
Theoretical Computer Science I10 (1993) 215-245

Elsevier
215

Mathematical Games

Complexity of path-forming games*

Hans L. Bodlaender

Communicated by J.H. van Lint

Received January 199 1

Revised February 1992

Bodlaender, H.L.. Complexity of path-forming games, Theoretical Computer Science 110 (1993)
215-245.

For a number of two-player games where players alternately choose the next vertex of a simple or an

elementary path in a graph, we consider the problem to determine whether, for a given game

instance, there is a winning strategy for the first player. We show several of these problems to be

PSPACE-complete. In some special cases, we obtain polynomial-time algorithms, based on graph

rewriting or an intricate form of dynamic programming, e.g. we show GFMRALIZEDGEOGRAPHY and

some other PSPACE-complete problems to be linear-time-solvable on graphs with constant

bounded treewidth.

1. Introduction

Games are not only a popular pastime, but they can also serve as a model for

several different phenomena, e.g.

l conflicts between parties with different interests (e.g. different companies that

operate on the same market);

l fault tolerance. Here the erroneous behavior of a system is modeled by assuming

that the system uses an intelligent strategy to prevent us from reaching our goal. If

Correspondence to: H.L. Bodlaender, Department of Computer Science, Utrecht University, P.O. Box

80.089, 3508 TB Utrecht, The Netherlands. Email: hansb(a cs.ruu.nl.
*This research was partially supported by the ESPRIT II Basic Research Actions Program of the EC

under contract no. 3075 (project ALCOM).

0304-3975,‘93./$06.00 ,i’ 1993--Elsevier Science Publishers B.V. All rights reserved

216 H.L. Bodlaender

we are able to deal with this type of error, we are also able to deal with all weaker

types of errors;

l worst-case complexity of algorithms (see e.g. [37]);

l complexity theory. For instance, the definition of the alternating Turing machine

(which is one of the standard models for parallel computation) can be stated in

terms of a game (see [29]).

In this paper we restrict ourselves to games with 2 players that have full informa-

tion. We concentrate on the question: Given a certain game, how hard is it to

determine whether there is a winning strategy for the first (or second) player. With the

notion of “game”, we usually mean a class of actual games (instances), where each

game (instance) is distinguished from others in the class only by its starting position

and playing area, but uses the same type of moves. With the complexity of a game

(class), we denote the complexity of the following problem: Given a game (instance)

from this class, does player 1 have a winning strategy in this game (instance)?

Throughout this paper, we use the name of a game to denote this problem for that

game.

For several problems of this type, PSPACE-completeness and EXPTIME-com-

pleteness results have been obtained, as well as for well-known and often played

games, like chess, go, and checkers [24,26,35], and for more abstract games

[1,16,22,25,40,43,45]. For an overview, see e.g. [28,29].

In this paper we consider several abstract games on graphs that have “forming

paths in a graph” as a common theme. We consider two already studied games, both

known under the name GENERALIZED GEOGRAPHY, and several new games: the HAMIL-

TONIAN CIRCUIT CONSTRUCTION GAME, the HAMILTONIAN PATH CONSTRUCTION GAME, the

SIMPLEPATHCONSTRUCTIONGAME, the ELEMENTARYPATHCONSTRUCTIONGAME, and vari-

ants where the starting vertices are not specified.

In each of these games, the players are forming together one path in the graph.

Some related games, called PARTIZAN GEOGRAPHY or TRON, where both players form

their own path in the graph have also been proposed and studied by different authors

[18,27].

For most of the games considered in this paper, we prove the corresponding

decision problem to be PSPACE-complete (under logarithmic-space reductions). For

a few of these cases we have also a PSPACE-completeness result for the variant with

undirected graphs. These results are presented in Section 3.

A huge amount of research has been done on the complexity of NP-complete graph

problems when restricted to special classes of graphs (see e.g. [30]). Less is known on

the complexity of PSPACE-complete graph problems when restricted to special

classes of graphs. In Section 4, we give some new results in this area. We use the

following as the main techniques: graph rewriting and an intricate form of dynamic

programming. Among others, we show that (VERTEX) GENERALIZED GEOGRAPHY and

some other PSPACE-complete problems are linear-time-solvable on graphs with

bounded treewidth. This is the first known example of a PSPACE-complete problem

solvable in polynomial time when restricted to graphs with bounded treewidth, where

Complexity cfpath-forminy games 217

previously such results were known only for problems known to be NP-complete or

NP-hard [6,8,11,15,20,21,32,44,46]. In a recent paper, Arnborg [3] showed that

some PSPACE-complete logic problems can also be solved in linear time when

a graph with bounded treewidth can be associated with the input formula. Some final

comments are made in Section 5.

2. Definitions

In this section we give most definitions that are needed in this paper. In Section 2.1

we give the definitions of graph-theoretic notions; in Section 2.2 we give the definitions

of the considered games, and of a PSPACE-complete logic problem, used in our

PSPACE-completeness proofs.

2.1. Graph-theoretic dtfinitions

A path in a graph G = (V, E) is called simple if no vertex appears more than once on

the path. It is called elementary if no edge eEE is used more than once by the path.

The subgraph of G =(V, E) induced by WG V is denoted by G[IV] =(IV,

((t’, W)EE 1 u, WE Iv}).

Next we give the definitions of two special classes of graphs: the cacti, and the

graphs with treewidth <k.

Definition. An undirected graph G = (V, E) is a cactus (graph) if and only if every edge

eEE belongs to at most one simple cycle in G.

In other words, a graph G = (V, E) is a cactus if and only if each biconnected

component of G is either a single edge or a cycle without chords.

Definition. Let G = (V, E) be a directed or undirected graph. A tree decomposition of

G is a pair ({Xi 1 ie I }, T= (I, F)), with (Xi 1 ill } a family of subsets of V, and T a tree,

such that

0 uisl Xi= V.

l V(c, w)EE: 3i~I: OEX~ A WEX~.

l V&j, kEZ: ifj is on the path from i to k in T, then XinX,sXj.

The treewidth of a tree decomposition ((Xi 1 iEI j, T=(I, F)) is maxiel lXil - 1. The

treewidth of G is the minimum treewidth over all possible tree decompositions of G.

An example of a graph with treewidth 2, and a tree decomposition of this graph can

be found in Fig. 1.

The problem to determine the treewidth of a graph is NP-complete [4]. However,

for fixed k, one can determine in c(n) time whether the treewidth of a given graph is

d k [S], and, if so, find a tree decomposition with treewidth <k in (?(nlogn) time

218 H.L. Bodlaender

Fig. 1

[18,38]. (An O(nlog’ n) algorithm can be found by combining the results in [31] and

CW.)
Several well-studied classes of graphs have the property that there is a constant

upper bound for the treewidth of graphs in the class. For instance, cacti and

seriessparallel graphs have treewidth d 2, Halin graphs have treewidth 3, almost-trees

with parameter k have treewidth d k+ 1, k-outerplanar graphs have treewidth

< 3k- 1. Also, if there is a fixed upper bound on the bandwidth, cutwidth, search

number, vertex separation number of graphs in a class, or if the graphs in the class are

interval graphs or chordal graphs with a fixed upper bound on the maximum clique

size, then there is also a fixed upper bound on the treewidth of the graphs in the class

(see [lo, 13,44,46]).

There are several equivalent characterizations of the class of graphs with treewidth

<k. For instance, a graph is partial k-tree if and only if its treewidth is at most k (see

[2,44]). Note also that each class of graphs that can be defined recursively in terms of

rules of compositions with the method of Bern et al. [9] has a constant upper bound

on the treewidth of the graphs in the class.

So, a polynomial algorithm for a certain problem for graphs with bounded

treewidth directly implies polynomial algorithms for that problem for a large number

of other classes of graphs.

2.2. Definitions of games and a logical problem

In this section we give definitions of some logical problems, used in our PSPACE-

completeness proofs, and of the games we consider in this paper. First we give the

definition of a well-known logical problem.

Compkxiry oJpathj&w~iny games 219

QUANTIFIED XiATISFIABILITY

Instance: Set U=fu,,u2,..., u,} of variables, well-formed quantified boolean for-

mula F=(Q,u,)(Q2u2)...(Qnu,)E, where E is a boolean expression in conjunc-

tive normal form with three literals per clause, and each Qi is either V or 3.

Question: Is F true?

QUANTIFIED MATISFIABILITY is PSPACE-complete. One may also assume that the

quantifiers alternate, i.e., that Qi = V if i is even, and Qi = 3 if i is odd, or that Qi = 3 if i is

even, and Qi = V if i is odd (see [28, 421).

Next we introduce several games on graphs. We start with two slightly different

games, which are both known under the name GENERALIZED GEOGRAPHY. To distin-

guish the variants, we call them here VERTEX GENERALIZED GEOGRAPHY and EDGE

GENERALIZED GEOGRAPHY. Both games are played on a directed graph G = (V, E), given

with a starting vertex s. In the VERTEX GENERALIZED GEOGRAPHY game, players alter-

nately choose a vertex. The first chosen vertex must be s, and each subsequently chosen

vertex must have an incoming edge with the last chosen vertex as its other endpoint.

Players may not choose a vertex that has been chosen before. The first player that is

unable to move loses the game. In the EDGE GENERALIZED GEOGRAPHY game, players

alternate choosing an edge that has not been chosen before, starting with an edge that

has its tail at s; subsequent edges must have their tail at the vertex that was the head of

the previous chosen edge. Again, the first player unable to move loses the game.

Thus, in other words, in VERTEX GENERALIZED GEOGRAPHY, players alternately choose

the next vertex of a simple path in G, and in EDGE GENERALIZED GEOGRAPHY, players

alternately choose the next edge of an elementary path.

Both games are PSPACE-complete. EDGE GENERALIZED GEOGRAPHY was proven to

be PSPACE-complete by Schaefer [43]. In [35] it was proved that VERTEX GENERAL-

IZED GEOGRAPHY is PSPACE-complete for planar, bipartite graphs that have no

vertices with inoutdegree exceeding 2 or with degree exceeding 3.

In this paper we consider also the following variants of these games:

SIMPLE PATH CONSTRUCTION GAME. This game is played as VERTEX GENERALIZED

GEOGRAPHY, but with the following difference: the instance also contains an integer

k < 1 VI. Player 1 wins if and only if the game ends with a path containing at least

k vertices.

ELEMENTARY PATHCONSTRUCTIONGAME. This game is played as EDGEGENERALIZED

GEOGRAPHY, but now the instance contains an integer k d 1 E 1, and player 1 wins if

and only if the game ends with a path containing at least k edges.

HAMILTONIANPATHCONSTRUCTIONGAME is the special case of SIMPLEPATHCONSTRUC-

TION GAME with k = 1 VI. In other words, player 1 wins if and only if the game ends

when all vertices have been visited.

HAMILTONIANCIRCUITCONSTRUCTIONGAME. This is similar to the HAMILTONIANPATH

CONSTRUCTION GAME, but now player 1 wins if and only if the game ends when all

vertices have been visited and there is an edge from the last visited vertex to the first

visited vertex.

220 H.L. Bodlaender

l Variants without specijied starting vertex. These are similar to the original games,

but now player 1 is free to choose whatever vertex or edge he/she wants as starting

vertex or edge.

In this paper, we will also consider variants where the games are played on

undirected graphs.

The game VERTEX GENERALIZED GEOGRAPHY without specified starting vertex, on

undirected graphs, is solvable in polynomial time: there is a winning strategy for

player 1 if and only if the input graph G contains no perfect matching [19].

There is a close connection between VERTEX and EDGE GENERALIZED GEOGRAPHY and

games with rules, forbidding positions on moves to appear more than once. A game

can be modeled by a directed graph, where the vertices correspond to positions in the

game. Edges correspond to possible moves from a position. (For most games, this

graph has a very large size.) If it is forbidden to move to a position that has appeared

already earlier in the game, then this corresponds to the condition that the players

alternately choose a vertex on a simple path; a rule that forbids the same move from

the same position corresponds to an elementary path (compare [41]).

3. PSPACE-completeness results

In this section we give a number of new PSPACE-completeness results. We

establish PSPACE-completeness for the following games/problems:

l VERTEX GENERALIZED GEOGRAPHY without specified starting vertex for directed

graphs.

l HAMILTONIAN PATH CONSTRUCTION GAME with and without specified starting vertex

for directed graphs.

l HAMILTONIANCIRCUITCONSTRUCTIONGAME with andwithoutspecifiedstartingvertex

for directed graphs.

l SIMPLE PATH CONSTRUCTION GAME with and without specified starting vertices for

directed and for undirected graphs.

l ELEMENTARY PATH CONSTRUCTION GAME with and without specified starting vertex for

directed and for undirected graphs.

In each of our proofs, we use either a transformation from QUANTIFIED 3-SATISFI-

ABILITY similar to the prooffor (VERTEX or EDGE)GENERALIZEDGEOGRAPHY in [35,43],

or a transformation from a closely related game.

Theorem 3.1. VERTEX GENERALIZED GEOGRAPHY without specified starting vertex is
PSPACE-complete.

Proof. Clearly, the problem is in PSPACE. To prove PSPACE-hardness, we use

a transformation from the standard VERTEX GENERALIZED GEOGRAPHY problem (i.e.,

with specified starting vertex).

Comple?tit,v @‘path-forming games

Fig. 2.

Let an instance G=(v,E), SEC’ of VERTEX GENERALIZEDGEOGRAPHY be given. We

may suppose that the indegree of s is 0 (it is never possible to traverse an edge to the

starting vertex, so these edges may as well be deleted from G).

Now, let G’=(V’, E’) be defined as follows (see Fig. 2 for an example):

V’= Vu{O, l,, lb}

u(c+l~~Vand L’#s},

E’=Euf(u,u’)j~~Vand u#s}

U((t”, u)(uEVand ~‘#sj

u{(u’, l,)lv~Vand U#S]

u{(tl’,l,)juEVand vfs}

~{(L4,(1,,4~(0, f,),(O, lb),(LO),(lbrO)~.

As the construction of G’ can be carried out in logarithmic work space, the theorem

follows with the help of the following claim. q

Claim 3.2. There is a winning strategy for player 1 fbr VERTEX GENERALIZED GEOGRAPHY

with starting vertex s on G if and only if there is a winning strategy for player 1 for
VERTEX GENERALIZED GEOGRAPHY without specl$ed starting uertex on G’.

Proof. Suppose player 1 has a winning strategy for VERTEX GENERALIZED GEOGRAPHY

with starting vertex s on G. Then he can use the following strategy for VERTEX

GENERALIZED GEOGRAPHY without specified starting vertex on G’: start in 0. Player

2 will move to 1, or 1,. Move to s. Now, as long as player 2 moves to vertices in V, also

move to vertices in V, using the original strategy for VERTEX GENERALIZED GEOGRAPHY

with starting vertex s on G. After a number of moves, player 2 will be unable to move

222 H.L. Bodlaender

to a vertex in V. So, player 2 will move eventually to a vertex uf. Now player 1 moves

to the unused vertex in {l,, lb} and wins the game.

Suppose, player 2 has a winning strategy for VERTEX GENERALIZED GEOGRAPHY with

starting vertex s on G. Player 2 now also has a winning strategy for VERTEX GENERAL-

IZED GEOGRAPHY without specified starting vertex on G’. We consider a number of

cases:

Case 1: If player 1 starts at 0, then player 2 wins, using a strategy similar to the

argument above.

Case 2: Suppose player 1 starts at 1, or 1,. Without loss of generality, suppose

player 1 starts at 1,. Player 2 moves to s. Player 1 must move to a VE V, u #s. Player

2 moves to u+. Player 1 must move to 1,. Player 2 moves to 0 and wins.

Case 3: Suppose player 1 starts at UE V, ufs. Then player 2 moves to uf. Player

1 must move to 1, or lb. Player 2 moves to 0. Player 1 must move to the unused vertex

in {l,, lb}. Player 2 moves to s. Player 1 must move to a vertex VE V, ufs. Player

2 moves to v+ and wins the game.

Case 4: Player 1 starts at a vertex u+, UE I/. Player 2 moves to u. Player 1 must move

to a vertex WE V. w fs, because indegree =O. Player 2 moves to w’. Player 1 must

move to 1, or lb. Player 2 moves to 0. Player 1 must move to the unused vertex in

{l,, lb). Player 2 moves to s. Player 1 must move to a vertex XE V, x#v, x#w. (If

x does not exist, player 1 loses directly). Now player 2 moves to x+ and wins the game.

Case 5: Player 1 starts at vertex s. Player 2 now follows the strategy for VERTEX

GENERALIZED GEOGRAPHY with starting vertex s on G, as long as player 1 moves to

vertices VE V. Eventually, player 1 must move to a vertex u+. Now player 2 moves to

l,, player 1 to 0, and player 2 wins by moving to lb. 0

Corollary 3.3. VERTEX GENERALIZED GEOGRAPHY without specijied starting vertex is

PSPACE-complete for graphs with thickness < 2.

Proof. VERTEX GENERALIZED GEOGRAPHY with specified starting vertex is PSPACE-

complete for planar graphs [35]. If the construction in the proof of Theorem 3.1 is

applied to a planar graph, one obtains a graph with thickness ~2. 0

Theorem 3.4. HAMILTONIAN PATH CONSTRUCTION GAME with specijied starting vertex is

PSPACE-complete.

Proof. Clearly, the problem is solvable in polynomial space. To prove PSPACE-

hardness, we use a transformation from QUANTIFIED ~~ATISFIABILITY. Let an instance of

this problem be given. Without loss of generality, we may suppose that it is of the form

with FO a boolean expression in conjunctive normal form. Let C = {cl, . . , c,} be the

set of clauses in FO. Without loss of generality, we may suppose that m 34.

Comple.uity of pathjivming games

Let G = (V, E) be the directed graph defined by

V={S~t}u{Xi~ ldi<?I}U{~I l<i<n]u{rl,rz)u{cil i<i<WI},

E = i 6, x1)> (s, Z), (t, x1), (t, x1), (x,,r,),(X,,r2)}U{(Ci,t)l ldi<m}

U((Yi,Cj)Ii=1,2, l<j<WI}

u{(ci,cj)Ii#j, 1 <i,j<mj

223

U{(Xi,Xi+l)ll <i<Wl}U{(Xi,Xi+l)i l<i<??l)

U{(g,Xi+,)ll <i<<m)U{(~,Xi+l)I 1 <i<m}

u{ (c, I) 11 is a literal, appearing in clause c}

(see Fig. 3). 0

Claim 3.5. There is a winning strategql for player 1 in the HAMILTONIAN CIRCUIT

CONSTRUCTION GAME on G with starting oertex s if and only if F is false.

for every literal, appearing in
- B clause. there is an edge from

the clause to the literal

Fig. 3.

224 H.L. Bodlaender

Proof. Suppose F is false. We give a winning strategy for player 1. Player 2 will choose

x1 or X1, then player 1 chooses x2 or X2, etc. Call vertices which are chosen (before the

negation is chosen)fulse. As F is false, player 1 can choose the xts (i even) in such

a way that, whatever strategy player 2 will use, there will be at least one clause with

only false variables, say clause ciO. Now, after the moment that one vertex of each pair

xi,% has been visited, player 2 will visit ri or r2. Then player 1 goes to cio. Player

2 must go either to t, or to another Ci. In the latter case, player 1 moves to t. Now from

t all vertices xi,Xi that have not yet been visited will be visited, then the vertex in

{Y~,Y~} that has not yet been visited, and then all unvisited vertices ci. So, player

1 wins the game, as all vertices will eventually be visited.

Suppose F is true. Now player 2 can force that at the first moment a vertex Cio is

visited, each clause contains at least one literal, corresponding to a vertex that is not

already visited. Player 1 has moved to ci,, and then player 2 moves to such a vertex Xi

or Xi. Now all yet unvisited vertices Xj,Xj with j>i are visited, then the remaining

vertex in {ri, r,}, and then a player moves to a vertex ci. If player 2 now may move, he

moves to t. If player 1 now may move, and moves to another ci, then player 2 moves

from this ci to t. Now the game will stop before all vertices ci have been visited. (At

most 3 ci’s are visited and m>4.) So, player 2 wins the game. 0

As the construction of G can be done in logarithmic working space, Theorem 3.6

follows.

Theorem 3.6. HAMILTONIANCIRCUITCONSTRUCTIONGAME with speci$ed starting vertex is

PSPACE-complete.

Proof. Use the construction of Theorem 3.4, but add an edge from each ci to s. 0

Theorem 3.7. HAMILTONIAN PATH CONSTRUCTION GAME without specified starting vertex

is PSPACE-complete.

Proof. Look at the proof of Theorem 3.4. Note that player 1 must start in s, because

indegree = 0. 0

Theorem 3.8. HAMILTONIANCIRCUITCONSTRUCTIONGAME without speci$ed starting ver-

tex is PSPACE-complete.

Proof. Use the construction of Theorem 3.6 (i.e., with an edge from each Ci to s). If

player 1 starts at s or t, then the game is as with specified starting vertex s. If player

1 starts at a vertex xi, Xi, or ri, the player 2 can win if m > 5: he always moves to s or

t when possible. At least one vertex ci now will be unvisited at the end of the game. If

player 1 starts at a vertex cj, then player 2 directly moves to a vertex Xi or Xi.

Complexity of path-jirming games 225

Hereafter, he moves always to s or t when possible. Now, if m36, then at least one

vertex ci will be unvisited at the end of the game. 0

Corollary 3.9. SIMPLE PATH CONSTRUCTION GAME with or without specijed starting vertex

is PSPACE-complete.

Theorem 3.10. SIMPLE PATH CONSTRUCTION GAME with specijied starting vertex is

PSPACE-complete for undirected graphs.

Proof. Clearly, the problem is in PSPACE. We use again a transformation of

QUANTIFIED 3.SATISFIABILITY to prove PSPACE-hardness. Let an instance of Q-~-SAT,

be given; F, is a boolean formula in conjunctive normal form. Without loss of

generality, assume that n is even. Let C= {cl, . . . , c,} be the set of clauses in F,.

Assume that VXi: 3c~C: XiEc; 3c~C: XiEC. Let G=(V, E) be the following graph:

V={Vi(1 di<n)

u{xiI 1 <idn}u{.Tij 1 <i<n}

U{yil 1 <iin}u{jiI 1 <i<nJ

U{Wij 1 di<n}U(Zi) 1 <i<n}

u{ci/ 1 <i,<m}

u{dijk) 1 <i<m, 1 ,<j<3, 1 ,<k<K},

E= ((Vi,Xi),(Vi, Xi), (Xi,yi)> (Xi, yi), (yi, wi), (yi, wi) 1 1 didn, i odd}

u{(vi~Yi),(~i,Yi)~(Yi~xi)~(yi,Xi),(Xi~Wi)~(Yi~Wi)/ ldi,<n, i even}

u{(Wi3Zi)I 1 ,<idn}

u{(zi~vi+l)(1 di<n}

u{(Zn2Ci)l 1 Gidm}

u{(Ci>dijl)I Ididm, I<j<3}

u{(dijk>dij(k+l))) 1 di<m, 1 <j,<3, 1 ,<kbK}

u((dijl, I) 11 is the jth literal appearing in clause ci},

where K = 5n + 8 (see Fig. 4). The starting vertex is vl.

Claim 3.11. F is true ij’ and only if player 1 can force a path with length 3 K.

226 H.L. Bodlaender

m3K

Fig. 4.

Proof. Note that the resulting path will have length 2 K if and only if a “long branch”

dijidijz. ..dijK is used. (Every other path in G has length <K.) Next note that that

player who must move from a vertex Wi must move to Zi or lose the game: if player 1

must move from Wi, then i is even. If he moves to xi or Xi, then player 2 moves to y, or

j2, and the game ends with a path shorter than K. If player 2 must move from

Wi, then i is odd. If he moves to yi or ji, then player 1 moves to Xi or Xi; player 2 then

must move to a vertex diji, and then player 1 moves to dij2 and forces a path with

length 2K.

C0mplerit.v ofpatk-f&winy games 227

The proof proceeds with arguments which are similar to arguments used before. Let

a used xi or Xi correspond with true. Player 1 tries to have in each clause a literal I, with

the corresponding vertex 1 is being visited when the path reaches z,. He succeeds if and

only if the formula is true. Player 2 must move from z,. He will move, if possible, to

a unsatisfied clause, i.e., each literal in the clause is unvisited. Player 1 will move to

a vertex dijl. If the corresponding literal in the clause is true (visited), then player

2 must move to dijl, and the resulting path has length > K. Otherwise, player 2 can

move to that literal vertex, and the resulting path has length <K. 0

We have obtained a log-space transformation from QUANTIFIED 3-SATISFIABILITY to

SIMPLE PATH CONSTRUCTION GAME for undirected graphs. Hence, the latter is PSPACE-

complete.

Theorem 3.12. SIMPLE PATH CONSTRUCTION GAME without specified starting vertex is

PSPACE-complete for undirected graphs.

Proof. To prove PSPACE-hardness, we use a transformation from the case with

specified starting vertex. Let an instance G = (V, E), SE V, K E N + of the latter problem

be given. Let G’ =(V’, E’) be defined as follows (see Fig. 5):

V’= Vujri) 161’62.1 Vj+2}

u{qiI 1 bidK+2}u(y},

Claim 3.13. Player 1 can force a path with length 2 K + 2 1 VI + 2 on G’ with no specljied

starting vertex ifand only (f player 1 can force a path with length 3 K on G with starting

vertex s.

Proof. cr: Player 1 starts at rl. When player 2 must move eventually from rzIvI + 1, he

can go to q1 (in which case the resulting path has the required length), or go to rzlvl +-2.

In the latter case, player 1 now can use the strategy for the game on G with starting

vertex s.

*: We consider several cases for the start of player 1 on G’.

Case 1. Player 1 starts at a vertex qi: Then he will lose: either the path ends at

qK+2 (with length< K +2), or a player moves to rzIvl + 1. If player 1 moves from

r21vl+I to r21vI, player 2 moves to y and wins. If any player moves from rzIvI+ 1 to

r21vl + 2, the resulting path will have length <K + 4 + I VI.

228 H.L. Bodlaender

Fig. 5.

Case 2. Player 1 starts at a vertex ri, if 1: If i is odd, player 2 will eventually move

to ql; if i is even, then player 2 will eventually move to y. In both cases, the resulting

path has length <K + 2 1 VI.

Case 3. Player 1 starts at y: No matter what strategy is used by either player, the

resulting path will have length 621 VI + 1.

Case 4. Player 1 starts at a vertex VE V: After at most 1 VI moves, a player will move

to rzlVl + 2, or the resulting path has length < I VI. Player 2 uses the strategy to move to

q1 or y if possible. The resulting path will have length d I VI + 2 + K + 2.

Case 5. Player 1 starts at rl: If player 2 moves from rzlVl+ 1 to ql, then player

1 succeeds. If player 2 moves from rzIVI + 1 to rzlVl + 2, then player 1 succeeds exactly if

he can force a path with length K in G with starting vertex s. 0

Again, this transformation can be done in logarithmic working space.

Theorem 3.14. ELEMENTARY PATH CONSTRUCTION GAME (with specified starting vertex) is

PSPACE-complete.

Proof. The proof is similar to the proof of Theorem 3.10. A variable xi with i odd is

replaced by the construction of Fig. 6a, and a variable with i even will be replaced by

Comp/e.xity of path-forming games 229

"i I

x. i I

I-
._...o

di
‘.*
‘.*

to "clause-vertices"

ai+l

(a)

.o

ei R cb)

ai+l

Fig. 6

the construction of Fig. 6b. In the “first pass”, players will move from Ui to di and from

di t0 Ui+l. Player 2 will never take a “side-branch”, because then he loses the game.

Player 1 will never move from di to .Xi or Xi, because then player 2 will move such that

the game stops after 8 or 9 moves in Ui. An unvisited Xi corresponds to true. Player

1 can move to a vertex on a branch before an unvisited Xi if and only if the formula is

true. If xi is visited, then player 2 moves from the vertex on the branch to Xi, and the

game stops. Otherwise, player 1 can move such that he can go from ci to the branch

with length K, attached to ci. We omit the details. 0

Theorem 3.15. ELEMENTARY PATH CONSTRUCTION GAME without speci$ed starting vertex

is PSPACE-complete.

Proof. This follows with a construction similar to the construction in the proof of

Theorem 3.12. 0

We end this section with a small comment on the standard VERTEX and EDGE

GENERALIZEDGEOGRAPHYGAMES. Clearly, when we restrict OUrselVeS t0 acyclic graphs,

230 H.L. Bodlaender

then the problems are easy to resolve in 0(n + e) time. However, the proof in [35,43]

for the PSPACE-completeness of VERTEX or EDGE GENERALIZED GEOGRAPHY can easily

be modified, such that we have PSPACE-completeness for the problems on graphs

obtained by adding one edge to an acyclic graph.

4. Polynomial-time algorithms for path-forming games on special classes of graphs

In this section we give polynomial-time algorithms for several of the considered

games on special classes of graphs. In Section 4.1 we give linear algorithms for some of

the games on graphs with bounded treewidth, based on an intricate characterization

of subgraphs, and dynamic programming. In Section 4.2 we show how graph rewrit-

ing can be employed to solve some problems on cacti.

Notethateachofthefourproblems VERTEXGENERALIZEDGEOGRAPHY,EDGEGENERAL-

IZED GEOGRAPHY.HAMILTONIAN PATH CONSTRUCTION GAME, and HAMILTONIAN CIRCUIT

CONSTRUCTION GAME can be easily solved in &(n + e) time when restricted to directed

acyclic graphs. See also [27].

4.1. Linear-time algorithms for some games on graphs with bounded treewidth

In this section we show how VERTEX GENERALIZED GEOGRAPHY,HAMILTONIAN PATH

CONSTRUCTIONGAME, and HAMILTONIAN CIRCUITCONSTRUCTION GAME can be solved in

linear time on graphs with a fixed upper bound k on the treewidth. We first consider

VERTEXGENERALIZEDGEOGRAPHY.

Let in the remainder of this section k be a constant. We will assume that input

graphs G = (V, E) are given with a tree decomposition ({Xi 1 iEZ }, T= (I, F)) of G with

treewidth <k. If not, then such a tree decomposition can be found (if it exists) in

O(n log n) time [17,381. For k = 1,2,3, the tree decomposition can be found in linear

time [7,36]. Other algorithms for this problem can be found in [4,14,31,39].

It is not difficult to see that one may assume that the tree Tin the tree decompo-

sition is binary (e.g. use the transformation used in [15]). In the remainder we assume

that we have a tree decomposition ({Xi 1 iEl}, T=(Z,F)) of G =(V, E) with treewidth

<k, and T a binary tree. We also suppose that there exists an iOcZ, with Xio= {s}.

(Take an arbitrary iEZ, with S~Xi. Add a branch (i, iO) to T, with Xi, = {s}. A correct

tree decomposition results. Now apply the technique to make T a binary tree.) iO is

taken as root of T.

Our algorithm is based on dynamic programming. The idea is the following: for

each iel, the algorithm will compute a “table” containing the information

charac(Xi, Y,), where Yi = jueXj 1 j is a descendant of i} -Xi. These tables can be

computed from the tables of the children in Lo(l) time each. From

charac(Xi,, Yi,)=charac({s}, V- {s}) the answer to the problem can be determined

quickly.

The characteristic of a pair (X, W) is in terms of “subgames”: games that start in

some vertex XEX, and are played as VERTEX GENERALIZED GEOGRAPHY on the graph

G[XuW], but with this difference: the game not only ends when a player cannot

make a move, but also ends when a player moves to a vertex YEX - {x}. Depending

upon this y and the characteristic of the subgraph induced by the unvisited vertices in

Xu W, this player wins or loses this subgame. The characteristic of (X, W) basically

denotes, for each possible subgame, which player has a winning strategy.

We now give a more precise, inductive definition of charac(X, W), for X, WS V,

Xn II’=@. charac(X, W) is defined inductively on 1x1.

For this inductive definition, we need the following notation: for sets X, C(X)

denotes the set of all possible values of charac(X, W) over all graphs G =(I’, E),

x, WS v, Xn w=8.

If X=8, then charac(X, W) is the empty string.

If IX/= 1, then charac(X, W) is a booleanE{true,false}, that denotes whether there

iS a Winning Strategy for player 2 for VERTEX GENERALIZED GEOGRAPHY played Oil

G[Xu W], the subgraph of G induced by Xu W, with starting vertex the unique

vertex xcX. The first move of player 1 is to move to x, i.e. player 2 is the first player

who actually can make a choice in the game (when the degree of x is larger than one.)

Now suppose IXI>2. We first must introduce some other notions. Let XEX.

Consider the following type of variant of VERTEXGENERALIZEDGEOGRAPHY: the game

ends when a player moves to a vertex VEX, or when a player cannot make a move. In

the former case, let W’ G W be the set of vertices in W not yet visited, and consider

charac(X - {x, y>, W’)EC(X - {x, y}). Let P(X, W, x, y) be the set of all pairs (p,c),

with PE { 1,2} denoting a player and CEC(X - {x, y }), such that there is a possible play

by players 1 and 2 in the above type of game, starting at x, where player p moves to y,

and c = charac(X - {x, y}, W’), with W’ the set of vertices in W that are not visited in

the game. Let P(X, W, x) be the set of all triples (p, c, y), with VEX-(x) and

(p, c)EP(X, W, x, y). We call such a triple (p,c,y) an outcome. A set RGP(X, W,x) is

called a set ofoutcomes. For each set of outcomes R c P(X, W, x), we now consider the

game VGG(X, W, x, R). This is a variant of VERTEX GENERALIZED GEOGRAPHY described

above, with the following properties: player 1 starts with a move from x to a vertex in

WuX. The game ends when a player cannot make a move from a vertex in Wp then

this player loses the game ~ or when a player j moves to a vertex VEX, where W’

is the set of vertices in W that are not visited. In this case, player 1 wins the game if and

only if (j, charac(X-{x,4 1, W’),y)cR. We say that the game has outcome

(j, charac(X - f (x, y}, W’), y). In other words, player 1 wins if player 2 loses by not

being able to move, or when the game ends with an outcome in the set of outcomes R.

We can now describe charac(X, W) for IXI>2. charac(X, W) is a pair (fi, fi),

where

l fi maps each pair (x,R), with RcU,,,_,,,{(p,c,4’)Ip~(1,2), CEC(X-{x,y})}, to

a boolean that is true if and only if RcP(X, W,x) and there is a winning strategy

for player 1 in the game VGG(X, W,x, R),

l .f2 maps each .ucX to charac(X - {x), W).

232 H.L. Bodlaender

Fig. 7.

(The case with [XI= 1 can be seen as a special case of the above definition.)

As an example, consider the graph G =(WuX, E), shown in Fig. 7. X = (xi, x2, x3},

W= {a, b, c, It, e,f}. Here P(X, W, x1, x2) = { (1, true), (2, false)}, because (xi, a, 6, c, x2)

is a play, where player 1 moves to x2, and the resulting graph (with vertices d,f; e, xj)

gives a winning strategy for player 2, and (x1, a, b, d, c, x2) is a play where player 2

moves to x2, and the resulting graph gives a winning strategy for player 1. Similarly,

P(X, W,x,,x3)={(l,true),(2,false)}. So, P(X, W, xi)= { (1, true 4, (2, false, x2),

(1, true, x3), (2, false, x3)}. For each subset R of P(X, W, x1), we can consider the game

VGG(X, W, x1, R). Consider R = ((1, true, x2), (2, false, x2)}. Player 1 will win the

game VGG(X, W, x1, R): player 2 must move from b. If he moves to d, player 1 moves

to c, and the game ends with situation (2,false,x,). Otherwise, player 1 moves from

c to x2 and the game ends with situation (1, true, x2). As these are in R, player 1 wins.

So,fl in charac(X, W) hasf,(x,, R) = true. In total,f, can be specified here with 3. 24

bits plus the space to write down all three sets P(W, X,xi).f2 contains the information

charac(X - {x1}, W), charac(X - {x2}, W) and charac(X - {x3}, W).

Note that if IX/ is bounded by some constant c, then the number of bits needed to

denote charac(X, W) is also bounded by some constant c’. If Sr denotes this number

for lXl=I, then S161.2”-‘)sf-2+1.S~_1.

For ill, let Vi= {U~Xj lj is a descendant of i in T}-Xi. Our algorithm is based on

computing charac(Xi, Yi) for all iel.

Lemma 4.1. Let iel be a leaf of T. Then Yi=8, and charac(Xi, Yi) can be computed in

G(l) time.

Proof. Clearly, Yi=~. Note that IXJ<k+ 1 =c(l). 0

Lemma 4.2. There is a winning strategy for player 1 for VERTEX GENERALIZED GEO-

GRAPHY if and only if charac(Xi,,, Yi,)=false.

Proof. charac(Xi,, Y,,) = charac((s}, V- (s}) d enotes whether there is a winning

strategy for player 2 for VERTEX GENERALIZED GEOGRAPHY played on

G[{sju(V-{s})]=G with starting vertex s. q

Complexity of path-forminy yames 233

Lemma 4.3. Let ill be an internal node of T, and letjl andjz be the two children of i.

Let charac(Xj,, Yjl), charac(Xj,, Yj,) be given. Then charac(Xi, Yi) can be computed

in 8(l) time.

Proof. We will show how, for all XEXi and all RGP(X,, Yi,x), we can determine

which player has a winning strategy in the game VGG(Xi, Yi,x, R). We model all

possible (optimal) plays in this game by a rooted labeled tree, as described below.

Nodes in this tree are of two types. The nodes of the first type are labeled with

6-tuples of the form (v, p, Z1, Z,, cl, c2), where u is a vertex in Xj,UXj2UXi, p denotes

a player (pE{L2}), cl is a characteristic in UYEX,, C(Y), and c2 is a characteristic in

UK& C(Y).
The tuple (a, p, Z1, Z2. c1 , c2) represents an (equivalence) class of positions during

the game. Each of these positions is of the following type: The player 3-p just has

moved to a vertex v; hence, player p must now move to an unvisited vertex adjacent to

u. Z1 is the set of unvisited vertices in Xj, . If W1 is the set of unvisited vertices in Yj,,

then c1 = charac(Z,, W,). Z, and c2 are defined similarly using Xj, and Yj,.

Nodes of the second type are labeled with 6-tuples of the form (c(, p’, R’, Z;, Z;, c),

with a~(1,2} denoting either the left or the right child of i in T, p’~{ 1,2} denoting

a player. The father of a node with such a label will be a node of type one. If this father

has the label (u, p, Z1, Z,, ci, c2), then VEZ~, R’cP(Z,, W,, u) and there is a winning

strategy for player 2 in the game VGG(Z,, W,, v, R’) for W,, with charac(Z,, Wa)=ca.

(Alternatively, one can take W, to be the set of unvisited vertices in Y,,.) Further,

Z; =Z1 -{u} is the set of unvisited vertices in Xj, and Z; =Z2- {u} is the set of

unvisited vertices in Xj,. c=charac(Z$_., W3 -.), with W3_a the set of unvisited

vertices in Yj, _~. Nodes of this second type represent a certain subgame, described in

more detail below.

Call a node labeled (u, p, . . .) or (r, p, . .) a player p node. The children of a player

p node denote the situations where player p can move to from the situation repres-

ented by the player p node. These situations can either be a position in the game, or

player p can decide to play a “subgame”.

From a position in the game, represented by a node of type one labeled with

(v,p,Z, ,Z2,cl,c2), player p has the following possibilities: he can move either to

a vertex WEX~- {x} -Xj, - Xj,, with (u, W)EE (this vertex w cannot be visited earlier),

or to an unvisited vertex in Z, - {v} u Yj, , or to an unvisited vertex in Z2 - {v} u Yj,. In

the second and third cases, players will visit zero or more vertices in Yj, (Yj,), and then

a vertex in Z1 (Z,), or the game will halt because a player cannot move anymore.

These situations can be represented by subgames of the VGG-type. Let W, denote the

unvisited vertices in Yi, (c(= 1,2). The game that represents the situation is a game

VGG(Z,, W,, U, R’), with R’G P(Z,, Yix, c). Note that player p acts as player 2 in such

a subgame. If VGG(Z,, W,, u, P(Z,, Yi,)) is winning for player 2, then in this subgame,

player 2 has a strategy that wins without reaching an outcome, i.e., player 1 loses by

being unable to move. In this case, player p, who acts as player 2 in the subgame, has

a winning strategy. If VGG(Z,, W,, c’, Cp)) is winning for player 1, then player 1 can win

234 H.L. Bodlaender

the subgame without reaching an outcome. In this case, player p will lose when he

moves to a vertex in Z,uYi_. In general, player p can decide to play a subgame

VGG(Z,, W,, c’, R’) with R’ chosen such that this subgame is winning for player 2. In

this way, he can force that this subgame ends with an outcome in R’. When player

p decides to play this subgame, player 3 - p can choose an outcome from R’ (if R’ # @),

and force that this outcome is the actual outcome of the subgame. (If p = 1, the roles of

players 1 and 2 get switched.)

We remark that it is not necessary to know W, and W2: at all times, all relevant

information of these sets is contained in the characteristics.

Now we describe how the tree T is built. The root of this tree is a node of type one,

with label (x, 2, Xj,, Xj,, charac(Xj,, Yj,), charac(Xj,, Yj,)). This tuple indeed repres-

ents the situation as it is in the beginning of the game VGG(Xi, Yi, x, R).
A node of type one, labeled with (v,p,Z1,Z2,c1,c2), with V~Xi-{x}, has no

children. This is so because, when such a vertex u is reached, the game has ended.

A node of type one, labeled with (u,p,Z1,Z2,c1,c2), with V~Xi-{x}, has the

following children. (Note that the three cases represent the three different possibilities

for player p, described above.)

(1) For all WEXi-Xjl -Xj2-{x}, with (0, w)EE, take a child node of type one,

labeled with (w, 3 -p, Z1 - {II}, Z2 - { v , c’, , c;). If VEZ~, then suppose ci =(fr ,fi), and }
take c; =fi(o). If z;$Z,, then take c; =cr. We have that if c1 =charac(Z,, W,), then

c; =charac(Z, -iv}, W,). Define c; in the same way.

(2) If VEZ, then, for any R’, with c1 =(fi,f2) and fi (v, R’) =false (i.e., there is

a winning strategy for player 2 in the subgame VGG(Zi, WI, v, R)), take a child node

of type two, labeled with (1,3-p,R’,Z1 -(vj,Z2-{v},c). Suppose c2=(g1,g2). Take

if vEZz, c=gz(v), and if v$Z2, take c=c2. This case represents the decision of player

p to play the subgame VGG(Zi, WI, c, R’).

(3) If vEZ2, we take in a similar way as in the previous case child nodes of type two,

labeled with (2,3-p,R’,Z,-{c},Z,-{ },), h v c w ere c is derived from c1 similar as

above.

Next we describe the children of nodes of type two, labeled with (c(, p, R’, Z1, Z2, c).
We suppose that c(= 1. The case g = 2 is similar. Take, for every (4, c’, z)ER’, a child

node of type one, labeled with (z, 3 -q, Z1 , Z2, c’,c) if p= 1, and labeled with

(z, q, Z1, Z2, c’, c) if p = 2. When the outcome of the subgame VGG(Z,, WI, v, R’) is

(q, c’, z), then in this subgame, player q moves to z, leaving a graph with characteristic

c. As player p has the role of player 1 in this subgame, it follows that if p = 1, then in the

game VGG(Xi, Yi, v, R) player q moves to z and, hence, player 3 -q must move from

z. If p=2, then in the game VGG(Xi, Yi, v,R), player 3-q moves to z; hence, player

q must move from z. If Wi is the set of unvisited vertices in Yj~ after the move to vertex

z, then we have that c=charac(Z,, W;) and c’=charac(Z,, W;), as W2= W; and by

choice of outcome.

We now show how to compute for which player there is a winning strategy in

VGG(Xi, Yi,x, R). For each tree node, we determine whether it is winningforplayer 1,
or winningfor player 2. This is done bottom up in the tree T, starting at leaf nodes. The

Complruity c$path:fivminy games 235

game VGG(Xi, Yi, x, R) is winning for player 1 if and only if the root node of T is

winning for player 1.

For leaf nodes, there are two cases:

(1) A player p node that is a leaf of T and of type two, or of type one of the form

(c’,p, . ..). with v~Xi-{x), is losing for player p and, hence, winning for player 3-p.

(Player p must move, as the game has not ended yet, but has no winning move

available.)

(2) For player p nodes that are a leaf of T and of type one, of the form

(~j,p, Z,, Z2, cl, cz), with tl~Xi, one can determine in the following way whether this

node is winning for player 1 or player 2. The characteristic charac(Xi - {x, u}, U), with

U the set of unvisited vertices in Yj, u Yj,, is uniquely determined. It is an element of

C(Xi, {x, r}), and can be determined recursively with the procedure described in this

proof. Now we have instead of Xi the set Xi - {x, u}, which is of smaller size. Hence,

recursion depth is O(k). Instead Of Xj, and Xj,, we have sets Z1 and Z2, and instead of

charac(Xj,, Yj,) and charac(Xj,) and charac(Yj2), we have ci and c2 here. Suppose the

computed characteristic is c = charac(Xi - {u, v}, U). It follows that the outcome

corresponding to the leaf node is (v, 3 --p, c). (As player p must move from v, player

3 -p has moved to t..) Hence, the node is winning for player one if this outcome is in

the set of outcomes R, i.e., (c, 3 -p,c)~R.

An internal player p node is winning for player p if and only if at least one child of

the node is winning for player p. (p player p can choose a situation, represented by one

of the children of the node. He can win if he can choose such a situation that is

winning for him.)

In this way, one can determine whether the root of the tree is winning for player 1,

i.e., whether there is a winning strategy for player 1 in VGG(Xi, Yi,x,R).

All information needed for charac(Xi, Yi) can be determined in this way. As only

charac(Xj,), charac(Xj,), and the structure of Xi, Xj,, Xj, and edges between these

vertices are consulted, the procedure uses constant time. 0

Now we are able to derive the main result of this subsection. Note that in the

Lf-notation, a large constant factor depending on k is hidden.

Theorem 4.4. For every constant k 3 1, VERTEX GENERALIZED GEOGRAPHY (with specijed

starting vertex) can be solced in C (n) time,for graphs G = (V, E) with treewidth <k, that

are given together with a tree decomposition with treewidth <k.

Proof. Compute, for every iEl, charac(Xi, Yi). This is done by starting at leaf nodes

(Lemma 4.1) and then repeatedly computing charac(Xi, Yi) when this has been

computed for both children of i (Lemma 4.3). When charac(Xi,, YiO) has been deter-

mined, the answer to the problem can be given (Lemma 4.2). As per node ill, only

constant time is used; this takes in total c(lZl)=fl(n) time. 0

236 H.L. Bodlaender

Note that the constant factor in the algorithm grows very fast with k. The following

bound is known on the number of bits Si needed to denote charac(X, IV), with 1 WI = I:

Sl d 1.2”- 1)s1m2 + 1. Sl_ 1. One can observe that the time to compute one value of

charac(Xi, IV,), when these values are known for the children of node iEZ, is poly-

nomial in the number of bits in these charac-strings and, hence, polynomial in Sk+ i.

So, adding 2 to k gives one extra level of exponentiation in the constant factor hidden

in the L”-notation, i.e., the constant factor grows faster than exponentially in k. Thus,

our algorithm will only be practical for very small values of k, probably only for

k= 1,2,3. However, a technique is known to optimize algorithms that work on tree

decompositions. This technique, which basically is a tree variant of the well known

Myhill-Nerode result on finite-state automata, is advocated, among others by

Fellows and Langston [23] (see also [9]). It would carry too far to explain here more

about this method. We expect that with the help of this MyhilllNerode technique, it is

possible to construct practical algorithms for several small values of k. On the other

hand, it may be true that a constant factor that is superexponential in k is unavoid-

able. Algorithms that solve in linear time problems which are NP-complete for

arbitrary graphs on tree decompositions with treewidth at most a constant k have

a constant factor that is exponential in k. It is not surprising when similar algorithms

for PSPACE-complete problems are more complicated and much slower.

The algorithm can be modified in order to obtain similar results for related games.

Note that, for each of the algorithms mentioned below in this subsection, the same

comments about the constant factor hidden in the ‘0’ notation apply as for the

algorithm of Theorem 4.4.

Theorem 4.5. For every constant k 3 1, VERTEX GENERALIZED GEOGRAPHY without speci-

fied starting vertex can be solved in O(n) time for graphs G =(V, E) with treewidth < k,

that are given together with a tree decomposition with treewidth < k.

Proof. VERTEX-GENERALIZED GEOGRAPHY without starting vertex on G=(V, E) is

equivalent to VERTEX GENERALIZED GEOGRAPHY On G’=(Vu{v+,V++},

Eu{(~+,v++)}u{(~++, w) 1 WE V}) with starting vertex vf. It is easy to make a tree

decomposition of G’ with treewidth <k + 1, given the tree decomposition of G. 0

Theorem 4.6. For every constant k3 1, HAMILTONIAN CIRCUITCONSTRUCTIONGAME and

HAMILTONIAN PATH CONSTRUCTION GAME can be solved in O(n) time for graphs G = (V, E)

with treewidth d k, that are given together with a tree decomposition with treewidth <k.

Proof. This is done with a method similar to VERTEX GENERALIZED GEOGRAPHY. Basi-

cally, one must change the charac-functions a little, and incorporate in functions

charac(Xi, B’i) whether Wi=8. We omit the details. 0

It is not clear whether the other problems that are considered in this paper can be

solved in polynomial time on graphs with bounded treewidth. For the SIMPLECELEMEN-

TARY) PATH CONSTRUCTION GAME, it seems that incorporating the length of the paths in

Complexity o~“ppath-Jbrming games 231

the characteristics will give rise to characteristics of non-polynomial size. For EDGE

GENERALIZED GEOMETRY, the size of the characteristics in our type of scheme becomes

exponential, because a vertex u can be visited O(degree(u)) times, which can be linear.

This problem disappears when we assume a fixed upper bound on the degree of the

vertices. We use the following lemma.

Lemma 4.1. Let G = (V, E) be a graph with treewidth <k and maximum vertex degree

<d. Then the treewidth of the edge graph of G is at most (k+ 1)d - 1.

Proof. Consider a tree decomposition ({Xi 1 iel}, T=(I, F)) of G with treewidth d k.

Take Yi = {(u, W)E E (U~Xi V WEX~ 1. For every pair of edges (v, w), (w, x)EE, note that

3: (II, w), (w, X)E Yi, namely, take icl, with W~Xi. Also note that the set of nodes iEI,
with (u,w)~Yi, is the union of the subtree of T {iElI VEX~} and the subtree of

T {iElI w~Xi}. As 3i: G’, weXi, these subtrees are not disjoint; hence, their union is

a connected subtree of T. It follows that (1 Yi 1 ill}, T=(I, F)) is a tree decomposition

of the edge graph of G. Clearly, Qiel: (Yi(dd.IXild(k+ I)d. 0

Theorem 4.8. For every constant k 3 1, d 3 1: EDGE GENERALIZED GEOGRAPHY can be
solved in O(n) time for graphs G = (V, E) with treewidth <k and maximum vertex degree

<d, that are given together with a tree decomposition with treewidth <k.

Proof. EDGE GENERALIZED GEOGRAPHY on G with starting vertex L’ is equivalent to

VERTEXGENERALIZEDGEOGRAPHY on the edge graph of G, with starting vertex one of the

<d vertices that correspond to an edge with head II. Now use Lemma 4.7 and

Theorem 4.4. 0

Clearly, Theorems 4.6 and 4.8 hold also for the case without specified starting

vertex. We now consider an application to QUANTIFIED SATISFIABILITY.

Definition. Let F = Q 1 x1 Q2 x2 . Q,,x, E be a well-formed quantified boolean expres-

sion, where each Qi is either V or 3, and E is a boolean expression in conjunctive

normal form. The graph GF is defined as follows: GF=((x1,. . ., x,}, EF), with

E,={(xi,xi+r)lf <i < n>u{ (Xi, xj) 1 there exists a clause c in expression E that con-

tains a literal xi or Xi, and that contains a literal Xj or K}.

Corollary 4.9. One can decide in 0(n) time whether a formula F of the form described
aboz;e is true, when the treewidth of GF is bounded by a constant k, and E is given with

a tree decomposition of G, with treewidth <k.

Proof. Consider the transformation from QUANTIFIED MATISFIABILITY to VERTEX GENER-

ALIZED GEOGRAPHY, given in [35]. It is not hard to see that if GF has treewidth Q k, then

the treewidth of the graph resulting from this transformation has treewidth C(k), and

238 H.L. Bodlarnder

that the corresponding tree decomposition can be constructed from the tree decompo-

sition of GF in C(n) time. Then apply Theorem 4.4. 0

In all cases, if the required tree decomposition is not given, it can be found (if it

exists) in C(nlogn) time [38]. It is also possible to find parallel algorithms that use

polylogarithmic time for the considered problems on graphs with bounded treewidth.

Theorem 4.10. For every constant k>, 1, VERTEXGENERALIZEDGEOGRAPHY,EDGEGENER-

ALIZED GEOGRAPHY restricted to graphs with maximum degreead (d constant), HAMIL-

TONIANCIRCUITCONSTRUCTION GAME, HAMILTONIAN PATH CONSTRUCTIONGAME when re-

stricted to graphs with treewidth 6 k belong to the class NC.

Proof. This follows directly from the algorithms and the fact that a suitable tree

decomposition with T a tree of logarithmic depth can be found in polylogarithmic

time on a (CRCW or EREW) PRAM [12,31]. 0

A similar type of result holds for QUANTIFIED SATISFIABILITY. Lengauer [33,34]

introduced a method for hierarchical description of graphs. With this method, it is

possible to specify graphs that have a size exponential in the size of the specification.

Theorem 4.11. For each constant k> 1, VERTEXGENERALIZEDGEOGRAPHY,HAMILTONIAN

PATHCONSTRUCTIONGAME and HAMILTONIANCIRCUITCONSTRUCTIONGAME for hierarchi-

cal graphs, where each cell contains at most k vertices, can be solved in time linear in the

size of the spec$cation.

Proof. Use a method similar to the method for graphs with bounded treewidth. For

each cell Gi, we compute charac(Vi, Xi), where Vi are the vertices in cell Gi and Xi is

the set of all other vertices in the expansion of Gi. We omit the details. 0

Note the huge savings in running time over the straightforward algorithm to first

expand the graph, and then use backtracking: the latter algorithm can use time double

exponential in the size of the specification.

4.2. EDGEGENERALIZEDGEOGRAPHY on cacti

In this section we give a linear-time algorithm for EDGE GENERALIZED GEOGRAPHY on

cacti, based on graph rewriting. The resulting algorithm is easier and more practical

than the algorithm for EDGE GENERALIZED GEOGRAPHY on graphs with bounded

treewidth and degree. Also, we do not need to restrict the degree of the graphs here,

but, on the other hand, the class of cacti is much more limited than that of the graphs

with treewidth 62.

We will use the following notations: (G,s) denotes the game (instance), where the

EDGE GENERALIZED GEOGRAPHY game is played on the graph G with starting vertex s.

Complexity ofpath-Jorminy games 239

We will allow for parallel edges and self-loops in the undirected graphs that we are

dealing with. Write (G, s)=(H, t) if and only if there is a winning strategy for player

1 in (G, s) o there is a winning strategy for player 1 in (H, t).

Lemma 4.12. Let G=(V, E) be an undirected graph. Let s, UE V, degree(v)= 1, (u, w)&,

ufs, w#s. Let G-{v,w} denote the graph (V-{u,w},E-{(x,y)~E(x=u V x=w}).

Then (G,s)=(G-{v,w),s).

Proof. We show the construction in Fig. 8. Suppose player j~(l, 2) has a winning

strategy in (G - {u, w}, s). Then he has a winning strategy in (G, s): as long as player 3 -j

does not move to w, make the same moves as in (G-{u, w}, s). When player 3 -j

moves to w, then move to v and win the game. Now the lemma follows. 0

Lemma 4.13. Let G=(V, E) be an undirected graph. Let (u, w)EE; degree(v)=de-
gree(w) = 2; and s${u, w}. Let the neighbors of c be w and x, and the neighbors of w be

v and y. Let G’=(V-{v,w},E--{(x,v),(v,w),(w,y)}u{(x,y)}). Then (G,s)=(G’,s).

Proof. The construction is shown in Fig. 9. The game on both graphs is similar: e.g.,

when player i moves from x to y in G’, this corresponds to the situation that player

i moves from x to V, then player 3 -i moves from v to w, and then player i moves from

w to y in G. 0

Lemma 4.14. Let G =(V, E) be a directed graph. Let VE V; degree(v)=2; and suppose

both edges adjacent to u have the same other endpoint w. Suppose v#s. Let
G-{v}=G[V-{u}]. Then (G,s)=(G-{v),s).

Fig. 8.

Fig. 9.

240 H.L. Bodlaender

Fig. 10.

Fig. 11.

c2 --K-
Fig. 12.

Proof. The construction is shown in Fig. 10. If there exists a winning strategy in

(G- {v}, s) for player Jo{ 1,2), then there exists one in (G, s): move as in (G- {u}, s),

except when player 3 -j moves to v, then move back to w. 0

Lemma 4.15. Let G=(V, E) be an undirected graph. Let VE V be adjacent to two

self-loops e, =(u,u) and e2 =(v,u) (el #ez). Then (G,s)=(G’,s) with, G’=(V, E- {e,,e,}).

Proof. Similar as before. When player 3 -j moves over e, or ez, then player j moves

over the other edge in {el,et} (see Fig. 11 for the construction). 0

Lemm 4.16. Let G=(V, E) be an undirected graph. Let VE V. Suppose v is adjacent to

exactly 3 edges, where exactly one of these is a self-loop, and suppose v #s. Let G - {v}

be as above. Then (G, s) = (G - {v}, s).

Proof. Suppose there is a winning strategy for player jE{1,2} in (G-(u},s). Then

there is a winning strategy for player j in (G, s). As long as player 3 -j does not move to

v, player j moves as in (G- (u},s). Suppose player 3-j moves to u. Let e, be the

self-loop (u, v), and let e2 be the other unused edge, adjacent to u (see Fig. 12). Moving

241

Fig. 13.

Fig. 14.

over edge e2 is either a winning or a losing move, regardless of what player makes the

move. So, if it is a winning move, playerj moves over e2, and if it is a losing move, then

player j moves over e,, and player 3-j must move over e, and loses the game (see

Fig. 13 for the construction). 0

Lemma 4.17. Let G=(V, E) be an undirected graph. Let VE V; suppose v is adjacent to
exactly 2 edges, one of which is a self-loop. Let (v, w)~ E, v # w be the other edge. Suppose

vfs. Then (G,s)z(G-(~3,s).

Proof. Similar as before. Playerj plays in G as in G - {v}, but when player 3 -j moves

to v from w, then playerj moves over the self-loop and wins the game (see Fig. 14 for

the construction). 0

Lemma 4.18. After applying the rules ofLemmas 4.12-4.17 as often as possible, starting
with (G, s), with G a connected cactus, a game (H,s) will result, with H =({s},@),

H=({s},{(s,s)}) or H=({s,v},{(s,v)})_for some v.

Proof. (See Fig. 15 for the possibilities for H.) Each application of one of Lemmas

4.12-4.17 will result in another, smaller cactus. Note that the biconnected components

of G form a tree. Every leaf node in this tree that corresponds to a single edge or

a cycle with even length will disappear with Lemma 4.12, 4.13 and 4.14. Every leaf

node corresponding to a cycle with odd length will reduce to a self-loop. Suppose no

application of one of Lemmas 4.12-4.16 is possible. The resulting graph H cannot

have more than one biconnected component. Suppose not. Look at a biconnected

242 H.L. Bodlaender

Fig. 15

component that is a leaf in the tree of biconnected components if we do not look to

self-loops. If it is a cycle, and some vertices (# the unique vertex adjacent to other

biconnected components) have self-loops, then Lemma 4.15 or 4.16 can be applied. If

it is a cycle without such self-loops, it can be reduced to nothing or a self-loop. If it is

a single edge, then Lemma 4.12,4.15 or 4.17 can be applied. With a similar argument,

H cannot have a single biconnected component with three or more vertices. So, H has

at most 2 vertices. Simple case analysis gives the theorem. 0

Theorem 4.19. EDGE GENERALIZED GEOGRAPHY can be solved in C(n) time on cacti.

Proof. First we remark that we may restrict ourselves to connected graphs. Cacti have

fi(n) edges. It remains to show that by proper choice of data structures, we can

dynamically determine where one of Lemmas 4.12-4.17 can be applied, in O(1)

amortized time per operation. Hereto, we use for each vertex an integer variable, that

denotes the current degree of the veretex, and a boolean variable, that denotes

whether it has an adjacent self-loop. (We may assume, by Lemma 4.15, that each

vertex has 0 or 1 adjacent self-loops.) In a queue Q we put each vertex, where one of

Lemmas 4.12-4.14,4.16 and 4.17 can be applied. Repeatedly, a vertex is taken from Q;

if the vertex has not been deleted already by an earlier operation, the operation

corresponding to v is applied. For each removed edge, its still existing endpoints have

their degree updated, and are possibly put in Q, and some other checks are made

(depending upon the particular operation), possibly resulting in the setting of a “self-

loop boolean”, or putting one or more vertices in Q. We omit the easy, but tedious,

details. Finally, if the resulting graph H = ({s}, 8), then player 2 has a winning strategy;

otherwise, player 1 has a winning strategy. 0

It is possible to prove other lemmas of a similar flavor as Lemmas 4.12-4.17. With

similar techniques one can show the following result.

Theorem 4.20. EDGE GENERALIZED GEOGRAPHY can be solved in O(n) times for directed

graphs G =(V, E) with the property that the undirected graph G’=(V, { (II, w) 1 (v, W)E

E V (w, V)E E}) is a cactus.

Also, similar algorithms can be designed for the VERTEX GENERALIZED GEOGRAPHY

game on cacti. The advantages of this approach over the algorithms in Section 4.1 are

the simplicity and better running time (also in constant factor) of the algorithm.

Complexity ofpath+rminy qames 243

5. Final comments

This research leaves several directions for further research. On the one hand, there

are still several interesting variants that have not yet been shown to be PSPACE-

complete, like EDGE GENERALIZED GEOGRAPHY without specified starting vertex, and

most of the games considered in this paper on undirected graphs. One of the more

promising of these seems to be VERTEX GENERALIZED GEOGRAPHY on undirected graphs

with specified starting vertex. It may well be that this problem is solvable in poly-

nomial time using graph matching. (Recall that this problem without specified starting

vertex is equivalent to the problem whether the input graph has no perfect matching

[19, p. 711.) On the other hand, much work can still be done on the complexity of the

problems when restricted to special classes of graphs. There are many interesting

problems in this area that are worth being studied.

We close with a mention, without proof, of some other special cases of the problems

considered in this paper:

0 VERTEX GENERALIZED GEOGRAPHY. EDGE GENERALIZED GEOGRAPHY,SIMPLE PATH CON-

STRUCTIONGAME and ELEMENTARYPATHCONSTRUCTIONGAME are solvable in Q(n+e)

time on acyclic graphs, but become PSPACE-complete if restricted to graphs

obtained by adding one edge to an acyclic graph.

l All games that are considered in this paper are linear-time-solvable on (undirected

graphs that are) trees.

l SIMPLE PATH CONSTRUCTION GAME is solvable in p(n) time on cacti.

l ELEMENTARY PATH CONSTRUCTION GAME is solvable in (?(n3 + 2d’2n) time for cacti with

maximum vertex degree d.

References

[l] A. Adachi, S. Iwata and T. Kasai, Some combinatorial game problems require Q(n’) time, J. ACM 31
(1984) 361-376.

[2] S. Amborg, Efficient algorithms for combinatorial problems on graphs with bounded decompos-

ability - a survey, BIT 25 (1985) 2-23.

[3] S. Amborg, Some PSPACE-complete logic decision problems that become linear-time-solvable on

formula graphs of bounded treewidth, manuscript, 1991.

[4] S. Arnborg, D.G. Corneil and A. Proskurowski, Complexity of finding embeddings in a k-tree, SIAM
J. Algebraic Discrete Methods 8 (1987) 277-284.

[5] S. Amborg, B. Courcelle, A. Proskurowski and D. Seese, An algebraic theory of graph reduction, in:

Proc. 4th Workshop on Graph Grammars and Their Applications to Computer Science, Lecture Notes in

Computer Science, Vol. 532 (Springer, Berlin, 1991) 70-83.

163 S. Amborg, J. Lagergren and D. Seese, Easy problems for tree decomposable graphs, J. Algorithms, 12
(1991) 308-340.

[7] S. Arnborg and A. Proskurowski, Characterization and recognition of partial 3-trees, SIAM J.
AIqehraic Discrete Methods 7 (1986) 305-3 14.

[S] S. Arnborg and A. Proskurowski, Linear-time algorithms for NP-hard problems restricted to partial
k-trees, Discrete Appl. Math. 23 (1989) 1 l-24.

[9] M.W. Bern, E.L. Lawler and A.L. Wong, Linear-time computation of optimal subgraphs of decom-

posable graphs, J. Algorithms 8 (1987) 216-235.

244 H.L. Bodlaender

[lo] H.L. Bodlaender, Classes of graphs with bounded treewidth, Tech. Report RUU-CS-86-22, Depart-

ment of Computer Science, Utrecht University, Utrecht, 1986.

[1 I] H.L. Bodlaender, Dynamic programming algorithms on graphs with bounded tree-width, in: Proc.

15th Internat. Colloq. on Automata, Languages and Programming, Lecture Notes in Computer Science,
Vol. 317 (Springer, Berlin, 1988) 105~119.

1123 H.L. Bodlaender, NC-algorithms for graphs with small treewidth, in: .I. van Leeuwen, ed., Proc.

Workshop on Graph-Theoretic Concepts in Computer Science WG’88, Lecture Notes in Computer

Science, Vol. 344 (Springer, Berlin, 1988) l-10.

1131 H.L. Bodlaender, Planar graphs with bounded treewidth, Tech. Report RUU-CS-88-14, Department

of Computer Science, Utrecht University, Utrecht, 1988.

1147 H.L. Bodlaender, Improved self-reduction algorithms for graphs with bounded treewidth, in: Proc.

15th Internat. Workshop on Graph-Theoretic Concepts in Computer Science, WG’89, Lecture Notes in

Computer Science, Vol. 411 (Springer, Berlin, 1990) 232-244; Ann. Discrete Math., to appear.

[15] H.L. Bodlaender, Polynomial algorithms for graph isomorphism and chromatic index on partial

k-trees, J. Algorithms 11 (1990) 631-643.

[16] H.L. Bodlaender, On the complexity of some coloring games, Internat. J. Found. Comput. Sci. 2 (1991)

133-147.

1171 H.L. Bodlaender and T. Kloks, Fast algorithms for the TRON game on trees, Tech. Report RUU-

CS-90-I 1, Department of Computer Science, University of Utrecht, 1990.

[18] H.L. Bodlaender and T. Kloks, Better algorithms for the pathwidth and treewidth of graphs, in: Proc.

18th Internat. Colloq. on Automata. Languages and Programming, Lecture Notes in Computer Science,

Vol. 510 (Springer, Berlin, 1991) 544-555.

[I91 J.A. Bondy and U.S.R. Murty, Graph Theory with Applications (Elsevier/MacMillan, New York,
1976).

[ZO] R.B. Borie, R.G. Parker and C.A. Tovey, Automatic generation of linear algorithms from predicate

calculus descriptions of problems on recursively constructed graph families, J. Algorithms 7 (1992)

555-582.

[21] B. Courcelle, The monadic second-order logic of graphs I: Recognizable sets of finite graphs, Inform.

and Comput. 85 (1990) 12-75.

[22] S. Even and R. Tarjan, A combinatorial problem which is complete in polynomial space, J. ACM 23

(1976) 710-719.

[23] M.R. Fellows and M.A. Langston, An analogue of the Myhill-Nerode theorem and its use in

computing finite-basis characterizations, in: Proc. 30th Ann. Sjamp. on Foundations of Computer

Science (1989) 520-525.

[24] A. Fraenkel, M. Garey, D. Johnson, T. Schaefer and Y. Yesha, The complexity of checkers on an n x n

board -preliminary version, in: Proc. 19th Ann. Sllrnp. on Foundations of Computer Science (1978) 55-64.

1251 A. Fraenkel and E. Goldschmidt, Pspace-hardness of some combinatorial games, J. Combin. Theory

Ser. A, 46 (1987) 21-38.

[26] A. Fraenkel and D. Lichtenstein, Computing a perfect strategy for n by n chess requires time

exponential in n, J. Comhin. Theory Ser. A, 31 (1981) 199-214.

[27] A.S. Frdenkel and S. Simonson, Geography, Theoret. Comput. Sci. 110 (1993) 197-214.

[28] M.R. Garey and D.S. Johnson, Computers and Intractability, A Guide to the Theory ofNP-Complete-

ness (Freeman, New York, 1979).

1291 D. Johnson, The NP-completeness column: an ongoing guide, J. Algorithms 4 (1983) 397~411.

[30] D.S. Johnson, The NP-completeness column: an ongoing guide, J. Algorithms 6 (1985) 434-451.

[3 l] J. Lagergren, Efficient parallel algorithms for tree decomposition and related problems, in: Proc. 31st
Ann. Symp. on Foundations of‘ Computer Science (1990) 173-l 82.

[32] C. Lautemann, Efficient algorithms on context-free graph languages, in: Proc. 15th Internat. Colloq. on

Automata, Languages and Programming, Lecture Notes in Computer Science, Vol. 317 (Springer,

Berlin, 1988) 362-378.

[33] T. Lengauer, Efficient algorithms for finding minimum spanning forests in hierarchically defined

graphs, J. Algorithms 8 (1987) 260-284.

1341 T. Lengauer and E. Wanke, Efficient solutions of connectivity problems on hierarchically defined

graphs, SIAM J. Comput. 17 (1988) 1063~1080.

[35] D. Lichtenstein and M. Sipser, Go is polynomial-space hard, J. ACM 27 (1980) 393-401.

Complexiry of path-forming games 245

[36] J. Matousek and R. Thomas, Algorithms finding tree decompositions of graphs, J. Algorithms 12

(1991) l-22.

[37] K. Mehlhorn, S. Naher and M. Rauch, On the complexity ofa game related to the dictionary problem,

in: Proc. 30th Ann. Spmp. on Foundafions of‘ Computer Science (1989) 546-548.
1381 B. Reed, Finding approximate separators and computing treewidth quickly, in: Proc. Symp. on Theory

of Computation (1992) 221-228.

1391 N. Robertson and P.D. Seymour, Graph minors. XIII. The disjoint paths problem, manuscript, 1986.

1401 J. Robson, N by N checkers is exptime complete, SIAM J. Comput. 13 (1984) 252-267.
1411 J. Robson, Alternation with restrictions on looping, Infirm. and Control 67 (1985) 2-l 1.

[42] T.J. Schaefer, The complexity of satisfiability problems, in: Proc. /Oth Symp. on Theory ofComputation

(1978) 216-226.

1431 T.J. Schaefer. On the complexity of some two-person perfect-information games, J. Comput. System
Sci., 16 (1978) 185-225.

[44] P. Scheffler, Die Baumweite von Graphen als ein Ma13 fiir die Kompliziertheit algorithmischer

Probleme, Ph.D Thesis, Akademie der Wissenschaften der DDR, Berlin, 1989.

[45] L.J. Stockmeyer and A.K. Chandra, Provably difficult combinatorial games, SIAM .I. Comput.
8 (1979) 15lLl74.

[46] T.V. Wimer, Linear algorithms on k-terminal graphs. Ph.D Thesis, Department of Computer Science,

Clemson University, 1987.

