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For a number of two-player games where players alternately choose the next vertex of a simple or an 

elementary path in a graph, we consider the problem to determine whether, for a given game 

instance, there is a winning strategy for the first player. We show several of these problems to be 

PSPACE-complete. In some special cases, we obtain polynomial-time algorithms, based on graph 

rewriting or an intricate form of dynamic programming, e.g. we show GFMRALIZEDGEOGRAPHY and 

some other PSPACE-complete problems to be linear-time-solvable on graphs with constant 

bounded treewidth. 

1. Introduction 

Games are not only a popular pastime, but they can also serve as a model for 

several different phenomena, e.g. 

l conflicts between parties with different interests (e.g. different companies that 

operate on the same market); 

l fault tolerance. Here the erroneous behavior of a system is modeled by assuming 

that the system uses an intelligent strategy to prevent us from reaching our goal. If 
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we are able to deal with this type of error, we are also able to deal with all weaker 

types of errors; 

l worst-case complexity of algorithms (see e.g. [37]); 

l complexity theory. For instance, the definition of the alternating Turing machine 

(which is one of the standard models for parallel computation) can be stated in 

terms of a game (see [29]). 

In this paper we restrict ourselves to games with 2 players that have full informa- 

tion. We concentrate on the question: Given a certain game, how hard is it to 

determine whether there is a winning strategy for the first (or second) player. With the 

notion of “game”, we usually mean a class of actual games (instances), where each 

game (instance) is distinguished from others in the class only by its starting position 

and playing area, but uses the same type of moves. With the complexity of a game 

(class), we denote the complexity of the following problem: Given a game (instance) 

from this class, does player 1 have a winning strategy in this game (instance)? 

Throughout this paper, we use the name of a game to denote this problem for that 

game. 

For several problems of this type, PSPACE-completeness and EXPTIME-com- 

pleteness results have been obtained, as well as for well-known and often played 

games, like chess, go, and checkers [24,26,35], and for more abstract games 

[ 1,16,22,25,40,43,45]. For an overview, see e.g. [28,29]. 

In this paper we consider several abstract games on graphs that have “forming 

paths in a graph” as a common theme. We consider two already studied games, both 

known under the name GENERALIZED GEOGRAPHY, and several new games: the HAMIL- 

TONIAN CIRCUIT CONSTRUCTION GAME, the HAMILTONIAN PATH CONSTRUCTION GAME, the 

SIMPLEPATHCONSTRUCTIONGAME, the ELEMENTARYPATHCONSTRUCTIONGAME, and vari- 

ants where the starting vertices are not specified. 

In each of these games, the players are forming together one path in the graph. 

Some related games, called PARTIZAN GEOGRAPHY or TRON, where both players form 

their own path in the graph have also been proposed and studied by different authors 

[18,27]. 

For most of the games considered in this paper, we prove the corresponding 

decision problem to be PSPACE-complete (under logarithmic-space reductions). For 

a few of these cases we have also a PSPACE-completeness result for the variant with 

undirected graphs. These results are presented in Section 3. 

A huge amount of research has been done on the complexity of NP-complete graph 

problems when restricted to special classes of graphs (see e.g. [30]). Less is known on 

the complexity of PSPACE-complete graph problems when restricted to special 

classes of graphs. In Section 4, we give some new results in this area. We use the 

following as the main techniques: graph rewriting and an intricate form of dynamic 

programming. Among others, we show that (VERTEX) GENERALIZED GEOGRAPHY and 

some other PSPACE-complete problems are linear-time-solvable on graphs with 

bounded treewidth. This is the first known example of a PSPACE-complete problem 

solvable in polynomial time when restricted to graphs with bounded treewidth, where 
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previously such results were known only for problems known to be NP-complete or 

NP-hard [6,8,11,15,20,21,32,44,46]. In a recent paper, Arnborg [3] showed that 

some PSPACE-complete logic problems can also be solved in linear time when 

a graph with bounded treewidth can be associated with the input formula. Some final 

comments are made in Section 5. 

2. Definitions 

In this section we give most definitions that are needed in this paper. In Section 2.1 

we give the definitions of graph-theoretic notions; in Section 2.2 we give the definitions 

of the considered games, and of a PSPACE-complete logic problem, used in our 

PSPACE-completeness proofs. 

2.1. Graph-theoretic dtfinitions 

A path in a graph G = (V, E) is called simple if no vertex appears more than once on 

the path. It is called elementary if no edge eEE is used more than once by the path. 

The subgraph of G =( V, E) induced by WG V is denoted by G[ IV] =( IV, 

((t’, W)EE 1 u, WE Iv}). 

Next we give the definitions of two special classes of graphs: the cacti, and the 

graphs with treewidth <k. 

Definition. An undirected graph G = (V, E) is a cactus (graph) if and only if every edge 

eEE belongs to at most one simple cycle in G. 

In other words, a graph G = (V, E) is a cactus if and only if each biconnected 

component of G is either a single edge or a cycle without chords. 

Definition. Let G = (V, E) be a directed or undirected graph. A tree decomposition of 

G is a pair ({Xi 1 ie I }, T= (I, F)), with (Xi 1 ill } a family of subsets of V, and T a tree, 

such that 

0 uisl Xi= V. 

l V(c, w)EE: 3i~I: OEX~ A WEX~. 

l V&j, kEZ: ifj is on the path from i to k in T, then XinX,sXj. 

The treewidth of a tree decomposition ((Xi 1 iEI j, T=( I, F)) is maxiel lXil - 1. The 

treewidth of G is the minimum treewidth over all possible tree decompositions of G. 

An example of a graph with treewidth 2, and a tree decomposition of this graph can 

be found in Fig. 1. 

The problem to determine the treewidth of a graph is NP-complete [4]. However, 

for fixed k, one can determine in c(n) time whether the treewidth of a given graph is 

d k [S], and, if so, find a tree decomposition with treewidth <k in (?(nlogn) time 
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Fig. 1 

[18,38]. (An O(nlog’ n) algorithm can be found by combining the results in [31] and 

CW.) 
Several well-studied classes of graphs have the property that there is a constant 

upper bound for the treewidth of graphs in the class. For instance, cacti and 

seriessparallel graphs have treewidth d 2, Halin graphs have treewidth 3, almost-trees 

with parameter k have treewidth d k+ 1, k-outerplanar graphs have treewidth 

< 3k- 1. Also, if there is a fixed upper bound on the bandwidth, cutwidth, search 

number, vertex separation number of graphs in a class, or if the graphs in the class are 

interval graphs or chordal graphs with a fixed upper bound on the maximum clique 

size, then there is also a fixed upper bound on the treewidth of the graphs in the class 

(see [lo, 13,44,46]). 

There are several equivalent characterizations of the class of graphs with treewidth 

<k. For instance, a graph is partial k-tree if and only if its treewidth is at most k (see 

[2,44]). Note also that each class of graphs that can be defined recursively in terms of 

rules of compositions with the method of Bern et al. [9] has a constant upper bound 

on the treewidth of the graphs in the class. 

So, a polynomial algorithm for a certain problem for graphs with bounded 

treewidth directly implies polynomial algorithms for that problem for a large number 

of other classes of graphs. 

2.2. Definitions of games and a logical problem 

In this section we give definitions of some logical problems, used in our PSPACE- 

completeness proofs, and of the games we consider in this paper. First we give the 

definition of a well-known logical problem. 
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QUANTIFIED XiATISFIABILITY 

Instance: Set U=fu,,u2,..., u,} of variables, well-formed quantified boolean for- 

mula F=(Q,u,)(Q2u2)...(Qnu,)E, where E is a boolean expression in conjunc- 

tive normal form with three literals per clause, and each Qi is either V or 3. 

Question: Is F true? 

QUANTIFIED MATISFIABILITY is PSPACE-complete. One may also assume that the 

quantifiers alternate, i.e., that Qi = V if i is even, and Qi = 3 if i is odd, or that Qi = 3 if i is 

even, and Qi = V if i is odd (see [28, 421). 

Next we introduce several games on graphs. We start with two slightly different 

games, which are both known under the name GENERALIZED GEOGRAPHY. To distin- 

guish the variants, we call them here VERTEX GENERALIZED GEOGRAPHY and EDGE 

GENERALIZED GEOGRAPHY. Both games are played on a directed graph G = (V, E), given 

with a starting vertex s. In the VERTEX GENERALIZED GEOGRAPHY game, players alter- 

nately choose a vertex. The first chosen vertex must be s, and each subsequently chosen 

vertex must have an incoming edge with the last chosen vertex as its other endpoint. 

Players may not choose a vertex that has been chosen before. The first player that is 

unable to move loses the game. In the EDGE GENERALIZED GEOGRAPHY game, players 

alternate choosing an edge that has not been chosen before, starting with an edge that 

has its tail at s; subsequent edges must have their tail at the vertex that was the head of 

the previous chosen edge. Again, the first player unable to move loses the game. 

Thus, in other words, in VERTEX GENERALIZED GEOGRAPHY, players alternately choose 

the next vertex of a simple path in G, and in EDGE GENERALIZED GEOGRAPHY, players 

alternately choose the next edge of an elementary path. 

Both games are PSPACE-complete. EDGE GENERALIZED GEOGRAPHY was proven to 

be PSPACE-complete by Schaefer [43]. In [35] it was proved that VERTEX GENERAL- 

IZED GEOGRAPHY is PSPACE-complete for planar, bipartite graphs that have no 

vertices with inoutdegree exceeding 2 or with degree exceeding 3. 

In this paper we consider also the following variants of these games: 

SIMPLE PATH CONSTRUCTION GAME. This game is played as VERTEX GENERALIZED 

GEOGRAPHY, but with the following difference: the instance also contains an integer 

k < 1 VI. Player 1 wins if and only if the game ends with a path containing at least 

k vertices. 

ELEMENTARY PATHCONSTRUCTIONGAME. This game is played as EDGEGENERALIZED 

GEOGRAPHY, but now the instance contains an integer k d 1 E 1, and player 1 wins if 

and only if the game ends with a path containing at least k edges. 

HAMILTONIANPATHCONSTRUCTIONGAME is the special case of SIMPLEPATHCONSTRUC- 

TION GAME with k = 1 VI. In other words, player 1 wins if and only if the game ends 

when all vertices have been visited. 

HAMILTONIANCIRCUITCONSTRUCTIONGAME. This is similar to the HAMILTONIANPATH 

CONSTRUCTION GAME, but now player 1 wins if and only if the game ends when all 

vertices have been visited and there is an edge from the last visited vertex to the first 

visited vertex. 
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l Variants without specijied starting vertex. These are similar to the original games, 

but now player 1 is free to choose whatever vertex or edge he/she wants as starting 

vertex or edge. 

In this paper, we will also consider variants where the games are played on 

undirected graphs. 

The game VERTEX GENERALIZED GEOGRAPHY without specified starting vertex, on 

undirected graphs, is solvable in polynomial time: there is a winning strategy for 

player 1 if and only if the input graph G contains no perfect matching [19]. 

There is a close connection between VERTEX and EDGE GENERALIZED GEOGRAPHY and 

games with rules, forbidding positions on moves to appear more than once. A game 

can be modeled by a directed graph, where the vertices correspond to positions in the 

game. Edges correspond to possible moves from a position. (For most games, this 

graph has a very large size.) If it is forbidden to move to a position that has appeared 

already earlier in the game, then this corresponds to the condition that the players 

alternately choose a vertex on a simple path; a rule that forbids the same move from 

the same position corresponds to an elementary path (compare [41]). 

3. PSPACE-completeness results 

In this section we give a number of new PSPACE-completeness results. We 

establish PSPACE-completeness for the following games/problems: 

l VERTEX GENERALIZED GEOGRAPHY without specified starting vertex for directed 

graphs. 

l HAMILTONIAN PATH CONSTRUCTION GAME with and without specified starting vertex 

for directed graphs. 

l HAMILTONIANCIRCUITCONSTRUCTIONGAME with andwithoutspecifiedstartingvertex 

for directed graphs. 

l SIMPLE PATH CONSTRUCTION GAME with and without specified starting vertices for 

directed and for undirected graphs. 

l ELEMENTARY PATH CONSTRUCTION GAME with and without specified starting vertex for 

directed and for undirected graphs. 

In each of our proofs, we use either a transformation from QUANTIFIED 3-SATISFI- 

ABILITY similar to the prooffor (VERTEX or EDGE)GENERALIZEDGEOGRAPHY in [35,43], 

or a transformation from a closely related game. 

Theorem 3.1. VERTEX GENERALIZED GEOGRAPHY without specified starting vertex is 
PSPACE-complete. 

Proof. Clearly, the problem is in PSPACE. To prove PSPACE-hardness, we use 

a transformation from the standard VERTEX GENERALIZED GEOGRAPHY problem (i.e., 

with specified starting vertex). 
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Fig. 2. 

Let an instance G=(v,E), SEC’ of VERTEX GENERALIZEDGEOGRAPHY be given. We 

may suppose that the indegree of s is 0 (it is never possible to traverse an edge to the 

starting vertex, so these edges may as well be deleted from G). 

Now, let G’=( V’, E’) be defined as follows (see Fig. 2 for an example): 

V’= Vu{O, l,, lb} 

u(c+l~~Vand L’#s}, 

E’=Euf(u,u’)j~~Vand u#s} 

U((t”, u)(uEVand ~‘#sj 

u{(u’, l,)lv~Vand U#S] 

u{(tl’,l,)juEVand vfs} 

~{(L4,(1,,4~(0, f,),(O, lb),(LO),(lbrO)~. 

As the construction of G’ can be carried out in logarithmic work space, the theorem 

follows with the help of the following claim. q 

Claim 3.2. There is a winning strategy for player 1 fbr VERTEX GENERALIZED GEOGRAPHY 

with starting vertex s on G if and only if there is a winning strategy for player 1 for 
VERTEX GENERALIZED GEOGRAPHY without specl$ed starting uertex on G’. 

Proof. Suppose player 1 has a winning strategy for VERTEX GENERALIZED GEOGRAPHY 

with starting vertex s on G. Then he can use the following strategy for VERTEX 

GENERALIZED GEOGRAPHY without specified starting vertex on G’: start in 0. Player 

2 will move to 1, or 1,. Move to s. Now, as long as player 2 moves to vertices in V, also 

move to vertices in V, using the original strategy for VERTEX GENERALIZED GEOGRAPHY 

with starting vertex s on G. After a number of moves, player 2 will be unable to move 
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to a vertex in V. So, player 2 will move eventually to a vertex uf. Now player 1 moves 

to the unused vertex in {l,, lb} and wins the game. 

Suppose, player 2 has a winning strategy for VERTEX GENERALIZED GEOGRAPHY with 

starting vertex s on G. Player 2 now also has a winning strategy for VERTEX GENERAL- 

IZED GEOGRAPHY without specified starting vertex on G’. We consider a number of 

cases: 

Case 1: If player 1 starts at 0, then player 2 wins, using a strategy similar to the 

argument above. 

Case 2: Suppose player 1 starts at 1, or 1,. Without loss of generality, suppose 

player 1 starts at 1,. Player 2 moves to s. Player 1 must move to a VE V, u #s. Player 

2 moves to u+. Player 1 must move to 1,. Player 2 moves to 0 and wins. 

Case 3: Suppose player 1 starts at UE V, ufs. Then player 2 moves to uf. Player 

1 must move to 1, or lb. Player 2 moves to 0. Player 1 must move to the unused vertex 

in {l,, lb}. Player 2 moves to s. Player 1 must move to a vertex VE V, ufs. Player 

2 moves to v+ and wins the game. 

Case 4: Player 1 starts at a vertex u+, UE I/. Player 2 moves to u. Player 1 must move 

to a vertex WE V. w fs, because indegree =O. Player 2 moves to w’. Player 1 must 

move to 1, or lb. Player 2 moves to 0. Player 1 must move to the unused vertex in 

{l,, lb). Player 2 moves to s. Player 1 must move to a vertex XE V, x#v, x#w. (If 

x does not exist, player 1 loses directly). Now player 2 moves to x+ and wins the game. 

Case 5: Player 1 starts at vertex s. Player 2 now follows the strategy for VERTEX 

GENERALIZED GEOGRAPHY with starting vertex s on G, as long as player 1 moves to 

vertices VE V. Eventually, player 1 must move to a vertex u+. Now player 2 moves to 

l,, player 1 to 0, and player 2 wins by moving to lb. 0 

Corollary 3.3. VERTEX GENERALIZED GEOGRAPHY without specijied starting vertex is 

PSPACE-complete for graphs with thickness < 2. 

Proof. VERTEX GENERALIZED GEOGRAPHY with specified starting vertex is PSPACE- 

complete for planar graphs [35]. If the construction in the proof of Theorem 3.1 is 

applied to a planar graph, one obtains a graph with thickness ~2. 0 

Theorem 3.4. HAMILTONIAN PATH CONSTRUCTION GAME with specijied starting vertex is 

PSPACE-complete. 

Proof. Clearly, the problem is solvable in polynomial space. To prove PSPACE- 

hardness, we use a transformation from QUANTIFIED ~~ATISFIABILITY. Let an instance of 

this problem be given. Without loss of generality, we may suppose that it is of the form 

with FO a boolean expression in conjunctive normal form. Let C = {cl, . . , c,} be the 

set of clauses in FO. Without loss of generality, we may suppose that m 34. 
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Let G = (V, E) be the directed graph defined by 

V={S~t}u{Xi~ ldi<?I}U{~I l<i<n]u{rl,rz)u{cil i<i<WI}, 

E = i 6, x1 )> (s, Z ), (t, x1 ), (t, x1 ), ( x,,r,),(X,,r2)}U{(Ci,t)l ldi<m} 

U((Yi,Cj)Ii=1,2, l<j<WI} 

u{(ci,cj)Ii#j, 1 <i,j<mj 

223 

U{(Xi,Xi+l)ll <i<Wl}U{(Xi,Xi+l)i l<i<??l) 

U{(g,Xi+,)ll <i<<m)U{(~,Xi+l)I 1 <i<m} 

u{ (c, I) 11 is a literal, appearing in clause c} 

(see Fig. 3). 0 

Claim 3.5. There is a winning strategql for player 1 in the HAMILTONIAN CIRCUIT 

CONSTRUCTION GAME on G with starting oertex s if and only if F is false. 

for every literal, appearing in 
- B clause. there is an edge from 

the clause to the literal 

Fig. 3. 
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Proof. Suppose F is false. We give a winning strategy for player 1. Player 2 will choose 

x1 or X1, then player 1 chooses x2 or X2, etc. Call vertices which are chosen (before the 

negation is chosen)fulse. As F is false, player 1 can choose the xts (i even) in such 

a way that, whatever strategy player 2 will use, there will be at least one clause with 

only false variables, say clause ciO. Now, after the moment that one vertex of each pair 

xi,% has been visited, player 2 will visit ri or r2. Then player 1 goes to cio. Player 

2 must go either to t, or to another Ci. In the latter case, player 1 moves to t. Now from 

t all vertices xi,Xi that have not yet been visited will be visited, then the vertex in 

{Y~,Y~} that has not yet been visited, and then all unvisited vertices ci. So, player 

1 wins the game, as all vertices will eventually be visited. 

Suppose F is true. Now player 2 can force that at the first moment a vertex Cio is 

visited, each clause contains at least one literal, corresponding to a vertex that is not 

already visited. Player 1 has moved to ci,, and then player 2 moves to such a vertex Xi 

or Xi. Now all yet unvisited vertices Xj,Xj with j>i are visited, then the remaining 

vertex in {ri, r,}, and then a player moves to a vertex ci. If player 2 now may move, he 

moves to t. If player 1 now may move, and moves to another ci, then player 2 moves 

from this ci to t. Now the game will stop before all vertices ci have been visited. (At 

most 3 ci’s are visited and m>4.) So, player 2 wins the game. 0 

As the construction of G can be done in logarithmic working space, Theorem 3.6 

follows. 

Theorem 3.6. HAMILTONIANCIRCUITCONSTRUCTIONGAME with speci$ed starting vertex is 

PSPACE-complete. 

Proof. Use the construction of Theorem 3.4, but add an edge from each ci to s. 0 

Theorem 3.7. HAMILTONIAN PATH CONSTRUCTION GAME without specified starting vertex 

is PSPACE-complete. 

Proof. Look at the proof of Theorem 3.4. Note that player 1 must start in s, because 

indegree = 0. 0 

Theorem 3.8. HAMILTONIANCIRCUITCONSTRUCTIONGAME without speci$ed starting ver- 

tex is PSPACE-complete. 

Proof. Use the construction of Theorem 3.6 (i.e., with an edge from each Ci to s). If 

player 1 starts at s or t, then the game is as with specified starting vertex s. If player 

1 starts at a vertex xi, Xi, or ri, the player 2 can win if m > 5: he always moves to s or 

t when possible. At least one vertex ci now will be unvisited at the end of the game. If 

player 1 starts at a vertex cj, then player 2 directly moves to a vertex Xi or Xi. 
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Hereafter, he moves always to s or t when possible. Now, if m36, then at least one 

vertex ci will be unvisited at the end of the game. 0 

Corollary 3.9. SIMPLE PATH CONSTRUCTION GAME with or without specijed starting vertex 

is PSPACE-complete. 

Theorem 3.10. SIMPLE PATH CONSTRUCTION GAME with specijied starting vertex is 

PSPACE-complete for undirected graphs. 

Proof. Clearly, the problem is in PSPACE. We use again a transformation of 

QUANTIFIED 3.SATISFIABILITY to prove PSPACE-hardness. Let an instance of Q-~-SAT, 

be given; F, is a boolean formula in conjunctive normal form. Without loss of 

generality, assume that n is even. Let C= {cl, . . . , c,} be the set of clauses in F,. 

Assume that VXi: 3c~C: XiEc; 3c~C: XiEC. Let G=(V, E) be the following graph: 

V={Vi( 1 di<n) 

u{xiI 1 <idn}u{.Tij 1 <i<n} 

U{yil 1 <iin}u{jiI 1 <i<nJ 

U{Wij 1 di<n}U(Zi) 1 <i<n} 

u{ci/ 1 <i,<m} 

u{dijk) 1 <i<m, 1 ,<j<3, 1 ,<k<K}, 

E= ((Vi,Xi),(Vi, Xi), (Xi,yi)> (Xi, yi), (yi, wi), (yi, wi) 1 1 didn, i odd} 

u{(vi~Yi),(~i,Yi)~(Yi~xi)~(yi,Xi),(Xi~Wi)~(Yi~Wi)/ ldi,<n, i even} 

u{(Wi3Zi)I 1 ,<idn} 

u{(zi~vi+l)( 1 di<n} 

u{(Zn2Ci)l 1 Gidm} 

u{(Ci>dijl)I Ididm, I<j<3} 

u{(dijk>dij(k+l))) 1 di<m, 1 <j,<3, 1 ,<kbK} 

u((dijl, I) 11 is the jth literal appearing in clause ci}, 

where K = 5n + 8 (see Fig. 4). The starting vertex is vl. 

Claim 3.11. F is true ij’ and only if player 1 can force a path with length 3 K. 
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m3K 

Fig. 4. 

Proof. Note that the resulting path will have length 2 K if and only if a “long branch” 

dijidijz. ..dijK is used. (Every other path in G has length <K.) Next note that that 

player who must move from a vertex Wi must move to Zi or lose the game: if player 1 

must move from Wi, then i is even. If he moves to xi or Xi, then player 2 moves to y, or 

j2, and the game ends with a path shorter than K. If player 2 must move from 

Wi, then i is odd. If he moves to yi or ji, then player 1 moves to Xi or Xi; player 2 then 

must move to a vertex diji, and then player 1 moves to dij2 and forces a path with 

length 2K. 
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The proof proceeds with arguments which are similar to arguments used before. Let 

a used xi or Xi correspond with true. Player 1 tries to have in each clause a literal I, with 

the corresponding vertex 1 is being visited when the path reaches z,. He succeeds if and 

only if the formula is true. Player 2 must move from z,. He will move, if possible, to 

a unsatisfied clause, i.e., each literal in the clause is unvisited. Player 1 will move to 

a vertex dijl. If the corresponding literal in the clause is true (visited), then player 

2 must move to dijl, and the resulting path has length > K. Otherwise, player 2 can 

move to that literal vertex, and the resulting path has length <K. 0 

We have obtained a log-space transformation from QUANTIFIED 3-SATISFIABILITY to 

SIMPLE PATH CONSTRUCTION GAME for undirected graphs. Hence, the latter is PSPACE- 

complete. 

Theorem 3.12. SIMPLE PATH CONSTRUCTION GAME without specified starting vertex is 

PSPACE-complete for undirected graphs. 

Proof. To prove PSPACE-hardness, we use a transformation from the case with 

specified starting vertex. Let an instance G = (V, E), SE V, K E N + of the latter problem 

be given. Let G’ =( V’, E’) be defined as follows (see Fig. 5): 

V’= Vujri) 161’62.1 Vj+2} 

u{qiI 1 bidK+2}u(y}, 

Claim 3.13. Player 1 can force a path with length 2 K + 2 1 VI + 2 on G’ with no specljied 

starting vertex ifand only (f player 1 can force a path with length 3 K on G with starting 

vertex s. 

Proof. cr: Player 1 starts at rl. When player 2 must move eventually from rzIvI + 1, he 

can go to q1 (in which case the resulting path has the required length), or go to rzlvl +-2. 

In the latter case, player 1 now can use the strategy for the game on G with starting 

vertex s. 

*: We consider several cases for the start of player 1 on G’. 

Case 1. Player 1 starts at a vertex qi: Then he will lose: either the path ends at 

qK+2 (with length< K +2), or a player moves to rzIvl + 1. If player 1 moves from 

r21vl+I to r21vI, player 2 moves to y and wins. If any player moves from rzIvI+ 1 to 

r21vl + 2, the resulting path will have length <K + 4 + I VI. 
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Fig. 5. 

Case 2. Player 1 starts at a vertex ri, if 1: If i is odd, player 2 will eventually move 

to ql; if i is even, then player 2 will eventually move to y. In both cases, the resulting 

path has length <K + 2 1 VI. 

Case 3. Player 1 starts at y: No matter what strategy is used by either player, the 

resulting path will have length 621 VI + 1. 

Case 4. Player 1 starts at a vertex VE V: After at most 1 VI moves, a player will move 

to rzlVl + 2, or the resulting path has length < I VI. Player 2 uses the strategy to move to 

q1 or y if possible. The resulting path will have length d I VI + 2 + K + 2. 

Case 5. Player 1 starts at rl: If player 2 moves from rzlVl+ 1 to ql, then player 

1 succeeds. If player 2 moves from rzIVI + 1 to rzlVl + 2, then player 1 succeeds exactly if 

he can force a path with length K in G with starting vertex s. 0 

Again, this transformation can be done in logarithmic working space. 

Theorem 3.14. ELEMENTARY PATH CONSTRUCTION GAME (with specified starting vertex) is 

PSPACE-complete. 

Proof. The proof is similar to the proof of Theorem 3.10. A variable xi with i odd is 

replaced by the construction of Fig. 6a, and a variable with i even will be replaced by 
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the construction of Fig. 6b. In the “first pass”, players will move from Ui to di and from 

di t0 Ui+l. Player 2 will never take a “side-branch”, because then he loses the game. 

Player 1 will never move from di to .Xi or Xi, because then player 2 will move such that 

the game stops after 8 or 9 moves in Ui. An unvisited Xi corresponds to true. Player 

1 can move to a vertex on a branch before an unvisited Xi if and only if the formula is 

true. If xi is visited, then player 2 moves from the vertex on the branch to Xi, and the 

game stops. Otherwise, player 1 can move such that he can go from ci to the branch 

with length K, attached to ci. We omit the details. 0 

Theorem 3.15. ELEMENTARY PATH CONSTRUCTION GAME without speci$ed starting vertex 

is PSPACE-complete. 

Proof. This follows with a construction similar to the construction in the proof of 

Theorem 3.12. 0 

We end this section with a small comment on the standard VERTEX and EDGE 

GENERALIZEDGEOGRAPHYGAMES. Clearly, when we restrict OUrselVeS t0 acyclic graphs, 
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then the problems are easy to resolve in 0(n + e) time. However, the proof in [35,43] 

for the PSPACE-completeness of VERTEX or EDGE GENERALIZED GEOGRAPHY can easily 

be modified, such that we have PSPACE-completeness for the problems on graphs 

obtained by adding one edge to an acyclic graph. 

4. Polynomial-time algorithms for path-forming games on special classes of graphs 

In this section we give polynomial-time algorithms for several of the considered 

games on special classes of graphs. In Section 4.1 we give linear algorithms for some of 

the games on graphs with bounded treewidth, based on an intricate characterization 

of subgraphs, and dynamic programming. In Section 4.2 we show how graph rewrit- 

ing can be employed to solve some problems on cacti. 

Notethateachofthefourproblems VERTEXGENERALIZEDGEOGRAPHY,EDGEGENERAL- 

IZED GEOGRAPHY.HAMILTONIAN PATH CONSTRUCTION GAME, and HAMILTONIAN CIRCUIT 

CONSTRUCTION GAME can be easily solved in &(n + e) time when restricted to directed 

acyclic graphs. See also [27]. 

4.1. Linear-time algorithms for some games on graphs with bounded treewidth 

In this section we show how VERTEX GENERALIZED GEOGRAPHY,HAMILTONIAN PATH 

CONSTRUCTIONGAME, and HAMILTONIAN CIRCUITCONSTRUCTION GAME can be solved in 

linear time on graphs with a fixed upper bound k on the treewidth. We first consider 

VERTEXGENERALIZEDGEOGRAPHY. 

Let in the remainder of this section k be a constant. We will assume that input 

graphs G = (V, E) are given with a tree decomposition ({Xi 1 iEZ }, T= (I, F)) of G with 

treewidth <k. If not, then such a tree decomposition can be found (if it exists) in 

O(n log n) time [ 17,381. For k = 1,2,3, the tree decomposition can be found in linear 

time [7,36]. Other algorithms for this problem can be found in [4,14,31,39]. 

It is not difficult to see that one may assume that the tree Tin the tree decompo- 

sition is binary (e.g. use the transformation used in [15]). In the remainder we assume 

that we have a tree decomposition ({Xi 1 iEl}, T=( Z,F)) of G =( V, E) with treewidth 

<k, and T a binary tree. We also suppose that there exists an iOcZ, with Xio= {s}. 

(Take an arbitrary iEZ, with S~Xi. Add a branch (i, iO) to T, with Xi, = {s}. A correct 

tree decomposition results. Now apply the technique to make T a binary tree.) iO is 

taken as root of T. 

Our algorithm is based on dynamic programming. The idea is the following: for 

each iel, the algorithm will compute a “table” containing the information 

charac(Xi, Y,), where Yi = jueXj 1 j is a descendant of i} -Xi. These tables can be 

computed from the tables of the children in Lo(l) time each. From 

charac(Xi,, Yi,)=charac( {s}, V- {s}) the answer to the problem can be determined 

quickly. 



The characteristic of a pair (X, W) is in terms of “subgames”: games that start in 

some vertex XEX, and are played as VERTEX GENERALIZED GEOGRAPHY on the graph 

G[XuW], but with this difference: the game not only ends when a player cannot 

make a move, but also ends when a player moves to a vertex YEX - {x}. Depending 

upon this y and the characteristic of the subgraph induced by the unvisited vertices in 

Xu W, this player wins or loses this subgame. The characteristic of (X, W) basically 

denotes, for each possible subgame, which player has a winning strategy. 

We now give a more precise, inductive definition of charac(X, W), for X, WS V, 

Xn II’=@. charac(X, W) is defined inductively on 1x1. 

For this inductive definition, we need the following notation: for sets X, C(X) 

denotes the set of all possible values of charac(X, W) over all graphs G =( I’, E), 

x, WS v, Xn w=8. 

If X=8, then charac(X, W) is the empty string. 

If IX/= 1, then charac(X, W) is a booleanE{true,false}, that denotes whether there 

iS a Winning Strategy for player 2 for VERTEX GENERALIZED GEOGRAPHY played Oil 

G[Xu W], the subgraph of G induced by Xu W, with starting vertex the unique 

vertex xcX. The first move of player 1 is to move to x, i.e. player 2 is the first player 

who actually can make a choice in the game (when the degree of x is larger than one.) 

Now suppose IXI>2. We first must introduce some other notions. Let XEX. 

Consider the following type of variant of VERTEXGENERALIZEDGEOGRAPHY: the game 

ends when a player moves to a vertex VEX, or when a player cannot make a move. In 

the former case, let W’ G W be the set of vertices in W not yet visited, and consider 

charac(X - {x, y>, W’)EC(X - {x, y}). Let P(X, W, x, y) be the set of all pairs (p,c), 

with PE { 1,2} denoting a player and CEC(X - {x, y }), such that there is a possible play 

by players 1 and 2 in the above type of game, starting at x, where player p moves to y, 

and c = charac(X - {x, y}, W’), with W’ the set of vertices in W that are not visited in 

the game. Let P(X, W, x) be the set of all triples (p, c, y), with VEX-(x) and 

(p, c)EP(X, W, x, y). We call such a triple (p,c,y) an outcome. A set RGP(X, W,x) is 

called a set ofoutcomes. For each set of outcomes R c P(X, W, x), we now consider the 

game VGG(X, W, x, R). This is a variant of VERTEX GENERALIZED GEOGRAPHY described 

above, with the following properties: player 1 starts with a move from x to a vertex in 

WuX. The game ends when a player cannot make a move from a vertex in Wp then 

this player loses the game ~ or when a player j moves to a vertex VEX, where W’ 

is the set of vertices in W that are not visited. In this case, player 1 wins the game if and 

only if (j, charac(X-{x,4 1, W’),y)cR. We say that the game has outcome 

( j, charac(X - f (x, y}, W’), y). In other words, player 1 wins if player 2 loses by not 

being able to move, or when the game ends with an outcome in the set of outcomes R. 

We can now describe charac(X, W) for IXI>2. charac(X, W) is a pair (fi, fi), 

where 

l fi maps each pair (x,R), with RcU,,,_,,,{(p,c,4’)Ip~(1,2), CEC(X-{x,y})}, to 

a boolean that is true if and only if RcP(X, W,x) and there is a winning strategy 

for player 1 in the game VGG(X, W,x, R), 

l .f2 maps each .ucX to charac(X - {x), W). 
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Fig. 7. 

(The case with [XI= 1 can be seen as a special case of the above definition.) 

As an example, consider the graph G =( WuX, E), shown in Fig. 7. X = (xi, x2, x3}, 

W= {a, b, c, It, e,f}. Here P(X, W, x1, x2) = { (1, true), (2, false)}, because (xi, a, 6, c, x2) 

is a play, where player 1 moves to x2, and the resulting graph (with vertices d,f; e, xj) 

gives a winning strategy for player 2, and (x1, a, b, d, c, x2) is a play where player 2 

moves to x2, and the resulting graph gives a winning strategy for player 1. Similarly, 

P(X, W,x,,x3)={(l,true),(2,false)}. So, P(X, W, xi)= { (1, true 4, (2, false, x2), 

(1, true, x3), (2, false, x3)}. For each subset R of P(X, W, x1 ), we can consider the game 

VGG(X, W, x1, R). Consider R = ((1, true, x2), (2, false, x2)}. Player 1 will win the 

game VGG(X, W, x1, R): player 2 must move from b. If he moves to d, player 1 moves 

to c, and the game ends with situation (2,false,x,). Otherwise, player 1 moves from 

c to x2 and the game ends with situation (1, true, x2). As these are in R, player 1 wins. 

So,fl in charac(X, W) hasf,(x,, R) = true. In total,f, can be specified here with 3. 24 

bits plus the space to write down all three sets P( W, X,xi).f2 contains the information 

charac(X - {x1}, W), charac(X - {x2}, W) and charac(X - {x3}, W). 

Note that if IX/ is bounded by some constant c, then the number of bits needed to 

denote charac(X, W) is also bounded by some constant c’. If Sr denotes this number 

for lXl=I, then S161.2”-‘)sf-2+1.S~_1. 

For ill, let Vi= {U~Xj lj is a descendant of i in T}-Xi. Our algorithm is based on 

computing charac(Xi, Yi) for all iel. 

Lemma 4.1. Let iel be a leaf of T. Then Yi=8, and charac(Xi, Yi) can be computed in 

G(l) time. 

Proof. Clearly, Yi=~. Note that IXJ<k+ 1 =c(l). 0 

Lemma 4.2. There is a winning strategy for player 1 for VERTEX GENERALIZED GEO- 

GRAPHY if and only if charac(Xi,,, Yi,)=false. 

Proof. charac(Xi,, Y,,) = charac( (s}, V- (s}) d enotes whether there is a winning 

strategy for player 2 for VERTEX GENERALIZED GEOGRAPHY played on 

G[{sju(V-{s})]=G with starting vertex s. q 
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Lemma 4.3. Let ill be an internal node of T, and letjl andjz be the two children of i. 

Let charac(Xj,, Yjl), charac(Xj,, Yj,) be given. Then charac(Xi, Yi) can be computed 

in 8(l) time. 

Proof. We will show how, for all XEXi and all RGP(X,, Yi,x), we can determine 

which player has a winning strategy in the game VGG(Xi, Yi,x, R). We model all 

possible (optimal) plays in this game by a rooted labeled tree, as described below. 

Nodes in this tree are of two types. The nodes of the first type are labeled with 

6-tuples of the form (v, p, Z1, Z,, cl, c2), where u is a vertex in Xj,UXj2UXi, p denotes 

a player (pE{L2}), cl is a characteristic in UYEX,, C(Y), and c2 is a characteristic in 

UK& C(Y). 
The tuple (a, p, Z1, Z2. c1 , c2) represents an (equivalence) class of positions during 

the game. Each of these positions is of the following type: The player 3-p just has 

moved to a vertex v; hence, player p must now move to an unvisited vertex adjacent to 

u. Z1 is the set of unvisited vertices in Xj, . If W1 is the set of unvisited vertices in Yj,, 

then c1 = charac(Z,, W,). Z, and c2 are defined similarly using Xj, and Yj,. 

Nodes of the second type are labeled with 6-tuples of the form (c(, p’, R’, Z;, Z;, c), 

with a~(1,2} denoting either the left or the right child of i in T, p’~{ 1,2} denoting 

a player. The father of a node with such a label will be a node of type one. If this father 

has the label (u, p, Z1, Z,, ci, c2), then VEZ~, R’cP(Z,, W,, u) and there is a winning 

strategy for player 2 in the game VGG(Z,, W,, v, R’) for W,, with charac(Z,, Wa)=ca. 

(Alternatively, one can take W, to be the set of unvisited vertices in Y,,.) Further, 

Z; =Z1 -{u} is the set of unvisited vertices in Xj, and Z; =Z2- {u} is the set of 

unvisited vertices in Xj,. c=charac(Z$_., W3 -.), with W3_a the set of unvisited 

vertices in Yj, _~. Nodes of this second type represent a certain subgame, described in 

more detail below. 

Call a node labeled (u, p, . . .) or (r, p, . .) a player p node. The children of a player 

p node denote the situations where player p can move to from the situation repres- 

ented by the player p node. These situations can either be a position in the game, or 

player p can decide to play a “subgame”. 

From a position in the game, represented by a node of type one labeled with 

(v,p,Z, ,Z2,cl,c2), player p has the following possibilities: he can move either to 

a vertex WEX~- {x} -Xj, - Xj,, with (u, W)EE (this vertex w cannot be visited earlier), 

or to an unvisited vertex in Z, - {v} u Yj, , or to an unvisited vertex in Z2 - {v} u Yj,. In 

the second and third cases, players will visit zero or more vertices in Yj, ( Yj,), and then 

a vertex in Z1 (Z,), or the game will halt because a player cannot move anymore. 

These situations can be represented by subgames of the VGG-type. Let W, denote the 

unvisited vertices in Yi, (c( = 1,2). The game that represents the situation is a game 

VGG(Z,, W,, U, R’), with R’G P(Z,, Yix, c). Note that player p acts as player 2 in such 

a subgame. If VGG(Z,, W,, u, P(Z,, Yi,)) is winning for player 2, then in this subgame, 

player 2 has a strategy that wins without reaching an outcome, i.e., player 1 loses by 

being unable to move. In this case, player p, who acts as player 2 in the subgame, has 

a winning strategy. If VGG(Z,, W,, c’, Cp)) is winning for player 1, then player 1 can win 
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the subgame without reaching an outcome. In this case, player p will lose when he 

moves to a vertex in Z,uYi_. In general, player p can decide to play a subgame 

VGG(Z,, W,, c’, R’) with R’ chosen such that this subgame is winning for player 2. In 

this way, he can force that this subgame ends with an outcome in R’. When player 

p decides to play this subgame, player 3 - p can choose an outcome from R’ (if R’ # @), 

and force that this outcome is the actual outcome of the subgame. (If p = 1, the roles of 

players 1 and 2 get switched.) 

We remark that it is not necessary to know W, and W2: at all times, all relevant 

information of these sets is contained in the characteristics. 

Now we describe how the tree T is built. The root of this tree is a node of type one, 

with label (x, 2, Xj,, Xj,, charac(Xj,, Yj,), charac(Xj,, Yj,)). This tuple indeed repres- 

ents the situation as it is in the beginning of the game VGG(Xi, Yi, x, R). 
A node of type one, labeled with (v,p,Z1,Z2,c1,c2), with V~Xi-{x}, has no 

children. This is so because, when such a vertex u is reached, the game has ended. 

A node of type one, labeled with (u,p,Z1,Z2,c1,c2), with V~Xi-{x}, has the 

following children. (Note that the three cases represent the three different possibilities 

for player p, described above.) 

(1) For all WEXi-Xjl -Xj2-{x}, with (0, w)EE, take a child node of type one, 

labeled with (w, 3 -p, Z1 - {II}, Z2 - { v , c’, , c;). If VEZ~, then suppose ci =(fr ,fi), and } 
take c; =fi(o). If z;$Z,, then take c; =cr. We have that if c1 =charac(Z,, W,), then 

c; =charac(Z, -iv}, W,). Define c; in the same way. 

(2) If VEZ, then, for any R’, with c1 =(fi,f2) and fi (v, R’) =false (i.e., there is 

a winning strategy for player 2 in the subgame VGG(Zi, WI, v, R)), take a child node 

of type two, labeled with (1,3-p,R’,Z1 -(vj,Z2-{v},c). Suppose c2=(g1,g2). Take 

if vEZz, c=gz(v), and if v$Z2, take c=c2. This case represents the decision of player 

p to play the subgame VGG(Zi, WI, c, R’). 

(3) If vEZ2, we take in a similar way as in the previous case child nodes of type two, 

labeled with (2,3-p,R’,Z,-{c},Z,-{ }, ), h v c w ere c is derived from c1 similar as 

above. 

Next we describe the children of nodes of type two, labeled with (c(, p, R’, Z1, Z2, c). 
We suppose that c( = 1. The case g = 2 is similar. Take, for every (4, c’, z)ER’, a child 

node of type one, labeled with (z, 3 -q, Z1 , Z2, c’,c) if p= 1, and labeled with 

(z, q, Z1, Z2, c’, c) if p = 2. When the outcome of the subgame VGG(Z,, WI, v, R’) is 

(q, c’, z), then in this subgame, player q moves to z, leaving a graph with characteristic 

c. As player p has the role of player 1 in this subgame, it follows that if p = 1, then in the 

game VGG(Xi, Yi, v, R) player q moves to z and, hence, player 3 -q must move from 

z. If p=2, then in the game VGG(Xi, Yi, v,R), player 3-q moves to z; hence, player 

q must move from z. If Wi is the set of unvisited vertices in Yj~ after the move to vertex 

z, then we have that c=charac(Z,, W;) and c’=charac(Z,, W;), as W2= W; and by 

choice of outcome. 

We now show how to compute for which player there is a winning strategy in 

VGG(Xi, Yi,x, R). For each tree node, we determine whether it is winningforplayer 1, 
or winningfor player 2. This is done bottom up in the tree T, starting at leaf nodes. The 
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game VGG(Xi, Yi, x, R) is winning for player 1 if and only if the root node of T is 

winning for player 1. 

For leaf nodes, there are two cases: 

(1) A player p node that is a leaf of T and of type two, or of type one of the form 

(c’,p, . ..). with v~Xi-{x), is losing for player p and, hence, winning for player 3-p. 

(Player p must move, as the game has not ended yet, but has no winning move 

available.) 

(2) For player p nodes that are a leaf of T and of type one, of the form 

(~j,p, Z,, Z2, cl, cz), with tl~Xi, one can determine in the following way whether this 

node is winning for player 1 or player 2. The characteristic charac(Xi - {x, u}, U), with 

U the set of unvisited vertices in Yj, u Yj,, is uniquely determined. It is an element of 

C(Xi, {x, r}), and can be determined recursively with the procedure described in this 

proof. Now we have instead of Xi the set Xi - {x, u}, which is of smaller size. Hence, 

recursion depth is O(k). Instead Of Xj, and Xj,, we have sets Z1 and Z2, and instead of 

charac(Xj,, Yj,) and charac(Xj,) and charac( Yj2), we have ci and c2 here. Suppose the 

computed characteristic is c = charac(Xi - {u, v}, U). It follows that the outcome 

corresponding to the leaf node is (v, 3 --p, c). (As player p must move from v, player 

3 -p has moved to t..) Hence, the node is winning for player one if this outcome is in 

the set of outcomes R, i.e., (c, 3 -p,c)~R. 

An internal player p node is winning for player p if and only if at least one child of 

the node is winning for player p. (p player p can choose a situation, represented by one 

of the children of the node. He can win if he can choose such a situation that is 

winning for him.) 

In this way, one can determine whether the root of the tree is winning for player 1, 

i.e., whether there is a winning strategy for player 1 in VGG(Xi, Yi,x,R). 

All information needed for charac(Xi, Yi) can be determined in this way. As only 

charac(Xj, ), charac(Xj,), and the structure of Xi, Xj,, Xj, and edges between these 

vertices are consulted, the procedure uses constant time. 0 

Now we are able to derive the main result of this subsection. Note that in the 

Lf-notation, a large constant factor depending on k is hidden. 

Theorem 4.4. For every constant k 3 1, VERTEX GENERALIZED GEOGRAPHY (with specijed 

starting vertex) can be solced in C (n) time,for graphs G = (V, E) with treewidth <k, that 

are given together with a tree decomposition with treewidth <k. 

Proof. Compute, for every iEl, charac(Xi, Yi). This is done by starting at leaf nodes 

(Lemma 4.1) and then repeatedly computing charac(Xi, Yi) when this has been 

computed for both children of i (Lemma 4.3). When charac(Xi,, YiO) has been deter- 

mined, the answer to the problem can be given (Lemma 4.2). As per node ill, only 

constant time is used; this takes in total c(lZl)=fl(n) time. 0 
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Note that the constant factor in the algorithm grows very fast with k. The following 

bound is known on the number of bits Si needed to denote charac(X, IV), with 1 WI = I: 

Sl d 1.2”- 1)s1m2 + 1. Sl_ 1. One can observe that the time to compute one value of 

charac(Xi, IV,), when these values are known for the children of node iEZ, is poly- 

nomial in the number of bits in these charac-strings and, hence, polynomial in Sk+ i. 

So, adding 2 to k gives one extra level of exponentiation in the constant factor hidden 

in the L”-notation, i.e., the constant factor grows faster than exponentially in k. Thus, 

our algorithm will only be practical for very small values of k, probably only for 

k= 1,2,3. However, a technique is known to optimize algorithms that work on tree 

decompositions. This technique, which basically is a tree variant of the well known 

Myhill-Nerode result on finite-state automata, is advocated, among others by 

Fellows and Langston [23] (see also [9]). It would carry too far to explain here more 

about this method. We expect that with the help of this MyhilllNerode technique, it is 

possible to construct practical algorithms for several small values of k. On the other 

hand, it may be true that a constant factor that is superexponential in k is unavoid- 

able. Algorithms that solve in linear time problems which are NP-complete for 

arbitrary graphs on tree decompositions with treewidth at most a constant k have 

a constant factor that is exponential in k. It is not surprising when similar algorithms 

for PSPACE-complete problems are more complicated and much slower. 

The algorithm can be modified in order to obtain similar results for related games. 

Note that, for each of the algorithms mentioned below in this subsection, the same 

comments about the constant factor hidden in the ‘0’ notation apply as for the 

algorithm of Theorem 4.4. 

Theorem 4.5. For every constant k 3 1, VERTEX GENERALIZED GEOGRAPHY without speci- 

fied starting vertex can be solved in O(n) time for graphs G =( V, E) with treewidth < k, 

that are given together with a tree decomposition with treewidth < k. 

Proof. VERTEX-GENERALIZED GEOGRAPHY without starting vertex on G=( V, E) is 

equivalent to VERTEX GENERALIZED GEOGRAPHY On G’=(Vu{v+,V++}, 

Eu{(~+,v++)}u{(~++, w) 1 WE V}) with starting vertex vf. It is easy to make a tree 

decomposition of G’ with treewidth <k + 1, given the tree decomposition of G. 0 

Theorem 4.6. For every constant k3 1, HAMILTONIAN CIRCUITCONSTRUCTIONGAME and 

HAMILTONIAN PATH CONSTRUCTION GAME can be solved in O(n) time for graphs G = (V, E) 

with treewidth d k, that are given together with a tree decomposition with treewidth <k. 

Proof. This is done with a method similar to VERTEX GENERALIZED GEOGRAPHY. Basi- 

cally, one must change the charac-functions a little, and incorporate in functions 

charac(Xi, B’i) whether Wi=8. We omit the details. 0 

It is not clear whether the other problems that are considered in this paper can be 

solved in polynomial time on graphs with bounded treewidth. For the SIMPLECELEMEN- 

TARY) PATH CONSTRUCTION GAME, it seems that incorporating the length of the paths in 
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the characteristics will give rise to characteristics of non-polynomial size. For EDGE 

GENERALIZED GEOMETRY, the size of the characteristics in our type of scheme becomes 

exponential, because a vertex u can be visited O(degree(u)) times, which can be linear. 

This problem disappears when we assume a fixed upper bound on the degree of the 

vertices. We use the following lemma. 

Lemma 4.1. Let G = (V, E) be a graph with treewidth <k and maximum vertex degree 

<d. Then the treewidth of the edge graph of G is at most (k+ 1)d - 1. 

Proof. Consider a tree decomposition ({Xi 1 iel}, T=( I, F)) of G with treewidth d k. 

Take Yi = {(u, W)E E ( U~Xi V WEX~ 1. For every pair of edges (v, w), (w, x)EE, note that 

3: (II, w), (w, X)E Yi, namely, take icl, with W~Xi. Also note that the set of nodes iEI, 
with (u,w)~Yi, is the union of the subtree of T {iElI VEX~} and the subtree of 

T {iElI w~Xi}. As 3i: G’, weXi, these subtrees are not disjoint; hence, their union is 

a connected subtree of T. It follows that (1 Yi 1 ill}, T=( I, F)) is a tree decomposition 

of the edge graph of G. Clearly, Qiel: (Yi(dd.IXild(k+ I)d. 0 

Theorem 4.8. For every constant k 3 1, d 3 1: EDGE GENERALIZED GEOGRAPHY can be 
solved in O(n) time for graphs G = (V, E) with treewidth <k and maximum vertex degree 

<d, that are given together with a tree decomposition with treewidth <k. 

Proof. EDGE GENERALIZED GEOGRAPHY on G with starting vertex L’ is equivalent to 

VERTEXGENERALIZEDGEOGRAPHY on the edge graph of G, with starting vertex one of the 

<d vertices that correspond to an edge with head II. Now use Lemma 4.7 and 

Theorem 4.4. 0 

Clearly, Theorems 4.6 and 4.8 hold also for the case without specified starting 

vertex. We now consider an application to QUANTIFIED SATISFIABILITY. 

Definition. Let F = Q 1 x1 Q2 x2 . Q,,x, E be a well-formed quantified boolean expres- 

sion, where each Qi is either V or 3, and E is a boolean expression in conjunctive 

normal form. The graph GF is defined as follows: GF=( (x1,. . ., x,}, EF), with 

E,={(xi,xi+r)lf <i < n>u{ (Xi, xj) 1 there exists a clause c in expression E that con- 

tains a literal xi or Xi, and that contains a literal Xj or K}. 

Corollary 4.9. One can decide in 0(n) time whether a formula F of the form described 
aboz;e is true, when the treewidth of GF is bounded by a constant k, and E is given with 

a tree decomposition of G, with treewidth <k. 

Proof. Consider the transformation from QUANTIFIED MATISFIABILITY to VERTEX GENER- 

ALIZED GEOGRAPHY, given in [35]. It is not hard to see that if GF has treewidth Q k, then 

the treewidth of the graph resulting from this transformation has treewidth C(k), and 
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that the corresponding tree decomposition can be constructed from the tree decompo- 

sition of GF in C(n) time. Then apply Theorem 4.4. 0 

In all cases, if the required tree decomposition is not given, it can be found (if it 

exists) in C(nlogn) time [38]. It is also possible to find parallel algorithms that use 

polylogarithmic time for the considered problems on graphs with bounded treewidth. 

Theorem 4.10. For every constant k>, 1, VERTEXGENERALIZEDGEOGRAPHY,EDGEGENER- 

ALIZED GEOGRAPHY restricted to graphs with maximum degreead (d constant), HAMIL- 

TONIANCIRCUITCONSTRUCTION GAME, HAMILTONIAN PATH CONSTRUCTIONGAME when re- 

stricted to graphs with treewidth 6 k belong to the class NC. 

Proof. This follows directly from the algorithms and the fact that a suitable tree 

decomposition with T a tree of logarithmic depth can be found in polylogarithmic 

time on a (CRCW or EREW) PRAM [12,31]. 0 

A similar type of result holds for QUANTIFIED SATISFIABILITY. Lengauer [33,34] 

introduced a method for hierarchical description of graphs. With this method, it is 

possible to specify graphs that have a size exponential in the size of the specification. 

Theorem 4.11. For each constant k> 1, VERTEXGENERALIZEDGEOGRAPHY,HAMILTONIAN 

PATHCONSTRUCTIONGAME and HAMILTONIANCIRCUITCONSTRUCTIONGAME for hierarchi- 

cal graphs, where each cell contains at most k vertices, can be solved in time linear in the 

size of the spec$cation. 

Proof. Use a method similar to the method for graphs with bounded treewidth. For 

each cell Gi, we compute charac( Vi, Xi), where Vi are the vertices in cell Gi and Xi is 

the set of all other vertices in the expansion of Gi. We omit the details. 0 

Note the huge savings in running time over the straightforward algorithm to first 

expand the graph, and then use backtracking: the latter algorithm can use time double 

exponential in the size of the specification. 

4.2. EDGEGENERALIZEDGEOGRAPHY on cacti 

In this section we give a linear-time algorithm for EDGE GENERALIZED GEOGRAPHY on 

cacti, based on graph rewriting. The resulting algorithm is easier and more practical 

than the algorithm for EDGE GENERALIZED GEOGRAPHY on graphs with bounded 

treewidth and degree. Also, we do not need to restrict the degree of the graphs here, 

but, on the other hand, the class of cacti is much more limited than that of the graphs 

with treewidth 62. 

We will use the following notations: (G,s) denotes the game (instance), where the 

EDGE GENERALIZED GEOGRAPHY game is played on the graph G with starting vertex s. 
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We will allow for parallel edges and self-loops in the undirected graphs that we are 

dealing with. Write (G, s)=(H, t) if and only if there is a winning strategy for player 

1 in (G, s) o there is a winning strategy for player 1 in (H, t). 

Lemma 4.12. Let G=( V, E) be an undirected graph. Let s, UE V, degree(v)= 1, (u, w)&, 

ufs, w#s. Let G-{v,w} denote the graph (V-{u,w},E-{(x,y)~E(x=u V x=w}). 

Then (G,s)=(G-{v,w),s). 

Proof. We show the construction in Fig. 8. Suppose player j~(l, 2) has a winning 

strategy in (G - {u, w}, s). Then he has a winning strategy in (G, s): as long as player 3 -j 

does not move to w, make the same moves as in (G-{u, w}, s). When player 3 -j 

moves to w, then move to v and win the game. Now the lemma follows. 0 

Lemma 4.13. Let G=( V, E) be an undirected graph. Let (u, w)EE; degree(v)=de- 
gree(w) = 2; and s${u, w}. Let the neighbors of c be w and x, and the neighbors of w be 

v and y. Let G’=(V-{v,w},E--{(x,v),(v,w),(w,y)}u{(x,y)}). Then (G,s)=(G’,s). 

Proof. The construction is shown in Fig. 9. The game on both graphs is similar: e.g., 

when player i moves from x to y in G’, this corresponds to the situation that player 

i moves from x to V, then player 3 -i moves from v to w, and then player i moves from 

w to y in G. 0 

Lemma 4.14. Let G =( V, E) be a directed graph. Let VE V; degree(v)=2; and suppose 

both edges adjacent to u have the same other endpoint w. Suppose v#s. Let 
G-{v}=G[V-{u}]. Then (G,s)=(G-{v),s). 

Fig. 8. 

Fig. 9. 
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Fig. 10. 

Fig. 11. 

c2 --K- 
Fig. 12. 

Proof. The construction is shown in Fig. 10. If there exists a winning strategy in 

(G- {v}, s) for player Jo{ 1,2), then there exists one in (G, s): move as in (G- {u}, s), 

except when player 3 -j moves to v, then move back to w. 0 

Lemma 4.15. Let G=( V, E) be an undirected graph. Let VE V be adjacent to two 

self-loops e, =(u,u) and e2 =(v,u) (el #ez). Then (G,s)=(G’,s) with, G’=(V, E- {e,,e,}). 

Proof. Similar as before. When player 3 -j moves over e, or ez, then player j moves 

over the other edge in {el,et} (see Fig. 11 for the construction). 0 

Lemm 4.16. Let G=( V, E) be an undirected graph. Let VE V. Suppose v is adjacent to 

exactly 3 edges, where exactly one of these is a self-loop, and suppose v #s. Let G - {v} 

be as above. Then (G, s) = (G - {v}, s). 

Proof. Suppose there is a winning strategy for player jE{1,2} in (G-(u},s). Then 

there is a winning strategy for player j in (G, s). As long as player 3 -j does not move to 

v, player j moves as in (G- (u},s). Suppose player 3-j moves to u. Let e, be the 

self-loop (u, v), and let e2 be the other unused edge, adjacent to u (see Fig. 12). Moving 
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Fig. 13. 

Fig. 14. 

over edge e2 is either a winning or a losing move, regardless of what player makes the 

move. So, if it is a winning move, playerj moves over e2, and if it is a losing move, then 

player j moves over e,, and player 3-j must move over e, and loses the game (see 

Fig. 13 for the construction). 0 

Lemma 4.17. Let G=( V, E) be an undirected graph. Let VE V; suppose v is adjacent to 
exactly 2 edges, one of which is a self-loop. Let (v, w)~ E, v # w be the other edge. Suppose 

vfs. Then (G,s)z(G-(~3,s). 

Proof. Similar as before. Playerj plays in G as in G - {v}, but when player 3 -j moves 

to v from w, then playerj moves over the self-loop and wins the game (see Fig. 14 for 

the construction). 0 

Lemma 4.18. After applying the rules ofLemmas 4.12-4.17 as often as possible, starting 
with (G, s), with G a connected cactus, a game (H,s) will result, with H =( {s},@), 

H=({s},{(s,s)}) or H=({s,v},{(s,v)})_for some v. 

Proof. (See Fig. 15 for the possibilities for H.) Each application of one of Lemmas 

4.12-4.17 will result in another, smaller cactus. Note that the biconnected components 

of G form a tree. Every leaf node in this tree that corresponds to a single edge or 

a cycle with even length will disappear with Lemma 4.12, 4.13 and 4.14. Every leaf 

node corresponding to a cycle with odd length will reduce to a self-loop. Suppose no 

application of one of Lemmas 4.12-4.16 is possible. The resulting graph H cannot 

have more than one biconnected component. Suppose not. Look at a biconnected 
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Fig. 15 

component that is a leaf in the tree of biconnected components if we do not look to 

self-loops. If it is a cycle, and some vertices (# the unique vertex adjacent to other 

biconnected components) have self-loops, then Lemma 4.15 or 4.16 can be applied. If 

it is a cycle without such self-loops, it can be reduced to nothing or a self-loop. If it is 

a single edge, then Lemma 4.12,4.15 or 4.17 can be applied. With a similar argument, 

H cannot have a single biconnected component with three or more vertices. So, H has 

at most 2 vertices. Simple case analysis gives the theorem. 0 

Theorem 4.19. EDGE GENERALIZED GEOGRAPHY can be solved in C(n) time on cacti. 

Proof. First we remark that we may restrict ourselves to connected graphs. Cacti have 

fi(n) edges. It remains to show that by proper choice of data structures, we can 

dynamically determine where one of Lemmas 4.12-4.17 can be applied, in O( 1) 

amortized time per operation. Hereto, we use for each vertex an integer variable, that 

denotes the current degree of the veretex, and a boolean variable, that denotes 

whether it has an adjacent self-loop. (We may assume, by Lemma 4.15, that each 

vertex has 0 or 1 adjacent self-loops.) In a queue Q we put each vertex, where one of 

Lemmas 4.12-4.14,4.16 and 4.17 can be applied. Repeatedly, a vertex is taken from Q; 

if the vertex has not been deleted already by an earlier operation, the operation 

corresponding to v is applied. For each removed edge, its still existing endpoints have 

their degree updated, and are possibly put in Q, and some other checks are made 

(depending upon the particular operation), possibly resulting in the setting of a “self- 

loop boolean”, or putting one or more vertices in Q. We omit the easy, but tedious, 

details. Finally, if the resulting graph H = ({s}, 8), then player 2 has a winning strategy; 

otherwise, player 1 has a winning strategy. 0 

It is possible to prove other lemmas of a similar flavor as Lemmas 4.12-4.17. With 

similar techniques one can show the following result. 

Theorem 4.20. EDGE GENERALIZED GEOGRAPHY can be solved in O(n) times for directed 

graphs G =( V, E) with the property that the undirected graph G’=(V, { (II, w) 1 (v, W)E 

E V (w, V)E E}) is a cactus. 

Also, similar algorithms can be designed for the VERTEX GENERALIZED GEOGRAPHY 

game on cacti. The advantages of this approach over the algorithms in Section 4.1 are 

the simplicity and better running time (also in constant factor) of the algorithm. 
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5. Final comments 

This research leaves several directions for further research. On the one hand, there 

are still several interesting variants that have not yet been shown to be PSPACE- 

complete, like EDGE GENERALIZED GEOGRAPHY without specified starting vertex, and 

most of the games considered in this paper on undirected graphs. One of the more 

promising of these seems to be VERTEX GENERALIZED GEOGRAPHY on undirected graphs 

with specified starting vertex. It may well be that this problem is solvable in poly- 

nomial time using graph matching. (Recall that this problem without specified starting 

vertex is equivalent to the problem whether the input graph has no perfect matching 

[19, p. 711.) On the other hand, much work can still be done on the complexity of the 

problems when restricted to special classes of graphs. There are many interesting 

problems in this area that are worth being studied. 

We close with a mention, without proof, of some other special cases of the problems 

considered in this paper: 

0 VERTEX GENERALIZED GEOGRAPHY. EDGE GENERALIZED GEOGRAPHY,SIMPLE PATH CON- 

STRUCTIONGAME and ELEMENTARYPATHCONSTRUCTIONGAME are solvable in Q(n+e) 

time on acyclic graphs, but become PSPACE-complete if restricted to graphs 

obtained by adding one edge to an acyclic graph. 

l All games that are considered in this paper are linear-time-solvable on (undirected 

graphs that are) trees. 

l SIMPLE PATH CONSTRUCTION GAME is solvable in p(n) time on cacti. 

l ELEMENTARY PATH CONSTRUCTION GAME is solvable in (?(n3 + 2d’2n) time for cacti with 

maximum vertex degree d. 
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