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ABSTRACT ARTICLE HISTORY

Big Earth Data—big data associated with Earth sciences—can potentially Received 29 April 2020

revolutionize research on climate change, sustainable development, and Accepted 9 July 2020

other issues of global concern. For example, analyzing massive amounts

of satellite imagery of polar environments, which are sensitive to the Bi . .
. . R . . ig Earth Data; data analysis;

effgcts of climate change, provides |ns.|ghts into global climate trends. Antarctic ice sheet; Zernike

This study proposes a method to use Big Earth Data to explore changes moments; Mann-Kendall test

in snowmelt over the Antarctic ice sheet from 1979 to 2016. The

method uses Zernike moments to observe melt area in Antarctica and

uses the Mann-Kendall test to detect temporal changes and abnormal

information about the continent’s melt area. The melting trend in the

time-series data matched the changes in temperature and seasonal

transitions. The results do not demonstrate significant change in the

area of surface melt; however, abrupt changes in melt conditions linked

to temperature changes over the Antarctic ice sheet were observed

within the time series. The experiment results demonstrate that the

proposed method is robust, adaptive, and capable of extracting the core

features of melting snow.

KEYWORDS

1. Introduction

In the past two decades, the capability to observe Earth and monitor its processes has been enhanced
in terms of data quantity, quality, processing capability, and increasing accessibility to data and pro-
cessing resources. This has given researchers insight into Earth like never before (Guo 2017a, 2017b).
Remote, macro-level observations from satellite platforms over the past several decades have resulted
in a vast repository of image data that is growing with evolving capabilities to generate petabytes of
data within decreasing time frames. Effectively storing and efficiently retrieving data from increas-
ingly structured databases enables analysis of this data in bulk, providing an opportunity to quan-
titatively map processes over longer time scales. The discipline of Earth science is quickly
adapting to these developments and pooling multidisciplinary concepts and resources to evolve
methods and platforms capable of maximizing the benefits of this growing technological potential.
However, Earth observation data from both terrestrial and extra-terrestrial platforms require prac-
tices that are extremely multidisciplinary and innovative. This includes non-conventional uses of
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digital data on human activity resulting from increasing interactions with technology. These prac-
tices can be collectively termed ‘Big Earth Data’ analysis (Guo et al. 2014; Guo, Wang, and Liang
2016). Simply put, Big Earth Data refers to big data associated with Earth sciences.

Similar to big data, Big Earth Data also derives methods and knowledge from traditional fields
such as mathematics, statistics, computer science, remote sensing, geographic information systems
(GIS), and the emerging fields of machine learning, data mining and artificial intelligence. These
can be combined with domain-specific knowledge from Earth science; however, unlike traditional
big data, Big Earth Data also has to deal with scale variances and the complexities of spatiotemporal
data (Guo et al. 2020b). This is because Big Earth Data is characterized by multiple spatial and tem-
poral scales as a consequence of multi-grade subsystems each with unique spatiotemporal character-
istics, giving the acquired Earth observation data different rules and attributes at different scales (Guo
et al. 2017).

Increasing global concern about climate change presents one of the most complicated challenges
to the global community, and in particular for the Earth science community as they must not only
understand the underlying global-scale processes but also support policy development towards miti-
gation. Within this context, polar regions showing evident and quantifiable effects from climate
change over the years are of particular interest, as polar ice sheets are sensitive indicators of climate
change. The changes within these polar environments are concerning as the melting of ice sheets in
these regions will result in rising sea levels, creating problems for coastal settlements throughout the
world (Lenaerts et al. 2019). Collectively, the Antarctic and Greenland ice sheets contain more than
two thirds of the planet’s freshwater (IPCC 2014a). Complete disintegration of only the Antarctic ice
sheet would raise the level of the oceans by more than 58 m, inundating many of the world’s major
human settlements (Fretwell et al. 2013; Shepherd et al. 2018). The Intergovernmental Panel on Cli-
mate Change (IPCC) Fifth Assessment Report (IPCC 2014b) and the IPCC special report on the
impacts of global warming of 1.5°C cite several studies that suggest nearly complete melting of
polar ice sheets will occur at thresholds as low as 1°C and as high as 4°C of warming (IPCC
2018). The future of these ice sheets is therefore a challenging and complicated environmental policy
issue for the coming years. This issue has also become relevant to efforts towards sustainability
within the context of the United Nations’ Sustainable Development Goals (SDGs) (United Nations
2015) and beyond. Understanding the mechanisms of these changes and identifying anthropogenic
impacts will help to define success in achieving true sustainability (Guo 2019a, 2019b, 2020). Big
Earth Data analysis and innovative uses of data and technology have the potential to provide
novel solutions to understand climate change and facilitate mitigation processes (Guo, Goodchild,
and Annoni 2020a; Guo, Fu, and Liu 2019).

Estimating ice sheet mass balance is a critical step in providing the necessary evidence of ongoing
changes and understanding likely future scenarios. The surface mass balance, one of the two com-
ponents of the ice sheet mass balance, is defined by the difference in influx of mass, e.g. precipitation,
and outflux (runoff, evaporation or sublimation, snow erosion, etc.). Runoff has an important com-
ponent, snowmelt, occurring when temperatures rise above the melting point (0°C) for surface snow
(Lenaerts et al. 2019). In Antarctica, the average melt duration in a year is about one month and the
duration for 80% of the melt area is less than 10 days. Moreover, the melt area is limited to 10% of the
total Antarctic ice sheet area (Liang, Li, and Zheng 2019). Therefore, its direct impact on the ice sheet
mass balance is negligible; however, snowmelt over the surface can significantly affect the albedo
characteristics of the surface ice, as wet snow absorbs more radiation compared to dry snow and
can result in significant indirect effects on the ice sheet mass balance (Zheng et al. 2018). Snowmelt
can also have several other indirect implications, such as formation of supraglacial lakes on the sur-
face (Stokes et al. 2019), or it may percolate into the ice, leading to changes in ice sheet movement
velocity or the ice shelf’s rate of deterioration. It might also become a vapor source (Abdalati and
Steffen 1997) for cloud formations, which has been found to enhance meltwater runoff on the Green-
land ice sheet (Van Tricht et al. 2016). Therefore, snowmelt is an important component to be quan-
tified when evaluating ice sheet mass balance.
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Earth observing satellites provide an ideal vantage point for collecting macro-level observations
to monitor and assess snowmelt dynamics in vast areas such as the Antarctic ice sheet. Within
the electromagnetic spectrum, the microwave spectrum is sensitive to large changes in the dielec-
tric constant resulting from the melting of the ice sheet, providing advantages in applications of
microwave remote sensing to monitor snowmelt phenomena over large areas (Hanna et al. 2013).
Passive microwave brightness temperature is known to be sensitive to changes in snowfall, snow
age, snowmelt, snow density and densification (Zwally and Gloersen 1977; Ulaby, Moore, and
Fung 1986), and unlike the visible and infrared spectrum, microwave wavelengths allow monitor-
ing even in cloudy conditions (Haggerty and Curry 2001; Lee and Sohn 2015; Skofronick-Jackson,
Gasiewski, and Wang 2002). Currently, the acquisition of melt-area information on the surface of
the ice sheet mainly depends on data from microwave radiometers and scatterometers (Liang, Li,
and Zheng 2019). Understandably, various methods for detecting ice sheet melt have been devel-
oped and implemented utilizing passive microwave datasets. Snowmelt information on the Ant-
arctic ice sheet has been recorded in various datasets, such as annual melt onset, end dates, and
duration on the Antarctic Peninsula (Bevan et al. 2018); snowmelt observations using microwave
remote sensing (Picard and Fily 2006); and snowmelt data for the whole of Antarctica (Liang, Li,
and Zheng 2019). About 40 years of snowmelt information for the Antarctic ice sheet has been
obtained.

In recent years, a popular topic in Antarctic ice sheet research has been the use of rich, large-scale,
long-term snowmelt information to better discover and understand spatiotemporal phenomena and
their relationship to environmental changes. Several advanced methods have been utilized to analyze
the change in Antarctic ice sheet snowmelt over time-series data, such as wavelet transforms and
neural networks (Liu, Wang, and Jezek 2005; Tedesco et al. 2004; Wang et al. 2018). These methods
consider the changes in melt areas and changes in time but ignore the relationship between them.
Zernike moments have been widely used to detect the change in pixel distribution on an amount
of images (Wang and Healey 1998) and the Mann-Kendall test has been utilized to find abrupt
changes in time-series data (Chen et al. 2016). These two techniques can be combined to analyze
the spatial changes in melt area and temporal changes in melting phenomena (Fan and Tjahjadi
2017; Saadi et al. 2019).

This paper focuses on this issue in two ways. (1) Develop an efficient Big Earth Data analysis
method based on Zernike moments and Mann-Kendall test techniques to detect changes in fixed
areas over a time series and identify abrupt changes in large data volumes focusing on surface
melt over the Antarctic ice sheet. Then, (2) investigate and analyze the trends and changes in snow-
melt over the Antarctic ice sheet. The paper is outlined as follows. Datasets are listed in Section 2, the
data analysis methodology is provided in Section 3, Section 4 presents the results, a discussion is
given in Section 5, and Section 6 presents the conclusions.

2. Antarctic ice sheet and data
2.1. Study area

Antarctica is located at Earth’s southernmost point and consists of ice shelves and islands in
addition to the continent itself. The total area is 14.051 million km? which accounts for 9.4%
of Earth’s land area, while 98% of the Antarctic continent is covered by snow and ice throughout
the year, with an average thickness of 2000-2500 m and a maximum thickness of 4200 m. The
Antarctic ice sheet is generally divided into three parts, the East Antarctic and West Antarctic
ice sheets and parts of the Antarctic Peninsula ice sheet (Golledge et al. 2019). The West Ant-
arctic ice sheet is a fold belt composed of mountains, plateaus, and basins. The area of the
East Antarctic ice sheet is twice the area of the West Antarctic ice sheet. Antarctica has a
cold, dry, mostly continental climate, though the Antarctic Peninsula has a relatively mild
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climate. Interannually cyclic freezing and thawing of the Antarctic ice sheet occurs mainly in
areas near the coastal zone and on ice shelves.

2.2. Data

The dataset used in this study was developed using the brightness temperature data from passive
microwave sensors including the Scanning Multichannel Microwave Radiometer (SMMR), the
Special Sensor Microwave/Imager (SSM/I), and the Special Sensor Microwave Imager Sounder
(SSMIS) from the Nimbus 7, DMSP (F8, F11, F13) and DMSP-F17 satellites, respectively. The
remote sensing inversion method used for microwave radiometers is an improved wavelet trans-
form-based algorithm for detecting ice sheet melt. It uses a sophisticated sampling scheme and a gen-
eralized Gaussian adaptive optimal threshold algorithm to obtain a more accurate classification
threshold for dry and wet snow over the Antarctic ice sheet (Liu, Wang, and Jezek 2005; Liang,
Li, and Zheng 2019).

The dataset consists of snowmelt information, such as annual melt onset, end dates, and duration
at a spatial resolution of 25 km from 1979 to 2016. The blue area in Figure 1 shows the areas that
experienced snow melt from 1979 to 2016, excluding 1987. Figure 2 is a compilation of annual snow-
melt durations for each year in the study period. The detection accuracy of the dataset is reported to
be higher than 70% when validated using Antarctica’s automated weather station data. This dataset
marks the starting point of the year as July Ist and the end of the year as June 30 of the following
year. Therefore, the label ‘1979” for the first image in Figure 2 refers to the snowmelt information
between 1 July 1979 to 30 June 1980, and the same nomenclature has been followed for the rest
of the images. The Antarctic snowmelt data was downloaded from an online data sharing platform,
the Chinese Academy of Sciences Strategic Priority Research Program of the Big Earth Data Science
Engineering Program (CASEarth) (http://data.casearth.cn/sdo/detail/5c19a5690600cf2a3c557b90).
The land mask of Antarctica was acquired from the National Snow and Ice Data Center (https://
nsidc.org/data/polar-stereo/tools_mask.html).

N\ — Coast Line &, v ,,/ & /
3 Grounding Line _:" el a0 //
[ Melt Area v
Rogy g /
~ Ca =

Figure 1. Accumulated extent of melt area from 1979 to 2016 (excluding 1987) in Antarctica obtained from the daily melting
dataset.
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Figure 2. Images of snowmelt durations from 1979 to 2016 (excluding 1987).

3. Methods
3.1. Overall workflow of ice sheet snowmelt change analysis

Figure 3(a) and (b) show the flowchart and pseudocode for the overall workflow of the ice sheet
snowmelt change analysis in this paper. The Zernike moment chooses the variables to express the
scale and orientation invariant characteristics that were utilized to analyze the general change in
melt area and obtain the special transformation features for each year. In Figure 2, the distribution
of melt area consists of a series of discrete points approximated to circle characteristics with small
intervals, which is suitable for the application of the Zernike moment technique. Then the changes
were compared with those in the subsequent year by the feature value on different scales. A small
value means the melt area did not obviously change over time.
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Figure 2 Continued

Afterwards, the Mann-Kendall test was used to detect changes and abnormalities in the monthly
time series for December, January, February, and March, which constitute the summer season for the
Antarctic ice sheet. For the Mann-Kendall test, the points of intersection between the UB and UF
statistical curves indicate the year of abrupt change in melting when plotted with years on the hori-
zontal axis (Figure 6). The main process of the proposed spatiotemporal snowmelt analysis method
over the Antarctic is demonstrated as follows.

3.2. Zernike moments

Zernike moments were introduced by Teague to overcome the shortcomings of information redun-
dancy present in geometric moments. Zernike moments represent the properties of an image with no
redundancy or overlap of information between the moments (Khare, Srivastava, and Khare 2017).
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Figure 3. The flowchart (a) and pseudocode (b) for the overall workflow of the ice sheet snowmelt change analysis.

Due to these characteristics, Zernike moments can be utilized as feature sets to find the change in

fixed areas over a time series.

Zernike moments have the following properties (Kaur, Pannu, and Malhi 2019; Kamal and

Pachauri 2018):

(1)
()
3)
(4)

Zernike moments are rotation, translation, and scale invariant.

Zernike moments are robust to noise and minor variations in shape.

Since the basis of Zernike moments is orthogonal, they have minimal information redundancy.
Zernike moments can characterize the global shape of a pattern. Lower-order moments rep-

resent the global shape pattern and higher-order moments represent the detail.

(5)

An image can be better described by a small set of
moment.

its Zernike moments than any other type of

Zernike moments are a set of complex polynomials that form a complete orthogonal set over the
interior of the unit circle of x* + y* < 1. These polynomials are of the form:

an(x’ )/) = an(i’, 0) =

where m is a positive integer and # is an integer subject

Ryn(r)e

(1)

to constraints m — |n| and |n| < m; ris the

length of the vector from the origin to pixel (x, y); 6 is the angle between vector r and the x-axis in a
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Algorithm: Spatiotemporal change detection of melt area based on the Zernike
moments and Mann-Kendall test
Input: The original melt-area imagery dataset (1979 to 2016), and the number of
images n=0.
Output: The proportion of melt area, feature values of Zernike moments on three
scales, and UB and UF statistics of the Mann-Kendall test

1: Read the melt-area images using ENVI software, and transform them into a
readable format;

2: While the images over the time series are not input completely

Do

3:n=n+l

4: Implement Zernike moments with three different scales for the melt-area images
of each year using Eq. (4);

5: Output the values of the transformation features of each image;

6: If the difference is within a slight range

7: The melt area has not obviously changed in different years;

8: Else

9: The melt area of the current year is unreasonable or uncorrelated;

10: End if

11: Compute the proportion of the melt area according to Fig. 2, and map the data

to each month;

12: Calculate the statistical variables of the Mann-Kendall test using Egs. (8)-(9);

13: End while

14: Return the spatiotemporal change in ice sheet features over the time series.

(b)

Figure 3 Continued

counterclockwise direction; and Ry,,(r) are the Zernike radial polynomials in (r, 6) polar coordi-
nates defined as:

(m—|n|)/2 1) _ m—2s
R, (r) = Z (=1)’(m — s)!r

2)
=0 5!(M_S>!<L|”|_s>;
2 2

The above-mentioned polynomial in Equation (2) is an orthogonal and satisfies the orthogonality
principle. In addition, Zernike moments are the projection of image function I(x, y) onto these
orthogonal basis functions. The orthogonality condition simplifies the representation of the original
image because generated moments are independent.

The Zernike moment of order m with repetition # for a continuous image function I(x, y) that
vanishes outside the unit circle is defined as:

Zmn = mTH “ I(X, )’)[an(7‘> 0)]dxdy (3)

x+yr<1
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In the case of digital images, the integral is replaced by summation, given as:

T = ’”“ZZI(x,y)[vmm o, 24y <1 @)

3.3. Mann-Kendall test

The Mann-Kendall test is based on the correlation between the ranks of a time series and their time
order, which can be utilized to search for abnormal information in the time series. For a time-series
X = {x1, x2, ..., x,}, the test statistic is given as:

s=Ya ©

i<j
where
1 Xi < .x]
aj = sign(xj — x;) = sign(Rj — Rj) = § 0x;i = x; ©
—1 Xi > xj

R; and R; are the ranks of observations x; and x; of the time series, respectively. As can be seen from
Equation (6), the test statistic depends only on the ranks of the observations, rather than their actual
values, resulting in a distribution-free test statistic. This is true because if data were to be transformed
to any distribution, the ranks of the observations would remain the same. Distribution-free tests have
the advantage that their power and significance are not affected by the actual distribution of the data,
unlike the regression coefficient test and other parametric trend tests, which assume normal distri-
bution of data and are strongly affected by skewness in data.

Under the assumption that the data are independent and identically distributed, the mean and
variance of the statistic in Equation (5) above are given as:

ES) =0 (7)

Vo(S) = n(n — 1)(2n + 5)/18 (8)

where 7 is the number of observations. The existence of tied ranks (equal observations) in the data
results in a reduction of the variance of S to become:

m

VE(S) = n(n — 1)2n +5)/18 — Z t(t; — 1)(2t; + 5)/18 9)

=

where m is the number of groups of tied ranks, each with ¢; tied observations.

Kendall also shows that the distribution of S tends toward normality as the number of obser-
vations becomes large. The significance of trends can be tested by comparing the standardized vari-
able u with the standard normal variate at the desired significance level, where the subtraction or
addition of unity in Equation (10) is a continuity correction (Hamed 2008).

(S— 1)/«/VO(S S>0
u= S=0 (10)

S+ 1)/«/V0(S $<0
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4. Results
4.1. Qualitative analysis of the melt area distribution

The annual surface melt images from 1979 to 2016 (Figure 2) were used to validate the relationship
for each independent year using the positions of discrete points. Figure 4 gives the results of the Zer-
nike moments at three scales, respectively definedasm =1, n=1,m=2,n=0,andm =2, n =2
for the melt area from 1979 to 2016.

In Figure 4, the images from 1979 to 2016 demonstrate the melt area characteristics of Antarctica,
and values of the Zernike moments reflect the dynamic changes in shape of the melt area. The annual
variance between the values of the Zernike moments is small for the three scales considered, which
suggest that the melt areas were generally similar during each year of the study. Moreover, these
results also suggest that pixel values in different input images have similar distribution without
any obvious changes. For the small scale, set as m = 1, n = 1 in Equation (4), the values fluctuate
between the range of 5 to 8, while the fluctuations are negligible for the higher scale, set as
m = 2, n = 2 in Equation (4), varying between 0 and 1.2. This reveals that the distribution of dis-
crete points is largely similar for the whole time series. These results strongly suggest that the
melt area has not significantly changed between 1979 and 2016 in Antarctica.

4.2. Quantitative analyses of the melt area

To estimate the seasonal changes in snowmelt areas, the proportion of monthly surface melt was cal-
culated from the CASEarth snowmelt data product. The pixels in the original snowmelt dataset range
between 1 and 365, indicating the day of the melt. Using this information, the melting event was
assigned the relevant month. After this the duration of melt was estimated for each pixel for each
of the months. Figure 2 highlights the annually accumulated surface melt durations, with darker
tones indicating fewer days detected to be in a melting state at the pixel’s location. The monthly pro-
portion of melting in the study area is shown in Figure 5, computed as:

P(i) = num(i)/(hsw) (11)

where num(i) is the number of pixels for the i-th month on the image, and h and w are respectively
the height and width of the original images.

The Antarctic ice sheet surface is stable from June to November with the proportion of melting
close to 0 (Figure 5). Significant melting is evident mainly from December to March, falling during
the Antarctic summer, which usually begins in November and ends in March of the following year.
Especially for December to March, the situation gradually begins in January, reaches the peak in Feb-
ruary, and tends to thaw with the increase in temperature.

8 7 2
7.5 6.5
1.5
7 6
= —55 I
= S
LISS g & 1
- 5
6
4.5 05
5.5
4
5 0
1980 1985 1990 1995 2000 2005 2010 2015  >joz0 1085 1990 1995 2000 2005 2070 2015 1980 1985 1990 1995 2000 2005 2010 2015
Year Year Year

(a) b) (©)

Figure 4. Results of the Zernike moments for spatial analysis of melt area in Antarctica at different scales: (@) m=1,n=1; (b)m=2,
n=0;(c)m=2,n=2.
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Figure 5. Proportion of melt area: (a) 1979-1984 (b) 1985-1991 (excluding 1987) (c) 1992-1997 (d) 1998-2003 (e) 2004-2009 (f)
2010-2016 (g) 1979-2016 (excluding 1987).

4.3. Quantitative analysis for abnormal melt detection

Since melting was mainly observed during December to March, data from these months was selected
for quantitative analysis of abnormal melt detection. The melt area statistics from the same months
were used with the Mann-Kendall test to calculate the UB and UF statistics for each year. The change
curves of UB and UF statistics in selected months (December-March) are shown in Figure 6.

5. Discussion

This study attempted to understand the characteristics of surface snowmelt over the Antarctic by
observing surface melt area and duration using Zernike moments and the Mann-Kendall test. In
order to better understand the melting phenomenon, the mean of the annual average temperatures
of several Antarctic stations (Amundsen Scott, Arturo Prat, Belgrano II, Bellingshausen, Casey,
Dumont Durville, Faraday/Vernadsky, Gough, Great Wall, Halley, Macquarie, Marambio, Marion,
Marsh, Mawson, McMurdo, Mirny, Neumayer, Novolazarevskaya, Orcadas, O’'Higgins, Rothera, San
Martin, Scott Base, Vostok, and Zhongshan) were calculated as shown in Figure 7. This information
was obtained from the monthly station temperature data available on the British Antarctic Survey
website (https://legacy.bas.ac.uk/met/READER/surface/stationpt.html). These stations had the mini-
mum number of missing values.
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Figure 5 Continued

5.1. Spatiotemporal change analysis for snowmelt over the Antarctic

Itis evident from the results that the melt area over Antarctica has not significantly changed in the past 40
years, which corresponds with observations suggesting insignificant changes in melt volume over the
Antarctic (Kuipers Munneke et al. 2012). While it has been reported that there is a decreasing trend
in the average annual melt area from 2002 to 2011 (Zheng et al. 2018), this might be due to the study
consulting a relatively small time period. Looking at the spatial distribution of the melt activity in Figure
2, it can be concluded that consistent surface melt activity was concentrated along the coast of the Ant-
arcticice sheet and in particular over the Antarctic Peninsula. This has been reported to be increasing and
has also been related to the Southern Hemisphere Annular Mode, linking melting over the peninsula to
global atmospheric drivers (Barrand et al. 2013). Similarly, the snow melt durations in Figure 2 agree with
the number of melt days in previous studies over the Antarctic ice sheet (Kuipers Munneke et al. 2012).

The results in Figure 5(f) had comparatively high surface melt area during January 2016, unlike in
other years observed in this study. A strong melting event during the same time has been reported
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Figure 6. Change curves of UB and UF statistics: (a) December (b) January (c) February (d) March.

over the Ross Sea sector of the West Antarctic ice sheet (Nicolas et al. 2017), which also highlights a
strong connection with the prevalent El Nifio during the time period. Interestingly, a similar pattern
can be observed for January in Figure 5(d) and (e) for the years 2003 and 2010, both of which had
large melt areas, comparable to 2016, and moderate and strong El Nifio conditions during those time
periods, respectively. However, this relationship is not simple and the scale of melting and intensity
of El Nifio may not be directly related (Nicolas et al. 2017). Furthermore, this pattern is only obser-
vable for moderate or higher intensity El Nifio events after 2000.

It has been established that surface melting on the Antarctic ice shelf is exponentially related to
the near-surface summer air temperature (Trusel et al. 2015), which is also evident in this study as
most of the melting is observed during the summer season. This observation is further strengthened
when annual temperature extremes are considered, as they generally decrease from coastal areas
towards central regions of Antarctica (Wei, Yan, and Ding 2019). The same surface melt pattern
can be observed in these results.

5.2. Analysis of abnormal melt activity over the Antarctic

Figure 6 gives the UF and UB statistics for the summer months of December, January, February, and
March, months with prominent surface melt activity. The UB and UF statistics exceeded the 0.05



14 (&) D.LIANGETAL.

. Temperature ‘
IS o =3 o

>

979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
9
999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009

s
S

Temperatyre

-10.5

-11.0

115

-12.0

2001
2002
2003
2004
2005
2006
2007
2008
2009
1
1
1
1
1
1
1

Figure 7. Temperature time series from 1979 to 2016. (a) Annual temperature variance for all selected weather stations in Ant-
arctica with median values (red dashed lines) and mean values (black solid lines). (b) Annual temperature of Antarctica based
on weather station records. (c) Temperature of Antarctica for selected months of December, January, February, and March.

confidence level in December, which suggests an extended melt duration. However, there were no
obvious changes during January, February, and March. In addition, the intersection of the two
lines signifies a sudden change in melt activity, and some of these changes can be related to temp-
erature. From Figure 6, the months of February (c) and December (a) each had only one intersection
in 1994 and 2015, respectively. Observing Figure 7(b), the annual temperature trend exhibited a
steady gradual rise until 1994, after which the inter-annual temperature changes can be observed
to be unstable, with increasing temperature differences between each year. Also, the year 1994 stands
out in Figure 5(c) because large-scale melting was observed at both the beginning of the melting sea-
son in December and during the month of February. Before 1994, the melt area in December was
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very small, but since 1994, melting has occurred repeatedly in December. In February, the range of
melting after the 1994 season has increased significantly. The intersection in February can be related
to a sudden drop in temperature (Figure 7(c)) after a net increase in temperature in the previous six
years since 1988. For January, intersections can be observed in 1996, 2003, and 2008, the first two of
which can be explained by a sharp increase in temperature in January of both 1996 and 2003. The
intersection in March (Figure 6(d)) in 2000 and 2011 also indicates instability in the melting state of
Antarctica, which has been observed to be intensifying in recent years. However, not all changes
could be linked to temperature changes. Even though temperature has a strong influence on surface
melt activity, there are other factors that have been observed to be linked to surface melting such as
the SAM index (Barrand et al. 2013), foehn winds (van den Broeke 2005; Datta et al. 2019; Zou et al.
2019), and atmospheric rivers (Wille et al. 2019). Therefore, a more comprehensive cause and effect
analysis is required for surface melting over the Antarctic ice sheet.

Within its scope, this study has demonstrated the usefulness of Zernike moments to analyze a
large volume of data and the Mann-Kendall test to detect abrupt changes in melt area. The method
performed well to detect changes in the melting state over Antarctica.

6. Conclusions

One of the important and challenging aspects of Big Earth Data analysis is to extract valuable infor-
mation from a large volume of multi-source data. Computational resources, especially online cloud-
based analysis platforms, provide feasible computation times. However, bandwidth limitations and
limited connectivity in developing countries create challenging conditions to take advantage of Big
Earth Data resources. This study demonstrates the usefulness of Zernike moments to analyze a large
volume of data and the Mann-Kendall test to detect abrupt changes and provide a computationally
inexpensive method to analyze Big Earth Data. This study used these techniques to observe the
changes in melt area over the Antarctic ice sheet both in time and space between 1979 and 2016.
Experiment results show that there was no obvious change in melt area at the three scales considered
in the Zernike moment statistics between 1979 and 2016. The UB and UF statistics were observed to
be on the boundary of the 0.05 level of significance from December to March each year, which proves
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that the points of intersection between the UB and UF statistics indicate the years when there was an
abrupt change in the melting state. Especially important, the study found that the year 1994 is the
point in time when a different pattern emerged. The trends and sudden changes in the melting
state obtained from analysis of different periods can be broadly explained when compared with
temperature data from different stations in Antarctica.

In all, the proposed method performed well to analyze the change in melt area in Antarctica,
which makes it more appropriate for practical applications. In the future, it will be interesting to col-
lect more remote sensing data and conduct field surveys to analyze the cause of snowmelt in Ant-
arctica. Understanding the mechanisms of change in the sensitive Antarctic environment can
potentially provide insights about broader climate trends.
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