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ABSTRACT
Through evolutionary computation, affective models may emerge
autonomously in unanticipated ways. We explored whether core
affectwouldbe leveraged through communicationwith conspecifics
(e.g. signalling danger or foragingopportunities). Genetic algorithms
served to evolve recurrent neural networks controlling virtual agents
in an environment with fitness-increasing food and fitness-reducing
predators. Previously, neural oscillations emerged serendipitously,
with higher frequencies for positive than negative stimuli, which
we replicated here in the fittest agent. The setup was extended so
that oscillations could be exapted for the communication between
two agents. An adaptive communicative function evolved, as shown
by fitness benefits relative to (1) a non-communicative reference
simulation and (2) lesioning of the connections used for communi-
cation. An exaptation of neural oscillations for communication was
not observed but a simpler type of communication developed than
was initially expected. The agents approached each other in a peri-
odic fashion and slightly modified these movements to approach
food or avoid predators. The coupled agents, though controlled by
separate networks, appeared to self-assemble into a single vibrat-
ing organism. The simulations (a) strengthen an account of core
affect as an oscillatory modulation of neural-network competition,
and (b) encourage further work on the exaptation of core affect for
communicative purposes.
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Evolution behaves like a tinkerer who, during eons upon eons, would slowly modify his work
( . . . )

Jacob (1977, p. 1164)

The multi-faceted nature of emotions is illustrated by the very large number of different
emotion theories (at least 150; Strongman, 1996), of which a synthesis does not seem to be
forthcoming. Similar to most computational models, these theories mainly have been con-
structed from a top-down engineering stance. Biological emotions, however, have devel-
oped throughbottom-upevolutionary tinkering (cf, Jacob, 1977). Evolutiondoes not follow
a pre-conceived plan but tends to select for whatever solutions happen to meet current
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environmental demands best within the population at hand. It does not produce novel-
ties from scratch but builds on previous phenotypes. Serendipitously, these can afford new
functions through repurposing (i.e. exaptation; Gould, 1991), either gradually or through
sudden leaps of reorganisation (e.g. Minelli et al., 2009). Few studies have engaged in evo-
lutionary modelling of emotions, and these certainly have not been able yet to reach the
level of full emotions.

This computational study first addresses the fundaments of any bottom-up approach to
emotions, the development of core affect. Furthermore, to venture into the social aspects
of emotions, we explored how affect can be employed adaptively in communication. Most
models and theories consider affective quality, or positive and negative valence, the core
of human emotions, but only very few present an explanation in terms of processes and
mechanisms. Similar to the concept of time in physics, affect is predominantly thought
of as an intuitively obvious concept that resists further analysis. In reinforcement learn-
ing models of emotions for instance, gains and losses (i.e. utility) are accepted as given
basic elements (see Broekens et al., 2015). We believe that a deeper evolutionary analy-
sis allows for a much broader construction of theories on emotional processes, extending
beyond the behaviourist domain. Phaf and Rotteveel (2012) in their affective monitoring
framework, broke down affect in terms of basic neural-network processes that can also
be found in non-human animals, due to their shared evolutionary origins. In the current
paper, affect is used to denote a fundamental neural process rather than to describe some
form of human mental experience. Affective monitoring was based on the evolutionary
understanding of positive and negative affect as coding respectively fitness-enhancing
and fitness-reducing conditions (see Jacob, 1977; Johnston, 2003). Evolutionary reasoning
also gave rise to the notion that the most important motivational tendencies are approach
and avoidance, which roughly, but not always, correspond to positive and negative affect,
respectively (cf, Phaf et al., 2014).

To investigate whether this type of evolutionary reasoning really sticks, an early study
employed a Genetic Algorithm (Goldberg, 1989; Magnani & Bertolotti, 2017) to simulate
the evolutionary development of artificial neural networks controlling virtual agents in a
simple environment (den Dulk et al., 2003). This work was inspired by the well-known dual-
route model for fear processing of LeDoux (1996), which assumes a “quick and dirty” direct
route and a slower but more elaborate indirect route to the amygdala (for a critical eval-
uation of dual-route computational models, see Lowe et al., 2009). Interestingly, LeDoux
motivated this model with the evolutionary reasoning that the fitness costs of false alarms
to potential threats are smaller than of misses. Under these evolutionary pressures, in the
simulations of den Dulk and collaborators organised approach and avoidance actions and
a dual-route architecture emerged autonomously from initially disordered behaviour and
zero connection weights. A short and crude path yielded fast and generalised avoidance
responses whereas a slower pathway, which ran via an extra layer of hidden neurons, made
a finer distinction. The longer pathway enabled either switching to an approach response
(i.e. in the presence of food stimuli), or strengthening the fast avoidance response (i.e. if a
predator was detected).

Newer work from our group, in which the longer network path was extendedwith a sec-
ond hidden layer recurrently connected to the other hidden layer, led to the serendipitous
discovery that neural oscillations markedly improved the agents’ ability to avoid preda-
tors and collect food (Heerebout & Phaf, 2010a, 2010b). The networks manifested higher
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frequency oscillations in the presence of fitness-increasing stimuli (i.e. food sources) than
with fitness-reducing stimuli (i.e. predators). From a theoretical analysis, rather than from
an evolutionary emergence, Burattini and Rossi (2010) inferred a somewhat similar role of
oscillations in the emotional modulation of action tendencies. Interestingly, these authors
also tested their ideas in a predator/prey environment where agents (i.e. robots) had to
select from conflicting actions when facing the two types of stimuli.

The surprising findingof affective frequency codingeven receivedempirical support, not
only showing that high-frequency neural oscillations (i.e. in the Gamma band) accompany
positive affect (Kounios & Beeman, 2009; Marco-Pallarés et al., 2015) but also that these
oscillations can induce positive affect (inmice: Tsai et al., 2009; in humans: Heerebout et al.,
2013). Further analyses revealed that oscillationsmodulated neural competition, which has
been invoked as the central mechanism in attention (Cerf et al., 2010; Duncan, 1996). High
frequencies facilitated switching between competition winners, whereas low frequencies
led to more rigidity. When being hunted, it is beneficial for survival not to be distracted
by food (i.e. “it is better to miss dinner than to be dinner”). Conversely, while foraging it is
beneficial to be able to respond quickly to an approaching predator. Oscillation frequency,
thus, emerged in these simulations as a neural code for positive and negative affect (Jacob,
1977; Johnston, 2003; cf, Phaf & Rotteveel, 2012).

We conjecture here that basic communicative behaviours employ (i.e. exapt; Gould,
1991) these frequency codes for positive and negative affect. The frequencies of ultra-sonic
vocalisations (USVs) produced by rats, for instance, show a remarkable correspondence,
with USVs of 50 kHz during appetitive situations and of 22 kHz during aversive situations
(Wöhr et al., 2015). These emotional expressions are more pronounced when an “audi-
ence”of conspecifics is present (as inhumans, Fridlund, 1994). Thevocalisationspersist after
lesioning the cortex and hippocampus, suggesting that they rely largely on evolutionarily
older subcortical regions, suggesting that they are based on an inherited predisposition.
The prevalence of affective signalling inmany species indicates that this ability contributes
to survival under large environmental variations. Speculatively, the frequency-dependent
characteristics of USVs could have originated from a pre-existing distinction in underlying
neural mechanisms. As was already argued by Darwin (1872) in his principle of associ-
ated serviceable habits, these expressions could have developed from a simpler function
through a process of ritualisation and exaptation to a social function (Gould, 1991; Shariff
& Tracy, 2011).

This computational study aims to explore the evolutionary tinkering of communication
starting from an evolutionary generation of core affect. Previous evolutionary simulation
studies into communication either did not share this starting point (e.g. de Greeff & Nolfi,
2010; Di Paolo, 2000), or investigated affective signalling with pre-programmed commu-
nicative functions that could not develop autonomously (e.g. Reggia et al., 2001). We
adapted the setup of Heerebout and Phaf (2010a, 2010b) to study the potential emergence
of affective signalling when two agents navigate the environment simultaneously and are
equipped with new actuators and receptors to potentially sense and signal each other. To
meet the increased demands for computational resources by this extension, the simula-
tions were performed on a computer with 8-core CPUs. This parallelisation also entailed
some modifications to the genetic algorithm and the software, which called for a replica-
tion of previous simulation work to ensure that the same frequency coding of affect would
emerge. In Simulation 1, we attempted to replicate the single-agent findings of Heerebout
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and Phaf (2010a, 2010b) in a slightly modified setup and when using different hardware
and software. In Simulation 2, we studied whether the extension of the setup of Simulation
1 with a second agent would enable the generation of a form of affective signalling involv-
ing oscillations. Replicating the generation of neural oscillations in the first part would thus
allow us to study their exaptation for affective signalling in the second part.

Materials andmethods

Simulation 1. Neural oscillations

The setup of the evolutionary simulations of Heerebout and Phaf (2010ab) was imple-
mented in a computer with 8-core CPUs with a few changes to the genetic algorithm and
rewritten in the flexible programming language Python (van Rossum & Drake, 2001).

Agent body and neural architecture
Figure 1a shows the agent’s circular body and neural architecture. Both sides have nostrils
registering scent intensity and a motor actuator. The network has four input nodes (two
scent types per nostril) and two output nodes driving the motor actuators. Input and out-
put layers are connected directly, and indirectly through a hidden layer of four nodes. The
hidden layer has bidirectional (i.e. feed-forward and feed-back) connections with a four-
node context layer. The agent’s “DNA” determines the connection weights, which would
not change during its lifetime. Furthermore, to halve the search space, the networks are
bilaterally symmetric. As a result, a stimulus to the left produces an identical, but mirrored,
response as a stimulus on the right. Agents initially have five energy units and could gain
more by eating plants. Time and movement, however, cost energy. An agent would die
whenever it ran out of energy or collided with a predator.

Environment setup
The two-dimensional environment (see Figure 1b) formed a square containing at random
initial locations ten plants, and six predators with the same size and round shape as the
agents. Plants spread two scents (scentsAandB; seeAppendixA) inproportion1:2,whereas
the predators did so with proportion 2:1. The overlapping scent patterns ensured that dis-
tinguishing between plants and predators was a non-trivial task. The agents emitted a third
scent (scent C) that could only be sensed by the predators, which were programmed to
chase the agents through a fixed network architecture. The neural network controlling
the predators only had an input and an output layer with pre-set connection weights (see
Appendix E), such that they chased agents (scent C) and avoided each other (scent D). The
predators did not experience any delay in the transmission of activations to the output
layer, so that their processing speed was higher than of the agents.

Genetic algorithm
The first generation consisted of 18 agents with all connection weights (the DNA) set to
zero. Early in the evolutionary simulations, the agents, therefore, showed random, disor-
ganised behaviour. In every generation, each agent was tested twelve times. The fitness
was calculated by multiplying the energy at death by the survival time (averaged over
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a)

b)

Figure 1. a) the agent’s body and neural architecture. The nostrils are located on the top as the input
nodes for scents A (red, emittedmostly by predators) and B (green, emittedmostly by plants). Themotor
actuators are output nodes located on the left and right sides. b) an example environment with one
agent (blue), six predators (red) and ten plants (green).
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twelve tests). Two parents were then selected to generate new agents several times until
the population size had tripled.

The first selected parent was the fittest agent of a random one-third subset of the
population (i.e. tournament selection). The second parent was chosen with a probability
proportional to its fitness and inversely proportional to its difference from the first (i.e.
Euclidic distance between the agents’ weights). The main contributor to the DNA was ran-
domly chosen from these two parents. The probability for crossover to occur was 0.5, in
which case the least-contributing parent would determine only two (randomly chosen)
connection coefficients. All weights were subjected to random mutations of average size
0.1 (see Appendix B, for the precise function), keeping the absolute value of the connection
weights below 10.

About two-thirds of each triple-sized population (containing parents and offspring) was
discarded as a function of fitness relative to the population fitness range and population
size (see Appendix C), allowing the population size to change along with population fit-
ness variations. At this point, the next triple-sized generation would be produced (10,000
generations were deemed sufficient by Heerebout & Phaf, 2010b). Simple parallelisation in
the 8-core CPU sped up the code sixfold but required equal numbers of agents for all the
sub-groups running in parallel. We adopted the Champion method by filling up remain-
ing slots with copies of the fittest agent across all previous generations (i.e. the current
champion).

Analysis of the final population
The agents from the final population were placed in a test environment with a single plant
or predator that was placed directly in front of the agents (and slightly to the left, to pre-
vent fully symmetric input). The activations of the individual nodes were then recorded
over time (i.e. in terms of number of time steps) together with the agent’s distance to the
stimulus.

Simulation 2. Inter-agent signalling

The method of Simulation 2 was largely similar to Simulation 1, so in the following, we will
only describe and motivate the differences.

Dual agent body and neural architecture
Oscillating neural networks were taken as the starting point of this simulation by setting
the weight configurations of the initial population equal to the highest fitness agent that
evolved in Simulation 1. To limit the search space moreover, the two agents were genet-
ically identical in all generations. This simulation investigated the potential interaction of
agent pairs within the environment. We aimed for the simplest form of communication
possible by introducing a single new scent type E, which the agents could emit and sense.
To strengthen the potential utility of communication, we extended the spatial range of the
communication scent (see Appendix D) beyond the ranges of food and predator scents (cf,
Reggia et al., 2001), so that communication could serve as a warning signal before a stim-
ulus is detected. Agents were equipped with an output node serving as emitter and two
additional input nodes (one for each nostril) sensing the intensity and direction of scent E.
The new input nodes connected directly to the output nodes of themotor actuators and to
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the hidden layer. The new, scent-emitting, output node received input only from the hid-
den layer (see Figure 2a). The new parts of the networks were initialised with connection
weights set to zero.

Environment setup
To increase the need for communication, the environment was enlarged by 50%and con-
tained fewer stimuli than in Simulation 1. To enable sharing spatial information, the envi-
ronment was no longer homogeneous but structured into different zones (see Figure 2b).
The foraging zone, containing four plants, was in the bottom left with a width and height
of 20 times the agent’s radius. The four predators were confined to a square area on the
top right of 40 times the radius. The remaining two strips contained no food or predator
stimulus but could be roamed by the agents.

Genetic algorithm
Simulation 1 indicated that the mutation size might have been too large for this weight
configuration to remain stable. The average mutation size was consequently reduced by a
factor 10. The need for cooperation between agents was enhanced by making the survival
of each agent contingent on the survival of the other. Whenever one of them starved to
death orwas eaten by a predator, bothwould be removed from the environment. However,
the agents had separate energybudgets andneeded togather food individually. The fitness
value of each pair was obtained by multiplying energy at death of both agents with their
lifetime, averaged over twelve tests.

Analysis of the final population
The first step in the analysis was to compare the fitness development across generations of
populations with and without communicative abilities. The communicative network parts
were also lesioned and the fitness distributions were compared before and after lesion. For
pairs that revealed an adaptive communicative function, we analysed how they achieved
higher fitness. A logical starting point was simply to visualise the behaviour of the agents
within the simulations, alongwith their network activations, and look for patterns ofmutual
coordination.

Next, we set up a reduced environment as in the analysis of Simulation 1. To reveal
whether any form of communication had emerged, an agent (labelled agent Y) of each pair
was placed in a testing environment with either food or a predator (both stationary), in the
presence or absence of a stationary conspecific (labelled agent X). The stimuli were initially
placed close to X but on the border of the perceptual range of Y. Because the communica-
tion scent had a much larger range, this setup allowed any signals from X to be processed
by Y before the weak input from the stimulus would reach it. Two different initial locations
of either stimulus were chosen, either on the direct path from X to Y or perpendicular to
that path (see bottom row of Figure 7).

Finally, internal network dynamics were studied by pruning (i.e. setting weights below
a certain threshold to zero) and analysing the processing in the remaining network. This
could reveal the presence of node competition (cf, Heerebout & Phaf, 2010a). Competition
between nodes is usually indicated by lateral inhibitory connections, such that the nodes
can suppress one another, and the most strongly activated node wins. The present neural
networks do not possess horizontal connections however, but the same competitive result
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a)

b)

Figure 2. Theagents’ bodyandneural architecture (a), andanexample initial environment (b) in Simula-
tion 2. The scent-input nodes (nostrils) are located on the left and right front side (communication scent
E in blue), the diamond-shaped scent-output node on the top. The environment contains two agents
(blue), four plants (green), and four predators (red). The agents, but not the predators, could travel freely
across all areas.
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Figure 3. The population fitness (in units of energy x lifetime) in Simulation 1 as a function of gen-
eration (over 10,371 generations). The curve was smoothened using a window of 50 generations
(resulting in the blue line). The smoothened maximum (green) and minimum (red) fitnesses are also
depicted.

can be achieved indirectly through recurrent connections from the context layer. A hidden-
layer node, for instance, could activate through an excitatory connection a context-layer
node that inhibits one of the other hidden-layer nodes, this suppressing the activation of
this node.

Results

Simulation 1. Neural oscillations

Simulation 1 replicated the findings ofHeerebout andPhaf (2010b), onlywith respect to the
fittest agent. After 10,371 generations, the population consisted of 22 agents, with an aver-
age fitness of 1,649 (energy x lifetime). As Figure 3 shows, the fitness reached a maximum
early (at around300generations) and fluctuated for the remainder of the simulation. Heere-
bout and Phaf (2010a) reported a sudden jump in fitness, but also sometimes observed a
more gradual emergence of oscillations. Forty-one per cent of the final population showed
neural oscillations in response to the stimulus, and 27% only when moving away from the
stimulus. Only the fittest agent (fitness 1,915) showed higher frequencies for positive (i.e.
food) than negative (i.e. predator) stimuli (ratio 2:1). The high fitness indicates that this con-
figurationwithdistinctivehighand low-frequencyoscillations is particularly adaptiveunder
these environmental selection pressures.

Oscillation frequencies with plants and predators
Food or predator stimuli were placed at a fixed location slightly to the left of the fittest
agent. The node-activation patterns of the moving agent are shown in Figure 4. In the
first few time steps, the agent always started to move forward, which resulted in an ini-
tial distance reduction to the stimulus. Subsequently, approach or avoidance behaviours
are performed to the food and predator stimuli, respectively. At about time step 14 the
plant is eaten (left column, Figure 4). The agent of course, never collides with the predator
and moves away from it. In response to the plant, the agent immediately showed high-
frequency oscillations in its hidden and context layers. The differential oscillating spikes
of the left and right output nodes to the motor actuators drive the agent to approach the
plant. At time step14 the agent eats theplant and continues tomove forwarddue to the left
and right oscillation peaks having equal amplitude. Oscillations in response to the predator
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Figure 4. Recordings of node activations and agent-stimulus distance as a function of time (num-
ber of time steps on the horizontal axis) from the fittest agent due to a plant stimulus (left column)
and a predator stimulus (right column). The top row shows the input activations for the left nos-
tril (scent A in blue, scent B in green) and the right nostril (scent A in red, scent B in cyan). The
second row shows the output activations for the left and right actuator (red and green) and the
third and fourth rows show oscillating activations nodes in the hidden and context layer. The bot-
tom row shows the distance between stimulus and agent. The black horizontal lines indicate where
agent and stimulus touch (at distance 20) and where the maximum range of the scent is reached (at
distance 100).

started later, with half the frequency. Here the amplitude difference between left and right
peaks prompts avoidance.

In conclusion to Simulation 1, our findings demonstrated that it is possible to replicate
the findings of Heerebout and Phaf (2010a, 2010b) in a different programming language
and with changes to the genetic algorithm. This also strengthens the mechanical analysis
of core affect in terms of oscillations and competitive neural processing (Phaf & Rotteveel,
2012; see also General Discussion). In the final population, neural oscillations were present
abundantly. Supporting previous findings, the agent that was by far the fittest indeed
exhibited higher frequencies with positive than with negative stimuli. This phenotype was
observed only once in the final population. Most likely, the neural mechanism that pro-
duced differential frequencies might have been too vulnerable to mutations here. This
point finds additional support in the extensive fluctuations of the population fitness across
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Table 1. Group-averagedfitness values F and timepercentages spent
by the final population in the zones for food (Tfood), predators (Tpred),
andno stimulus (Tnone). The same is shown for subgroups of oscillatory
(A) andnon-oscillatory pairs (B). The latter subgroup is subdivided into
pairs with fitness values below (i.) and above (ii.) the populationmean
(Fpop = 3,525).

Agent group N F (Ef x Ttot) Tfood (%) Tpred (%) Tnone (%)

Entire population 36 3,525 26.7 7.1 66.2
A. Oscillatory 17 2,169 19.1 8.3 74.6
B. Non-oscillatory 19 4,740 33.5 6.1 58.7
i. F < Fpop 15 2,714 31.2 6.3 60.4
ii. F > Fpop 4 12,335 42.0 5.5 52.5

generations (see Figure 3). However, this can also partly be explained by (random) environ-
mental variation, which was due to the agents and stimuli being located randomly across
generations.

Because differential frequencies only emerged in a single agent, the chances that they
couldbeexapted reliably intoa communicative functionwouldbe rather slimwhen starting
from scratch as in Simulation 1. In nature, genetic stability can be enhanced bymechanisms
that limit theproliferationof spontaneousmutations (cf, Drake et al., 1998). If a specific gene
is beneficial but very vulnerable to mutations, the advantage can be maintained through
newmutations that reduce the overall mutation rate. Similarly, the mutation size could be
coded into the agents’ genes here, so that evolutionary selection can act on the mutation
size. This would markedly increase the search space of the genetic algorithm however and
would gobeyond the scope of the current study. Therefore, to limit the search space in Sim-
ulation 2, we startedwith themost successful genetic configuration in the initial agents (i.e.
the highest fitness agent from Simulation 1), while reducing the average overall mutation
size.

Simulation 2. Inter-agent signalling

Comparison with control and lesion simulations
After 9,313 generations, the population consisted of 36 agent pairs, with an average fitness
value of 3,525 (E1 x E2 x Tlife), as compared to 2,344 for the reference simulation with non-
communicativedual agents. The average fitnesses divergedwithin the first 500generations
(see Figure 5). Subsequently, the communicative pairs fluctuated around a value of 3,300,
whereas the reference pairs remained relatively stable at about the 2400 level.

The fitness increase of the communicative agent population was due to specific pairs
(see Figure 6 and Table 1) reaching much higher fitness values than the rest (i.e. up to 10
times higher). To establish whether the difference was caused by the communicative abil-
ities, we lesioned the connections (i.e. set to zero) necessary for communication in each
pair (for the fitness values before and after lesion, see Figure 6). The lesion only affected the
fittest individuals, and the average fitness after lesion (2,300) was comparable to that of the
non-communicative reference simulation (2,344).

Table 1 summarises the final population in terms of fitness values and total time per-
centages spent in the food, predator, and stimulus-free zones. It came out that oscillatory
activity did not confer any fitness benefit in the simulation. The non-oscillatory pairs clearly
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Figure 5. The average population fitness in Simulation 2 as a function of generation, for communica-
tive (blue) and non-communicative agents (green). The curve was smoothened using non-parametric
smoothing (cf, Cleveland, 1979).

reached higher fitness levels than the oscillatory agents. Instead, the high-fitness group
appeared to spend much more time in the food zone and less time in the predator zone
than the other groups.

Behaviour of the fittest pair
Within the full simulation, we observed general approach behaviour of the fittest agents.
In the absence of any stimulus, these pairs moved periodically almost along a straight line.
The agents approached each other, passed through each other (they could not collide),
and quickly turned around to repeat these actions. In the presence of stimuli, the agents
also joined, but they moved in a circular pattern with stimulus-specific deviations, which
resulted in a net movement of the couple towards food sources and away from preda-
tors. It seemed almost as if the agents were vibrating along a virtual leash (see Figure 7),
a connection that became looser in the presence of other stimuli. These flexible move-
ment patterns functioned both to avoid rapidly approaching stimuli (i.e. predators) and
to approach stationary stimuli (i.e. plants). Their joint spiralling movement served to cir-
cumvent approaching predators because the latter could not home in on a single agent.
Conversely, the successful pairs managed to jointly spiral towards a stationary food source.
The mutual coordination between agents, thus, depended on stimulus valence. According
to Michael (2011), this kind of affect detection is one of the coordinating factors in shared
emotion and joint action.
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Figure 6. The fitness values per agent of the final population in Simulation 2 before (grey) and after
(orange) lesioning the communicative connections.

Dual-agent behaviour in reduced environments
The mechanisms underlying the large benefit of communication were also analysed. We
studied the behaviour of the fittest agents within three reduced environments (with food,
predator, or no stimulus) in the presence or absence of a conspecific (see Figure 8).
Agents exhibited (1) a general approach tendency towards conspecifics and (2) generalised
avoidance of other stimuli, (3) often resonated with each other, producing intense, high-
frequencyoscillations, and (4) no straightforwarddifferences in inter-agent communication
appear to arise from stimuli with positive or negative valence. When approaching, agents
would pass each other and then turned around to repeat this. This periodic behaviour could
confuse predators and may explain part of the fitness advantage due to the communica-
tion ability. The tendency to avoid all stimuli meant that they would often end up starving
to death (i.e. in the stimulus-free zone). To maintain fitness levels, it would suffice for the
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Figure 7. Three panels illustrating the periodic behaviours emerging in the pairs from Simulation 2. Left
panel: Circular movement. Most agents (here blue and cyan, arrows indicating movement direction) cir-
cled each other (solid lines showing futuremovement, dashed lines showing pastmovement), persisting
in such periodic movement until starvation. The circular movement helped to avoid predators as the
agents formed an ever-moving target. Middle panel: In the presence of a food source, agents would
tend to spiral towards the stimulus. Right panel: In the presence of a predator, pairs would spiral away
from the stimulus.

agents to settle in predator-free zones and to move as little as possible in order not to
waste energy. This also enhances the fitness-raising effect of approachingone’s conspecific,
because it would make the pair join in predator-free zones.

Inspecting the high-fitness agents in Figure 8, there are no apparent response differ-
ences between food and predator stimuli in the agent not being able to smell the stimulus
directly, when either a food source or a predator is presented to the other agent (compare
the second and sixth columns). This pair, therefore, does not appear to be able to differen-
tially communicate stimulus valence over a longer distance. Stimulus presence or absence
of a stimulus, regardless of valence (compare the fourth columnwith the second and sixth)
is signalled to the conspecific, however. This virtual experiment thus reveals some kind of
arousal communication (i.e. the presence of a relevant stimulus, irrespective of valence),
but not affective communication.

Surprisingly, we did observe different responses of the pair as a whole (i.e. joint action;
see Michael, 2011) to stimuli of different valence. Specifically, as can be seen in Table 1, the
four highest-fitness agents spentmore time in the food area and less time in the other areas
than their lower-fitness peers, indicating a joint preference for food stimuli. The activations
across all network layers across the two agents moreover, were synchronised throughout
the simulations (but not completely identical). Affect contagion (cf, Michael, 2011) thus also
seemed tooccur, even to such an extent that there is continuous affect synchronisation, but
this was not enacted by the communication scent.

Reduced neural network of the fittest pair
A pruned version of the network controlling the fittest agents was plotted to understand
the neural dynamics and relate it to behaviour. Figure 9 shows the reduced network of pair
9, after having removed all connection strengths weaker in absolute value than 0.5 stan-
dard deviation below the absolute value of the mean. Treating excitatory and inhibitory
connections as separate populations, gives thresholds of 0.92 (i.e. excitatory connections
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Figure 8. The responses from the agents of pair 9 (fitness value 23,463) to six different situations: food
stimulus (columns 1 and 2), no stimulus (columns 3 and 4), predator stimulus (columns 5 and 6), both
in the absence (columns 1, 3, and 5) and in the distant presence of a conspecific (columns 2, 4, and 6).
The top four rows show the activations in input, output, hidden and context layers as a function of time,
with the left and right part of each column showing, the activation of the first (dark blue) and the second
agent (light blue), respectively. The bottom row shows a map of the testing environment.

below this strength are pruned) and −0.24 (i.e. inhibitory connections above this strength
are pruned), respectively. Even in reduced form, the structure and dynamics of the network
seem rather hard to disentangle.

We focus on three features of the network (i.e. competition, conflict monitoring, agent
coupling) andprovide apossible interpretationof its internal dynamics. In Figure 9a the left-
most and right-most hidden-layer nodes (H1 and H4) competed with each other. H1 had an
excitatory connection to a context-layer node (C3) that inhibited H4 (conversely, H4 had an
excitatory connection to C2 that inhibited H1). This competition process by mutual inhibi-
tion also emerged in the simulations of Heerebout and Phaf (2010a, 2010b). They argued
that this was a basic requirement for the modulation by neural oscillations to occur (see
also Phaf & Rotteveel, 2012).

The approach response to the sender of the communication scent (see Figure 9b) was
implemented both directly via input-output connections (E → O), and indirectly via the
hidden layer (E → H → O). All connections in the indirect route between hidden layer
nodes (H1−4) and scent output (OS) were excitatory. Thus, OS activation would be maxi-
mal when the activity in H1−4 was maximal. H1 and H4 have a competitive relation to one
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Figure 9. Reduced network of an agent from pair 9 with (a) showing only the non-communicative part
as in Simulation 1, and (b) separately showing the communicative part added in Simulation 2. The plot
shows forward-feeding (blue), and backward-feeding (red), excitatory (solid) and inhibitory (dashed)
connections. The strength of the connections is indicated by width. Input nodes A, B, and E were mainly
associated with predators (red), food (green), and conspecific (blue), respectively. Sub-scripts L and R
indicate left and right.

another. During conflict, they inhibit each other, reducing the overall activity in H1−4, and
consequently that of OS. This node configuration, therefore, could function as a kind of
conflict-monitoring module. H1 and H4 nodes are also heavily involved in stimulus pro-
cessing so that the presence of a stimulus mitigates the approach to the conspecific.
Stimulus-induced conflict (in H1−4) reduces activation of OS and consequently also lessens
the approach response of the receiver agent due to theweaker communication scent input
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from the sender. Given the high level of synchronisation between the agents’ networks,
conflict in H1−4 often occurs in both agents roughly simultaneously, reducing the tendency
of both agents to approach each other. In other words, agents become less tightly coupled
to each other when there is stimulus-induced conflict in their networks. The modulating
mechanism of agent couplingmay also help explain the stimulus-induced variations in the
periodic behaviour patterns but the complexity of the connection scheme did not allow for
any straightforward interpretation of these network dynamics.

General discussion

Two evolutionary simulations of simple organisms in a virtual environment filled with
fitness-increasing, and decreasing, stimuli revealed the emergence of adaptive features
related to affect coding (Simulation 1) and communication (Simulation 2). The simula-
tions of Heerebout and Phaf (2010b) gave rise to the novel hypothesis that positive stimuli
elicit higher frequency neural oscillations than negative stimuli. Neural oscillations also
developed here, but a correspondence between positive/negative stimuli and high/low
frequencies was only found in the highest fitness agent. Evolution gains it extremely pow-
erful optimisation capacity from capitalising on the behaviour of a small number of fittest
individuals, while neglecting the less fit individuals. The emergence of even a single very
fit individual enables an escape from local fitness maxima and thus can trigger extensive
further adaptations and exaptations.

Oscillatory mechanisms can emerge autonomously when the following requirements
are met, (1) neural networks should allow for recurrent connections (with time delays in
signal transmission, (2) there should be high levels of ambiguity between fitness-increasing
and decreasing stimuli, and (3) fitness should be highly dependent on the ability to switch
quickly between different responses. Heerebout and Phaf (2010a) indeed identified the
modulation of attentional switching between competition winners as the primary func-
tion of neural oscillations, which implies that the affective coding by oscillations may itself
have constituted an exaptation (Gould, 1991; Jacob, 1977; Shariff & Tracy, 2011). The above
requirements may have been met frequently throughout evolutionary history, for many
biological organisms. It is likely, therefore, that evolutionary tinkering has resulted in the
more general emergence of affective coding by oscillations.

The setupwas similar here to the onewe aimed to replicate (Heerebout & Phaf, 2010ab),
so these findings could still be related to details in the setup. For example, we only
changed the genetic-algorithmprocedure slightly by including the championmethod. Fur-
ther strengthening of these conclusionswould require simulationswith a strongly different
setup while still meeting the above three requirements. Changes could be inspired by all
properties and conditions that are expected to vary across organisms. Computing power
allowing, possibilities are endless, and include, for instance, multiplemodalities (e.g. sound
and vision), different body shapes, different network architectures (but all involving recur-
rence), moving food sources, co-evolving predators, etc. It will also be interesting to have
the network architecture itself evolve, to study whether, and which form of, recurrence
emerges autonomously.

In Simulation 2, the setup was extended to one in which communication abilities
between the agents could emerge. In the final generations, a fitness-increasing role for
long-range communication indeed had developed. Based on observations in full and
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reduced virtual environments, we noted that these agents showed a tendency to approach
their conspecifics in a periodic fashion and to avoid all stimuli. In the fittest pairs, this coor-
dinated pattern of movement was beneficial both in avoiding predators and conserving
energy. The larger spirallingmovementsmade by the agents in the presence of these stim-
uli, thwarted attempts of predators to catch one of them. Higher fitness pairs moreover,
primarily tended to settle more in predator-free zones than lower fitness pairs.

Although oscillations resonating between the twonetworkswere found in the final pop-
ulation, these did not appear to confer a fitness benefit. Our observations, therefore, do
not lend support to an exaptation of neural oscillations for communication purposes. The
adaptive function of oscillations identified by Heerebout and Phaf (2010ab) however, lies
primarily in facilitating rapid switching between approach and avoidance actions. Because
the different regions in the setup of Simulation 2 exclusively contained predators or food
sources, or no stimuli at all, switching probably did not constitute a selection pressure here.
Table 1, for instance, shows that all agents spent more than half of their time in the empty
zones of the virtual environment. The low selection pressure for fast response switching
could have led to optimizations away from oscillatory networks. In future simulation work,
it would be interesting to configure environment setups still allowing for spatial coding,
as in Simulation 2, while keeping evolutionary pressures on switching high. This could be
done by allowing the foraging region to overlap with the predation zones.

In the virtual experiments performed on the final population, only a kind of arousal
distinction (i.e. presence vs. absence) and no affective distinction (i.e. predator vs. food)
was observed in the long-range communication between agents. This was probably due
to the food and predators being separated in different zones. In the present setup, the
most adaptive solution seems to be to join in predator-free zones. If a higher level of ambi-
guity were introduced in the environment by having predators in all zones, the coupling
between agents could become less straightforward and the ability to communicate affec-
tive valence could have arisen. Because the agents mostly strived to remain within close
vicinity, it seems plausible that the capacity for affective signalling from afar would not add
much fitness. In the dynamic setting of the simulation, however, a different type of short-
range affective communication emerged. When the agents were close by, they modulated
each other’s output and internal neural activity concerning the valence of nearby stimuli.
This is typical of both affect detection and affect contagion (cf,Michael, 2011). The observed
strength of internal and external coupling between agents suggests that short-range affect
synchronisation would be a more fitting term.

The strong coupling between agents implied that, although possessing separate ner-
vous systems, they were essentially behaving as if they had self-assembled into a single
organism (cf, Couzin, 2009). They appeared tomerge due to the communication scents act-
ing as virtual connections between the networks. Collective behaviour as a consequence of
communication abilities not only emerges in simulation studies (e.g. Ackland et al., 2007;
de Greeff & Nolfi, 2010; Di Paolo, 2000), but is also very common in biological species, such
as in foraging ants, swarms of insects, flocks of birds, and schools of fish. Each organism
on itself has only relatively local sensing abilities that are extended by simple communica-
tion with conspecifics. In highly related grouping organisms, such as the social insects (e.g.
ants, bees, wasps, etc.), collective cognition can be particularly sophisticated. Individual
behaviour and interactions have evolved in these groups to benefit the colony’s reproduc-
tive success, while strongly reducing inter-individual conflict. The functional integration
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may have become so tight that they rightfully can be called “super-organisms” (Couzin,
2009). Arguably, this groupingbehaviour inmost species involves onlyminimal or no affect,
but it seems to have been exapted emotionally into an adaptive action tendency “to tend
and befriend” when threat is present, in humans at least (Taylor, 2006).

The analysis of the network dynamics in the fittest pair revealed that it involved compet-
itive processing (as previously found by Heerebout & Phaf, 2010a). Moreover, the presence
of competition in the hidden network layer directly reduced activation of the output scent
that controlled the coordination between agents. The output scent, therefore, served as
a conflict-monitoring signal, primarily transmitting the presence or absence of a stimulus,
regardless of its valence, to the receiving agent. As competition seems tobeoneof themost
basic information-processingmechanisms in the nervous system (e.g. Cerf et al., 2010; Dun-
can, 1996), it would be worthwhile to further explore the exaptation of conflict-monitoring
for mutual communication and coordination between agents. In future work, one way to
allowan affective distinction to becomemore clearly representedby conflict in the network
could be to furnish the agents with more extensive processing capacities (i.e. more nodes
and connections) and with lateral connections (i.e. allowing for direct mutual inhibition).
The latter type of connections wouldmake the jump to competitive processingmore likely
than in the present simulations, in which only indirect competition could develop. Future
simulation work could also improve the exploratory setup of Simulation 2 by, for instance,
increasing the evolutionary pressures for attentional competition and switching between
winning responses.

The present study represents a, relatively novel, exercise in evolutionary cognitive neu-
roscience on small-scale quasi-neural networks in artificial environments, and aims to
encourage the further bottom-up generation of theoretical hypotheses through evolu-
tionary computation. Even with the current simplicity, the resulting network dynamics
appeared to be complex. The insights into the organism’s evolutionary development and
internal processing gained from this type of computational simulation however, clearly
expand the opportunities for analysis in affective neuroscience and emotion psychology.
For interpretation, wemade (1) observations of the agents’ behaviour in their natural habi-
tat, (2) in impoverished, static environments, (3) evolvedacontrol population, (4) performed
lesion studies, and (5) analysed abstracted networks. In biological organisms, such detailed
analyses are often impossible.

These evolutionary simulations were designed to explore the emergence of affect and
of communication in a bottom-up fashion. Previous evolutionary modelling suggested a
novel hypothesis about core affect, which even renowned emotion theoreticians find hard
to analyse (e.g. Frijda, 1986). Our mechanical analysis (Phaf & Rotteveel, 2012) is further
strengthened here by the replication of crucial findings from these earlier simulations, at
least with respect to themost adaptive solutions. A different type of communication devel-
oped than what was initially expected, but in hindsight makes good sense under these
environmental pressures and agrees quite well with behaviour that can be observed in
many biological species. All neural mechanisms employed by organisms and, accordingly,
psychological processes, are contingent on their evolutionary history. Supplementing top-
down cognitive theorising with bottom-up evolutionary computation, thus surely adds a
useful instrument to the emotion theoretician’s toolbox. Within given constraints, precise
outcomes of evolutionary simulations are often unpredictable, very much like the results
of biological evolution in nature. The fact that simulated evolution led us along a different
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path for communication between agents than through neural oscillations illustrates the
tinkering power of evolution.
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Appendices

Appendix A. Scent intensity

In Simulation 1, the scent intensity as a function of distance to the source 1 is given by:

S(d) = Smax
1 − d/dmax

1 + d
ifd < dmax

Where the maximum intensity is Smax = 25 and the maximum distance is dmax = 100, in code
units. S(d) is zero for d larger than dmax. We plot this function for the relevant range between touch
(d = 20) and dmax = 100:

Appendix B. Randommutation size

The randommutation size X in Simulation 1 is calculated using the following distribution:

X = mlog(1/r − 1)

Where the average mutation size m = 0.1 and r is a random number between 0 and 1. Note that
mutations can be positive or negative. We plot the mutation size as a function of r:
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https://docs.python.org/2.0/ref/ref.html
https://doi.org/10.1097/FBP.0000000000000172
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Appendix C. Probability of passing into the next generation

For every agent, the probability of passing into the next generation is calculated in two steps. It is first
calculated as follows for an agent i, based on its fitness:

p1,i = (1 − pmin)
fi − fmin

fmax − fmin
+ pmin

where the minimum probability pmin = 0.15, fi is the fitness of agent I, and fmax and fmin are the
maximumandminimum fitness in thepopulation. As an illustration,weplot theprobability of survival
as a function of fi for a population with fmin = 1000 and fmax = 3000.

Subsequently, this probability is modulated to control changes in the population size (keeping it
around the initial size). If the current population size, ncur, is larger than the initial population size, ninit
= 18 agents, the probability of continuing into the next generation becomes:

p2,i = ninit
ncur

p1,i

When ncur is larger than or equal to ninit, the probability becomes:

p2,i = 1 − (1 − p1,i)

(
1 −

(
1 − ncur

ninit

)2
)

Below, we plot both probability distributions as a function of ncur for the case that p1,i = 0.3. Note
that both distributions converge to p2,i = 0.3 when ncur = ninit = 18.

Appendix D. Communication scent intensity

In Simulation 2, the communication scent intensity as a function of distance between the agents is:

Scom(d) = 1.91 + 0.0180d − 0.0009d2

This equation holds for distances until 50 code units. Beyond that distance, the smell intensity is
the same as at d = 50. Note that the directional sensitivity (slope of the function) increaseswith larger
distances. We plot the scent intensity Scom as a function of distance.
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Appendix E. List of parameters in the setups of simulations 1 and 2

Simulation 1 Simulation 2

Environment Size (40 × 40) (60 × 60)
Initial population size 18 18 pairs
Number of food sources 10 4
Number of predators 6 4
Number of agents 1 2
Object radius 1 1

Scent intensity S as a function
of distance d

S(d) = 25
1 − d/10

1 + d
ifd < 10

Communication signal
intensity Scom as a function
of distance d

Scom(d) = 1.91 + 0.0180d − 0.0009d2

Input activation function I =
∑

Si
1 +∑

Si
.

Angle between nostrils 90 degrees
Angle between motor
actuators

180 degrees

Agent settings Initial energy level 5 5
Energy loss per time step ∼ 0.001 ∼ 0.001
Initial location random random in top left area

(20 × 40)
random in bottom right area (40 × 20)

Number of sensory nodes 2 (scent A) 2 (scent A)
2 (scent B) 2 (scent B)

2 (scent E)
Number of motor nodes 2 (left/right OL/R)

(continued)
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Simulation 1 Simulation 2

Acceleration �a = 2min(OL ,OR)
(
cos θ
sin θ

)
Velocity �vt+1 = 0.98�vt + �a�t

Location �xt+1 = �xt + 1

2
(�vt+1 + �vt)�t

Angular acceleration α = 0.4(OL − OR)

Angular velocity ωt+1 = 0.98ωt + α

Angular orientation θt+1 = θt + 1

2
(ωt+1 + ωt)

Number of scent output nodes 0 1
Number of hidden nodes 4 4
Number of context nodes 4 4
Number of unique connections
(due to symmetry)

64 80

Initial connection weights �wi all connections zero fittest agent of simulation 1
Emission intensity scent C 1
Emission intensity scent E 0 1

Plant settings Energy content 1
Initial location random random in bottom left area (20 × 20)
Intensity scent A 1.0 1.0
Intensity scent B 0.5 0.5

Predator settings Initial location random random in top right area
(40 × 40)

Emission intensity scent A 0.5 0.5
Emission intensity scent B 1 1
Emission intensity scent D 1 1
Number of input nodes
(left/right: IL/R)

2 (scent C: IC,L/R) 2 (scent C)

2 (scent D: ID,L/R) 2 (scent C)
Number of motor nodes 2 (OL/R) 2
Number of unique connections
(due to symmetry)

4 4

Connections IC,L/R → OR/L 3
Connections IC,R/L → OR/L −0.1
Connections ID,L/R → OR/L −0.02
Connections ID,R/L → OR/L 0.6

Genetic algorithm Initial population size 18 18 pairs
Number of genes 64 72
Number of generations ∼ 10,000 ∼ 10,000
Fitness function f = E · Tlife f = E1 · E2 · Tlife
Base probability of survival psurv,0 = 0.15 + 0.85

f − fmin
fmax − fmin

Probability of survival if
n ≤ ninit

psurv = ninit
n

psurv,0

Probability of survival if
n > ninit

psurv = 1 − (1 − prep,0)

(
1 −

(
1 − n

ninit

)2
)

Number of trials per agent 12
Parent 1: Tournament selection Fittest of random subset (1/3rd of total population)
Parent 2: Selection probability pparent ∝ f/�12
Distance between connection
weights of parents 1 and 2
(�w1, �w2)

�12 = ∑ | �w2 − �w1|

Crossover probability 0.5
Number of crossover genes 2 (randomly selected)
Mutation size X X = m log(1/r − 1), where r is drawn from [0,1]
Average mutation sizem 0.1 0.01 for genes not involved in

communication
0.2 for communication genes
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