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Introduction 

An automaton d that is meant to work on finite input words may as well be given 

an infinite input word u: it works on u as if u were a “very large” finite word. The 

essential difference is in the way that ,ti accepts u; obviously, one cannot use 

acceptance by final state as for finite words. 

The first one to use automata to accept infinite words, with a particular acceptance 

criterion, was Biichi (in solving a decision problem in logic, [3]). Another criterion 

was given by Muller [26]. A deterministic finite-state automaton d accepts an infinite 

word u in the fashion of Muller if the set of states entered by d infinitely often during 

its computation on u belongs to a given family of “final” state sets. Thisfamily replaces 

the usual set of final states. Five criteria for accepting infinite words were proposed by 

Landweber in [20], including those introduced by Biichi and Muller, and he charac- 

terized the five corresponding families of infinitary languages accepted by determinis- 

tic finite-state automata in a topological setting. 

The relative power of these five acceptance criteria was subsequently compared for 

(deterministic and nondeterministic) finite-state automata [ 17, 341 pushdown auto- 

mata [23, 6, 71, Turing machines [40, 81, and Petri nets [38]. If one compares the 

results of these investigations, one notices some striking similarities. It seems that the 

acceptance types have the same relative power independently of the storage used by 

the automaton involved. Moreover, as for finite-state automata, connections between 

acceptance types and the lower levels of the topologically defined Bore1 hierarchy can 

also be observed for deterministic pushdown automata and Turing machines (see the 

survey [32]). These observations are the main motivation for the present paper. Using 

a general framework, we want to explain the similarities between the results obtained 

for the various specific types of automata (as is done for automata on finite words in 

[12]). Our abstract model of storage is called a storage type. It describes the storage 

configurations, together with the tests and transformations that can be applied to 

them. Automata equipped with a specific storage X (and a one-way input tape) are 

called X-automata. We study six (rather than five) families of o-languages that can be 

accepted by an X-automaton using six different acceptance criteria on the sequence of 
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states entered by the automaton during a computation. (It should be noted that 

acceptance can also be defined in terms of the storage configurations rather than the 

states, see [28], but this will give quite different results, cf. L-381). A possible approach 

to comparing the six acceptance criteria is by giving constructions on automata that 

show how one acceptance type can be simulated by another. In fact, as observed in [6, 

381, it is not too difficult to generalize most of the constructions given in [17] for 

finite-state automata, simply by “adding” storage instructions to the transitions. 

Hence, it is not much of a surprise that the inclusions between the six families for 

X-automata are similar to those formed by the families for finite-state automata. Of 

course, this is a rather boring and time-consuming approach. Also, if one wants to 

study X-automata satisfying a particular property (as, e.g., being real-time or deter- 

ministic), it is necessary to check each of the constructions to see whether it preserves 

the property under consideration (and if not, to adapt the construction). We use 

a more efficient way of transferring the results for finite-state automata to arbitrary 

storage types. Our main tool is a characterization of the w-languages accepted by 

X-automata in terms of (infinitary) transductions applied to the u-languages accepted 

by finite-state automata. Since we do not use the acceptance criteria to define 

transductions, this single result can be used to show that the inclusions that hold 

between the six families of finite-state o-languages are also valid for X-automata. 

This, of course, does not indicate whether or not an inclusion is strict. We show that 

the topological upper bounds on the complexity of accepted languages as given by 

Landweber for deterministic finite-state automata can be generalized to X-automata 

(as already suggested in [20]). This implies that for deterministic X-automata the 

inclusions are always strict. The same result holds for real-time automata. 

Besides investigating the relative power of the six acceptance criteria, we also study 

the expressive power of real-time automata and deterministic automata, relative to 

unrestricted automata. 

Section 1 contains the preliminaries to this paper. It introduces our notation on 

infinite words, and the few topological notions that we will need. In the second section 

we formalize the notions of storage type, automaton, and transducer, and we define 

the six different acceptance types we use in accepting infinitary languages. Apart from 

definitions, Section 2 already contains some preliminary results that are used in the 

rest of the paper. 

In Section 3 we study both nondeterministic and deterministic X-automata. First 

we present the above-mentioned characterization of the corresponding families of LL)- 

languages (Theorem 3.3). From this, we obtain the hierarchy for w-languages accepted 

by nondeterministic X-automata (Theorem 3.5). For specific storage types the hier- 

archy can be strict (to be more precise, it can contain three different families) or it can 

collapse into a single family. We give a sufficient condition for such a collapse 

(Theorem 3.1 I): the six families of w-languages accepted by X-automata are all equal 

when the storage X can simulate an additional (blind) counter. We formalize this 

notion of simulation of one storage type by another in terms of deterministic 

transductions. 



4 J. Engelfriet, H.J. Hoogehoom 

Real-time automata are investigated in Section 4. The inclusions between the 

families of o-languages accepted by real-time automata are very similar to those 

found in Section 3. Here, however, the inclusions are always strict (Theorem 4.9). The 

counterexamples are obtained by establishing topological upper bounds that are 

indeptenbenl 05 the s1Drage type. In kX1,1hese reSu\$S can be ex’renbed to Ihe larger 

class (of aulomala 1ba1 ho not have an ‘mki~1e compu’ra$lon on a Gn%e’mpuk W e ca% 

this property jinite delay. In the final part of Section 4 we compare the expressive 

power of real-time automata, automata with finite delay, and unrestricted automata. 

On the one hand., we obtain the result that real-time automata are as powerful as 

automata with finite delay for any storage type that can simulate an additional queue 

“in reia\ time” jTheorem 4.11). On the other hand, however,, we discuss a storage type 

for which real-time is less powerful than finite delay (Theorem 4.19). The power of 

finite-delay automata may be less than or the same as that of unrestricted automata, 

depending on the storage type (Theorem 4.21). 

We return to deterministic automata in Section 5. Again we obtain topological 

upper bounds on the accepted w-languages. Together with our basic characterization 

(given in Section 3) this is used to establish a proper hierarchy similar to the hierarchy 

for deterministic finite-state automata (Theorem 5.5). The expressive power of deter- 

ministic automata vs. nondeterministic automata is also discussed (Theorem 5.6). 

In Section b we study a storage type of “knaxima~ power”, in the sense that it can 

simulate any other storage type. The families of o-languages accepted by automata of 

this type coincide with the topological upper bounds mentioned above, that belong to 

the lcwer levels af tke taapalagical hiecarclry af Bare{ sets (Theacems 6.3 and 6.Q 

These results are similar to those obtained in [l, 301 for transition systems. They 

illustrate once more Viie strong connMiDn3 between acceptance type a~~ci tDpDk+a~ 

complexity. 

In the final section we discuss the possibility of studying arbitrary acceptance 

criteria (perhaps based on logic} rather than the six to which we have restricted 

ourselves in the first six sections. 

An extended abstract of this paper was presented at ICALP 89 [lo]. 

1. Preliminaries 

We assume ?ne reaber 10 ‘De ‘lanijilar wi?n ‘Iit ‘Dak nukin% ti Ynt YnXDv 6 

infinitary languages, e.g., as discussed in one of the following surveys and introduc- 

tions: [9, 15,32,36]. In this section we fix our notation and terminology, and we recall 

the tcopck&a> mimns rdevanl 10 Dur papeT. 

1.1. Sets and functions, inznite words 

We use N to denote the set of nonnegative integers. The symbol G (c) denotes set 

inclusion (strict set inchsjon); jn diagrams we will use * (-). We use n to indicate 
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that sets intersect, i.e., X n Y if X n Y#8. For a family A of sets, U.4 denotes the union 

of all elements of A. 

We use the following notations for a relation RcX x Y. 

R~‘={(~,x)EYxX~(X,~)ER}, for X’cX, R(X’)={JJEYI(X,~)ER for some 

XEX’}, ran(R)=R(X), and dom(R)=ran(R-‘). If .% is a family of relations and 

d is a family of sets, then 9fP’={R-‘IR~92~, ~?(.EZ)={R(A)IRE~,AE~~‘}$, 

dam(B)= {dom(~)lR~B}, and ran(R)=(ran(R)~R~G?}. 

A mapping f:A+Y, where A=N or A={O, 1, . . ..n-l> for some HEN, is called 

a sequence (over Y); it will sometimes be specified in the form (f(i))iEA . fis infinite in 

case A=N and finite in case A={O, 1, . . . . n- 1) for some ng N; in the latter case n is 

the length of fT denoted by IfI. 

Let C be an alphabet. A sequence over C is called a (finite or infinite) word over 

Z. An infinite word over C is also called an w-word over C. The set of all finite words 

over C, including the empty word A, is denoted by C*, and the set of all o-words over 

C by C”. Since a finite or infinite word u over Z is a mapping u:A-+C, u(i) denotes 

the (i+ 1)st letter of u (if it exists). A subset of C* is called a finitary language 

(or just language) over C; an w-language (or injinitury language) over C is a subset 

of Z”. 

The concatenation of a finite word x and an w-word u is the w-word x.u defined by 

(x.u)(i)=x(i) if idlxl and (x.u)(i)=tc(i-_l I) th x o erwise. A finite word x is a prefix of 

the w-word v if there exists an w-word u such that x.u = u. For a finite or infinite word 

u, z:[n] denotes the prefix of length n of u (when it exists), and pref(v) denotes the 

set of (finite) prefixes of II. For a finitary or infinitary language K, pref(K)= 

~{wf’(o)l=Ki. 
An infinite sequence of finite words (Xi)isN such that each Xi is a prefix of its 

successor Xi + 1 defines a unique element u of .Z*uC” by taking the “least upper 

bound” of the sequence, i.e., the shortest u that has each Xi as a prefix. u will be denoted 

by lub(xi)itN. Note that u can only be finite if the sequence is eventually stationary, 

i.e., if there exists a constant N such that u = Xi for i> N. 

Definition 1.1. Let KC C * be a finitary language. 

The w-power of K, denoted by K O, is the w-language 

{UECWIU=IUb(Xi)i.~, where X~EK and xi+l~xi.K for HEN}, 

the adherence of K, denoted by adh(K), is the w-language 

and the limit of K, denoted by km(K), is the w-language 

{uECwlpref(u)nK is infinite}. 
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1.2. Topology 

C” can be turned into a compact metric space by defining the distance function 

d(u, v) = 
0 if u=v, 
2-min{nlu[n]#v[n]) if ufv. 

With this distance, the open sphere of radius 2 -’ around UECO is the set u[n].Zw. 

The induced topology coincides with the product topology of C” (with the discrete 

topology on C), and is sometimes called the natural topology on C”. 

We will use 99 and 9 to denote the family of open and closed subsets of I”, 

respectively. These families form the basis of a hierarchy known as the Borel hierarchy. 
It consists of the families 9, g6, FJaa, . . . and the families 9, so, Fga, . , where, for 

a family X, %“a (X’,) is the family of denumerable intersections (denumerable unions) of 

Z-sets. Thus, in particular, 9J6 is the family of denumerable intersections of open sets, 

and F0 is the family of denumerable unions of closed sets. Note that F u 9 c P0 n g8. 

There is a close correspondence between the infinitary languages that are in the 

lower levels of the Bore1 hierarchy and the language-theoretic operations given above 

(see, e.g., [20, 22, 34, 21). 

Proposition 1.2. Let L c C”. Then 
(1) LEE ifand only ifL=K.C”for some KsC*. 
(2) LE.F ifand only ifL=adh(K)for some KGC*. 
(3) LE~?~ ifand only ifL=lim(K)for some KEC*. 

The Bore1 hierarchy is proper at each level, but in this paper we need this fact for the 

lowest two levels only. Using the above characterizations it is not difficult to give 

examples of w-languages that separate the Bore1 families F and 9, and the families 

F0 and F?8 (see, e.g., [20, Lemma 3.11). Recall that B, and 6~9~ (like B and 9) are 

“complementary”, in the sense that LEC” belongs to F0 if and only if its complement 

C” -L belongs to C!J6. 

Proposition 1.3. (1) (0, l}.l”EF-9. 

(2) O”1 .{O, l}WE9-F. 

(3) O*. 1WE(P0n96)-( Fug). 
(4) (0, 1}*.1”EF’I,-%6. 

(5) (o* 1)~E%6-F-a. 

2. Automata on o-words 

In this section we formalize how we use automata with storage to define w- 

languages. In the first subsection we define the notions of storage type and transducer 

(i.e., automaton with input and output). In Section 2.2. we fix our notation concerning 
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acceptance of w-languages (using six different criteria). The first two (technical) 

properties concerning o-languages are given in Section 2.3. We consider the various 

families of w-languages accepted by (nondeterministic and deterministic) finite-state 

automata in Section 2.4. In particular, we recall the relations between these classes; 

they will play an important role in the sequel of the paper as we will use them to 

obtain similar relations for the families of o-languages accepted by automata with 

arbitrary storage. Finally, in Section 2.5, we present some elementary results on 

transductions. 

2.1. Storage und automata 

For finite words, the general notion of an automaton, using some kind of storage, 

was introduced in [16, 27, 133. The resulting AFA theory (abstract families of 

automata) provides a useful framework for a uniform investigation of different types of 

automata (see [ 121). Here we attempt to set up a similar theory for automata on infinite 

words (see also [28]). The basic definitions can be taken over in a straightforward 

way. The particular variation of AFA theory that we use is similar to the one in [ll]. 

The basic constituents of a storage type are a set of configurations, together with 

sets of symbols representing tests and transformations that can be applied to these 

configurations, and an “interpretation” of these symbols. 

Definition 2.1. A storage type is a 5-tuple X = (C, Gin, P, F, ,u), where 

- C is a set of (storage) conjgurations, 

~ Ci, C C is a set of initial (storage) conjigurations, 

~ P is a set of predicate symbols, 
_ F is a set of instruction symbols, PnF = 0, and 

- p is a meaning function, which assigns to each PEP a (total) mapping p(p):C-, 

(true,fulse}, and to each ~EF a partial function ~(f):C-+C. 

The set of all Boolean expressions over P, using the Boolean connectives A, V and 

1, and the constants trtle and false, is denoted by BE(P); elements of this set are 

called tests. The meaning function is extended to BE(P) in the obvious way. We 

extend p also from F to F* by defining p(A) to be the identity on C and by setting 

p(fq)=p(q)op(f) for cp~F* and fEF, where 3 denotes function composition. 

Example 2.2. The storage type pushdown, denoted PD, is defined by PD =(C, Gin, P, 

F, ,LL), where 

C=T+, for a fixed infinite set r (of pushdown symbols), 

Ci” = r, 

P=(rop=y~~E~)u{bottom~, 

F= {push(y)lyE~Mpop), 
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and, for c=au with aET and UE~*, 

p(top = y)(c) = true iff 7 = a, 

p(bottom)(c) = true iff u = A, 

p( pop)(c) = u if u #A, and undefined otherwise. 

The storage type counter equals CTR = (N, { 0}, {zero}, { incr, deer}, u), where 

for n~kJ, 

p(zero)(n) = true iff n = 0, 

u(incr)(n) = n + 1, and 

p(decr)(n) = n - 1 if n 3 1, and undefined if II = 0. 

Definition 2.3. Let X =(C, Gin, P, F, u) be a storage type. An X-transducer is 

a construct & = (Q, C, 6, 4in, tin, d), where 

- Q is the finite set of states, 
- Z is the input alphabet, 
~ A is the output alphabet, 
~ the finite control 6 is a finite subset of Q x (Cu {A}) x BE(P) x Q x F* x A*, ele- 

ments of which are called transitions, 

~ qinEQ is the initial state, and 
_ CinECin is the initial storage configuration. 

Note that an X-transducer has no final states. These will be treated later (for finite 

words only). 

Let .d =(Q, C, 6, qin, tin, d) be an X-transducer for some storage type X =(C, Gin, P, 

F, u). A transition (q, a, fl, q’, cp, w) is a A-transition if a=A. d is real-time if it has no 

A-transitions or, equivalently, if 6 is a subset of Q x C x BE(P) x Q x F * x A *. 
SI is deterministic if, for every two different transitions (qi, ai, pi, 41, (Pi, Wi), i= 1, 2, 

from 6 with ql=q2, either al#a2 and a,, a2 #A or p(IJr A /~I~)(c)=false for every 

CEC. 

If 1 WI = 1 for each transition (q, a, fl, q’, cp, w) of d, then d is l-output. 
An instantaneous description (ID) of d is an element of Q x C* x C x A*. The 

instantaneous description (q, x, c, y) intuitively means that & is in state q, has read 

x from the input tape, has c as its storage configuration, and has written y on its 

output tape. The step relation of JZ!, denoted by t,, is the binary relation on 

Q x C* x C x d * defined by (q, x, c, y) t, (q’, x’, c’, y’) if there exists a transition (q, a, 0, 
q’,cp, W)E~ such that u(P)(c)=true, c’=u((p)(c), x’=xa, and y’=yw. Intuitively, this 

means that if .d is in state q and has the storage configuration c, it may use the 

transition (q, a, /II, q’, cp, w) provided c satisfies the test /I, and then it reads a from its 
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input tape, changes its state to q’, performs cp to the storage configuration, and 

writes w on its output tape. The reflexive and transitive closure of F,d is denoted 

by G. 
An inJinite run (or just run) of& is an infinite sequence Y = (Zi)i~N of IDS such that 

50 =(qin, A, ein, A), and ri k, Ti+ I for each i~kJ; it is a run on input lub(xi)i,~, with 

output lub (Yi )isN 9 where Ti=(qi, Xi, Ci, yi). The sequence (qi)ieN is called the state 
sequence of the run r. 

If .d has no run on an infinite input word with a finite output word, then ~4 is called 

o-preserving. Note that each l-output transducer is w-preserving. 

The injinitary transduction (or just transduction) of d, denoted by T(d), is defined 

as {(u, v)EZ~ x d wI there is a run of JY on input u with output v}. 

The family of transductions of X-transducers is denoted by XT. The subfamilies of 

XTconsisting of transductions of o-preserving and l-output transducers are denoted 

by XT, and XTl_,,.,, respectively. If we consider only deterministic or real-time 

transducers, we use the prefixes d- and r-, respectively. Thus, e.g., d-PDT, denotes the 

family of infinitary transductions defined by o-preserving deterministic pushdown 

transducers. In the same way we use the prefix dr- for transducers that are both 

deterministic and real-time. 

As usual, if D G Q is a set of final states, then thejnitary transduction T, (~2, D) is the 

set {(x, Y)E.Z* x d *)(qin, A, tin, A) t.z(q, x, c, y) for some qgD and CEC}. We use XT, 
to denote the family of finitary transductions of X-transducers; the prefixes d-, r-, and 

dr- are used as above. Note that we do have an acceptance condition for finitary 

transductions, as opposed to infinitary transductions. 

Example 2.4. Let .d = (Q, (a, b, c}, 6, qin, tin, {d}) be the PD-transducer with state set 

Q={ql, q2}, initial state qin=ql, initial storage configuration Gin = y, and the follow- 

ing transitions (we assume p and y to be different pushdown symbols): 

(41, a, bottom, ql, A AX 

(ql, b, true, ql, wh(b’), 4, 

(41, c> top = P, qz > POP, A), 

b, c, top=b’, q2, POP, 4, and 

(q2, A bottom, ql, A 4. 

Then .d is neither real-time nor deterministic (since the last two transitions have 

tests that are both true for the storage configuration p), but it will be deterministic 

after replacing the test “top = /?” by “1 bottom”. 
Note that .d has runs on each input from (ja}uK)“u((a}uK)* b”, where 

K = {b”c”l n> l}. However, .d is not o-preserving and does not produce infinite 

output for each of these o-words. More precisely, T( &‘)=(a*. K)” x {d}“. Changing 

~2 such that the first and second transition have output d yields an o-preserving 
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transducer. This will also change the transduction of d to ({a)uK)” x (d}Ou 

((a}uK)*b” x (d}“. 

Obviously, the step relation of a transducer d is not changed by replacing a 

test /3 in a transition by an equivalent test, i.e., by a test p’ such that ,u( p)=p( a’). 

Neither is it changed by omitting those transitions that have a test which is always 

false. 

Hence, if X is a blind storage type (i.e., X has no predicate symbols, cf. [14]), then we 

may assume that the transitions of an X-transducer are of the form (q, a, true, q’, cp, w). 

A special blind storage type is used to model finite-state transducers; it has neither 

predicate nor instruction symbols. The trivial storage type FS equals ({co}, {CO}, 8,8, 

8) for some arbitrary object CO. Note that @* = {A}. Hence, the transitions of an 

KY-transducer can be assumed to be of the form (q, a, true, q’, A, w). 

Finally, we need the notion of the product of two storage types. It combines the 

power of two storages that can be used in an independent fashion. 

Let Xi=(Ci, Cin,i, Pi, Fi, ,ui), i=l, 2, be two storage types with PrnPz=@ 

and FlnF,=@ The product of X, and X2, denoted X1 xX,, is the storage type (C, 

Gin, P, F, /L) with C=Ci xC~, Cin=Cin,1 XCi,,z, P=P~uPZ, F=FIuF~, and p 

defined by 

P(P)(Cl, c2)= 
i 

PI if PEP,, 
Pa if PEPS, 

Af)(Cl, c2)= 
(A(~)(c~),G) if .~EF,, 
(cl, PZ(~)(G)) if fcf’2. 

It is, of course, also possible to define the product of two storage types that have 

predicate or instruction symbols in common. In that case we distinguish between 

these symbols by first renaming them, e.g., by adding a subscript for each of the 

components. 

In a similar way, the product of more than two storage types can be defined. The 

product of n, n 3 1, storage types, all equal to X, is denoted by X”; we write pi andfi to 

denote the predicate symbol p and the instruction symbol f when applied to the ith 

component of X”. It is convenient to define X0 = FS. 

As an example, the storage CTR2 = CTR x CTR has two counters that may be 

incremented, decremented, and tested for zero independently from each other. The 

instruction incr2decrl first increments the second counter and then decrements the 

first counter (when defined). 

An X*-transducer is an X”-transducer for some neN. We will use X* as if it were 

a storage type (indeed, it can be formally defined as such, cf. [ 12, Lemma 4.511). So, 

we write, e.g., X* T to denote u,,,, X” T. 

In the remainder of this paper X=(C, Gin, P, F, p) denotes an arbitrary storage 

lype. 
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2.2. (a, p)-accepting injinite runs 

We will now discuss how an X-transducer .d may be used to accept w- 

languages by imposing acceptance conditions on the state sequences of its runs. 

Since, in this case, we are not interested in &“s output, .d is called an X-automaton. 
In our notation, we drop the output component from &, and from its transitions and 

IDS. 
Let Q be a finite set (of “states”) and let f: N-Q be a mapping (i.e., an infinite word 

~EQ”). As for all relations the range off; denoted by run(f), is the set {qEQlf(i)=q 
for some ieN); the injnity sef qf.fl denoted by inf(f), is the set {qEQlf(i)=q for 

infinitely many HEN). Note that i$(f’) is nonempty, due to the finiteness of Q; in fact, 

there exists an NEN such that f‘(i)Einf(f’) for i> N. 

Let 9’ c 2Q be a family of subsets of Q. Let p be a binary relation over 2” and let 

(T:Q”+~” be a mapping that assigns to each infinite sequence over Q a subset of Q. We 

say that an infinite sequence ,f’: FV -Q is (CJ, p)-accepting with respect to 9 if there exists 

a set DEQ such that o(f)p D. 
In the sequel oj’this puper \ce assume that p runges ouer the relations n, 5, or =, and 

thut 0 is one of the mappings ran or inj: Thus, we consider six types qf acceptance. 
Definitions and results that involve the letters CJ and p are always assumed to be 

universally quantified. 

The relation between the notation we use (see [34]) and the five types of “i- 

acceptance” as originally defined in [20] are given in Table 1, together with a short 

intuitive name for some of these types of acceptance. Recall that (inf n) is the 

acceptance type introduced by Biichi [3], whereas (inf =)-acceptance was first con- 

sidered by Muller [26] (for deterministic automata). (ran, =)-acceptance, not con- 

sidered by Landweber, was first studied in [34]. 

More precisely, for a given Y ~2”, an infinite sequence f’ of states is (run, n)- 

accepting if at least one state from US occurs in ,f: It is (run, s)-accepting if all its 

states are in D, for some DEC?. It is (in5 n)-accepting if at least one state from u9 

occurs infinitely often in,f: It is (inf, G)-accepting if there exist DEQ and NEN such 

that f(i)ED for i3 N, i.e., all states are in D from some moment onwards (recall that 

Q is finite). Finally, j’ is (run, =)-accepting or (it& =)-accepting if ran(f)E9 or 

irf(f) E.Q, respectively. 

Let .d = (Q, Z, 6, qi”, Gin) be an X-automaton, and let 9 G 2” be a family of subsets of 

Q. A run of .d is called (a, p)-accepring wifh respect to Y if its state sequence is 

(0, p)-accepting with respect to 9. 

Table I 

I -accepting 

I’-accepting 
2-accepting 

2’4ccepting 
3-accepting 

at least once 

alWyS 
infinitely often 

from some moment on 
(B&hi) 

(Muller) 
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Definition 2.5. The w-language (a, p)-accepted by .cP with respect to 9, denoted by 

L,,,(.&, 9) is the set {uEZ”I there is a run of .d on u that is (a, p)-accepting with 

respect to 9). 

The family of o-languages (a, p)-accepted by X-automata (with respect to some 

family of state sets) is denoted by XL,,,. As before, the corresponding families of 

u-languages (0, p)-accepted by deterministic and/or real-time X-automata are de- 

noted by d-XL,,,, r-XL,,,, and dr-XL,,,. 

As usual, for a set D of states of &‘, the (finitary) language L,(,d, D) accepted 
by .d with respect to D is the set {X~C*l(qi”, A, tin) F,$(q, X, c) for some qED and 

CEC). 

We wish to stress that we consider acceptance with respect to states rather than 

acceptance with respect to storage configurations (as in [28]). It was shown in [38] 

that (for Petri nets) these two approaches give quite different results. This will also be 

the case in the more general setting of X-automata. 

In the literature several other definitions are also used; clearly, in a uniform 

approach such as the present one, we had to made some choices. It is sometimes 

required that an X-automaton is “total”, e.g., in a “global” sense, meaning that the 

automaton has a run on every input w-word, or in a “local” sense, in which there 

should be an applicable transition for each instantaneous description of the auto- 

maton. Requiring totality changes (in general) the families XL,,, . In our opinion, 

totality should not be required by definition, but should be treated like any other 

property such as determinism or real-time. To keep this paper of reasonable length, 

we decided not to investigate totality. In fact, totality is not as straightforward to 

define for X-automata in general, mainly due to the presence of A-steps, and to the 

fact that some strorage instructions may be partial functions. 

We would also like to stress that in our model an input word can only be accepted 

using an infinite computation that reads every letter of the input. This differs from the 

acceptance criterion that is used in some of the work of Staiger and Wagner (e.g., 

[40]). They require only the existence of an infinite run (satisfying the acceptance 

condition) reading either the input or a finite prefix of it. As explained in [32, p. 4221 

this leads to incomparable results, e.g., for Turing machines as obtained in [40] on the 

one hand, and in [8] on the other. Note that for real-time automata both definitions 

coincide: an infinite run of a real-time automaton reads every input letter. 

Example 2.6. (I) Let .d be the (deterministic and real-time) ES-automaton with state 

set Q = jqO, q1 }, input alphabet Z= {O, l}, initial state qO, and transitions (qi,j> [rue, qj, 

A) for i, je{O, l}. Let S?={{ql>}, and d={Q>. Then 

L*(.d, (4, >)= (0, 1)“. 1, L,(.d, Q,={o, I>*> 

L ...,n(Czl, 9)=0”1.{0, l}“, L ,,,,n(JJ, d)=L,,,,E(~~, 3={0, 1)“, 

L mn, c(&G!, P)=L,,,, =(:&, S)=8, L,,,=(.d, 4)=0*1.(0, I}“, 



Li,f.,(cd, 8)=(0* l)“, Linf,r~(cd, 2)=LinJ,E(d> ~)={OY 1)"~ 

Linf. E (~~. 9) = Li,, = (,~, a) 

= [O, I}*. l”, Li*J. = (cd, 2) = (0* 1 1 *O)‘O. 

(2) Let =d’=({q,, q 1 ), [O, 11, 6, qo, co) be the (deterministic and real-time) FS- 

automaton with transitions (qi, 0, true, qi, A), (qi, 1, true, ql, A) for i~(0, l}, and let 

S={(qIj}. Then Li,f,s(,d’, 9)=0*1.(0, 1)“. 

The relations between the families (d-) FSL,,, will be given in Proposition 2.10. 

2.3. Basic properties 

In this section we give two results that are used at several places in this paper. The 

first lemma is a reformulation into our framework of the well-known fact that for 

some of the acceptance types it suffices to consider acceptance with respect to families 

containing just one state set. It was shown for finite-state automata in [34], and in 

a more general formulation in [7. Lemma 4.1.21. For completeness we provide 

a proof. 

Lemma 2.7. Let pi{ G, n). For every (deterministic) X-automaton ,41 and family of 

state sets g.for ;d there e.uist a (deterministic) X-automaton .d’ and state set D for &’ 

such that L,,,,(.d, U)= L,.,(,cl”, {Dj). 

Proof. If p equals n the lemma is obvious since L,,,(.d, S)= L,,,(,d,( US}). 

For G we add to the states of the automaton Ed, for each state set D of 9, a Boolean 

variable which indicates whether the run has remained within D since a particular 

moment of time; .d resets this Boolean vector each time the run has been outside each 

state set from 9’ since the last reset (or since the start of the run). By definition, a run 

(of the original automaton) is (ran, G )-accepting if there is at least one state set from 

which the run never leaves, i.e., if the Boolean vector (of the new automaton) is never 

reset during the run. Similarly, a run is (ir$ c)-accepting if there is a state set from 

which the run leaves only finitely many times, i.e., if the Boolean vector is reset only 

finitely many times. 

Let .&=(Q, Z, 6, qi,, tin) and let Q= {Dl, . . . . D,}, ~132. Then .d’ is formally defined 

as (Q’, 1,6’, qi,, tin), where Q’= Q x 10, l}“, 41, =(qin, 1”); for each (4, a, /I, q,, (P)E~ and 

each dE{O, 1)“. S’ contains the transition (((I, d), a, /?, (ql, d,), q), where dl = 1” if d=O”, 

and if d#O”, then for 1 <j<n, d,(j)= 1 iff d(j)= 1 and qEDj. 

Let E = {O, 11” - {O”). We then have L,, G (,d, 9’) = L,, G (.G!‘, {Q x E}). We leave the 

formal details to the reader. 0 

In several proofs in this paper, given an automaton .d and a family of state 

sets 6 for .d, a new automaton .d’ (satisfying some particular property) will be 
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constructed in such a way that there is a clear correspondence between the runs of 

.d and those of &‘. As an example (see Lemma 2.9) it is possible to construct for each 

FS- automaton .d an equivalent real-time FS-automaton d’, and to give a mapping 

that relates the set of states entered (infinitely often) during a run of JZZ’ on an w-word 

to the set of states entered (infinitely often) during the “original” run of d on that 

word, by taking into account the “shortcuts” consisting of A-transitions. In such cases 

it will be possible to specify a family Y’ of state sets for &” such that .d and .d’ accept 

related infinitary languages. Rather than giving this family explicitly in each separate 

construction, we provide a more general result. 

Unfortunately, the statement of the lemma is rather technical - though its proof is 

elementary. We suggest, therefore, that the lemma is skipped on first reading. The 

reader may consider the result as a technical justification for an argumentation that 

(in most cases) is intuitively clear. 

Lemma 2.8. Let d and .d’ be automata with input alphabets C and C’ and state sets 

Q and Q’, respectively. Let R ~1” x (Z’)W, and let (C/12~‘+2” be a mapping that satisjes 

(1) $(AuB)=rC/(A)u$(B), and 
(2) for each VEX 

,..kz { ( )’ 
cr r r is a state sequence of a run of .vI on u} 

={tj(a(r’))lr’ is a state sequence ofa run of&’ on 21). 

Then for each 9 G 2” there exists 9; E 2Q’ such that 

R(L,,,(d, 9))= Lo,p(&, ‘;). 

Proof. By (2), it suffices to define 6%‘; in such a way that, for every set S’ G Q’, S’pD’ for 

some DEB; iff $(S’)pD for some DEB. 

(a) Let pi{ G, = }. Then the relation p is transitive, reflexive, and invariant under 

$ (i.e., if ApB then $(A)p$(B)). These properties allow one to prove that, for arbitrary 

sets S’GQ’ and DGQ, $(S’)pD if and only if S’pD’ for some D’ with @(D’)pD. Now 

9j,= {D’GQ’I$(D’)~D for some DEB} satisfies the requirement of the lemma. 

(b) We now consider the case that p= n. According to (1) $(A)= uaEA $({a}). 

Hence, for arbitrary sets S’GQ’ and D s Q, $(S’) n D if and only if $( {s’}) n D for 

some s’ES’ if and only if S’n {q’EQ’i$(jq’})n D}. Consequently, %={ {q’E 

Q’j$((q’}) n Dj 1 DEB} satisfies the requirement of the lemma. 

Note that by a “dual” argument the family 5~,‘, ={{~‘EQ’J$Y({~‘})-cD]JDE~?) 

could have been chosen for the relation G. 0 

2.4. Finite-state automuta 

We consider the well-known “hierarchy” of the families (d-)FSL,., . It is customary 

in the literature to define finite-state o-languages using real-time finite-state 
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automata. We first show that this restriction does not influence the families of (0, p)- 

accepted finite-state w-languages. 

Lemma 2.9. (1) FSL,,, = r-FSL,., 

(2) d-FSL,,,=dr-FSL,,, 

Proof. Let &=(Q, Z, 6, qin, CO) be a finite-state automaton with a family 2 of state 

sets. As for the corresponding result for finitary languages, we may construct an 

equivalent real-time finite-state automaton by contracting each non-A transition with 

all possible sequences of A-transitions. However, since in the infinitary case the 

intermediate states are considered in the acceptance criteria, we should keep track of 

these in our new automaton as well. 

Construct the real-time finite-state automaton .d’=(Q’, C, 6’, qi,,, CO) as follows: 

Q’ = Q x 2”, qi, = (qin, { qin } 1, and, f or q, q’EQ, U, U’sQ and aEZ, 6’contains the trans- 

ition ((4, U), a, true, (q’, U’), A) if and only if there exists a sequence q,,, ql, . . , q, (k 3 0) 

OfstatesinQsuchthat Z/‘=i’q,,...,q,,q’),q=q,,(q,_,,A,true,q,,A)E6for l<i<k, 

and (qk, a, true, q’, A)ES. 

Our original automaton .d may have A-cycles ~ resulting in arbitrary long runs of 

the form (q, A, CO) E* (q, A, ~0) ~ so, for one run of .d’ on an w-word u there might be 

(infinitely) many corresponding runs of .d on U. The set of states occurring (infinitely 

often) during any of these runs of .d is always equal to the union of the sets that occur 

(infinitely often) on the second component of the states of the run of d’. Hence, we 

may use Lemma 2.8 to find a suitable family of state sets .Ub such that L,,,(d, 

P)=L,,,(.d’, 9;) by choosing R to be the identity on C”, and $ to be the mapping 

that satisfies $( ((q, U)))= U [and (1) of Lemma 2.81. 0 

Hence, we have the following well-known relationships for the families (d-)FSL,,, 

(see, e.g., [39, Theorem 41 for references). Recall that we use -+ to denote strict set 

inclusion (c). The diagram in Fig. 1 is “complete”, i.e., families not related in the 

diagram are incomparable. 

Proposition 2.10. The diagram in Fig. 1 holds. For any two,families X and Y,from the 

diagram we have X c Y lf and only if there is a path from X to Y. 

=‘=,a,, c FSL,, n = FS=,,,,, = = FS=,,f,. FS’inf, n = FSLinf,= 

H 

II 

d-FSLinf,. - 

d-FS=m,, -d-FSL,,, n+d-FSL,,, = 

) II 

~=---___ d_FSLinf,n/d-FSLinfs= 

Fig. 1. Inclusion diagram for the finite-state storage type. 
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Note that when requiring totality (in the “local” sense, i.e., in each state there should 

be a transition for every letter of the input alphabet) the diagram is slightly different, 

caused by the fact that FSL,,,,, and d-FSL,,,,, become smaller. Using t- to denote 

the property of totality in the same way as we use d- and r-, one has t-FSL,,,,, = td- 

FSL,,,, n c d-FSL,,,., . In all other cases t-FSL,,,= FSL,,, and td-FSL,,,=d-FSL,,,. 

The families t-FSL,,,,, and FSL,.,,, s are incomparable. 

An w-language is called regular if it is of the form U’= 1 Ki. Ly , where Ki and Li are 

regular (finitary) languages. It was proved by McNaughton [25] (see also [9]) that the 

family of regular w-languages (sometimes called the o-regular languages) coincides 

with d-FSL inf, = (“acceptance by Muller automata”) and, consequently, with FSL,,, n 
(“acceptance by Biichi automata”). There are several other characterizations of 

the classes (d-) FSL,,, in terms of regular languages and the operations adh, lim, 
and w-power. For example, FSL,,,, E equals the family of adherences of (finitary) 

regular languages, and FSL,,, c_ equals the family of w-languages of the form 

U’= 1 Ki.odh(Li), h w ere Ki and Li are regular languages. For more details see again, 

e.g., [39]. 

2.5. Transductions 

Infinitary transductions (and, in particular, inverses of o-preserving transductions) 

play a fundamental role in this paper: they are used to transfer the relations that hold 

between the families FSL,,, and d-FSLg3, to arbitrary storage types. Here we give 

some preliminary results on families of transductions, mainly concerning their in- 

verses and their domains. 

In the finitary case homomorphisms form a subclass of the finite-state transduc- 

tions. They can be extended to w-words in the natural way: a (an infinitary) homomor- 
phism h:C+A * determines a single-state (real-time and deterministic) FS-transducer 

that has a transition (q,a, true,q, h(u)) for every aEC. Note that, in general, the 

resulting transduction is a partial function from C” to A”. We use HOM to denote the 

family of transductions of such FS-transducers. HOM1_,,, denotes the family of 

corresponding l-output transductions, obviously corresponding to length-preserving 

homomorphisms. Although not every homomorphism is o-preserving (cf. Remark 

2.12), we wish to note that every inverse homomorphism is: HOM-‘cdr- 

FST-’ c FST,. This is a consequence of the following general result. Recall that 

XT-’ = { RP1 1 RsXT}; the notation r-XT& abbreviates (r-XT,_,,,)- ‘. 

Lemma 2.11. (1) XT-‘=XT. 
(2) X TI_ou, c r-X T- ’ E XT, , r-X T;_A,, = r-X TI_ou, 

Proof. Let &’ be an X-transducer with output alphabet A. We obtain the inverse of 

the transduction of JZ by replacing each transition (q, a, B, q’, cp, w) by the transition 

(q, A, fi, q’, cp, a) if w = A, and by the transitions (qi _ 1, bi, true, qi, A, A), for 1 d i < n, and 

(4” - 1, b,,, P, 4, cp, 4, if w = bl . . . b,, biE A for 1 d i < n, where q0 = q and qi is a new state 



for each 1 di<n. Note that this construction transforms l-output transducers into 

real-time transducers. Moreover, it transforms real-time transducers into w-preserv- 

ing transducers: since a real-time transducer cannot transform a finite input word into 

an infinite output word, its inverse (as constructed above) cannot transform an infinite 

input word into a finite output word. c 

Remark 2.12. Although not immediately clear, the families XT and XT, are not 

always equal. As an example consider the (real-time) FS-transducer .&’ with input 

alphabet {O, 1) and output alphabet { 1) that deletes all letters 0 from the input. This 

transducer produces infinite output only if the input contains infinitely many occur- 

rences of the letter 1. Thus, T(.N)=(O* 1)” x {I}“. From the following result we learn 

that this transduction cannot be realized by an o-preserving FS-transducer since its 

domain (0* 1)” does not belong to FSL,,,,, c (see [20]; it also follows from our 

Corollary 4.8). 

The same example shows us that XT, is not always closed under inverse. In fact, 

T(,M)$FST,, whereas T(,~~)~‘EHOM~‘~FST,,. 

It is not difficult to show that domains of X-transducers (and of o-preserving 

X-transducers) coincide with one of the families of w-languages accepted by X- 

automata. Recall that for an X-transducer i 4’ with input alphabet C, dom(T(,&‘))= 

(uEC”I there is a run of ,l’i on u wih infinite output). For an w-preserving transducer 

./,@ we even have donz( T(.Y))= {nEC”Jthere is a run of IN on u}. 

Lemma 2.13. (1) &I~(XT)=XL~,~,,=~Z(XT). 

(2) dm (X To> I= XL,,. G . 

Proof. (1): If we extend the state set Q of the X-transducer ~ N to the set Q x (0, l}, and 

replace each transition (q, a, /I, q’, cp, w) by the pair of transitions ((4, i), a, /,, (q’, 0), CJI) if 
w=A (i~j0, l}) and the pair ((q, i), u, 0, (q’, l), cp) if M’#A (i~(0, l}), then we obtain an 

X-automaton .d such that clearly dom( T( Ai)) = Li,, n (at’, (Q x { 1 } 1). 

On the other hand, given an X-automaton .d and a family of state sets 3 for ~2, we 

make it into an X-transducer .N by writing the letter 1 as output for each transition 

that enters a state from u 9. .N writes A when it does not enter a state from u 8. 

Obviously, ,PZ enters a state from u B infinitely often if and only if in its correspond- 

ing run .&’ outputs an infinite word. Hence, Irom(T(.N))=Li,~,,(.c4, 9). 
The equality dom(XT) = ran(XT) follows from Lemma 2.11(l). 

(2): Let ,ZZ be an u-preserving X-transducer with state set Q. Transform .J? into an 

X-automaton .d by replacing each transition (q, a, p, q’, cp, w) by the transition (q, a, p, 
q’, 9). Now dom(T(.Y))=(u~C”~thereis a run of.& on u}={uEC”I thereisa run of 

don ~}=&,,,~(.d, {Q)). 
In order to prove the converse inclusion dom(XT,)~XL,,,, E , consider an X- 

automaton .d and a family of state sets % for .d. By Lemma 2.7, we may assume that 

9 consists of a single state set D. Moreover, since no (ran, E )-accepting run enters any 
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state outside D, we may assume that D equals the set Q of all states of .d. By replacing 

each transition (q, a, /I, q’, cp) of .d by the transition (q, a, p, q’, cp, 1) one obtains an 

(l-output) X-transducer .M with output alphabet f 1 }. Clearly, dom(T( A’))= 

L ran, E (d> IQ)). 0 

3. The basic characterization 

In this section we derive our main characterization result for the families of 

w-languages (0, p)-accepted by both nondeterministic and deterministic X-automata. 

We express these families in terms of (inverse w-preserving) X-transductions of 

(a, p)-accepted finite-state o-languages (Theorem 3.3). This generalizes a result from 

[40], where families of o-languages accepted by Turing machines are characterized in 

the arithmetical hierarchy using transductions by Turing machines as a main tool. 

Using our characterization we transfer the inclusions (and equalities) that hold for the 

families FSL,. p to the families XL,,, for arbitrary storage type X (Theorem 3.5). The 

corresponding results for real-time and deterministic automata are given in Sections 

4 and 5, respectively. This method does not give information concerning the strictness 

of the inclusions (except, of course, where we have equality in the finite-state case). In 

fact, it is known from the literature that the two remaining inclusions are strict 

inclusions for some storage types (such as FS), while they are equalities for others. In 

Section 3.3 we give a sufficient condition on the storage type to ensure equality for the 

six families of w-languages accepted using this storage type (Theorem 3.11). To this 

aim, we introduce the notion of simulation of one storage type by another, which 

enables us to compare the strength of storage types. 

3.1. Decomposition and composition 

In Lemma 3.1 we show how to decompose the work of an X-automaton into two 

phases: a phase in which the input is processed, and an acceptance phase. The first 

phase can be realized by an X-transducer (without acceptance criterion), and the 

second phase by a finite-state automaton (with the same acceptance criterion as the 

X-automaton). 

Lemma 3.1. (1) XL,,, G X K_A,,(d-FSL,,,). 

(2) d-XL,,, sd-XT,,‘,,(d-FSL,.,). 

Proof. Let ~2 be an X-automaton with input alphabet C and state set Q; let 9 be 

a family of state sets for .d. 

Consider the infinitary language K(o, p) consisting of the w-words over Q that are 

(a, p)-accepting sequences with respect to 9. It belongs to d-FSL,,, because it is 

(CT, p)-accepted by the deterministic finite-state automaton 99 = (Q u {q’}, Q, d4, q”, CO) 

with qO$Q and d8=((q’, q, true, q, A)[q’~Qu{q’}, qEQ}. In fact, one easily sees that 
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for rEQO, the state sequence of the corresponding run rl of .98 on r satisfies 

ran(rl)=ran(r)u{@$ and inf(rl)=inf(r). This makes it clear that K(o, p)=L,.,(&I, 

2’) with 9”={Du(q0} IDEY] if (a, p) equals (ran, =) or (ran, E), and K(a,p)= 

L,.,(B, 2) in the four remaining cases. 

Modify ~4 such that at each step it outputs its state, i.e., take output alphabet Q and 

replace every transition (4, a, p, q’, q) by (q, a, B, q’, cp, q). This gives a (l-output) 

X-transducer =N that maps each o-word u over C onto the state sequences of the 

runs of .ti on U. u is (a, p)-accepted by .d if one of these state sequences belongs to 

K(a, p). Hence, L,.,(;d, U)= {uEC”I there exists (u, r)ET(,&‘) such that rEK(a,p)} = 

T(,fl)_ l (K(o, P)). 
Note that ;tZ is deterministic when .d is deterministic. 0 

Conversely, given an w-preserving transducer and an automaton (using some sort 

of storage), we can compose their operations into a new automaton which uses the 

product of the storage types of the transducer and the automaton. 

Lemma 3.2. Let X, and X2 be two storage types. 

(1) X, c3X,L,.,)~(Xl x XZ)LO,,. 
(2) d-X1 T<;‘(d-X2Lo,&d-(X1 x Xz)L,.,. 

Proof. Let ./~=(Q1,~:lr~lr4i”,l,Cin.1, C,) be an o-preserving X,-transducer, let 

~d=(Q2,CZ,b2,4in,z,(.in,2) b e an X,-automaton, and let 9~ 2Qz. We prove the 

lemma by constructing an (XI x X,)-automaton .8 that (a, p)-accepts the u-language 

T(..&‘)-’ (L,,,(.d, 22))= {uECYI(O, u)~T(d’) for some u~L,,,(d, 9)). This is done 

using a straightforward direct product construction in which we simulate .A and d 

in two alternating phases: first we simulate .ll until it produces some nonempty 

output and we store this output in the states of 5?, then we simulate & on this 

output. 

Formally, let nz be a constant such that A never writes more than m symbols 

onto its output tape in a single transition, and let 9Y=(Q, Cr, 6, qrn, tin), where 

Q=Ql XQz X jx~C,* I IxI,<mj, qin=(qin,l, qin.2, A), Cin=(Cin.l, Cin.21, and 6 is corn--Ï 
posed as follows: 

(simulation of j &) ((ql, q2, A), a, PI, (4, q2, w), vlW for each transition 
(ql, a, /II, q;, (pl, w)dl and each state qZEQ2, and 

(simulation of J$) ((41,q2,aw),A,p,,(q,,q;,w),(P2)E~ for each qlEQlr 
a~C~u{Af and WEE; with ldluwl<m, and each 

transition (q2, a, p2, q;, (P~)ES~. 
Clearly, using this simulation, a run of A? on an o-word u with output u can be 

combined with a run of .d on U, yielding a run of ~8 on v. Similarly, a run of the new 

automaton A? on an o-word L’ can be decomposed into a run of .A’ on v and a run of 

.r4 on the output u of .&‘. This output is guaranteed to be infinite since A%? is 

o-preserving; this is essential in order to have (u, u)E~‘(,&‘). 
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We can use Lemma 2.8 to define a family 9; of state sets for 98: let $ be the 

projection on the second component [i.e., $({(ql , q2, x)})= {q2}], and let R be 

T( k’- I. Note that, due to the simulation of the steps of JZ, the second coordinate of 

the new run has multiple copies of the same state; however, these repetitions do not 

change the range or the infinity set of the (projection on the second coordinate of the) 

run. 

Note that if both JR’ and .d are deterministic, then so is g. 0 

If we combine these two lemmas we obtain our basic result: a characterization of 

the families XL,,, and d-XL,,, in terms of X-transductions and finite state w- 

languages. 

As observed before Lemma 3.1, it expresses that X-automata are equivalent to 

compositions of an X-transducer and a finite-state automaton. Another way of 

viewing this result is to say that the w-languages accepted by X-automata are exactly 

those o-languages that are reducible to a finite-state o-language by an XT,-reduc- 

tion. However, one should note that, in general, XL,., is not closed under XT,- 

reductions. (By Lemma 3.2, it is closed under XT,-reductions under the rather strong 

assumption that XxX can be simulated by X, using the notion of simulation 

introduced in the next section.) 

Theorem 3.3. (1) XL,.,=XT;‘(FSL,,,). 

(2) d-XL,,,=d-XT,-‘(d-FSL,,,). 

Proof. Clearly, these statements are a consequence of Lemmas 3.1 and 3.2 (with 

X,=X, and Xz=FS), using the obvious fact that (Xx FS)L,,,=XL,,,. 0 

For the acceptance conditions with pi{ G, n} the family FSL,,, can be replaced 

by a single w-language. Intuitively, this o-language models the acceptance condition; 

from the above “reduction point of view” the o-language is complete in XL,,, 

with respect to XT,-reductions. A similar result was obtained in [40] for o- 

languages accepted by Turing machines, and (implicitly) in [21] for regular 

o-languages. 

Theorem 3.4. (1) XL,,,,G =XT;‘({l”)), 

XLYI”. n =xT;‘({0*1.{0, l>“}), 

xLifzf,G = XT;‘({{O, l}*.l”}), and 

xLinf,m =XT,-‘({(O*l)“}). 

(2) The same equalities hold for the families of deterministic w-languages d-XL,, p and 

deterministic transductions d-XT: ’ 



Proof. The inclusions from right to left are clear from Theorem 3.3 and the fact that 

the four given w-languages, can be accepted by deterministic finite-state automata 

using the four respective acceptance conditions (cf. Example 2.6). 

Let us consider the converse inclusions. By Lemma 2.7, we may assume that an 

w-language L in XL,%, with pa{ E, n) is (a, p)-accepted by an X-automaton .d with 

single state set D: L= L,,,(.d, {D)). As in the proof of Lemma 3.1, we change ,d into 

an X-transducer .M. Here, however, IN has the output alphabet (0, 11, rather than the 

state set of &‘; at each step c 4’ outputs the letter 1 if its state belongs to D, and the letter 

0 otherwise. 

It is clear that ,K outputs an o-word from 0* 1. [O, 1)” if and only if during its run it 

enters at least once a state from D or, equivalently, if the run is (ran, n)-accept- 

ing. Hence, L,,,,, (d, {D))=T(.l)-’ (O*l.jO, 1)“). In the same way, we see that 

.@ outputs an o-word from (0* 1)” if and only if during its run it enters some 

state from D infinitely @en or, equivalently, if the run is (inf; n)-accepting: 

Linf.,(cd, {D}) = T(.H)-’ ((0* 1)“). The remaining two acceptance types can be 

handled analogously. Li 

Using Theorem 3.3, the known inclusions for the families FSL,., (Proposition 2.10) 

can be carried over directly to the families XL,,, for an arbitrary storage type X, 

without being forced to generalize all the proofs for FS w-languages. Thus, we obtain 

the following main result. (The corresponding result for deterministic automata will 

be presented in Section 5.) 

Theorem 3.5. XL = XLfYm n ran. G - = XL,,,. = = XLi,zJ, & G X Li,, n = XL,,, = 

Proof. By Proposition 2.10, FSL,.,,, s E FSL,,,, n . Hence, XT; ’ (FSL,,,, E ) 

sXT,-‘(FSL ra,l. ,). Thus, by Theorem 3.3 (I), XL,,,. s s XL,,,, 1 The same argument 

holds for the other inclusions and equalities. 17 

We cannot conclude that the inclusions are strict in general, like for finite-state 

w-languages (Proposition 2.10) or pushdown automata [6]. In fact, for certain storage 

types all six families XL,. p are equal (e.g., for Turing machines, see [S]). In Section 3.3 

we will give a sufficient condition on X for all six families to be equal. To state that 

result in a neat way, we will use the notion of simulation of storage types. 

3.2. Sirmlation of’ storage types 

In order to compare the strength of two storage types, we introduce a notion of 

simulation. Rather than requiring that every instruction and every test of one storage 

type can be simulated by a “subroutine” using the other storage (an approach which 

was taken in [l 11) we use deterministic transductions to formalize simulation. This 

turns out to be more convenient to work with. We will show in Corollary 3.9 that the 

definition is strong enough to ensure a fact that intuitively should follow from any 
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notion of simulation: if the storage type X can be simulated by the storage type Y, 

then XL,., is included in YL,,, . 

Definition 3.6. Let X and Y be storage types. X is simulated by Y, denoted X< Y, if 

d-XT* G d- YT, . 

Thus, we require that, in the finitary case, deterministic X-transducers can be 

simulated by deterministic Y-transducers. Taking transducers rather than automata 

forces the simulation to be straightforward. All the usual simulations satisfy our 

definition. Thus, e.g., since a pushdown stack can be used to simulate a counter, we 

have CTR< PD. Similarly, PD2 < T and T<PD’, where T is the storage type of 

a Turing machine work-tape (and PD2 = PD x PD is the storage type having two 

pushdowns, cf. the end of Section 2.1). Also, clearly, FS < X for every storage type X. 

First we show that simulation can be carried over from the finitary to the infinitary 

case. 

Lemma 3.7. If d-XT, G d- YT,, then d-X Ts d- YT and d-XT, G d- YT, . 

Proof. Let JZ be a deterministic X-transducer, with set of states Q. Observe that for 

a deterministic transducer the behaviour on infinite words is determined by its finitary 

transduction. If u is an infinite input word, then there is an infinite run of &’ on u with 

output v (finite or infinite) if and only if there is an infinite sequence ((xi, yi))it~ of 

elements from T,(A’, Q) with u=lub(xi)isN and v=lub( yi)i.~. 
By assumption there is a deterministic Y-transducer JZ1 (with set of states Q1) and 

astatesetDGQ,suchthat T,(,z4!,Q)=T,(~&‘~,D).Since T,(M,Q)ET,(JZ,,Q,),the 

above observation implies that T(,K)G T(A’,). Hence, for infinite inputs, we wish to 

restrict the domain of C/@I to that of 4’. Thus, JZr should be restricted in such a way 

that it has a run on an infinite input u only if it accepts all prefixes of U. We first change 

MI such that, when reading a new letter, it knows whether it has accepted the word 

read so far. Introduce a new state 4 for every ~EQ~. Intuitively, the bar means that the 

transducer has been in a state of D, and since then has read A only. According to this 

intuition, change the finite control of ~?‘r as follows: 
_ if (q, A, /_I, q’, cp, w) is a transition of ~8’~ with qED, then replace it by (q, A, fi, 4’, cp, w), 
~ if (q, A, /II, q’, cp, w) is a transition of ./d,, then add the transition (4, A, p, q’, 40, w), 
_ if (q, a, b, q’, cp, w) is a transition of _&‘r with a # A, then add the transition (4, a, p, q’, 

% w). 
Let A2 be the so obtained transducer, with set of states QluQl , where 

Qr = (41 qEQ 1 }. Finally, we change M2 by dropping all transitions (q, a, 0, q’, q, w) 
with a#A and q$(DuQ,), thus obtaining the deterministic Y-transducer J?‘j that 

satisfies the above restriction. For any infinite input word U, =M3 has a run on u with 

output v (finite or infinite) if and only if J# has a run on u with output v. This shows 

that T(A’,)= T(A’), and that if ,&’ is w-preserving, then so is J?‘, . 0 
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It is well known that the languages accepted by deterministic and nondeterministic 

automata can be related using homomorphisms ~ for finitary (context-free) languages 

this was first shown in the Chomsky-Schiitzenberger theorem; for o-languages, see 

the “projection lemmas” used to characterize nondeterministic behaviour of finite- 

state automata [34], Turing machines [40], and transition systems [30]. Such a result 

is also valid in our framework, for every storage type. (This should be compared with 

the mode of acceptance used by Staiger and Wagner, where a projection lemma for 

pushdown automata seems to be missing, cf. the first open problem at the end of 

Section 2 in [32]. Note, however, that our “projections” are not necessarily o- 

preserving.) 

Lemma 3.8. XL,,, = HOM(d-XL,,,). 

Proof. Taking X1 =FS and X2=X in Lemma 3.2( 1) we get FST; ‘(XL,,,)G 

(FS x X)L,,,. Since, obviously, (FSxX)L,,,=XL,,,, this implies that XL,,, is 

closed under inverses of w-preserving FS-transductions and, in particular, under 

homomorphisms (see Lemma 2.11). Consequently, HOM(d-XL,, p) G XL,, p. 

In order to prove the converse inclusion, let .d be an X-automaton with finite 

control 6 and input alphabet C. We change .d into a deterministic (real-time) 

X-automaton &” by replacing each transition t =(q, a, 0, q’, cp) in 6 by (q, t, /!I, q’, cp). 

This means that each transition now reads its own name from the input; 6 is the input 

alphabet of .d’. It is clear that (for an arbitrary family of state sets 9) L,,,(d, 

9)= h(L,.,(&“, g)), where h : G+Cu{Aj is the homomorphism that maps t =(q, a, /I, 

q’, rp) onto a. 0 

The following result justifies the notion of simulation of storage types we have 

defined above. 

Corollary 3.9. If X< Y, then d-XL,.,cd-YL,%, and XL,.,G YLgx,. 

Proof. In Lemma 3.7 it was shown that X d Y implies d-XT,%d-YT,. By Theorem 

3.3(2), d-XL,., = d-XT; l (d-FSL,,,). Thus, d-XT, Ed- YT, implies d-XL,,, C 

d- YL,, p. Now, by Lemma 3.8, also XL,,,G YL,,, follows. 0 

3.3. Equality of the si.~,firmilies 

In order to give a sufficient condition for the equality of all the families in Theorem 

3.5, we use the following result. It is based on the inclusion FSLi,,,GPDL,,,, _c, 

which was proved in [6] using the pushdown essentially as a counter. 

The storage type blind counter, denoted by BC, is equal to the storage type counter 

(see Example 2.2), except that it has no predicate symbols (cf. [14], where it is called 

a partially blind counter). 
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Lemma 3.10. XL,,, n G(X X BC)L,,,. G . 

Proof. By Theorem 3.4, XL,,, n = XT; ' ({ (0* 1)“)) while, according to Lemma 3.2, 

XT;‘(BCL,,,. c)s(X x BC)L,,,, s. Hence, in order to prove the lemma, it suffices to 

show that (0* ~)“EBCL,,,,, h 

We construct a K-automaton d that uses its (blind) counter to ensure that during 

its runs it can read any finite number of consecutive O’s, but not infinitely many 

consecutive 0’s. 

.c4 has two states q0 and q1 and, for i~{0, 11, the transitions (qi, 0, true, qo, deer) and 

(qi, 1, true, ql, A), and the transition (qi, A, true, ql, incr). The initial state of d is ql. 

Take 9={{qo, ql}). 

Hence, for each step on the letter 0, .d decreases its counter. Whenever .d reads the 

letter 1 it enters state ql. In this state, before reading the next input letter, & guesses 

the number of O’s on the tape before the next 1, and increases its counter value by (at 

least) this amount. Consequently, L,,,,, c (d, 9') = (0* 1)“. 0 

We now give the sufficient condition: if the storage type X can simulate an 

additional blind counter, then all XL,,, are the same. 

Theorem 3.11. Zf X x BC 6 X, then XL,,,, G =X&g,, . 

Proof. By Lemma 3.10, XLinf,, _ '(X x BC)L,,,, L According to Corollary 3.9, 

X x BC < X implies that (X x BC)L,,,, c G XL,,,, E and, consequently, XL,,, n G 

XL,,,,, s . Equality (of these and the other families XL,,,) now follows from 

Theorem 3.5. 0 

Using this result we clearly reobtain the equality of the families of o-languages 

((T, p)-accepted by Turing machines as given in [S]. As observed after Definition 2.5, 

this differs from the results of [40], where a proper hierarchy for Turing machines is 

obtained (due to a slightly different definition of acceptance). 

It is obvious that the storage type BC* can simulate an additional blind counter 

(where BC* is the union of all BC”, n~t+J, see the end of Section 2.1). BC*-automata 

are blind multicounter automata, i.e., automata of which the storage consists of an 

arbitrary number of blind counters. It follows from Theorem 3.11 that for these 

automata the six acceptance criteria have the same power, i.e, the six families BC* L,,, 

are the same. This has some consequences for Petri nets. It is explained in [38] how, 

concerning their (infinite) sequential behaviour, Petri nets can be seen as blind 

multicounter automata (see also [ 18, 141). In fact, the places of a Petri net can be 

divided (by analyzing its “reachability tree”) into bounded places (i.e. places with 

a uniform bound on the number of tokens at the place at any time) and unbounded 

places. Clearly, each unbounded place may be viewed as a blind counter, the tokens at 

the bounded places together may be viewed as the state, and the transitions of the net 

as the finite control of the BC*-automaton (where the labels of the transitions are 
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viewed as input symbols). This should explain that the families BC*L,,, equal the 

families of Petri net w-languages, with (0, p)-acceptance with respect to bounded 

markings, and with A-labeled transitions allowed. Although these families were not 

(explicitly) compared in the literature (the Petri nets in [38] are assumed to be 

A-free, i.e., real-time), the inclusion r-BC*Li,f,, C BC*L,,,. E has been shown in 

[S, Theorem 31. 

A particular case of Lemma 3.10 is of independer t interest (and will be used in the 

sequel). For X = FS we get FSLi,J,, G BCL,,,,. c . From this and Corollary 3.9 it 

follows that if BC d X [in fact, if (0* l)“~xL,.,,,, h ] then the family XL,,,, E (and, hence, 

each family XL,,,) contains all regular o-languages. Note that BCGX is a rather 

weak assumption on a storage type X; it is satisfied by all the usual storage types 

(except FS of course). 

Theorem 3.12. If BC d X, then FSLinf, r E XL,., . 

4. Real-time automata 

Similar to the basic characterization in Section 3 we now obtain a characterization 

of the families r-XL,,, in terms of X-transductions and finite-state w-languages 

(Theorem 4.4). As before, we then use it to transfer the inclusions known for the 

families FSL,., directly to the families r-XL,., . This gives a diagram as we have found 

in Section 3 for the families XL,,,: a “hierarchy” of three levels, and the two inclusions 

between these levels may or may not be strict. 

As in Section 3 we study the strictness of these two inclusions. We obtain upper 

bounds (in topological terms) on the o-languages in the bottom two levels of the 

real-time hierarchy (Lemma 4.7). Using these upper bounds, we show that the two 

inclusions are strict for each storage type (Theorem 4.9). 

The arguments used in this section, especially those in the proof of Lemma 4.6, are 

applicable to a class of automata more general than real-time automata, viz., auto- 

mata that do not have an infinite computation on a finite input - we say that these 

automata havejnitr delay. Thus, both the hierarchy results and the topological upper 

bounds that can be obtained for real-time automata can be shown using the same 

techniques for automata with finite delay. 

In Section 4.3 we investigate the expressive power of real-time automata and 

automata with finite delay. On the one hand, we show in Theorem 4.17 that real-time 

automata are equivalent to automata with finite delay whenever the storage type is 

powerful enough to simulate an additional queue (“in real time”). On the other hand, 

we show that for the two-counter storage the real-time restriction is strictly less 

powerful than the limitation to finite delay (Theorem 4.19). Finite-delay automata 

may have the same power as or strictly less power than unrestricted automata, 

depending on the storage type (Theorem 4.21). 



26 J. Enyeljkiet, H.J. Hoogehoom 

4.1. The basic characterization for real-time automata 

As mentioned in the above introduction, we investigate the real-time automata 

together with a slightly more general class of automata. 

Definition 4.1. An X-transducer .d hasjnite delay if there is no infinite run of & on 

a finite input word. 

We use the prefix f- in the same way as we have used the prefixes d- and r-, i.e., to 

indicate families of (infinitary) languages (or transductions) defined by automata that 

have finite delay. Obviously, every real-time automaton has finite delay; so, we have 

r-XL o,p GEXL,,,CXL,.,. By Lemma 2.9, we have equality for the trivial storage 

type: r-FSL,,,=f-FSL,,,= FSL,,, 

Automata with finite delay were already considered in the context of w-languages. 

In [4] BC*-automata (i.e., Petri nets) having our finite-delay property are called 

prompt nets. That paper, however, focuses on nets that are l-prompt, i.e., nets in which 

A-transitions are allowed, but not two consecutive A-transitions in a firing sequence 

(run). Note that the “finite delay” in the title of [4] refers to a fairness notion! 

We have a decomposition result similar to the ones presented in Section 3. 

Lemma 4.2. Let pE(r, f}. Then p-XL,,,~p-XT;~,,(d-FSL,,,). 

Proof. The construction used in the proof of Lemma 3.1 transforms an X-automaton 

,cP into a l-output X-transducer J&’ by requiring that the automaton outputs its state 

at each step. Clearly, this does not change the input behaviour of the automaton; so, 

J?’ is real-time (has finite delay) if and only if ,d is real-time (has finite delay). 0 

As in Section 3 the reverse inclusion can be stated in a slightly strengthened 

formulation. This time we have to be careful in the statement (and the proof) 

concerning the output behaviour of the transducer in the real-time case. Recall from 

Section 2.1 that a storage type is blind if it has no predicate symbols. 

Lemma 4.3. Let X1 and X2 be two storage types. 

(1) f-X1T,-‘(f-XzL,,,)cf-(X, ~XzlLa,~, 

(2) r-Xi T,~,,(r-X,L,,,)~r-(X, x X&o,p. 
(3) ZfX, is a blind storage type, then r-X, T;‘(~-XZL,,,)G~-(XI xXz)L,,,. 

Proof. (1): In the case of automata with finite delay the proof of Lemma 3.2 is valid. 

(2) and (3): For real-time automata we cannot split the simulation of the X1- 

transducer _&’ and the X,-automaton ZZL? as we did in the proof of Lemma 3.2, because 

this introduces A-transitions. Hence, we simulate in a single step (of an Xi x X,- 

automaton a) one step of k? and 1 w j steps of d on the output w of J%‘. This implies, 

however, that the intermediate configurations of ,d are not available to apply tests to. 
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Consequently, this construction will work only if either ,/Z is l-output (so, .@ has to 

simulate only a single step of ‘GY) or the storage type of d is blind (which means that 

.d cannot perform any tests on its storage configurations). Since the intermediate 

states of ,r4 are important for the acceptance of a run, we use (as in the proof of Lemma 

2.9) the states of 2 to store these states. 

Formally,let ~~=(Q1,Clr~lrqi”,l,Cin,1, C,) be a real-time o-preserving XI-trans- 

ducer and let .d = (Qz, C, , fi2, qi”, 2, Gin. 2) be a real-time X,-automaton. 

The real-time XI x X,-automaton g=(Q, C, 6, qin, tin) is constructed as follows: 

Q=Q1~Q~x2~‘,qin=(qin,1, qin,2, (qin,z}), and, for each U, U’EQ~, 6 contains the 

transition ((ql, qzr U), a, PI A 8~~ A ... A Bl,k,(q’r , 4, W, cpl .(Pz,~ ... (~2,~) when- 
ever there is a transition (ql, a, PI, q;, cpl, a, . ..ak)d., UiEZ, for l<i<I& and 

asequenceq2,0,q2,1,..., q2.k of states in Q2 such that U’= {q2, 1) . ..) q2,k}, q2 =q2,0, 

(q2,i-l, %, P2,i, q2,i, (PZ,i)ES for 1 Dick and q;=qz,k. 

We stress again that in ,&? the tests b2, 1, b2,2, . ..) fi2,k are applied to a 

single configuration c2 rather than to the configurations c2, p2( qZ, 1 ) (c2), . . , 

PZ((P2,l ..’ (P~.~_ 1)(c2), respectively. Hence, the construction will not work unless (i) 

k= 1, which is the case when .,N is l-output, or (ii) fiZ, 1 = .. . =/j2,k = true, which is 

satisfied when X2 is a blind storage type. 

We accept runs of @ by considering the third component of the states entered 

(infinitely often) during the run. Formally, this can be justified by applying Lemma 2.8, 

with $({(ql, q2, U)))= U, and R= T(,M)-‘. 0 

As for the corresponding results of Section 3, we now combine the above two 

lemmas to obtain a characterization of the families f-XL,,, and r-XL,,, in terms of 

X-transductions and finite-state w-languages. 

Theorem 4.4. (1) f-XL,., = f-X T,b ’ (FSL,,,), 

(2) r-XL,,,=r-XT;‘(FSL,,,), 

(3) dr-XL,,,=dr-XT:’ (d-FSL,,,). 

Proof. (1): According to Lemma 4.2, and Lemma 4.3 (with Xl =X and X2 = FS), we 

have f-XL,,,sf-XT,;,,(d-FSL,&f-XT,- ‘(f-FSL,&f-(X x FS)L,,, =f-XL,,, 

and, consequently, f-XL,,, =f-XT,;‘(FSL,,,). Note that we used the fact that 

EFSL,,, = FSL,%, . 

Similarly, one proves (2). Note that FS is a blind storage type. 

In order to prove (3), observe that the constructions used in the proofs of Lemma 

4.2 (i.e., the proof of Lemma 3.1) and Lemma 4.3 preserve determinism. 0 

This allows us, as in Section 3, to transfer the inclusions known for the families 

FSL,,, directly to the families f-XL,,, and r-XL,.,, using (1) and (2) of Theorem 4.4. 

Lemma 4.5. Let PE{r, f >. Then 

P-XL,,,, = Ep-XL,,,,, =p-XLp,,, = =p-XLi,, 5 Ep-XLiflf., =p-XLi,, = . 
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4.2. Topological upper hounds 

Again we investigate when the remaining two inclusions are equalities and when 

they are strict. Perhaps somewhat surprisingly they turn out to be always strict. We 

use the following two lemmas to demonstrate this. They lead to topological upper 

bounds on the o-languages that can be (ran, E)-accepted and (irzf, &)-accepted by 

X-automata having finite delay. These can then be used to exhibit o-languages that 

“separate” the acceptance types (ran, c), (inJ G), and (inJ; n). 

In the context of infinite finitely branching structures, Kiinig’s Lemma is a basic and 

important tool. It was used in [38] to show that if every finite prefix of an w-word is 

the label of a firing sequence (run) of a given A-free Petri net, then the o-word itself is 

the label of an infinite firing sequence of the net. From this it follows that the 

o-languages in r-BC* L,,,, E are all closed in the topology on C” (like the result 

Landweber [20] obtained for d-FSL,,,, L ). In a straightforward way, this result can be 

extended not only to arbitrary storage, but also to automata with finite delay. 

Lemma 4.6. Let .d he an X-automaton with jinite delay, with state set Q. Then 

L ran,C(Cd3 iQ))=aW-Ld~,Q)). 

Proof. Let d = (Q, C, 6, 4in, tin) and let L = L,(d, Q). Then, obviously, L = pref(L); 

so, adh(L)= lim(pref(L))= km(L). Note that L,,,. s (sf, (Q}) is the set of all o-words 

on which there exists a run of G!, without additional requirements for the state 

sequence of the run. 

Assume that UE L,,,, L (.al, {Q}). This implies that u[n]~L for each HEN and, 

consequently, u~/im(L) =adh(L). 

To prove the inclusion adh(L) G L,,,,. E (,c9, {Q}), let uEadh(L). For each nE N there 

exists a finite run of .d on the prefix u [n] of U; it has at least length n. We use Konig’s 

Lemma to show that there exists an infinite run of d on U. 

Define the sets E,, nEN, of instantaneous descriptions of d that are reachable from 

the initial instantaneous description in n steps on a prefix of U, as follows. 

Eo=((qinr A, tin)), and for n3 1, 

6 = { (4, x, c) I xEpref(u), and 

(q’, x’, c’) k,d (q, x, c) for some (q’, x’, C’)E E,_ 1 } 

Clearly, each of these sets is finite and nonempty. According to Konig’s Lemma, 

there exists an infinite sequence ((q,,, x,, c,)),,~ such that (q,,, x0, co)~Eo and, for 

n31,(q,-,,x,~1,c,~,)~.(q,, x,, c,); this is an infinite run of d on u = lub(~,,),,~ . 

Note that u cannot be finite because d has finite delay. Moreover, every x, is a prefix 

of u and, hence, u = 0. 

Since every infinite run of & is (ran, G)-accepting with respect to {Q}, this proves 

adh(L)~L,,,..(d,{Q)). 0 
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Lemma 4.6 links (ran, G)-accepted o-languages to closed sets in the topology on 

C”, and using an additional argument it shows that (inJ c )-accepted o-languages are 

countable unions of closed sets. 

Lemma 4.7. (1) f-XL CF. ran. G - 
(2) f-XLin/, ~ ~ ~~. 

Proof. Both F and F0 are closed under (finite) union. Hence, it suffices to consider 

o-languages (0, p)-accepted with respect to a single state set. Let .GJ’ =(Q, C, 6, qin, tin) 

be an X-automaton with finite delay and let DGQ. 

(1): Obviously, L,,,, E (d, {D>)= L,,,, E (d ID, {D}), where d ID is the automaton 

& restricted to states from D. Hence, the result is a consequence of Lemma 4.6 (and 

the observation that .d ID has finite delay whenever & has finite delay). Recall that the 

adherences are the sets in F (i.e., the closed sets), see Proposition 1.2. 

(2): Each (ir~f c)-accepting state sequence (with respect to {D]) of .d can be divided 

into two parts: an initial part in which all states from Q may occur, followed 

by an infinite part that enters only states from D. Thus, Li,/, E (d, {D))= 

lJ{L,,,,r (cd(q,-x,~), (Du Qq,x.c})l(qin,A,ci,) F*(q,x,c)}, where Ld(q,x,~) equals cd, 
except that it has a new initial state q6 and a new path leading from 41, to 4, reading 

x from the input, and transforming (‘in into c - this path copies the computation 

(qin, A, cm) I- * (q, x, c). Qq,x,c is the set of states that are added to .d in order to form the 

new path. 

The above union is countable; this follows from the fact that the number of 

instantaneous descriptions reachable from (qin,A,ci,) in y1 steps is finite for each n. 

Consequently, by (l), every o-language in f-XLief, G is a countable union of closed 

sets, hence an FO-set. 0 

Using Proposition 1.3 and the topological upper bounds from the above result, we 

find the w-languages we are looking for. 

Corollary 4.8. (1) 0* 1. {0, i}“~r-xL~,~, c -f-XL,,,, L 

(2) (O* l)WEr-XLi,f.n -f-XLi,. E 

Proof. (1): According to Proposition 1.3 and Lemma 4.7,0* 1. {0, l}“$F zf-XL,,,, c ; 

however, O*l. (0, lf”~FSLi,,f, z E~-XL,,~, G (see Example 2.6). 

(2): Similarly, (0* l)“$Fo 2 f-XLi,/, E ; however, (0* I)“EFSLi,, n c r-XLins, n . 0 

These two w-languages can now be used to show that the inclusions from Lemma 

4.5 are strict for all storage types. This gives the following main result. 

Theorem 4.9. Let PE(r, f 1. Then 

P-xLrc7n, C cP-xLrOn,m =psxLr,fl, = =p-XLi,. E cp-XLinf,, =p-XLi,, = . 
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Apart from FS, as far as we know the only specific storage type that was studied for 

its real-time behaviour is BC*. Real-time blind multicounter automata (i.e., Petri nets) 

were studied in [38], both for acceptance with respect to states (i.e., bounded places) 

and for acceptance with respect to storage configurations (i.e., markings). We reobtain 

the results of Valk for acceptance with respect to states. The results obtained for the 

latter way of accepting infinitary languages are incomparable to those we have found 

in Theorem 4.9. 

We now ask ourselves whether the same methods can be used to show strictness of 

the hierarchy of families XL,,, for specific storage types X. As an example, as 

mentioned at the end of Section 3.1, such a strict hierarchy has been obtained for 

PD-automata with A-transitions. In [6, Section 3.31 this was shown using the 

following result. Let L be any finitary nonregular context-free language, e.g., 

L={a”b”ln~N}, and let d be a letter not occurring in L, then L.d”E 

PDL,,, 5 - PDL,,,, c and (L.d)“~pDLi,f,, - PDL,,, s . 

Unfortunately, one should realize that topological arguments are of no use in 

obtaining these counterexamples for the hierarchy PDL,,,. Both L.d” and (L.d)” 

belong to %a (they are the limits of Ld.d* and (Ld)*), whereas even PDL,,,, E contains 

o-languages outside B, u %a because of the inclusion FSL,,, n G PDL,,,, c 

([6], or Theorem 3.12). Such a regular w-language is 0. (0, l}*. 1”u 1 .(O*l)O (see 

[20] for this example and for topological characterizations of the families d- 

FSL,,,). 
It is quite striking that the o-languages used to show the strictness of the inclusions 

in the hierarchy PDL,., are structurally very similar to ones that can be used to 

separate the families in the real-time and finite-delay hierarchies: in Corollary 4.8 one 

may replace O*l.{O,l}w by O*.l”; thus, L.d” and (L.d)” remind us of O*.lw and 

(O*l)w. Note that O*.lw is of a higher topological complexity than O*l.{O, l}“: 

O*l.{O, l}“~g-8, whereas O*.l”~(~~n9~)-(9u9), cf. Proposition 1.3. 

4.3, The pobver qf real-time automata 

We compare the families f-XL,,, and r-XL,,, (and XL,,,). We start by investigat- 

ing under what conditions (and how) an w-language accepted by an automaton with 

finite delay (or even an unrestricted automaton) can be accepted by a real-time 

automaton. 

For real-time automata we need a stronger notion of simulation. 

Definition 4.10. Let X and Y be storage types. X is real-time simulated by Y, denoted 

X <, Y, if both X< Y and dr-XT,zdr-YT,. 

Unfortunately, we cannot show that dr-X T* c dr- YT, implies d-XT, G d- YT,; so, 

we explicitly require that 6, implies <. A stronger alternative to Definition 4.10 

would be: there should be a transformation of deterministic X-transducers into 

deterministic Y-transducers that turns every X-transducer into an equivalent 
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Y-transducer, and that preserves the real-time property; however, the present defini- 

tion is easier to state and is all we need. 

As in Section 3, we transfer simulation to infinitary transductions and w-languages. 

Lemma 4.11. If dr-X T+ c dr- YT,, then dr-XTE dr- YT and dr-XT, G dr- YT, 

Proof. Let J? be a deterministic real-time X-transducer, with set of states Q. By 

assumption, there is a deterministic real-time Y-transducer _&ZI (with set of states Q1) 

and a state set D G Q1 such that T,(A, Q) = T,(JZl, D). As in the proof of Lemma 3.7, 

we observe that T(.&‘)G T(,Z?‘l). Again, we wish to restrict (for infinite inputs) the 

domain of Jtil to that of Jf, and we change Jr such that it accepts all prefixes of its 

input. In the absence of A-transitions this can be done by simply dropping all 

transitions (4, a, /II, q’, cp, w) with q$D or q’#D, thus obtaining the deterministic 

real-time Y-transducer C/1%2 which satisfies the above restriction. For any infinite input 

word U, A2 has a run on u with output u (finite or infinite) if and only if &” has a run 

on u with output I). This shows that T(,U,)= T(,K), and that if J? is o-preserving, 

then so is Mz. 0 

Lemma 4.12. r-XL,,, = HOMI_,,,(dr-XL,,,). 

Proof. The proof is similar to that of Lemma 3.8. Here one shows, using Lemma 

4.3(2), that r-XL,,, is closed under inverses of real-time l-output FS-transductions 

and, in particular, under length-preserving homomorphisms: HOMr_,,,, E r-EST,_,,, G 

zr-FST&,, see Lemma 2.1 l(2). 0 

Corollary 4.13. [f X 6, Y, then dr-XL,.,cdr-YL,,, and r-XL,,pGr-YL,,p. 

Proof. Similar to the proof of Corollary 3.9, we have [using Theorem 4.4(3)1 

dr-XL,., =dr-XT;’ (d-FSL,.,) and r-XL,., = HOM,_,,,(dr-XL,.,). Hence, dr- 

XT,cdr-YT, implies both dr-XL,,,cdr-YL,,, and r-XL,,,Gr-YL,,, 0 

We will show that every w-language (ini n)-accepted by some automaton can be 

(inf n)-accepted by a real-time automaton, provided we extend the storage with 

a queue. This is not true for the acceptance types (ran, G) and (ini G). However, 

starting with an automaton with finite delay we can prove an even stronger property. 

For each acceptance condition (u, p), every o-language (a, p)-accepted by an automa- 

ton with finite delay can be (a, p)-accepted by a real-time automaton, when the storage 

is extended with a queue. 

We use Q to denote a formalization of the qtleue as a storage type. Analogously to 

the storage type PD the configurations of Q are finite words; it has instructions for 

adding a letter to the rear of the queue and for removing a letter from the front, and it 

has tests to determine the first letter of the queue. 
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We need the following closure property of the family of o-languages (ini n)- 

accepted by real-time X-automata. Analogous properties hold for other acceptance 

types. 

Lemma 4.14. r-X&, n is closed under intersection with o-languages from FSL,,, n. 

Proof. Since the acceptance types (inf; n) and (inf, =) are equivalent for real-time 

automata (Theorem 4.9), we may demonstrate the lemma for r-XLi,, = and FSL,,, = . 

Recall that FSLi,, = =r-FSLi,,f, = . 

Generalizing the lemma, given a real-time Xi-automaton di, and a family pi of 

state sets for di, i= 1,2, by an obvious direct product construction one obtains 

a real-time (Xi x X,)-automaton d simulating di and dZ in parallel. We wish a run 

of ~2 to be accepting if its state sequence, when projected onto the ith component, is 

(inA =)-accepting with respect to pi for both i= 1 and i=2. To realize this, we use as 

a family of state sets for ,d exactly those sets that, when projected onto the ith 

component, belong to Bi, i= 1, 2. 0 

Lemma 4.15. (1) XLipjf,, G r-(Q X X)Linf, n . 

(2) f-XL,,,Gr-(Q x X)L,.,. 

Proof. (1): Given an X-automaton ~2 with input alphabet C, we transform ~2 into 

a real-time X-automaton dr over the alphabet Cu { 4) by changing every A- 

transition into a transition that reads # (where 4 is a letter not in C). 

Additionally, we construct a real-time l-output Q-transducer J?’ that “delays” 

input: in each move it stores its input letter at the end of the queue, and it outputs 

nondeterministically either the first letter of the queue (while removing it) or the 

symbol +?. 

According to Lemma 4.3(2), there exists a (real-time) (Q x X)-automaton (inf, n)- 

accepting T(,&‘- 1 (Li,s,,(~‘, 9)). However, in general, this language strictly contains 

the original w-language Li,/,,(~, 9). This is a consequence of the fact that Linf,,(&‘, 

9) may contain o-words of the form x.dW, x~(Cu id})*; these w-words correspond to 

infinite runs of & on finite words that happen to have accepting state sequences (with 

respect to 9). The acceptance of such an o-word by d’ would imply that 

rrr(x).Cw& T(A~‘-‘(L~,,~,,(&‘, 9)), while not necessarily rrl(x).Co~ LiEf,,(d, 9). 

Here we have used 7~~ to denote the projection onto the alphabet C; it removes the 

symbol &. 

Hence, before applying the transduction T(M)- ‘, we first intersect the w-language 

Li,s,,(.c4’, 9) with the regular w-language (&*.C)w=(Cu {d))“-(Zu {&})*.&“; by 

Lemma 4.14, this intersection again yields an o-language from r-XLi,f,,. According 

to Lemma 4.3(2), Li,,f,n(~, 9)= T(,~fl)-l(Li,,f,,(~‘, 9)n(d*.CY’) belongs to r- 

(Q X X)Linf, n. 
(2): We now have L,,,(&, 9)= T(A’-‘(L,,,(~d’, 3)). In fact, &’ does not accept 

words from (Cu id})* .d” because .d is an automaton with finite delay. 0 



Remark 4.16. The first statement of the above lemma cannot be generalized to less 

powerful acceptance types like (ran, G) and (inA G). Intuitively, this is due to the fact 

that these acceptance types cannot force an automaton to perform a certain action (in 

the above proof: removing a letter from the queue) infinitely often. 

Recall that, if BC < X, then all o-languages accepted by FS-automata are included 

in XL,,, for each acceptance type (Theorem 3.12). We then may use the counter- 

examples of Corollary 4.8: O*l. (0, l}“cXL,,,, &, whereas, for every storage type Y, 

0* 1.10, l}“$f- YL,,,. c . Similarly, (0* ~)“EXL~,,~. E , while (0* 1)“4f- YL,,, E . 

In Section 3 we have shown that the hierarchy of the families XL,,, collapses into 

a single family when the storage type X can simulate an extra blind counter (Theorem 

3.11). Now Lemma 4.15 tells us that for each acceptance type automata with finite 

delay are equivalent to real-time automata, for storage types (like Q*) that can 

simulate an additional queue in real time. More precisely, in this case the class of 

families r-XL,,,, f-XL,,,, and XL,%, consists of precisely three families: r-XL,.,,, G c r- 

xLinf,G cr-XLf,, $ as shown in Theorem 4.17. 

Theorem 4.17. If Q x X d r X then the diagram of Fig. 2 holds. 

Proof. The strict inclusions from left to right for real-time (and finite delay) 

automata are presented in Theorem 4.9. We consider the equalities from the 

diagram. 

Using Lemma 4.15, the assumption of the theorem, and Corollary 4.13, we have 

XLi,f., or-(Q x X)Li,f,, ~r-XLi~f,, and f-XL,, s or-(Q x X)L,, c or-XL,, L . 

In order to show the equality of the families XL,.,, it suffices to demonstrate that 

BC x X < X (Theorem 3.11). First we observe that by definition Q x X < r X implies 

QxX<X. Since, clearly, BCdQ we have BCxXdQxXdX. 0 

We have now seen some examples of storage types for which automata with finite 

delay are equivalent to real-time automata. In particular, we have the equalities 

f-FSL,,, = r-FSL,,, for the simple storage type FS as well as f-XL,,, = r-XL,,, for the 

more powerful storage types that satisfy Q x X <r X. 

XL,,,,, - XLinf,c - XLinf,n 

f--%a,, G - f-XLi*f, c __C f-XLinf,n 

r-XL 
Ial. i r-XLinf, r r-XLinf,n 

Fig. 2. Inclusion diagram in the case that Q x X <,X. 
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However, in general, the families f-XL,,, and r-XL,,, are not equal. We will show 

that the o-language 

BIN,=(x.ak~xE{O, 1>*, k=nr(x)}.b”u{O, l}“, 

where nr(x) denotes the integer represented by XE{O, l}* as a binary number, can be 

accepted by an automaton with finite delay having two counters as storage but not by 

such an automaton that is real-time. This example is essentially the one given by 

Jantzen in [18] for finitary languages accepted by (real-time) Petri nets. 

Lemma 4.18. BIN,Ef-CTR2L,,,, G -r-CTR2Li,,f., 

Proof. (a) BIN,Ef-CTR2L,,,, c . We use incri and decri to denote the increment and 

decrement instructions for the ith counter (iE{ 1, 2)). 

Let G! be the (deterministic) CTR2-automaton with initial state p1 and the follow- 

ing transitions: 

h, 0, true, p2, 4, (pl, 1, true, ~2, incr2), 

(p2, A, lzerol, p2, deer, incr, incr,), (~2, A zerol, p3, A), 

(~3, A lzero2, p3, deer, incr,), (p3, A, zero2, ply N, 

(Pi, 4 izem, P4, deer,), iE{1,4j, and (pi, b, zeroI, ps, A), iE{l, 4, 5}. 

Let Q = { pl, p2, p3, p4, p5}. One easily verifies that L,,,, c (&, {Q})= BIN,: the first 

counter represents the value nr( y), where y is the prefix (in (0, l}*) of the input read, 

the second counter is used (in states p2 and p3) to multiply the first counter by two. We 

still have to show that d has finite delay. Observe that any sequence of A-moves of 

A must -from some moment on ~ either take place in state p2 or in state p3. However, 

the number of successive applications of the instructions deer, incr2 incr2 (deer, incrl ) 

is bounded by the value of the first (second) counter. Hence, infinite sequences of 

A-moves are impossible. 

(b) BZN,#r-CTR2 Li,,f., . The argument closely follows [ 181. Assume that BIN, = 

Linf,m(dt {D})t h w ere d is a real-time CTR2-automaton with state set Q. Let m be the 

maximal value that can be added to the counters in a single step of d. Thus, if &’ reads 

a word XE{O, l}* from its input tape with /xl= n, then the total value of the counters is 

at most n.m. Consequently, there exists a constant c such that there are at most c.n2 

possibilities for the storage configuration of .d after reading a word of length n. 

Choose ~Z~E N such that 2”” > # Q. c. ni 
For each word XE{O, l}* with 1x1 =nO there exists an infinite run r(x)= ((q&x), u[i], 

citx)))isN of & on ~~=xa”‘(~)b” that is (ir$ n)-accepting with respect to {D}. Since 

there are 2”” words of length ~~ in {0, l}* but less possibilities for the pairs (q,,,,(x), 

c,,(x)), there are two different words x1, x2 of length no over (0, l} ~ say with 

nr(x1)<nr(x2) ~ such that (qn,(xl), ~,,~(x~ ))=(qn,(x2), c,,(x2)). Following the 
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definition of Y(x~), starting in (q,,,,(x2), x2, c,,(x,)) d may read unrcx2)bo from its input 

while entering some state in D infinitely often. By a combination of the two runs r(xi) 

and Y(x~) [switching from the one to the other when reaching state qno(x1)=qno(x2) 

and configuration cn,(x1)=cn,(x2)], we obtain a run of d on x~~“‘(~~)V” which 

is (inf, n)-accepting with respect to (D}. This contradicts our assumption since 

xlanr(x2’bw$BIN,. This proves BIN,$r-CTR2Linfs,. 0 

Hence, BIN, is an w-language that distinguishes the real-time two-counter auto- 

mata from the two-counter automata with finite delay. 

Theorem 4.19. r-CTR2L,,,cf-CTR2L,,,. 

Remark 4.20. Note that the same line of reasoning can be used to show that 

BIN,$r-CTR*Li,,f., . 

Lemma 4.18 can also be proved for the storage type BC’. One then uses the 

o-language BIN~={w.ak~w~{O, l}*, O~kdnr(w)}.b”u{O, l}” (see again [lS]). In 

fact, BINJ,,Ef-BC2 L,,,,. c - r-BC* Li,,f. n 

From Theorem 3.11, Corollary 4.8, and the above remark on BIN:, it now follows 

that the diagram of Fig. 3 holds for Petri nets (with acceptance with respect to 

bounded places, see [38] for real-time nets). We conjecture that the inclusion in- 

dicated by * is an equality. 

A diagram with the same inclusions and equalities holds for the storage types CTR* 

and CTR2. 

Each of the inclusions r-XL,., E f-XL,, p c XL,., may be either an equality (as, e.g., 

for X =FS) or may be strict (as for X = BC*), except perhaps the inclusion f- 

xLinf, n G xLinf,n for which no example of strictness has yet been given. We do this 

now. 

Theorem 4.21. There is a storage type Z such that f-ZLins,, cZL,,,~,, . 

BC’Lra,, c - BC*Linr c = BC*Linf, n 

f-BC’L,,,,, __c f-BC*Li,f,c - f -BC*Li,f, n 

r-BC’L ran.= - r-BC*Linf,c - r-BC*Linr ” 

Fig. 3. Inclusion diagram for the storage type BC* 
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Proof. Let Z be the rather exotic storage type (N x N x 
deer,, deer,, half1 }, p), where 

p(zero)(r, s, d) = true if and only if r = s = 0, 

{t, 11, ((1, 1, t)}, {zero>, {incr, 

p(incr)(r, s,d)=(r+ 1, s+ 1, d) if d = r, and undefined otherwise, 

~(decrl)(r,s,d)=(r-l,s,I) if r 3 1, and undefined otherwise, 

~(decr,)(r,s,d)=(r,s-1,l) if s > 1, and undefined otherwise, 

~(half,)(r,s,d)=(:r,s, I) if r is even, and undefined otherwise. 

Note that Z is a “one-turn” two-counter storage, in the sense that the counters can 

be incremented (synchronously) in the first phase, and can only be decremented in the 

second phase of a run. 

Consider the following variant of BIN,: 

BIN~‘={x.akIxs(O, I}*, k=nr(x’“‘)}.b”, 

where xreV is the mirror image of x. 

A Z-automaton d (inL n)-accepting BINEV can be constructed in the following 

way. & starts by nondeterministically guessing a value for k, and puts this value in 

both its counters. Then it checks whether this value is represented by xrev in binary: on 

input 0 it halves the first counter, on input 1 it does the same after first decrementing 

the counter by one. Finally, using its second counter, it checks whether the number of 

a’s on the input tape also equals k. After reading the last a, the zero test is performed. 

Obviously, & does not have finite delay because it has an infinite run on A (guessing 

an infinite value for k). 
BIN:” cannot be (inf, n)-accepted by a Z-automaton with finite delay. For each 

Z-automaton with finite delay there is a fixed bound on the number that can be added 

to the counters in a computation that uses only A-transitions. In fact, if such a bound 

would not exist, there would be arbitrary long sequences of A-transitions increment- 

ing the counter. Consequently, there would be a cycle of such transitions in the 

automaton, contradicting the finite-delay property. Now that we have obtained the 

bound, the proof is similar to the proof of Lemma 4.18: the contents of the counters 

after reading x can be bounded by a linear function in 1x1. We leave the details to the 

reader. 0 

5. Deterministic automata 

By now the reader will have guessed the type of results we want to derive in this 

section. Using the characterization result for deterministic automata given in 

Theorem 3.3, we obtain a diagram for the families d-XL,,,, which is similar to the 

well-known diagram for the families d-FSL,,, (which was presented in Proposition 

2.10). As in the previous sections, this does not yet give any information concerning 
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the strictness of the inclusions. Like for real-time automata, we give simple topological 

upper bounds on the families d-XL,,, which are then used to obtain strictness 

of the inclusions (Theorem 5.5). After comparing the strength of deterministic and 

nondeterministic automata in Theorem 5.6, we close the section by studying a 

property of storage types related to the closure under complement of the families 

d-XL,, = . 

For deterministic automata there are some well-known relations between accept- 

ance type and language-theoretic operations. 

Lemma 5.1. Let .d be a deterministic X-automaton with state set Q and alphabet C, and 

let S s 2”. Then 

(1) L,,,,. Cd, {Q>))=adKbW',Q)), 
(2) Lmn (d, 2) = L, (xf, U 2). C”nadk(L,(&‘, Q)), and 

(3) Li,f,,(.d, 9))=lim(l,(Cd, IJQ)). 

Proof. (1): L,,,, s (s?‘, {Q})) is the set of all o-words over Z on which there exists a run 

of .d. Clearly, each of these w-words belongs to adk(L,(.d, Q)). The reverse inclusion 

is also obvious. If .d may read arbitrary long prefixes of an o-word U, then there exists 

an infinite run of .d on u because .d is deterministic. (See also the proofs of Lemmas 

3.7 and 4.6.) 

(2): L,,,, m(.d, 9) consists of all u-words on which there exists a run of d, and, 

additionally, for which this (unique) run enters, at least once, a state from one of the 

sets from 8. These w-words form the set adk(L,(,d, Q))nL,(,d, U~).P. 

(3): The proof is similar to that of (1) and (2). We only require that the run enters 

infinitely often a state from lJ9. 0 

The above result enables us to give topological upper bounds on the u-languages 

that are accepted by deterministic automata and, consequently, to give examples of 

elementary w-languages that cannot be accepted by any deterministic automaton 

using a specific acceptance type. 

Given two families z,Y and 9’ of w-languages we use x A 9 to denote 

{KnLIKeX, LEY}, and %(sy‘) to denote the Boolean closure of the family x. 

Note that a(S)=g(%) and .&?(9,,)=a(9Y8). 

Lemma 5.2. (1) d-XL,,,, E G 9. 

(2) d-XL,,,, n s.9 A %. 

(3) d-XL,,,, = cl/~(~). 

(4) d-XL,,. c ~9,. 

(5) d-XL,,, n c 98. 

(6) d-XL,,, = s,%(gO). 

Proof. (l), (2), and (5) are clear from Lemma 5.1 and the relation between the 

language-theoretic operations and topological families (Proposition 1.2). 
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(4) can be shown just as the inclusion f-XL,,, c cP;, in Lemma 4.7(2), using (1). 

To show (3) and (6), consider an arbitrary deterministic X-automaton JZZ and 

a family 9 of state sets for d. Then L,, =(d, 9)= UDE9 [L,, E (&, {Q})- L,,,(s?, 

{Q-D))]. Now d-XL M,,, = &B(9) and d_XLi,, = s98(F0) follow from (1) (2) (4) 

and (5). 0 

Corollary 5.3. (1) O*l .{O, l}“~dr-XL,,,,, -d-XL,,,, E . 

(2) (O*l)“~dr-XLi,,f,, -d-XL,,, c . 

(3) (0, l}*. l”Edr-XLi,,f, c -d-XLi,s,, . 

Proof. Clear from Example 2.6, Lemma 5.2, and Proposition 1.3. 0 

Lemma 5.4. (0, l}w-O*l .O”Edr-XL,,,, = -d-XL,,,,, . 

Proof. Let K={O, l}“-O*l.O”=O”uO*lO*l.{O, 11”. 

Let d be the deterministic real-time FS-automaton with state set Q= {qO, ql, q2} 

and transitions (qi, 0, true, qi, A) for i~{O,1,2}, (qi, 1, true, qi+l, A) for i~(0, 11, and 

(q2, 1, true, q2, A). If 9 = { {qe}, Q}, then L,, = W, S)= K. 
On the other hand, assume that KEd-XL,,,,m. According to Lemma 5.2(2), d- 

XL *an, n G 9 A 9. Thus, assume that K is of the form adk(L1 ) n Lz. {0, I}“’ for finitary 

languages L1 and L2. Since O”EKG L2.(0, l}“, we have O”EL~ for some n~kJ. On 

the other hand, O”lO* 1 .O”GK cadk(L,), so pref(O”lO*)~pref(L,). Consequently, 

0”1.0”~adk(L,)nL2.(0, l}“=K; a contradiction. 0 

We now present the next main result, the full diagram for the families d-XL,,,. 

Theorem 5.5. (1) The diagram of Fig. 4 holds. 

(2) The same diagram holds for the families dr-XL,,,. 

Proof. (1): The inclusions (G rather than c) for the families d-XL,,, can be obtained 

from the finite-state case (Proposition 2.10) using our characterization in terms of 

inverse transductions (Theorem 3.3 (2)). The strictness of the inclusions d-XL,,,, E Ed- 

XL = d-XL,,,, =, llllI, n - and the incomparability of d-XL,,, c and d-XLi,f,, follow 

from Corollary 5.3 and Lemma 5.4. 

d_XLinf, c 

d-X=,,,, c 
y \ 

-_) d-XL,,, n --t d-XL,,, = 

’ \ 

d-XLi,p, = 

d-XLin/ 

Fig. 4. Inclusion diagram for deterministic automata. 



dr-CTR*L,,,,. --cdr-CTR2L,,,,,--c dr-CTR*L,,,,; 

I dr- CTR'Linf,. 

. ldr-CTRzLi,f,. 

L d,-CTR',,,/ 

Fig. 5. Inclusion diagram for CTR’. also valid for CTR*. 
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d-CTR2Linf,= 

d-CTRZL,,,,s - d-CTR*L,,,,n - d-CTR'L,,,,; 1 d-CTR2L. 

4 

I 

'4 
/ ' Iof'- 

d-CTRZLinf,. 

1 

(2): For dr-XL,., the inclusions can be obtained using the characterization in 

Theorem 4.4(3). Cl 

The diagram for the families d-XL,,, and the one for the families dr-XL,,, can be 

combined into one figure. In general, the inclusion dr-XL,,,cd-XL,,, can be an 

equality as for FS [Lemma 2.9(2)] and for the storage type U which is studied in 

Section 6 (see Theorem 6.3). Since the o-language BIN, given in Section 4 belongs to 

d-CTR= L,,,, E but not to r-CTR2 Li,, = (see Lemma 4.18 and its proof), the diagram 

of Fig. 5 holds for the storage type CTR’ (as well as for CTR*). 
The infinitary behaviour of deterministic machines was studied in several places. 

We mention pushdown automata [23,7], Turing machines [40,8], and Petri nets [S]. 

Unfortunately, the results that were obtained in these papers concerning the 

relative strength of the acceptance types do not follow directly from Theorem 5.5, 

because several different choices with respect to determinism and acceptance were 

made. We mention some of the differences. 

In [7] pushdown automata are required to be total (“have the continuity property”), 

in the “global” sense that they should have an infinite run on each possible input 

(reading all letters). It is explained in that paper that this influences only the class 

d-PDL,,,, n . In fact, with this requirement d-PDL,,,, E and d-PDL,,,,, become “com- 

plementary” families (see the discussion preceding Definition 5.7). Thus, with the 

exception of the family d-PDL,,,,,, our families (and the relations between them) are 

the same as those of Cohen and Gold. 

As explained before, the acceptance conditions in [40] do not require a machine to 

read all its input. Nevertheless, the relations (but not necessarily the families) obtained 

by Wagner and Staiger for deterministic Turing machines are the same as the ones 

from Theorem 5.5, except again for the acceptance type (ran, n). 

For Petri nets our definition of determinism is not the usual one. In general, the 

definition of determinism can be weakened in a natural way. A first alternative is to 

require that for no configuration c there are two transitions (q, ai, /?i, qj, qi, wi), i= 1,2, 

with a, = az or a, = A, such that, for both i = 1 and i = 2, p( fli)(c) = true and ~(Cpi)(c) is 
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dejned. For Petri nets (cf. [S]) this alternative is further weakened by restricting the 

requirement to configurations c that can be reached from the initial configuration of 

the automaton. Although this notion of determinism is weaker than the one we use, it 

is still stronger than a “global” notion of determinism which requires that there is at 

most one infinite run on each input. 

Rather than confusing the reader with several notions of determinism treated at the 

same time, we have chosen to illustrate our techniques using one, classical, definition. 

We believe that similar results can be obtained for other, “reasonable”, definitions of 

determinism, since the constructions used in the proof of our main characterization 

result (i.e., in the proofs of Lemmas 3.1 and 3.2) do not introduce nondeterminism. 

For finite-state automata the expressive power of determinism can be read from 

Proposition 2.10: deterministic automata are as powerful as nondeterministic auto- 

mata for the acceptance types (ran, c), (inf, G), and (inJ =), but they are less powerful 

for the remaining three acceptance types. We compare deterministic and nondeter- 

ministic automata in the next result. 

Equivalence for the acceptance types (ran, G) and (inL G) turns out to be a rare 

property of storage types. 

Theorem 5.6. (1) d-XL,., ,,,. n c XL,, ,,,, n, d-XL,,,, = c XL,,,, = , and d-XL,,, n c XL,,, n. 

(2) If BC < X, then, additionally, d-XL,,,. c c XL,,,. L , and d-XL,,, G c XL,,. c_ . 

Proof. (1): Follows quite easily from Theorems 5.5 and 3.5. 

(2): The strictness of these inclusions follows from the fact that d-XL,,,, i and 

d-XL;,, E do not contain all regular w-languages (Corollary 5.3), whereas XL,,,, s 

and XL,,. G do (Theorem 3.12). 0 

Note that the case (inA=) is left open. It is known that the inclusion d- 

XL,,, = EXL,,, = is proper for pushdown automata and Turing machines [7, 81. 

A way to obtain a general result would be to give an w-language not in g(p,,) which 

is included in XL,,. = (under some assumption for the storage type X). In [31] the 

families of m-languages accepted by Turing machines are investigated in the Bore1 

hierarchy as well as in the arithmetical hierarchy for o-languages. It is explained that 

the family of w-languages (inf =)-accepted by nondeterministic Turing machines is 

not included in any family of the Bore1 hierarchy (cf. the closing remarks of Section 3 

in [31]). This indicates that the strictness of the inclusion considered can be proved by 

topological means. 

For some of the specific storages studied in the literature it was observed that the 

families d-XL,, = are closed under complement, and that the families d-XL,, = and 

d-XL,,, are “complementary”, i.e., one contains the complements of the w-languages 

of the other. This is due to the fact that deterministic automata are often assumed to 

be total, i.e., they should have a run on every possible input. Since we do not have this 

requirement we cannot directly derive such a result for arbitrary X-automata. Instead, 
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we use the following notion which previously has been quite helpful in complementing 

the 3finitary languages accepted by deterministic X-automata (cf. [ 111). 

Definition 5.7. Let X = (C, Ci,, P, F, p) be a storage type. X with injinite look-ahead, 

denoted by XwLA, is the storage type (C, Gin, P’, F, p’), where P’= Pu {inf(&) Id is an 

X-automaton}, with p’(x) ‘p(x) for each XEPU F, ar:d p’ (inf(&))(c) = true if and only 

if there exists an infinite run of .d on A starting irj (gin, A, c), where gin is d’s initial 

state. 

Note that a deterministic X,,, -automaton may use tests inf‘(,d), where .d is 

nondeterministic. Similarly, for real-time automata: a real-time XOL,-automaton may 

use tests inf(&), where .d has A-transitions. 

Lemma 5.8. Let LGZ”. (1) If LEd-XL,, =, then G”-LEd-X,,, L,, = 

(2) If LEd-XL,,, h, then Z”-LEd-X,,, Li,., 

(3) IfLEd-XLinf,n, then C”-LEd-X,,, Li,, g. 

(4) Analogous results holdfor the correspondingfamilies dr-XL,,, and dr-XaLA L,,,. 

Proof. Let &=(Q, C, 6, qin, tin) be a deterministic X-automaton. 

(1): The complement with respect to C” of the w-language L,, = (&, 9) is equal to 

L,. = (x2, 2Q - 9), provided for each co-word in C” there is a run of &’ on this w-word. 

Using infinite look-ahead, .d may be transformed in such a way that it satisfies this 

property. We add a special state grail to .d, together with transitions (qfail, a, true, 

qfail, A) for UEC, to which we will lead all “unsuccessful” runs. 

There are several possibilities for the behaviour of & on a given input u to be 

“unsuccessful”. 

(a) ,zI blocks due to an undefined instruction. We can avoid that by testing the 

instruction as follows. For cp~F*, consider the X-automaton 98(q) consisting of two 

states qO and qlOOp (of which go is initial), and having two transitions (go, A, true, 

41 OOp, cp) and (qlOOp, A, true, qlOOp, A). The X-automaton 2(cp) has an infinite run on 

A starting in (go, A, c) if and only if p(q)( c is defined. Now replace in d each ) 

transition (q, a, /I’, q’, 9) by the transitions (q, a, PA inf’(g(cp)), q’, cp) and (q, a, p A 

1 inf(Wcp)), qfail) A). 
(b) .r4 has an infinite run on a finite prefix of u. We replace in .d each transition 

(q,a, B, q’, cp) by the transitions (4, a, B A 1 M&(q)), q’, cp) and (4, a, PA @(d(q)), 
qfail, A), where .d(q) is the X-automaton that equals &‘, except that its initial state is q. 

(c) As a last possibility, ~2 may block because in some instantaneous description 

there are no “useful” transitions: the present configuration satisfies none of the tests of 

the transitions that start in the present state (with a suitable input). To take care of 

this, we construct new transitions leading to qfail whenever such a situation occurs. 

For a state q of .d let p,,(q) be the disjunction of all tests in A-transitions starting in 

state q; this means that the automaton can make a A-step in some instantaneous 
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description (q, x, c) if and only if p(fi,,(q))(c)= true. Similarly, we define p.(q) for each 

letter a in C. We add to JZZ for each state q and each UEC the transition 

(49 a~1 B12 (4) A l Pa (4)9 qfail > A). 

It is important to note that this construction does not change the (0, p)-accepted 

o-language of d with respect to 9, when (a, p) #(ran, n); these acceptance types can 

be used to single out those runs which do not enter the state qfail (or, equivalently, 

which do not enter qraii from some moment on). This is not true for (ran, n)- 

acceptance: a run may first enter some “accepting” state and reach qfail afterwards; this 

leads to an accepting run which originally did not exist. 

(2) and (3): For (irzf, E) and (inf, n)-acceptance we may assume that we have 

a single state set D with respect to which we accept runs (see Lemma 2.7). We have 

demonstrated above that we may assume that d has a (unique) run on each o-word 

from C”, but then C”- Linf,, (d, {D}) is equal t0 Lfnf.C (cd, {Q-D}). 

(4): Note that we have introduced no A-transitions in the above construc- 

tion. A-transitions were only used in the look-ahead automaton 99(q), which is 

allowed. 0 

Note that if XoLA can be simulated by X (and this holds, e.g., for X=FS and 

X=PD), then Lemma 5.8 shows that d-XL,, = is closed under complement, and that 

d_XLi,, z and d-XL,,, n contain the complements of each others o-languages. In 

Section 6 we need this property for a specific storage type. 

Remark 5.9. It is perhaps interesting to note that using look-ahead every determinis- 

tic automaton d can be transformed into an equivalent deterministic automaton 

having finite delay. This is done by adding to each transition starting in a state q, the 

test linf(d(q)), where d(q) is the automaton that equals d except that its initial 

state is q. Obviously, this implies that d-XL,,, z df-X,,, L,., . Using Corollary 4.8, we 

then reobtain O*l.{O, l}“$d-XL,,,, E and (O*l)“$d-XL,,, E. 

6. A universal storage type 

In this section we study a storage type of “maximal power”, in the sense that it can 

be used to simulate any other storage type. We show that most of its families of 

accepted o-languages coincide with the families from the Bore1 hierarchy which were 

used in Section 5 as topological upper bounds (Lemma 5.2). This illustrates within our 

framework the strong connections that hold between acceptance types and topologi- 

cal families. 

Similar results were obtained by Arnold (in [l]) for the more general framework of 

transition systems. (They were reobtained in an elegant way in [30] using the relation 

between deterministic and nondeterministic systems.) Considered in [l] are the 

acceptance types (run, c ), (inJ; E ), and (inL n) ~ somewhat reformulated to deal with 

a possibly infinite number of states - for various kinds of transition systems. It should 
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be intuitively clear that deterministic, finitely brunching, and countably branching 
transition systems (as defined in [l]) correspond, in our framework, closely to 

automata that are deterministic, have finite delay, or are unrestricted, respectively. 

Note that the definition of transition system given in [I] does not allow A-transitions, 

whereas in our framework the number of transitions applicable to an ID (i.e., 

the “branching” of an automaton) is bounded by a constant (depending on the 

automaton). 

We give the definition of our maximal storage type U. Intuitively, a U-atomaton 

has a storage consisting of a one-way write-only tape. The automaton can test, for any 

finitary language, whether or not the finite word on its tape belongs to the language. 

Definition 6.1. The universal storage type U equals (f *, {A}, P, F, /AL), where r 

is a fixed infinite set of symbols, P= (in K II< cZ*, for a finite Z or}, 

F= (store(x)jxgT*), and,,for CE~*, p(in K)(c)= true iff ~EK, and p(store(x))(c)=cx. 

Lemma 6.2. For every storage type X, X < r U. 

Proof. Let X =(C, Gin, P, F, p), let ,ZZ be a deterministic X-transducer with initial 

configuration Gin, and let D be a set of states of A’. We will construct a deterministic 

U-transducer A’ (with the same state set as .K) such that T, (A[, D) = T* (.,&“, D). The 

main idea behind this construction is to use the configurations of U to store the 

sequences of instruction symbols that are performed by A’ and to encode, in a suitable 

language, those sequences that lead to a configuration in which a given test is satisfied. 

Let E’,, be the (finite) subset of F of instruction symbols that are used in A!. With- 

out restriction, we may assume that F,, is included in I-, the alphabet of U. 

Let, for ~EF*, Def‘(cp)= {$EF T, Ip(Ic/.(P)(Cin) is defined) and, for PEBE(P), let 

True(B)=I~EF~~(~=~((IC/)(Ci,) is defined and p(fl)(c)=true). Now A” is obtained by 

replacing every transition (4, u, b, q’, cp, \v) of .M by the transition (q, a, in True(b) A 
in Def‘(cp), q’, store(q), w). 

Clearly, if .tf is real-time, then so is j I”. q 

In particular, we have U O,_A d,U and, consequently, dr-UL,,,=dr-U,,,,,L,., 

(Corollary 4.13). This will be useful in the proof of the following result. 

Recall that for families ox and 6p of o-languages we use J’” A 2 to denote 

{K~LIKE~Y‘, LEY], and A?(Y) to denote the Boolean closure of the family X. 

Theorem 6.3. (1) dr-UL,,,,. =d-UL,,,,,~ =F 

(2) dr-UL,,,,,.,=d-ULL,,,,,,,=~~A. 

(3) dr-UL,,,, = =d-UL,,,, = =s?(Y). 
(4) dr-ULi,f, 5 = d-U Linf, s = F~. 
(5) dr-ULi,f,,=d-ULin~.n=~~. 

(6) dr-ULi,,f, = =d-ULi,. = =A?(~F~). 
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Proof. The topological upper bounds follow from Lemma 5.2. We prove the inclusion 

of the six topological families in the respective families of a-languages accepted by 

deterministic real-time U-automata. 

(1) and (5): Let KcC* and let ,ti be the U-automaton with transitions 

(qi, U, in K, 41, store(u)) and (qi, a,iin K, qo, store(u)) for UEC, i~(0, l}, and with 

initial state ql. For this automaton we have Li,f,,(,d, {{ql }})=/im(K). This shows 

that ga~dr-ULi,J,, (see Proposition 1.2). 

If, additionally, K =pref(K), then L,,,, L (&‘, { {q,}})=udk(K). Since for every 

language K, udk(K)=adk(pref(K)), the assumption K =pref(K) is no loss of general- 

ity. This shows that 9 cdr-UL,.,,. &. 

(2): Let K, LG Z*, and let .%9 be the U-automaton with transitions 

(qO, a,1 in L, qo, store(u)), (qO, a, in L, ql, store(u)), and (ql, a, in K, ql, store(u)) for 

UE:C, and with initial state q,,. If K=pref(K), then L,,,,,(d, { {ql}})= 

L.C”nudk(K). This shows that 9A+?~ddr-UL,,,,,. 

(3): In order to show the inclusion g(9) & d-UL,,,. = , we demonstrate that F G dr- 

UL,,,, = , and that dr-UL,,,,. = is closed under the operations complement and union. 

Since dr-UL = dr-UL,,,% = ran, s - [Theorem 5.5(2)], the inclusion 9 G dr-UL,,,, = fol- 

lows from (1). The closure of dr-UL,,,, = =dr-UwLALran, = under complement is a con- 

sequence of Lemma 5.8. So, it remains to prove the closure of dr-UL,,,, = under union. 

This is done as follows. Given two deterministic real-time U-automata &‘i and dz we 

construct a deterministic real-time U x U-automaton ,%’ as the product of di and -c42 

in an obvious way. If we assume that both &‘i and ~2~ have a run on each input word, 

then we may use Lemma 2.8 to find for each family Oi a family 9: such that 

LV~HI. = (c&i, ~i)=Lan. = (d, 9;). According to the proof of Lemma 5.8, it is no restric- 

tion to make this assumption. But then L,,,, = (A!~, LPI )uL,,,, = (J&‘~, gz ) = 

L,.,,*, = (sZ,~‘~ ~9;). Since U x U dr U (Lemma 6.2) this proves the closure of 

dr-UL,,,, = under union (Corollary 4.13). 

(4): FOCdr-UL;,,f. g follows by complementation from (5) (see Lemma 5.8). 

(6): For the inclusion 99(9c)gdr-ULi,, = we use an argument analogous to the 

one in (3). 0 

Note that these classes are related by the diagram of Fig. 4. Note also that for 

automata accepting finitary languages U is of no interest: every finitary language can 

be accepted by a deterministic U-automaton. 

According to the previous result, in the deterministic case the maximal power of 

U can be expressed as a topological family, depending on the acceptance criterion. 

Also the deterministic U-transductions are of topological significance (cf. [33]), as 

shown in the next result. 

Theorem 6.4. (1) dr-U T= d-U T equals the family of continuous functions with domain 

in Y6. 

(2) dr-UT,,,=d-UT,, equals the jhmily of continuous functions with domain 

in 9. 
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Proof. Recall that the functionf: C”+A” is continuous in a word u if for each rnehJ 

there exists neN such thatf(tl[n].C”)~f(u)[m].d”‘. 

(a) Clearly, every deterministic transducer defines a continuous function: if 

(u, V)E T(,&‘) for some deterministic transducer _&‘, and J? outputs the first m symbols 

of L) on the first y1 symbols of u, then T(.&‘)(u [n] P) E u [ml. A”, where C and A are the 

input alphabet and output alphabet of J?‘. 

Regarding the domain of transductions, we observe that it is straightforward 

to extend Lemma 2.13 to deterministic transductions. Hence, dom(d-UT)=d- 

uLinf, n =9Ja, and dom(d-UT,)=d-UL,,,,. =F--. 

(b) We now have to show that every continuous function (with a suitable domain) 

can be implemented as a deterministic real-time (o-preserving) U-automaton. We will 

do this in an indirect way by using the storage type FUNC(fT K), which allows one to 

simulate functions in a simple way, rather than the storage type U. The result then 

follows since by Lemmas 6.2 and 4.11, dr-FUNC(JT K)T,gdr-UT,, and dr- 

FUNC(f; K)Tcdr-UT. 

For a given function f :C”+A” and a language K SC* the storage type 

FUNC(f; K) is given by (C* x A*, {(A, A)>, P, F, p), where P contains the predicate 

symbols next(b), for every ~EC, nonext, and in K, and F contains the instruction 

symbols store1 (a), for every UEZ, and store,(b), for every bid. The meaning of these 

symbols is given by 

p(next(b))(x,y)=true iff f(x.C”)~y.b.A”, 

p(nonext)(x, y)= true iff there is no bEA such thatf(x.C”)Ey.b.A”, 

p(in K)(x, y)=true iff XEK, 

pWorel(4)(x, ~)=@.a, Y) 

and, similarly, 

k4store2(b))(x, Y)=(x, Y.W. 

Let Jz’ be the deterministic real-time one-state FUNC(fT K)-transducer with the 

transitions (4, a,1 in K, q, store1 (a), A), (q, a, in K A next(b), q, store,(u)store,(b), b), 

and (q, a, in K A nonext, q, storel(a), A), for aeZ and beA. 

(b. 1) Note that J?’ can only output a letter if the prefix of the input which has been 

read belongs to K. Hence, the domain of T(J%‘) is included in km(K). On the other 

hand, if f is a continuous function with domain km(K), then the continuity will 

guarantee that infinitely often for some appropriate bEA the test next(b) is satisfied. 

Hence, J?’ then realizes the functionf: T(Jf) = {(u, v) 1 uElim(K), f(u) = II}. This proves 

(1) of the theorem. 

(b.2) Assume now that fis a continuous function with domain adh(K) in F-, and 

assume that the language K is prefix closed. We transform JZ into an w-preserving 
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transducer by omitting the transitions (q, a,1 in K, q, store1 (a), A), ~EC. Again &’ 

realizesf: T(,K)= { ( , )I u v u~adh(K),f(u)=vj. This proves (2) of the theorem. 0 

We now turn to nondeterministic U-automata. 

Theorem 6.5. UL,,, equals the,fumily of continuous images of 9Yg-sets. 

Proof. Since, according to Theorem 3.11 and Lemma 6.2, all families UL,,, are equal, 

it suffices to consider one of them. On the one hand, by Lemma 3.8, ULinf,, = HOM(d- 

ULi,.,)~dr-FST(d-ULi,,,, ). This implies that each set in ULins,, is the continuous 

image of the intersection of two 9a-sets: the domain of the transducer [see Theorem 

6.4(l)] and the d-ULi,f,, set (Theorem 6.3) which again is a Yd-set. 

On the other hand, again by Theorem 6.4(l), the continuous images of gd-sets are 

exactly the ranges of deterministic real-time U-transductions. We have the inclusions 

ran(dr-UT)crun(UT)= ULi,~,, [cf. Lemma 2.13(l)]. 0 

Continuous functions on o-languages were studied in [33], where they were called 

sequential mappings. The continuous images of Ya-sets are known under the name 

analytic sets (or Souslin sets, sets of first projective class) in the literature. They are 

equal to the continuous images (or projections) of the Bore1 sets. 

Since Q x U 6, U, the relations between the families r-UL,,, and f-UL,,, are 

already given in Theorem 4.17. Now we are able to give the exact topological 

characterizations of these families (cf. Lemma 4.7). 

Theorem 6.6. (1) r-UL,,,, E = f- U L,,,, L = 9. 

(2) r-ULi,f.G =f-ULi,f,. =YO. 

(3) r-ULi,~,,=f-ULi,s,,=ULi,f,,. 

Proof. The topological upper bounds f-UL,,,, c c.9 and EUL,,, c ~9~ follow from 

Lemma 4.7. The converse inclusions 9 G r-UL,,,. E and F,, C_ r- ULi,, c are shown in 

Theorem 6.3. 

The equalities in (3) follow from Theorem 4.17 (and Lemma 6.2). 0 

The relations between acceptance types and topological families were considered in 

this paper at a rather elementary level, as a simple technical tool to provide us with 

examples to prove the strictness of some inclusions. A deeper study of the w-languages 

accepted by Turing machines, and their relation to the arithmetical hierarchy from 

recursion theory and the topological Bore1 hierarchy is presented in [31]. In [37] 

a common framework underlying these two hierarchies is presented, with some 

explicit comments on the technical differences between the classical definitions and 

their adaptation to language theory (where finite alphabets and o-words take the 

place of natural numbers and number-theoretic functions). It also contains variants of 

these hierarchies based on regular w-languages. 
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7. Logical acceptance criteria 

In this paper we have studied, within a common framework, the acceptance of 

w-languages for several types of automata. We have illustrated our methods by 

investigating both unrestricted automata, as well as some restrictions like real time 

and determinism. We did not succeed in deriving all related results from the literature 

using our general approach, but some interesting phenomena (such as the strictness of 

the inclusion diagrams for real-time and deterministic automata) could be generalized 

to X-automata. 

The acceptance types (0, p) we have used are the six conditions one usually finds in 

the literature. The reader may wonder whether this choice is not too restrictive: 

certainly, there should be other, natural, acceptance conditions that cannot be 

expressed as some property of the range or the infinity set of the state sequence of 

a run. If this were true, then a broad framework for studying the acceptance of 

w-languages should not only allow arbitrary storage types but also a general notion 

of acceptance. 

If we restrict the acceptance criterion to be a property of the state sequence of a 

run (including the contents of the storage will change the theory radically), it is 

natural to require that this property can be expressed in some well-defined formal 

language. 

A well-known language for specifying properties of infinite sequences (i.e., w-words 

over some alphabet) is Biichi’s sequential calculus, a monadic second-order logic [3]. 

This logic is powerful enough to express each of the (0, p)-acceptance types (even as 

first-order formulas). We will show in this section the converse of this fact: for 

X-automata all acceptance criteria definable in the sequential calculus will give 

o-languages inside XLi”~, = , i.e., (i$ =)-acceptance is as powerful as monadic second- 

order acceptance. This generalizes one of the results from [19], stating that first- 

order acceptance is as powerful as (ir$ =)-acceptance for finite-state automata, in two 

respects: we consider second-order formulas for X-automata rather than just first- 

order formulas for finite-state automata. 

For a fixed alphabet A, we will denote Biichi’s sequential calculus here by MSOA; its 

formulas will be referred to as A-formulas. 

MSOA contains variables i, j, k,. . (ranging over N) and set-variables U, V, . . 

(ranging over 2“‘), used to indicate positions, and sets of positions, respectively, in an 

w-word. The terms of MSOA are constructed from the constant 0 and the variables 

i, j, . . . by applying the successor-function + 1. 

The atomic,formulas of MSO,., are of one of the forms tI < t2, t, EU, or Pa(tl), where 

tI and f2 are terms, U is a set variable, and UEA. Here < and E have their usual 

meaning; P,(m) means that the rnth letter of the o-word equals a. From these atomic 

formulas we construct the A-formulas in the usual way using the connectives 1, V, 
A, +, and the quantifiers 3 and V (for both types of variables). 

First of all (as in the work of Biichi [3], see also the exposition in [36]) such 

a formula can be used directly to specify a property of w-words and, consequently, to 
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define the w-language consisting of the w-words that satisfy the formula. On the other 

hand (as is done in [19]), the formula may also be used in an indirect fashion to define 

m-languages by specifying an acceptance condition for an automaton, i.e., by specify- 

ing accepting state sequences of runs. 

We will give the corresponding formal definitions. 

Let C be an alphabet. For a closed C-formula CP of MSOz, the o-language defined by 
cp equals L(q) = (uEC” 1 u satisfies cp}. We use MSOL to denote the family of these 

mso-definable w-languages. 

Given an X-automaton JZZ with state set Q and input alphabet C, and a closed 

Q-formula cp, the o-language cp-accepted by &‘, denoted by L(&, cp), is {uEZ” 1 there is 

a run of d on u of which the state sequence satisfies cp}. For any collection @ of 

monadic second-order formulas, XL@ is the corresponding family of w-languages that 

can be accepted by X-automata using monadic second-order formulas from @; in 

particular, XL,,, and XLf, are the families where all mso formulas are allowed, 

respectively, where only first-order formulas are allowed (i.e., the ones not involving 

set variables). 

As an example, the w-language (O*l)w is defined by the (0, 1}-formula 

V’i3j (j> i A PI (j)). All the (a, p)-acceptance types are mso-expressible; e.g., if d is an 

X-automaton with state set Q, and 9 is a family of state sets for d, then 

Li,, = (&‘, 9) = L(.d, cp), where cp is the formula 

V ~((46~tfVi3j(j>iAP,(j))). 
Dtfl qtQ 

From the results of Biichi and McNaughton [3, 251 we know that the family of 

mso-definable o-languages coincides with the family of regular o-languages. On the 

other hand, when considering logical formulas to specify acceptance conditions, one 

of the results obtained in [19] shows that also the w-languages accepted by determin- 

istic finite-state automata using a first-order definable acceptance condition are 

exactly the regular w-languages. 

Proposition 7.1. (1) d-FSL,,, = =FSL,,, = = MSOL. 
(2) d_FSLi,, = =d-FSLP,. 

As already stated in the introduction above we will extend the result of [19] to 

monadic second-order acceptance for arbitrary storage types. For the storage type FS 
the equality FSL,,, = = FSL,,, can be shown directly with a simple variation of the 

ideas used by Biichi and in [19]. We will prove the result for arbitrary storage types by 

applying Biichi’s characterization and the decomposition technique we have used 

before. 

Theorem 7.2. (1) XL,,, = =XL,,,. 
(2) d_XLi,, = =d-XL,,,. 



Proof. (1): The equality is shown using a series of inclusions. 

(i) XL,,, = E XL,,, As we have seen, the property “for one of the sets DEB each 

state occurs infinitely often if and only if it belongs to D” is monadic second-order 

(and even first-order) expressible. 

(ii) XL mso c XT; ’ (MSOL). As in the proof of Lemma 3.1, an X-automaton 

.d (with state set Q) can be transformed into an X-transducer ./f with the same 

behaviour as JZZ except that it outputs its state in each transition. Any Q-formula 

acting as acceptance condition for .d can now be tested on the output of .M: 

L(af, cp)= {uEZ” 1 there is a run of .d on u of which the state sequence 

satisfies cp} 

={uEZ”‘I there is a run of .N on u with output satisfying cp} 

= Tm’(.hf)(L(fp)). 

(iii) X Tc; ’ (MSOL) s X Tc; ’ (FSL,,, = ). This is due to Biichi’s characterization 

[Proposition 7.1 (l)]. 

(iv) X TJ 1 (FSL,,~, = ) s X Li,. = , by Theorem 3.3. 

(2): The proof of the deterministic case is analogous. 0 

Corollary 7.3. FSL,,, = MSOL. 

Proof. Take X = FS in Theorem 7.2 and combine with Proposition 7.1(l). 0 

Also some of the other characterizations given in [19] can be extended to X- 

automata. Let I72 be the subset of closed first-order formulas of the form 

V’ii...Vi,3jl...3j,~(i r, . . . im,jl, . ..j.), where rl/(...) is a formula without quantifiers, and 

let d-XL,,Z and lIf2L be the corresponding subfamilies of d-XL,,,, and MSOL, 
respectively. Then it is shown in [19] that d-FSLi,f,,=d-FSL,,2. 

Using this equality, the corresponding equality d-XLinr,, =d-XL,,> for X-automata 

can be obtained using a series of inclusions like those given in the proof of Theorem 

7.2. One has d-XL c,l/,n G~-XL,,~ ~d-XT,r(l& L)~d-xTi’ (d-FSLi,,-,,)~d-XLi,s,,) 
where the inclusions are shown as before, except that we need a new argument for the 

inclusion 112 L G d-FSL,,. n which replaces Biichi’s characterization in this proof. By 

the result of [19] it suffices to prove the inclusion l7, Lsd-FSLo2. 
Let cp be a C-formula in n2 for some alphabet Z. We will construct a FS- 

automaton with a n,-acceptance condition accepting L(q). Similar to the proof of 

Lemma 3.1, consider the deterministic finite-state automaton &? = (Zu (q” ), C, c?~, q”, 
CO) with q”$.Z and 6,= {( g’, cr, true, o, A) 1 a’~Cu jq” >, OEZ). One easily sees that for 

UEC”, the state sequence of the corresponding run r of Z$ on u equals q”u (i.e., it equals 

tl except for the initial q’). Let cp’ be the formula that one obtains from cp by changing 

each predicate P,(t) into P,(t + 1). Then u satisfies cp if and only if q”u satisfies cp’. This 

implies that L(q)= L(92, cp’). 
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Similarly, for the subclass II, of closed first-order formulas of the form 

Vi1 . Vi, $(iI , . . . , i,), the characterization d-FSL,,,, E = d-FSL,,, from [19] leads to 

the same result for X-automata. 

It would be interesting to develop a theory of X-automata with a general 

notion of acceptance. As suggested above one could define the notion of acceptance 

criterion to be a set @ of MS0 formulas, satisfying certain natural conditions. These 

conditions should be taken in such a way that one could prove, e.g., the analogue of 

Theorem 3.3. 
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