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Genetic algorithm attack on Enigma’s plugboard

Åvald Åslaugson Sommervoll and Leif Nilsen

ABSTRACT
The history, operating principles, strengths, and weaknesses,
of the German cipher machine Enigma, have been widely
studied for almost 50 years. Even though Bletchley Park regu-
larly broke Enigma encrypted traffic during World War II, new
pieces of information and fresh analysis are still aggregated to
the remarkable “puzzle” called Enigma. This paper shows that
Enigma’s plugboard is vulnerable to Genetic Algorithm (GA)
attacks, which solves Enigma’s plugboard faster than earlier
published ciphertext-only techniques. The Genetic Algorithm
does this using the counting measure Index of Coincidence
(IC). Independently of the GA, but related to the analysis, we
introduce a new measure Progress Index of Coincidence (PIC).
PIC is a measure of the relative progress in decryption
between the ciphertext and plaintext measured by IC.

KEYWORDS
Enigma; Enigma plugboard;
genetic algorithm; index of
coincidence

1. Introduction

The Enigma Machine represents a milestone in the history of cryptog-
raphy. The machine combines the rotor system, invented by two Dutch
navy officers in 1915 (de Leeuw 2003), with a plugboard; resulting in a
cipher so advanced that it was thought to be unbreakable (Copeland
2004). Enigma’s strength, mobility, and user-friendliness allowed its wide-
spread use by the German military during the Second World War. Its
importance in the war and cryptanalysis made the Enigma perhaps the
most famous cryptographic machine in history. Its fame is also reflected
in modern textbooks, for example, in Paar- and Pelzl’s “Understanding
Cryptography,” where the Enigma is used to illustrate a classical encryp-
tion machine (Paar and Pelzl 2009). The machine has even had books
and movies centered around it and its cryptanalysis, with perhaps the
most recent release of “The Imitation Game” on the 25th of December
2014 (IMDb 2014).
The Enigma represents a special form of a polyalphabetic substitution

cipher and cannot, by any means, be considered to provide secure
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encryption by modern standards.1 Building on the pre-WWII analysis of
Polish mathematicians, a huge effort by English and American scientists
developed cryptanalytical tools and methods that could break German
Enigma traffic daily (Singh 2000). Significant members of this activity
included the classical scholar Dennis Knox, mathematicians from Oxford and
Cambridge like Peter Twinn, Alan Turing, and Gordon Welchman, as well as
the international chess masters Hugh Alexander and Stuart Milner-Barry.
However, even if the Enigma represents an outdated crypto technology,

it still inspires researchers to fill gaps in the Enigma history and to improve
on Enigma cryptanalysis. The purpose of such research is twofold, to
develop modern cryptanalysis or to attack unread authentic traffic from
WWII. One recent example is the paper by Ostwald and Weierud (Ostwald
and Weierud 2017), who, in 2017, released “Modern breaking of Enigma
ciphertexts” in Cryptologia. It is to be anticipated that new analysis for
breaking the Enigma could apply to other ciphers that build their security
on the same principles. For this reason, decryption techniques that prove
effective on Enigma encryption may also prove effective on other encryp-
tion techniques as well. If not by themselves, they may provide useful
building blocks for future crypto-attacks. This paper aims to provide one
such building block in the form of a ciphertext-only attack based on gen-
etic algorithms (GA). The proposed GA attack is faster than earlier cipher-
text-only attacks. We also build upon the existing measure Index of
Coincidence, creating a more human-readable representation of the meas-
ure which we call Progress Index of Coincidence.
The remaining paper is organized as follows. Section 2 provides back-

ground information on the construction and operation principles of Enigma.
Then, the Genetic Algorithm is described. The measure, Index of
Coincidence, is defined and explained. The box plot variant, notch plot, is
also described and defined. The section finishes with a brief review of related
research. In Section 3, the different settings of the Enigma are analyzed, and
the vulnerability in the plugboard is outlined. The first attempts to use genetic
algorithms for this task required unrealistic long pieces of ciphertext, but it is
shown that the technique can also succeed for much shorter messages.

2. Background

2.1. Properties of the enigma

The Enigma is a portable encryption machine that was mainly used for
battlefield communications and to protect tactical links. Physically the

1Polyalphabethic substitution ciphers are substitution ciphers that utilize multiple letter mappings, in that the
substitution depends on a changing state.
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Enigma Machine was embedded in a wooden or metallic box, consisting of
four main components (highlighted in Figure 1):

1. Three rotors (four after 1941 in the German navy). (The display values
are visible in the windows next to the outer disks.)2

2. A lampboard with 26 lamps, one for each letter in the Latin alphabet.
3. A keyboard with 26 buttons, one for each letter in the Latin alphabet.
4. A plugboard also called a steckerboard with 26 connector points.

The rotors and the plugboard shown in Figure 1 define the state of the
Enigma. This state consists of four parts: 1. rotor selection and order, 2.
ring settings, 3. display values and 4. plugboard settings. We say that rotor
settings are defined by the first three, and the plugboard’s settings are

Figure 1. The four main components of the Enigma: Four rotors, a lampboard, a keyboard and
a plugboard.
(Photo taken by Leif Nilsen edit by Åvald Sommervoll)

2Traditionally this was given by three letters. However, some Enigmas used numbers instead of letters, and as is
shown in fig. 1, four-rotor Enigmas used four letters (YSMB).

CRYPTOLOGIA 3



defined by the last. The union of these settings is referred to as the key. It
defines the starting point for the encryption of a message. Due to the recip-
rocal characteristic of the Enigma, the same starting point is used for
decryption and encryption. After the state of the Enigma is set, the key-
board is used for input, and the corresponding output is read off from the
lampboard. Of the four parts that make up the state, all but one remains
constant during encryption and decryption, the display value. Since the dis-
play value changes for every letter pressed, we introduce two additional
terms when it comes to talking about the display values: basic setting and
message setting.3 The basic setting gives the daily initial display value, and
the message setting gives the display value used at the start of the message.
In practice, there was typically one operator and one assistant that

handled encryption and decryption. If they wanted to encrypt a message,
the operator would type the message into the keyboard letter by letter
(Copeland 2004). For each letter pressed, one of the 26 lamps would light
up on the lampboard. The resulting sequence of lit letters was noted by the
assistant. The noted sequence would then be the ciphertext. For every letter
pressed, the display value would change, changing Enigma’s state.
Therefore if the operator presses the same letter twice, it will most likely be
encrypted as two different letters. This is to make the Enigma robust
against some of the most common cryptanalytic attacks, such as frequency
analysis which was described as early as the 9th century (Singh 2000). The
above applies to decryption also as Enigma is a reciprocal symmetric-key4

encryption technique.

Figure 2. Enigma key book.
Photo from authentic German codebook. (From before September 1938 as it has a
“Grundstellung”)
“Datum”: Date, “Walzenlage”: Rotor selection and order, “Ringstellung”: Ring settings,
“Steckerbindungen”: Plugboard settings, “Grundstellung”: Basic setting (Daily initial dis-
play value).
Image from The Late Tony Sale’s Codes and Ciphers Website (Tony Sale 2001).

3Also called message key by Gillogly (1995) and text setting by Welchman (1982).
4Symmetric- key encryption means that encryption and decryption use the same key. Reciprocal means that
encryption and decryption is the same mathematical operation.
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Before decryption or encryption, however, the operator must set the
Enigma machine’s state. This state must be agreed upon between the two
or more communicating parties before the communication can take place.
During the Second World War, this was generally done by the distribution
of pre-shared codebooks which provided a different setting for each day.
Figure 2 shows a scanning of a page in such a codebook. Here “Datum”
gives the actual date for the use of this key. “Walzenlage” gives the selec-
tion and order of the three rotors out of a total of five rotors (8 rotors for
the naval Enigma). Before the selected rotors were placed in the machine,
the ring setting of each rotor was set, given by “Ringstellung” in Figure 2.
The next entry in the codebook is the plugboard setting,
“Steckerbindungen” which is set by adding plug-connections between two
different characters in the Latin alphabet in a one-to-one connection.
Typically 10 plugs were used, leaving 6 characters without any connection
in the plugboard (A plugboard with 0 plugs connected means that each let-
ter is connected by default to itself, which is shown in Figure 1). The final
setting listed is the “Grundstellung” which roughly translates to basic set-
ting, and gives the daily initial display value. It is initial since the Germans
always broadcasted some specified changes to the daily Enigma settings at
the beginning of the message. Perhaps most famously is the double indica-
tor operational procedure used by the Germans up to September 1938
(Lasry, Kopal, and Wacker 2019).5 The first 6 letters of the message would
contain the message setting, by encrypting the new display value twice. For
example, if the message setting was to be “RCM,” then “RCMRCM” would
be encrypted from the basic setting given by the codebook. Then the oper-
ator would change the display value to “RCM” and encrypt the rest of the
message. This procedure was done to ensure that different messages were
encrypted from different starting points and thus protecting against well-
known attacks on polyalphabetic substitution cipher. Note that the code-
book lists the keys in “opposite” order, with the latest date at the top and
earlier dates at the bottom. As a result, it was easy to remove and securely
destroy keys from past dates.

2.2. The inner workings of the enigma

2.2.1. Electrical coupling
The Enigma uses an electrical current, traveling through a circuit to light
up the correct lamp on the lampboard. Figure 3 shows a simplified version
of the inner workings of the Enigma, with a plugboard, rotors, keyboard,
and lampboard. Note that before the “A” (item 2) is pressed on the

5There are, of course, other double indicator operational procedures used by the Germans. During the war, the
procedures would often not only vary over time but also across different groups.
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keyboard, the electrical circuit is disconnected, and no lamp would light
up. Then when “A” is pressed the circuit is complete and the current can
travel from the battery to the plugboard (3), the entry ring (4), the right-
most rotor (5), the middle rotor (5), the leftmost (5), the reflector (6), the
leftmost rotor again (5), the middle rotor again (5), the rightmost rotor
again (5), the plugboard again (7 and 8), until finally reaching the lamp-
board (9). From this, it is clear that the encryption goes through the plug-
board and each rotor twice, once on the way in and once again on the way
out. Because of this, a small change in the plugboard or the rotors may

Figure 3. Enigma example wiring.
1. We have a battery; it provides electricity for the lamps.
2. Shows the letter pressed. In this example, “A” is pressed, which lets the current from the

battery in 1 enter the circuit as shown by the red lines.
3. Since A is not steckered to any other letter the signal/current continues to the rotors.
4. The current enters through the A position in the entry ring.
5. The current is scrambled in the rotors.
6. Then the signal is reflected in a reflector sending the current back through the rotors.
7. The current arrives at S, but because the circuit going out to S is broken by a stecker the

current continues to the steckered letter D.
8. From D the current continues up to the lampboard
9. Arriving at the lampboard the letter D lights up, encrypting A to D.
Image credits to Dirk Rijmenants.
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result in a large change since almost no matter where the change is, it will
be applied twice and go through further changes in the other encryption
components. Also note that if “D” was pressed instead of “A,” the circuit
would be the same, however “A” would light up instead of “D.” This is an
important characteristic of the Enigma encryption machine and explains
why the encryption and the decryption settings are the same.

2.2.2. Rotors in detail
The rotor setting in the army Enigma is a selection of three rotors among
five I, II, III, IV, and V, and is typically written in order. For example: IV
II I, means rotor I, II and IV were selected and IV, II and I are the left-
most, middle and rightmost rotors respectively. Each of the individual
rotors contains a 26 to 26 rewiring of 26 potential inputs, one for each let-
ter in the English language, as shown in Figure 4 as item 5, internal wiring.
The wiring is constant; however, its position in relation to the alphabet

ring and notch (item 1 and 3) is not constant but is defined by the ring set-
ting, which is set with the locker ring, item 7 in Figure 4, locking the wir-
ing in the specified position. The ring setting is set prior to the insertion of
the rotor into the Enigma. The display value on the other hand can be
changed after inserting the rotor into the Enigma, and is set with the outer
disk (item 9). The current display value is shown in a small window next
to its respective rotor and is given by a single letter on the alphabet ring
(item 3). For every keypress, the rightmost rotor takes a single step,

Figure 4. Enigma rotor diagram. Created by Wapcaplet in Blender. [CC BY-SA 3.0 (http://creati-
vecommons.org/licenses/by-sa/3.0/)]
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changing the display value as mentioned in Section 2.1. This is because the
ratchet teeth, item 10 in Figure 4, are engaged for every keypress. Figure 5
shows this more in-depth, how the pressed key is used to nudge the rotor
one step further. Only the rightmost rotor is engaged for every keypress.
The middle rotor and the leftmost rotor are only engaged when the corre-
sponding pawl aligns with the notch of the rotor to the right, item 1, the
ring with “notch” in Figure 4. The display value for the rotor determines
the position of this “notch.” Different rotors have different locations for the
notch. For example, rotors I and IV would step their neighbor rotor at dis-
play value “Q” and “J” respectively. If the rightmost rotor is IV, the middle
rotor will take a step whenever the display value passed “J,” like an odom-
eter. Furthermore, since there is no rotor to the left of the leftmost rotor,
the completion of one full cycle by this rotor has no effect. This means
that for encryption of just one message, the ring setting has only 26 � 26 ¼
676 effective settings. In other words, the attacker only needs to recover
only the physical orientation of the internal wiring in the leftmost rotor
rather than actual the ring setting.6 The ring setting defines the relation
between the internal wiring and the rest of the rotor, while the display
value determines the orientation of the rotor in the Enigma machine.
Therefore they together define the initial pattern of the rotors’ scrambling,
and it is enough to find the message setting. Short texts give minimal rotor
stepping reducing the impact of the middle rotor's ring setting greatly.

Figure 5. Mechanical setup of the Enigma Machine.
From the figure we observe that when a key is pressed on the keyboard (marked with 1), it
acts as a jack pushing up on the ratchet teeth of the rightmost rotor, moving it one step.
Not shown in the final two pictures is how the middle and leftmost rotor is moved. They are
only moved at a specific index determined by the ring with “notch” market with 1 in Figure 4.
Image credit to Dirk Rijmenants.

6However, this leftmost ring setting is still relevant if we study how this message was setup. The recovery of a
full 3-letter ring setting is needed in order to decrypt additional messages sent within the same network on
the same day.
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In addition to the three rotors, there are two extra elements mentioned with
regards to the Enigmamachine which has some impact on the encryption:

� An entry ring, in which the current enters and exits the right-
most rotor.

� A reflector, where the incoming current is reflected back through the
rotors a second time, before exiting through the entry ring.

The reflector is itself a self-reciprocal transformation, and its inclusion
makes Enigma encryption and decryption the same operation as the cur-
rent in rotors flows in the same circuit, albeit in the opposite direction.

2.2.3. Plugboard
Enigma’s plugboard is located at the front of the Enigma (typically). It
defines a pairwise substitution between the 20 (typically in WW2 traffic) of
the letters with the use of 10 plugs. A plugged connection between two let-
ters is often referred to as a stecker. Each stecker defines a self-reciprocal
substitution between two letters. The plugboards stecker substitutions are
applied twice, both before and after entering the rotors. We have three
cases: zero plugboard substitutions, one plugboard substitution, and two
plugboard substitutions. The plugboard substitution is often listed as letter
pairs separated with space, as shown in Figure 2. Letters that are not part
of a stecker pair are often referred to as self-steckered letters. These self-
steckered letters are essential to many attacks on Enigma encryption
(Gillogly 1995; Williams 2000; Ostwald and Weierud 2017). The introduc-
tion of the plugboard (around 1928-1930) was a big improvement over the
early commercial Enigmas and protected against well-known cryptoanalyti-
cal attacks.

2.3. The complexity of the enigma

The version of the Enigma described above is quite complex. Some simple
calculation shows that there are 5 � 4 � 3 ¼ 60 different rotor selections,
263 ¼ 17576 different ring settings, 263 ¼ 17576 different message settings
and 26!

6!�10!�210 ¼ 1:5073827 � 1014 plugboard settings. In total this gives:

5 � 4 � 3 � 266 � 26!
6! � 10! � 210 ¼ 60 � 266 � 26!

6! � 10! � 210 � 2:7939259 � 1024� 282,

different settings. However, the complexity of these settings doesn’t per-
fectly represent the complexity of Enigma’s encryption. It is possible to
simplify and remove some redundancy; for example, as mentioned in
Section 2.2, the leftmost ring setting can be perfectly represented by the
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leftmost display value; therefore, in practice, it is common to refer to only
the 262 ¼ 676 impactful ring settings.7 In addition to this, some papers
(Matthews 1993; Williams 2000) reduce this number further from 262 to
26. This reduction is because, in practice, the messages are very short, 250
letters or shorter (Ostwald and Weierud 2017), this means that the leftmost
rotor almost never steps. After the first step, the middle rotor only steps
every 26 characters, and after the first step, the leftmost rotor only steps
every 262 ¼ 676 characters. This means that as long as the messages are
under 250 letters long, the leftmost will most likely not step, and at most
step once.8 For this reason, the stepping of the leftmost rotor is often
abstracted away, since while ignoring this one may still decrypt at
least 50% of the message. If we abstract away from this, the fraction will
instead be:

5 � 4 � 3 � 264 � 26!
6! � 10! � 210 ¼ 60 � 264 � 26!

6! � 10! � 210 � 4:1330264 � 1021 � 272

However, even with such a reduction the complexity is considerable. Even
by modern computing power, an exhaustive search over the complete space
of states will be a demanding task.

2.4. Genetic algorithms

Genetic algorithms (GA) draw their inspiration from evolution. They start
by creating multiple candidate solutions to the problem. Each candidate
solution is packaged within an object, referred to as an individual. The col-
lection of individuals makes up the genetic algorithm’s population. The
parameters that vary across individuals are called genes (Mitchell 1998).
The collection of these genes are referred to as the genome or genotype of
the individual. Random draws are usually used when creating the first indi-
viduals, to assure some initial genetic diversity.9 The individuals’ fitness can
be determined by a fitness function. Individuals with high fitness relative to
the other individuals survive and reproduce, similarly to evolution in the
real world. The evolution is naturally divided into generations, where each
generation requires:

1. Evaluating the individuals.
2. Finding the fittest individuals (for reproduction).
3. Replacing the least fit individuals with the offspring of the fittest.

7This is because the notch of the leftmost rotor as described in Section 2.2 is ignored.
8Similarly for the middle rotor it will step at most 250

26 þ 2<12 times. (We add 2 instead of 1 to account for the
rare case of double stepping).

9In nature, genetic diversity refers to the diversity of the genes in a specific species.
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This process is repeated until the models stop improving significantly.
The best individual in a population is called the alpha individual.

2.4.1. Cross-over and mutation
Reproduction between two or more individuals, is called cross-over. The cross-
over allows a new individual to inherit some of the elements from each parent.
This cross-over can be done in many ways, but in nature, a new individual
(typically) inherits roughly 50% of its genes from two parent individuals.
During cross-over, some mutations may occur in the offspring’s genome, and
this is also used in genetic algorithms. This mutation introduces some (needed)
variation in the population. It is common to have a smaller number of individ-
uals than what is present in more extreme real-life examples, such as wildebeest
populations. The population used in the genetic algorithm is more like a popu-
lation of individuals which inhabit a small island that is roughly 10 to 500 indi-
viduals. A concern with small populations is that it is prone to loss of genetic
diversity, while this may be an issue, there is a tradeoff. Smaller populations
require fewer computations per generation since each individual in the simula-
tion has to be assigned a fitness. Also, a smaller population allows for good
gene variations to spread through the population quicker than it would have
with a large population. Even in the real world, a smaller island population
may have a more rapid evolution than the larger populations on the mainland
(Gross 2006). This indicates that a smaller population can converge faster than
a larger population, though at the expense of genetic diversity.10 The main
danger of a small population is that one may get stuck in a local optimum. In
nature, genetic diversity also helps the population adapt to a changing environ-
ment. However, in this study, the Enigma plugboard is a stationary target for
each simulation, so genetic diversity was not prioritized. Bletchley Park, on the
other hand, was not attacking a stationary target, and benefited greatly from its
“genetic diversity.” They had to handle varying amounts of information,
changing protocols, and working in a limited timeframe.

2.4.2. Index of coincidence
The Genetic algorithm needs a fitness measure, a way of comparing a par-
tially decrypted ciphertext to other partially decrypted ciphertexts. To a
human, it is typically obvious whether a given text is plaintext or ciphertext.
However, quantifying how close the text is to plaintext, or if a given text is
closer to plaintext than another, is more difficult. Luckily several different
techniques can be used to measure the “closeness” to plaintext. A lot of them
exploit the biased nature of natural languages; for example, letter frequencies

10This accelerated evolution may also be because it takes more time for a favorable genetic variation to spread
through the population when the population is large.
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can indicate how close one is to true German or true English. However, this
measure is not ideal when working with an unsolved plugboard, as only
roughly 5% of the text is left unaffected by the 10 plugs.11 Furthermore, these
frequencies are very vulnerable to noise, as the relative frequencies of letters
can vary greatly, especially when working with very short texts. We need a
measure that works even when the number of incorrect characters is large.
The index of coincidence (IC) suggested by William Frederick Friedman
(1922) is a candidate for such a measure. It is defined mathematically as:

IC ¼
P26

i¼1 fi � ðfi � 1Þ
N � ðN � 1Þ ,

where IC is the index of coincidence, fi is how frequent the letter i is in the
text, and N is the number of letters in the text.
Informally the index of coincidence gives the probability that two letters

randomly drawn from the text are equal. This measure is better as the self-
steckered plugs result in a monoalphabetic substitution regardless of their
exit plug. This is essential as it allows IC to pick up some statistical biases
when using an empty plugboard as roughly, 100 � 6

26%� 23% of the key-
presses result in monoalphabetic substitutions (ignoring rotors). It is this
weakness that a series of previous work exploit when attacking the Enigma
(Gillogly 1995; Williams 2000; Ostwald and Weierud 2017), keeping the
plugboard empty while applying a partial brute-force of the rotors.
Under the assumption that all the characters are just as likely in an

incorrect decryption, we have:

fiðNÞ� N
26

,

which means that a random text should have an approximate IC of:

ICrand �
X26

i¼1
fiðNÞ � ðfi�1ðN�1ÞÞ
N � ðN � 1Þ

¼
X26

i¼1

N
26

� N�1
26

N � ðN � 1Þ

¼
X26

i¼1
1

262

¼ 1
26

� 0:0385,

11The unaffected plugs are 6�5
26�25 � 0:046:
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while English is closer to 0.066, and according to Gillogly standard German
is 0.07 (Gillogly 1995).

2.4.3. Notch plot
The genetic algorithm is not deterministic. This means that the time to find the
correct plugboard settings will vary even for the same ciphertext. However, by
conducting many runs and comparing the runtime between them, we can state
something about the efficiency of the algorithm, and how fast we expect to find
a solution. When visualizing such results, it is common to use a notch plot. A
notch plot visualizes such a result by creating a box plot where the middle line
represents the median of the data and letting the ends of the box define the
75th and 25th percentile of the supplied data. In other words, 50% of the data
is inside the interval defined by the box. Around the median, there is funnel-
like shape, a notch which constitutes the 95% confidence interval of the
median. Outside of the box, there are two whiskers on each side which span the
remainder of the observations. Then finally, there may be some dots outside
the whiskers; these illustrate the outliers, which are extreme and atypical obser-
vations. An outlier can come from a human error like a typo or a strange event.
In our runs, an outlier is typically due to a very lucky or unlucky attack.
Figure 6 gives an overview of the features of a notch plot.

2.5. Previous work

Long after the war, in 1995, Gillogly used the index of coincidence in a
ciphertext-only attack on Enigma encryption (Gillogly 1995). He does this

Figure 6. The key features of a notch plot.
Key features of a notch plot explained (from David’s Statistics (2016))
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with an initial brute-force12 of the rotor order, rotor selection, and message
setting. In this initial brute-force, he uses an empty plugboard and ring set-
tings “AAA.” Note here that this initial brute-force involves 60 � 263 ¼
1054560� 1 million different decryptions of the message. Then with the
rotors and message setting that gave the highest index of coincidence, the
ring settings are calculated. This is also done with the index of coincidence,
however, here we start with the rightmost rotor, and testing the 26 differ-
ent ring settings. The tests are conducted by moving the message setting in
unison with the tested ring setting. For example, if the brute-force found
the message setting D for the rightmost rotor, then he tests ring setting B
with message setting E, ring setting C with message setting F et cetera.
After the rightmost rotor ring setting is found, the middle rotors ring set-
ting is found, and the leftmost is left as it is as it is perfectly represented
by the message setting. For the plugboard, he no longer uses IC, but
instead trigram frequencies, where the “true” distribution is found from the
communist manifesto. He begins by searching the 26 � 25 possible swaps of
just one stecker, then the 24 � 23 possible swaps of two steckers, and so on
until he has found all six steckers. Gillogly tested his technique on 0 to 11
steckers and found very limited success on 10 plugs with a 5% success rate
on 1463 letter messages, but more than 40% success on 4 plugs with 316
letter messages.
Williams (2000) builds on the work done by Gillogly (1995). In her

work, she begins by locking the plugboard settings to be: “DR JX FW HS
CL MU GY KV QZ BP.” This may look random, but note that the most
frequent letters in English plaintext remain unaffected by the plugboard (A,
E, I, N, O, and T). This is particularly important because, like Gillogy, she
finds the message setting and the rotor selection with a form of brute-force
which relies on the letters not affected by the plugboard. With these set-
tings, she achieves a 100% decryption accuracy on a 450 letter message
encrypted with an Enigma with all 10 steckers. She improves on Gillogly’s
method by storing the best 3000 message settings and rotor selections from
the initial brute-force, so her algorithm does not fail if the best one does
not match. For this brute-force, she tests multiple measures, including IC,
and found that the Sinkov statistic13 applied to unigrams gave the best
results. (for details see her paper (Williams 2000)).
Bagnall et al. attempted a genetic algorithm cryptanalysis of the three

rotor system (Bagnall, McKeown, and Smith 1997). However, their success

12Brute-force means to try all the possible solutions. In this case, it refers to trying all the rotor orders and
ring settings.

13The Sinkov statistic outcompeting trigrams makes perfect sense as the plugboard’s influence on the trigram
frequencies is very large. The probability of a trigram being unaffected by the plugboard
is ð 6�5

26�25Þ3 � 9:83 � 10�5:

14 Å. Å. SOMMERVOLL AND L. NILSEN



was limited, only cracking the two rotor systems, and failing on systems
using three or four rotors.
Ostwald and Weierud in 2017 published another paper on the Enigma

machine in Cryptologia titled Modern breaking of Enigma ciphertexts
(Ostwald and Weierud 2017). Their paper is a comprehensive work which
attacks and manages to break many previously unbroken Enigma messages.
They do this using a hill-climbing algorithm paired with the brute-force
approach described by Gillogly (1995). Their success is in large part due to
their in-depth analysis of Enigma’s plugboard and their extensive knowledge
of the protocols and techniques used to improve the security of Enigma
encryption during WWII. Of particular interest to this study is their hill-
climbing attack on the plugboard, which similarly to Gillogly and previous
attempts start with an empty plugboard. Oswald et al. argue for this approach
since it is guaranteed to have six correctly self-steckered letters—in contrast
to a completely random steckering which may have no correct steckers. From
this empty steckering, the authors describe the various techniques they use to
find the first steckers of the plugboard since the hillclimber alone was not
always successful. Described are approaches for a brute-force of the first
stecker, a brute-force of the first and second stecker, a brute-force of the first,
the second and third stecker, and finally a brute-force of the first, the second,
the third and the fourth stecker. In other words, they may brute-force 1:6 �
108 different steckerings after their initial brute-force of the rotors. Because
this was often too slow, they implemented a targeted stecker search which
prioritized more frequent letters, with great success.
A more recent study by Lasry et al. Cryptanalysis of Enigma double indica-

tors with hill climbing (Lasry, Kopal, and Wacker 2019) in 2019 introduced
new attacks on two of the double indicator operational procedures: the one
used until September 1938 and the one used from September 1938 to May
1940. In doing so, they first covered Rejewski’s attack, which he devised at
the beginning of the 1930s. Rejewski’s attack was on the double indicator
which was in use by the Germans until 1938. This double indicator was the
six first letters of each message, denoting the message setting by encrypting it
twice.14 Both Rejewski and Lasry et al. begin by trying to compute the cyclic
structures of A4 � A1,A5 � A2 and A6 � A3, where Ai is the state of Enigma’s
encryption when the ith letter is typed. If they manage to compute their cyclic
structure, then they can brute-force parts of the Enigma. Rejewski ignored
the ring setting and brute-forced the rotor order15 and message setting.
However, Lasry et al. do not ignore the ring setting and accounts for the mid-
dle rotor movement using internal hill climbing. Their hillclimbing

14(Covered at the end of Section 2.1)
15In the beginning, there were only three rotors to choose from so he only had to deduce the rotor order.

CRYPTOLOGIA 15



techniques also allow them to continue even though the initial computation
of the cyclic structures fail. They continue by trying to reproduce the cycles
given by the indicator states, by looking for all possible rotor orders, ring set-
tings, and basic state options. They uncover the plugboard settings with hill-
climbing, but in contrast to Ostwald and Weierud (2017) they start with a
random plugboard instead of an empty one. This brute-force paired with hill-
climbing enables them to solve the Enigma using only 6-8 double indicators,
while Rejewski’s attack required 70-90 double indicators. Additionally, they
handle turnover by the middle rotor. They also handle the 1938-1940 proto-
col similarly with hill climbing except here they base their attack on the
Zygalski method and improve upon its reliability.

3. GA-based enigma attack

We consider encryption and decryption of the first chapter of “Alice in
Wonderland” (http://www.gutenberg.org/files/11/11-h/11-h.htm16). The rea-
son for choosing this text in contrast to an authentic WWII message17 is
twofold. First, we can freely vary the actual message length, and we may
also vary the Enigma settings. The latter is especially important as we are
not interested in revealing a particular historic Enigma setting, but the abil-
ity to decrypt a random Enigma setting. Moreover, as we vary the message
length, we can study the decryption attack sensitivity to message length.

3.1. Enigma decryption settings impact on IC

All successful decryptions18 of the full Enigma relies on some kind of par-
tial brute-force. To highlight this, we first find the IC of the plaintext,
denoted ICpt, of the first chapter of “Alice in Wonderland”:

ICpt ¼ 0:06649

This index of coincidence is similar to the one we would expect from
English. The Enigma is then used to encrypt the entire chapter with the
Enigma settings shown in Table 1. The index of coincidence of the result-
ing ciphertext, ICct is:

ICct ¼ 0:03854,

which is roughly equal to the IC of a random text, and considerably lower
than the IC of the plaintext. This ciphertext will be the basis for the ana-
lysis below.

16All non-letter characters are removed from this first chapter for easy Enigma encryption.
17Several earlier contributions rely on authentic Enigma messages (Gillogly 1995; Ostwald and Weierud 2017).
18See Section 2.5 for details.
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To amplify the contrast, the differences between the cipher- and plain-
texts IC, we introduce a progress measure which we will call Progress Index
of Coincidence (PIC). By design, we want 0%ð¼ 0Þ progress if nothing is
done, and we want 100%ð¼ 1Þ progress if we have found the plaintext. We
define the PIC of an attempted decoding PICad by:

PICad ¼ 1� ICpt�ICad

ICpt � ICct
,

where ICad is the index of coincidence of the attempted decoding of the
ciphertext. From this we observe that PICad is linearly dependent on ICad

since both ICpt and ICct are constant for a given ciphertext. Moreover, this
relation is:

PICad ¼ 1
ICpt � ICct

� ICad� ICct

ICpt � ICct
:

In other words the two measures are equivalent as a fitness measures
for the GA, however, PIC gives a clearer and more human-readable
image of the progress. Also noteworthy is that PICad uses ICpt, which is
typically assumed to be unknown for a ciphertext-only analysis.
However, as PICad and ICad are linearly dependent, this should not be
an issue, especially since they are only used for fitness measures. To be
sure we will only allow the GA to work with ICad, and not PICad until
the run terminates.
Table 2 shows that the measure works as intended. The correct Enigma

settings leading to the correct decryption gives 100% PIC. Table 2 also
shows that if just one of the rotors is wrong or the ordering is wrong the
PIC drops from 100% to roughly 0% PIC. Even though the message setting,
3 ring settings, and 10 plugs in the plugboard are correct, the IC shows no
indication of just how “close” we are to the correct key. This discreteness
of the correct rotor selection poses a challenge for machine learning
approaches, as most of them rely on some form of hill climbing.
Furthermore, this property is not unique to rotor selection it also applies to
the ring- and display- settings.19 Despite this discouraging insight, Gillogly
(1995) showed that only parts of the Enigma needs to be bruteforced, since
the ring settings and the message setting preserve some of the IC properties

Table 1. Enigma settings.
Rotors Ring settings Plugboard settings Message setting

IV II I FTR (5, 19, 17) AT BO DF GV HR IW JL KS MX UY VYJ (21, 24, 9)

(This is the Enigma settings described as date 31 in the authentic codebook excerpt shown in Figure 2.)

19For some examples please check the appendix Section 4 table 11 and table 12.
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of the decryption when changed in unison. This may not be too surprising;
in Section 2.1, we observed that the two settings are highly related. Table 3
shows this in practice; a synchronized change in the message setting and
the ring setting allows the IC to measure the quality of the partially
decrypted ciphertext. We see that when only the leftmost ring- and mes-
sage-setting is changed in unison, there is no decrease in PIC as they per-
fectly represent each other. We also observe that the minor change of
incrementing the rightmost ring- and message-setting by one barely
reduces the PIC. So, in this case, the encryption is the same except when
the middle rotor (and possibly the leftmost rotor) steps prematurely. Since
the rotors work almost like an odometer, this only happens once every 26
characters. However, the encryption before any stepping is the same given
“synchronized” ring- and message-settings. Therefore it is natural for hill
climber to pay more attention to the first characters of the ciphertext that
may not be influenced by an asynchronous stepping. This connection
between ring- and message-setting is of great importance as it allows for a
partial brute-force attack by keeping either the message setting or the ring
settings fixed. The message setting “AAA,” for example, achieves a PIC of
34% with otherwise correct settings. Moreover, it achieves a PIC of 1.2%
with zero plugs, and the correct rotor selection, this is something we could
pick up on with a partial brute-force. However, it is possible to be
“unlucky”; if we fix the ring setting to “A A A,” as Gillogly did, and brute-

Table 2. Enigma decryption changing the rotors.
Rotors IC PIC

IV II I(No change) 0.06649 100%
V II I 0.03852 �0.1%
III II I 0.03844 �0.4%
IV III I 0.03846 �0.3%
IV II III 0.03846 �0.3%
IV I II 0.03852 �0.1%
I II IV 0.03846 �0.3%

Red is used to highlight which rotors are changed from the correct decryption settings to the attempted decryp-
tion, while blue is used to highlight which rotors are swapped before the attempted decryption.

Table 3. Enigma decryption changing ring settings and message setting with the same index.
Ring settings Message setting IC PIC

F T R(No change) VYJ(No change) 0.06649 100%
A T R QYJ 0.06649 100%
F T S VYK 0.06436 92.4%
F U R VZJ 0.06404 91.2%
F U S VZK 0.06214 84.4%
K V I AAA 0.04805 34.0%
A A A QFS 0.03860 0.2%

Red is used to highlight which settings are changed from the correct decryption settings to the
attempted decryption.
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force the rotor selection and message setting. The resulting PIC is 0.2%
with the correct plugboard and �0.3 using zero plugs. This is astonishingly
low and is unlikely to be picked up during a partial brute-force.20 For this
reason, maybe a variant of Williams, (2000) approach where we try 1-3
fixed values for the ring setting or the message setting during the partial
brute-force will work well.
The plugboard on the other hand with its 1:50738 � 1014 possible states,

is typically not bruteforced. Table 4 shows that its change in IC is not
as discrete as the earlier settings. This makes it vulnerable to machine
learning approaches, given that the rest of the Enigma is solved. Also,
note from the above table that the empty plugboard results in a positive
PIC of about 5%. The empty plugboards small but positive PIC is an
essential premise in the ciphertext-only analysis of the Enigma. As dis-
cussed earlier, this allows for a brute-force attack of the rotors and mes-
sage setting with an empty plugboard. It is also the starting point for
Ostwald et al.’s hill-climbing algorithm (Ostwald and Weierud 2017),
guaranteeing six correctly self-steckered plugs. However, a genetic algo-
rithm starting from 0 plugs will have the unnecessary complexity of
dynamically decreasing and increasing the genome size, which will prob-
ably slow it down. Therefore, the genetic algorithm that this paper intro-
duces has a genome of exactly ten plugs.
The above analysis shows the discreteness of Enigma’s rotor selection,

rotor order, ring setting, and message setting. From this, it is clear that
some brute-force is needed. However, Gillogly’s techniques allow us to nar-
row the search for the rotor settings to some candidates, given an initial
brute-force attack. The remaining plugboard was shown to be vulnerable to
hillclimbing and other machine learning approaches. In the next three sec-
tions, we will design and use a Genetic Algorithm attack which can solve
the plugboard in a matter of minutes.

Table 4. Enigma decryption changing plugboard settings.
New plugboard settings IC PIC

AT BO DF GV HR IW JL KS MX UY (No change) 0.06649 100%
AH BO DF GV IW JL KS MX RT UY 0.05902 73.2%
AH BZ DF GV IW JL KS MX RT 0.05353 53.6%
AH BZ FO GV IW JL KS MX RT UY 0.05053 42.9%
AB CD EF GH IJ KL MN OP QR ST 0.03852 �0.1%
<No plugs> 0.03993 4.9%

Red is used to highlight which settings are changed from the correct decryption settings to the attempted
decryption. The final row<No plugs> is used to symbolize the decryption with correct rotor settings, ring set-
tings, and message setting, but the plugboard is left un-steckered.

20This is likely part of the reason why Gillogly only saw a 5% success rate on 10 plugs.

CRYPTOLOGIA 19



3.2. Genetic algorithm for determining the plugboard settings

In this section, we will consider a genetic algorithm attack on the plug-
board.21 The specification of a genetic algorithm involves:

1. A representation of the individuals’ genome.
2. A fitness function.
3. A selection function for cross-over.
4. A cross-over function.
5. A mutation rate.
6. A population size.
7. A number of generations the function is run

We let each stecker pair constitute a gene. Furthermore, we let the individ-
uals genome consist of 10 genes represented by a list of 20 indices with num-
bers from 0 to 25, where each pair defines a stecker. For example the genome:

[(0,1), (2,3), (4,5), (6,7), (8,9), (10,11), (12,13), (14,15), (16,17), (18,19)]

Defines the plugboard settings:

AB CD EF GH IJ KL MN OP QR ST

The initial individuals are chosen to be a random selection of 20 such
indices. The fitness function is chosen to be the IC of the attempted
decryption with the plugboard settings defined by the individuals’ genome.
This measure is then used to rank the individuals from most fit to least fit
for cross-over. Before cross-over, the population is divided into three parts,
the top-third, the middle-third and the bottom-third. The top-third cross-
overs with the middle-third, in the respect, that the fittest in the top-third
cross-overs with the fittest in the middle-third, the second fittest with the
second fittest and so on. The offspring of this cross-over then replaces the
bottom-third of the population. Tables 5 and 6 exemplify this with a mock
population of 10 individuals. If the population size is not divisible by three,

Table 5. Population.
top-third middle-third bottom-third

fitness in 100 � IC 6.06 6.05 6.03 6.02 6.00 5.99 5.98 5.94 5.94 5.93
individual id 4 0 7 3 5 8 2 9 6 1

Table 6. Cross-over combinations.
cross-over individuals (ids) 4,3 0,5 7,8

replaced individuals (ids) 9 6 1

21In Bletchley Park Gordon Welchman’s invention, the” Diagonal Board” improved the British Bombes attack on
the plugboard significantly.
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there may be one or two individuals that does not partake in the cross-over.
In the example shown in Table 5 individual number 2, between the bottom
and middle-third, does not partake in the cross-over for this reason.
The cross-over between two individuals starts by randomly selecting one of

the individuals to be parent1 and making the other parent2. We then draw five
indices in the range of 0 to 10. These random indices then access and copy five
steckers (genes) from parent1 to the offsprings genome. The indices that were
not drawn in the previous step are then used to access and copy five steckers
from parent2’s genome to the offspring. However, to avoid duplicate plugs, we
do not copy plugs that are already present in the offsprings genome. This may
results in incomplete or missing steckers in the offsprings genome. At such
incomplete or missing steckers, random vacant plugs are assigned until the off-
spring has a valid genome of 10 steckers. Below is an example cross-over where
the pairs 1,3,4,5 and 7 are selected to be inherited from parent1:

Here we see that all the red pairs with indices 1,3,4,5 and 7 are completely
inherited from parent1, however some of the steckers from parent2 are
changed (marked in green). For example the stecker DF could not be entirely
inherited because the D plug is used in the pair CD, which has already been
inherited from parent1, so another vacant plug is picked at random instead, in
this case stecker W was picked. The GA draws its foundation from evolution;
each new offspring has a probability of getting a mutation in their genome. In
this paper, we will refer to probability of at least one mutation occurring in an
offsprings genome as themutation rate, while we let the probability of a muta-
tion occurring in a specific gene of the genome be themutation probability. In
other words, mutation rate refers to the probability of a mutation in the plug-
board, while the mutation probability is the probability of a mutation in a spe-
cific stecker. The two terms have the following relation:

mutation rate ¼ 1�ð1�mutation probÞ10
mutation prob ¼ 1�ð1�mutation rateÞ 1

10

A gene selected for mutation removes the stecker pair associated with it.
Then a new stecker pair is randomly selected from the now eight available
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plugs. An example of an offspring with two mutations is shown below to illus-
trate this. The stecker pairs selected for mutation are colored red and the avail-
able plugs are also red, and the chosen replacement steckers are blue.

From this it is clear that mutations can dramatically change Enigma’s
encryption and decryption capabilities. Like in nature most mutations (but
not all) will be useless or add unnecessary noise. Therefore evolution in
GA is typically faster with a low mutation rate; however, with a low muta-
tion rate, the probability of being stuck in a local optimum and not finding
the correct decryption is increased. For this reason, two mutation rates will
be tested, one with a mutation rate set to be roughly 50%; this corresponds
to a mutation probability of 0.067 (6.7%).

mutation prob ¼ 1�ð1�0:5Þ 1
10

� 0:067

This fairly high mutation rate has a low probability of getting stuck, but
will most likely be slower than a lower mutation probability of 0.001
(0.1%) corresponding to a mutation rate of about 1%.

mutation rate ¼ 1�ð1�0:001Þ10
¼ 0:009955

� :01

Furthermore, just because a mutation occurs does not mean that the stecker
is changed as there is a 1

8�7 ¼ 1
56 , chance that the stecker will be unchanged

by the mutation.

22 Å. Å. SOMMERVOLL AND L. NILSEN



3.3. Genetic algorithm runs and results

A summary of the design choices of this GA is shown in Table 7. These
settings efficiently solve Enigma’s plugboard. 100 separate genetic algorithm
runs were conducted with default settings (Table 7 with mutation probabil-
ity 0.067) to find the plugboard settings described in Table 1. All of which
were successful in finding the correct plugboard settings. However, running
the genetic algorithm for 100 generations is a little bit overkill, since all of
them find the correct deciphering before then, as seen in Figure 7. Also,
100 individuals for 100 generations correspond to decrypting the ciphertext
with an Enigma 3400 times, which is more than the best case of Gillogly’s
approach, which decrypted the ciphertext 3050 times (Gillogly 1995). In
number of generations, 3050 encryptions correspond to between 90 and 91
generations22 consisting of 3037 and 3070 decryptions.
From Table 8 we see that the median run finishes in 2344 decryptions

which is much faster than the best case of 3050. In other words this
approach gives a significant increase in the plugboard recovery speed over
Gillogly given the Enigma settings described in Table 1. To ensure that this
improvement is independent of the Enigma settings we draw 9 additional
Enigma settings, for details check the appendix Section 4 Table 9. We then
run 100 genetic algorithm runs on each of the different Enigma settings to
show that its efficiency is independent of the encryption settings. Table 10
shows the minimum, median, and max runtime of the GA before finding
the correct solution across the 10 different Enigma settings. This clearly
shows that the GA attack on Enigma’s plugboard works on many underly-
ing Enigma settings. We observe that our worst median is at 71 generations
(2410 decryptions), which is pretty good. Of course, we see even better
results as the fastest attack only took 35 generations (1222 decryptions),
more than twice as fast as Gillogly’s best case of 3050 decryptions. We also
observe that there seems to be an extremely “unlucky” run on Enigma nr
10, which does not find the solution until it has completed 166 generations.
Fortunately, it is an extreme outlier as the second-longest run on Enigma
10 took 102 generations, which is also an outlier, but a more reason-
able one.

Table 7. Default GA settings.
Genome list of 20 indices

Fitness function Index of Coincidence
Cross-over as described in Section 3.2
Mutation probability 0.067 or 0.001
Population size 100
Number of generations 100 (may vary)

22Number of decryptions ¼ 100þ 33� (Number of generations - 1).
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Figure 7. IC of a 100 GA runs with default settings finding the plugboard key from Table 1.
Each blue line maps the IC of the best individual in each of the 100 GA runs for
each generation.
The red dotted line gives the IC of the plaintext; in this case, the solution appears to be
unique, as each decryption with this IC results in the correct plaintext.

Table 8. Finish times of the different GA runs on Table 1.
Measure Min Median Mean Max

Generations 51 69.0 70.2 97
Decryptions 1750 2344 2384 3268

Table 9. Drawn Enigmas.
name Rotors Ring settings Plugboard settings Message setting

1 IV II I F T R AT BO DF GV HR IW JL KS MX UY VYJ
2 I IV III W C I BE CG DW FN HU JS MX OV PT QR RHB
3 I III V N E R AB CS DM FP GT JL KU NR QY XZ OAY
4 II I V R R Y AZ BS DL EI FG HU JV MW NX RT FBU
5 III I IV S E M AP BQ CW DZ EL FM IT NU OR SX OHT
6 II V I J R T AC BO ES FQ GX HZ IV JL MY PW SDO
7 III V II P X E BY CR DN EH IS JT LV MW OP QZ EYL
8 V II III J A C AP BH CY ES FG IQ JM KW LV NR USJ
9 IV III II W K V AO BH DF EK GJ IS NR QV TY UZ JOH
10 I II V Y D S AP BW CI DR FM GN HY JX KS LU BKJ

Table 10. A 100 GA run finish time comparison across 10 different Enigma settings.
Name 1 2 3 4 5 6 7 8 9 10

Min 51 35 41 44 39 40 43 45 47 42
Median 69.0 71.0 70.5 67.5 67.0 65.0 69.0 70.0 66.5 69.0
Max 97 103 97 99 106 101 110 102 95 166
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However, this was with a high mutation rate of about 0.5. We also check
for mutation probability 0.001. To test this we run 100 GA’s on the 10
Enigmas with a maximum number of generations set to 1000. With such a
low mutation rate, some of these runs never finish or take almost the full
1000 generations. Of the 1000 runs, 29 of them were worse than Gillogly’s
best case of 3050 decryptions (90 to 91 generations), and these 29 are
much worse, and some do not find the solution. This is because they have
lost some essential genetic diversity, which their low mutation rate is
unable to replace. However, as we can see, this only occurs in less than 3%
of all the runs, most of the GAs also succeed with a low mutation rate. The
runs that do succeed generally find the solution faster than their counter-
parts with a higher mutation rate, as the low mutation rate has a median
runtime between 53 and 56 generations. Figure 8 shows a more indepth
comparison between the two mutation rates across the 10 different
Enigmas. We see here that for most of the Enigmas, the 75% fastest runs
of the low mutation rate runs are faster than the 75% slowest runs of the
GA with a high mutation rate. The only exceptions being Enigma numbers
4 and 6. In terms of speed, the low mutation rate is the obvious choice.
However, as the runs lose most of their genetic diversity in the early gener-
ations, this approach is prone to getting stuck in a local optimum. A way
to escape the local optimum and increase the genetic diversity is through

Figure 8. Notch plot comparison of 100 GA attacks with mutation rate 0.5 (red) and 0.01(blue)
across 10 different Enigma settings.
In this notch plot the outliers of the low mutation rate (0.01) runs are shown as a darkblue �
and the outliers of the high mutation rate(0.5) are shown as a darkred �:
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mutations, which by construction is set to be low in this case. For consist-
ent results, the high mutation rate (0.5) performed better, and even man-
aged to get faster decryption than low mutation rate GA on Enigma 2 and
Enigma 5. A possible best of both worlds is to run multiple GA attacks in
parallel, compensating for its lower success rate with “strength
in numbers.”

3.4. Genetic algorithm on smaller texts

From Section 3.3 it is clear that the GA paired with IC solves Enigma’s
plugboard efficiently on the first chapter of “Alice in Wonderland,” a text
containing 8596 characters. However, it remains to be shown that it also
works on shorter texts. To investigate this, we create subsets of the first
chapter of Alice in Wonderland, selecting the first n characters of the text,
letting n ¼ 100, 150, 200, 250, 300, 350, 400, 450, 500: These subsets are
encrypted with the default Enigma settings, stated in Table 1. For these
new ciphertexts, a hundred GA runs were conducted with the settings
defined in Table 7, a mutation probability of 0.067 and the stopping criteria
of a 1000 generations or reaching an IC greater than the IC of the plain-
text. Table 11 gives an overview of the results of these runs. Note here that
short messages that use 100 and 150 characters gain a maximum IC greater
than the IC of the plaintext as indicated by achieving a PIC greater than
100%. This is not unique to Alice in Wonderland, but a common occur-
rence, Ostwald and Weierud (2017) and Gillogly (1995) both used some
extra tricks and extra measures to get around this. For the GA to work on
such short texts, we would also have to implement alternative measures to
IC. We have not done this, and as a result, it has 0% success for texts
where it is possible to achieve a PIC greater than 100%. However, the algo-
rithm does not just fail in the instances where a PIC ¼ 100% does not offer
an upper bound, as texts with 200, 250 and 300 characters are not success-
ful on every run. Even though the global optimum may be 100% PIC, the

Table 11. 100 GA’s run on smaller subsets of Alice in Wonderland.
Runtime

No. of characters Correct Median Mean Min Max Max PIC

100 0% 69 74.65 32 137 122.76%
150 0% 1000 822.13 69 1000 103.39%
200 47% 1000 611.22 83 1000 100%
250 97% 123 161.9 67 1000 100%
300 97% 118 168.17 74 1000 100%
350 100% 117 121.08 73 228 100%
400 100% 101.5 107.27 67 192 100%
450 100% 92.5 100.07 60 376 100%
500 100% 91.5 91.92 56 173 100%

The GA was run for a 1000 generations or until a text with an IC greater or equal to the IC of the solution
was found.
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results show that we only have a 47% success rate on ciphertexts with 200
characters. This means that even with a high mutation_probability the GA
can get stuck in a local optimum. This occurs because there are too many
different plugboard settings that increase the IC on short texts, that a local
optimum may be “too” far away from the global optimum in some cases.
In extreme cases a local optimum may not have any steckers in common
with the correct steckering.
Evident from Table 11 is that the median number of generations

decrease as the number of characters increase from 250 characters and up.
This is also a likely evidence that the global optimum becomes easier to
distinguish with more characters. To further investigate this development
we added subsets of the first 550, 600, 650, 700, 750, 800, 850, 900, 950,
1000 and 4298 characters, and ran 100 GA’s on each of these subsets,
Figure 9. As expected these runs show that the GA works better with larger
texts, however, it seems to reach some saturation between 1000 and 4298
characters. The logarithmic shape stops at 4298 characters as the GA pre-
forms slightly worse with all 9596 characters.
We can also observe that the success rate of the GA also increases with

the number of characters in the ciphertext. To sketch this development we
conduct 100 GA runs with character subsets of (150, 152, 154, 156,… , 348,
350) and plot the percentage of runs that found the correct solution against
the number of characters in the “Alice in Wonderland” subset, shown in

Figure 9. Median runtime vs Number of generations on subsets of Alice in Wonderland.
GA runs that did not finish within 1000 generations had their runtime in number of generations
set to 1000.
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the top plot of Figure 10. Like with the runtime a key indicator to the
GA’s success rate is the number of characters, however, this trend/develop-
ment is more jagged. Also, notice that 152 characters has two successes.
These successes are rare, which makes sense since the greatest PIC found is
102.87%, which means that in these cases the local optimum is the solution
and the global optimum is something else. Despite that, two of the GA
runs are lucky and find the solution. If we add two more characters, we
only find the solution in one of the 100 runs. Then if we step up to 156-
and 158-characters all 200 GA runs are unsuccessful. Initial speculation by
the authors thought that this had something to do with the dive in IC
from 0.0671 to 0.0665 between 154- and 156- characters, and that there
may be a tiny correlation between the GA’s “lucky” successes with small

Figure 10. The number of characters in the plaintext plotted against the GA success-rate and
the IC of the plaintext.
Marked in black are the first encryptions that includes the rotation of the middle rotor.
Similarly marked in red is the first encryption that includes a leftmost rotor rotation.
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texts and the IC of the underlying plaintext. But in the absence of a deeper
analysis it is more likely that the minor reduction in successes are due to
chance rather than plaintext IC. After all the plaintext IC of 158 characters
is very similar to the IC of 160 characters where the solution is found 10
times. However, this trend diminishes as we get more plaintext to work
with. The majority of the jaggedness observed in the success rate of the GA
is not due to the changing of the plaintexts IC as can be seen from the bot-
tom plot of Figure 10 which shows the IC of the plaintext. The success rate
of the GA is jagged, this may be because we only did 100 trials on each
subset, but it has more structure than one would expect from random
chance. For example, there is a drop in the success rate of almost all the
runs on texts with 310 to 318 characters. We, therefore, think that this jag-
gedness, in particular, this drop is due to a peculiar interaction between;
our current GA approach, the added letters, and how they influence
Enigma decryption. A natural theory would be that this is because of rotor
stepping. However, the decryption capabilities seem to be agnostic of this
as is shown by the red and black dots representing stepping of the leftmost
and middle rotor respectively.

4. Conclusion

The Enigma Machine as a whole is built to distort the letter frequencies of
a plaintext message. This distortion, paired with the discreteness of the cor-
rect decryption settings, especially the rotor settings, makes a ciphertext-
only attack difficult. To illustrate this, we introduced a new measure,
Progress Index of Coincidence (PIC), which is a more human-readable ver-
sion of the measure: Index of Coincidence (IC). Our analysis with PIC
showed that Enigma’s plugboard was vulnerable to a machine learning
attack. To capitalize on this vulnerability, we introduced a genetic algo-
rithm attack for solving Enigma’s plugboard using a ciphertext only attack.
This genetic algorithm attack proved to be very efficient. It found the plug-
board settings faster than earlier attacks. Intriguingly the algorithm is the
fastest with a low mutation rate but at the cost of its reliability. In other
words, the algorithm has a higher success rate with a high mutation rate,
but at the cost of its speed. This tradeoff may be of consequence for a
broader range of genetic algorithm attacks beyond the Enigma. In particu-
lar, one can get the best of both worlds by considering attacks with a low
mutation rate in parallel. This way, we can increase the solution probability
through the “strength in numbers.” We also observe that the decryption
success rate is not a completely monotone function of the number of char-
acters in the ciphertext. In particular, we observe a significant dip in suc-
cess rate for texts with 310 to 318 characters. Intriguingly, this dip does
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not seem to be driven by plaintext IC nor the Enigma’s rotor stepping. It
may be due to some non-trivial property of the Enigma encryption, and its
interplay with the IC. Future research may shed light on this surprising
property of Enigma encryption.

Appendix

The ring- and message-settings impact on enigma decryption

In Section 3.1 of the paper we cover the difficulties of measuring closeness in the Enigma
decryption key. Absent from the main paper was a table showing this in practice for ring
settings (Table 12) and message setting (Table 13). The full Enigma setting used to encrypt
the plaintext (the first chapter of “Alice in Wonderland”) corresponds to Enigma nr 1. in
Table 9.

Enigma settings used in this paper

Table 9 shows a table detailing the encryption settings of the 10 Enigma decryptions
studied in this paper.

The GA development across the different enigma settings

In this paper, we conducted 100 GA runs, (with mutation rate 0.5 and 0.01), for each of
the 10 different Enigma settings. For a closer inspection of their performance, we have split
Figure 8 into two separate plots: Figure 11(0.5) and Figure 12(0.01). Also included is an
uncropped notch plot with mutation rate of 0.01 (Figure 13), which clearly shows how
extreme some of the outliers are.

Table 12. Enigma decryption changing ring settings.
New ring settings IC PIC

F T R(No change) 0.06649 100%
E T R 0.03846 �0.3%
G T R 0.03846 �0.3%
F S R 0.03842 �0.4%
F T E 0.03846 �0.3%

Red is used to highlight which settings are changed from the correct decryption settings to the
attempted decryption.

Table 13. Enigma decryption changing message setting.
New message settings IC PIC

VYJ(No change) 0.06649 100%
AYJ 0.03851 �0.1%
VZJ 0.03842 �0.4%
VYK 0.03849 �0.2%

Red is used to highlight which settings are changed from the correct decryption settings to the
attempted decryption.
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Figure 11. Notch plot of the number of generations used by 100 genetic algorithm runs with
mutation rate 0.5 for the 10 different Enigmas.

Figure 12. A cropped notch plot, ignoring extreme outliers, of the number of generations used
by 100 genetic algorithm runs with mutation rate 0.01 for the 10 different Enigmas.
(The cutoff was at 90 generations.)
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