
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=tjit20

Journal of Information and Telecommunication

ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/tjit20

Validation of decision-making in artificial
intelligence-based autonomous vehicles

Christopher Medrano-Berumen & Mustafa İlhan Akbaş

To cite this article: Christopher Medrano-Berumen & Mustafa İlhan Akbaş (2020): Validation of
decision-making in artificial intelligence-based autonomous vehicles, Journal of Information and
Telecommunication, DOI: 10.1080/24751839.2020.1824154

To link to this article: https://doi.org/10.1080/24751839.2020.1824154

© 2020 The Author(s). Published by Informa
UK Limited, trading as Taylor & Francis
Group

Published online: 01 Oct 2020.

Submit your article to this journal

Article views: 192

View related articles

View Crossmark data

https://www.tandfonline.com/action/journalInformation?journalCode=tjit20
https://www.tandfonline.com/loi/tjit20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/24751839.2020.1824154
https://doi.org/10.1080/24751839.2020.1824154
https://www.tandfonline.com/action/authorSubmission?journalCode=tjit20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=tjit20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/24751839.2020.1824154
https://www.tandfonline.com/doi/mlt/10.1080/24751839.2020.1824154
http://crossmark.crossref.org/dialog/?doi=10.1080/24751839.2020.1824154&domain=pdf&date_stamp=2020-10-01
http://crossmark.crossref.org/dialog/?doi=10.1080/24751839.2020.1824154&domain=pdf&date_stamp=2020-10-01

Validation of decision-making in artificial intelligence-based
autonomous vehicles
Christopher Medrano-Berumena and Mustafa İlhan Akbaş b

aComputer Science, Florida Polytechnic University, Lakeland, FL, USA; bElectrical Engineering and Computer
Science, Embry-Riddle Aeronautical University, Daytona Beach, FL, USA

ABSTRACT
The autonomous vehicle technology is considered as a significant
market disruptor for multiple industries. However, to reach this
potential and to be accepted by the public, autonomous vehicles
must be proven to be reliable and safe. Therefore, validation is
essential for improving the public trust for autonomous vehicles
and deploying them for everyday transportation activities. There
have been a number of significant efforts on validation of
autonomous vehicles; and real-life testing and test tracks have
been the major platforms for these activities. However, simulation
has also been gaining popularity due to its advantages in cost,
time and safety. In this paper, we present a simulation scenario
generation methodology with pseudo-random test generation to
validate the decision-making system of autonomous vehicles. The
methodology separates the validation concerns and focuses on
generating scenarios that test the decisions taken by the vehicle.
The implementation demonstrates the capabilities and the
efficiency of the approach.

ARTICLE HISTORY
Received 16 June 2020
Accepted 13 September 2020

Keywords
Autonomous vehicles;
validation; simulation;
testing; verifiable AI

1. Introduction

Successful autonomous vehicle (AV) technologies could fundamentally transform various
industries such as automotive, transportation, energy, farming and so on. To achieve this
potential, there is a significant investment in artificial intelligence (AI) technology, which is
at the heart of these platforms. Consequently, autonomous capabilities such as those
afforded by advanced driver assistance systems (ADAS) and other automation solutions
are increasingly becoming available in the marketplace.

As the introduction of AVs becomes more inevitable, questions of their safety and viability
also becomemore apparent. In order to gain the public trust for adopting the technology and
to convince federal entities for allowing AVs on the streets, a reliable way to validate and verify
AV competence needs to be established. An AVwill not be accepted unless it is demonstrably
as competent, at the very least, as its human counterpart. This can be achieved through vali-
dation and verification, the process by which a product is shown to satisfy the needs of the

© 2020 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/
licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

CONTACT Mustafa İlhan Akbaş akbasm@erau.edu Electrical Engineering and Computer Science, Embry-Riddle
Aeronautical University, Daytona Beach, FL 32114, USA

JOURNAL OF INFORMATION AND TELECOMMUNICATION
https://doi.org/10.1080/24751839.2020.1824154

http://crossmark.crossref.org/dialog/?doi=10.1080/24751839.2020.1824154&domain=pdf&date_stamp=2020-09-29
http://orcid.org/0000-0002-5450-3522
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
mailto:akbasm@erau.edu
http://english.tdt.edu.vn
http://www.tandfonline.com

stakeholders and regulatory bodies. This is actually a serious issue for not only AVs but all
autonomous cyber-physical systems such as unmanned aerial vehicles or autonomous robots.

Due to the novelty of AV validation and verification, the requirements of this field are
still unclear and there is yet to exist a regulatory body to define what specifications an AV
must meet. There is a safety standard for electronics in regular vehicles, the International
Organization of Standardization’s ISO 26262 (ISO, 2018). ISO 26262 is a risk-based safety
standard that provides a process to prove functional safety through a vehicle’s life cycle
for its electronic components and systems. Current methods of AV validation and verifica-
tion such as shadow driving or annotated images-based testing are costly, slow, danger-
ous and resource intensive (Razdan et al., 2019). Hence, modelling and simulation is an
indispensable asset to achieve validation goals for AVs.

This paper is an extended version of our ACIIDS 2020 paper (Medrano-Berumen &
Akbaş, 2020), where we described our initial studies on the simulation development meth-
odology for the validation of AV decision-making. The proposed approach follows a frame-
work that is built according to the ‘separation of concerns’ principle (Alnaser et al., 2019;
Medrano-Berumen & Akbaş, 2019) and separates the role of low-fidelity simulation testing
for AV decision-making from other testing methods such as high-fidelity simulation testing
for perception systems. In this paper, we extend our approach with a comprehensive lit-
erature review, a complete description of the approach with model generation details and
simulations to describe additional example scenarios.

In our solution, a semantic language is designed to describe the scenarios for testing
the decision-making component of an AV. To enable automatic test generation and
control, we need to be able to define scenarios by using parameters. As all parameters
are not independent of one another, they should be able to constrain each other to
limit the input space to legal scenarios, which can be done automatically through the
use of a constraint solver (George & Mohamed, 2011). Hence, details used to describe
roads are parameterized, allowing us to both randomly and deterministically generate
roads and street networks.

We focus on the topology of the region in consideration to verify an AV in the most
efficient way possible. The roads within that region are broken down into their most
elementary segments which are then turned into road pieces, single road blocks that
are connected to make up more complex roads in the simulation. Thus, the input space
is limited further while defining the parameters through which coverage-driven validation
and verification methods will be searching.

The parameterization is done for the behaviour of actors in a driving scenario as well,
giving us a full description of the scenario that the vehicle under test perceives. This gives
us the means by which test scenarios can be generated with entirely random features. By
designing the language to describe all possible scenarios, complete coverage of the AV’s
complex domain can be virtually achieved.

Focusing on the decision-making at AVs enables the utilization of low-fidelity simu-
lation. The efficiency of this approach can be used with validation features such as asser-
tions to classify scenarios and detect edge cases. The scenario generation capability allows
positioning the AV under test within this simulation by hardware or software in the loop
techniques using any existing systemmodelling environment, where the vehicle perceives
its virtual environment and acts at each step. Data for further analysis is collected during
and after the run as part of this framework.

2 C. MEDRANO-BERUMEN AND M. İLHAN AKBAŞ

2. Related work

The safe deployment of AVs in traffic is still an open challenge for both academia and
industry. Hence, there are various initiatives in industry and research on testing AVs.
However, most of these methods fall short by some measure. In this section, we describe
the current state of the testing and validation for AVs with a focus on modelling and
simulation.

The most common form of AV testing is known as ‘Shadow Driving,’ where a driver is
ready to preemptively prevent an accident or to take over in case the AV decides to dis-
engage (Favarò et al., 2017). To verify that AVs will be at least as safe as humans, this
method is shown to take at least 275 million miles (Kalra & Paddock, 2016). Some if not
all of those miles would also need to be repeated if there were to be any update to the
AV under test. Using test tracks is also common for real-world testing, as this allows com-
panies to test specific and sometimes extreme scenarios. Hardware-in-the-loop (HiL)
testing is another option that allows connecting the AV’s brain into a simulation system
and testing the interaction with specific hardware components simultaneously (Sarhadi
& Yousefpour, 2015).

Several entities have been combining the common testing methods to develop their
own framework for testing AVs. However, there is yet to be a single framework adopted
as a standard. For instance, Waymo tests each of their primary subsystems, the vehicle,
their hardware, and their software, individually as well as together using simulation,
closed-course testing, and real-world driving (Waymo safety report: On the road to fully
self-driving, 2018). The scenarios they focus on are based on training the vehicle behav-
ioural competencies as designed by Berkeley’s PATH, such as detecting bikes and ped-
estrians or responding to emergency vehicles (Nowakowski et al., 2015), as well as
behavioural competencies designed by Waymo themselves. PEGASUS (Hallerbach et al.,
2018), a joint effort between multiple groups from science and industry, aims to
develop a full toolchain for AV validation, looking at traditional vehicle validation and
new innovations in the field for inspiration. A common trait with these is that they are
still in progress of being designed and provide no hard definition for when an AV can
be demonstrated to be sufficiently competent.

Test scenario generation is critical for the validation efforts. (Fremont et al., 2020) pro-
posed a methodology for generating tests using a scenario description language (Fremont
et al., 2019), identifying unsafe tests using runtime verification (Dreossi et al., 2019), and
testing those scenarios at a higher fidelity in the form of a test track. However, rather
than focusing on separation of concerns or domains, they focus on using a high-fidelity
simulator that is tied closely to the test track in that it uses LiDAR data collected from
the test track to generate the simulation environment. Rather than developing a testing
regime using validation methodology, they also emphasize more on edge case testing.
We follow a different approach and instead of verifying the AV through a single form of
testing, we break down the components and testing methods in order to reduce complex-
ity and gain coverage. The different components of the AVs to be broken down are the
perception, object recognition, decision-making, vehicle dynamics. These components
are verified at different levels in the system by using platforms such as simulation, hard-
ware-in-the-loop, and real-world testing.

The simulation has been an important tool for studying cyber-physical systems (Akbaş
et al., 2015, 2016; Akbaş & Turgut, 2011; Rentrope & Akbaş, 2017). Simulators used for AV

JOURNAL OF INFORMATION AND TELECOMMUNICATION 3

testing vary by great degree in what their approach and focus are. Vehicle-in-the-Loop
simulators place a physical representation of the vehicle under test (often an actual
vehicle) on a platform surrounded by projected screens to create the full driving experi-
ence from the driver’s perspective. Some of the testing approaches focus on using simu-
lation to verify that newly learned manoeuvers (e.g. u-turns, merging) are tested until they
can be performed at a satisfactory rate. Others use simulations based on scenarios that
their vehicles in the real world encountered (Dolgov, 2016). In these systems, each impor-
tant scenario from real life can be fuzzed into generating more scenarios based on the
original to strengthen the coverage of that test. There are also several recent initiatives
aiming for the standardization of AV validation by integrating different techniques. Intel-
ligent Testing Framework (Li et al., 2016) and PEGASUS are two important examples of
such approaches.

There are also simulators focusing on vehicle dynamics, to test the internal machina-
tions and physics of the vehicle driving on the road. V-REP is a robotics testing environ-
ment for vehicle dynamics that allows the user to experiment with sensors, mechanics,
and control algorithms (Freese et al., 2010). Another example, VTI, uses open-source
formats, OpenSceneGraph and OpenDRIVE, to describe the road network and includes
highly detailed built-in vehicle models (Jansson et al., 2014). PreScan is a well-known com-
mercial product which allows the user to define scenarios and execute them in its runtime
environment with different 3rd party integrations (Tideman & Van Noort, 2013). SynCity is
a simulator with an emphasis on realistic scenarios for sensor testing andmachine learning
training, working at the communication protocol level for realistic sensor feedback (Keirst-
ead et al., 2010).

Traffic simulators are used to implement the logic of transportation control systems and
simulate traffic at the micro level, macro level, or both. SUMO is a popular open-source
traffic simulator with a low-overhead for running city-size road networks at a microscopic
level (Behrisch et al., 2011). It has beenusedby both academia and industry in variousprojects
(Goss et al., 2019). CORSIM is also a microscopic traffic simulation system that includes
implementations of more complex driving behaviours such as spillback changes and toll
plazas (Halati et al., 1997). MATSIM is another open-source agent-based microscopic traffic
simulator, which is designed to bring together the fields of traffic simulation, large-scale com-
putation, choice modelling, and complex adaptive systems (Horni et al., 2016). Vires is
involved in the development of several open-source standards to define scenarios, roads,
andvehicle dynamics, aswell asVirtual TestDrive, a complete tool-chain for driving simulation
that uses those standards (Dupuis & Karl, 2017).Waymo’s Carcraft combines virtualmapswith
sensor data from the real world to recreate scenarios that their shadow driving fleet have
encountered, fuzzing them for variation (Kehrer et al., 2018). Uber’s Advanced Technology
Group created AVS, a web-based visualization toolkit that allows users to visualize an AV’s
environment when making decisions. In this system look aheads, predictions, and so on
are visually represented through different colours on the map (ATG, n.d.).

There is a small group of simulators optimized as deep learning platforms, which focus on
the training process. NVIDIA’s DRIVE Constellation (Goodwin, 2019) focuses on using the
GPU to efficiently train the AV using two servers, one to simulate realistic sensor data
while the other simulates the entire AV software stack. Cognata (Nair & Wishart, 2018)
creates a comprehensive AV feedback loopwith a realistic environment to train AVs by com-
bining PhysicsStudio with TrueLife 3D Mesh. PhysicsStudio adds a layer of dynamic traffic

4 C. MEDRANO-BERUMEN AND M. İLHAN AKBAŞ

models while TrueLife 3D Mesh uses computer vision and deep learning algorithms to
create meshes of cities. rFpro creates realistic road in simulation for the same purpose by
using data collected from the real world andmatched with HDmaps (Nair &Wishart, 2018).

The majority of the simulators target testing of the full vehicle stack, from scene percep-
tion and understanding to making a decision for action in that scene. In our approach, we
focus mainly on the decision-making step. In other words, our approach is designed to test
the decision-making of the AV under test with the assumption that perception (sensors
and sensor fusion) and action (vehicle dynamics) are functioning perfectly. We chose
MATLAB as our simulation platform, as it provides a full tool-chain testing platform, the
Automated Driving (AD) toolbox (The MathWorks, Inc, Release R2018b), with the capability
to eliminate the vehicle dynamics or realistic visuals for sensor testing, two things that
would create unnecessary complexity at the abstracted level. By rendering all objects in
the scenario, from the vehicles to the pedestrians as three-dimensional boxes, we
obtain the necessary level of abstraction to make the testing vehicle agnostic.

To provide interoperability among simulators, a common language is necessary when
describing scenarios that will often be read into or exported from the simulators. For
driving scenarios, these mainly fall into two categories: road description language or scen-
ario description language. A road description language describes the street network which
includes the main details such as geometry, lanes, signage, lights, speed limit, and some-
times texture. Some of the road description languages include VIRES’s OpenDRIVE (Dupuis
et al., 2010) and CommonRoad (Koschi et al., n.d.), both of which use an XML format to
define the street networks. Scenario description languages describe different actors and
how they operate on the road. These include Foretellix’s M-SDL (M-SDL, 2019), VIRES’s
OpenSCENARIO (Menzel et al., 2018), and Berkeley’s Scenic (Fremont et al., 2019). Open-
SCENARIO takes an XML approach similar to OpenDRIVE, while M-SDL and Scenic use a
tabbed approach in the language similar to Python.

3. Scenario generation approach

The scenarios for AV verification is generally generated by using the scenarios from real-life
situations. Most of the time, the data are collected from naturalistic driving experiments
and replicated in simulation with some fuzzing to increase the coverage. Due to how long
itwould take toexperienceeverypossible scenario, this is an impossible task to tackle. Toover-
come this obstacle, our approach defines the possible properties and types of roads and
actors in a specific operational domain and creates a system that generates a scenario from
those properties’ randomization. If this system manages to cover all possibilities in a well-
defined input space, then not only have we defined a way to describe the scenarios but
also away to construct the scenarioswithout the need for any extra real-worlddata collection.

Our goal is to verify the decision-making part of the AV at a highly abstracted level
which requires only the logical components of a scenario: the scenario elements and
their positions relative to the AV under test in the scenario. Once we are done with the
scenario testing of the decision-making component, these scenarios can then be trans-
lated to the existing languages meant to define all scenarios in a standard format such
as OpenDRIVE (Dupuis et al., 2010), the scenario can then be moved to a higher fidelity
simulator to be tested for varying platforms such as HiL, ViL and varying environmental
or terrain conditions.

JOURNAL OF INFORMATION AND TELECOMMUNICATION 5

It is important to note that there is a need for a clear definition of separation of concerns
at this point. The validation mechanism must determine where to draw lines to avoid
unnecessary complexity. For instance, let us say we must decide on the significance of
the width of a median for an AV’s decision. If it plays a part in the decision of the AV,
then its physical properties should be varied at this lower level of simulation. If only the
presence of the median matter, then this can be simplified to a boolean value that
inserts a median of constant width.

AnAV’sdecisionsaremainlybasedon the road, actors in the scenario, obstacles, traffic rules,
and its goal. By constructing the scenarios basedon individual road segments, the goal is auto-
matically to get to the end of the generated road segment. The only other potential goal anAV
could have would be parking, though this can be attached to road segments that specifically
represent parking lots or other parking areas, with the intent to park in any spot or a specific
one. Traffic rules and signals are determined by location and are specific to the road they are
on, meaning they can be attached to the road as parameters or properties as well.

Actors in a driving scenario are most often used to describe other vehicles. However,
actors in test scenarios can also be used to describe pedestrians, bikes, emergency
vehicles, and other dynamic objects on or adjacent to the road. We consider obstacles
as static actors, following all of the properties of the dynamic actors except the travelling
path. This means that a scenario can be defined purely in terms of its road and its actors.

A matrix-based languagewas designed in our earlier work to describe scenario properties
(Medrano-Berumen & Akbaş, 2020). We extend this language in this paper with a matrix
definition for the road network and another for the actors in the scenario. Each row of the
roadmatrix represents a single roadpiece thatmakes up the roadnetwork orpath in the scen-
ario, and each column represents a property of the road. Each row of the actor matrix rep-
resents an actor in the scenario, and each column represents a property of the actor. Each
value in thematrix is either a numeric value or a string, allowing formore complex properties
with potentially variable lengths to be described. Changing any cell in either matrix then
changes the scenario, creating an efficient way to randomly generate individual scenarios.

3.1. Road piece generation

The roadonwhich theegovehicle andother actorsdrive is generatedbydefining roadpieces,
the basic road building blocks. Each road piece is the smallest identifiable layout of a road
segment that can be encountered while driving, each with their own individual properties,
such as roundabouts, intersections, turns and so on. By defining these road pieces and all
possible variations, a significant coverage is attained both by the pieces alone and combined.

Since the ego vehicle only depends on information within a certain local vicinity to prop-
erly manoeuver, more complex road networks are not within our scope. In other words, the
ego vehicle only cares about its immediate surroundings andnotwhat is across the block if it
is not heading there. Therefore, generating a road far away from the ego vehicle is not of our
concern. The road is therefore generated from where the ego vehicle will begin and con-
tinues piece by piece, creating with it the path that the ego vehicle will follow.

While the pieces constrain themselves to roads technically possible in the real world, the
validation for the road network is performed as it is being generated. With each new piece
about to be placed, the 3D space around this potential piece is checked to ensure it will not
conflict with a previous piece, as there would then be no reason to test the scenario.

6 C. MEDRANO-BERUMEN AND M. İLHAN AKBAŞ

Performing the validity check for new road pieces during the road network generation
instead of when defining the road matrix saves computation time. This also saves time that
would have been wasted running illegal scenarios that are not logically possible. The
advantage of random scenario generation is the ability to batch run several of these scen-
arios at a time to more quickly identify interesting scenarios.

To generate the road piece in simulation, the parameters of the scenario that the
road will be placed in, the points that make up the centre line of the road, the
width, and optional lane markers are used. Clothoid curves are used to smoothly
connect the points, allowing one to describe the road. Each road piece has its own
script to generate the necessary information for inserting it into the scenario since
each has its own unique layout.

Figure 1 shows the road generation loop that is used in our design. The roads are
created in the simulation by feeding the road matrix into a loop that iterates over the
rows and using a switch statement to pass along the parameters to the appropriate
script according to the road type. The generated pieces are then validated before the
road function is called. When a road piece fails the validation, it is not placed in the scen-
ario and the system moves on to the next row.

Each added road piece is a part of the ego vehicle’s path meaning each piece is placed
in a sequence to make a single route. To do this, each new road piece’s coordinates, the
points that make up the centre line for the road function, are rotated to align the road’s
tangent line at its first point with the tangent line of previous piece’s last point and
then translated to that point. If two pieces are different in widths for a reason such as
differing number of lanes, a transition piece is placed in between, which gradually
changes widths from one piece to the other. This transition piece also takes care of
phasing in or out of lanes when the number of lanes changes.

Parameters for roads are defined as they apply to existing road pieces. Whenever a
new road piece is designed, it is examined for any details that cannot be described by
existing parameters. If there are details that cannot be described by the existing par-
ameters, new parameters are added and the matrix is expanded. Table 1 shows our
current parameters. This parameter list grows as we analyse more operational
domains and their critical parameters.

3.2. Actor generation

Actors are defined in our scenario generation method as any component of the scenario
that is not a road piece or the ego vehicle. Hence, we include stationary obstacles as well in
our actor definition. The types of actors an AV can expect to encounter are limited by its
operational domain.

The common actors are different types of cars, trucks, motorcycles, and people, making
their dimensions easy to randomize, as they are all usually within a certain range of sizes.
The important factor is their behaviour, as it directly impacts the decisions of the ego
vehicle. While it is important to be able to simulate normal behaviour, in order to maximize
bug finding, behaviours that deviate from the norm demand more effort.

In simulation, actors are created using the dimensions of the actor, and the trajectory
along with the parameters in Table 2. Translating the continuous range of possible beha-
viours of different actor types into discrete values to be able to define them in terms of a

JOURNAL OF INFORMATION AND TELECOMMUNICATION 7

limited number of parameters is a challenging task. We decided to start with some easily
identifiable behaviours that could be generated as some path with extra parameters for
variation in terms of speed or basic constant values such as horizontal offset as seen in
the offset parameter in Table 2. The behaviours we started off with were cutting the

Figure 1. Road generation loop.

8 C. MEDRANO-BERUMEN AND M. İLHAN AKBAŞ

ego vehicle off, veering outside of the lanes, and platooning for vehicle actors, and cross-
ing the road straight and with a stop for pedestrian actors.

The trajectory of an actor consists of the points that make up its path and the speeds at
each of those points. Other optional parameters are also available such as pitch and yaw.
Points along the trajectory are connected using clothoid curves as the roads are to main-
tain continuity. The speeds are interpolated linearly so that the car accelerates or decele-
rates at a constant acceleration between them to reach the given speeds at their
respective points. Together, the parameters given by the actor matrix help define the tra-
jectory once passed into the appropriate path function. This is then validated as in Figure 2
before the actor is placed in the scenario to avoid illegal scenarios where actors cross into
each other, as most simulation platforms lack this check.

3.3. Scenario matrix

The model must be capable of creating scenarios to reflect the set of all possible situations.
Our matrix-based semantic language is designed for breaking down the factors and it
defines a scenario including roads, actors, and traffic logic. Therefore, the creation of

Table 2. Actor parameters or columns in actor matrix.
Parameter Values Type Description

actorType 1–2 int Determines whether actor is vehicle or pedestrian
carType 1–3 int For vehicles, determines whether car, motorcycle, or truck; affects dimensions
pathType 1–6 int Determines what path the vehicle or pedestrian will take (i.e. cut-off)
movSpeed −3–3 int Determines mps offset from speed limit or standard walking speed
x 0.67–1 float Offset factor for max width
y 0.67–1 float Offset factor for max length
z 0.67–1 float Offset factor for max height
startLoc 0–1 float Where along the road the actor will start from 0 at the start to 1 at the end
forward 0–1 int Determines whether vehicle will be going in same or opposite direction for ego

vehicle; left or right across the road for pedestrians
offset 0–1 float Offset for certain behaviour types (i.e. how far off a vehicle will veer from the

centre for that behaviour)
cutOffPoint 0–1 float For vehicle cut off behaviour, how far until it cuts off the ego vehicle
stopPoint 0–1 float For vehicle stopping behaviour, how far until it stops suddenly

Table 1. Road parameters in road matrix.
Parameter Values Description

roadType 1–5 Determines the piece to be generated
roadLength 80–200 In m, how long the road is; 1–10 m for a pedestrian crosswalk
lanes 1–5 How many lanes, repeated for number of roads in road piece (‘###··· ’)
bidirectional 0–2 0 = one-way, 1 = bidirectional w/ double solid yellow lines, 2 = bidirectional w/

dashed yellow line
midLane 0–3 0 = nothing, 1 = mid-turn-lane, 2 = median, 3 = large median
speedLimit 30–80 In mph, goes by 5’s, converted to mps when passed into function
intersectionPattern 0–2|0–2|0–2 For fourway intersection, calculates a valid pattern for the bidirectional

parameter for other roads
curvature1 −0.25−+0.25 Starting curvature for multilane road
curvature2 −0.25−+0.25 Finishing curvature for multilane road
pedPathWays pos1_side1_freq1 Composite parameter of variable length placing pedestrian spawning points

somewhere along the road
outlets pos1_side1_size1 Composite parameter of variable length placing an empty piece of road besides

the road being implemented
showMarkers 0, 1 Boolean value determining whether to show lane markers

JOURNAL OF INFORMATION AND TELECOMMUNICATION 9

Figure 2. Actor generation loop.

10 C. MEDRANO-BERUMEN AND M. İLHAN AKBAŞ

test scenarios in our matrix-based system generalizes scenario characteristics and create
an efficient system of labelling and sorting.

The actor matrix and road matrix define a scenario with the ego vehicle automatically
generated at the start of the path. A workflow to develop the language-to-scenario
methods was made that passed parameters for the number of road and actor assertions
or rows to the road and actor generation methods. The numerical matrix is read as input
where each row is a different assertion describing a single road piece or actor that can then
be parsed to generate the scenario. To do this, road network and actors are reduced to
their most basic elements in terms of Newtonian physics such as centre of mass and
dimensions. These elements are then parameterized according to real-life conditions. It
is important to note that the model contains no environmental factors. The overall scen-
ario generation flowchart is given in Figure 3.

An example for randomly generated road and actor matrices can be seen in Figure 4.
Each of these matrices was made with 10 assertions. The parameter values are selected
from a uniform distribution of the valid range for each. The road starts at location (0,0)
with the road piece described by the first row in the road matrix which in this case is a
multilane road piece. This piece is seen at the top of the Bird’s Eye View in Figure 5 and
continues downward with each subsequent row that is placed. All 10 roads were placed
in this scenario, as none created any conflicts of legality.

4. Implementation study

The scenario generation using the designed semantic language was implemented as a col-
lection of MATLAB scripts. The workflow illustrated in Figure 6 is used to test the scenarios.

Figure 3. The flowchart for creating a test scenario.

JOURNAL OF INFORMATION AND TELECOMMUNICATION 11

This consists of calling a function simpleRun that takes parameters for the number of road
pieces and actors desired, which then gets passed to the runSimulations function. This calls
the function getRandMatrix to initialize the configuration for a scenario using random
values for each of the road matrix and actor matrix’s parameters from within their
ranges. These matrices are then passed into a matrix2scn function, which constructs the
scenario object. It then passes the matrices to their respective functions road2scn and
actor2scn which follow Figures 1 and 2 to add the respective objects to the scenario.
Finally, the simulation loop starts along with the visualization of an automatically gener-
ated ego vehicle that follows the path.

Figure 4. Randomly generated road and actor matrices.

Figure 5. Sample scenario from randomly generated matrices.

12 C. MEDRANO-BERUMEN AND M. İLHAN AKBAŞ

4.1. Road pieces

Geometric centres are used for placing the roads in simulation models with the width of
the road at each of those centres, the banking angles, and the details of the lanes. Then,
generating the roads is a matter of taking an input and converting it into a series of points
that the road follows within the context of the scene. The first value in the input defines
what type of road piece will be created. As each road piece is generated, it is stitched to
the previous piece by rotating it so that the tangent line along the first point is lined up
with the tangent line of the last point of the previous piece and shifting it to that coordi-
nate in the driving scenario. Between two consecutive pieces, there is also an intermediary
piece to smooth transitions between two pieces with different number of lanes. Figure 7
shows a randomly created street network with multiple road types. In the following sec-
tions, we present several road piece examples and show how the parameters are used
to generate these pieces.

4.1.1. Multi-lane road
One of the main goals in designing the multilane road piece was creating a building block
from which all other road pieces would be built on top of. To be able to build up the other
road pieces, the multilane road piece had to be as customizable as possible. Therefore, it
uses most of the properties that exist as columns in the road matrix.

Figure 6. Scenario generation workflow.

JOURNAL OF INFORMATION AND TELECOMMUNICATION 13

Road designers aim for making the curves G2 continuous to minimize jerk or sudden
change in acceleration (McCrae & Singh, 2009). A road being G2 continuous means that
it is made up of curves smoothly connected by up to two differentiations. The multi-
lane road piece has variable length and width that can take on virtually all geometries
with G2 continuity, which is a desired property when designing real roads. The parameters
determining the geometry of the road are curvature1 and curvature2. If either of them are
zero, the road is made of a line to a clothoid to an arc, where the arc is the non-zero value.
If both are zero, a straight line is made. And if both are non-zero values, then either a
Clothoid-Arc-Clothoid (0 to curvature1 to curvature2) or an Arc-Clothoid-Arc (curvature1
to curvature2) is generated. By composing the roads using these three primitives, the per-
mutations should make up all possible road types. The length of each of the three parts is
one third of the total length given from the determining matrix row. Figure 8 shows a mul-
tilane road example.

4.1.2. Four-way intersection
The four-way intersection creates a perpendicular intersection, where each road can have
its own number of lanes and direction of travel as given in Figure 9. They are placed across
from each other around a central rectangle calculated by using the widths of all four roads.
Once placed, the paths are determined by distributing the possible directions to each lane,
starting with left turns if possible, and following with right, and then forward. This is for the

Figure 7. Example of a street network with multiple road types.

Figure 8. Multilane road example.

14 C. MEDRANO-BERUMEN AND M. İLHAN AKBAŞ

direction on the intersection that connects with the previous road piece, as that is the criti-
cal one for the vehicle under test.

4.1.3. Side entrance
The side entrance is a road piece that splits the road with a median. It also has a side
entrance in the middle to a space as given in Figure 10. This piece is deliberately
created to encompass the logic of a real-life path. A side entrance can be highly
complex for validation scenarios since multiple vehicles and actors may interact with
each other at this location.

Figure 9. Four-way intersection example.

Figure 10. Side lot entry road piece example.

JOURNAL OF INFORMATION AND TELECOMMUNICATION 15

4.2. Actors

The actors in the scenarios can be randomly generated for both testing and demonstration
purposes. Actors can follow a straight path along the road with the option to have varia-
bility in several actions. To generate actors in the scenarios with the required variability, we
use the aforementioned parameters such as type, speed and dimensions. The main two
actor types are given in the following sections.

4.2.1. Vehicle
The vehicle actor is generated along the path (StartLocation parameter) and moves
forward along a lane or in the opposite direction given the Forward parameter and the
availability of an opposite direction (the road is bidirectional). Its size is determined
based on its vehicle type (Car, Truck, Motorcycle) and varies according to its dimensions.
In MATLAB, this sets the x, y, and z dimensions of the actor as all actors are represented
by boxes. Its path can be set to follow the lanes exactly or offset to varying degrees
from the lane which also uses an offset parameter. It moves at the road’s speed limit,
set in the road pieces parameters, with variation according to the MoveSpeed parameter.

4.2.2. Pedestrian
Pedestrians are set on either side of the road somewhere along the scenario based on their
initial location and their directions. Then the actors move across at an average walking
speed varied by using a speed parameter. Two path options are walking straight across
and walking across with a pause at some point in the middle.

4.3. Example scenario-1

Figure 11 gives an example scenario created in our system. Here, a curving multilane road
with a median is constructed as well as a pedestrian actor that crosses the road. The road’s
geometry follows an Arc-Clothoid-Arc pattern starting with a curvature of 0.009 and

Figure 11. Sample scenario including a multilane road with a median and a pedestrian.

16 C. MEDRANO-BERUMEN AND M. İLHAN AKBAŞ

ending with a curvature of−0.014, meaning the road starts offwith an arc with a curvature
of 0.009 for a third of the length, which is 50 m, transitions the curvature to −0.014 with a
clothoid curve for a third of the length, and finishes by continuing with that curvature in an
arc for a third of the length. For the pedestrian actor, a random point along the road is
selected, and the point directly to the left is calculated, its path moving across to the
right as the forward parameter was given as false. This actor starts moving once the scen-
ario begins, and by the time the ego vehicle arrives, the actor has almost gotten halfway
across. The ego vehicle was generated automatically.

The simulation data is collected during and after each run. The current collected data points
demonstrate safety of decisions and legality of the scenario’s definition. Since the scenarios are
generated by a certain input, they are available to be recreated whenever it is required.

For the actors, in order to minimize their box representation unrealistically occupying
the same space, roads store information regarding the actors and at what point in the
scene they are going over that lane. If two actors are at the same lane at the same
point in the simulation, a different lane is used or the actor is made to slow down for a
random but small period of time before moving forward. This does not apply to ped-
estrians as how they interact with each other is less critical in simulations.

4.4. Example scenario-2

The ego vehicle moves up a multilane road while another vehicle drives in the other direc-
tion. The other vehicle starts halfway through the road piece, and a metre-wide median
separates the actors.

Road Piece: [1 130 1 2 2 22.352 0121 −0.0047779 −0.01018 ‘000’ ‘000’ 1]

. Road Type: 1 (Multilane Road)

Figure 12. Ego vehicle and other actor in multilane road with median.

JOURNAL OF INFORMATION AND TELECOMMUNICATION 17

. Length: 130 m

. Lanes: 1

. Bidirectional: 2 (Yes, Dashed Yellow Line)

. MidLane: 2 (Small Median)

. Speed Limit: 50 mph (from mps speed)

. Intersection Pattern: n/a

. Curvature 1: −0.0048

. Curvature 2: −0.0102

. Pedestrian PathWays: n/a

. Outlets: n/a

. Show Markers: 1 (Yes)

Actor : [1 2 1 −3 6 3 2 0.23 0 0.47]

. Actor Type: 1 (Vehicle)

. Vehicle Type: 2 (Truck)

. Path Type: 1 (Normal)

. Move Speed: −3 (−3mps from regular speed)

. Dimensions: 6, 3, 2 (x, y, z proportions to regular truck size)

. Start Location: 0.23 (Starts 23% along path)

. Forward: 0 (Drives on reverse/opposite direction)

. Offset: 0.47 (Offset from main path)

5. Conclusion

The validation and verification is the most important tool to fill the gap between the
current AV technology and its pervasive use in the market. In this paper, we present a
test scenario generation method for AV simulation testing. Our method targets the vali-
dation of decision-making component of AVs. Therefore, we create a semantic language
and use it to propose road network and actor generation mechanisms for random and
constrained test scenario generation on a low-fidelity simulator with no consideration
of environmental conditions. The current system is capable of taking a particular street
network and producing the testing plan for it.

As the future work, we plan to integrate our solution with testing methods of other AV
functionality layers such as perception. We also would like to enable scenario export and
import features to exchange scenarios automatically with existing scenario generation
tools.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Notes on contributors

Dr. M. Ilhan Akbas is an Assistant Professor at the Electrical Engineering and Computer Science
Department of Embry-Riddle Aeronautical University. He received his PhD degree in Computer

18 C. MEDRANO-BERUMEN AND M. İLHAN AKBAŞ

Engineering from the University of Central Florida, and BS and MS degrees in Electrical and Elec-
tronics Engineering from the Middle East Technical University. He has research interests in connected
and autonomous cyber-physical systems, Internet of Things, modeling and simulation. He is a
member of IEEE, ACM, SAE, IEEE Communications, IEEE Internet of Things and Complex Systems
Societies.

Christopher Medrano-Berumen received his Master of Science and Bachelor of Science degrees in
Computer Science at Florida Polytechnic University. His master thesis was on developing a method-
ology for autonomous vehicle validation and verification in simulation. He has research interests in
validation and verification of connected and autonomous cyber-physical systems and modeling and
simulation.

ORCID

Mustafa İlhan Akbaş http://orcid.org/0000-0002-5450-3522

References

Akbaş, M. İ., Brust, M. R., Turgut, D., & Ribeiro, C. H. (2015). A preferential attachment model for
primate social networks. Computer Networks, 76, 207–226. https://doi.org/10.1016/j.comnet.
2014.11.009

Akbaş, M. İ., Solmaz, G., & Turgut, D. (2016). Molecular geometry inspired positioning for aerial net-
works. Computer Networks, 98, 72–88. https://doi.org/10.1016/j.comnet.2016.02.001

Akbaş, M. İ., & Turgut, D. (2011). APAWSAN: Actor positioning for aerial wireless sensor and actor net-
works. In IEEE Local Computer Networks (LCN) (pp. 567–574). IEEE.

Alnaser, A. J., Akbaş, M. İ., Sargolzaei, A., & Razdan, R. (2019, December). Autonomous vehicles scen-
ario testing framework and model of computation. SAE International Journal of Connected and
Automated Vehicles, 2(4), 205–218. https://doi.org/10.4271/12-02-04-0015

ATG, U. (n.d.). streetscape.gl. Retrieved April 10, 2020, from https://avs.auto/#/streetscape.gl/
overview/introduction.

Behrisch, M., Bieker, L., Erdmann, J., & Krajzewicz, D. (2011). SUMO–simulation of urban mobility: an
overview. In Proceedings of SIMUL 2011, the Third International Conference on Advances in System
Simulation. ThinkMind.

Goodwin, A. (2019). Nvidia Drive Constellation is an online training ground for autonomous vehicles.
Retrieved from https://www.cnet.com/roadshow/news/nvidia-drive-constellation-is-an-online-
training-ground-for-autonomous-vehicles/

Dolgov, D. (2016). Google self-driving car project-monthly report-September 2016-on the road (Tech.
Rep.). Google.

Dreossi, T., Fremont, D. J., Ghosh, S., Kim, E., Ravanbakhsh, H., Vazquez-Chanlatte, M., Seshia, S. A.
(2019). Verifai: A toolkit for the formal design and analysis of artificial intelligence-based
systems. In International Conference on Computer Aided Verification (pp. 432–442). Springer.

Dupuis, M., & Karl, W. (2017). Vtd-vires virtual test drive. Retrieved from https://www.mscsoftware.
com/product/virtual-test-drive.

Dupuis, M., Strobl, M., & Grezlikowski, H. (2010). OpenDRIVE 2010 and Beyond–Status and Future of
the de facto Standard for the Description of Road Networks. In Proceedings of the Driving
Simulation Conference Europe (pp. 231–242). INRETS, Arcueil.

Favarò, F. M., Nader, N., Eurich, S. O., Tripp, M., & Varadaraju, N. (2017). Examining accident reports
involving autonomous vehicles in California. PloS One, 12(9), e0184952. https://doi.org/10.1371/
journal.pone.0184952

Freese, M., Singh, S., Ozaki, F., & Matsuhira, N. (2010). Virtual robot experimentation platform v-rep: a
versatile 3d robot simulator. In International Conference on Simulation, Modeling, and Programming
for Autonomous Robots (pp. 51–62). Springer.

JOURNAL OF INFORMATION AND TELECOMMUNICATION 19

http://orcid.org/0000-0002-5450-3522
https://doi.org/10.1016/j.comnet.2014.11.009
https://doi.org/10.1016/j.comnet.2014.11.009
https://doi.org/https://doi.org/10.1016/j.comnet.2016.02.001
https://doi.org/https://doi.org/10.4271/12-02-04-0015
https://avs.auto/{\special {t4ht@@}\#\special {t4ht@@}}/streetscape.gl/overview/introduction
https://avs.auto/{\special {t4ht@@}\#\special {t4ht@@}}/streetscape.gl/overview/introduction
https://www.cnet.com/roadshow/news/nvidia-drive-constellation-is-an-online-training-ground-for-autonomous-vehicles/
https://www.cnet.com/roadshow/news/nvidia-drive-constellation-is-an-online-training-ground-for-autonomous-vehicles/
https://www.mscsoftware.com/product/virtual-test-drive
https://www.mscsoftware.com/product/virtual-test-drive
https://doi.org/https://doi.org/10.1371/journal.pone.0184952
https://doi.org/https://doi.org/10.1371/journal.pone.0184952

Fremont, D. J., Dreossi, T., Ghosh, S., Yue, X., Sangiovanni-Vincentelli, A. L., & Seshia, S. A. (2019).
Scenic: A language for scenario specification and scene generation. In Proceedings of the 40th
ACM Sigplan Conference on Programming Language Design and Implementation (pp. 63–78). ACM.

Fremont, D. J., Kim, E., Pant, Y. V., Seshia, S. A., Acharya, A., Bruso, X., Wells, P., Lemke, S., Lu, Q., Mehta,
S. (2020). Formal scenario-based testing of autonomous vehicles: From simulation to the real
world. arXiv preprint arXiv:2003.07739.

George, M. J., & Mohamed, O. A. (2011). Performance analysis of constraint solvers for coverage
directed test generation. In ICM 2011 Proceeding (pp. 1–5). IEEE.

Goss, Q., Akbaş, M. İ., Jaimes, L. G., & Sanchez-Arias, R. (2019). Street network generation with adjus-
table complexity using k-means clustering. In 2019 Southeastcon (pp. 1–6). IEEE.

Halati, A., Lieu, H., & Walker, S. (1997). CORSIM-corridor traffic simulation model. In Traffic congestion
and traffic safety in the 21st century: Challenges, innovations, and opportunities urban transportation
division, asce; highway division, asce; federal highway administration, usdot; and national highway
traffic safety administration, usdot.

Hallerbach, S., Xia, Y., Eberle, U., & Koester, F. (2018). Simulation-based identification of critical scenarios
for cooperative and automated vehicles (Tech. Rep.). SAE Technical Paper: 01-1066.

Horni, A., Nagel, K., & Axhausen, K.W. (2016). Themulti-agent transport simulationmatsim. Ubiquity Press.
ISO, I. (2018). 26262-1: 2018. Road vehicles–Functional safety–Part, 1.
Jansson, J., Sandin, J., Augusto, B., Fischer, M., Blissing, B., & Källgren, L. (2014). Design and perform-

ance of the VTI Sim IV. In Driving Simulation Conference (pp. 128–138). VINNOVA.
Kalra, N., & Paddock, S. M. (2016). Driving to safety: Howmany miles of driving would it take to demon-

strate autonomous vehicle reliability? Transportation Research Part A: Policy and Practice, 94, 182–193.
https://doi.org/10.1016/J.TRA.2016.09.010

Kehrer, M., Pitz, J., Rothermel, T., & Reuss, H. C. (2018). Framework for interactive testing and devel-
opment of highly automated driving functions. In 18. Internationales Stuttgarter Symposium
(pp. 659–669). Wiesbaden: Springer Vieweg.

Keirstead, J., Samsatli, N., & Shah, N. (2010). SynCity: An integrated tool kit for urban energy systems
modelling. Energy Efficient Cities: Assessment Tools and Benchmarking Practices, 29, 21–42. https://
doi.org/10.1596/978-0-8213-8104-5

Koschi, M., Manzinger, S., & Althoff, M. (n.d.). CommonRoad: Documentation of the XML Format.
Li, L., Huang, W. L., Liu, Y., Zheng, N. N., & Wang, F. Y. (2016). Intelligence testing for autonomous

vehicles: A new approach. IEEE Transactions on Intelligent Vehicles, 1(2), 158–166. https://doi.org/
10.1109/TIV.2016.2608003

The MathWorks, Inc.MATLAB and automated driving system toolbox [Computer software manual].
(Release R2018b).

McCrae, J., & Singh, K. (2009). Sketching piecewise clothoid curves. Computers & Graphics, 33(4), 452–
461. https://doi.org/10.1016/j.cag.2009.05.006

Medrano-Berumen, C., & Akbaş, M. İ. (2019, April). Abstract Simulation Scenario Generation for
Autonomous Vehicle Verification. In Proceedings of the IEEE SoutheastCon (pp. 1–6). IEEE.

Medrano-Berumen, C., & Akbaş, M. İ. (2020). Scenario generation for validating artificial intelligence
based autonomous vehicles. In Asian Conference on Intelligent Information and Database Systems
(pp. 481–492). Cham: Springer.

Menzel, T., Bagschik, G., Isensee, L., Schomburg, A., & Maurer, M. (2018). Detaillierung einer stichwort-
basierten Szenariobeschreibung für die Durchführung in der Simulation am Beispiel von Szenarien
auf deutschen Autobahnen-english title: Detailing a Keyword Based Scenario Description for
Execution in a Simulation Environment Using the Example of Scenarios on German Highways.
In Workshop Fahrerassistenzsysteme und Automatisiertes Fahren (Vol. 12, pp. 15–26). Technische
Universität Braunschweig.

M-SDL (2019, September). [Computer software manual]. Version 0.9.
Nair, V. G., & Wishart, J. (2018). A study of driving simulation platforms for automated vehicles. CAV

Final Report, Arizona State University.
Nowakowski, C., Shladover, S., & Chan, C. (2015). Behavioral competency requirements methodology

project background regulatory issues and potential regulatory strategies for highly Automated
Vehicles (AVs) how to ensure safety prior to deployment? In Automated Vehicles Symposium. AVS.

20 C. MEDRANO-BERUMEN AND M. İLHAN AKBAŞ

https://doi.org/10.1016/J.TRA.2016.09.010
https://doi.org/10.1596/978-0-8213-8104-5
https://doi.org/10.1596/978-0-8213-8104-5
https://doi.org/https://doi.org/10.1109/TIV.2016.2608003
https://doi.org/https://doi.org/10.1109/TIV.2016.2608003
https://doi.org/https://doi.org/10.1016/j.cag.2009.05.006

Razdan, R., Akbas, M. I., Sargolzaei, A., Alnaser, A. J., Sahawneh, S., Alsweiss, S., & Vargas., J. (2019,
June). Unsettled Technology Areas in Autonomous Vehicle Test and Verification. SAE (Society of
Automotive Engineers) EDGE™ Research Report EPR2019001.

Rentrope, J., & Akbaş, M. I. (2017). Spatially adaptive positioning for molecular geometry inspired
aerial networks. In Proceedings of the 6th ACM Symposium on Development and Analysis of
Intelligent Vehicular Networks and Applications (pp. 1–8). ACM.

Sarhadi, P., & Yousefpour, S. (2015). State of the art: Hardware in the loop modeling and simulation
with its applications in design, development and implementation of system and control software.
International Journal of Dynamics and Control, 3(4), 470–479. https://doi.org/10.1007/s40435-014-
0108-3

Tideman, M., & Van Noort, M. (2013). A simulation tool suite for developing connected vehicle
systems. In 2013 IEEE Intelligent Vehicles Symposium (iv) (pp. 713–718). IEEE.

Waymo safety report: On the road to fully self-driving (2018).

JOURNAL OF INFORMATION AND TELECOMMUNICATION 21

https://doi.org/https://doi.org/10.1007/s40435-014-0108-3
https://doi.org/https://doi.org/10.1007/s40435-014-0108-3

	Abstract
	1. Introduction
	2. Related work
	3. Scenario generation approach
	3.1. Road piece generation
	3.2. Actor generation
	3.3. Scenario matrix

	4. Implementation study
	4.1. Road pieces
	4.1.1. Multi-lane road
	4.1.2. Four-way intersection
	4.1.3. Side entrance

	4.2. Actors
	4.2.1. Vehicle
	4.2.2. Pedestrian

	4.3. Example scenario-1
	4.4. Example scenario-2

	5. Conclusion
	Disclosure statement
	Notes on contributors
	ORCID
	References

