the prac-
titioners to isolate the presence of spatial effects and it enlarges considerations on the spatial
context. Therefore, the spatial indicators might help us to individuate the high relevance that
spatial component have on global indicators and they may improve the effectiveness of local
policies.

Table 5 reports Moran’s I for the first two components and their filtered parts at the two spatial
scales. Both procedures filter out spatial dependence at the selected levels. This feature is justified by
not statistically significantMoran’s I of thefiltered components (second and third columns inTable 5).

Table 5 gives evidence about the changes of the spatial autocorrelation that occurs when the
level of aggregation shifts. The severe effect of MAUP is consistent with other analyses that

Figure 9. Quantile maps of the filtered (A) and spatial part (C) of the first and of the filtered (B) and
spatial part (D) of the second socioeconomic deprivation index for 797 localities in the province of
Rome adopting Griffith’s filtering.
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support the idea that the correlation between variables increases while the variance decreases at
aggregated spatial resolutions. This situation occurs in other statistical methods when a coarse
spatial resolution is considered (Arbia et al., 1996; Wu, 2004).4 For this reason, the use of a coarse
spatial scale may greatly affect not only global results but also lead to problems in the interpretation
of spatial effects.

CONCLUSIONS

In this paper we investigate the influence of spatial effects and spatial scale in PCA for the
derivation of composite indicators. PCA calculates composite indicators using the same as
weights for all spatial units under investigation. This assumption seems inaccurate to treat geo-
graphical data. To address this problem, researchers may use local weights derived from
GWPCA. Unfortunately, this methodology does not consider the presence of dependence that
often affects spatial data.

In order to properly model dependence for composite indicators, we propose a novel method-
ology based on spatial filtering approaches (Getis & Griffith, 2002). This framework is considered

Figure 10. Quantile maps of the filtered (A) and spatial part (C) of the first and of the filtered (B) and
spatial part (D) of the second socioeconomic deprivation index for 797 localities in the province of Rome
adopting Getis’ filtering.
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more helpful than sPCA to decompose the composite indicator obtained with PCA in a spatial
and an idiosyncratic (non-spatial or filtered) part.

Looking at the results, the Getis’ filtering approach seems to be preferable for the lower
computational effort and for the easier interpretation of the results. Besides, our evidence
highlights that the MAUP dramatically affects the results obtained with all spatial
approaches to PCA. The use of an aggregate spatial scale is a common circumstance, but
this choice should be made with particular caution to interpret the phenomenon in an appro-
priate way.

In addition, investigating spatial effects helps us to increase the informative potential of com-
posite indicators. Isolating the spatial components through our novel method quantifies the mag-
nitude of the neighbourhood component of material deprivation.

A real and broader comprehension of the role of space seems to be useful in the analysis of
multivariate phenomena. The assessment of spatial effects appears to be a crucial element in pro-
moting policies and political agendas that consider interactions for facilitating development and
addressing disparities (Barca et al., 2012).

Further, we are aware that the problem of spatial dependence effects could be also addressed
according to the definition of a nested hierarchy (Chung &Hewings, 2015). Interactions between
variables that affect units and the groups they belong represent a reality for a certain number of
spatial processes (Corrado & Fingleton, 2012). For this reason, a future research line might
explore the connection between hierarchical models and the spatial econometric tools which
have been mainly considered in the present study.

Lastly, future research might involve the modelling of discrete spatial heterogeneity, facing the
problem of structural differences between spatial units directly due to the presence of multiple
clusters. This research line may supplement the use of GWPCA that analyses heterogeneity in
the continuous space.

Table 5.Moran’s I-statistics for the first and second components and for their filtered part calculated at
municipalities and localities in the province of Rome.

Global
indicator

Spatially filtered indicator
(Getis)

Spatially filtered indicator
(Griffith)

Municipality level

First component 0.469 −0.126 −0.108

k=5 contiguity

matrix

(0.000) (0.987) (0.973)

Second component 0.399 −0.186 −0.089

k=5 contiguity

matrix

(0.000) (0.996) (0.937)

Locality level

First component 0.051 −0.208 −0.033

k=5 contiguity

matrix

(0.020) (0.980) (0.930)

Second component 0.212 −0.170 0.012

k=5 contiguity

matrix

(0.000) (0.980) (0.260)

Note: p-values are given in parentheses.

Principal component analysis for geographical data: the role of spatial effects in the definition of composite indicators 19

SPATIAL ECONOMIC ANALYSIS



NOTES

1 Note that in this case, for simplicity of the narrative, we omitted the subscript j=1,...,p in the
definition of the variable X.
2 Data at the local level from the General Census of Population and Housing are openly available
at https://www.istat.it/it/archivio/104317#accordions.
3 The level of the nearest neighbours was set for the two spatial levels according to Getis and
Griffith (2002).
4 Arbia et al. (1996, p. 124) claim that ‘everything is related to everything else, but things
observed at a coarse spatial resolution are more related than things observed at a finer resolution’.
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