
Theoretical Computer Science 110 (I 993) l-5 1

Elsevier

Fundamental Study

X-automata on co-words

Joost Engelfriet and Hendrik Jan Hoogeboom
Dcyartnlent of Computer Scicww. Lcidw C’niwrsi~~, P.0. Bo.\- 9512, 2300 RA Leiden,

The Nctlwrlands

Communicated by M. Nivat

Received October 199 I

Engelfriet. J. and H.J. Hoogeboom, X-automata on tu-words, Theoretical Computer Science 110

(1993) t-51.

For any storage type X, the co-languages accepted by X-automata are investigated. Six accepting

conditions (including those introduced by Landweber) are compared for X-automata. The in-

clusions between the corresponding six families of o-languages are essentially the same as for

finite-state automata. Apart from unrestricted automata, also real-time and deterministic automata

are considered. The main tools for this investigation are: (I) a characterization of the o-languages

accepted by X-automata in terms of inverse X-transductions of finite-state o-languages; and (2) the

existence of topological upper bounds on some of the families of accepted (u-languages (independent

of the storage type X).

Contents

Introduction.
1. Preliminaries.

1.1. Sets and functions, infinite words

1.2. Topology.

2. Automata on w-words

2.1. Storage and automata.

2.2. (0, p)-accepting infinite runs.

2.3. Basic properties,

2.4. Finite-state automata.

2.5. Transductions

............... 2

............... 4

............... 4

............... 6

............... 6

............... /

.............. 11

.............. 13

.............. 14

.............. 16

Correspondence to: H.J. Hoogeboom, Department of Computer Science, Leiden University, P.O. Box 9512,
2300 RA Leiden, The Netherlands, Email: hjh(n rulwinw.leidenuniv.nl.

0304-3975/93/$06.00 ,c 1993-Elsevier Science Publishers B.V. All rights reserved

2 J. Engelfriet, H.J. Hoogeboom

3. The basic characterization
3.1. Decomposition and composition
3.2. Simulation of storage types
3.3. Equality of the six families.

4. Real-time automata
4.1. The basic characterization for real-time automata.

4.2. Topological upper bounds.
4.3. The power of real-time automata.

5. Deterministic automata.
6. A universal storage type.
7. Logical acceptance criteria

Acknowledgment.
References

18

18
21

23

25
26

28

30

36

42

47

50

50

Introduction

An automaton d that is meant to work on finite input words may as well be given

an infinite input word u: it works on u as if u were a “very large” finite word. The

essential difference is in the way that ,ti accepts u; obviously, one cannot use

acceptance by final state as for finite words.

The first one to use automata to accept infinite words, with a particular acceptance

criterion, was Biichi (in solving a decision problem in logic, [3]). Another criterion

was given by Muller [26]. A deterministic finite-state automaton d accepts an infinite

word u in the fashion of Muller if the set of states entered by d infinitely often during

its computation on u belongs to a given family of “final” state sets. Thisfamily replaces

the usual set of final states. Five criteria for accepting infinite words were proposed by

Landweber in [20], including those introduced by Biichi and Muller, and he charac-

terized the five corresponding families of infinitary languages accepted by determinis-

tic finite-state automata in a topological setting.

The relative power of these five acceptance criteria was subsequently compared for

(deterministic and nondeterministic) finite-state automata [17, 341 pushdown auto-

mata [23, 6, 71, Turing machines [40, 81, and Petri nets [38]. If one compares the

results of these investigations, one notices some striking similarities. It seems that the

acceptance types have the same relative power independently of the storage used by

the automaton involved. Moreover, as for finite-state automata, connections between

acceptance types and the lower levels of the topologically defined Bore1 hierarchy can

also be observed for deterministic pushdown automata and Turing machines (see the

survey [32]). These observations are the main motivation for the present paper. Using

a general framework, we want to explain the similarities between the results obtained

for the various specific types of automata (as is done for automata on finite words in

[12]). Our abstract model of storage is called a storage type. It describes the storage

configurations, together with the tests and transformations that can be applied to

them. Automata equipped with a specific storage X (and a one-way input tape) are

called X-automata. We study six (rather than five) families of o-languages that can be

accepted by an X-automaton using six different acceptance criteria on the sequence of

X-automatu on to-words 3

states entered by the automaton during a computation. (It should be noted that

acceptance can also be defined in terms of the storage configurations rather than the

states, see [28], but this will give quite different results, cf. L-381). A possible approach

to comparing the six acceptance criteria is by giving constructions on automata that

show how one acceptance type can be simulated by another. In fact, as observed in [6,

381, it is not too difficult to generalize most of the constructions given in [17] for

finite-state automata, simply by “adding” storage instructions to the transitions.

Hence, it is not much of a surprise that the inclusions between the six families for

X-automata are similar to those formed by the families for finite-state automata. Of

course, this is a rather boring and time-consuming approach. Also, if one wants to

study X-automata satisfying a particular property (as, e.g., being real-time or deter-

ministic), it is necessary to check each of the constructions to see whether it preserves

the property under consideration (and if not, to adapt the construction). We use

a more efficient way of transferring the results for finite-state automata to arbitrary

storage types. Our main tool is a characterization of the w-languages accepted by

X-automata in terms of (infinitary) transductions applied to the u-languages accepted

by finite-state automata. Since we do not use the acceptance criteria to define

transductions, this single result can be used to show that the inclusions that hold

between the six families of finite-state o-languages are also valid for X-automata.

This, of course, does not indicate whether or not an inclusion is strict. We show that

the topological upper bounds on the complexity of accepted languages as given by

Landweber for deterministic finite-state automata can be generalized to X-automata

(as already suggested in [20]). This implies that for deterministic X-automata the

inclusions are always strict. The same result holds for real-time automata.

Besides investigating the relative power of the six acceptance criteria, we also study

the expressive power of real-time automata and deterministic automata, relative to

unrestricted automata.

Section 1 contains the preliminaries to this paper. It introduces our notation on

infinite words, and the few topological notions that we will need. In the second section

we formalize the notions of storage type, automaton, and transducer, and we define

the six different acceptance types we use in accepting infinitary languages. Apart from

definitions, Section 2 already contains some preliminary results that are used in the

rest of the paper.

In Section 3 we study both nondeterministic and deterministic X-automata. First

we present the above-mentioned characterization of the corresponding families of LL)-

languages (Theorem 3.3). From this, we obtain the hierarchy for w-languages accepted

by nondeterministic X-automata (Theorem 3.5). For specific storage types the hier-

archy can be strict (to be more precise, it can contain three different families) or it can

collapse into a single family. We give a sufficient condition for such a collapse

(Theorem 3.1 I): the six families of w-languages accepted by X-automata are all equal

when the storage X can simulate an additional (blind) counter. We formalize this

notion of simulation of one storage type by another in terms of deterministic

transductions.

4 J. Engelfriet, H.J. Hoogehoom

Real-time automata are investigated in Section 4. The inclusions between the

families of o-languages accepted by real-time automata are very similar to those

found in Section 3. Here, however, the inclusions are always strict (Theorem 4.9). The

counterexamples are obtained by establishing topological upper bounds that are

indeptenbenl 05 the s1Drage type. In kX1,1hese reSu\$S can be ex’renbed to Ihe larger

class (of aulomala 1ba1 ho not have an ‘mki~1e compu’ra$lon on a Gn%e’mpuk W e ca%

this property jinite delay. In the final part of Section 4 we compare the expressive

power of real-time automata, automata with finite delay, and unrestricted automata.

On the one hand., we obtain the result that real-time automata are as powerful as

automata with finite delay for any storage type that can simulate an additional queue

“in reia\ time” jTheorem 4.11). On the other hand, however,, we discuss a storage type

for which real-time is less powerful than finite delay (Theorem 4.19). The power of

finite-delay automata may be less than or the same as that of unrestricted automata,

depending on the storage type (Theorem 4.21).

We return to deterministic automata in Section 5. Again we obtain topological

upper bounds on the accepted w-languages. Together with our basic characterization

(given in Section 3) this is used to establish a proper hierarchy similar to the hierarchy

for deterministic finite-state automata (Theorem 5.5). The expressive power of deter-

ministic automata vs. nondeterministic automata is also discussed (Theorem 5.6).

In Section b we study a storage type of “knaxima~ power”, in the sense that it can

simulate any other storage type. The families of o-languages accepted by automata of

this type coincide with the topological upper bounds mentioned above, that belong to

the lcwer levels af tke taapalagical hiecarclry af Bare{ sets (Theacems 6.3 and 6.Q

These results are similar to those obtained in [l, 301 for transition systems. They

illustrate once more Viie strong connMiDn3 between acceptance type a~~ci tDpDk+a~

complexity.

In the final section we discuss the possibility of studying arbitrary acceptance

criteria (perhaps based on logic} rather than the six to which we have restricted

ourselves in the first six sections.

An extended abstract of this paper was presented at ICALP 89 [lo].

1. Preliminaries

We assume ?ne reaber 10 ‘De ‘lanijilar wi?n ‘Iit ‘Dak nukin% ti Ynt YnXDv 6

infinitary languages, e.g., as discussed in one of the following surveys and introduc-

tions: [9, 15,32,36]. In this section we fix our notation and terminology, and we recall

the tcopck&a> mimns rdevanl 10 Dur papeT.

1.1. Sets and functions, inznite words

We use N to denote the set of nonnegative integers. The symbol G (c) denotes set

inclusion (strict set inchsjon); jn diagrams we will use * (-). We use n to indicate

X-automata on o-words 5

that sets intersect, i.e., X n Y if X n Y#8. For a family A of sets, U.4 denotes the union

of all elements of A.

We use the following notations for a relation RcX x Y.

R~‘={(~,x)EYxX~(X,~)ER}, for X’cX, R(X’)={JJEYI(X,~)ER for some

XEX’}, ran(R)=R(X), and dom(R)=ran(R-‘). If .% is a family of relations and

d is a family of sets, then 9fP’={R-‘IR~92~, ~?(.EZ)={R(A)IRE~,AE~~‘}$,

dam(B)= {dom(~)lR~B}, and ran(R)=(ran(R)~R~G?}.

A mapping f:A+Y, where A=N or A={O, 1,n-l> for some HEN, is called

a sequence (over Y); it will sometimes be specified in the form (f(i))iEA . fis infinite in

case A=N and finite in case A={O, 1, n- 1) for some ng N; in the latter case n is

the length of fT denoted by IfI.

Let C be an alphabet. A sequence over C is called a (finite or infinite) word over

Z. An infinite word over C is also called an w-word over C. The set of all finite words

over C, including the empty word A, is denoted by C*, and the set of all o-words over

C by C”. Since a finite or infinite word u over Z is a mapping u:A-+C, u(i) denotes

the (i+ 1)st letter of u (if it exists). A subset of C* is called a finitary language

(or just language) over C; an w-language (or injinitury language) over C is a subset

of Z”.

The concatenation of a finite word x and an w-word u is the w-word x.u defined by

(x.u)(i)=x(i) if idlxl and (x.u)(i)=tc(i-_l I) th x o erwise. A finite word x is a prefix of

the w-word v if there exists an w-word u such that x.u = u. For a finite or infinite word

u, z:[n] denotes the prefix of length n of u (when it exists), and pref(v) denotes the

set of (finite) prefixes of II. For a finitary or infinitary language K, pref(K)=

~{wf’(o)l=Ki.
An infinite sequence of finite words (Xi)isN such that each Xi is a prefix of its

successor Xi + 1 defines a unique element u of .Z*uC” by taking the “least upper

bound” of the sequence, i.e., the shortest u that has each Xi as a prefix. u will be denoted

by lub(xi)itN. Note that u can only be finite if the sequence is eventually stationary,

i.e., if there exists a constant N such that u = Xi for i> N.

Definition 1.1. Let KC C * be a finitary language.

The w-power of K, denoted by K O, is the w-language

{UECWIU=IUb(Xi)i.~, where X~EK and xi+l~xi.K for HEN},

the adherence of K, denoted by adh(K), is the w-language

and the limit of K, denoted by km(K), is the w-language

{uECwlpref(u)nK is infinite}.

6 J. Engelfriet, H.J. Hoogehoom

1.2. Topology

C” can be turned into a compact metric space by defining the distance function

d(u, v) =
0 if u=v,
2-min{nlu[n]#v[n]) if ufv.

With this distance, the open sphere of radius 2 -’ around UECO is the set u[n].Zw.

The induced topology coincides with the product topology of C” (with the discrete

topology on C), and is sometimes called the natural topology on C”.

We will use 99 and 9 to denote the family of open and closed subsets of I”,

respectively. These families form the basis of a hierarchy known as the Borel hierarchy.
It consists of the families 9, g6, FJaa, . . . and the families 9, so, Fga, . , where, for

a family X, %“a (X’,) is the family of denumerable intersections (denumerable unions) of

Z-sets. Thus, in particular, 9J6 is the family of denumerable intersections of open sets,

and F0 is the family of denumerable unions of closed sets. Note that F u 9 c P0 n g8.

There is a close correspondence between the infinitary languages that are in the

lower levels of the Bore1 hierarchy and the language-theoretic operations given above

(see, e.g., [20, 22, 34, 21).

Proposition 1.2. Let L c C”. Then
(1) LEE ifand only ifL=K.C”for some KsC*.
(2) LE.F ifand only ifL=adh(K)for some KGC*.
(3) LE~?~ ifand only ifL=lim(K)for some KEC*.

The Bore1 hierarchy is proper at each level, but in this paper we need this fact for the

lowest two levels only. Using the above characterizations it is not difficult to give

examples of w-languages that separate the Bore1 families F and 9, and the families

F0 and F?8 (see, e.g., [20, Lemma 3.11). Recall that B, and 6~9~ (like B and 9) are

“complementary”, in the sense that LEC” belongs to F0 if and only if its complement

C” -L belongs to C!J6.

Proposition 1.3. (1) (0, l}.l”EF-9.

(2) O”1 .{O, l}WE9-F.

(3) O*. 1WE(P0n96)-(Fug).
(4) (0, 1}*.1”EF’I,-%6.

(5) (o* 1)~E%6-F-a.

2. Automata on o-words

In this section we formalize how we use automata with storage to define w-

languages. In the first subsection we define the notions of storage type and transducer

(i.e., automaton with input and output). In Section 2.2. we fix our notation concerning

X-automata on w-words 7

acceptance of w-languages (using six different criteria). The first two (technical)

properties concerning o-languages are given in Section 2.3. We consider the various

families of w-languages accepted by (nondeterministic and deterministic) finite-state

automata in Section 2.4. In particular, we recall the relations between these classes;

they will play an important role in the sequel of the paper as we will use them to

obtain similar relations for the families of o-languages accepted by automata with

arbitrary storage. Finally, in Section 2.5, we present some elementary results on

transductions.

2.1. Storage und automata

For finite words, the general notion of an automaton, using some kind of storage,

was introduced in [16, 27, 133. The resulting AFA theory (abstract families of

automata) provides a useful framework for a uniform investigation of different types of

automata (see [121). Here we attempt to set up a similar theory for automata on infinite

words (see also [28]). The basic definitions can be taken over in a straightforward

way. The particular variation of AFA theory that we use is similar to the one in [ll].

The basic constituents of a storage type are a set of configurations, together with

sets of symbols representing tests and transformations that can be applied to these

configurations, and an “interpretation” of these symbols.

Definition 2.1. A storage type is a 5-tuple X = (C, Gin, P, F, ,u), where

- C is a set of (storage) conjgurations,

~ Ci, C C is a set of initial (storage) conjigurations,

~ P is a set of predicate symbols,
_ F is a set of instruction symbols, PnF = 0, and

- p is a meaning function, which assigns to each PEP a (total) mapping p(p):C-,

(true,fulse}, and to each ~EF a partial function ~(f):C-+C.

The set of all Boolean expressions over P, using the Boolean connectives A, V and

1, and the constants trtle and false, is denoted by BE(P); elements of this set are

called tests. The meaning function is extended to BE(P) in the obvious way. We

extend p also from F to F* by defining p(A) to be the identity on C and by setting

p(fq)=p(q)op(f) for cp~F* and fEF, where 3 denotes function composition.

Example 2.2. The storage type pushdown, denoted PD, is defined by PD =(C, Gin, P,

F, ,LL), where

C=T+, for a fixed infinite set r (of pushdown symbols),

Ci” = r,

P=(rop=y~~E~)u{bottom~,

F= {push(y)lyE~Mpop),

8 J. Engdjkiet, H.J. Hoogeboom

and, for c=au with aET and UE~*,

p(top = y)(c) = true iff 7 = a,

p(bottom)(c) = true iff u = A,

p(pop)(c) = u if u #A, and undefined otherwise.

The storage type counter equals CTR = (N, { 0}, {zero}, { incr, deer}, u), where

for n~kJ,

p(zero)(n) = true iff n = 0,

u(incr)(n) = n + 1, and

p(decr)(n) = n - 1 if n 3 1, and undefined if II = 0.

Definition 2.3. Let X =(C, Gin, P, F, u) be a storage type. An X-transducer is

a construct & = (Q, C, 6, 4in, tin, d), where

- Q is the finite set of states,
- Z is the input alphabet,
~ A is the output alphabet,
~ the finite control 6 is a finite subset of Q x (Cu {A}) x BE(P) x Q x F* x A*, ele-

ments of which are called transitions,

~ qinEQ is the initial state, and
_ CinECin is the initial storage configuration.

Note that an X-transducer has no final states. These will be treated later (for finite

words only).

Let .d =(Q, C, 6, qin, tin, d) be an X-transducer for some storage type X =(C, Gin, P,

F, u). A transition (q, a, fl, q’, cp, w) is a A-transition if a=A. d is real-time if it has no

A-transitions or, equivalently, if 6 is a subset of Q x C x BE(P) x Q x F * x A *.
SI is deterministic if, for every two different transitions (qi, ai, pi, 41, (Pi, Wi), i= 1, 2,

from 6 with ql=q2, either al#a2 and a,, a2 #A or p(IJr A /~I~)(c)=false for every

CEC.

If 1 WI = 1 for each transition (q, a, fl, q’, cp, w) of d, then d is l-output.
An instantaneous description (ID) of d is an element of Q x C* x C x A*. The

instantaneous description (q, x, c, y) intuitively means that & is in state q, has read

x from the input tape, has c as its storage configuration, and has written y on its

output tape. The step relation of JZ!, denoted by t,, is the binary relation on

Q x C* x C x d * defined by (q, x, c, y) t, (q’, x’, c’, y’) if there exists a transition (q, a, 0,
q’,cp, W)E~ such that u(P)(c)=true, c’=u((p)(c), x’=xa, and y’=yw. Intuitively, this

means that if .d is in state q and has the storage configuration c, it may use the

transition (q, a, /II, q’, cp, w) provided c satisfies the test /I, and then it reads a from its

X-automata on o-words 9

input tape, changes its state to q’, performs cp to the storage configuration, and

writes w on its output tape. The reflexive and transitive closure of F,d is denoted

by G.
An inJinite run (or just run) of& is an infinite sequence Y = (Zi)i~N of IDS such that

50 =(qin, A, ein, A), and ri k, Ti+ I for each i~kJ; it is a run on input lub(xi)i,~, with

output lub (Yi)isN 9 where Ti=(qi, Xi, Ci, yi). The sequence (qi)ieN is called the state
sequence of the run r.

If .d has no run on an infinite input word with a finite output word, then ~4 is called

o-preserving. Note that each l-output transducer is w-preserving.

The injinitary transduction (or just transduction) of d, denoted by T(d), is defined

as {(u, v)EZ~ x d wI there is a run of JY on input u with output v}.

The family of transductions of X-transducers is denoted by XT. The subfamilies of

XTconsisting of transductions of o-preserving and l-output transducers are denoted

by XT, and XTl_,,.,, respectively. If we consider only deterministic or real-time

transducers, we use the prefixes d- and r-, respectively. Thus, e.g., d-PDT, denotes the

family of infinitary transductions defined by o-preserving deterministic pushdown

transducers. In the same way we use the prefix dr- for transducers that are both

deterministic and real-time.

As usual, if D G Q is a set of final states, then thejnitary transduction T, (~2, D) is the

set {(x, Y)E.Z* x d *)(qin, A, tin, A) t.z(q, x, c, y) for some qgD and CEC}. We use XT,
to denote the family of finitary transductions of X-transducers; the prefixes d-, r-, and

dr- are used as above. Note that we do have an acceptance condition for finitary

transductions, as opposed to infinitary transductions.

Example 2.4. Let .d = (Q, (a, b, c}, 6, qin, tin, {d}) be the PD-transducer with state set

Q={ql, q2}, initial state qin=ql, initial storage configuration Gin = y, and the follow-

ing transitions (we assume p and y to be different pushdown symbols):

(41, a, bottom, ql, A AX

(ql, b, true, ql, wh(b’), 4,

(41, c> top = P, qz > POP, A),

b, c, top=b’, q2, POP, 4, and

(q2, A bottom, ql, A 4.

Then .d is neither real-time nor deterministic (since the last two transitions have

tests that are both true for the storage configuration p), but it will be deterministic

after replacing the test “top = /?” by “1 bottom”.
Note that .d has runs on each input from (ja}uK)“u((a}uK)* b”, where

K = {b”c”l n> l}. However, .d is not o-preserving and does not produce infinite

output for each of these o-words. More precisely, T(&‘)=(a*. K)” x {d}“. Changing

~2 such that the first and second transition have output d yields an o-preserving

10 J. Engelfriet, H.J. Hoogeboom

transducer. This will also change the transduction of d to ({a)uK)” x (d}Ou

((a}uK)*b” x (d}“.

Obviously, the step relation of a transducer d is not changed by replacing a

test /3 in a transition by an equivalent test, i.e., by a test p’ such that ,u(p)=p(a’).

Neither is it changed by omitting those transitions that have a test which is always

false.

Hence, if X is a blind storage type (i.e., X has no predicate symbols, cf. [14]), then we

may assume that the transitions of an X-transducer are of the form (q, a, true, q’, cp, w).

A special blind storage type is used to model finite-state transducers; it has neither

predicate nor instruction symbols. The trivial storage type FS equals ({co}, {CO}, 8,8,

8) for some arbitrary object CO. Note that @* = {A}. Hence, the transitions of an

KY-transducer can be assumed to be of the form (q, a, true, q’, A, w).

Finally, we need the notion of the product of two storage types. It combines the

power of two storages that can be used in an independent fashion.

Let Xi=(Ci, Cin,i, Pi, Fi, ,ui), i=l, 2, be two storage types with PrnPz=@

and FlnF,=@ The product of X, and X2, denoted X1 xX,, is the storage type (C,

Gin, P, F, /L) with C=Ci xC~, Cin=Cin,1 XCi,,z, P=P~uPZ, F=FIuF~, and p

defined by

P(P)(Cl, c2)=
i

PI if PEP,,
Pa if PEPS,

Af)(Cl, c2)=
(A(~)(c~),G) if .~EF,,
(cl, PZ(~)(G)) if fcf’2.

It is, of course, also possible to define the product of two storage types that have

predicate or instruction symbols in common. In that case we distinguish between

these symbols by first renaming them, e.g., by adding a subscript for each of the

components.

In a similar way, the product of more than two storage types can be defined. The

product of n, n 3 1, storage types, all equal to X, is denoted by X”; we write pi andfi to

denote the predicate symbol p and the instruction symbol f when applied to the ith

component of X”. It is convenient to define X0 = FS.

As an example, the storage CTR2 = CTR x CTR has two counters that may be

incremented, decremented, and tested for zero independently from each other. The

instruction incr2decrl first increments the second counter and then decrements the

first counter (when defined).

An X*-transducer is an X”-transducer for some neN. We will use X* as if it were

a storage type (indeed, it can be formally defined as such, cf. [12, Lemma 4.511). So,

we write, e.g., X* T to denote u,,,, X” T.

In the remainder of this paper X=(C, Gin, P, F, p) denotes an arbitrary storage

lype.

X-autornaru on to-wml.s 11

2.2. (a, p)-accepting injinite runs

We will now discuss how an X-transducer .d may be used to accept w-

languages by imposing acceptance conditions on the state sequences of its runs.

Since, in this case, we are not interested in &“s output, .d is called an X-automaton.
In our notation, we drop the output component from &, and from its transitions and

IDS.
Let Q be a finite set (of “states”) and let f: N-Q be a mapping (i.e., an infinite word

~EQ”). As for all relations the range off; denoted by run(f), is the set {qEQlf(i)=q
for some ieN); the injnity sef qf.fl denoted by inf(f), is the set {qEQlf(i)=q for

infinitely many HEN). Note that i$(f’) is nonempty, due to the finiteness of Q; in fact,

there exists an NEN such that f‘(i)Einf(f’) for i> N.

Let 9’ c 2Q be a family of subsets of Q. Let p be a binary relation over 2” and let

(T:Q”+~” be a mapping that assigns to each infinite sequence over Q a subset of Q. We

say that an infinite sequence ,f’: FV -Q is (CJ, p)-accepting with respect to 9 if there exists

a set DEQ such that o(f)p D.
In the sequel oj’this puper \ce assume that p runges ouer the relations n, 5, or =, and

thut 0 is one of the mappings ran or inj: Thus, we consider six types qf acceptance.
Definitions and results that involve the letters CJ and p are always assumed to be

universally quantified.

The relation between the notation we use (see [34]) and the five types of “i-

acceptance” as originally defined in [20] are given in Table 1, together with a short

intuitive name for some of these types of acceptance. Recall that (inf n) is the

acceptance type introduced by Biichi [3], whereas (inf =)-acceptance was first con-

sidered by Muller [26] (for deterministic automata). (ran, =)-acceptance, not con-

sidered by Landweber, was first studied in [34].

More precisely, for a given Y ~2”, an infinite sequence f’ of states is (run, n)-

accepting if at least one state from US occurs in ,f: It is (run, s)-accepting if all its

states are in D, for some DEC?. It is (in5 n)-accepting if at least one state from u9

occurs infinitely often in,f: It is (inf, G)-accepting if there exist DEQ and NEN such

that f(i)ED for i3 N, i.e., all states are in D from some moment onwards (recall that

Q is finite). Finally, j’ is (run, =)-accepting or (it& =)-accepting if ran(f)E9 or

irf(f) E.Q, respectively.

Let .d = (Q, Z, 6, qi”, Gin) be an X-automaton, and let 9 G 2” be a family of subsets of

Q. A run of .d is called (a, p)-accepring wifh respect to Y if its state sequence is

(0, p)-accepting with respect to 9.

Table I

I -accepting

I’-accepting
2-accepting

2’4ccepting
3-accepting

at least once

alWyS
infinitely often

from some moment on
(B&hi)

(Muller)

12 J. Engrljiiiet, H.J. Hooyehoonz

Definition 2.5. The w-language (a, p)-accepted by .cP with respect to 9, denoted by

L,,,(.&, 9) is the set {uEZ”I there is a run of .d on u that is (a, p)-accepting with

respect to 9).

The family of o-languages (a, p)-accepted by X-automata (with respect to some

family of state sets) is denoted by XL,,,. As before, the corresponding families of

u-languages (0, p)-accepted by deterministic and/or real-time X-automata are de-

noted by d-XL,,,, r-XL,,,, and dr-XL,,,.

As usual, for a set D of states of &‘, the (finitary) language L,(,d, D) accepted
by .d with respect to D is the set {X~C*l(qi”, A, tin) F,$(q, X, c) for some qED and

CEC).

We wish to stress that we consider acceptance with respect to states rather than

acceptance with respect to storage configurations (as in [28]). It was shown in [38]

that (for Petri nets) these two approaches give quite different results. This will also be

the case in the more general setting of X-automata.

In the literature several other definitions are also used; clearly, in a uniform

approach such as the present one, we had to made some choices. It is sometimes

required that an X-automaton is “total”, e.g., in a “global” sense, meaning that the

automaton has a run on every input w-word, or in a “local” sense, in which there

should be an applicable transition for each instantaneous description of the auto-

maton. Requiring totality changes (in general) the families XL,,, . In our opinion,

totality should not be required by definition, but should be treated like any other

property such as determinism or real-time. To keep this paper of reasonable length,

we decided not to investigate totality. In fact, totality is not as straightforward to

define for X-automata in general, mainly due to the presence of A-steps, and to the

fact that some strorage instructions may be partial functions.

We would also like to stress that in our model an input word can only be accepted

using an infinite computation that reads every letter of the input. This differs from the

acceptance criterion that is used in some of the work of Staiger and Wagner (e.g.,

[40]). They require only the existence of an infinite run (satisfying the acceptance

condition) reading either the input or a finite prefix of it. As explained in [32, p. 4221

this leads to incomparable results, e.g., for Turing machines as obtained in [40] on the

one hand, and in [8] on the other. Note that for real-time automata both definitions

coincide: an infinite run of a real-time automaton reads every input letter.

Example 2.6. (I) Let .d be the (deterministic and real-time) ES-automaton with state

set Q = jqO, q1 }, input alphabet Z= {O, l}, initial state qO, and transitions (qi,j> [rue, qj,

A) for i, je{O, l}. Let S?={{ql>}, and d={Q>. Then

L*(.d, (4, >)= (0, 1)“. 1, L,(.d, Q,={o, I>*>

L ...,n(Czl, 9)=0”1.{0, l}“, L ,,,,n(JJ, d)=L,,,,E(~~, 3={0, 1)“,

L mn, c(&G!, P)=L,,,, =(:&, S)=8, L,,,=(.d, 4)=0*1.(0, I}“,

Li,f.,(cd, 8)=(0* l)“, Linf,r~(cd, 2)=LinJ,E(d> ~)={OY 1)"~

Linf. E (~~. 9) = Li,, = (,~, a)

= [O, I}*. l”, Li*J. = (cd, 2) = (0* 1 1 *O)‘O.

(2) Let =d’=({q,, q 1), [O, 11, 6, qo, co) be the (deterministic and real-time) FS-

automaton with transitions (qi, 0, true, qi, A), (qi, 1, true, ql, A) for i~(0, l}, and let

S={(qIj}. Then Li,f,s(,d’, 9)=0*1.(0, 1)“.

The relations between the families (d-) FSL,,, will be given in Proposition 2.10.

2.3. Basic properties

In this section we give two results that are used at several places in this paper. The

first lemma is a reformulation into our framework of the well-known fact that for

some of the acceptance types it suffices to consider acceptance with respect to families

containing just one state set. It was shown for finite-state automata in [34], and in

a more general formulation in [7. Lemma 4.1.21. For completeness we provide

a proof.

Lemma 2.7. Let pi{ G, n). For every (deterministic) X-automaton ,41 and family of

state sets g.for ;d there e.uist a (deterministic) X-automaton .d’ and state set D for &’

such that L,,,,(.d, U)= L,.,(,cl”, {Dj).

Proof. If p equals n the lemma is obvious since L,,,(.d, S)= L,,,(,d,(US}).

For G we add to the states of the automaton Ed, for each state set D of 9, a Boolean

variable which indicates whether the run has remained within D since a particular

moment of time; .d resets this Boolean vector each time the run has been outside each

state set from 9’ since the last reset (or since the start of the run). By definition, a run

(of the original automaton) is (ran, G)-accepting if there is at least one state set from

which the run never leaves, i.e., if the Boolean vector (of the new automaton) is never

reset during the run. Similarly, a run is (ir$ c)-accepting if there is a state set from

which the run leaves only finitely many times, i.e., if the Boolean vector is reset only

finitely many times.

Let .&=(Q, Z, 6, qi,, tin) and let Q= {Dl, D,}, ~132. Then .d’ is formally defined

as (Q’, 1,6’, qi,, tin), where Q’= Q x 10, l}“, 41, =(qin, 1”); for each (4, a, /I, q,, (P)E~ and

each dE{O, 1)“. S’ contains the transition (((I, d), a, /?, (ql, d,), q), where dl = 1” if d=O”,

and if d#O”, then for 1 <j<n, d,(j)= 1 iff d(j)= 1 and qEDj.

Let E = {O, 11” - {O”). We then have L,, G (,d, 9’) = L,, G (.G!‘, {Q x E}). We leave the

formal details to the reader. 0

In several proofs in this paper, given an automaton .d and a family of state

sets 6 for .d, a new automaton .d’ (satisfying some particular property) will be

14 J. Enge!fiiet, H.J. Hoogehoom

constructed in such a way that there is a clear correspondence between the runs of

.d and those of &‘. As an example (see Lemma 2.9) it is possible to construct for each

FS- automaton .d an equivalent real-time FS-automaton d’, and to give a mapping

that relates the set of states entered (infinitely often) during a run of JZZ’ on an w-word

to the set of states entered (infinitely often) during the “original” run of d on that

word, by taking into account the “shortcuts” consisting of A-transitions. In such cases

it will be possible to specify a family Y’ of state sets for &” such that .d and .d’ accept

related infinitary languages. Rather than giving this family explicitly in each separate

construction, we provide a more general result.

Unfortunately, the statement of the lemma is rather technical - though its proof is

elementary. We suggest, therefore, that the lemma is skipped on first reading. The

reader may consider the result as a technical justification for an argumentation that

(in most cases) is intuitively clear.

Lemma 2.8. Let d and .d’ be automata with input alphabets C and C’ and state sets

Q and Q’, respectively. Let R ~1” x (Z’)W, and let (C/12~‘+2” be a mapping that satisjes

(1) $(AuB)=rC/(A)u$(B), and
(2) for each VEX

,..kz { ()’
cr r r is a state sequence of a run of .vI on u}

={tj(a(r’))lr’ is a state sequence ofa run of&’ on 21).

Then for each 9 G 2” there exists 9; E 2Q’ such that

R(L,,,(d, 9))= Lo,p(&, ‘;).

Proof. By (2), it suffices to define 6%‘; in such a way that, for every set S’ G Q’, S’pD’ for

some DEB; iff $(S’)pD for some DEB.

(a) Let pi{ G, = }. Then the relation p is transitive, reflexive, and invariant under

$ (i.e., if ApB then $(A)p$(B)). These properties allow one to prove that, for arbitrary

sets S’GQ’ and DGQ, $(S’)pD if and only if S’pD’ for some D’ with @(D’)pD. Now

9j,= {D’GQ’I$(D’)~D for some DEB} satisfies the requirement of the lemma.

(b) We now consider the case that p= n. According to (1) $(A)= uaEA $({a}).

Hence, for arbitrary sets S’GQ’ and D s Q, $(S’) n D if and only if $({s’}) n D for

some s’ES’ if and only if S’n {q’EQ’i$(jq’})n D}. Consequently, %={ {q’E

Q’j$((q’}) n Dj 1 DEB} satisfies the requirement of the lemma.

Note that by a “dual” argument the family 5~,‘, ={{~‘EQ’J$Y({~‘})-cD]JDE~?)

could have been chosen for the relation G. 0

2.4. Finite-state automuta

We consider the well-known “hierarchy” of the families (d-)FSL,., . It is customary

in the literature to define finite-state o-languages using real-time finite-state

X-autornutu on tu-words 15

automata. We first show that this restriction does not influence the families of (0, p)-

accepted finite-state w-languages.

Lemma 2.9. (1) FSL,,, = r-FSL,.,

(2) d-FSL,,,=dr-FSL,,,

Proof. Let &=(Q, Z, 6, qin, CO) be a finite-state automaton with a family 2 of state

sets. As for the corresponding result for finitary languages, we may construct an

equivalent real-time finite-state automaton by contracting each non-A transition with

all possible sequences of A-transitions. However, since in the infinitary case the

intermediate states are considered in the acceptance criteria, we should keep track of

these in our new automaton as well.

Construct the real-time finite-state automaton .d’=(Q’, C, 6’, qi,,, CO) as follows:

Q’ = Q x 2”, qi, = (qin, { qin } 1, and, f or q, q’EQ, U, U’sQ and aEZ, 6’contains the trans-

ition ((4, U), a, true, (q’, U’), A) if and only if there exists a sequence q,,, ql, . . , q, (k 3 0)

OfstatesinQsuchthat Z/‘=i’q,,...,q,,q’),q=q,,(q,_,,A,true,q,,A)E6for l<i<k,

and (qk, a, true, q’, A)ES.

Our original automaton .d may have A-cycles ~ resulting in arbitrary long runs of

the form (q, A, CO) E* (q, A, ~0) ~ so, for one run of .d’ on an w-word u there might be

(infinitely) many corresponding runs of .d on U. The set of states occurring (infinitely

often) during any of these runs of .d is always equal to the union of the sets that occur

(infinitely often) on the second component of the states of the run of d’. Hence, we

may use Lemma 2.8 to find a suitable family of state sets .Ub such that L,,,(d,

P)=L,,,(.d’, 9;) by choosing R to be the identity on C”, and $ to be the mapping

that satisfies $(((q, U)))= U [and (1) of Lemma 2.81. 0

Hence, we have the following well-known relationships for the families (d-)FSL,,,

(see, e.g., [39, Theorem 41 for references). Recall that we use -+ to denote strict set

inclusion (c). The diagram in Fig. 1 is “complete”, i.e., families not related in the

diagram are incomparable.

Proposition 2.10. The diagram in Fig. 1 holds. For any two,families X and Y,from the

diagram we have X c Y lf and only if there is a path from X to Y.

=‘=,a,, c FSL,, n = FS=,,,,, = = FS=,,f,. FS’inf, n = FSLinf,=

H

II

d-FSLinf,. -

d-FS=m,, -d-FSL,,, n+d-FSL,,, =

) II

~=---___ d_FSLinf,n/d-FSLinfs=

Fig. 1. Inclusion diagram for the finite-state storage type.

16 J. Ety/eljriet, H.J. Hooqeboom

Note that when requiring totality (in the “local” sense, i.e., in each state there should

be a transition for every letter of the input alphabet) the diagram is slightly different,

caused by the fact that FSL,,,,, and d-FSL,,,,, become smaller. Using t- to denote

the property of totality in the same way as we use d- and r-, one has t-FSL,,,,, = td-

FSL,,,, n c d-FSL,,,., . In all other cases t-FSL,,,= FSL,,, and td-FSL,,,=d-FSL,,,.

The families t-FSL,,,,, and FSL,.,,, s are incomparable.

An w-language is called regular if it is of the form U’= 1 Ki. Ly , where Ki and Li are

regular (finitary) languages. It was proved by McNaughton [25] (see also [9]) that the

family of regular w-languages (sometimes called the o-regular languages) coincides

with d-FSL inf, = (“acceptance by Muller automata”) and, consequently, with FSL,,, n
(“acceptance by Biichi automata”). There are several other characterizations of

the classes (d-) FSL,,, in terms of regular languages and the operations adh, lim,
and w-power. For example, FSL,,,, E equals the family of adherences of (finitary)

regular languages, and FSL,,, c_ equals the family of w-languages of the form

U’= 1 Ki.odh(Li), h w ere Ki and Li are regular languages. For more details see again,

e.g., [39].

2.5. Transductions

Infinitary transductions (and, in particular, inverses of o-preserving transductions)

play a fundamental role in this paper: they are used to transfer the relations that hold

between the families FSL,,, and d-FSLg3, to arbitrary storage types. Here we give

some preliminary results on families of transductions, mainly concerning their in-

verses and their domains.

In the finitary case homomorphisms form a subclass of the finite-state transduc-

tions. They can be extended to w-words in the natural way: a (an infinitary) homomor-
phism h:C+A * determines a single-state (real-time and deterministic) FS-transducer

that has a transition (q,a, true,q, h(u)) for every aEC. Note that, in general, the

resulting transduction is a partial function from C” to A”. We use HOM to denote the

family of transductions of such FS-transducers. HOM1_,,, denotes the family of

corresponding l-output transductions, obviously corresponding to length-preserving

homomorphisms. Although not every homomorphism is o-preserving (cf. Remark

2.12), we wish to note that every inverse homomorphism is: HOM-‘cdr-

FST-’ c FST,. This is a consequence of the following general result. Recall that

XT-’ = { RP1 1 RsXT}; the notation r-XT& abbreviates (r-XT,_,,,)- ‘.

Lemma 2.11. (1) XT-‘=XT.
(2) X TI_ou, c r-X T- ’ E XT, , r-X T;_A,, = r-X TI_ou,

Proof. Let &’ be an X-transducer with output alphabet A. We obtain the inverse of

the transduction of JZ by replacing each transition (q, a, B, q’, cp, w) by the transition

(q, A, fi, q’, cp, a) if w = A, and by the transitions (qi _ 1, bi, true, qi, A, A), for 1 d i < n, and

(4” - 1, b,,, P, 4, cp, 4, if w = bl . . . b,, biE A for 1 d i < n, where q0 = q and qi is a new state

for each 1 di<n. Note that this construction transforms l-output transducers into

real-time transducers. Moreover, it transforms real-time transducers into w-preserv-

ing transducers: since a real-time transducer cannot transform a finite input word into

an infinite output word, its inverse (as constructed above) cannot transform an infinite

input word into a finite output word. c

Remark 2.12. Although not immediately clear, the families XT and XT, are not

always equal. As an example consider the (real-time) FS-transducer .&’ with input

alphabet {O, 1) and output alphabet { 1) that deletes all letters 0 from the input. This

transducer produces infinite output only if the input contains infinitely many occur-

rences of the letter 1. Thus, T(.N)=(O* 1)” x {I}“. From the following result we learn

that this transduction cannot be realized by an o-preserving FS-transducer since its

domain (0* 1)” does not belong to FSL,,,,, c (see [20]; it also follows from our

Corollary 4.8).

The same example shows us that XT, is not always closed under inverse. In fact,

T(,M)$FST,, whereas T(,~~)~‘EHOM~‘~FST,,.

It is not difficult to show that domains of X-transducers (and of o-preserving

X-transducers) coincide with one of the families of w-languages accepted by X-

automata. Recall that for an X-transducer i 4’ with input alphabet C, dom(T(,&‘))=

(uEC”I there is a run of ,l’i on u wih infinite output). For an w-preserving transducer

./,@ we even have donz(T(.Y))= {nEC”Jthere is a run of IN on u}.

Lemma 2.13. (1) &I~(XT)=XL~,~,,=~Z(XT).

(2) dm (X To> I= XL,,. G .

Proof. (1): If we extend the state set Q of the X-transducer ~ N to the set Q x (0, l}, and

replace each transition (q, a, /I, q’, cp, w) by the pair of transitions ((4, i), a, /,, (q’, 0), CJI) if
w=A (i~j0, l}) and the pair ((q, i), u, 0, (q’, l), cp) if M’#A (i~(0, l}), then we obtain an

X-automaton .d such that clearly dom(T(Ai)) = Li,, n (at’, (Q x { 1 } 1).

On the other hand, given an X-automaton .d and a family of state sets 3 for ~2, we

make it into an X-transducer .N by writing the letter 1 as output for each transition

that enters a state from u 9. .N writes A when it does not enter a state from u 8.

Obviously, ,PZ enters a state from u B infinitely often if and only if in its correspond-

ing run .&’ outputs an infinite word. Hence, Irom(T(.N))=Li,~,,(.c4, 9).
The equality dom(XT) = ran(XT) follows from Lemma 2.11(l).

(2): Let ,ZZ be an u-preserving X-transducer with state set Q. Transform .J? into an

X-automaton .d by replacing each transition (q, a, p, q’, cp, w) by the transition (q, a, p,
q’, 9). Now dom(T(.Y))=(u~C”~thereis a run of.& on u}={uEC”I thereisa run of

don ~}=&,,,~(.d, {Q)).
In order to prove the converse inclusion dom(XT,)~XL,,,, E , consider an X-

automaton .d and a family of state sets % for .d. By Lemma 2.7, we may assume that

9 consists of a single state set D. Moreover, since no (ran, E)-accepting run enters any

18 J. Engdfiiet, H.J. Hoogehoom

state outside D, we may assume that D equals the set Q of all states of .d. By replacing

each transition (q, a, /I, q’, cp) of .d by the transition (q, a, p, q’, cp, 1) one obtains an

(l-output) X-transducer .M with output alphabet f 1 }. Clearly, dom(T(A’))=

L ran, E (d> IQ)). 0

3. The basic characterization

In this section we derive our main characterization result for the families of

w-languages (0, p)-accepted by both nondeterministic and deterministic X-automata.

We express these families in terms of (inverse w-preserving) X-transductions of

(a, p)-accepted finite-state o-languages (Theorem 3.3). This generalizes a result from

[40], where families of o-languages accepted by Turing machines are characterized in

the arithmetical hierarchy using transductions by Turing machines as a main tool.

Using our characterization we transfer the inclusions (and equalities) that hold for the

families FSL,. p to the families XL,,, for arbitrary storage type X (Theorem 3.5). The

corresponding results for real-time and deterministic automata are given in Sections

4 and 5, respectively. This method does not give information concerning the strictness

of the inclusions (except, of course, where we have equality in the finite-state case). In

fact, it is known from the literature that the two remaining inclusions are strict

inclusions for some storage types (such as FS), while they are equalities for others. In

Section 3.3 we give a sufficient condition on the storage type to ensure equality for the

six families of w-languages accepted using this storage type (Theorem 3.11). To this

aim, we introduce the notion of simulation of one storage type by another, which

enables us to compare the strength of storage types.

3.1. Decomposition and composition

In Lemma 3.1 we show how to decompose the work of an X-automaton into two

phases: a phase in which the input is processed, and an acceptance phase. The first

phase can be realized by an X-transducer (without acceptance criterion), and the

second phase by a finite-state automaton (with the same acceptance criterion as the

X-automaton).

Lemma 3.1. (1) XL,,, G X K_A,,(d-FSL,,,).

(2) d-XL,,, sd-XT,,‘,,(d-FSL,.,).

Proof. Let ~2 be an X-automaton with input alphabet C and state set Q; let 9 be

a family of state sets for .d.

Consider the infinitary language K(o, p) consisting of the w-words over Q that are

(a, p)-accepting sequences with respect to 9. It belongs to d-FSL,,, because it is

(CT, p)-accepted by the deterministic finite-state automaton 99 = (Q u {q’}, Q, d4, q”, CO)

with qO$Q and d8=((q’, q, true, q, A)[q’~Qu{q’}, qEQ}. In fact, one easily sees that

X-automata on to-w& 19

for rEQO, the state sequence of the corresponding run rl of .98 on r satisfies

ran(rl)=ran(r)u{@$ and inf(rl)=inf(r). This makes it clear that K(o, p)=L,.,(&I,

2’) with 9”={Du(q0} IDEY] if (a, p) equals (ran, =) or (ran, E), and K(a,p)=

L,.,(B, 2) in the four remaining cases.

Modify ~4 such that at each step it outputs its state, i.e., take output alphabet Q and

replace every transition (4, a, p, q’, q) by (q, a, B, q’, cp, q). This gives a (l-output)

X-transducer =N that maps each o-word u over C onto the state sequences of the

runs of .ti on U. u is (a, p)-accepted by .d if one of these state sequences belongs to

K(a, p). Hence, L,.,(;d, U)= {uEC”I there exists (u, r)ET(,&‘) such that rEK(a,p)} =

T(,fl)_ l (K(o, P)).
Note that ;tZ is deterministic when .d is deterministic. 0

Conversely, given an w-preserving transducer and an automaton (using some sort

of storage), we can compose their operations into a new automaton which uses the

product of the storage types of the transducer and the automaton.

Lemma 3.2. Let X, and X2 be two storage types.

(1) X, c3X,L,.,)~(Xl x XZ)LO,,.
(2) d-X1 T<;‘(d-X2Lo,&d-(X1 x Xz)L,.,.

Proof. Let ./~=(Q1,~:lr~lr4i”,l,Cin.1, C,) be an o-preserving X,-transducer, let

~d=(Q2,CZ,b2,4in,z,(.in,2) b e an X,-automaton, and let 9~ 2Qz. We prove the

lemma by constructing an (XI x X,)-automaton .8 that (a, p)-accepts the u-language

T(..&‘)-’ (L,,,(.d, 22))= {uECYI(O, u)~T(d’) for some u~L,,,(d, 9)). This is done

using a straightforward direct product construction in which we simulate .A and d

in two alternating phases: first we simulate .ll until it produces some nonempty

output and we store this output in the states of 5?, then we simulate & on this

output.

Formally, let nz be a constant such that A never writes more than m symbols

onto its output tape in a single transition, and let 9Y=(Q, Cr, 6, qrn, tin), where

Q=Ql XQz X jx~C,* I IxI,<mj, qin=(qin,l, qin.2, A), Cin=(Cin.l, Cin.21, and 6 is corn--Ï
posed as follows:

(simulation of j &) ((ql, q2, A), a, PI, (4, q2, w), vlW for each transition
(ql, a, /II, q;, (pl, w)dl and each state qZEQ2, and

(simulation of J$) ((41,q2,aw),A,p,,(q,,q;,w),(P2)E~ for each qlEQlr
a~C~u{Af and WEE; with ldluwl<m, and each

transition (q2, a, p2, q;, (P~)ES~.
Clearly, using this simulation, a run of A? on an o-word u with output u can be

combined with a run of .d on U, yielding a run of ~8 on v. Similarly, a run of the new

automaton A? on an o-word L’ can be decomposed into a run of .A’ on v and a run of

.r4 on the output u of .&‘. This output is guaranteed to be infinite since A%? is

o-preserving; this is essential in order to have (u, u)E~‘(,&‘).

20 J. Engelfriet, H.J. Hooyeboom

We can use Lemma 2.8 to define a family 9; of state sets for 98: let $ be the

projection on the second component [i.e., $({(ql , q2, x)})= {q2}], and let R be

T(k’- I. Note that, due to the simulation of the steps of JZ, the second coordinate of

the new run has multiple copies of the same state; however, these repetitions do not

change the range or the infinity set of the (projection on the second coordinate of the)

run.

Note that if both JR’ and .d are deterministic, then so is g. 0

If we combine these two lemmas we obtain our basic result: a characterization of

the families XL,,, and d-XL,,, in terms of X-transductions and finite state w-

languages.

As observed before Lemma 3.1, it expresses that X-automata are equivalent to

compositions of an X-transducer and a finite-state automaton. Another way of

viewing this result is to say that the w-languages accepted by X-automata are exactly

those o-languages that are reducible to a finite-state o-language by an XT,-reduc-

tion. However, one should note that, in general, XL,., is not closed under XT,-

reductions. (By Lemma 3.2, it is closed under XT,-reductions under the rather strong

assumption that XxX can be simulated by X, using the notion of simulation

introduced in the next section.)

Theorem 3.3. (1) XL,.,=XT;‘(FSL,,,).

(2) d-XL,,,=d-XT,-‘(d-FSL,,,).

Proof. Clearly, these statements are a consequence of Lemmas 3.1 and 3.2 (with

X,=X, and Xz=FS), using the obvious fact that (Xx FS)L,,,=XL,,,. 0

For the acceptance conditions with pi{ G, n} the family FSL,,, can be replaced

by a single w-language. Intuitively, this o-language models the acceptance condition;

from the above “reduction point of view” the o-language is complete in XL,,,

with respect to XT,-reductions. A similar result was obtained in [40] for o-

languages accepted by Turing machines, and (implicitly) in [21] for regular

o-languages.

Theorem 3.4. (1) XL,,,,G =XT;‘({l”)),

XLYI”. n =xT;‘({0*1.{0, l>“}),

xLifzf,G = XT;‘({{O, l}*.l”}), and

xLinf,m =XT,-‘({(O*l)“}).

(2) The same equalities hold for the families of deterministic w-languages d-XL,, p and

deterministic transductions d-XT: ’

Proof. The inclusions from right to left are clear from Theorem 3.3 and the fact that

the four given w-languages, can be accepted by deterministic finite-state automata

using the four respective acceptance conditions (cf. Example 2.6).

Let us consider the converse inclusions. By Lemma 2.7, we may assume that an

w-language L in XL,%, with pa{ E, n) is (a, p)-accepted by an X-automaton .d with

single state set D: L= L,,,(.d, {D)). As in the proof of Lemma 3.1, we change ,d into

an X-transducer .M. Here, however, IN has the output alphabet (0, 11, rather than the

state set of &‘; at each step c 4’ outputs the letter 1 if its state belongs to D, and the letter

0 otherwise.

It is clear that ,K outputs an o-word from 0* 1. [O, 1)” if and only if during its run it

enters at least once a state from D or, equivalently, if the run is (ran, n)-accept-

ing. Hence, L,,,,, (d, {D))=T(.l)-’ (O*l.jO, 1)“). In the same way, we see that

.@ outputs an o-word from (0* 1)” if and only if during its run it enters some

state from D infinitely @en or, equivalently, if the run is (inf; n)-accepting:

Linf.,(cd, {D}) = T(.H)-’ ((0* 1)“). The remaining two acceptance types can be

handled analogously. Li

Using Theorem 3.3, the known inclusions for the families FSL,., (Proposition 2.10)

can be carried over directly to the families XL,,, for an arbitrary storage type X,

without being forced to generalize all the proofs for FS w-languages. Thus, we obtain

the following main result. (The corresponding result for deterministic automata will

be presented in Section 5.)

Theorem 3.5. XL = XLfYm n ran. G - = XL,,,. = = XLi,zJ, & G X Li,, n = XL,,, =

Proof. By Proposition 2.10, FSL,.,,, s E FSL,,,, n . Hence, XT; ’ (FSL,,,, E)

sXT,-‘(FSL ra,l. ,). Thus, by Theorem 3.3 (I), XL,,,. s s XL,,,, 1 The same argument

holds for the other inclusions and equalities. 17

We cannot conclude that the inclusions are strict in general, like for finite-state

w-languages (Proposition 2.10) or pushdown automata [6]. In fact, for certain storage

types all six families XL,. p are equal (e.g., for Turing machines, see [S]). In Section 3.3

we will give a sufficient condition on X for all six families to be equal. To state that

result in a neat way, we will use the notion of simulation of storage types.

3.2. Sirmlation of’ storage types

In order to compare the strength of two storage types, we introduce a notion of

simulation. Rather than requiring that every instruction and every test of one storage

type can be simulated by a “subroutine” using the other storage (an approach which

was taken in [l 11) we use deterministic transductions to formalize simulation. This

turns out to be more convenient to work with. We will show in Corollary 3.9 that the

definition is strong enough to ensure a fact that intuitively should follow from any

22 J. Enge(fiiet, H.J. Hoogehoom

notion of simulation: if the storage type X can be simulated by the storage type Y,

then XL,., is included in YL,,, .

Definition 3.6. Let X and Y be storage types. X is simulated by Y, denoted X< Y, if

d-XT* G d- YT, .

Thus, we require that, in the finitary case, deterministic X-transducers can be

simulated by deterministic Y-transducers. Taking transducers rather than automata

forces the simulation to be straightforward. All the usual simulations satisfy our

definition. Thus, e.g., since a pushdown stack can be used to simulate a counter, we

have CTR< PD. Similarly, PD2 < T and T<PD’, where T is the storage type of

a Turing machine work-tape (and PD2 = PD x PD is the storage type having two

pushdowns, cf. the end of Section 2.1). Also, clearly, FS < X for every storage type X.

First we show that simulation can be carried over from the finitary to the infinitary

case.

Lemma 3.7. If d-XT, G d- YT,, then d-X Ts d- YT and d-XT, G d- YT, .

Proof. Let JZ be a deterministic X-transducer, with set of states Q. Observe that for

a deterministic transducer the behaviour on infinite words is determined by its finitary

transduction. If u is an infinite input word, then there is an infinite run of &’ on u with

output v (finite or infinite) if and only if there is an infinite sequence ((xi, yi))it~ of

elements from T,(A’, Q) with u=lub(xi)isN and v=lub(yi)i.~.
By assumption there is a deterministic Y-transducer JZ1 (with set of states Q1) and

astatesetDGQ,suchthat T,(,z4!,Q)=T,(~&‘~,D).Since T,(M,Q)ET,(JZ,,Q,),the

above observation implies that T(,K)G T(A’,). Hence, for infinite inputs, we wish to

restrict the domain of C/@I to that of 4’. Thus, JZr should be restricted in such a way

that it has a run on an infinite input u only if it accepts all prefixes of U. We first change

MI such that, when reading a new letter, it knows whether it has accepted the word

read so far. Introduce a new state 4 for every ~EQ~. Intuitively, the bar means that the

transducer has been in a state of D, and since then has read A only. According to this

intuition, change the finite control of ~?‘r as follows:
_ if (q, A, /_I, q’, cp, w) is a transition of ~8’~ with qED, then replace it by (q, A, fi, 4’, cp, w),
~ if (q, A, /II, q’, cp, w) is a transition of ./d,, then add the transition (4, A, p, q’, 40, w),
_ if (q, a, b, q’, cp, w) is a transition of _&‘r with a # A, then add the transition (4, a, p, q’,

% w).
Let A2 be the so obtained transducer, with set of states QluQl , where

Qr = (41 qEQ 1 }. Finally, we change M2 by dropping all transitions (q, a, 0, q’, q, w)
with a#A and q$(DuQ,), thus obtaining the deterministic Y-transducer J?‘j that

satisfies the above restriction. For any infinite input word U, =M3 has a run on u with

output v (finite or infinite) if and only if J# has a run on u with output v. This shows

that T(A’,)= T(A’), and that if ,&’ is w-preserving, then so is J?‘, . 0

X-automatu on o-words 23

It is well known that the languages accepted by deterministic and nondeterministic

automata can be related using homomorphisms ~ for finitary (context-free) languages

this was first shown in the Chomsky-Schiitzenberger theorem; for o-languages, see

the “projection lemmas” used to characterize nondeterministic behaviour of finite-

state automata [34], Turing machines [40], and transition systems [30]. Such a result

is also valid in our framework, for every storage type. (This should be compared with

the mode of acceptance used by Staiger and Wagner, where a projection lemma for

pushdown automata seems to be missing, cf. the first open problem at the end of

Section 2 in [32]. Note, however, that our “projections” are not necessarily o-

preserving.)

Lemma 3.8. XL,,, = HOM(d-XL,,,).

Proof. Taking X1 =FS and X2=X in Lemma 3.2(1) we get FST; ‘(XL,,,)G

(FS x X)L,,,. Since, obviously, (FSxX)L,,,=XL,,,, this implies that XL,,, is

closed under inverses of w-preserving FS-transductions and, in particular, under

homomorphisms (see Lemma 2.11). Consequently, HOM(d-XL,, p) G XL,, p.

In order to prove the converse inclusion, let .d be an X-automaton with finite

control 6 and input alphabet C. We change .d into a deterministic (real-time)

X-automaton &” by replacing each transition t =(q, a, 0, q’, cp) in 6 by (q, t, /!I, q’, cp).

This means that each transition now reads its own name from the input; 6 is the input

alphabet of .d’. It is clear that (for an arbitrary family of state sets 9) L,,,(d,

9)= h(L,.,(&“, g)), where h : G+Cu{Aj is the homomorphism that maps t =(q, a, /I,

q’, rp) onto a. 0

The following result justifies the notion of simulation of storage types we have

defined above.

Corollary 3.9. If X< Y, then d-XL,.,cd-YL,%, and XL,.,G YLgx,.

Proof. In Lemma 3.7 it was shown that X d Y implies d-XT,%d-YT,. By Theorem

3.3(2), d-XL,., = d-XT; l (d-FSL,,,). Thus, d-XT, Ed- YT, implies d-XL,,, C

d- YL,, p. Now, by Lemma 3.8, also XL,,,G YL,,, follows. 0

3.3. Equality of the si.~,firmilies

In order to give a sufficient condition for the equality of all the families in Theorem

3.5, we use the following result. It is based on the inclusion FSLi,,,GPDL,,,, _c,

which was proved in [6] using the pushdown essentially as a counter.

The storage type blind counter, denoted by BC, is equal to the storage type counter

(see Example 2.2), except that it has no predicate symbols (cf. [14], where it is called

a partially blind counter).

24 J. Engelfriet, H.J. Hoogehoorn

Lemma 3.10. XL,,, n G(X X BC)L,,,. G .

Proof. By Theorem 3.4, XL,,, n = XT; ' ({ (0* 1)“)) while, according to Lemma 3.2,

XT;‘(BCL,,,. c)s(X x BC)L,,,, s. Hence, in order to prove the lemma, it suffices to

show that (0* ~)“EBCL,,,,, h

We construct a K-automaton d that uses its (blind) counter to ensure that during

its runs it can read any finite number of consecutive O’s, but not infinitely many

consecutive 0’s.

.c4 has two states q0 and q1 and, for i~{0, 11, the transitions (qi, 0, true, qo, deer) and

(qi, 1, true, ql, A), and the transition (qi, A, true, ql, incr). The initial state of d is ql.

Take 9={{qo, ql}).

Hence, for each step on the letter 0, .d decreases its counter. Whenever .d reads the

letter 1 it enters state ql. In this state, before reading the next input letter, & guesses

the number of O’s on the tape before the next 1, and increases its counter value by (at

least) this amount. Consequently, L,,,,, c (d, 9') = (0* 1)“. 0

We now give the sufficient condition: if the storage type X can simulate an

additional blind counter, then all XL,,, are the same.

Theorem 3.11. Zf X x BC 6 X, then XL,,,, G =X&g,, .

Proof. By Lemma 3.10, XLinf,, _ '(X x BC)L,,,, L According to Corollary 3.9,

X x BC < X implies that (X x BC)L,,,, c G XL,,,, E and, consequently, XL,,, n G

XL,,,,, s . Equality (of these and the other families XL,,,) now follows from

Theorem 3.5. 0

Using this result we clearly reobtain the equality of the families of o-languages

((T, p)-accepted by Turing machines as given in [S]. As observed after Definition 2.5,

this differs from the results of [40], where a proper hierarchy for Turing machines is

obtained (due to a slightly different definition of acceptance).

It is obvious that the storage type BC* can simulate an additional blind counter

(where BC* is the union of all BC”, n~t+J, see the end of Section 2.1). BC*-automata

are blind multicounter automata, i.e., automata of which the storage consists of an

arbitrary number of blind counters. It follows from Theorem 3.11 that for these

automata the six acceptance criteria have the same power, i.e, the six families BC* L,,,

are the same. This has some consequences for Petri nets. It is explained in [38] how,

concerning their (infinite) sequential behaviour, Petri nets can be seen as blind

multicounter automata (see also [18, 141). In fact, the places of a Petri net can be

divided (by analyzing its “reachability tree”) into bounded places (i.e. places with

a uniform bound on the number of tokens at the place at any time) and unbounded

places. Clearly, each unbounded place may be viewed as a blind counter, the tokens at

the bounded places together may be viewed as the state, and the transitions of the net

as the finite control of the BC*-automaton (where the labels of the transitions are

X-automuta on co-words 25

viewed as input symbols). This should explain that the families BC*L,,, equal the

families of Petri net w-languages, with (0, p)-acceptance with respect to bounded

markings, and with A-labeled transitions allowed. Although these families were not

(explicitly) compared in the literature (the Petri nets in [38] are assumed to be

A-free, i.e., real-time), the inclusion r-BC*Li,f,, C BC*L,,,. E has been shown in

[S, Theorem 31.

A particular case of Lemma 3.10 is of independer t interest (and will be used in the

sequel). For X = FS we get FSLi,J,, G BCL,,,,. c . From this and Corollary 3.9 it

follows that if BC d X [in fact, if (0* l)“~xL,.,,,, h] then the family XL,,,, E (and, hence,

each family XL,,,) contains all regular o-languages. Note that BCGX is a rather

weak assumption on a storage type X; it is satisfied by all the usual storage types

(except FS of course).

Theorem 3.12. If BC d X, then FSLinf, r E XL,., .

4. Real-time automata

Similar to the basic characterization in Section 3 we now obtain a characterization

of the families r-XL,,, in terms of X-transductions and finite-state w-languages

(Theorem 4.4). As before, we then use it to transfer the inclusions known for the

families FSL,., directly to the families r-XL,., . This gives a diagram as we have found

in Section 3 for the families XL,,,: a “hierarchy” of three levels, and the two inclusions

between these levels may or may not be strict.

As in Section 3 we study the strictness of these two inclusions. We obtain upper

bounds (in topological terms) on the o-languages in the bottom two levels of the

real-time hierarchy (Lemma 4.7). Using these upper bounds, we show that the two

inclusions are strict for each storage type (Theorem 4.9).

The arguments used in this section, especially those in the proof of Lemma 4.6, are

applicable to a class of automata more general than real-time automata, viz., auto-

mata that do not have an infinite computation on a finite input - we say that these

automata havejnitr delay. Thus, both the hierarchy results and the topological upper

bounds that can be obtained for real-time automata can be shown using the same

techniques for automata with finite delay.

In Section 4.3 we investigate the expressive power of real-time automata and

automata with finite delay. On the one hand, we show in Theorem 4.17 that real-time

automata are equivalent to automata with finite delay whenever the storage type is

powerful enough to simulate an additional queue (“in real time”). On the other hand,

we show that for the two-counter storage the real-time restriction is strictly less

powerful than the limitation to finite delay (Theorem 4.19). Finite-delay automata

may have the same power as or strictly less power than unrestricted automata,

depending on the storage type (Theorem 4.21).

26 J. Enyeljkiet, H.J. Hoogehoom

4.1. The basic characterization for real-time automata

As mentioned in the above introduction, we investigate the real-time automata

together with a slightly more general class of automata.

Definition 4.1. An X-transducer .d hasjnite delay if there is no infinite run of & on

a finite input word.

We use the prefix f- in the same way as we have used the prefixes d- and r-, i.e., to

indicate families of (infinitary) languages (or transductions) defined by automata that

have finite delay. Obviously, every real-time automaton has finite delay; so, we have

r-XL o,p GEXL,,,CXL,.,. By Lemma 2.9, we have equality for the trivial storage

type: r-FSL,,,=f-FSL,,,= FSL,,,

Automata with finite delay were already considered in the context of w-languages.

In [4] BC*-automata (i.e., Petri nets) having our finite-delay property are called

prompt nets. That paper, however, focuses on nets that are l-prompt, i.e., nets in which

A-transitions are allowed, but not two consecutive A-transitions in a firing sequence

(run). Note that the “finite delay” in the title of [4] refers to a fairness notion!

We have a decomposition result similar to the ones presented in Section 3.

Lemma 4.2. Let pE(r, f}. Then p-XL,,,~p-XT;~,,(d-FSL,,,).

Proof. The construction used in the proof of Lemma 3.1 transforms an X-automaton

,cP into a l-output X-transducer J&’ by requiring that the automaton outputs its state

at each step. Clearly, this does not change the input behaviour of the automaton; so,

J?’ is real-time (has finite delay) if and only if ,d is real-time (has finite delay). 0

As in Section 3 the reverse inclusion can be stated in a slightly strengthened

formulation. This time we have to be careful in the statement (and the proof)

concerning the output behaviour of the transducer in the real-time case. Recall from

Section 2.1 that a storage type is blind if it has no predicate symbols.

Lemma 4.3. Let X1 and X2 be two storage types.

(1) f-X1T,-‘(f-XzL,,,)cf-(X, ~XzlLa,~,

(2) r-Xi T,~,,(r-X,L,,,)~r-(X, x X&o,p.
(3) ZfX, is a blind storage type, then r-X, T;‘(~-XZL,,,)G~-(XI xXz)L,,,.

Proof. (1): In the case of automata with finite delay the proof of Lemma 3.2 is valid.

(2) and (3): For real-time automata we cannot split the simulation of the X1-

transducer _&’ and the X,-automaton ZZL? as we did in the proof of Lemma 3.2, because

this introduces A-transitions. Hence, we simulate in a single step (of an Xi x X,-

automaton a) one step of k? and 1 w j steps of d on the output w of J%‘. This implies,

however, that the intermediate configurations of ,d are not available to apply tests to.

X-automata on to-words 27

Consequently, this construction will work only if either ,/Z is l-output (so, .@ has to

simulate only a single step of ‘GY) or the storage type of d is blind (which means that

.d cannot perform any tests on its storage configurations). Since the intermediate

states of ,r4 are important for the acceptance of a run, we use (as in the proof of Lemma

2.9) the states of 2 to store these states.

Formally,let ~~=(Q1,Clr~lrqi”,l,Cin,1, C,) be a real-time o-preserving XI-trans-

ducer and let .d = (Qz, C, , fi2, qi”, 2, Gin. 2) be a real-time X,-automaton.

The real-time XI x X,-automaton g=(Q, C, 6, qin, tin) is constructed as follows:

Q=Q1~Q~x2~‘,qin=(qin,1, qin,2, (qin,z}), and, for each U, U’EQ~, 6 contains the

transition ((ql, qzr U), a, PI A 8~~ A ... A Bl,k,(q’r , 4, W, cpl .(Pz,~ ... (~2,~) when-
ever there is a transition (ql, a, PI, q;, cpl, a, . ..ak)d., UiEZ, for l<i<I& and

asequenceq2,0,q2,1,..., q2.k of states in Q2 such that U’= {q2, 1) . ..) q2,k}, q2 =q2,0,

(q2,i-l, %, P2,i, q2,i, (PZ,i)ES for 1 Dick and q;=qz,k.

We stress again that in ,&? the tests b2, 1, b2,2, . ..) fi2,k are applied to a

single configuration c2 rather than to the configurations c2, p2(qZ, 1) (c2), . . ,

PZ((P2,l ..’ (P~.~_ 1)(c2), respectively. Hence, the construction will not work unless (i)

k= 1, which is the case when .,N is l-output, or (ii) fiZ, 1 = .. . =/j2,k = true, which is

satisfied when X2 is a blind storage type.

We accept runs of @ by considering the third component of the states entered

(infinitely often) during the run. Formally, this can be justified by applying Lemma 2.8,

with $({(ql, q2, U)))= U, and R= T(,M)-‘. 0

As for the corresponding results of Section 3, we now combine the above two

lemmas to obtain a characterization of the families f-XL,,, and r-XL,,, in terms of

X-transductions and finite-state w-languages.

Theorem 4.4. (1) f-XL,., = f-X T,b ’ (FSL,,,),

(2) r-XL,,,=r-XT;‘(FSL,,,),

(3) dr-XL,,,=dr-XT:’ (d-FSL,,,).

Proof. (1): According to Lemma 4.2, and Lemma 4.3 (with Xl =X and X2 = FS), we

have f-XL,,,sf-XT,;,,(d-FSL,&f-XT,- ‘(f-FSL,&f-(X x FS)L,,, =f-XL,,,

and, consequently, f-XL,,, =f-XT,;‘(FSL,,,). Note that we used the fact that

EFSL,,, = FSL,%, .

Similarly, one proves (2). Note that FS is a blind storage type.

In order to prove (3), observe that the constructions used in the proofs of Lemma

4.2 (i.e., the proof of Lemma 3.1) and Lemma 4.3 preserve determinism. 0

This allows us, as in Section 3, to transfer the inclusions known for the families

FSL,,, directly to the families f-XL,,, and r-XL,.,, using (1) and (2) of Theorem 4.4.

Lemma 4.5. Let PE{r, f >. Then

P-XL,,,, = Ep-XL,,,,, =p-XLp,,, = =p-XLi,, 5 Ep-XLiflf., =p-XLi,, = .

28 J. Enyelfriet, H.J. Hooyehootn

4.2. Topological upper hounds

Again we investigate when the remaining two inclusions are equalities and when

they are strict. Perhaps somewhat surprisingly they turn out to be always strict. We

use the following two lemmas to demonstrate this. They lead to topological upper

bounds on the o-languages that can be (ran, E)-accepted and (irzf, &)-accepted by

X-automata having finite delay. These can then be used to exhibit o-languages that

“separate” the acceptance types (ran, c), (inJ G), and (inJ; n).

In the context of infinite finitely branching structures, Kiinig’s Lemma is a basic and

important tool. It was used in [38] to show that if every finite prefix of an w-word is

the label of a firing sequence (run) of a given A-free Petri net, then the o-word itself is

the label of an infinite firing sequence of the net. From this it follows that the

o-languages in r-BC* L,,,, E are all closed in the topology on C” (like the result

Landweber [20] obtained for d-FSL,,,, L). In a straightforward way, this result can be

extended not only to arbitrary storage, but also to automata with finite delay.

Lemma 4.6. Let .d he an X-automaton with jinite delay, with state set Q. Then

L ran,C(Cd3 iQ))=aW-Ld~,Q)).

Proof. Let d = (Q, C, 6, 4in, tin) and let L = L,(d, Q). Then, obviously, L = pref(L);

so, adh(L)= lim(pref(L))= km(L). Note that L,,,. s (sf, (Q}) is the set of all o-words

on which there exists a run of G!, without additional requirements for the state

sequence of the run.

Assume that UE L,,,, L (.al, {Q}). This implies that u[n]~L for each HEN and,

consequently, u~/im(L) =adh(L).

To prove the inclusion adh(L) G L,,,,. E (,c9, {Q}), let uEadh(L). For each nE N there

exists a finite run of .d on the prefix u [n] of U; it has at least length n. We use Konig’s

Lemma to show that there exists an infinite run of d on U.

Define the sets E,, nEN, of instantaneous descriptions of d that are reachable from

the initial instantaneous description in n steps on a prefix of U, as follows.

Eo=((qinr A, tin)), and for n3 1,

6 = { (4, x, c) I xEpref(u), and

(q’, x’, c’) k,d (q, x, c) for some (q’, x’, C’)E E,_ 1 }

Clearly, each of these sets is finite and nonempty. According to Konig’s Lemma,

there exists an infinite sequence ((q,,, x,, c,)),,~ such that (q,,, x0, co)~Eo and, for

n31,(q,-,,x,~1,c,~,)~.(q,, x,, c,); this is an infinite run of d on u = lub(~,,),,~ .

Note that u cannot be finite because d has finite delay. Moreover, every x, is a prefix

of u and, hence, u = 0.

Since every infinite run of & is (ran, G)-accepting with respect to {Q}, this proves

adh(L)~L,,,..(d,{Q)). 0

X-automata on o-words 29

Lemma 4.6 links (ran, G)-accepted o-languages to closed sets in the topology on

C”, and using an additional argument it shows that (inJ c)-accepted o-languages are

countable unions of closed sets.

Lemma 4.7. (1) f-XL CF. ran. G -
(2) f-XLin/, ~ ~ ~~.

Proof. Both F and F0 are closed under (finite) union. Hence, it suffices to consider

o-languages (0, p)-accepted with respect to a single state set. Let .GJ’ =(Q, C, 6, qin, tin)

be an X-automaton with finite delay and let DGQ.

(1): Obviously, L,,,, E (d, {D>)= L,,,, E (d ID, {D}), where d ID is the automaton

& restricted to states from D. Hence, the result is a consequence of Lemma 4.6 (and

the observation that .d ID has finite delay whenever & has finite delay). Recall that the

adherences are the sets in F (i.e., the closed sets), see Proposition 1.2.

(2): Each (ir~f c)-accepting state sequence (with respect to {D]) of .d can be divided

into two parts: an initial part in which all states from Q may occur, followed

by an infinite part that enters only states from D. Thus, Li,/, E (d, {D))=

lJ{L,,,,r (cd(q,-x,~), (Du Qq,x.c})l(qin,A,ci,) F*(q,x,c)}, where Ld(q,x,~) equals cd,
except that it has a new initial state q6 and a new path leading from 41, to 4, reading

x from the input, and transforming (‘in into c - this path copies the computation

(qin, A, cm) I- * (q, x, c). Qq,x,c is the set of states that are added to .d in order to form the

new path.

The above union is countable; this follows from the fact that the number of

instantaneous descriptions reachable from (qin,A,ci,) in y1 steps is finite for each n.

Consequently, by (l), every o-language in f-XLief, G is a countable union of closed

sets, hence an FO-set. 0

Using Proposition 1.3 and the topological upper bounds from the above result, we

find the w-languages we are looking for.

Corollary 4.8. (1) 0* 1. {0, i}“~r-xL~,~, c -f-XL,,,, L

(2) (O* l)WEr-XLi,f.n -f-XLi,. E

Proof. (1): According to Proposition 1.3 and Lemma 4.7,0* 1. {0, l}“$F zf-XL,,,, c ;

however, O*l. (0, lf”~FSLi,,f, z E~-XL,,~, G (see Example 2.6).

(2): Similarly, (0* l)“$Fo 2 f-XLi,/, E ; however, (0* I)“EFSLi,, n c r-XLins, n . 0

These two w-languages can now be used to show that the inclusions from Lemma

4.5 are strict for all storage types. This gives the following main result.

Theorem 4.9. Let PE(r, f 1. Then

P-xLrc7n, C cP-xLrOn,m =psxLr,fl, = =p-XLi,. E cp-XLinf,, =p-XLi,, = .

30 J. Enyeljlriet, H.J. Hoogehoom

Apart from FS, as far as we know the only specific storage type that was studied for

its real-time behaviour is BC*. Real-time blind multicounter automata (i.e., Petri nets)

were studied in [38], both for acceptance with respect to states (i.e., bounded places)

and for acceptance with respect to storage configurations (i.e., markings). We reobtain

the results of Valk for acceptance with respect to states. The results obtained for the

latter way of accepting infinitary languages are incomparable to those we have found

in Theorem 4.9.

We now ask ourselves whether the same methods can be used to show strictness of

the hierarchy of families XL,,, for specific storage types X. As an example, as

mentioned at the end of Section 3.1, such a strict hierarchy has been obtained for

PD-automata with A-transitions. In [6, Section 3.31 this was shown using the

following result. Let L be any finitary nonregular context-free language, e.g.,

L={a”b”ln~N}, and let d be a letter not occurring in L, then L.d”E

PDL,,, 5 - PDL,,,, c and (L.d)“~pDLi,f,, - PDL,,, s .

Unfortunately, one should realize that topological arguments are of no use in

obtaining these counterexamples for the hierarchy PDL,,,. Both L.d” and (L.d)”

belong to %a (they are the limits of Ld.d* and (Ld)*), whereas even PDL,,,, E contains

o-languages outside B, u %a because of the inclusion FSL,,, n G PDL,,,, c

([6], or Theorem 3.12). Such a regular w-language is 0. (0, l}*. 1”u 1 .(O*l)O (see

[20] for this example and for topological characterizations of the families d-

FSL,,,).
It is quite striking that the o-languages used to show the strictness of the inclusions

in the hierarchy PDL,., are structurally very similar to ones that can be used to

separate the families in the real-time and finite-delay hierarchies: in Corollary 4.8 one

may replace O*l.{O,l}w by O*.l”; thus, L.d” and (L.d)” remind us of O*.lw and

(O*l)w. Note that O*.lw is of a higher topological complexity than O*l.{O, l}“:

O*l.{O, l}“~g-8, whereas O*.l”~(~~n9~)-(9u9), cf. Proposition 1.3.

4.3, The pobver qf real-time automata

We compare the families f-XL,,, and r-XL,,, (and XL,,,). We start by investigat-

ing under what conditions (and how) an w-language accepted by an automaton with

finite delay (or even an unrestricted automaton) can be accepted by a real-time

automaton.

For real-time automata we need a stronger notion of simulation.

Definition 4.10. Let X and Y be storage types. X is real-time simulated by Y, denoted

X <, Y, if both X< Y and dr-XT,zdr-YT,.

Unfortunately, we cannot show that dr-X T* c dr- YT, implies d-XT, G d- YT,; so,

we explicitly require that 6, implies <. A stronger alternative to Definition 4.10

would be: there should be a transformation of deterministic X-transducers into

deterministic Y-transducers that turns every X-transducer into an equivalent

X-automata on to-words 31

Y-transducer, and that preserves the real-time property; however, the present defini-

tion is easier to state and is all we need.

As in Section 3, we transfer simulation to infinitary transductions and w-languages.

Lemma 4.11. If dr-X T+ c dr- YT,, then dr-XTE dr- YT and dr-XT, G dr- YT,

Proof. Let J? be a deterministic real-time X-transducer, with set of states Q. By

assumption, there is a deterministic real-time Y-transducer _&ZI (with set of states Q1)

and a state set D G Q1 such that T,(A, Q) = T,(JZl, D). As in the proof of Lemma 3.7,

we observe that T(.&‘)G T(,Z?‘l). Again, we wish to restrict (for infinite inputs) the

domain of Jtil to that of Jf, and we change Jr such that it accepts all prefixes of its

input. In the absence of A-transitions this can be done by simply dropping all

transitions (4, a, /II, q’, cp, w) with q$D or q’#D, thus obtaining the deterministic

real-time Y-transducer C/1%2 which satisfies the above restriction. For any infinite input

word U, A2 has a run on u with output u (finite or infinite) if and only if &” has a run

on u with output I). This shows that T(,U,)= T(,K), and that if J? is o-preserving,

then so is Mz. 0

Lemma 4.12. r-XL,,, = HOMI_,,,(dr-XL,,,).

Proof. The proof is similar to that of Lemma 3.8. Here one shows, using Lemma

4.3(2), that r-XL,,, is closed under inverses of real-time l-output FS-transductions

and, in particular, under length-preserving homomorphisms: HOMr_,,,, E r-EST,_,,, G

zr-FST&,, see Lemma 2.1 l(2). 0

Corollary 4.13. [f X 6, Y, then dr-XL,.,cdr-YL,,, and r-XL,,pGr-YL,,p.

Proof. Similar to the proof of Corollary 3.9, we have [using Theorem 4.4(3)1

dr-XL,., =dr-XT;’ (d-FSL,.,) and r-XL,., = HOM,_,,,(dr-XL,.,). Hence, dr-

XT,cdr-YT, implies both dr-XL,,,cdr-YL,,, and r-XL,,,Gr-YL,,, 0

We will show that every w-language (ini n)-accepted by some automaton can be

(inf n)-accepted by a real-time automaton, provided we extend the storage with

a queue. This is not true for the acceptance types (ran, G) and (ini G). However,

starting with an automaton with finite delay we can prove an even stronger property.

For each acceptance condition (u, p), every o-language (a, p)-accepted by an automa-

ton with finite delay can be (a, p)-accepted by a real-time automaton, when the storage

is extended with a queue.

We use Q to denote a formalization of the qtleue as a storage type. Analogously to

the storage type PD the configurations of Q are finite words; it has instructions for

adding a letter to the rear of the queue and for removing a letter from the front, and it

has tests to determine the first letter of the queue.

32 J. Engelfriet, H.J. Hoopboom

We need the following closure property of the family of o-languages (ini n)-

accepted by real-time X-automata. Analogous properties hold for other acceptance

types.

Lemma 4.14. r-X&, n is closed under intersection with o-languages from FSL,,, n.

Proof. Since the acceptance types (inf; n) and (inf, =) are equivalent for real-time

automata (Theorem 4.9), we may demonstrate the lemma for r-XLi,, = and FSL,,, = .

Recall that FSLi,, = =r-FSLi,,f, = .

Generalizing the lemma, given a real-time Xi-automaton di, and a family pi of

state sets for di, i= 1,2, by an obvious direct product construction one obtains

a real-time (Xi x X,)-automaton d simulating di and dZ in parallel. We wish a run

of ~2 to be accepting if its state sequence, when projected onto the ith component, is

(inA =)-accepting with respect to pi for both i= 1 and i=2. To realize this, we use as

a family of state sets for ,d exactly those sets that, when projected onto the ith

component, belong to Bi, i= 1, 2. 0

Lemma 4.15. (1) XLipjf,, G r-(Q X X)Linf, n .

(2) f-XL,,,Gr-(Q x X)L,.,.

Proof. (1): Given an X-automaton ~2 with input alphabet C, we transform ~2 into

a real-time X-automaton dr over the alphabet Cu { 4) by changing every A-

transition into a transition that reads # (where 4 is a letter not in C).

Additionally, we construct a real-time l-output Q-transducer J?’ that “delays”

input: in each move it stores its input letter at the end of the queue, and it outputs

nondeterministically either the first letter of the queue (while removing it) or the

symbol +?.

According to Lemma 4.3(2), there exists a (real-time) (Q x X)-automaton (inf, n)-

accepting T(,&‘- 1 (Li,s,,(~‘, 9)). However, in general, this language strictly contains

the original w-language Li,/,,(~, 9). This is a consequence of the fact that Linf,,(&‘,

9) may contain o-words of the form x.dW, x~(Cu id})*; these w-words correspond to

infinite runs of & on finite words that happen to have accepting state sequences (with

respect to 9). The acceptance of such an o-word by d’ would imply that

rrr(x).Cw& T(A~‘-‘(L~,,~,,(&‘, 9)), while not necessarily rrl(x).Co~ LiEf,,(d, 9).

Here we have used 7~~ to denote the projection onto the alphabet C; it removes the

symbol &.

Hence, before applying the transduction T(M)- ‘, we first intersect the w-language

Li,s,,(.c4’, 9) with the regular w-language (&*.C)w=(Cu {d))“-(Zu {&})*.&“; by

Lemma 4.14, this intersection again yields an o-language from r-XLi,f,,. According

to Lemma 4.3(2), Li,,f,n(~, 9)= T(,~fl)-l(Li,,f,,(~‘, 9)n(d*.CY’) belongs to r-

(Q X X)Linf, n.
(2): We now have L,,,(&, 9)= T(A’-‘(L,,,(~d’, 3)). In fact, &’ does not accept

words from (Cu id})* .d” because .d is an automaton with finite delay. 0

Remark 4.16. The first statement of the above lemma cannot be generalized to less

powerful acceptance types like (ran, G) and (inA G). Intuitively, this is due to the fact

that these acceptance types cannot force an automaton to perform a certain action (in

the above proof: removing a letter from the queue) infinitely often.

Recall that, if BC < X, then all o-languages accepted by FS-automata are included

in XL,,, for each acceptance type (Theorem 3.12). We then may use the counter-

examples of Corollary 4.8: O*l. (0, l}“cXL,,,, &, whereas, for every storage type Y,

0* 1.10, l}“$f- YL,,,. c . Similarly, (0* ~)“EXL~,,~. E , while (0* 1)“4f- YL,,, E .

In Section 3 we have shown that the hierarchy of the families XL,,, collapses into

a single family when the storage type X can simulate an extra blind counter (Theorem

3.11). Now Lemma 4.15 tells us that for each acceptance type automata with finite

delay are equivalent to real-time automata, for storage types (like Q*) that can

simulate an additional queue in real time. More precisely, in this case the class of

families r-XL,,,, f-XL,,,, and XL,%, consists of precisely three families: r-XL,.,,, G c r-

xLinf,G cr-XLf,, $ as shown in Theorem 4.17.

Theorem 4.17. If Q x X d r X then the diagram of Fig. 2 holds.

Proof. The strict inclusions from left to right for real-time (and finite delay)

automata are presented in Theorem 4.9. We consider the equalities from the

diagram.

Using Lemma 4.15, the assumption of the theorem, and Corollary 4.13, we have

XLi,f., or-(Q x X)Li,f,, ~r-XLi~f,, and f-XL,, s or-(Q x X)L,, c or-XL,, L .

In order to show the equality of the families XL,.,, it suffices to demonstrate that

BC x X < X (Theorem 3.11). First we observe that by definition Q x X < r X implies

QxX<X. Since, clearly, BCdQ we have BCxXdQxXdX. 0

We have now seen some examples of storage types for which automata with finite

delay are equivalent to real-time automata. In particular, we have the equalities

f-FSL,,, = r-FSL,,, for the simple storage type FS as well as f-XL,,, = r-XL,,, for the

more powerful storage types that satisfy Q x X <r X.

XL,,,,, - XLinf,c - XLinf,n

f--%a,, G - f-XLi*f, c __C f-XLinf,n

r-XL
Ial. i r-XLinf, r r-XLinf,n

Fig. 2. Inclusion diagram in the case that Q x X <,X.

34 J. Enyelfriet, H.J. Hooyeboom

However, in general, the families f-XL,,, and r-XL,,, are not equal. We will show

that the o-language

BIN,=(x.ak~xE{O, 1>*, k=nr(x)}.b”u{O, l}“,

where nr(x) denotes the integer represented by XE{O, l}* as a binary number, can be

accepted by an automaton with finite delay having two counters as storage but not by

such an automaton that is real-time. This example is essentially the one given by

Jantzen in [18] for finitary languages accepted by (real-time) Petri nets.

Lemma 4.18. BIN,Ef-CTR2L,,,, G -r-CTR2Li,,f.,

Proof. (a) BIN,Ef-CTR2L,,,, c . We use incri and decri to denote the increment and

decrement instructions for the ith counter (iE{ 1, 2)).

Let G! be the (deterministic) CTR2-automaton with initial state p1 and the follow-

ing transitions:

h, 0, true, p2, 4, (pl, 1, true, ~2, incr2),

(p2, A, lzerol, p2, deer, incr, incr,), (~2, A zerol, p3, A),

(~3, A lzero2, p3, deer, incr,), (p3, A, zero2, ply N,

(Pi, 4 izem, P4, deer,), iE{1,4j, and (pi, b, zeroI, ps, A), iE{l, 4, 5}.

Let Q = { pl, p2, p3, p4, p5}. One easily verifies that L,,,, c (&, {Q})= BIN,: the first

counter represents the value nr(y), where y is the prefix (in (0, l}*) of the input read,

the second counter is used (in states p2 and p3) to multiply the first counter by two. We

still have to show that d has finite delay. Observe that any sequence of A-moves of

A must -from some moment on ~ either take place in state p2 or in state p3. However,

the number of successive applications of the instructions deer, incr2 incr2 (deer, incrl)

is bounded by the value of the first (second) counter. Hence, infinite sequences of

A-moves are impossible.

(b) BZN,#r-CTR2 Li,,f., . The argument closely follows [181. Assume that BIN, =

Linf,m(dt {D})t h w ere d is a real-time CTR2-automaton with state set Q. Let m be the

maximal value that can be added to the counters in a single step of d. Thus, if &’ reads

a word XE{O, l}* from its input tape with /xl= n, then the total value of the counters is

at most n.m. Consequently, there exists a constant c such that there are at most c.n2

possibilities for the storage configuration of .d after reading a word of length n.

Choose ~Z~E N such that 2”” > # Q. c. ni
For each word XE{O, l}* with 1x1 =nO there exists an infinite run r(x)= ((q&x), u[i],

citx)))isN of & on ~~=xa”‘(~)b” that is (ir$ n)-accepting with respect to {D}. Since

there are 2”” words of length ~~ in {0, l}* but less possibilities for the pairs (q,,,,(x),

c,,(x)), there are two different words x1, x2 of length no over (0, l} ~ say with

nr(x1)<nr(x2) ~ such that (qn,(xl), ~,,~(x~))=(qn,(x2), c,,(x2)). Following the

X-automata on o-words 35

definition of Y(x~), starting in (q,,,,(x2), x2, c,,(x,)) d may read unrcx2)bo from its input

while entering some state in D infinitely often. By a combination of the two runs r(xi)

and Y(x~) [switching from the one to the other when reaching state qno(x1)=qno(x2)

and configuration cn,(x1)=cn,(x2)], we obtain a run of d on x~~“‘(~~)V” which

is (inf, n)-accepting with respect to (D}. This contradicts our assumption since

xlanr(x2’bw$BIN,. This proves BIN,$r-CTR2Linfs,. 0

Hence, BIN, is an w-language that distinguishes the real-time two-counter auto-

mata from the two-counter automata with finite delay.

Theorem 4.19. r-CTR2L,,,cf-CTR2L,,,.

Remark 4.20. Note that the same line of reasoning can be used to show that

BIN,$r-CTR*Li,,f., .

Lemma 4.18 can also be proved for the storage type BC’. One then uses the

o-language BIN~={w.ak~w~{O, l}*, O~kdnr(w)}.b”u{O, l}” (see again [lS]). In

fact, BINJ,,Ef-BC2 L,,,,. c - r-BC* Li,,f. n

From Theorem 3.11, Corollary 4.8, and the above remark on BIN:, it now follows

that the diagram of Fig. 3 holds for Petri nets (with acceptance with respect to

bounded places, see [38] for real-time nets). We conjecture that the inclusion in-

dicated by * is an equality.

A diagram with the same inclusions and equalities holds for the storage types CTR*

and CTR2.

Each of the inclusions r-XL,., E f-XL,, p c XL,., may be either an equality (as, e.g.,

for X =FS) or may be strict (as for X = BC*), except perhaps the inclusion f-

xLinf, n G xLinf,n for which no example of strictness has yet been given. We do this

now.

Theorem 4.21. There is a storage type Z such that f-ZLins,, cZL,,,~,, .

BC’Lra,, c - BC*Linr c = BC*Linf, n

f-BC’L,,,,, __c f-BC*Li,f,c - f -BC*Li,f, n

r-BC’L ran.= - r-BC*Linf,c - r-BC*Linr ”

Fig. 3. Inclusion diagram for the storage type BC*

36 J. Engelj-irt, H.J. Hoogehoom

Proof. Let Z be the rather exotic storage type (N x N x
deer,, deer,, half1 }, p), where

p(zero)(r, s, d) = true if and only if r = s = 0,

{t, 11, ((1, 1, t)}, {zero>, {incr,

p(incr)(r, s,d)=(r+ 1, s+ 1, d) if d = r, and undefined otherwise,

~(decrl)(r,s,d)=(r-l,s,I) if r 3 1, and undefined otherwise,

~(decr,)(r,s,d)=(r,s-1,l) if s > 1, and undefined otherwise,

~(half,)(r,s,d)=(:r,s, I) if r is even, and undefined otherwise.

Note that Z is a “one-turn” two-counter storage, in the sense that the counters can

be incremented (synchronously) in the first phase, and can only be decremented in the

second phase of a run.

Consider the following variant of BIN,:

BIN~‘={x.akIxs(O, I}*, k=nr(x’“‘)}.b”,

where xreV is the mirror image of x.

A Z-automaton d (inL n)-accepting BINEV can be constructed in the following

way. & starts by nondeterministically guessing a value for k, and puts this value in

both its counters. Then it checks whether this value is represented by xrev in binary: on

input 0 it halves the first counter, on input 1 it does the same after first decrementing

the counter by one. Finally, using its second counter, it checks whether the number of

a’s on the input tape also equals k. After reading the last a, the zero test is performed.

Obviously, & does not have finite delay because it has an infinite run on A (guessing

an infinite value for k).
BIN:” cannot be (inf, n)-accepted by a Z-automaton with finite delay. For each

Z-automaton with finite delay there is a fixed bound on the number that can be added

to the counters in a computation that uses only A-transitions. In fact, if such a bound

would not exist, there would be arbitrary long sequences of A-transitions increment-

ing the counter. Consequently, there would be a cycle of such transitions in the

automaton, contradicting the finite-delay property. Now that we have obtained the

bound, the proof is similar to the proof of Lemma 4.18: the contents of the counters

after reading x can be bounded by a linear function in 1x1. We leave the details to the

reader. 0

5. Deterministic automata

By now the reader will have guessed the type of results we want to derive in this

section. Using the characterization result for deterministic automata given in

Theorem 3.3, we obtain a diagram for the families d-XL,,,, which is similar to the

well-known diagram for the families d-FSL,,, (which was presented in Proposition

2.10). As in the previous sections, this does not yet give any information concerning

X-uutomata on to-wrds 37

the strictness of the inclusions. Like for real-time automata, we give simple topological

upper bounds on the families d-XL,,, which are then used to obtain strictness

of the inclusions (Theorem 5.5). After comparing the strength of deterministic and

nondeterministic automata in Theorem 5.6, we close the section by studying a

property of storage types related to the closure under complement of the families

d-XL,, = .

For deterministic automata there are some well-known relations between accept-

ance type and language-theoretic operations.

Lemma 5.1. Let .d be a deterministic X-automaton with state set Q and alphabet C, and

let S s 2”. Then

(1) L,,,,. Cd, {Q>))=adKbW',Q)),
(2) Lmn (d, 2) = L, (xf, U 2). C”nadk(L,(&‘, Q)), and

(3) Li,f,,(.d, 9))=lim(l,(Cd, IJQ)).

Proof. (1): L,,,, s (s?‘, {Q})) is the set of all o-words over Z on which there exists a run

of .d. Clearly, each of these w-words belongs to adk(L,(.d, Q)). The reverse inclusion

is also obvious. If .d may read arbitrary long prefixes of an o-word U, then there exists

an infinite run of .d on u because .d is deterministic. (See also the proofs of Lemmas

3.7 and 4.6.)

(2): L,,,, m(.d, 9) consists of all u-words on which there exists a run of d, and,

additionally, for which this (unique) run enters, at least once, a state from one of the

sets from 8. These w-words form the set adk(L,(,d, Q))nL,(,d, U~).P.

(3): The proof is similar to that of (1) and (2). We only require that the run enters

infinitely often a state from lJ9. 0

The above result enables us to give topological upper bounds on the u-languages

that are accepted by deterministic automata and, consequently, to give examples of

elementary w-languages that cannot be accepted by any deterministic automaton

using a specific acceptance type.

Given two families z,Y and 9’ of w-languages we use x A 9 to denote

{KnLIKeX, LEY}, and %(sy‘) to denote the Boolean closure of the family x.

Note that a(S)=g(%) and .&?(9,,)=a(9Y8).

Lemma 5.2. (1) d-XL,,,, E G 9.

(2) d-XL,,,, n s.9 A %.

(3) d-XL,,,, = cl/~(~).

(4) d-XL,,. c ~9,.

(5) d-XL,,, n c 98.

(6) d-XL,,, = s,%(gO).

Proof. (l), (2), and (5) are clear from Lemma 5.1 and the relation between the

language-theoretic operations and topological families (Proposition 1.2).

38 J. Enge@iet, H.J. Hoogeboom

(4) can be shown just as the inclusion f-XL,,, c cP;, in Lemma 4.7(2), using (1).

To show (3) and (6), consider an arbitrary deterministic X-automaton JZZ and

a family 9 of state sets for d. Then L,, =(d, 9)= UDE9 [L,, E (&, {Q})- L,,,(s?,

{Q-D))]. Now d-XL M,,, = &B(9) and d_XLi,, = s98(F0) follow from (1) (2) (4)

and (5). 0

Corollary 5.3. (1) O*l .{O, l}“~dr-XL,,,,, -d-XL,,,, E .

(2) (O*l)“~dr-XLi,,f,, -d-XL,,, c .

(3) (0, l}*. l”Edr-XLi,,f, c -d-XLi,s,, .

Proof. Clear from Example 2.6, Lemma 5.2, and Proposition 1.3. 0

Lemma 5.4. (0, l}w-O*l .O”Edr-XL,,,, = -d-XL,,,,, .

Proof. Let K={O, l}“-O*l.O”=O”uO*lO*l.{O, 11”.

Let d be the deterministic real-time FS-automaton with state set Q= {qO, ql, q2}

and transitions (qi, 0, true, qi, A) for i~{O,1,2}, (qi, 1, true, qi+l, A) for i~(0, 11, and

(q2, 1, true, q2, A). If 9 = { {qe}, Q}, then L,, = W, S)= K.
On the other hand, assume that KEd-XL,,,,m. According to Lemma 5.2(2), d-

XL *an, n G 9 A 9. Thus, assume that K is of the form adk(L1) n Lz. {0, I}“’ for finitary

languages L1 and L2. Since O”EKG L2.(0, l}“, we have O”EL~ for some n~kJ. On

the other hand, O”lO* 1 .O”GK cadk(L,), so pref(O”lO*)~pref(L,). Consequently,

0”1.0”~adk(L,)nL2.(0, l}“=K; a contradiction. 0

We now present the next main result, the full diagram for the families d-XL,,,.

Theorem 5.5. (1) The diagram of Fig. 4 holds.

(2) The same diagram holds for the families dr-XL,,,.

Proof. (1): The inclusions (G rather than c) for the families d-XL,,, can be obtained

from the finite-state case (Proposition 2.10) using our characterization in terms of

inverse transductions (Theorem 3.3 (2)). The strictness of the inclusions d-XL,,,, E Ed-

XL = d-XL,,,, =, llllI, n - and the incomparability of d-XL,,, c and d-XLi,f,, follow

from Corollary 5.3 and Lemma 5.4.

d_XLinf, c

d-X=,,,, c
y \

-_) d-XL,,, n --t d-XL,,, =

’ \

d-XLi,p, =

d-XLin/

Fig. 4. Inclusion diagram for deterministic automata.

dr-CTR*L,,,,. --cdr-CTR2L,,,,,--c dr-CTR*L,,,,;

I dr- CTR'Linf,.

. ldr-CTRzLi,f,.

L d,-CTR',,,/

Fig. 5. Inclusion diagram for CTR’. also valid for CTR*.

X-automata on w-words 39

d-CTR2Linf,=

d-CTRZL,,,,s - d-CTR*L,,,,n - d-CTR'L,,,,; 1 d-CTR2L.

4

I

'4
/ ' Iof'-

d-CTRZLinf,.

1

(2): For dr-XL,., the inclusions can be obtained using the characterization in

Theorem 4.4(3). Cl

The diagram for the families d-XL,,, and the one for the families dr-XL,,, can be

combined into one figure. In general, the inclusion dr-XL,,,cd-XL,,, can be an

equality as for FS [Lemma 2.9(2)] and for the storage type U which is studied in

Section 6 (see Theorem 6.3). Since the o-language BIN, given in Section 4 belongs to

d-CTR= L,,,, E but not to r-CTR2 Li,, = (see Lemma 4.18 and its proof), the diagram

of Fig. 5 holds for the storage type CTR’ (as well as for CTR*).
The infinitary behaviour of deterministic machines was studied in several places.

We mention pushdown automata [23,7], Turing machines [40,8], and Petri nets [S].

Unfortunately, the results that were obtained in these papers concerning the

relative strength of the acceptance types do not follow directly from Theorem 5.5,

because several different choices with respect to determinism and acceptance were

made. We mention some of the differences.

In [7] pushdown automata are required to be total (“have the continuity property”),

in the “global” sense that they should have an infinite run on each possible input

(reading all letters). It is explained in that paper that this influences only the class

d-PDL,,,, n . In fact, with this requirement d-PDL,,,, E and d-PDL,,,,, become “com-

plementary” families (see the discussion preceding Definition 5.7). Thus, with the

exception of the family d-PDL,,,,,, our families (and the relations between them) are

the same as those of Cohen and Gold.

As explained before, the acceptance conditions in [40] do not require a machine to

read all its input. Nevertheless, the relations (but not necessarily the families) obtained

by Wagner and Staiger for deterministic Turing machines are the same as the ones

from Theorem 5.5, except again for the acceptance type (ran, n).

For Petri nets our definition of determinism is not the usual one. In general, the

definition of determinism can be weakened in a natural way. A first alternative is to

require that for no configuration c there are two transitions (q, ai, /?i, qj, qi, wi), i= 1,2,

with a, = az or a, = A, such that, for both i = 1 and i = 2, p(fli)(c) = true and ~(Cpi)(c) is

40 J. Enydfriet, H.J. Hoopboom

dejned. For Petri nets (cf. [S]) this alternative is further weakened by restricting the

requirement to configurations c that can be reached from the initial configuration of

the automaton. Although this notion of determinism is weaker than the one we use, it

is still stronger than a “global” notion of determinism which requires that there is at

most one infinite run on each input.

Rather than confusing the reader with several notions of determinism treated at the

same time, we have chosen to illustrate our techniques using one, classical, definition.

We believe that similar results can be obtained for other, “reasonable”, definitions of

determinism, since the constructions used in the proof of our main characterization

result (i.e., in the proofs of Lemmas 3.1 and 3.2) do not introduce nondeterminism.

For finite-state automata the expressive power of determinism can be read from

Proposition 2.10: deterministic automata are as powerful as nondeterministic auto-

mata for the acceptance types (ran, c), (inf, G), and (inJ =), but they are less powerful

for the remaining three acceptance types. We compare deterministic and nondeter-

ministic automata in the next result.

Equivalence for the acceptance types (ran, G) and (inL G) turns out to be a rare

property of storage types.

Theorem 5.6. (1) d-XL,., ,,,. n c XL,, ,,,, n, d-XL,,,, = c XL,,,, = , and d-XL,,, n c XL,,, n.

(2) If BC < X, then, additionally, d-XL,,,. c c XL,,,. L , and d-XL,,, G c XL,,. c_ .

Proof. (1): Follows quite easily from Theorems 5.5 and 3.5.

(2): The strictness of these inclusions follows from the fact that d-XL,,,, i and

d-XL;,, E do not contain all regular w-languages (Corollary 5.3), whereas XL,,,, s

and XL,,. G do (Theorem 3.12). 0

Note that the case (inA=) is left open. It is known that the inclusion d-

XL,,, = EXL,,, = is proper for pushdown automata and Turing machines [7, 81.

A way to obtain a general result would be to give an w-language not in g(p,,) which

is included in XL,,. = (under some assumption for the storage type X). In [31] the

families of m-languages accepted by Turing machines are investigated in the Bore1

hierarchy as well as in the arithmetical hierarchy for o-languages. It is explained that

the family of w-languages (inf =)-accepted by nondeterministic Turing machines is

not included in any family of the Bore1 hierarchy (cf. the closing remarks of Section 3

in [31]). This indicates that the strictness of the inclusion considered can be proved by

topological means.

For some of the specific storages studied in the literature it was observed that the

families d-XL,, = are closed under complement, and that the families d-XL,, = and

d-XL,,, are “complementary”, i.e., one contains the complements of the w-languages

of the other. This is due to the fact that deterministic automata are often assumed to

be total, i.e., they should have a run on every possible input. Since we do not have this

requirement we cannot directly derive such a result for arbitrary X-automata. Instead,

X-autornatu on to-words 41

we use the following notion which previously has been quite helpful in complementing

the 3finitary languages accepted by deterministic X-automata (cf. [111).

Definition 5.7. Let X = (C, Ci,, P, F, p) be a storage type. X with injinite look-ahead,

denoted by XwLA, is the storage type (C, Gin, P’, F, p’), where P’= Pu {inf(&) Id is an

X-automaton}, with p’(x) ‘p(x) for each XEPU F, ar:d p’ (inf(&))(c) = true if and only

if there exists an infinite run of .d on A starting irj (gin, A, c), where gin is d’s initial

state.

Note that a deterministic X,,, -automaton may use tests inf‘(,d), where .d is

nondeterministic. Similarly, for real-time automata: a real-time XOL,-automaton may

use tests inf(&), where .d has A-transitions.

Lemma 5.8. Let LGZ”. (1) If LEd-XL,, =, then G”-LEd-X,,, L,, =

(2) If LEd-XL,,, h, then Z”-LEd-X,,, Li,.,

(3) IfLEd-XLinf,n, then C”-LEd-X,,, Li,, g.

(4) Analogous results holdfor the correspondingfamilies dr-XL,,, and dr-XaLA L,,,.

Proof. Let &=(Q, C, 6, qin, tin) be a deterministic X-automaton.

(1): The complement with respect to C” of the w-language L,, = (&, 9) is equal to

L,. = (x2, 2Q - 9), provided for each co-word in C” there is a run of &’ on this w-word.

Using infinite look-ahead, .d may be transformed in such a way that it satisfies this

property. We add a special state grail to .d, together with transitions (qfail, a, true,

qfail, A) for UEC, to which we will lead all “unsuccessful” runs.

There are several possibilities for the behaviour of & on a given input u to be

“unsuccessful”.

(a) ,zI blocks due to an undefined instruction. We can avoid that by testing the

instruction as follows. For cp~F*, consider the X-automaton 98(q) consisting of two

states qO and qlOOp (of which go is initial), and having two transitions (go, A, true,

41 OOp, cp) and (qlOOp, A, true, qlOOp, A). The X-automaton 2(cp) has an infinite run on

A starting in (go, A, c) if and only if p(q)(c is defined. Now replace in d each)

transition (q, a, /I’, q’, 9) by the transitions (q, a, PA inf’(g(cp)), q’, cp) and (q, a, p A

1 inf(Wcp)), qfail) A).
(b) .r4 has an infinite run on a finite prefix of u. We replace in .d each transition

(q,a, B, q’, cp) by the transitions (4, a, B A 1 M&(q)), q’, cp) and (4, a, PA @(d(q)),
qfail, A), where .d(q) is the X-automaton that equals &‘, except that its initial state is q.

(c) As a last possibility, ~2 may block because in some instantaneous description

there are no “useful” transitions: the present configuration satisfies none of the tests of

the transitions that start in the present state (with a suitable input). To take care of

this, we construct new transitions leading to qfail whenever such a situation occurs.

For a state q of .d let p,,(q) be the disjunction of all tests in A-transitions starting in

state q; this means that the automaton can make a A-step in some instantaneous

42 J. Engeljriet, H.J. Hoogeboom

description (q, x, c) if and only if p(fi,,(q))(c)= true. Similarly, we define p.(q) for each

letter a in C. We add to JZZ for each state q and each UEC the transition

(49 a~1 B12 (4) A l Pa (4)9 qfail > A).

It is important to note that this construction does not change the (0, p)-accepted

o-language of d with respect to 9, when (a, p) #(ran, n); these acceptance types can

be used to single out those runs which do not enter the state qfail (or, equivalently,

which do not enter qraii from some moment on). This is not true for (ran, n)-

acceptance: a run may first enter some “accepting” state and reach qfail afterwards; this

leads to an accepting run which originally did not exist.

(2) and (3): For (irzf, E) and (inf, n)-acceptance we may assume that we have

a single state set D with respect to which we accept runs (see Lemma 2.7). We have

demonstrated above that we may assume that d has a (unique) run on each o-word

from C”, but then C”- Linf,, (d, {D}) is equal t0 Lfnf.C (cd, {Q-D}).

(4): Note that we have introduced no A-transitions in the above construc-

tion. A-transitions were only used in the look-ahead automaton 99(q), which is

allowed. 0

Note that if XoLA can be simulated by X (and this holds, e.g., for X=FS and

X=PD), then Lemma 5.8 shows that d-XL,, = is closed under complement, and that

d_XLi,, z and d-XL,,, n contain the complements of each others o-languages. In

Section 6 we need this property for a specific storage type.

Remark 5.9. It is perhaps interesting to note that using look-ahead every determinis-

tic automaton d can be transformed into an equivalent deterministic automaton

having finite delay. This is done by adding to each transition starting in a state q, the

test linf(d(q)), where d(q) is the automaton that equals d except that its initial

state is q. Obviously, this implies that d-XL,,, z df-X,,, L,., . Using Corollary 4.8, we

then reobtain O*l.{O, l}“$d-XL,,,, E and (O*l)“$d-XL,,, E.

6. A universal storage type

In this section we study a storage type of “maximal power”, in the sense that it can

be used to simulate any other storage type. We show that most of its families of

accepted o-languages coincide with the families from the Bore1 hierarchy which were

used in Section 5 as topological upper bounds (Lemma 5.2). This illustrates within our

framework the strong connections that hold between acceptance types and topologi-

cal families.

Similar results were obtained by Arnold (in [l]) for the more general framework of

transition systems. (They were reobtained in an elegant way in [30] using the relation

between deterministic and nondeterministic systems.) Considered in [l] are the

acceptance types (run, c), (inJ; E), and (inL n) ~ somewhat reformulated to deal with

a possibly infinite number of states - for various kinds of transition systems. It should

X-automutu on w-words 43

be intuitively clear that deterministic, finitely brunching, and countably branching
transition systems (as defined in [l]) correspond, in our framework, closely to

automata that are deterministic, have finite delay, or are unrestricted, respectively.

Note that the definition of transition system given in [I] does not allow A-transitions,

whereas in our framework the number of transitions applicable to an ID (i.e.,

the “branching” of an automaton) is bounded by a constant (depending on the

automaton).

We give the definition of our maximal storage type U. Intuitively, a U-atomaton

has a storage consisting of a one-way write-only tape. The automaton can test, for any

finitary language, whether or not the finite word on its tape belongs to the language.

Definition 6.1. The universal storage type U equals (f *, {A}, P, F, /AL), where r

is a fixed infinite set of symbols, P= (in K II< cZ*, for a finite Z or},

F= (store(x)jxgT*), and,,for CE~*, p(in K)(c)= true iff ~EK, and p(store(x))(c)=cx.

Lemma 6.2. For every storage type X, X < r U.

Proof. Let X =(C, Gin, P, F, p), let ,ZZ be a deterministic X-transducer with initial

configuration Gin, and let D be a set of states of A’. We will construct a deterministic

U-transducer A’ (with the same state set as .K) such that T, (A[, D) = T* (.,&“, D). The

main idea behind this construction is to use the configurations of U to store the

sequences of instruction symbols that are performed by A’ and to encode, in a suitable

language, those sequences that lead to a configuration in which a given test is satisfied.

Let E’,, be the (finite) subset of F of instruction symbols that are used in A!. With-

out restriction, we may assume that F,, is included in I-, the alphabet of U.

Let, for ~EF*, Def‘(cp)= {$EF T, Ip(Ic/.(P)(Cin) is defined) and, for PEBE(P), let

True(B)=I~EF~~(~=~((IC/)(Ci,) is defined and p(fl)(c)=true). Now A” is obtained by

replacing every transition (4, u, b, q’, cp, \v) of .M by the transition (q, a, in True(b) A
in Def‘(cp), q’, store(q), w).

Clearly, if .tf is real-time, then so is j I”. q

In particular, we have U O,_A d,U and, consequently, dr-UL,,,=dr-U,,,,,L,.,

(Corollary 4.13). This will be useful in the proof of the following result.

Recall that for families ox and 6p of o-languages we use J’” A 2 to denote

{K~LIKE~Y‘, LEY], and A?(Y) to denote the Boolean closure of the family X.

Theorem 6.3. (1) dr-UL,,,,. =d-UL,,,,,~ =F

(2) dr-UL,,,,,.,=d-ULL,,,,,,,=~~A.

(3) dr-UL,,,, = =d-UL,,,, = =s?(Y).
(4) dr-ULi,f, 5 = d-U Linf, s = F~.
(5) dr-ULi,f,,=d-ULin~.n=~~.

(6) dr-ULi,,f, = =d-ULi,. = =A?(~F~).

44 J. Engdfbiet, H.J. Hooyehoom

Proof. The topological upper bounds follow from Lemma 5.2. We prove the inclusion

of the six topological families in the respective families of a-languages accepted by

deterministic real-time U-automata.

(1) and (5): Let KcC* and let ,ti be the U-automaton with transitions

(qi, U, in K, 41, store(u)) and (qi, a,iin K, qo, store(u)) for UEC, i~(0, l}, and with

initial state ql. For this automaton we have Li,f,,(,d, {{ql }})=/im(K). This shows

that ga~dr-ULi,J,, (see Proposition 1.2).

If, additionally, K =pref(K), then L,,,, L (&‘, { {q,}})=udk(K). Since for every

language K, udk(K)=adk(pref(K)), the assumption K =pref(K) is no loss of general-

ity. This shows that 9 cdr-UL,.,,. &.

(2): Let K, LG Z*, and let .%9 be the U-automaton with transitions

(qO, a,1 in L, qo, store(u)), (qO, a, in L, ql, store(u)), and (ql, a, in K, ql, store(u)) for

UE:C, and with initial state q,,. If K=pref(K), then L,,,,,(d, { {ql}})=

L.C”nudk(K). This shows that 9A+?~ddr-UL,,,,,.

(3): In order to show the inclusion g(9) & d-UL,,,. = , we demonstrate that F G dr-

UL,,,, = , and that dr-UL,,,,. = is closed under the operations complement and union.

Since dr-UL = dr-UL,,,% = ran, s - [Theorem 5.5(2)], the inclusion 9 G dr-UL,,,, = fol-

lows from (1). The closure of dr-UL,,,, = =dr-UwLALran, = under complement is a con-

sequence of Lemma 5.8. So, it remains to prove the closure of dr-UL,,,, = under union.

This is done as follows. Given two deterministic real-time U-automata &‘i and dz we

construct a deterministic real-time U x U-automaton ,%’ as the product of di and -c42

in an obvious way. If we assume that both &‘i and ~2~ have a run on each input word,

then we may use Lemma 2.8 to find for each family Oi a family 9: such that

LV~HI. = (c&i, ~i)=Lan. = (d, 9;). According to the proof of Lemma 5.8, it is no restric-

tion to make this assumption. But then L,,,, = (A!~, LPI)uL,,,, = (J&‘~, gz) =

L,.,,*, = (sZ,~‘~ ~9;). Since U x U dr U (Lemma 6.2) this proves the closure of

dr-UL,,,, = under union (Corollary 4.13).

(4): FOCdr-UL;,,f. g follows by complementation from (5) (see Lemma 5.8).

(6): For the inclusion 99(9c)gdr-ULi,, = we use an argument analogous to the

one in (3). 0

Note that these classes are related by the diagram of Fig. 4. Note also that for

automata accepting finitary languages U is of no interest: every finitary language can

be accepted by a deterministic U-automaton.

According to the previous result, in the deterministic case the maximal power of

U can be expressed as a topological family, depending on the acceptance criterion.

Also the deterministic U-transductions are of topological significance (cf. [33]), as

shown in the next result.

Theorem 6.4. (1) dr-U T= d-U T equals the family of continuous functions with domain

in Y6.

(2) dr-UT,,,=d-UT,, equals the jhmily of continuous functions with domain

in 9.

X-automata on w-words 45

Proof. Recall that the functionf: C”+A” is continuous in a word u if for each rnehJ

there exists neN such thatf(tl[n].C”)~f(u)[m].d”‘.

(a) Clearly, every deterministic transducer defines a continuous function: if

(u, V)E T(,&‘) for some deterministic transducer _&‘, and J? outputs the first m symbols

of L) on the first y1 symbols of u, then T(.&‘)(u [n] P) E u [ml. A”, where C and A are the

input alphabet and output alphabet of J?‘.

Regarding the domain of transductions, we observe that it is straightforward

to extend Lemma 2.13 to deterministic transductions. Hence, dom(d-UT)=d-

uLinf, n =9Ja, and dom(d-UT,)=d-UL,,,,. =F--.

(b) We now have to show that every continuous function (with a suitable domain)

can be implemented as a deterministic real-time (o-preserving) U-automaton. We will

do this in an indirect way by using the storage type FUNC(fT K), which allows one to

simulate functions in a simple way, rather than the storage type U. The result then

follows since by Lemmas 6.2 and 4.11, dr-FUNC(JT K)T,gdr-UT,, and dr-

FUNC(f; K)Tcdr-UT.

For a given function f :C”+A” and a language K SC* the storage type

FUNC(f; K) is given by (C* x A*, {(A, A)>, P, F, p), where P contains the predicate

symbols next(b), for every ~EC, nonext, and in K, and F contains the instruction

symbols store1 (a), for every UEZ, and store,(b), for every bid. The meaning of these

symbols is given by

p(next(b))(x,y)=true iff f(x.C”)~y.b.A”,

p(nonext)(x, y)= true iff there is no bEA such thatf(x.C”)Ey.b.A”,

p(in K)(x, y)=true iff XEK,

pWorel(4)(x, ~)=@.a, Y)

and, similarly,

k4store2(b))(x, Y)=(x, Y.W.

Let Jz’ be the deterministic real-time one-state FUNC(fT K)-transducer with the

transitions (4, a,1 in K, q, store1 (a), A), (q, a, in K A next(b), q, store,(u)store,(b), b),

and (q, a, in K A nonext, q, storel(a), A), for aeZ and beA.

(b. 1) Note that J?’ can only output a letter if the prefix of the input which has been

read belongs to K. Hence, the domain of T(J%‘) is included in km(K). On the other

hand, if f is a continuous function with domain km(K), then the continuity will

guarantee that infinitely often for some appropriate bEA the test next(b) is satisfied.

Hence, J?’ then realizes the functionf: T(Jf) = {(u, v) 1 uElim(K), f(u) = II}. This proves

(1) of the theorem.

(b.2) Assume now that fis a continuous function with domain adh(K) in F-, and

assume that the language K is prefix closed. We transform JZ into an w-preserving

46 J. Engrljkirt. H.J. Hooyehoom

transducer by omitting the transitions (q, a,1 in K, q, store1 (a), A), ~EC. Again &’

realizesf: T(,K)= { (,)I u v u~adh(K),f(u)=vj. This proves (2) of the theorem. 0

We now turn to nondeterministic U-automata.

Theorem 6.5. UL,,, equals the,fumily of continuous images of 9Yg-sets.

Proof. Since, according to Theorem 3.11 and Lemma 6.2, all families UL,,, are equal,

it suffices to consider one of them. On the one hand, by Lemma 3.8, ULinf,, = HOM(d-

ULi,.,)~dr-FST(d-ULi,,,,). This implies that each set in ULins,, is the continuous

image of the intersection of two 9a-sets: the domain of the transducer [see Theorem

6.4(l)] and the d-ULi,f,, set (Theorem 6.3) which again is a Yd-set.

On the other hand, again by Theorem 6.4(l), the continuous images of gd-sets are

exactly the ranges of deterministic real-time U-transductions. We have the inclusions

ran(dr-UT)crun(UT)= ULi,~,, [cf. Lemma 2.13(l)]. 0

Continuous functions on o-languages were studied in [33], where they were called

sequential mappings. The continuous images of Ya-sets are known under the name

analytic sets (or Souslin sets, sets of first projective class) in the literature. They are

equal to the continuous images (or projections) of the Bore1 sets.

Since Q x U 6, U, the relations between the families r-UL,,, and f-UL,,, are

already given in Theorem 4.17. Now we are able to give the exact topological

characterizations of these families (cf. Lemma 4.7).

Theorem 6.6. (1) r-UL,,,, E = f- U L,,,, L = 9.

(2) r-ULi,f.G =f-ULi,f,. =YO.

(3) r-ULi,~,,=f-ULi,s,,=ULi,f,,.

Proof. The topological upper bounds f-UL,,,, c c.9 and EUL,,, c ~9~ follow from

Lemma 4.7. The converse inclusions 9 G r-UL,,,. E and F,, C_ r- ULi,, c are shown in

Theorem 6.3.

The equalities in (3) follow from Theorem 4.17 (and Lemma 6.2). 0

The relations between acceptance types and topological families were considered in

this paper at a rather elementary level, as a simple technical tool to provide us with

examples to prove the strictness of some inclusions. A deeper study of the w-languages

accepted by Turing machines, and their relation to the arithmetical hierarchy from

recursion theory and the topological Bore1 hierarchy is presented in [31]. In [37]

a common framework underlying these two hierarchies is presented, with some

explicit comments on the technical differences between the classical definitions and

their adaptation to language theory (where finite alphabets and o-words take the

place of natural numbers and number-theoretic functions). It also contains variants of

these hierarchies based on regular w-languages.

47

7. Logical acceptance criteria

In this paper we have studied, within a common framework, the acceptance of

w-languages for several types of automata. We have illustrated our methods by

investigating both unrestricted automata, as well as some restrictions like real time

and determinism. We did not succeed in deriving all related results from the literature

using our general approach, but some interesting phenomena (such as the strictness of

the inclusion diagrams for real-time and deterministic automata) could be generalized

to X-automata.

The acceptance types (0, p) we have used are the six conditions one usually finds in

the literature. The reader may wonder whether this choice is not too restrictive:

certainly, there should be other, natural, acceptance conditions that cannot be

expressed as some property of the range or the infinity set of the state sequence of

a run. If this were true, then a broad framework for studying the acceptance of

w-languages should not only allow arbitrary storage types but also a general notion

of acceptance.

If we restrict the acceptance criterion to be a property of the state sequence of a

run (including the contents of the storage will change the theory radically), it is

natural to require that this property can be expressed in some well-defined formal

language.

A well-known language for specifying properties of infinite sequences (i.e., w-words

over some alphabet) is Biichi’s sequential calculus, a monadic second-order logic [3].

This logic is powerful enough to express each of the (0, p)-acceptance types (even as

first-order formulas). We will show in this section the converse of this fact: for

X-automata all acceptance criteria definable in the sequential calculus will give

o-languages inside XLi”~, = , i.e., (i$ =)-acceptance is as powerful as monadic second-

order acceptance. This generalizes one of the results from [19], stating that first-

order acceptance is as powerful as (ir$ =)-acceptance for finite-state automata, in two

respects: we consider second-order formulas for X-automata rather than just first-

order formulas for finite-state automata.

For a fixed alphabet A, we will denote Biichi’s sequential calculus here by MSOA; its

formulas will be referred to as A-formulas.

MSOA contains variables i, j, k,. . (ranging over N) and set-variables U, V, . .

(ranging over 2“‘), used to indicate positions, and sets of positions, respectively, in an

w-word. The terms of MSOA are constructed from the constant 0 and the variables

i, j, . . . by applying the successor-function + 1.

The atomic,formulas of MSO,., are of one of the forms tI < t2, t, EU, or Pa(tl), where

tI and f2 are terms, U is a set variable, and UEA. Here < and E have their usual

meaning; P,(m) means that the rnth letter of the o-word equals a. From these atomic

formulas we construct the A-formulas in the usual way using the connectives 1, V,
A, +, and the quantifiers 3 and V (for both types of variables).

First of all (as in the work of Biichi [3], see also the exposition in [36]) such

a formula can be used directly to specify a property of w-words and, consequently, to

48 J. Engelfriet, H.J. Hoogeboom

define the w-language consisting of the w-words that satisfy the formula. On the other

hand (as is done in [19]), the formula may also be used in an indirect fashion to define

m-languages by specifying an acceptance condition for an automaton, i.e., by specify-

ing accepting state sequences of runs.

We will give the corresponding formal definitions.

Let C be an alphabet. For a closed C-formula CP of MSOz, the o-language defined by
cp equals L(q) = (uEC” 1 u satisfies cp}. We use MSOL to denote the family of these

mso-definable w-languages.

Given an X-automaton JZZ with state set Q and input alphabet C, and a closed

Q-formula cp, the o-language cp-accepted by &‘, denoted by L(&, cp), is {uEZ” 1 there is

a run of d on u of which the state sequence satisfies cp}. For any collection @ of

monadic second-order formulas, XL@ is the corresponding family of w-languages that

can be accepted by X-automata using monadic second-order formulas from @; in

particular, XL,,, and XLf, are the families where all mso formulas are allowed,

respectively, where only first-order formulas are allowed (i.e., the ones not involving

set variables).

As an example, the w-language (O*l)w is defined by the (0, 1}-formula

V’i3j (j> i A PI (j)). All the (a, p)-acceptance types are mso-expressible; e.g., if d is an

X-automaton with state set Q, and 9 is a family of state sets for d, then

Li,, = (&‘, 9) = L(.d, cp), where cp is the formula

V ~((46~tfVi3j(j>iAP,(j))).
Dtfl qtQ

From the results of Biichi and McNaughton [3, 251 we know that the family of

mso-definable o-languages coincides with the family of regular o-languages. On the

other hand, when considering logical formulas to specify acceptance conditions, one

of the results obtained in [19] shows that also the w-languages accepted by determin-

istic finite-state automata using a first-order definable acceptance condition are

exactly the regular w-languages.

Proposition 7.1. (1) d-FSL,,, = =FSL,,, = = MSOL.
(2) d_FSLi,, = =d-FSLP,.

As already stated in the introduction above we will extend the result of [19] to

monadic second-order acceptance for arbitrary storage types. For the storage type FS
the equality FSL,,, = = FSL,,, can be shown directly with a simple variation of the

ideas used by Biichi and in [19]. We will prove the result for arbitrary storage types by

applying Biichi’s characterization and the decomposition technique we have used

before.

Theorem 7.2. (1) XL,,, = =XL,,,.
(2) d_XLi,, = =d-XL,,,.

Proof. (1): The equality is shown using a series of inclusions.

(i) XL,,, = E XL,,, As we have seen, the property “for one of the sets DEB each

state occurs infinitely often if and only if it belongs to D” is monadic second-order

(and even first-order) expressible.

(ii) XL mso c XT; ’ (MSOL). As in the proof of Lemma 3.1, an X-automaton

.d (with state set Q) can be transformed into an X-transducer ./f with the same

behaviour as JZZ except that it outputs its state in each transition. Any Q-formula

acting as acceptance condition for .d can now be tested on the output of .M:

L(af, cp)= {uEZ” 1 there is a run of .d on u of which the state sequence

satisfies cp}

={uEZ”‘I there is a run of .N on u with output satisfying cp}

= Tm’(.hf)(L(fp)).

(iii) X Tc; ’ (MSOL) s X Tc; ’ (FSL,,, =). This is due to Biichi’s characterization

[Proposition 7.1 (l)].

(iv) X TJ 1 (FSL,,~, =) s X Li,. = , by Theorem 3.3.

(2): The proof of the deterministic case is analogous. 0

Corollary 7.3. FSL,,, = MSOL.

Proof. Take X = FS in Theorem 7.2 and combine with Proposition 7.1(l). 0

Also some of the other characterizations given in [19] can be extended to X-

automata. Let I72 be the subset of closed first-order formulas of the form

V’ii...Vi,3jl...3j,~(i r, . . . im,jl, . ..j.), where rl/(...) is a formula without quantifiers, and

let d-XL,,Z and lIf2L be the corresponding subfamilies of d-XL,,,, and MSOL,
respectively. Then it is shown in [19] that d-FSLi,f,,=d-FSL,,2.

Using this equality, the corresponding equality d-XLinr,, =d-XL,,> for X-automata

can be obtained using a series of inclusions like those given in the proof of Theorem

7.2. One has d-XL c,l/,n G~-XL,,~ ~d-XT,r(l& L)~d-xTi’ (d-FSLi,,-,,)~d-XLi,s,,)
where the inclusions are shown as before, except that we need a new argument for the

inclusion 112 L G d-FSL,,. n which replaces Biichi’s characterization in this proof. By

the result of [19] it suffices to prove the inclusion l7, Lsd-FSLo2.
Let cp be a C-formula in n2 for some alphabet Z. We will construct a FS-

automaton with a n,-acceptance condition accepting L(q). Similar to the proof of

Lemma 3.1, consider the deterministic finite-state automaton &? = (Zu (q”), C, c?~, q”,
CO) with q”$.Z and 6,= {(g’, cr, true, o, A) 1 a’~Cu jq” >, OEZ). One easily sees that for

UEC”, the state sequence of the corresponding run r of Z$ on u equals q”u (i.e., it equals

tl except for the initial q’). Let cp’ be the formula that one obtains from cp by changing

each predicate P,(t) into P,(t + 1). Then u satisfies cp if and only if q”u satisfies cp’. This

implies that L(q)= L(92, cp’).

50 J. Enge@?et, H.J. Hoogehoom

Similarly, for the subclass II, of closed first-order formulas of the form

Vi1 . Vi, $(iI , . . . , i,), the characterization d-FSL,,,, E = d-FSL,,, from [19] leads to

the same result for X-automata.

It would be interesting to develop a theory of X-automata with a general

notion of acceptance. As suggested above one could define the notion of acceptance

criterion to be a set @ of MS0 formulas, satisfying certain natural conditions. These

conditions should be taken in such a way that one could prove, e.g., the analogue of

Theorem 3.3.

Acknowledgment

We thank Dr. Ludwig Staiger and the referee for many useful suggestions, and

Prof. Wolfgang Thomas for several motivating discussions.

References

Cl1

c21
131

M

c51

161

c71

PI
c91

IlO1

1111
1121

1131

1141

I151

A. Arnold, Topological characterizations of infinite behaviours of transition systems, in: J. Diaz, ed.,

Proc. ICALP IY83, Lecture Notes in Computer Science, Vol. 154 (Springer, Berlin, 1983) 28-38.
L. Boasson and M. Nivat, Adherences of languages, J. Comput. System Sci. 20 (1980) 285-309.

J.R. Biichi. On a decision method in restricted second order arithmetic, in: Proc. Internat. Congr. on

Logic, Methodology and Philosophy $Science 1960 (Stanford University Press, Stanford, CA, 1962)
l-1 1.

H. Carstensen, Fairness in deadlockfree Petri nets with the finite delay property, in: Proc. 5th

European Workshop on Applications and Theory of Petri Nets, Aarhus (1984) 234-253.

H. Carstensen, Infinite behaviour of deterministic Petri nets, in: M.P. Chytil, L. Janiga and

V. Koubek, eds., Proc. MFCS 1988, Lecture Notes in Computer Science, Vol. 324 (Springer, Berlin,

1988) 210-219.

R.S. Cohen and A.Y. Gold, Theory of tu-languages. I: characterizations of to-context-free languages,

II: a study of various models of to-type generation and recognition, J. Comput. System Sci. I5 (1977)

169-208.

R.S. Cohen and A.Y. Gold, to-Computations on deterministic pushdown machines, J. Comput. System

Sci. 16 (1978) 2755300.

R.S. Cohen and A.Y. Gold, (u-Computations on Turing machines, Theoret. Comput. Sci. 6 (1978) l-23.

S. Eilenberg, Automata, Lunguqes and Machines (Academic Press, New York and London, 1974)

Chapter XIV.

J. Engelfriet and H.J. Hoogeboom, Automata with storage on infinite words, in: G. Ausiello,

M. Dezani-Ciancaglini and S. Ronchi Della Rocca, eds., Proc. SCALP 1989, Lecture Notes in

Computer Science, Vol. 372 (Springer, Berlin, 1989) 3899303.

J. Engelfriet and H. Vogler, Look-ahead on pushdowns, Ir$orm. and Comput. 73 (1987) 245-279.

S. Ginsburg, Algebraic und Automata-Theoretic Properties of Formal Languages (North-

Holland/American Elsevier, Amsterdam/New York, 1975).
S. Ginsburg and S.A. Greibach, Abstract families of languages, in: Studies in Abstract families of

Languages, Mem. Amer. Math. Sot. 87 (1969) ll32.
S.A. Greibach, Remarks on blind and partially blind one-way multicounter machines, Them-et.

Comput. Sci. 7 (1978) 3 I l-324.
H.J. Hoogeboom and G. Rozenberg, Infinitary languages -basic theory and applications to concur-
rent systems, in: J.W. de Bakker, W.P. de Roever and G. Rozenberg, eds., Current trends in

Concurrency, Lecture Notes in Computer Science, Vol. 224 (Springer, Berlin, 1986) 2666342.

X-automata on co-words 51

[16] J.E. Hopcroft and J.D. Ullman, An approach to a unified theory of automata, The Bell System

Technica/ Journal XLVI (1967) 1793- 1829.

1171 R. Hossley, Finite tree automata and w-automata, MAC Tech. Report 102 MIT, 1972.

[18] M. Jantzen, On the hierarchy of Petri net languages, RAIRO Irzform. Thtor. Appl. 13 (1979) 19-30.

[19] K. Kobayashi, M. Takahashi and H. Yamasaki, Characterization of w-regular languages by first

order formulas, Theorrt. Comput. Sci. 28 (1984) 3 15-327.

[20] L.H. Landweber, Decision problems for o-automata, Math. Systems Theory 3 (1969) 376-384.

[Zl] M. Latteux and E. Timmerman, Two characterizations of rational adherences, Theoret. Comput. Sci.

46 (1986) 101&106.

[22] R. Lindner and L. Staiger, AIgebraische Codierungstheorir ~ Theorie der sequentiellen Codierungen

(Akademie. Berlin, 1977).
1231 M. Linna, On w-sets associated with context-free languages, Inform. and Control 31 (1976) 272-293.

[24] M. Linna, A decidability result for deterministic m-context-free languages, Theoret. Comput. Sci.

4 (1977) 83-98.

1251 R. McNaughton, Testing and generating infinite sequences by a finite automaton, Inform. and Control

9 (1966) 521-530.

[26] D.E. Muller, Infinite sequences and finite machines, in: AIEE Proc. 4/h Ann. Symp. Switch. Circuit

Theory and Logical Design (1963) 3- 16.

[27] D. Scott, Some definitional suggestions for automata theory, J. Comput. System Sci. l(l967) 187-212.

[28] L. Staiger, Empty-storage-acceptance of to-languages, in: M. Karpiliski, ed., Proc. FCT 77, Lecture

Notes in Computer Science, Vol. 56 (Springer, Berlin, 1977) 516-521.

[29] L. Staiger, Finite-state (u-languages, J. Compuf. System Sci. 27 (1983) 434-448.

[30] L. Staiger, Projection lemmas for cl]-languages, Theo&. Comput. Sci. 32 (1984) 331-337.

1311 L. Staiger, Hierarchies of recursive (u-languages, Ekktron. Inform. uerarb. Kybern. EIK 22 (1986)

219-241.

[32] L. Staiger, Research in the theory of w-languages, J. Inform. Process. Cybern. EIK 23 (1987) 415-439.

[33] L. Staiger, Sequential mappings of c+languages, RAIRU Injiorm. T&r. Appl. 21 (1987) 147-173.

1341 L. Staiger and K. Wagner. Automatentheoretische und automatenfreie Characterisierungen topologis-

cher Klassen regulaerer Folgenmengen, Elektron. Inform. rerarb. Kybern. EIK 10 (1974) 379-392.

1351 L. Staiger and K. Wagner. Rekursive Folgenmengen I, Z. Math. Logik Grundlag. Math. 24 (1978)

523-538.

1361 W. Thomas, Automata on infinite objects, in: J. van Leeuwen, ed., Handbook of‘Theoretical Compurer

Science, Vol. B (Elsevier, Amsterdam, 1990) 133-191.

[37] W. Thomas, Automata and quantifier hierarchies, Aachener Informatik-Berichte 88-23, RWTH
Aachen, FRG, 1988.

1381 R. Valk, Infinite behaviour of Petri nets, Theoret. Comput. Sci. 25 (1983) 311-341.

[39] K. Wagner, On (u-regular sets, Ir@m. and Control 43 (1979) 123-177.

1401 K. Wagner and L. Staiger, Recursive m-languages, in: M. Karpitiski, ed., Proc. FCT 77, Lecture Notes
in Computer Science, Vol. 56 (Springer, Berlin, 1977) 532-537; see the full paper 1351.

