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ABSTRACT 

Organic aerosols (OA; organic compounds present on the surface or within 

aerosols) in the atmosphere may play a significant role in various atmospheric processes 

as well as have an impact on human health. While many primary (direct) sources of OA 

(POA) are known, a significant portion of OA is formed through the oxidation of primary 

precursors, creating secondary organic aerosols (SOA) through processes that are still 

unclear. This dissertation, therefore, focuses on the development of analytical methods 

for characterizing SOA as well as investigating the mechanism behind their formation 

and aerosol chemistry. 

In the first phase of this work, methods were developed to identify and quantify 

the large number of products formed during the oxidation of PAHs, utilizing analysis 

techniques such as chromatography (gas and liquid) and mass spectrometry (low and high 

resolution). In addition, extraction and sample preparation methods were evaluated with 

the focus on increasing the sensitivity in detecting PAH oxidation products. 

The mechanisms behind the heterogeneous oxidation of 3-4 ring PAHs were 

investigated by simulating reactions of PAHs in the presence of various gas-phase 

oxidants under atmospheric conditions. Both a small and large-scale aerosol simulation 

chamber were designed and constructed to study the oxidation of PAHs adsorbed to the 

surfaces of diesel exhaust aerosols. 

To aid in modeling, the interactions of SOA with aerosol surfaces experiments 

were performed using thermogravimetry-differential scanning calorimetry (TGA-DSC) to



xxii 
 

 define the changes in vaporization enthalpies (ΔHvap) of common OA species when 

adsorbed to different aerosol surface types. Differences observed between values 

calculated for neat analyte solutions and those when spiked to the model particles 

provided the extent of adsorption (i.e., the enthalpy of adsorption, or Hads).
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CHAPTER 1 

1. INTRODUCTION 

1.1. Atmospheric Aerosols and Particulate Matter 

Particles in the atmosphere can arise from various natural (e.g., windborne dust, 

seaspray and volcanic eruptions) or anthropogenic activities (e.g., combustion of fossil 

fuels). While the technical definition of the term “aerosol” is a suspension of solid or 

liquid particles in a gas, common usage refers to aerosols as the particulate component 

only (e.g., all substances except pure water).1 Typical atmospheric concentration of 

aerosols in the troposphere range between 102–105 cm-3 and 1–100 µg m-3.2 

1.2. Sources and Chemical Composition of Atmospheric Aerosols 

Atmospheric aerosols occur in sizes ranging from a few nanometers to several 

hundred micrometers.1 Aerosol sizes are divided into two main groups: those less than 

2.5 µm in diameter (referred to as “fine”) and those greater than 2.5 µm in diameter 

(termed as “coarse”). For the most part, fine and coarse are subjected to different 

origination, transformation and removal mechanisms. Fine aerosols are typically formed 

through the condensation of gas-phase to produce small nanoparticles which act as a 

substrate for additional gas-phase species to condense and form larger aerosols up to a 

few microns in diameter.3 Coarse aerosols are generally formed through mechanical 

processes such as windblown dust and sea spray

A predominant portion of tropospheric aerosols is anthropogenic in origin.4 The 

larger fraction of the aerosol weight contains sulfate, ammonium, nitrate, sodium, 
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chloride, tracemetals, carbonaceous material, crustal elements and water.5 Carbonaceous 

aerosol components are commonly the largest fraction of aerosol mass and consist of two 

major components—graphitic or black carbon (also referred to as “elemental” or “free 

carbon”) and organic material. While the latter can be directly emitted or produced from 

atmospheric reactions of gas-phase organic precursors, elemental carbon can only be 

produced through combustion processes, generally those occurring at extreme 

temperatures (e.g., diesel fuel combustion).  

1.3. Aging and Fate of Aerosols in the Atmosphere 

Tropospheric aerosols undergo a variety of transformation processes during their 

lifetime and have many different sinks. Fine particles are mainly subject to condensation 

of gas-phase organics and coagulation between aerosols. These pathways lead to larger 

micron-sized particles that are either washed out by rain or, if able to, grow up to many 

microns in diameter where they undergo sedimentation due to their relatively higher 

mass. Due to their longer lifetimes, fine aerosols undergo many chemical processes, 

thereby increasing their chemical complexity. Due to the ambiguous composition of fine 

aerosols, much research is currently devoted to characterizing its organic fraction, 

especially that which may lead to negative health effects to humans. 

1.4. Polycyclic Aromatic Hydrocarbons in Atmospheric Aerosols 

1.4.1. Sources and Distribution 

Polycyclic aromatic hydrocarbons (PAHs) are members of a unique class of 

atmospheric pollutants known to have significant impacts on human health. Major 

sources of PAHs include incomplete combustion during the burning or pyrolysis of 

organic matter under oxygen-deficient conditions, occurring through both anthropogenic 

and natural activities.6 These have been commonly termed as “primary sources”. During 
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such, PAHs are emitted as part of a highly complex mixture of polycyclic organic matter 

(POM), which according to the U.S. Clean Air Act Amendments of 1990, is defined as 

“organic matter with more than one benzene ring, and which have a boiling point greater 

than or equal to 212 °F (100 °C).”.7 While the exact nature of POM is still the subject of 

many studies, known to include more than 100 PAH species, the remainder of this text 

will refer to specific PAH species found within the POM fraction. 

Atmospheric PAHs are exhibited in the gas phase (e.g., highly volatile 2-ring 

species, such as naphthalene), solid phase (adsorbed/absorbed to the surfaces of aerosols; 

e.g., 5+-ring species such as benzo[a]pyrene), and semivolatile species that partition 

between the gas and aerosol phases (e.g., 3- and 4-ring compounds such as phenanthrene 

and pyrene, respectively). In general, there are five major PAH emission sources 

including domestic, mobile, industrial, agricultural and natural processes. While natural 

sources such as forest fires and volcanic eruptions also produce PAHs, anthropogenic 

activities are the predominant source.1  

1.4.2. Significance of PAHs 

Since the 1930’s PAHs have been known to contribute to indirect toxicological 

and carcinogenic effects through their promutagenic properties.3 While a variety of data 

sources exist supporting the carcinogenicity of PAHs, one key source is a list of “Priority 

Pollutants” devised by the U.S EPA, which is a compilation of species regularly 

monitored in the atmosphere. PAHs are toxic through their ability to be inhaled and 

transferred into the human body through the alveolar cells of the lung.8–10 This occurs for 

PAHs in the gas and aerosol phases, with the latter being limited to aerosols that are 

small enough to become embedded in the alveolar cells (i.e., aerosols with diameters ≤ 

2.5 µm).8 
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1.4.3. Analysis of Polycyclic Aromatic Hydrocarbons 

For the analysis of atmospheric PAHs, gas chromatography (GC) has been 

commonly used, mainly due to its greater selectivity, resolution and sensitivity compared 

to other analytical systems (e.g., liquid chromatography).11 Generally GC is coupled to 

mass spectrometry (MS) to yield better sensitivity and lower limits of detection than 

other detection methods (e.g., flame-ionization and electron capture detectors). However, 

GC-MS detection of PAH species with relatively high molecular weight (e.g., species 

with 5+ rings) is limited due to their volatility, and thus a combination of GC and LC 

techniques have been used.12  

1.5. Oxidation Products of Polycyclic Aromatic Hydrocarbons in Atmospheric 

Aerosols 

1.5.1. Sources and Distribution 

As previously mentioned, PAHs are emitted through a variety of primary sources 

and occur in the atmosphere either in the gas or aerosol phases, in some cases partitioning 

between both. PAH derivatives, which typically incorporate a polar functional group onto 

the main PAH structure, are also emitted through primary sources. However, the majority 

of these derivatives are formed through “secondary” oxidation reactions between PAHs 

and gas-phase oxidants (e.g., ozone, nitrate and hydroxy radicals) as well as photolysis. 

The resulting nitrated and oxygenated products are characterized by their higher 

molecular weight and decreased vapor pressure compared to their parent PAH precursors, 

increasing their partitioning into the aerosol phase. 

The secondary oxidation reactions for PAHs with gas-phase oxidants can occur 

with the PAH species either in the gas (homogeneous reaction) or aerosol phase 

(heterogeneous reaction). While the mechanisms behind the homogeneous oxidation of 
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PAHs have been extensively reported,13,14 the process by which the heterogeneous 

oxidation of PAHs is still unclear. 

Oxidation products of PAHs can be divided into two main groups: nitrated and 

oxygenated species. Nitrated species occur as derivatives with an attached nitro group 

(name nitro-PAHs), while oxygenated products are broken down to three classes: species 

with a carbonyl group (oxy-PAHs), hydroxyl group (hydroxy-PAHs) or carboxylic acid 

group (carboxy-PAHs).  

1.5.2. Significance of PAH Oxidation Products 

Oxidation products of PAHs have been found to exhibit similar toxicological and 

carcinogenic behavior as their PAH precursors. However, some nitrated and oxygenated 

species have been found to be even more toxic through their directly mutagenic 

activity.13,15–17 While species of nitro-PAHs are emitted through primary sources (e.g., 

incomplete combustion of diesel fuel), most nitrated and oxygenated species are formed 

through secondary processes, some of which have been found to be even more toxic than 

those formed through primary sources. An example of this is the formation pathways of 

the 1- and 2- isomers of nitropyrene. While 1-nitropyrene is the most abundant nitro-PAH 

found in diesel exhaust emissions, 2-nitropyrene has been shown to be formed through 

•OH and •NO3 radical initiated reactions.18–21 

1.5.3. Analytical Methods for Detecting Oxidation Products of PAHs 

In order to obtain reliable concentration measurements of individual PAH 

derivatives (concentrations sometimes as low as a few ng/g of total aerosol mass), 

versatile and robust analytical methods enabling their effective separation and 

identification are required. As with PAHs, most nitro-PAHs analyses are performed using 

GC-MS.22 While electron ionization (EI) was the more commonly used ionization 



6 
 

technique for the detection of nitro-PAHs in earlier work, negative-ion chemical 

ionization (NICI) has become the preferred method.23,24 In comparison to EI, NICI has 

yielded significantly improved sensitivity for nitro-PAHs.25 This is mainly due to the 

excellent ability of the nitro group to resonance capture thermal electrons created during 

the ionization of reagent gas in NICI, creating a high degree of selectivity with ionization 

and therefore improved sensitivity. Alternatively to GC methods, HPLC has been 

commonly deployed for the analysis of nitro-PAHs, being used in tandem with a  

fluorescence detector (FD), electrochemical detector (ED), and a chemiluminescnce 

detector (CD).22,26,27 In addition low resolution MS techniques have also been used for 

detecting nitro-PAHs with HPLC separation.28,29 In some cases HPLC separation has 

been found to be advantageous over GC methods for thermally labile nitro-PAHs 

species.22 

For oxygenated PAHs, GC-MS is also the method of choice.17 While typically 

more thermally stable than nitro-PAHs, some oxygenated PAHs are not suitable for GC-

MS analysis due to the potential formation of sampling artifacts. For example, 9,10-

phenanthrenedione has been observed to undergo decarbonylation during injection to 

give 9-fluorenone, resulting in an overestimation of 9-fluorenone and underestimation of 

9,10-phenanthrenedione.30 For the most part, EI is generally preferred during MS 

detection of oxygenated compounds, however, recent work has shown the ability to 

detect some species with NICI.31  

While GC methods are the most widely reported for the detection of oxygenated 

PAHs, LC methods are also commonly utilized. LC becomes advantageous for thermally 

labile and higher molecular weight compounds that are not easily detected with GC 



7 
 

methods. In terms of ionization sources, atmospheric pressure chemical ionization 

(APCI) has been used more than other methods such as atmospheric pressure photo-

ionization (APPI) and electrospray ionization (ESI). Delhomme et al. compared APCI 

and ESI for the detection of oxy-PAHs (both ketone and diketone species) and found that 

APCI provided enhanced sensitivity.32 In addition, Grosse and Letzel investigated both 

APCI and ESI for 30 different species of oxy-PAHs, hydroxy-PAHs and carboxy-PAHs, 

and found that APCI yielded greater response for compounds compared to ESI.33 

1.5.4. Identification of PAH Oxidation Products 

For the most part, previously reported studies utilizing GC or LC separation 

methods with various detection techniques have done so through the use of individual 

high purity standards. However, the number of products formed through various PAH 

oxidation pathways has been suggested to be in the hundreds of compounds, much more 

than the 20–40 currently reported in analytical methods. Most of these currently do not 

have high purity standards readily available. Therefore, detection techniques that include 

the ability to provide information in the identity of the unknown product are greatly 

needed. 

Of the detection techniques used for nitrated and oxygenated PAH products, MS 

methods offer more potential information. This is ever more true for techniques such as 

EI (for GC) and ESI and APCI (for LC) methods, each having the ability to provide 

insight into the molecular structure through the fragmentation induced by ionizing the 

intact molecule. By determining trends in fragmentation and ionization patterns between 

compounds with different functional groups, many oxidation products of PAHs that were 

previously unknown can be more readily identified.  
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1.6. Partitioning of Organic Aerosol Species in the Atmosphere 

1.6.1. Theory of Gas-Particle Partitioning 

PAHs and their oxidation products are only minor components of the fraction of 

organic material observed in atmospheric aerosols. In the lower troposphere, organic 

compounds can account for between 20–90% of the total aerosol mass.34 These organic 

compounds are commonly referred to as “organic aerosol” (OA), which is produced from 

primary sources (primary OA; POA) or through secondary transformation processes once 

emitted into the atmosphere (secondary OA; SOA). While POA has been well 

characterized, the evolution of SOA in the troposphere is mostly uncertain.  

SOA is formed through the oxidation of semivolatile compounds, resulting in 

products with lower volatility that more readily condense into the aerosol phase. The 

transformation processes behind the production of SOA are only partially characterized 

(20–50% of compounds identified).35 Consequentially, information on the specific role of 

organics in the atmosphere is limited and cannot be well represented in current climate 

models or health assessment studies. In order to effectively model the behavior of OA in 

the atmosphere and under laboratory conditions, a correct implementation of the gas-

particle phase partitioning of OA species is essential. In this respect, the volatility of 

organics is a key property as it determines the phase partitioning of individual species and 

provides insights into the contribution of secondary processes to the organic content of 

aerosols. While the volatility of OA was studied previously, matrix-analyte interactions 

were not accounted for thus leading to incorrect estimates and poor modeling. The 

understanding of OA partitioning is also essential for obtaining a comprehensive 

chemical characterization of OA, which has been problematic due to its complexity, 

covering a wide range of volatilities. 
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1.6.2. Influence of the Aerosol Surface on Gas-Particle Partitioning 

Current models aimed at addressing the behavior of SOA in the atmosphere are 

based on the volatility and hygroscopicity of individual SOA compounds.34,36–39 

Nevertheless, previous work has shown that the volatility of standard compounds (i.e., 

under ideal conditions) is not an accurate tool to determine the desorption of analytes 

from the aerosol matrix.40 The incorporation of SOA and oxidized POA into the aerosol 

matrix can exert a significant effect on the resulting volatility of all species present within 

the total OA fraction. This, in turn, exhibits a direct influence on the gas-particle phase 

partitioning of OA in the atmosphere. These induced matrix-analyte interactions have yet 

to be accounted for to ensure high accuracy of the models describing the role of OA in 

atmospheric processes. 

1.6.3. Analytical Methods for Defining Matrix-Analyte Interactions 

A comprehensive characterization of OA can be problematic due to the 

interactions of semi-volatile and non-volatile organic species. For the analysis of OA 

samples, gas chromatography with mass spectrometry detection (GC-MS) is the most 

commonly employed technique. However, as previously mentioned, current GC-MS 

methods are not suitable for the analysis of less-volatile and non-volatile high molecular 

weight species. Other MS techniques have been deployed using various ionization 

methods with limitations in detailed identification of low volatility species due to 

complex MS spectra and ionization suppression from background species.41–43 Analytical 

thermal desorption (TD) and pyrolysis (Py) coupled to GC-MS was used for qualitative 

OA characterization.40 However the quantification, and in turn the gas-particle phase 

partitioning, of  semi-volatile and non-volatile species has not been addressed.44–46 TD-

Py/GC-MS was recently shown to be a valuable tool in establishing matrix-analyte 
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interactions and induced volatilities of OA species in aerosols.40 With TD-Py/GC-MS, 

low volatility species that are not detected with GC-MS are either thermally desorbed (at 

300–400°C) from the aerosol matrix or pyrolyzed (>400°C) and transferred to the GC-

MS system. Pyrolysis involves the thermal decomposition of organic molecules, thus at 

pyrolysis temperatures only decomposition products are observed. Thus parent molecules 

can be identified through the detection of signature molecular fragments. 

Additionally, thermogravimetry coupled to differential scanning calorimetry 

(TGA-DSC) can be a powerful tool in providing direct estimations of activation energies 

(Ea) and vaporization enthalpies (ΔHvap). By estimating the vaporization characteristics of 

an individual standard as both a neat standard and adsorbed to a particle substrate surface 

(e.g., silica, graphite, or graphene particles), the influences of the particle surface can be 

calculated based on the differences between them. 



11 
 

CHAPTER 2 

2. SUMMARY AND OBJECTIVES 

With the heterogeneous oxidation of polycyclic aromatic hydrocarbons producing 

a complex array of products, analytical methods capable of detecting, identifying and 

quantifying the wide range of derivatives are needed. This is even more important for 

derivatives that, for the most part, are present in aerosols in minor amounts, down to the 

order of ng/g. While current methods exist that would allow for the detection of 

individual oxidation products, identification of the detected compound is problematic due 

to a lack of available standards. Additionally, current analytical techniques are limited in 

their ability to detect analytes at sub-ppm (on the order of ng/g) levels (e.g., nitro-PAHs) 

due to the large amount of background organic matter in atmospheric aerosols. Therefore 

this work first focused on developing more sensitive methods to simultaneously detect, 

identify and quantitate the wide range of PAH oxidation products. These classes of PAH 

derivatives included nitro-PAHs (containing a nitro group), oxy-PAHs (carbonyl 

containing species), hydroxy-PAHs (containing a hydroxyl group) and carboxy-PAHs 

(containing a carboxylic acid group). Method development was focused on extraction and 

sample preparations, optimizing analysis conditions and identifying the targeted groups 

of PAH derivatives.  

In the second major body of this work, the developed methods were applied to 

detecting and identifying products formed during the heterogeneous oxidation of PAH in  
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both a small-scale flow reactor and then a large-scale atmospheric simulation chamber 

with real-world diesel exhaust particles. 

During this work the following research projects were accomplished: (1)The 

development and optimization of a sample preparation procedure to simultaneously 

detect and quantify trace concentrations of PAH derivatives in atmospheric 

aerosols. Utilizing a combination of Soxhlet extraction and solid phase extraction (SPE), 

PAHs and PAH derivatives were extracted from atmospheric aerosols and fractionated to 

improve sensitivity in their detection and quantification. With gas-chromatography 

separation, classes of derivatives were detected by quadrupole mass spectrometry (Q-

MS) using electron ionization (EI) for oxy-, hydroxy-, and carboxy-PAHs and negative-

ion chemical ionization (NICI) for nitro-PAHs. Due to the limited capability of GC-MS 

analysis to detect hydroxy- and carboxy-PAHs, these species were derivativized prior to 

their analysis. In order to enhance the GC-Q-MS method, MS data acquisition was 

performed in selected ion-total ion (SITI) mode, which combines the advantage of 

comprehensive spectral data given by total ion current (TIC) mode and the sensitivity of 

selected ion monitoring (SIM) mode. Sensitivities between the SITI and SIM modes were 

compared for 62 different PAH derivatives. The results from this project are presented 

and discussed in Chapter 3, Simultaneous Analysis of Polycyclic Aromatic Hydrocarbons 

and Their Various Oxidation Products. 

(2) Optimizing PFE to efficiently extract polar PAH derivatives from 

atmospheric aerosols. PFE was optimized by investigating the impact of extraction 

temperature, pressure, time, volume and solvent selection. Initial optimization was 

performed using a mixture of standards of representative species. The optimized method 
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was then applied to wood smoke PM (WS PM) (a relatively polar aerosol matrix) and 

diesel exhaust PM (SRM 2975). The amounts extracted were compared to those obtained 

with Soxhlet extraction (a standard and exhaustive extraction method). For SRM 2975, 

the mass fractions obtained in this work were compared to previously reported data as 

well as certified values. The results of this work are presented and discussed in Chapter 4, 

Extraction of Polycyclic Aromatic Hydrocarbons and Their Oxidation Products Using 

Pressurized Fluid Extraction. 

(3) Evaluating the ionization and fragmentation patterns exhibited by 

nitrated and oxygenated derivatives of PAHs during their analysis by APCI-HRMS 

to develop a tool in identifying unknown polar derivatives of PAHs. Fragmentation 

and ionization patterns of PAH derivative compounds with APCI were investigated first 

by direct infusion of individual standards of polar PAH derivatives, including nitro-, oxy-

, hydroxy- and carboxy-PAHs. The compounds tested were specifically chosen as to 

represent a wide range of functional groups and also stereoisomers. Focus was given to 

observing trends in fragmentation patterns between similar species. Using high resolution 

MS data, the mechanisms behind fragmentation were proposed. Observations from the 

APCI-HRMS analysis of standards were then applied to identifying unknown products 

formed during the heterogeneous ozonation of pyrene in a small-scale flow reactor. Using 

the neutral loss and fragmentation patterns observed, multiple products were identified. 

The full results are presented and discussed in Chapter 5, Determination of Nitrated and 

Oxygenated Derivatives of Polycyclic Aromatic Hydrocarbons Using Atmospheric 

Pressure Chemical Ionization with High Resolution Mass Spectrometry (APCI-HRMS). 
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(4) Investigating products formed during the heterogeneous oxidation of 3- 

and 4-ring PAHs in a small-scale flow reactor. Atmospheric reactions involving the 

heterogeneous oxidation of 3- and 4-ring PAHs were simulated in a small-scale flow 

reactor. Reactions between PAHs adsorbed to quartz filters (aerosol surrogate) and 

various gas phase oxidations (i.e., NO2, O3 and NO3/N2O5) were performed at reaction 

lengths between 5–300 min. Specific focus was given to detecting and identifying a 

comprehensive range of products. Data and results are presented in Chapter 6, 

Heterogeneous Nitration and Ozonation of 3- and 4-ring Polycyclic Aromatic 

Hydrocarbons. 

(5) Atmospheric reactions of diesel exhaust particle and gas emissions with 

gas-phase oxidants in a large-scale aerosol reaction chamber to evaluate the 

mechanism behind the formation/loss of PAHs and nitro-PAH derivatives. A large-

scale aerosol reaction chamber (LAC) was designed and constructed to simulate the 

processing of diesel exhaust aerosols in the atmosphere. The performance of the LAC 

system was evaluated by determining wall loss rates for both gas- and particle phase 

species. The chemical processing of diesel engine exhaust (both aerosols and gas-phase 

material) was then evaluated by connecting a diesel engine to the LAC system and 

injecting diesel engine exhaust into the reactor. Experiments were performed with 

different oxidants (i.e., NO2 and UV exposure). Products observed during the small-scale 

flow reactor project were targeted during the analysis of samples collected from the LAC 

reactor during diesel engine experiments. The results from this work and pertinent 

discussion are presented in Chapter 7, Formation and Decay of Aerosol-Associated 

Nitrated PAHs in Diesel Engine Exhaust Exposed to Atmospheric Oxidants.  
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(6) Investigating the influence of the aerosol matrix on the gas-particle 

partitioning of PAHs and polar PAH derivatives in atmospheric aerosols by 

calculating vaporization enthalpies and activation energies while adsorbed to 

different surrogate aerosol surfaces. Using TGA-DSC and TD-Py/GC-MS, the 

thermodynamic and kinetic behavior of PAHs were evaluated while adsorbed to various 

types of surrogate aerosol surfaces. Initial experiments were performed to optimize 

various experimental conditions to accurately determine values of ΔHvap and Ea from the 

DSC and TGA data, respectively. Values of ΔHvap and Ea were first determined for 

individual species in the form of solid neat chemicals using different calculation 

approaches to establish the most accurate and precise method. Anthracene was then 

adsorbed to various surrogate aerosol surfaces (i.e., silica, graphite, activated carbon and 

graphene particles). Effective ΔHvap
eff and Ea

eff  values were then calculated and compared 

to those obtained for the neat standard, providing direct insight to the influence of the 

particle surface on the portioning of the PAH compound. Results are provided in Chapter 

8, Investigating the Influence of Particle Surfaces on the Gas-Particle Partitioning of 

Organic Aerosol Species in Atmospheric Aerosols. 
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CHAPTER 3 

3. SIMULTANEOUS ANALYSIS OF POLYCYCLIC AROMATIC 

HYDROCARBONS AND THEIR VARIOUS OXIDATION PRODUCTS. 

3.1. Experimental  

3.1.1. Materials and Reagents 

Method development was performed using two different types of particulate 

matter: (1) Standard reference material (SRM) 2975, industrial forklift diesel exhaust 

particulate matter, purchased from NIST (Gaithersburg, MD, USA), and (2) WS PM 

generated previously from softwood and hardwood combustion.47 All reagents were of 

analytical-reagent grade with a purity of ≥98% unless stated otherwise. GC-grade 

dichloromethane (DCM) and LC-MS optima grade methanol (MeOH) were obtained 

from Fisher Scientific (Chicago, IL, USA) and n-hexane (HPLC grade, 95%) was 

obtained from Sigma-Aldrich (St. Louis, MO, USA). The individual standards, recovery 

standards (R.S.s) and internal standard (I.S.), along with their manufacturers, are listed in 

Table 1. Standards of PAHs were obtained as a mixture called QTM PAH mix (15 PAHs) 

from Sigma-Aldrich. Hydroxy-PAHs were derivatized using 99% N,O-

bis(trimethylsilyl)trifluoroacetamide (BSTFA) with 1% of trimethylchlorosilane (TMCS) 

obtained from Sigma-Aldrich. 
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Table 1. Analytes investigated in the development of the SPE procedure, including 
information on their purpose, source, retention data and ion used for quantitative GC-MS 
analysis. 
Analytea Molecular MW tR/tRIS

b MS Ions (m/z) Purpose Manufacturer 

  formula (g/mol)   Quant. Confirm.     

        PAHs  

       Naphthalene C10H8 128 0.45 128 102, 64 Analyte Supelco 
Acenaphthylene C12H8 152 0.61 152 126, 76 Analyte Supelco 
Acenaphthene C12H10 154 0.64 154 126, 76 Analyte Supelco 
Fluorene C13H10 166 0.73 166 139, 82 Analyte Supelco 
Phenanthrene C14H10 178 0.83 178 152, 89 Analyte Supelco 
Anthracene C14H10 178 0.84 178 152, 89 Analyte Supelco 
Phen/Anth-C1 A Tc C15H12 192 0.90 192 191, 165 Analyte NAa 
Phen/Anth-C1

 B Tc C15H12 192 0.91 192 191, 165 Analyte NA 
Phen/Anth-C1 C Tc C15H12 192 0.92 192 191, 165 Analyte NA 
Phen/Anth-C1

 D Tc C15H12 192 0.92 192 191, 165 Analyte NA 
Fluoranthene C16H10 202 1.00 202 106, 92 Analyte Supelco 
Pyrene C16H10 202 1.03 202 174, 101 Analyte Supelco 
Cyclopenta[cd]pyrenef C18H10 226 1.18 226 113 Analyte NA 
Flu/Pyr-C1 A Tc C17H12 216 1.07 216 215, 189 Analyte NA 
Flu/Pyr-C1 B Tc C17H12 216 1.08 216 215, 190 Analyte NA 
Flu/Pyr-C1 C Tc C17H12 216 1.09 216 215, 191 Analyte NA 
Flu/Pyr-C1 D Tc C17H12 216 1.10 216 215, 192 Analyte NA 
Flu/Pyr-C1 E Tc C17H12 216 1.10 216 215, 193 Analyte NA 
Flu/Pyr-C1 A Tc C17H12 216 1.11 216 215, 194 Analyte NA 
Flu/Pyr-C1 B Tc C17H12 216 1.12 216 215, 195 Analyte NA 
Benzo[ghi]fluoranthene Td C18H10 226 1.18 216 224, 112 Analyte NA 
Benzo[a]anthracene C18H12 228 1.21 228 114, 101 Analyte Supelco 
Triphenylene  Td C18H12 228 1.21 228 114, 101 Analyte NA 
Chrysene C18H12 228 1.22 228 114,101 Analyte Supelco 
Benzo[b]fluoranthene C20H12 252 1.36 252 126, 113 Analyte Supelco 
Benzo[a]pyrene C20H12 252 1.40 252 126, 113 Analyte Supelco 
Indeno[1,2,3-cd]pyrene Td C22H12 276 1.54 276 138, 124 Analyte Supelco 
Dibenzo[a,h]anthracene C22H14 278 1.80 278 139, 124 Analyte Supelco 
Benzo[ghi]perylene C22H12 276 1.58 276 138, 124 Analyte Supelco 

        Nitro-PAHs 

       2-Methyl-1-nitronaphthalene C11H9NO2 187 0.75 187 171 Analyte Sigma-Aldrich 
2-Nitrobiphenyl C12H9NO2 199 0.79 199 183, 156 Analyte Accustandard 
5-Nitroquinoline C9H6N2O2 174 0.73 174 158, 144 Analyte Sigma-Aldrich 
3-Nitrobiphenyl C12H9NO2 199 0.86 199 183, 156 Analyte Sigma-Aldrich 
5-Nitroacenaphthene C12H9NO2 199 0.97 199 183, 154 Analyte Sigma-Aldrich 
2-Nitrofluorene C13H9NO2 211 1.02 211 204, 195 Analyte Sigma-Aldrich 
1-Nitronaphthalene C10H7NO2 173 0.74 173 157, 141 Analyte Sigma-Aldrich 
2-Nitronaphthalene C10H7NO2 173 0.77 173 157, 141 Analyte Sigma-Aldrich 
9-Nitroanthracene C14H9NO2 223 1.04 223 207,  216 Analyte Sigma-Aldrich 
2-Nitro-9-fluorenone C13H7NO3 225 1.07 225 209, 195 Analyte Sigma-Aldrich 
9-Nitrophenanthrene C14H9NO2 223 1.07 223 207, 195 Analyte Accustandard 
3-Nitrophenanthrene C14H9NO2 223 1.10 223 207, 191 Analyte Accustandard 
3-Nitrofluoranthene C16H9NO2 247 1.23 247 231, 215 Analyte Sigma-Aldrich 
1-Nitropyrene C16H9NO2 247 1.23 247 231, 215 Analyte Sigma-Aldrich 
7-Nitrobenzo[a]anthracenee C18H11NO2 273 1.35 273 257, 241 Analyte NA 
6-Nitrochrysene C18H11NO2 273 1.40 273 257, 241 Analyte Sigma-Aldrich 
1,3-Dinitropyrene C16H8N2O4 292 1.45 292 262, 246 Analyte Sigma-Aldrich 
1,6-Dinitropyrene C16H8N2O4 292 1.50 292 276, 262 Analyte Sigma-Aldrich 
1,8-Dinitropyrene C16H8N2O4 292 1.52 292 262, 246 Analyte Sigma-Aldrich 
1-Nitrobenzo[e]pyreneh C20H11NO2 297 1.64 297 281, 267 Analyte NA 
6-Nitrobenzo[a]pyrene C20H11NO2 297 1.66 297 281, 267 Analyte Sigma-Aldrich 
3-Nitrobenzo[e]pyreneh C20H11NO2 297 1.79 297 281, 267 Analyte NA 
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Table 1. cont. 
Analytea Molecular MW tR/tRIS

b MS Ions (m/z) Purpose Manufacturer 

  formula (g/mol)   Quant. Confirm.     

        Oxy-PAHs 

       1,3-Indanedione C9H6O2 146.14 0.55 146 104, 76 Analyte Sigma-Aldrich 
1,4-Naphthoquinone C10H6O2 158.15 0.59 158 130, 104 Analyte Sigma-Aldrich 
1-Naphthaldehyde C11H8O 156.18 0.65 156 127, 101 Analyte Sigma-Aldrich 
9-Fluorenone C13H8O 180.2 0.80 180 152, 126 Analyte Sigma-Aldrich 
Xanthone C13H8O2 196.2 0.88 196 168, 139 Analyte Sigma-Aldrich 
Anthrone C14H10O 194.23 0.93 194 165, 139 Analyte Sigma-Aldrich 
Anthrone A Te C14H10O 194.23 0.86 194 165, 139 Analyte NA 
Anthrone B Te C14H10O 194.23 0.88 194 165, 139 Analyte NA 
Anthrone C Te C14H10O 194.23 0.89 194 165, 139 Analyte NA 
Anthrone D Te C14H10O 194.23 0.89 194 165, 139 Analyte NA 
9,10-Anthraquinone C14H8O2 208.21 0.95 208 180, 165 Analyte Sigma-Aldrich 
9,10-Phenanthroquinone C14H8O2 208.21 1.06 180 208, 152 Analyte Sigma-Aldrich 
Benzanthracenone A  Tf C17H10O 230 1.16 202 230, 101 Analyte NA 
Benzanthracenone B Tf C17H10O 230 1.18 202 230, 101 Analyte NA 
Benzanthracenone C Tf C17H10O 230 1.19 202 230, 101 Analyte NA 
Benzanthracenone D Tf C17H10O 230 1.24 202 230, 101 Analyte NA 
Benzanthracenedione A Tf C18H10O2 258 1.28 202 230, 101 Analyte NA 
Benzanthracenedione B Tf C18H10O2 258 1.29 202 230, 258 Analyte NA 
6,13-Pentacenequinone C22H12O2 308 1.72 308 280, 252 Analyte Sigma-Aldrich 
Bianthrone C28H16O2 384 1.86 355 384, 162 Analyte Sigma-Aldrich 

        Hydroxy- & Carboxy-PAHg 

      2-Hydroxybiphenyl C12H10O 242.39 0.76 242 227, 242 Analyte Alfa Aesar 
4-Hydroxybiphenyl C12H10O 242.39 0.85 242 227, 211 Analyte Alfa Aesar 
4-Hydroxyindole C8H7NO 205.33 0.79 205 190, 163 Analyte Sigma-Aldrich 
5-Hydroxyindole C8H7NO 205.33 0.80 205 190, 163 Analyte Sigma-Aldrich 
2-Hydroxy-9-fluorenone C13H8O2 268.38 1.01 268 268, 195 Analyte Sigma-Aldrich 
4-Phenanthrenemethanol C15H12O 282.45 1.03 280 280, 265 Analyte Sigma-Aldrich 
9-Anthracenemethanol C15H12O 282.45 1.03 280 280, 265 Analyte Sigma-Aldrich 
9-Phenanthrenecarboxylic acid C15H10O2 296.44 1.10 294 205, 294 Analyte Sigma-Aldrich 
9-Phenanthrol C14H10O 268.43 1.01 266 251, 235 Analyte Sigma-Aldrich 
1-Hydroxypyrene C16H10O 292.45 1.16 290 275, 250 Analyte Sigma-Aldrich 
1,8-Dihydroxyanthraquinone C14H8O4 384.11 1.17 369 370, 177 Analyte Sigma-Aldrich 

        Recovery Standards 

       Naphthalene-d8 C10D8 136.22 0.45 136 108, 68 R.S. Sigma-Aldrich 
Phenanthrene-d10 C14D10 188.23 0.83 188 160, 94 R.S. Supelco 
Anthracene-d10 C14D10 188.23 0.84 188 160, 94 R.S. Supelco 
Pyrene-d10 C16D10 212.31 1.03 212 106, 92 R.S. Isotec 
1-Nitronaphthalene-d7 C10D7NO2 180.21 0.74 180 164, 144 R.S. CDN isotopes 
2-Nitrofluorene-d9 C13D9NO2 220.27 1.02 220 188, 168 R.S. CDN isotopes 
9-Nitroanthracene-d9 C14D9NO2 232.29 1.03 232 220, 193 R.S. CDN isotopes 
1-Nitropyrene-d9 C16D9NO2 256.31 1.26 256 240, 226 R.S. CDN isotopes 
6-Nitrochrysene-d11 C18D11NO2 284.36 1.40 284 268, 238 R.S. CDN isotopes 
2-Chloroanthraquinone C14H7ClO2 242.66 1.04 242 214, 212 R.S. Sigma-Aldrich 
1-Hydroxypyrene-d9 C16HD9O 301.18 1.15 299 284, 267 R.S. CDN isotopes 

2'-Chloro-2-hydroxy-4-
methylbenzophenone C14H11ClO2 318.87 1.00 303 73, 91 R.S. Sigma-Aldrich 

        Internal Standards 

       Fluoranthene-d10 C16D10 212.31 1.00 212 174, 101 I.S. Supelco 
a "T" denominates tentative idetification based on mass spectra match with NIST library; standards were not available (NA). 
b The relative retention time was calculated using I.S. Fluoranthene-d10  

   c Quantified using the standard of the non-methylated PAH 
     d Quantified using benz[a]anthracene 

      e Quantified using the 9-fluorenone standard  
      f Quantified using the pyrene standard  
      g For hydroxy-PAHs the data listed pertain to their trimethylsilyl derivatives. 

   3.1.2. Extraction 
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Extractions were performed in triplicate using either ~50 mg of diesel exhaust 

SRM-2975 material or ~10 mg of WS PM. The bulk PM was spiked with a R.S. mixture 

(standards listed in Table 1) prior to extraction. The amount of the recovery standards 

spiked to SRM 2975 and WS PM was ~0.2 µg with respect to the majority of the analytes 

with the exception of hydroxy-PAH, which was at ~2 µg.  

Glass thimbles were used for all Soxhlet extractions to avoid the contamination 

observed for cellulose thimbles in preliminary experiments. The Soxhlet extractions were 

carried out sequentially with 90 mL of DCM and 90 mL of MeOH each for 18 h. After 

the extraction, the DCM and MeOH fractions were cooled to room temperature and 

evaporated under a stream of nitrogen gas. DCM fractions were evaporated to 100 μL 

while the MeOH extracts were completely dried and re-dissolved in 100 μL of DCM. 

Both extracts were then diluted to 1.0 mL with n-hexane and submitted to SPE 

fractionation.  

3.1.3. SPE Fractionation and Preparation for GC analysis 

The SPE protocol previously employed for the purification of nitro-PAHs by 

Bamford et al. was further developed in the present study to allow for the fractionation of 

PAHs, oxy-PAHs, nitro-PAHs, and hydroxy-PAHs.23 An aminopropyl SPE cartridge 

with 500 mg of sorbent, 55 – 105 µm particle size, and a 125 Å pore size was used (Sep-

Pak, Waters, Milford, MA). Prior to fractionation, the SPE sorbent was conditioned 

sequentially with DCM and n-hexane (6 mL each). Initial tests revealed that conditioning 

with MeOH prior to DCM resulted in the early elution of hydroxy-PAHs in 20 % DCM 

in n-hexane; therefore, methanol was not used as a conditioning solvent in this study. 

Optimization of SPE eluting conditions was performed using a mixture of 

standards representative for each class of compounds. Originally, the elution solvents 



20 
 

were employed sequentially using 6.0 mL (2 × 3 mL) solutions of 0, 20, 50, 100 % (v/v) 

of DCM in n-hexane followed by 50 % (v/v) DCM in methanol and 100 % methanol. 

However, while applying the SPE protocol to PM extracts, the 100 % DCM and 50 % 

DCM in MeOH fractions did not exhibit significant recoveries of the evaluated species. 

Therefore these fractionation steps were removed from the final SPE protocol. The 

collected SPE fractions were concentrated to 200 µL under a gentle nitrogen stream, and 

then divided into two 100 µL aliquots. One aliquot was used to determine PAHs, oxy-

PAHs and nitro-PAHs and the other was evaporated and derivatized with 100 µL of 

BSTFA+TMCS at 70 °C for 6 h (as recommended by the manufacturer) for GC-MS 

analysis of hydroxy-PAHs. Reaction times necessary to achieve complete 

trimethylsilylation were evaluated, with 6 h assuring complete derivatization. For 

hydroxyindoles, both mono-TMS and di-TMS derivatives can be observed; however, 

only di-TMS derivatives were observed with a 6 h reaction time. Fluoranthene-d10 (10 µL 

of 10 ng µL-1) was used as the internal standard for all analyses.   

3.1.4.  GC-MS Analysis 

Determination of PAHs, oxy-, hydroxy- and nitro-PAHs was performed using an 

Agilent 6890N GC coupled to a 5975C MS with interchangeable EI and NICI ion 

sources. The analyses were accomplished on a 30 m long DB-5MS column with 0.25 mm 

I.D., and 0.25 μm film thickness (J&W Scientific, Inc., Folsom, CA). Ultra pure helium 

(99.999 %) was used as the carrier gas with a constant flow rate of 1.0 mL min-1. A 

split/splitless liner with deactivated glass wool was used (Restek, Bellefonte, PA). The 

injection volume was 1.0 µL. The temperatures of split/splitless injector and transfer line 

temperatures were set at 250 °C and 280 °C, respectively. 
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For the analysis of PAHs, oxy-, and hydroxy-PAHs, the impact of splitless time 

(0.5 – 2 min) and pressure pulse was evaluated. The final conditions were 1 min splitless 

time  with a pressure pulse of 25 psi for 0.95 min. The GC oven temperature program 

started at 40 °C for 1 min, increased at a rate of 20 °C min–1 to 140 °C, followed by a 

gradient of 10 °C min–1 to 290 °C, and an increase at the rate of 15 °C min–1 to 310 °C, 

and was held at the final temperature for 12 min with the overall runtime of 34.3 min. 

The ion source temperature was set at 230 °C. 

For the GC-NICI-MS determination of nitro-PAHs, the optimized injection 

splitless time was 1.5 min with a pressure pulse of 25 psi for 1.45 min. The temperature 

program started at 35 °C and held for 1 min, then increased at the rate of 30 °C min–1 to 

150 °C, followed by an increase at the rate of 15 °C min–1 to 300 °C, and held at the final 

temperature for 10 min. The NICI source temperatures were optimized for nitro-PAHs in 

a range of 150–300 °C, and themethane gas flow rate was optimized within a range of 

1.0–2.5 mL min–1. The final NICI conditions used for the analysis of PM samples were a 

source temperature of 300 °C and a methane flow rate of 2.5 mL min-1. For GC-NICI-MS 

analysis of oxy-PAH, the same temperature program was used as in EI analysis using the 

NICI conditions optimized for nitro-PAHs.  

The GC-MS data were acquired either in selected-ion monitoring (SIM) mode or 

a combination of the total ion current (TIC) and SIM modes, i.e., selected-ion-total-ion 

(SITI). SITI combines the advantages of improved sensitivity, resulting from the use of 

SIM monitoring single ions, and compound identification ability using TIC. A dwell time 

of 25 ms was used for all ions listed in Table 3 for both SIM and TIC modes and a range 

of 50–500 m/z was used for TIC. For the PM sample analysis SITI mode was employed. 
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3.1.5.  Data Processing 

The LODs were determined based on the signal of the target ions with the highest 

signal-to-noise ratios (Table 1). Instrumental LODs were calculated from the calibration 

curves using the equation LOD = 3.3*sy/k, where k was a slope of the calibration curve 

and sy was the standard error of the predicted y-value for each x-value obtained by a least 

square linear regression. From the acquired calibration profiles, only the points within 

one order of magnitude of the LOD were used for the LOD calculations.  

For quantification, an internal standard method was used employing fluoranthene-

d10 as the internal standard. A single I.S. used was correcting for final volume changes of 

sample injected. To determine the extraction efficiencies during the sample preparation, 

an R.S. mixture was added (Table 1) to each sample. The R.S. mixture consisted of 

representative species for each class of compounds studied and its recoveries were 

determined using least square calibration curves. Using R.S. yields, two quantification 

approaches were employed: 1) based on the total response across all SPE fractions, and 

2) based on the response of a single SPE fraction that exhibited the greatest response for 

the particular compound class (i.e., hexane fraction for PAHs, 20 % DCM for oxy- and 

nitro-PAHs, and 100 % MeOH for hydroxy-PAHs). Recovery standards were used to 

correct for analyte losses during the extraction and fractionation procedures, using the 

total recovery percentage (R.S. %) for quantification of combined SPE fractions and a 

single fraction R.S. % for quantification based on the single fraction. 
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3.2. Results and Discussion 

3.2.1.  GC-MS Conditions 

The GC-MS methods targeting analysis of selected PAHs or their oxidation 

products were previously reported,24,31,48–54 thus only selected parameters were evaluated 

to achieve higher sensitivity while reducing contribution from the matrix.  

Nitro-PAHs are known to decompose at high temperatures; thus, a cool on-

column injection is typically preferred for their analysis by GC-MS.24 However, on-

column injection is not favored when other interfering contaminating species may be 

present, decreasing the sensitivity of nitro-PAH analysis. Thus we have employed a 

split/splitless injection port. For nitro-PAHs, the use of pressure pulse was investigated 

(Figure 1), giving a slight increase in response. The injection splitless time (0.5–2 min) 

was then evaluated while employing pulsed injection (Figure 2). As expected, an increase 

in the splitless time from 0.5 min to 1 min resulted in a significantly higher response, 

without a significant impact on peak shape. A further increase in splitless time was not 

significant for PAHs, oxy-, and hydroxy-PAHs and thus 1 min splitless time was used for 

all GC-EI-MS analyses. For nitro-PAHs, the sensitivity of analysis was improved by 

extending the splitless time to 1.5 min, without a negative impact on peak shape.  
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Fig. 1. Evaluation of the pressure pulse effect on response of nitro-PAHs using GC-NICI-
MS. A splitless time of 1.5 min was used. Determination of the response was based on 
the peak area of quantification ions (see Table 3) using TIC data. 
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Fig. 2. Impact of splitless time on (a) PAH and (b) oxy-PAH response. All analyses were 
performed with a 1.45 min pressure pulse at 25 psi. Determination of the response was 
based on the peak area of the quantification ions (see Table 1) using TIC data. 
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In this study, GC-MS with EI was utilized for quantitative determination of 

PAHs, oxy- and hydroxy-PAHs. For nitro-PAHs and oxy-PAHs, a NICI source was 

previously employed.24,31 To further enhance the detectability of these species in trace 

concentrations, we have evaluated the impact of the source temperature and methane gas 

flow rate (demonstrated for select species and conditions in Figure 3). Increasing the ion 

source temperature did not significantly impact the response at lower temperatures (<250 

°C). However, increasing the temperature to 300 °C provided a notably higher response 

(Figure 3a), possibly due to removal of interferences from the background. The effect of 

methane flow rate was more pronounced, giving the highest response at 2.5 mL min-

1(Figure 3b). This may be explained by an increase in the number of thermal electrons 

that can effectively enhance ionization.55 The optimal conditions used in all further 

experiments were an ion source temperature of 300 °C and a flow rate of 2.5 mL min-1.  

3.2.2. Limits of Detection and Calibration Parameters 

The limits of detection were evaluated for the GC-EI-MS and GC-NICI-MS 

methods using the SIM and SITI-SIM modes for PAHs and their oxidation products 

(Table 2). Although SIM (as expected) exhibited slightly lower LODs for the majority of 

species, most likely due to the decreased number of data points across the peak for SITI-

SIM compared to SIM, the results obtained for the two acquisition modes were similar 

(Table 2). For PAHs, LODs were in a range of 4–30 pg, with the higher molecular weight 

species comprising the upper part of the range. Oxy-PAHs gave LODs within 5–136 pg 

and hydroxy-PAHs (as TMS derivatives) in a range of 0.8–21 ng. Analysis of nitro-PAHs 

in NICI mode yielded LODs of 10 pg or less. The SITI method was employed for trace 

analysis of PAHs and polar PAH derivatives in PM since it is not only suitable for the 
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determination of trace concentrations of the analytes, but also enables the identification 

of possible unknowns in TIC mode. 

 

Fig. 3. The impact of (a) NICI temperature at 300 °C (at a methane flow rate of 2.5 mL 
min-1) and (b) methane flow rate (at an ion source temperature of 300 °C), on the 
response of representative nitro-PAHs.Analyses were randomly performed in triplicate; 
the data are presented as mean ± one standard deviation. 
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Oxy-PAHs are typically quantified using GC-EI-MS.51,56 Their analysis in NICI 

mode has also been reported as the carbonyl group within oxy-PAHs is able to stabilize 

the excess negative charge associated with the capture of thermal electrons within the 

NICI process.31,55 However, to the best of our knowledge, the LODs of the NICI method 

were not evaluated. Our evaluation of LODs of oxy-PAHs analyzed in the NICI mode 

showed significantly higher values in comparison to those obtained in the EI mode (Table 

2). Nevertheless, the acquisition in NICI mode may be a valuable tool for the identity 

confirmation of tentatively identified oxy-PAHs (using MS library) when no standards 

are available. For example, benzanthrone (or possibly benzo[n]fluorenone) isomers that 

were tentatively identified in extracts of both PM matrices were confirmed upon analysis 

in the NICI mode (Figure 4). 

Table 2 reports also other calibration parameter including slopes and correlation 

coefficients. For some compounds lower slopes usually along with lower correlation 

coefficient (of 0.97 and 0.98) were observed. This was observed for large molecular 

weight PAHs and nitro-PAHs suggesting interferences from stationary phase for later 

eluting species. Lower correlation coefficients for selected polar species such as 5-

nitroquinoline and some quionones were attributed to interactions with the stationary 

phase.  
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Table 2. Least linear regression data LODs for PAHs and polar PAH derivatives in both 

SITI-SIM and SIM 
Compound Regression data  obtained  in SITI-SIM mode   LOD (ng) 

 
Slope Intercept  Sy R2 

 
SITI-SIM SIM 

                

PAHs (GC-EI-MS) 
       Naphthalene 0.901 -0.131 0.098 0.9960 

 
0.011 0.010 

Acenaphthylene 0.597 -0.030 0.025 0.9994 
 

0.011 0.012 
Acenaphthene 0.687 -0.056 0.037 0.9990 

 
0.013 0.013 

Fluorene 1.003 -0.005 0.030 0.9997 
 

0.008 0.008 
Phenanthrene 0.992 -0.020 0.025 0.9998 

 
0.004 0.008 

Anthracene 1.074 -0.037 0.034 0.9997 
 

0.008 0.007 
Fluoranthene 1.080 -0.086 0.055 0.9991 

 
0.010 0.012 

Pyrene 0.834 -0.178 0.147 0.9896 
 

0.032 0.030 
Benzo[a]anthracene 1.183 -0.103 0.081 0.9984 

 
0.029 0.024 

Chrysene 1.019 -0.187 0.146 0.9931 
 

0.022 0.017 
Benzo[b]fluoranthene 0.798 -0.198 0.171 0.9849 

 
0.021 0.016 

Benzo[a]pyrene 0.501 -0.149 0.142 0.9740 
 

0.032 0.022 
Indeno[1,2,3-cd]pyrene 0.560 -0.141 0.122 0.9843 

 
0.034 0.018 

Dibenzo[a,h]anthracene 0.703 -0.159 0.128 0.9891 
 

0.021 0.014 
Benzo[ghi]perylene 0.000 0.000 0.000 0.0000 

 
0.000 0.000 

        Nitro-PAHs (GC-NICI-MS) 
       2-Methyl-1-nitronaphthalene 0.460 0.032 0.080 0.9976 

 
0.005 0.006 

2-Nitrobiphenyl 1.307 0.137 0.306 0.9842 
 

0.005 0.005 
5-Nitroquinoline 0.685 0.158 0.231 0.9912 

 
0.002 0.006 

1-Nitronaphthalene 0.628 0.040 0.144 0.9957 
 

0.008 0.043 
2-Nitronaphthalene 0.554 0.028 0.114 0.9967 

 
0.002 0.003 

3-Nitrobiphenyl 0.445 -0.074 0.071 0.9979 
 

0.007 0.006 
5-Nitroacenaphthene 1.206 0.118 0.417 0.9906 

 
0.003 0.002 

2-Nitrofluorene 0.945 0.127 0.300 0.9917 
 

0.003 0.005 
9-Nitroanthracene 1.685 -0.221 0.225 0.9948 

 
0.008 0.004 

2-Nitro-9-fluorenone 0.833 0.080 0.306 0.9891 
 

0.004 0.003 
9-Nitrophenanthrene 0.746 0.000 0.190 0.9948 

 
0.010 0.004 

3-Nitrophenanthrene 1.169 -0.0065 0.267 0.9958 
 

0.005 0.004 
3-Nitrofluoranthene 1.139 0.023 0.258 0.9959 

 
0.001 0.002 

1-Nitropyrene 1.557 -0.327 0.355 0.9959 
 

0.002 0.002 
6-Nitrochrysene 1.774 -0.269 0.334 0.9899 

 
0.004 0.004 

1,3-Dinitropyrene 2.518 0.271 0.363 0.9893 
 

0.009 0.006 
1,6-Dinitropyrene 0.821 -0.249 0.319 0.9881 

 
0.007 0.006 

6-Nitrobenzo[a]pyrene 0.000 0.000 0.000 0.0000 
 

0.000 0.000 

        Oxy-PAHs (GC-EI-MS) 
       1,3-Indanedione 0.478 -0.144 0.123 0.9940 

 
0.009 0.010 

1,4-Naphthoquinone 0.081 -0.020 0.020 0.9946 
 

0.027 0.012 
1-Naphthaldehyde 1.251 -0.219 0.209 0.9975 

 
0.008 0.006 

9-Fluorenone 1.136 -0.310 0.253 0.9956 
 

0.005 0.006 
Xanthone 0.855 -0.333 0.333 0.9865 

 
0.011 0.017 

Anthrone 0.749 -0.217 0.172 0.9953 
 

0.010 0.010 
9,10-Anthraquinone 0.389 -0.257 0.297 0.9533 

 
0.050 0.039 

9,10-Phenanthraquinone 0.330 -0.165 0.180 0.9740 
 

0.049 0.018 
1,8-
Dihydroxyphenanthraquinone 

0.298 -0.214 0.270 0.9359 
 

0.016 0.010 

6,13-Pentacenedione 0.019 -0.003 0.004 0.9898 
 

0.136 0.105 
Bianthrone 0.000 0.000 0.000 0.0000 

 
0.000 0.000 

        Oxy-PAHs (GC-NICI-MS) 
       1,3-Indanedione 0.021 0.015 0.066 0.9778 

 
0.084 0.061 

1,4-Naphthoquinone 0.004 -0.008 0.012 0.9848 
 

0.036 0.017 
1-Naphthaldehyde 0.029 0.026 0.094 0.9774 

 
0.065 0.012 

9-Fluorenone 0.004 -0.008 0.011 0.9899 
 

0.108 0.086 
Xanthone 0.007 -0.005 0.009 0.9991 

 
0.035 0.010 

9,10-Anthraquinone 0.007 -0.018 0.004 0.9997 
 

0.816 0.442 
6,13-Pentacenedione 0.010 -0.009 0.013 0.9318 

 
0.058 0.024 

Anthrone 0.000 0.000 0.000 0.0000 
 

0.000 0.000 
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Table 2. cont. 
Compound Regression data  obtained  in SITI-SIM mode   LOD (ng) 

  Slope Intercept  Sy R2   SITI-SIM SIM 

        Hydroxy-PAHs (GC-EI-MS)a 
       2-Hydroxybiphenyl 0.099 -0.021 0.0957 0.9988 

 
0.0008 0.0001 

4-Hydroxybiphenyl 0.018 0.007 0.0419 0.9936 
 

0.009 0.002 
4-Hydroxyindole 0.068 -0.035 0.1217 0.9961 

 
0.011 0.013 

5-Hydroxyindole 0.062 -0.043 0.0728 0.9983 
 

0.012 0.007 
9-Phenanthrol 0.047 -0.084 0.0587 0.9981 

 
0.009 0.003 

2-Hydroxy-9-fluorenone 0.501 -0.171 0.7110 0.9912 
 

0.016 0.013 
4-Phenanthrenemethanol 0.018 -0.017 0.0490 0.9908 

 
0.001 0.001 

9-Phenanthrenecarboxylic acid 0.141 -0.165 0.1475 0.9987 
 

0.021 0.016 
1-Hydroxypyrene 0.173 -0.444 0.2941 0.9965 

 
0.001 0.002 

1,8-Dihydroxyanthraquinone 0.000 0.000 0.0000 0.0000 
 

0.006 0.003 
                
a Hydroxy-PAHs detected as trimethylsilyl derivatives; both 4- and 5-hydroxyindole detected as di-trimethylsilyl derivatives 
*Sy: Standard error of the y estimates  

       R2: Correlation coefficient 
       

 

 

Fig. 4. GC-MS extracted ion chromatograms (TIC) of benzanthrone and its isomers in 
20% DCM in hexane SPE fractions of wood smoke PM extracts, analyzed with EI and 
NICI.  Both chromatograms were obtained in SITI mode. 
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3.2.3. SPE Fractionation 

The SPE method, previously developed for purification of nitro-PAHs,23,24 was 

optimized to fractionate and purify PAHs and their oxidation products, using an 

aminopropyl phase SPE cartridge with a solvent elution gradient (i.e., eluting the analytes 

of different polarity by using solvents of different polarity). In the initial evaluation of the 

method, it was taken into consideration that nitro-PAHs were effectively eluted 

previously with 20 % DCM in hexane.23,24 This was confirmed in the initial fractionation 

of representative compounds for PAHs, hydroxy-, oxy- and nitro-PAHs (Figure 5). PAHs 

then eluted in the 100 % hexane fraction; oxy-PAHs and nitro-PAHs in 20 and 50 % 

methylene chloride (in hexane) fractions and hydroxy-PAHs in the 100 % DCM fraction 

(Figure 5). As of note, lower molecular weight species (in this case nitroquinoline and 

hydroxybiphenyl) eluted later compared to higher molecular weight species (i.e., 

structures with three or more aromatic rings), perhaps due to a decreased steric hindrance 

and thus greater affinity for the sorbent phase.  

Based on the results reported above, n-hexane, 20 % DCM, 50 % DCM and 100 

% MeOH were used in the protocol applied to PM. Although hydroxy-PAHs eluted 

within the 100 % DCM fraction in the preliminary experiments, the 100 % MeOH 

fraction was used to ensure the elution of all highly polar species that may be present in 

PM. Even though the step with 50 % DCM in hexane was not essential for the target 

analyte elution, it was used in the final protocol to ensure elimination of compounds that 

may interfere with the hydroxy-PAH analysis in PM extracts. 

 

 

 



32 
 

 

 

Fig. 5. SPE fractionation of standards of PAHs and polar PAH derivatives using an 
amino-propyl cartridge. Data are shown as average values. All standard deviations were 
within 5% RSD. 
 

3.2.4. Characterization of PM  

Two PM matrices, diesel exhaust (SRM 2975) and WS PM, were characterized 

using the method developed in this study. To ensure high efficiency, sequential Soxhlet 

extraction with DCM and methanol was employed. The majority of all PAHs and polar 

PAH derivatives were exhaustively extracted from SRM 2975 using DCM. This was 
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confirmed by subsequent Soxhlet extraction of remaining residue particles using MeOH. 

For WS PM, only residual concentrations (<10 %) were found in such methanol extracts. 

The analytes of interest were not detected in the methanol extracts of SRM 2975, 

probably due to their significantly lower concentrations in this matrix. Using the 

developed SPE procedure, the Soxhlet extracts were fractionated. Elution distribution 

profiles (see Appendices I & II) were consistent with those observed in standard 

mixtures, with PAHs mainly eluting in hexane, oxy- and nitro-PAHs being recovered 

mostly in the fraction eluted by 20 % DCM in hexane, and hydroxy-PAHs being 

completely isolated within the 100 % MeOH fraction. The only exceptions were 9-

fluorenone and 9,10-phenanthroquinone which yielded significant recoveries in 20 % 

DCM in hexane. 

From a practical standpoint, it is easier to quantify selected species by analyzing a 

single SPE fraction, which contains the highest abundance of the analytes. To evaluate 

the accuracy of this quantification approach, the recoveries of individual species in the 

SPE fraction with the highest abundance were compared to the recoveries of these 

species from all SPE fractions combined (Table 3). As mentioned in the experimental 

section, the accuracy of recoveries was ensured by the use of appropriate recovery 

standards. The determined recoveries for diesel exhaust PM SRM 2975 were also 

compared to those published by NIST and previous studies.23,24,57  

Despite the significant differences in concentrations in diesel exhaust and WS 

PM, similar SPE fractionation trends were observed for most compounds using both 

quantification methods. It should be noted that the recoveries obtained for the recovery 

standards (R.S.) using the two quantification methods were significantly different, i.e., 
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the R.S. % obtained for total SPE quantification was higher than that obtained from a 

single fraction R.S. %. This difference may be due to fractions containing target analytes 

below the LOD and R.S. of significant abundance (e.g., 5–20 %), leading to an 

underestimation of analytes when quantified by the sum of all fractions.  
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Table 3. Mass concentration of PAHs and their polar derivatives in both diesel exhaust PM (SRM 2975) and WS PM. 

    SRM 2975 Diesel exhaust SRM 2975 Wood smoke PM 

    NIST datac SPE-total fractionsa SPE-fractionb SPE-total fractionsa SPE-fractionb 

Analytes µg g-1 µg g-1 µg g-1 µg g-1 µg g-1 
                                  

PAHs             100% hexane       100% hexane 

  Phenanthrene 17 ± 2.80 13.84 ± 0.24 14.03 ± 0.21 198.8 ± 5.7 210.2 ± 6.4 

  Anthracene 0.038 ± 0.008 0.51 ± 0.08 0.55 ± 0.08 25.99 ± 0.82 27.82 ± 0.67 
  Phen/Anth-C1 A T 0 ± 0.00 0.86 ± 0.04 0.91 ± 0.04 19.34 ± 0.95 20.44 ± 0.98 

  Phen/Anth-C1 B T       1.75 ± 0.07 1.85 ± 0.06 24.27 ± 1.15 25.65 ± 1.19 
  Phen/Anth-C1 C T       0.53 ± 0.01 0.55 ± 0.02 6.38 ± 0.07 6.74 ± 0.08 

  Phen/Anth-C1 D T       0.88 ± 0.02 0.93 ± 0.02 17.27 ± 0.68 18.26 ± 0.75 
  Phen/Anth-C1 E T          ND     ND   20.33 ± 0.38 21.49 ± 0.43 

  Fluoranthene 26.6 ± 5.1 18.61 ± 0.34 18.86 ± 0.51 169.9 ± 6.0 171.9 ± 6.0 
  Pyrene 0.9 ± 0.24 0.61 ± 0.04 0.64 ± 0.05 174.1 ± 6.8 177.1 ± 6.9 

  Benzo[a]anthracene 0.317 ± 0.066 0.42 ± 0.02 0.44 ± 0.02 67.0 ± 2.5 61.1 ± 2.2 
  Triphenylene T 5.22 ± 0.20 4.63 ± 0.78 4.32 ± 0.72   ND     ND   

  Chrysene 4.56 ± 0.16 4.34 ± 0.44 4.00 ± 0.35 76.7 ± 3.6 71.9 ± 3.3 
  Benzo[b]fluoranthene 11.5 ± 3.6 10.85 ± 0.36 8.75 ± 0.06 62.9 ± 2.6 48.9 ± 3.0 

  Benzo[a]pyrene 0.0522 ± 0.0053 1.85 ± 0.29 1.57 ± 0.20 49.8 ± 2.1 38.4 ± 1.8 
  Indeno[1,2,3-cd]pyrene 1.4 ± 0.2 0.83 ± 0.46 0.64 ± 0.12 32.7 ± 1.5 19.42 ± 1.04 

  Dibenzo[a,h]anthracene 0.37 ± 0.07 0.32 ± 0.05 0.14 ± 0.02   ND     ND   

  Total PAHs       60.8 ± 1.2 58.2 ± 1.0 945.5 ± 12.3 919.3 ± 12.5 

                                  

Oxy-PAHs             20% DCM in hexane       20% DCM in hexane 

  9-Fluorenone   NA   4.42 ± 0.47 3.53 ± 0.06 52.51 ± 0.53 44.45 ± 0.58 
  Xanthone   NA     ND     ND   21.26 ± 0.29 21.26 ± 0.29 

  Anthrone B T   NA   4.78 ± 0.31 2.34 ± 0.13 18.80 ± 0.51 19.35 ± 0.51 
  Anthrone D T   NA   2.71 ± 0.31 2.71 ± 0.28 35.48 ± 0.95 14.44 ± 0.64 

  Anthrone E T   NA   2.56 ± 0.31 2.56 ± 0.17 34.59 ± 0.65 14.35 ± 0.34 
  9,10-Anthraquinone   NA   8.71 ± 0.33 7.70 ± 0.34   ND     ND   

  Benzanthrone A T   NA   0.71 ± 0.07 0.71 ± 0.07 3.55 ± 0.09 3.65 ± 0.09 
  Benzanthrone B T   NA   0.64 ± 0.07 0.64 ± 0.07 5.88 ± 0.18 3.57 ± 0.12 

  Benzanthrone C T   NA   0.75 ± 0.10 0.65 ± 0.07 3.57 ± 0.05 3.60 ± 0.05 
  Benzanthrone D T   NA   2.39 ± 0.28 2.17 ± 0.24 7.95 ± 0.28 8.26 ± 0.28 

  Benzanthracenedione A T   NA   2.10 ± 0.28 2.10 ± 0.28 2.58 ± 0.10 2.69 ± 0.10 
  Benzanthracenedione B T   NA   0.24 ± 0.02 0.24 ± 0.02 2.37 ± 0.12 2.51 ± 0.12 

  Total oxy-PAHs       20.2 ± 3.4 15.5 ± 2.8 188.5 ± 1.5 138.1 ± 1.1 
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Table 3. continued. 

    SRM 2975 Diesel exhaust SRM 2975 Wood smoke PM 

    NIST datac SPE-total fractionsa SPE-fractionb SPE-total fractionsa SPE-fractionb 

Analytes µg g-1 µg g-1 µg g-1 µg g-1 µg g-1 

Nitro-PAHs             20% DCM in hexane       20% DCM in hexane 

  2-Methyl-1-nitronaphthalene       0.14 ± 0.01 0.16 ± 0.01   ND     ND   
  2-Nitronaphthalene 0.11 ± 0.02 0.35 ± 0.03 0.35 ± 0.03   ND     ND   

  3-Nitrobiphenyl <0.007 ± NA 0.061 ± 0.017 0.091 ± 0.008   ND     ND   
  9-Nitroanthracene 2.97 ± 0.45 1.85 ± 0.09 1.84 ± 0.05   ND     ND   

  2-Nitro-9-fluorene       0.05 ± 0.00 0.06 ± 0.00   ND     ND   
  9-Nitrophenanthrene 0.444 ± 0.047 0.40 ± 0.01 0.50 ± 0.01   ND     ND   

  3-Nitrophenanthrene 0.185 ± 0.017 0.23 ± 0.01 0.38 ± 0.01   ND     ND   
  3-Nitrofluoranthene       2.39 ± 0.05 2.59 ± 0.08   ND     ND   

  1-Nitropyrene 34.8 ± 4.7 29.5 ± 0.6 32.5 ± 0.7   ND     ND   
  7-Nitrobenza[a]anthracene 3.46 ± 0.78 1.94 ± 0.23 2.09 ± 0.28   ND     ND   

  6-Nitrochrysene 2.22 ± 0.45 1.89 ± 0.20 2.14 ± 0.24   ND     ND   
  1,3-Dinitropyrene 1.18 ± 0.29 0.65 ± 0.08 0.74 ± 0.08   ND     ND   

  1,6-Dinitropyrene 2.36 ± 0.39 1.24 ± 0.04 1.41 ± 0.04   ND     ND   
  1,8-Dinitropyrene 3.1 ± 0.57 4.76 ± 0.30 4.43 ± 0.23   ND     ND   

  1-Nitrobenzo[e]pyrene 1.788 ± NA 0.85 ± 0.03 0.90 ± 0.02   ND     ND   
  6-Nitrobenzo[a]pyrene 1.36 ± 0.27 0.68 ± 0.04 0.76 ± 0.04   ND     ND   

  3-Nitrobenzo[e]pyrene 6.857 ± NA 3.78 ± 0.19 4.03 ± 0.14   ND     ND   

  Total nitro-PAHs       50.8 ± 0.8 55.0 ± 0.9             

                                  

                                  

Hydroxy-PAHs             100% methanol       100% methanol 

  2-Hydroxybiphenyl   NA     ND     ND   20.6 ± 3.2 20.6 ± 3.2 

  3-Hydroxybiphenyl   NA     ND     ND   56.3 ± 3.9 56.3 ± 3.9 
  4-Hydroxybiphenyl   NA     ND     ND   47.0 ± 2.9 47.0 ± 2.9 

  2-Hydroxy-9-fluorenone   NA     ND     ND   90.6 ± 8.6 90.6 ± 8.6 
  9-Phenanthrol   NA     ND     ND   143 ± 14 143 ± 14 

  1-Hydroxypyrene   NA     ND     ND   96.3 ± 8.1 96.3 ± 8.1 
  Total hydroxy-PAHs                   454 ± 19.0 454 ± 19.0 

                                  
a The amount of each analyte is calculated using total % recovery standard from all SPE fractions 
b The amount of each analyte is calculated using recovery standard % from SPE-100% hexane for PAHs,   
  SPE-20% DCM for oxy- and nitro-PAHs and SPE-100% MeOH for hydroxy PAHs                    
c Values reported by Bamford et al.23 and NIST57 
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For the majority of PAH species, the recoveries from the single SPE (hexane) 

fraction were similar to those of the combined fractions. For both PM matrices, higher 

molecular weight PAH species (i.e., molecular structures comprised of 4–5 rings, 

excluding pyrene and fluoranthene) yielded relatively lower values within the single SPE 

fraction (45–94 %). This was due to the incomplete elution of these species in the hexane 

fraction, in contrast to pyrene-d10 (70 %), which was used as a recovery standard. The use 

of higher molecular weight recovery standards was designed to correct recoveries of 

higher molecular weight species. Many oxy-PAH species were completely isolated 

within the 20 % DCM fraction. Some species, such as 9-fluorenone, xanthone, and some 

anthrone and benzanthrone isomers, resulted in a broader distribution over SPE fractions, 

particularly for diesel exhaust PM. The lower concentrations of these mildly polar species 

in diesel exhaust PM may be more effectively retained. In addition, the less pronounced 

effect for wood smoke PM may be explained by the limited availability of active sites on 

the SPE column which may be covered by either other species or the matrix. In this work 

we have used both 20 and 50 % DCM in hexane both to enhance the purification and to 

separate the analytes from matrix. However, the isolation of most oxy-PAHs species 

within 20 % DCM and some species showing significant recoveries in the 50 % DCM in 

hexane fraction suggests that using 50 % DCM in hexane would be more appropriate. In 

contrast, quantification based on the isolated SPE fraction of nitro-PAHs in diesel 

exhaust PM produced total concentrations consistent with the values obtained in 

combined fractions. All hydroxy-PAHs were eluted in the last SPE fraction, resulting in 

similar recovery values obtained from the total and single SPE fractions. 
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Besides comparing the two methods of quantification, recoveries were also 

compared to data reported by NIST and other researchers (see Table 3).23,24,57 For the 

majority of PAHs, similar abundances were obtained. However for some species, namely 

anthracene, pyrene, and benzo[a]pyrene, the observed recoveries were significantly 

higher than the reported values. The correct use of calibration standards for these species 

was verified, thus the differences may be due to greater recovery efficiencies of the new 

method. For nitro-PAHs, the analyte concentrations using SPE were slightly lower than 

the values reported by NIST using PFE with DCM and amino/cyano LC purification 

followed by GC-NICI-MS analysis, with the exception of 2-nitronaphthalene, 3-

nitrobiphenyl, 3-nitrophenanthrene and 1,8-dinitropyrene which showed significantly 

higher recoveries in the present study. Batch variations or age of the reference material, 

with greater age resulting in lower recoveries, may also play a role in the differences of 

recoveries.   

As mentioned previously, although GC-NICI-MS analysis of oxy-PAHs was not 

as sensitive as that in EI mode for the analysis of oxy-PAHs, it was useful as a tool for 

the identity confirmation of tentatively identified compounds. In analyzing both WS and 

SRM 2975 PM extracts, we identified several oxy-PAH species for which no standards 

were available, i.e., anthrone isomers (C14H10O), benzanthrone/benzo[a]fluorenone 

isomers (C17H10O) and benzanthracenedione isomers (C18H10O2). These compounds were 

tentatively identified by comparing mass spectra to the NIST Mass Spectral Library 

(2005), each yielding >90 % matching quality. In order to confirm the identity of these 

compounds as being oxy-PAHs, the samples were re-analyzed in NICI mode using the 

same GC oven temperature program (see Figure 4). The resulting chromatograms 
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exhibited peaks with matching retention times showing that these compounds contained a 

sufficiently electronegative functional group (i.e., carbonyl group), thus supporting that 

these compounds were indeed oxy-PAHs (Figure 4). 

3.3. Conclusions 

An analytical method has been developed utilizing Soxhlet extraction followed by 

SPE fractionation for the simultaneous analysis of PAHs and their oxidation products. 

Using GC-MS analysis in SITI acquisition mode, several classes of PAH oxidation 

products were analyzed using trimethylsilylation for hydroxy species and a fairly simple 

ion source exchange for analysis of nitro-PAHs using NICI. The SPE protocol was 

applied to both diesel exhaust (SRM 2975) and WS PM, showing that a quantitative 

assessment of the total mass concentration within PM for each species (either PAHs or 

oxidation products) can be done directly through analyzing the respective SPE fractions, 

i.e., 50 % DCM in hexane for oxy- and nitro-PAHs and 100 % MeOH for hydroxy-PAHs 

using appropriate recovery standards. However due to the complexity of sample 

preparation, it is advisable to use recovery standards even when the quantification 

assessing the analyte distribution over all fractions is employed.  

This SPE fractionation procedure can be a valuable asset in toxicological studies 

aimed at determining the mutagen capacity of polar PAHs such as oxy- and hydroxy-

PAHs, which have been less studied. NICI analysis of oxy-PAHs was shown to be a 

useful tool for confirming the identity of species tentatively identified in EI mode through 

MS spectral database matching. 
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CHAPTER 4 

4. EXTRACTION OF POLYCYCLIC AROMATIC HYDROCARBONS AND 

THEIR OXIDATION PRODUCTS USING PRESSURIZED FLUID 

EXTRACTION. 

4.1. Experimental  

4.1.1.  Materials and Reagents 

Method development was first performed using standards spiked to sand (standard 

Ottawa; EMD Millipore, Darmstadt, Germany) to determine the essential extraction 

volumes. All remaining experiments evaluating the impact of temperature on mass 

fractions extracted  were performed using WS PM  (WS PM) (~10 mg)  that was 

generated from softwood and hardwood combustion47, and diesel engine exhaust standard 

reference material (SRM 2975; NIST, Gaithersburg, MD, USA). WS PM and SRM 2975 

were chosen due to their differences in their matrices, with WS PM being relatively polar 

and SRM 2975 being relatively non-polar,thus allowing to evaluate extraction 

efficiencies of target analytes in a range of different matrix interactions.  More detailed 

information on the collection and storage methods for the WS PM can be found 

elsewhere. Briefly, the WS PM was collected from 22 different residential wood stoves, 

14 burning hardwoods and 8 burning softwoods. The hardwood stoves were located in 

Grand Forks, ND and the softwood stoves in Salt Lake City, UT and Boulder, CO. 

During sample collection the stoves were continuously operated in similar manners. 

Particulate samples were collected from the inside walls of the chimney at a distance of ~ 

0.5 m up the smoke plume.   
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All reagents were of analytical-reagent grade with a purity of ≥98 % unless stated 

otherwise. GC-grade DCM and LC-MS optima grade MeOH were obtained from Fisher 

Scientific (Chicago, IL,USA). n-hexane (HPLC grade, 95 %) was obtained from Sigma-

Aldrich (St. Louis, MO, USA). Information on all individual standards, recovery 

standards (R.S.s), internal standard (I.S.), and tentatively identified species is provided in 

Table 4. PAH standards (15 PAHs in total) were obtained as a mixture from Sigma-

Aldrich (QTM PAH Mix). For derivatization 99 % N,O-

bis(trimethylsilyl)trifluoroacetamide (BSTFA) with 1 % of trimethylchlorosilane 

(TMCS) (Sigma-Aldrich) was used.  
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Table 4. Compound information, quantitation parameters and mass concentration in WS 
PM for all PAHs in this work. 
                

Compound Namea tR Quant. Quant. Calibration Recovery Manufacturer 

  
(min) Mode Ion Based On Standard 

 

    
(m/z) 

                   

PAHs 

      
 

naphthalene 4.570 SIM 128 Standard naph-d8 Supelco 

 
acenapthylene 6.657 SIM 152 Standard phen-d10 Supelco 

 
acenaphthene 6.943 SIM 154 Standard phen-d10 Supelco 

 
fluorene 7.857 SIM 166 Standard phen-d10 Supelco 

 
phenanthrene 9.728 SIM 178 Standard phen-d10 Supelco 

 
anthracene 9.835 SIM 178 Standard phen-d10 Supelco 

 
2-methylanthracene 11.029 SIM 192 Standard phen-d10 Supelco 

 
phen/anth-C1 A T 10.818 SIM 192 2-methylanthracene phen-d10 Nac 

 
phen/anth-C1 B T 10.868 SIM 192 2-methylanthracene phen-d10 NA 

 
phen/anth-C1 C T 10.969 SIM 192 2-methylanthracene phen-d10 NA 

 
phen/anth-C1 D T 11.033 SIM 192 2-methylanthracene phen-d10 NA 

 
phen/anth-C1 E T 11.085 SIM 192 2-methylanthracene phen-d10 NA 

 
phen/anth-C2 A T 11.923 TIC 206 phenanthrene phen-d10 NA 

 
phen/anth-C2 B T 12.074 TIC 206 phenanthrene phen-d10 NA 

 
phen/anth-C2 C T 12.136 TIC 206 phenanthrene phen-d10 NA 

 
phen/anth-C2 D T 12.184 TIC 206 phenanthrene phen-d10 NA 

 
phen/anth-C2 E T 12.251 TIC 206 phenanthrene phen-d10 NA 

 
fluoranthene 12.337 SIM 202 Standard py-d10 Supelco 

 
pyrene 12.812 SIM 202 Standard py-d10 Supelco 

 
1-methylpyrene 13.620 SIM 216 1-methylpyrene py-d10 NA 

 
flu/pyr-C1 A T 13.822 SIM 216 1-methylpyrene py-d10 NA 

 
flu/pyr-C1 B+C T 13.867 SIM 216 1-methylpyrene py-d10 NA 

 
flu/pyr-C1 D T 14.062 SIM 216 1-methylpyrene py-d10 NA 

 
flu/pyr-C1 E T 14.130 SIM 216 1-methylpyrene py-d10 NA 

 
flu/pyr-C1 F T 15.630 SIM 228 Standard py-d10 Supelco 

 
flu/pyr-C1 G T 15.703 SIM 228 Standard py-d10 Supelco 

 
benzo[e]pyrene 17.975 SIM 252 Standard py-d10 Supelco 

 
benz[a]anthracene 18.067 SIM 252 Standard py-d10 Supelco 

 
chrysene 18.234 SIM 252 Standard py-d10 Supelco 

 
benz[e]acephenanthrylene 18.599 SIM 252 Standard py-d10 Supelco 

 
benzo[k]fluoranthene 18.672 SIM 252 Standard py-d10 Supelco 

 
benzo[j]fluoranthene 18.841 SIM 252 Standard py-d10 Supelco 

 
benzo[a]fluoranthene 20.636 SIM 276 Standard py-d10 Supelco 

 
benzo[a]pyrene 20.707 SIM 278 Standard py-d10 Supelco 

 
indeno[1,2,3-cd]pyrene 21.014 SIM 276 Standard py-d10 Supelco 

 
benzo[ghi]perylene 9.302 SIM 180 Standard py-d10 Sigma 

 
benzo[ghi]perylene 11.507 SIM 208 Standard py-d10 Sigma 

 
dibenzo[a,h]anthracene 10.467 SIM 196 Standard py-d10 Sigma 
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Table 4. cont. 
                

Compound Namea tR Quant. Quant. Calibration Recovery Manufacturer 

  
(min) Mode Ion Based On Standard 

 

    
(m/z) 

                   

Oxy-PAHs 

      
 

benzo[b]naphtho[2,3-d]furan T 14.124 SIM 216 9-fluorenone 2-caq Supelco 

 
benzo[b]naphtho[2,1-d]furan T 13.419 SIM 216 9-fluorenone 2-caq NA 

 
9-fluorenone 12.999 TIC 218 Standard 2-caq NA 

 
Xanthone 13.170 TIC 218 Standard 2-caq NA 

 
9,10-anthraquinone 13.342 TIC 218 Standard 2-caq NA 

 
benzo[b]fluoren-11-one T 14.815 SIM 230 9-fluorenone 2-caq NA 

 
benzo[a]fluoren-11-one T 15.072 SIM 230 9-fluorenone 2-caq NA 

 
benzo[c]fluoren-7-one T 15.318 SIM 230 9-fluorenone 2-caq NA 

 
benz[de]anthracen-7-one T 15.971 SIM 230 9-fluorenone 2-caq NA 

 
benz[a]anthracene-7,12-dione 16.701 SIM 258 Standard 2-caq Sigma 

Nitro-PAHs 

      
 

9-nitrophenanthrene 15.791 SIM 223 Standard 2-caq Sigma 

 
3-nitrofluoranthene 19.269 SIM 247 Standard 2-caq Sigma 

 
1-nitropyrene 19.719 SIM 247 Standard 2-caq Sigma 

 
6-nitrochrysene 21.822 SIM 273 Standard 2-caq Sigma 

Hydroxy- & Carboxy-PAHsd 

      
 

2-hydroxybiphenyl 7.843 SIM 211 Standard 2-CHMe Alfa Aesar 

 
hydroxybiphenyl T 9.171 SIM 227 4-hydroxybiphenyl 2-CHM NA 

 
4-hydroxybiphenyl 9.570 SIM 242 Standard 2-CHM Alfa Aesar 

 
7-hydroxycadalene 11.399 SIM 271 Standard 2-CHM Sigma 

 
9-phenanthrol 12.653 SIM 266 Standard 2-CHM Sigma 

 
3-phenanthrol T 12.923 SIM 266 9-phenanthrol 2-CHM NA 

 
2-hydroxy-9-fluorenone 12.760 SIM 253 Standard 2-CHM Sigma 

 
4-phenanthrenemethanol 13.231 SIM 191 Standard 1-OH-py-d9 Sigma 

 
hydroxypyrene A T 15.496 SIM 290 Standard 1-OH-py-d9 Sigma 

 
hydroxypyrene B T 15.733 SIM 290 1-hydroxypyrene 1-OH-py-d9 NA 

 
hydroxypyrene C T 15.128 SIM 290 1-hydroxypyrene 1-OH-py-d9 NA 

 
1-hydroxypyrene 15.170 SIM 290 1-hydroxypyrene 1-OH-py-d9 NA 

 
hydroxypyrene D T 15.823 SIM 290 1-hydroxypyrene 1-OH-py-d9 NA 

 
1,8-dihydroxyanthraquinone 16.166 SIM 369 Standard 1-OH-py-d9 Sigma 

 
4-phenenthrene-COOH 13.824 SIM 205 Standard 1-OH-py-d9 Sigma 

 
9-anthracene-COOH 14.201 SIM 205 Standard 1-OH-py-d9 Sigma 

 
9-phenanthrene-COOH 14.695 SIM 205 Standard 1-OH-py-d9 Sigma 

 
n-phen/anth-COOH 14.725 SIM 205 9-phen-COOH 1-OH-py-d9 NA 

Recovery Standards 

      
 

naphthalene-d8 6.586 SIM 136 

  
Sigma-Adrich 

 
phenanthrene-d10 12.411 SIM 188 

  
Supelco 

 
anthracene-d10 12.538 SIM 188 

  
Supleco 

 
pyrene-d10 15.645 SIM 212 

  
Isotec 

Internal Standard 

      
 

fluoranthene-d10 15.138 SIM 212 

  
Supelco 

                

a Compounds that were identified without avialable standards are indicated with a "T" next to the compound name. 
 b Values in parenthesis are the relative reponse of the confirmation ions to that of the quantification ion listed. 
 c "NA" denotes that standards for that particular compound were not available during the time of the study. 
 d All hydroxy- and carboxy-PAHs are shown as trimethylsilyl derivatives after derivatization with BSTFA. 
 e 2-CHM is an acronym for 2-chloro-2-hydroxy-4-methylbenzophenone, 2-caq for 

2-chloroanthraquinone and 1-OH-py-d9 for 1-hydroxypyrene-d9. 
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4.1.2.  Extraction 

All extraction methods and parameters used in this study are listed in Table 5. The 

PFE extractions were performed using a home-built apparatus (previously described in 

detail) used for hot pressurized water extraction consisting of an HP 5890 GC oven, 

Waters 1100 LC pump, and the extraction vessel.58 Needle valves (VICI, Houston, TX, 

USA) were placed at the inlet and outlet of the PFE extraction vessel outside the oven. 

The PFE extraction vessel was comprised of an empty 50 mm x 4.6 mm ID (0.83 mL 

internal volume) stainless steel liquid chromatography column capped with 0.5 µm pore 

size stainless steel frits (Chromtech, Apple Valley, MN, USA). Extractions were 

performed in triplicate using either DCM or MeOH, which was chosen due to their 

polarities being similar to the polarity range of the targeted analytes. In terms of 

extraction efficiency, DCM has been shown to be comparable to other relatively non-

polar solvent systems in extracting lower molecular weight (2–4 ring) PAHs from SRM 

2975.59 However, it has been shown that DCM yields lower recoveries for higher 

molecular weight (5+ ring) PAHs than when using non-polar solvent systems (i.e., 

toluene).59–61 DCM has also been previously used for the extraction of nitro-PAHs from 

SRM 2975.23 For oxy-PAHs, ethyl acetate has been shown to be efficient for their 

extraction from urban PM and quartz fiber filters,62 however PFE has not, to our 

knowledge, been investigated for other PM matrices. Currently, PFE has not been 

reported for extracting highly polar PAH derivatives, such as hydroxy- and carboxy-

PAHs, from PM. These species may require a more polar solvent (i.e., MeOH) for 

efficient extraction from a polar matrix. However, such a polar solvent (when used either 

alone or as a modifier) has been shown to be less efficient at extracting PAHs from the 

PM matrix.60  
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The PFE extraction method consisted of several cycles, each including a static 

extraction step (5 min) followed by a dynamic extraction step at a flow rate of 0.6 mL 

min-1 for 5 min (i.e., a flushing volume of 3.0 mL, more than 3 internal cell volumes). To 

determine the total volume of DCM and number of extraction cycles sufficient to achieve 

a complete extraction of WS PM, initial experiments were performed with three cycles 

(each collecting 3 mL into a single vial), followed by three additional dynamic extraction 

steps, collecting each 3.0 mL fractions in separate vials (method 1 in Table 5).  

For extractions of PM, the extraction cell was first filled to approximately half 

volume with sand followed by ~10 mg of the PM. R.S. mixtures were then spiked to the 

PM and let sit for 2 min to allow for their complete adsorption onto the PM matrix.  The 

remaining volume of the extraction cell was then filled with sand. The amount of each 

R.S. spiked to PM was ~0.2 µg for the majority of analytes with the exception of 

hydroxy-PAHs, which was spiked at ~2.0 µg. Extraction temperatures were evaluated in 

a range of 130–200 °C. For these experiments three extraction cycles (giving a total of 

9.0 mL) were employed. The mass fractions obtained with the final PFE method at 100 

°C and 2000 psi (13.8 MPa) from WS PM and SRM 2975 were compared to those 

obtained using Soxhlet extraction. The extraction pressure was not evaluated since it was 

previously shown to have no significant role in the PAH recoveries from PM 

matrices.59,63,64 
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Table 5. Extraction parameters and information for the various PFE and Soxhlet methods 
evaluated in this work. 

                

  
Extraction Parameters 

Method Extraction Solvent Temp. Pressure Number of Total Volume  Dynamic 

Number Method 
 

(°C) (psi) Static Cycles of Extract (mL) Extraction (mL)a 
                

        1 PFE DCM 100 2000 3 9 9 

2 PFE DCM 100 2000 3 9 – 

3 PFE DCM 130 2000 3 9 – 

4 PFE DCM 160 2000 3 9 – 

5 PFE DCM 200 2000 3 9 – 

6 PFE MeOH 100 2000 3 9 – 

7 Soxhlet DCM – – – 90 – 

8 Soxhlet MeOH – – – 90 – 
                

a Collection of additional extract in a separate vial from the 9 mL collected during the 3 cycle extractions. 

 

All components of the Soxhlet apparatus (i.e., the extractor, condenser, thimble 

and flask) were obtained from Chemglass (Vineland, NJ, USA).  For all Soxhlet 

extractions, glass thimbles were used to avoid contamination observed for cellulose 

thimbles in preliminary experiments. The Soxhlet extractions were carried out with either 

90 mL of DCM or 90 mL of MeOH, each for 18 h. After the extraction, the DCM and 

MeOH extracts were cooled to room temperature and evaporated under a stream of 

nitrogen while on ice to limit the loss of more volatile compounds, in addition to the 

losses already exhibited during Soxhlet extraction. All PM extracts were evaporated to 

100 μL and then diluted to 1.0 mL with n-hexane and submitted to the SPE 

fractionation/purification (see Section 4.1.3).  

4.1.3.  SPE Fractionation and Preparation for GC Analysis 

We have previously demonstrated an SPE fractionation protocol applied to PM 

extracts that is essential for the determination of trace concentrations of PAH 

derivatives.65 Briefly, an aminopropyl SPE cartridge with 500 mg of sorbent, 55 – 105 
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µm particle size, and a 125 Å pore size was used (Sep-Pak, Waters, Milford, MA). All 

SPE was performed using an SPE vacuum manifold with a 10-port top (Alltech/Grace, 

Columbia, Maryland, USA). Prior to the fractionation, the SPE sorbent was conditioned 

sequentially with DCM and n-hexane (6 mL each). The elution solvents employed 

sequentially were 4.0 mL solutions of 100% n-hexane, 20% DCM in n-hexane, and 100% 

MeOH. All collected SPE fractions were concentrated to 200 µL under a gentle nitrogen 

stream, and then divided into two 100 µL aliquots. One aliquot was used to determine 

PAHs and oxy-PAHs whereas the other was evaporated and derivatized with 100 µL of 

BSTFA+TMCS at 70 °C for 6 h for the determination of hydroxy-PAHs.  

4.1.4.  GC-MS Analysis 

Determination of PAHs, oxy-PAHs and hydroxy-PAHs was performed using an 

Agilent 6890N GC coupled to a 5975C MS with an electron ionization source. The 

analyses were accomplished on a 25 m long DB-5MS column with a 0.25 mm I.D., and 

0.25 μm film thickness (J&W Scientific, Inc., Folsom, CA). Ultra-pure helium (99.999 

%) was used as the carrier gas with a constant flow rate of 1.0 mL min-1. Injection 

conditions were 1 min splitless time with a pressure pulse of 25 psi for 0.95 min and the 

injection volume of 1.0 µL using a splitless liner with deactivated glass wool (Restek, 

Bellefonte, PA). The temperatures of the injector and transfer line were 250 °C and 280 

°C, respectively. The GC oven temperature program started at 40 °C for 1 min, increased 

at a rate of 20 °C min–1 to 140 °C, followed by a gradient of 10 °C min–1 to 290 °C, and 

an increase at the rate of 15 °C min–1 to 310 °C, and held for 12 min.  

The GC-MS data were acquired using a combination of total ion current (TIC) 

and selected ion monitoring (SIM) modes, i.e., selected-ion-total-ion (SITI). SITI 

combines the advantages of improved sensitivity, resulting from the use of SIM 
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monitoring single ions, with simultaneous compound identification using TIC. A dwell 

time of 25 ms was used for all ions listed in Table 4 for the SIM mode. A range of 50–

500 m/z was used for TIC.  

4.1.5. Quantification 

Quantification was based on the internal standard (IS) method, using 

fluoranthene-d10 as the IS. Calibration solutions were prepared by serial dilutions of stock 

mixture to obtain final analyte concentrations in the range of 9–9000 ng mL-1. Volumes 

of each solution were the same as for the final prepared extracts, i.e., 100 µL, and spiked 

with the same amount of IS as the extracts. 

Interday precisions of calculated slopes of multiple calibration curves for select 

species over different days are shown in Table 6. Prior to extraction of PM, RS 

compounds were spiked to the PM. The RS compounds (listed in Table 4) were used to 

correct for analyte loss during extraction and fractionation. For each RS compound, a 

recovery yield (RY) was calculated (See Eq. 1).  

 %100(%) 
spikedm

extractedm
RY

RS

RS  Eq. 1 

For the extractions from both WS PM and SRM 2975, the calculated mass 

fractions (mass of analyte per mass of PM subjected to extraction) in each SPE fraction 

were summed to give a total extracted mass concentration. The summed mass 

concentrations were then corrected by the RY (70–110%) of the RS compounds that were 

added prior to extraction (See Table 4 for each analyte’s assigned RS). 

Prior to extractions of PM, multiple blank extractions were performed for each 

method until consistent background levels were observed. Species identified in the 

extracts were identified as background contaminants in all further experiments. 
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Instrumental limits of the detections for the targeted species in this study have been 

previously reported by Cochran et al.65 

 
Table 6. Interday precisions exhibited through the slopes of calibration curves obtained 
during separate analyses over separate days. 

            

Calibration Standard Interday Precision 

  
Average Slopea (n=3) 

  
Avg. 

 
SD RSD 

            

      PAHs 

    
 

naphthalene 1.148 ± 0.112 10 

 
phenanthrene 1.201 ± 0.039 3 

 
anthracene 1.020 ± 0.140 14 

 
fluoranthene 1.257 ± 0.135 11 

 
pyrene 1.245 ± 0.150 12 

 
chrysene 1.256 ± 0.086 7 

 
benzo[a]pyrene 0.634 ± 0.066 10 

 
indeno[1,2,3-cd]pyrene 0.490 ± 0.087 18 

 
benzo[ghi]perylene 0.724 ± 0.063 9 

Oxy-PAHs 

    
 

9-fluorenone 0.379 ± 0.012 3 

 
anthrone 0.100 ± 0.013 13 

 
9,10-anthraquinone 0.544 ± 0.088 16 

 
9,10-phenanthrenequinone 0.047 ± 0.008 17 

Hydroxy-PAHs 

    
 

2-hydroxybiphenyl-TMS 0.502 ± 0.080 16 

 
4-hydroxybiphenyl-TMS 0.557 ± 0.076 14 

 
9-phenanthrol-TMS 0.335 ± 0.054 16 

 
2-hydroxy-9-fluorenone-TMS 0.597 ± 0.069 11 

 
4-phenanthreneMeOH-TMS 1.224 ± 0.181 15 

 
1-hydroxypyrene-TMS (SIM) 0.507 ± 0.067 13 

 
1,8-dihydroxyanthraquinone-TMS 0.735 ± 0.078 11 

Carboxy-PAHs  

    
 

9-phenanthreneCOOH-TMS 0.311 ± 0.031 10 
            

a Slope = (Area Analyte/Area IS)/Conc Analyte 
    

4.2. Results & Discussion 

4.2.1. Optimization of PFE  

PFE conditions were optimized in order to achieve an efficient extraction of both 

PAHs and their oxidation products observed in WS PM and diesel engine exhaust PM 

(SRM 2975).  

Initial experiments focused on evaluating the number of extraction cycles required 

as well as the extraction temperature. For PAHs it was previously reported that extraction 
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pressures above 2000 psi (13.8 MPa) had no significant impact on the mass fractions 

extracted.59 Thus a pressure of 2000 psi was selected and maintained throughout all the 

experiments performed. To determine the sufficient number of static/dynamic extraction 

cycles for WS PM, three 3 mL dynamic extraction steps were added to the previously 

used three extraction cycles. No PAH species were recovered in either of the additional 

dynamic extraction steps, showing that the use of three extraction cycles (giving a total 

extraction volume of 9.0 mL) was sufficient. Extraction temperatures were evaluated in 

the range of 100–200 °C for PM extractions. Varying the extraction temperature did not 

appear to have a significant impact on the extracted mass concentrations of PAHs, oxy-

PAHs, or hydroxy-PAHs (shown in Figure 6 for representative species). Therefore, the 

extraction temperature of 100 °C was selected for all subsequent PFE experiments. 

 

Fig. 6. PFE recoveries of representative PAHs, oxy-PAHs and hydroxy-PAHs obtained at 
different extraction temperatures. For all temperatures the extraction pressure was held 
constant at 2000 psi (13.8 MPa) and three extraction cycles were performed. All data are 
based on the mean value of triplicate extraction ± one standard deviation.
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4.2.2. Comparison of PFE and Soxhlet  

The efficiency of the optimized PFE method was determined by comparing mass 

concentrations extracted from WS PM and SRM 2975 to those obtained with Soxhlet 

extractions using DCM or MeOH for 18 h (Tables 7 & 8). The TIC chromatograms of 

SPE fractions for PFE extracts of WS PM are shown in Appendix III (see Appendix IV 

for comparison of the SPE fractions between PFE with DCM and Soxhlet with DCM and 

MeOH). 

To evaluate the efficiency of both methods to extract the target compounds from 

both PM matrices, RS solutions were spiked prior to the extraction. Calculated RY values 

for the RS compounds spiked to WS PM and SRM 2975 are shown in Figures 7a & 7b, 

respectively. For WS PM, recoveries for all of the RS compounds were higher when 

using PFE than those obtained with Soxhlet. In comparing the extraction solvents, greater 

recoveries were obtained with DCM than with MeOH, with the exception of 2-

chloroanthraquinone (2-caq in Figure 7). For SRM 2975, recoveries were significantly 

lower for the 2–3 ring PAH RS compounds for both extraction methods and solvents. 

This trend is likely due to the relatively non-polar matrix of the diesel exhaust PM matrix, 

with DCM (less polar than MeOH) providing greater recoveries for all RS compounds. 

For more polar RS compounds (2-CHM and 1-OH-py-d9), both methods and extraction 

solvents resulted in similar recoveries (85–98%). 
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Fig. 7. Recovery yields (RY) of RS compounds observed from PFE and Soxhlet 
extraction of a) WS PM and b) SRM 2957. RY values are shown for extractions using 
both DCM and MeOH as the extraction solvents. All data are based on the mean value of 
multiple extractions (n=3) ± one standard deviation. 
 
 
 
 
 



53 
 

4.2.3. Comparison of PFE to Soxhlet for WS PM 

The efficiency of the PFE method for extracting WS PM was determined using 

DCM and MeOH as the extraction solvents. Using DCM, the total mass fractions of 

PAHs and all polar derivatives were similar for PFE and Soxhlet (1849 and 1727 µg/g in 

WS PM, respectively; more detailed values are shown in Table 7). For PAHs, the total 

mass fractions extracted were similar between both extraction methods (1097 µg/g for 

PFE and 1075 µg/g for Soxhlet).  All individual PFE mass fractions followed this pattern 

(Table 7). By contrast, PFE consistently provided higher mass fractions of most oxy-

PAHs, 381±12 µg/g compared to 272±13 µg/g from Soxhlet. Specifically, 9-fluorenone 

had a two-fold increase in the mass fraction extracted when using PFE compared to 

Soxhlet (both using DCM) (Table 7). The oxy-PAH compounds studied here have similar 

polarities to that of DCM, possibly ruling out the solvent polarity as the limiting factor in 

extraction recoveries. Therefore the increased oxy-PAH mass fractions with PFE (Table 

7) may be attributed to the higher temperatures used in comparison to Soxhlet, possibly 

due to increased disruption of the analyte–matrix interactions caused by van der Waals 

forces, hydrogen bonding, and/or dipole attractions of analyte molecules and active sites 

on the matrix. PFE also enabled the detection of benz[a]anthracene-7,12-dione, which 

was not detected in the Soxhlet extracts (using either DCM or MeOH). Perhaps the 

reason for the lack of response of this compound in the Soxhlet extracts could be the 

presence of two carbonyl groups causing stronger analyte–matrix interactions disrupted 

only by PFE. However a similar compound, 9,10-anthraquinone featuring two carbonyl 

groups, showed similar amounts extracted using both PFE and Soxhlet extraction 

methods (see Table 7).  
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For PFE using MeOH, mass fractions of PAHs extracted from WS PM were 

similar to those obtained with DCM (1134±13 compared 1097±16 µg g-1, respectively). 

Overall mass fractions of oxy-PAHs were lower than with DCM (317±10 and 381±12 µg 

g-1, respectively), however, extraction yields of 4-ring oxy-PAHs were higher with 

MeOH. For hydroxy- and carboxy-PAHs, the total obtained mass fractions were greater 

with MeOH (412±18 µg g-1) than those with DCM (371±5 µg g-1). This was most 

prevalent for carboxy-PAHs, however, the mass fractions were still lower than those 

determined in extracts from Soxhlet (using either DCM or MeOH). 

The hydroxy-PAH mass fractions with PFE were similar to those obtained by 

Soxhlet DCM extraction (75–130%) (Table 7).  One of the studied carboxy PAH species 

(4-phenanthrene-COOH) showed similar mass fractions (82% relative to those with 

Soxhlet) whereas the other isomers (9-anthracene-COOH and 9-phenanthrene-COOH) 

yielded lower recoveries (42% and 44%, respectively, relative to the amounts obtained 

with Soxhlet) (Table 7). In comparison to Soxhlet using DCM, a small increase in the 

amounts extracted (up to 15%) of these carboxy- and hydroxy-PAH species was observed 

when performing a Soxhlet extraction using MeOH (Table 7). Our optimization tests 

(Section 4.2.1) indicated that increasing the PFE temperature did not show any increase 

in yields for these species. When using MeOH as the extraction solvent for PFE, mass 

fractions extracted increased slightly for the carboxy-PAH species (23±1 compared to 

19±2 µg g-1 for DCM), however they were still significantly lower relative to the amounts 

obtained with Soxhlet (with either DCM or MeOH). Nevertheless it is important to note 

that these carboxy species represent only ca. 1% of the total amount extracted of all 

species of PAHs and PAH oxidation products investigated in this study (1849±21 and 
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1727±33 µg/g for PFE and Soxhlet with DCM, respectively). Thus the similar mass 

fractions for the majority of PAHs and deratives, as well as the ease of use, support the 

appropriateness of PFE with DCM for the extraction of PAH derivatives from PM. 

However, if a highly polar species is targeted, such as a carboxy-PAH, MeOH alone or as 

a modifier may be essential.  
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Table 7. Mass fractions of PAHs and polar derivatives (oxy-, hydroxy- and carboxy-
PAHs) obtained by extraction of WS PM using PFE and Soxhlet. PFE was performed at 
100 °C and 2000 psi using either DCM or MeOH (Methods 2 & 6, respectively). All data 
are based on the mean value of multiple extractions (n=3) ± one standard deviation. 
Compound PFE Soxhlet 

 
DCM MeOH DCM MeOH 

 
(µg g-1)a (µg g-1)a (µg g-1)a (µg g-1)a 

 
mean ± st. dev mean ± st. dev mean ± st. dev mean ± st. dev 

  (n=4) (n=4) (n=4) (n=4) 
PAHs 

            naphthalene 5.90 ± 0.79 6.36 ± 0.71 7.88 ± 0.53 8.00 ± 0.41 
acenapthylene 2.32 ± 0.27 2.75 ± 0.33 2.67 ± 0.25 2.70 ± 0.33 
acenaphthene 0.75 ± 0.10 0.00 ± 0.00 0.96 ± 0.03 1.35 ± 0.13 
fluorene 9.68 ± 1.18 10.46 ± 0.62 9.31 ± 0.81 10.25 ± 0.60 
phenanthrene 196.37 ± 6.91 187.42 ± 1.75 166.49 ± 14.57 170.42 ± 10.95 
anthracene 23.82 ± 2.40 23.57 ± 0.24 31.14 ± 2.98 31.82 ± 3.45 
2-methylanthracene 13.06 ± 2.17 11.48 ± 0.48 15.43 ± 0.05 17.39 ± 1.19 
phen/anth-C1 A T 27.34 ± 0.17 28.31 ± 0.84 31.34 ± 5.03 30.11 ± 3.48 
phen/anth-C1 B T 31.72 ± 1.42 34.65 ± 0.76 38.97 ± 6.04 42.40 ± 3.12 
phen/anth-C1 C T 9.70 ± 1.10 10.81 ± 0.81 12.30 ± 1.42 13.71 ± 1.16 
phen/anth-C1 D T 23.49 ± 2.21 23.53 ± 1.67 27.16 ± 0.55 26.65 ± 3.78 
phen/anth-C1 E T 28.02 ± 1.64 26.70 ± 1.07 32.57 ± 6.10 34.09 ± 3.60 
phen/anth-C2 A T 1.83 ± 0.06 2.00 ± 0.20 2.28 ± 0.20 2.42 ± 0.23 
phen/anth-C2 B T 5.03 ± 0.79 5.70 ± 0.46 5.53 ± 0.33 5.32 ± 0.48 
phen/anth-C2 C T 3.74 ± 0.29 5.67 ± 0.52 4.14 ± 0.43 4.04 ± 0.38 
phen/anth-C2 D T 3.63 ± 0.52 5.87 ± 0.62 4.68 ± 0.27 4.89 ± 0.52 
phen/anth-C2 E T 2.54 ± 0.40 2.75 ± 0.30 3.31 ± 0.08 3.19 ± 0.35 
fluoranthene 165.46 ± 6.49 169.29 ± 4.93 134.08 ± 8.22 139.03 ± 4.15 
pyrene 160.22 ± 4.28 167.07 ± 7.00 136.45 ± 12.34 140.90 ± 6.18 
1-methylpyrene 14.00 ± 2.46 14.15 ± 0.44 14.35 ± 2.31 14.69 ± 1.04 
flu/pyr-C1 A T 16.42 ± 0.75 15.12 ± 1.24 14.60 ± 2.02 15.36 ± 1.32 
flu/pyr-C1 B+C T 27.97 ± 1.28 29.92 ± 1.13 25.09 ± 4.50 23.93 ± 2.93 
flu/pyr-C1 D T 8.00 ± 1.08 11.09 ± 1.18 10.18 ± 1.53 12.28 ± 0.47 
flu/pyr-C1 E T 13.40 ± 1.78 11.52 ± 0.89 13.48 ± 2.38 12.58 ± 1.22 
flu/pyr-C1 F T 14.06 ± 1.73 12.81 ± 1.67 14.35 ± 2.31 13.43 ± 1.48 
flu/pyr-C1 G T 10.99 ± 1.31 11.48 ± 1.45 14.37 ± 0.88 14.02 ± 1.54 
benzo[e]pyrene 31.30 ± 4.25 39.66 ± 4.17 40.79 ± 2.38 38.50 ± 3.41 
benz[a]anthracene 52.56 ± 4.10 55.44 ± 2.43 52.47 ± 7.93 47.11 ± 2.61 
chrysene 53.23 ± 5.36 52.89 ± 2.90 55.38 ± 4.86 51.15 ± 4.39 
benz[e]acephenanthrylene 4.57 ± 0.49 5.90 ± 0.56 5.17 ± 0.27 5.12 ± 0.27 
benzo[k]fluoranthene 18.44 ± 1.64 19.87 ± 3.24 19.96 ± 1.27 18.98 ± 1.34 
benzo[j]fluoranthene 9.59 ± 1.01 9.60 ± 0.73 9.56 ± 1.18 9.84 ± 0.92 
benzo[a]fluoranthene 38.53 ± 3.23 43.27 ± 1.77 38.46 ± 6.27 38.86 ± 4.31 
benzo[a]pyrene 31.47 ± 3.08 34.77 ± 1.54 37.74 ± 2.36 40.70 ± 1.90 
indeno[1,2,3-cd]pyrene 20.40 ± 3.56 24.70 ± 4.27 26.19 ± 1.83 26.45 ± 2.50 
benzo[ghi]perylene 17.72 ± 1.33 16.99 ± 1.71 16.38 ± 2.57 16.90 ± 2.00 

             Total PAHs 1097 ± 16 1134 ± 13 1075 ± 27 1089 ± 18 

             Oxy-PAHs 

            benzo[b]naphtho[2,3-
d]furan T 24.46 ± 2.63 26.58 ± 2.23 17.30 ± 0.77 15.59 ± 0.95 
benzo[b]naphtho[2,1-
d]furan T 12.25 ± 0.66 13.98 ± 1.22 8.51 ± 1.20 7.40 ± 0.47 
9-fluorenone 158.47 ± 8.34 68.00 ± 5.79 77.58 ± 7.05 74.52 ± 3.53 
xanthone 54.52 ± 6.20 26.98 ± 1.11 45.58 ± 9.11 46.22 ± 2.16 
9,10-anthraquinone 46.69 ± 4.46 31.09 ± 1.73 46.83 ± 3.78 53.93 ± 1.80 
benzo[b]fluoren-11-one T 17.63 ± 0.65 37.64 ± 2.63 17.62 ± 1.44 17.81 ± 1.47 
benzo[a]fluoren-11-one T 8.78 ± 0.86 19.89 ± 3.42 7.90 ± 0.75 6.79 ± 0.56 
benzo[c]fluoren-7-one T 18.95 ± 2.71 33.93 ± 3.05 16.91 ± 1.70 17.67 ± 1.57 
benz[de]anthracen-7-one 
T 31.54 ± 1.22 45.78 ± 5.95 34.21 ± 4.53 32.82 ± 2.65 
benz[a]anthracene-7,12-
dione 7.47 ± 0.48 13.42 ± 0.97 

 
ND 

  
ND 

 

             Total Oxy-PAHs 381 ± 12 317 ± 10 272 ± 13 273 ± 6 
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Table 7. cont. 
Compound PFE Soxhlet 

 
DCM MeOH DCM MeOH 

 
(µg g-1)a (µg g-1)a (µg g-1)a (µg g-1)a 

 
mean ± st. dev mean ± st. dev mean ± st. dev mean ± st. dev 

  (n=4) (n=4) (n=4) (n=4) 
Hydroxy- & Carboxy-

PAHsd 

            2-hydroxybiphenyl 13.35 ± 1.03 14.17 ± 0.36 12.54 ± 1.28 13.38 ± 1.45 
hydroxybiphenyl T 28.27 ± 1.12 29.43 ± 1.70 29.58 ± 3.43 30.80 ± 4.06 
4-hydroxybiphenyl 25.17 ± 0.51 27.63 ± 1.67 25.77 ± 2.87 27.98 ± 4.26 
7-hydroxycadalene 108.14 ± 2.03 101.19 ± 5.76 98.68 ± 10.36 100.77 ± 6.34 
9-phenanthrol 6.99 ± 0.48 7.53 ± 0.71 8.21 ± 0.82 8.93 ± 1.16 
3-phenanthrol T 47.91 ± 0.71 64.50 ± 7.70 45.39 ± 3.22 47.04 ± 3.98 
2-hydroxy-9-fluorenone 28.70 ± 1.39 28.55 ± 1.15 23.56 ± 2.83 23.91 ± 3.17 
4-phenanthrenemethanol 1.87 ± 0.28 1.98 ± 0.17 1.47 ± 0.18 1.75 ± 0.14 
hydroxypyrene A T 15.82 ± 1.59 17.25 ± 1.45 18.20 ± 0.67 20.15 ± 2.33 
hydroxypyrene B T 24.74 ± 1.43 30.16 ± 2.53 24.83 ± 1.15 32.82 ± 1.02 
hydroxypyrene C T 14.47 ± 1.47 19.04 ± 1.97 17.58 ± 1.46 20.69 ± 2.31 
1-hydroxypyrene-TMS 24.86 ± 1.63 33.56 ± 14.75 26.97 ± 0.55 27.60 ± 1.22 
hydroxypyrene-TMS D T 10.46 ± 1.71 14.81 ± 0.95 13.46 ± 0.85 14.74 ± 0.25 
1,8-dihydroxyanthraquinone 1.17 ± 0.52 0.00 ± 0.00 1.53 ± 0.29 0.27 ± 0.47 
4-phenenthrene-COOH 10.40 ± 1.75 11.27 ± 0.68 12.64 ± 0.59 14.27 ± 1.79 
9-anthracene-COOH 1.94 ± 0.14 3.33 ± 0.42 4.67 ± 0.52 5.59 ± 0.29 
9-phenanthrene-COOH 6.34 ± 0.72 7.93 ± 0.85 14.33 ± 0.59 16.64 ± 0.95 

             Total Hydroxy- PAHs 371 ± 5 412 ± 18 379 ± 12 407 ± 11 

                          
a Recoveries are corrected by the response of recovery standards. 
b "NA" denotes that standards for that particular compound were not available during the time of the study. 

  c "ND" denotes that response was either zero or below the limit of quantitation (determined from lowest three points of 
calibration curve) 
d All hydroxy- and carboxy-PAHs are shown as trimethylsilyl derivatives after derivatization with BSTFA. 

  e 2-CHM is an acronym for 2-chloro-2-hydroxy-4-methylbenzophenone 
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4.2.4. Comparing PFE to Soxhlet for Diesel Exhaust PM 

To investigate the efficiency of PFE for the simultaneous extraction of PAHs and 

their wide range of derivatives from a relatively non-polar matrix, the PFE method was 

applied to diesel exhaust PM (SRM 2975). Additionally the use of SRM allowed for the 

evaluation of the optimized PFE method’s performance by comparing the mass fractions 

extracted to those reported in previous studies. 

Similar to WS PM, the mass fractions of PAHs and oxy-PAHs extracted were 

similar or slightly higher for PFE than with Soxhlet. Using DCM with PFE provided 

increased amounts extracted for both PAHs and oxy-PAHs than when using MeOH. 

While MeOH provided increased mass fractions for the higher molecular weight (4–6 

ring) PAHs with WS PM, extraction with DCM yielded greater amounts with SRM 2975. 

For 1-nitropyrene (the only nitro-PAH observed in this study when using GC-MS in EI 

mode), mass fractions with DCM were significantly higher than with MeOH, a trend 

observed for both extraction methods. The only hydroxy-PAH species observed (1-

hydroxypyrene) also followed this trend. By contrast, two carboxy-PAH species were 

extracted from SRM 2975, which were observed in higher amounts when using MeOH as 

the extraction solvent, for either method.  

Mass fractions obtained for PAHs in this study were compared to those reported 

for SRM in previous studies (also using PFE with a variety of different solvent systems) 

(see Table 8). For phenantherene and fluoranthene (the most abundant PAHs in SRM 

2975), similar mass fractions extracted were observed in this study compared to previous 

work (95–110%). For the majority of the other higher molecular weight PAHs (4-6 rings) 

our optimized method provided slightly increased mass fractions. The most significant 

increases were observed for benzo[a]fluoranthene, benzo[a]pyrene and 
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dibenz[a,h]anthracene. For nitro-PAHs only 1-nitropyrene was observed with GC-MS 

analysis in EI mode. While the other nitro-PAHs found in SRM 2975 can be evaluated 

with the use of the more sensitivive negative-ion chemical ionization (NICI), the use of 

1-nitropyrene was enough to determine the precision of the PFE method. In comparison 

to the amount of 1-nitropyrene extracted from SRM 2975 by Bamford et al. (using PFE 

with DCM) our optimized method with DCM yielded similar results (34.60±1.14 

compared to 39.64±1.70 µg g-1). 
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Table 8. Mass fractions of PAHs and polar derivatives obtained by extraction of SRM 2957 (diesel exhaust PM). 
  This Study   Ref 59   Ref 57 

Compound PFE Soxhlet 
 

PFEb 
 

PFEb 

 
DCM MeOH DCM MeOH 

 
DCM 

 
Toluene/MeOH 

 
(µg g-1)a (µg g-1)a (µg g-1)a (µg g-1)a 

 
(µg g-1) 

 
(µg g-1) 

 
mean ± st. dev mean ± st. dev mean ± st. dev mean ± st. dev 

          (n=4) (n=4) (n=4) (n=4)                 

PAHs 
                    phenanthrene 18.39 ± 0.44 16.87 ± 1.11 18.89 ± 0.76 16.56 ± 1.65 

 
18.6 ± 0.9 

 
17.00 ± 2.80 

fluoranthene 27.59 ± 0.73 22.74 ± 1.60 25.55 ± 1.58 23.50 ± 0.87 
 

28.9 ± 1.6 
 

26.60 ± 5.10 
pyrene 1.45 ± 0.14 1.30 ± 0.14 1.24 ± 0.17 0.98 ± 0.11 

 
1.03 ± 0.05 

 
0.90 ± 0.24 

benz[a]anthracene 0.63 ± 0.00 0.57 ± 0.09 0.72 ± 0.10 0.36 ± 0.03 
 

0.34 ± 0.03 
 

0.32 ± 0.07 
chrysene 4.46 ± 0.18 4.18 ± 0.22 3.70 ± 0.46 3.12 ± 0.21 

 
NR 

 
4.56 ± 0.16 

benzo[k]fluoranthene 1.00 ± 0.10 0.78 ± 0.08 0.00 ± 0.00 0.59 ± 0.04 
 

0.66 ± 0.08 
 

0.68 ± 0.08 
benzo[e]pyrene 1.46 ± 0.07 1.14 ± 0.10 1.40 ± 0.08 1.15 ± 0.09 

 
1.09 ± 0.07 

 
1.11 ± 0.10 

benzo[a]fluoranthene 2.33 ± 0.14 1.88 ± 0.31 1.95 ± 0.21 1.37 ± 0.20 
 

NR 
 

0.06 ± 0.02 
benzo[a]pyrene 1.46 ± 0.05 1.22 ± 0.16 1.03 ± 0.05 1.06 ± 0.07 

 
<0.5 

 
0.05 ± 0.01 

indeno[1,2,3-cd]pyrene 1.41 ± 0.03 1.00 ± 0.08 0.87 ± 0.09 0.89 ± 0.09 
 

0.81 ± 0.03 
 

1.40 ± 0.20 
dibenzo[a,h]anthracene 1.18 ± 0.00 0.85 ± 0.05 0.76 ± 0.04 0.77 ± 0.06 

 
1.71 ± 0.12e 

 
0.37 ± 0.07 

benzo[ghi]perylene 1.00 ± 0.25 0.71 ± 0.09 0.84 ± 0.12 0.65 ± 0.06 
 

0.48 ± 0.02 
 

0.50 ± 0.04 
Total of Selected PAHs 62 ± 1 53 ± 2 57 ± 2 51 ± 2 

 
54 ± 2 

 
54 ± 6 

Nitro-PAHs 
                    1-nitropyrene 34.60 ± 1.14 26.19 ± 1.58 33.44 ± 1.39 21.14 ± 1.28 

     
34.80 ± 4.70 

Oxy-PAHs 
                    9-fluorenone 6.45 ± 0.25 4.39 ± 0.24 4.33 ± 0.35 4.26 ± 0.26 

 
NRc 

9,10-anthraquinone 14.59 ± 1.35 8.00 ± 0.87 8.62 ± 0.74 9.21 ± 0.72 
 

NR 
benzo[b]fluoren-11-one T 6.94 ± 0.69 4.57 ± 0.21 4.49 ± 0.22 4.62 ± 0.22 

 
NR 

benzo[a]fluoren-11-one T 5.03 ± 0.69 3.83 ± 0.68 5.54 ± 0.38 3.78 ± 0.50 
 

NR 
benzo[c]fluoren-7-one T 6.56 ± 0.54 5.15 ± 0.22 5.47 ± 0.35 4.94 ± 0.61 

 
NR 

benz[de]anthracen-7-one T 7.20 ± 0.75 7.11 ± 0.56 7.40 ± 0.21 7.13 ± 0.42 
 

NR 
benz[a]anthracene-7,12-dione 5.09 ± 0.27 4.20 ± 0.55 5.13 ± 0.20 4.41 ± 0.30 

 
NR 

Total Oxy-PAHs 52 ± 2 37 ± 1 41 ± 1 38 ± 1 
        Hydroxy- & Carboxy-PAHsd 

                    9-phenanthrene-COOH-TMS 24.30 ± 2.30 31.06 ± 2.59 31.69 ± 2.28 36.50 ± 1.80 
 

NR 
n-phen/anth-COOH-TMS A 25.04 ± 1.07 32.45 ± 1.70 32.51 ± 2.40 41.00 ± 1.94 

 
NR 

1-hydroxypyrene-TMS 4.49 ± 0.44 3.71 ± 0.14 4.34 ± 0.40 3.63 ± 0.42 
 

NR 
Total Hydroxy- and Carboxy-PAHs 54 ± 3 67 ± 3 69 ± 3 81 ± 3                 

a Mass fractions are corrected by the response of recovery standards. 
              b All the reference studies shown performed PFE at 100 °C and 2000 psi. 
              c "NR" denotes that mass fraction were not reported in that particular study (for PAHs) or have not been previously reported in any studies (for oxy-, hydroxy- and carboxy-PAHs). 

d All hydroxy- and carboxy-PAHs are shown as trimethylsilyl derivatives after derivatization with BSTFA. 
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4.3. Conclusions 

PFE was evaluated and determined to be a suitable alternative extraction method 

to the commonly deployed Soxhlet extraction for the simultaneous extraction of PAHs, 

oxy-PAHs, hydroxy-PAHs and carboxy-PAHs from both a polar PM matrix (WS PM) 

and a relatively non-polar matrix (diesel exhaust PM; SRM 2975). PFE extraction with 

DCM resulted in similar mass fractions extracted in 15 min using only 9 mL of DCM, in 

contrast to a more solvent/time intensive Soxhlet DCM extraction (1080 min, 90 mL). 

Some oxy-PAH species exhibited greater mass fractions with PFE, most likely due to the 

increased temperatures employed in PFE overcoming the analyte–matrix interactions 

within the WS PM. By contrast, highly polar carboxy-PAHs (minor components) as well 

as highly polar non-aromatic species had higher extraction yields with Soxhlet using 

DCM or MeOH compared to PFE with DCM. Using PFE with MeOH provided slightly 

increase the amounts extracted for these compounds. Nevertheless, the overall extraction 

yields of PAHs and their derivatives obtained by both methods were similar (1849±21, 

1727±33 µg/g for PFE and Soxhlet with DCM, respectively). The extraction of SRM 

2975 with both PFE and Soxhlet were in agreement with previous studies. For PAHs, 

oxy-PAHs and nitro-PAHs DCM provided higher mass fractions while MeOH yielded 

greater amounts for carboxy-PAHs. Finally, it is critical to note that most environmental 

studies focus only on PAHs. Our data on WS PM demonstrated that PAH derivatives 

comprised ca. 40% of all species quantified, supporting the significance of these 

compounds.
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CHAPTER 5 

5. DETERMINATION OF NITRATED AND OXYGENATED DERIVATIVES 

OF POLYCYCLIC AROMATIC HYDROCARBONS USING ATMOSPHERIC 

PRESSURE CHEMICAL IONIZATION WITH HIGH RESOLUTION MASS 

SPECTROMETRY (APCI-HRMS) 

5.1. Experimental 

5.1.1. Reagents  

The PAH derivatives including 9-nitroanthracene, 1-nitropyrene, 1,6-

dinitropyrene, anthrone, 9,10-anthracenedione, 9,10-phenanthrenedione, 1,4-

phenanthrenedione, pyrene-4,5-dione, 9-phenanthrenecarboxaldehyde, and 4-carboxy-5-

phenanthrenecarboxaldehyde were obtained from Sigma Aldrich (Atlanta, GA, USA). 9-

nitrophenanthrene, 3-nitrophenanthrene and 9,10-dinitroanthracene were obtained from 

Accustandard Inc. (New Haven, CT, USA). LC-MS Optima grade methanol (MeOH) and 

LC-MS Optima grade acetonitrile were obtained from Fisher Scientific (Chicago, IL, 

USA). Formic acid (LC-MS grade) was obtained from Fluka (Atlanta, GA, USA). MilliQ 

water (Millipore) was used during HPLC experiments. 

5.1.2. HPLC-APCI-MS Analysis 

HPLC-MS analyses were carried out with an Agilent 1100 HPLC system coupled 

to a high resolution Agilent 1969 Time-of-flight MS (ToFMS) equipped with an APCI 

source (Agilent Technologies, Santa Clara, CA, USA).  

All HPLC separations were performed using a Restek C18 200 mm × 3.2 mm 

reverse phase HPLC column with 5 µm particle size (Restek, Bellafonte, PA, USA). A 

binary solvent system consisting of A: water, B: methanol was used.
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A gradient program at a flow rate of 0.2 mL min-1 started with 20% B for 5 min, followed 

with a linear increase to 90% B at 20 min, and hold at 90% until 27 min, and then was 

linearly decreased to 20% at 30 min and held at 20% B for 5 min to allow for 

equilibration.  The column oven temperature was set to 30 °C and injection volume was 

50 µL. 

APCI was performed in both positive and negative modes with each sample 

containing 5 mM formic acid. Drying gas (N2) was set to 300 °C at a flow of 3 L min-1. 

For all experiments the capillary voltage was set to 4500 V. To minimize the contribution 

of post-source fragmentation, the fragmentor voltage was set to 120 V for all 

experiments. All HPLC-APCI-ToF-MS analyses were performed with the corona 

discharge current set at 10 µA. For experiments evaluating the contribution of the corona 

current to gas-phase ion fragmentation, the corona discharge current was varied within 

the range of 4–25 µA. 

5.1.3. Reaction Experiments 

The flow reactor used for the ozonation of pyrene consisted of three main parts: a 

gas injection/dilution system, mixing chamber, and reaction chamber (Appendix VI). The 

gas injection/dilution system delivered breathing quality air to a mixing chamber 

composed entirely of Teflon (31.5 cm length × 9 cm I.D.) through ¼” stainless steel 

tubing. Two-way stainless steel valves were used for selecting the gases used in each 

experiment. All gas flows through the reactor system were regulated with mass flow 

controllers (Alicat Scientific, Tucson, AZ, USA) to achieve the desired dilution of gases. 

After passing the mixing chamber, the gas flow was split into three parts using stainless 

steel tees, leading to the reaction chamber, an O3 gas analyzer and an exhaust vent. 

During ozonation experiments, ozone levels at the outlet of the mixing chamber were 
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measured using a photometric O3 gas analyzer (Model 400E, Teledyne, Thousand Oaks, 

CA, USA). The gas mixtures from the mixing chamber were supplied to the Teflon 

reaction chamber (43 cm in length x 9 cm I.D.) through an inlet located on top of the 

chamber. A quartz tissue filter (90 mm I.D., PALL Corporation, Port Washington, NY) 

was spiked with pyrene solution and placed onto a Teflon-coated aluminum mesh at the 

bottom of the reaction chamber. The outlet of the reactor chamber was located after the 

filter support. The total flow through the reaction chamber was controlled using an oil-

less pump with a mass flow controller positioned between the reaction chamber and the 

pump. The flow drawn by the pump was always kept lower than the gas flow exiting the 

mixing chamber to ensure that ambient air was not drawn through the flow splitter 

(installed to prevent over-pressurization of the reaction chamber).  

An allotted amount of a PAH stock solution (40 µL) at 100 µg mL-1 per 

compound was spiked over the quartz tissue filter and allowed to evaporate at room 

temperature for 60 s (resulting in a final amount of 4 µg on the filter). All quartz filters 

were pre-baked at 500 °C for 12 h, then placed in the flow reactor and exposed to O3 at 

1.25 ppm for 90 min.  

Upon the completion of each reaction experiment, the filter was extracted using 

sonication with 10 mL of DCM for 30 min. After sonication, the solvent was filtered over 

deactivated glass wool. The vial and filter were washed twice with 10 mL of DCM each 

time. Ultimately all DCM solvent fractions obtained were combined and evaporated 

under a gentle stream of nitrogen to ~0.5 mL.  The samples were then submitted to 

HPLC-APCI-ToFMS analysis. Identification was based on a match of retention times of 
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the overlayed extracted ion chromatogram (EIC) peaks, on the relative intensities as well 

as high resolution data of MS peaks. 

5.2. Results and Discussion 

5.2.1. Carboxy- & Hydroxy-PAHs 

The four carboxy-PAH species investigated in this study are listed in Table 9, 

representing constitutional isomers in both the ring configurations and the location of the 

carboxy group as well as mixed functional groups. 

As previously reported, the APCI in negative mode was more sensitive and 

resulted in more uniform ionization patterns (Table 9; spectra shown in Appendices VII 

& VIII).66  The fragmentation proposed in Scheme 1 corresponds to neutral losses 

previously observed.66 The tested species exhibited the deprotonated anion [M–H]– as the 

base peak as well as loss of –CO2 and –CO from the deprotonated anion. In contrast to 

the previous work,66 no ion corresponding to two subsequent losses of –CO (giving the 

[M–H–CO–CO]– ion) was observed. For 4-carboxy-5-phenanthrenecarboxaldehyde, the 

loss of –CO from the deprotonated anion was not observed, but rather the successive 

losses of –CO from the aldehyde group and the loss of –CO2 from the carboxyl group 

following deprotonation. 
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Scheme 1
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Table 9. Pseudomolecular ions and fragment observed for hydroxy- and carboxy-PAHs using APCI in negative mode. 

  

Measured Rel. 

  

Formula Mass 

 

tR Massa Abund. 

  

Mass Errorc 

Compound (min) (m/z Da) (%) Fragment Formulab (m/z Da) (ppm) 

            4-carboxy- 18.55 177.07074 ± 0.00014 100 [M–H–C2O3]– C14H9 177.07097 -1.3 ± 0.8 
phenanthrene- 

 
249.05509 ± 0.00023 90 [M–H]– C16H9O3 249.05572 -2.5 ± 0.9 

carboxaldehyde 

 
205.06497 ± 0.00047 40 [M–H–CO2]– C15H9O 205.06589 -5 ± 2 

            1-hydroxypyrene 19.21 217.06663 ± 0.00098 100 [M–H]– C16H9O 217.06589 3 ± 4 

  
232.05210 ± 0.00103 20 [M–2H+O]– C16H8O2 232.05188 0.9 ± 4.4 

            9-phenanthrene- 18.34 221.06048 ± 0.00054 100 [M–H]– C15H9O2 221.05971 3 ± 2 
carboxylic acid 

 
177.07080 ± 0.00083 25 [M–H–CO2]– C14H9 177.06988 5 ± 5 

  
193.06566 ± 0.00048 5 [M–H–CO]– C14H9O 193.06479 5 ± 2 

  
208.05256 ± 0.00044 4 [M–CH2]– C14H8O2 208.05188 3 ± 2 

            4-phenanthrene- 18.56 221.06036 ± 0.00049 100 [M–H]– C15H9O2 221.05971 3 ± 2 
carboxylic acid 

 
177.07064 ± 0.00042 40 [M–H–CO2]– C14H9 177.06988 4 ± 2 

  
235.03951 ± 0.00045 5 [M–H+O–2H]– C15H7O3 235.03897 2 ± 2 

  
193.06484 ± 0.00088 4 [M–H–CO]– C14H9O 193.06479 0.3 ± 4.6 

  
208.05396 ± 0.00093 2 [M–CH2]– C14H8O2 208.05188 10 ± 4 

            9-anthracene- 18.94 221.05990 ± 0.00042 100 [M–H]– C15H9O2 221.05971 0.9 ± 1.9 
carboxylic acid 

 
177.07022 ± 0.00009 40 [M–H–CO2]– C14H9 177.06988 2.0 ± 0.5 

  
208.05184 ± 0.00100 10 [M–CH2]– C14H8O2 208.05188 -0.2 ± 4.8 

  
193.06603 ± 0.00012 5 [M–H–CO]– C14H9O 193.06479 6.4 ± 0.6 

                        
a Measure masses are averages of the masses observed at three different points along the chromatographic peak. 

  b Empirical formulas for the observed mass were calculated with elemental ranges of C:8–18, H:6–16, O:0–4. 
  c Calculated SD from the observed masses are in ppm error to show its influence on empirical formula estimations. 
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While the analysis of carboxy-PAHs with APCI in positive mode resulted in 

lower response, the compounds studied still exhibited common ionization trends but with 

significantly varied ion abundances (Table 10). The differences in abundance among the 

isomeric compounds may be essential for accurate identification. The protonated ion 

[M+H]+ for 4-phenanthrenecarboxylic acid and 9-anthracenecarboxylic acid featured 

45% and 20% relative response of the base peak, respectively, and was not observed for 

9-anthracenecarboxylic acid. For 4-carboxy-5-phenanthrenecarboxaldehyde, a higher 

relative response of the [M+H]+ ion was observed, most likely due to protonation of the 

aldehyde group (see Scheme 2). The protonation followed by the loss of –H2O was 

observed for all carboxy-PAH species, also in varied relative intensities. For 9-

phenanthrenecarboxylic acid, this was the least prevalent ion (10% relative intensity to 

the base peak) while for the other three species the ion was much more abundant (60–

80%). Three species, 9-phenanthrenecarboxylic acid, 9-anthracenecarboxylic acid and 4-

carboxy-5-phenanthrenecarboxaldehyde, exhibited a [M+H+CH2]+ ion in differing 

abundances of 25%, 30, and 85%, respectively. This ion is possibly a result of gas-phase 

esterification by methanol.  For these compounds, a common ion of 205 was observed 

corresponding to the carbonyl phenanthrene ion (C15H19O+).
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Table 10. Pseudomolecular ions and fragments observed for hydroxy- and carboxy-PAHs using APCI in positive mode. 

  
Measured Rel. 

  

Formula Mass 

 

tR Mass Abund. 

  

Mass Errorb 

Compound (min) (m/z Da) (%) Fragment Formula (m/z Da) (ppm) 

            4-carboxy- 18.55 235.07633 ± 0.00075 0 [M+H–O]+ C16H11O2 235.07536 4 ± 3 
phenanthrene- 

 
205.06540 ± 0.00084 95 [M+H–CH2O2]+ C15H9O 205.06479 3 ± 4 

carboxaldehyde 

 
251.07032 ± 0.00087 92 [M+H]+ C16H11O3 251.07027 0.2 ± 3.4 

  
265.08714 ± 0.00123 85 [M+H+CH2]+ C17H13O3 265.08590 5 ± 5 

  
191.08524 ± 0.00065 75 [M+H–CO3]+ C15H11 191.08550 -1 ± 3 

  
233.05973 ± 0.00091 65 [M+H–H2O]+ C16H9O2 233.05971 0.1 ± 3.9 

  
177.06931 ± 0.00067 50 [M+H–C2H2O3]+ C14H9 177.06988 -3 ± 4 

            1-hydroxypyrene 19.21 219.08350 ± 0.00158 100 [M+H]+ C16H11O 219.08044 14 ± 7 

  
218.07520 ± 0.00122 85 [M–e-]+ C16H10O 218.07262 12 ± 6 

  
233.06141 ± 0.00055 75 [M+O-H]+ C16H9O2 233.05971 7 ± 2 

  
202.07679 ± 0.00046 2 [M–e-–O]+ C16H10 202.07770 -5 ± 2 

            9-phenanthrene- 18.34 209.05907 ± 0.00182 100 [M+H–CH2]+ C14H9O2 209.05971 -3 ± 9 
carboxylic acid 

 
237.08894 ± 0.00057 25 [M+CH3]+ C16H13O2 237.09101 -9 ± 2 

  
223.07783 ± 0.00054 20 [M+H]+ C15H11O2 223.07536 11 ± 2 

  
205.06627 ± 0.00086 10 [M+H–H2O]+ C15H9O 205.06479 7 ± 4 

            4-phenanthrene- 18.56 221.05919 ± 0.00011 100 [M–H–2e-]+ C15H9O2 221.05971 -2.3 ± 0.5 
carboxylic acid 

 
205.06477 ± 0.00005 80 [M+H–H2O]+ C15H9O 205.06479 -0.1 ± 0.3 

  
237.09060 ± 0.00060 50 [M+CH3]+ C16H13O2 237.09101 -2 ± 2 

  
223.07500 ± 0.00010 45 [M+H]+ C15H11O2 223.07536 -1.6 ± 0.5 

            
            9-anthracene- 18.94 209.09353 ± 0.00091 100 [M+3H–O]+ C15H13O 209.09609 -12 ± 4 
carboxylic acid 

 
195.07990 ± 0.00047 85 [M+H–CO]+ C14H11O 195.08044 -2 ± 2 

  
205.06547 ± 0.00059 60 [M+H–H2O]+ C15H9O 205.06479 3 ± 2 

  
237.09103 ± 0.00093 30 [M+H+CH3]+ C16H13O2 237.09101 0.1 ± 3.9 

                        
a Measured masses are averages of the masses observed at three different points along the chromatographic peak. 

  b Empirical formula for the observed mass were calculated with elemental ranges of C:8–18, H:6–16, O:0–4. 
  c Calculated SD from the observed masses are in ppm error to show its influence on empirical formula estimations. 
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In this study only one hydroxy-PAH, 1-hydroxypyrene, was considered. This 

compound is representative of hydroxy-PAHs in atmospheric samples, typically being the 

most abundant species.65 In positive mode, ionization via protonation ([M+H]+) as well as 

electron abstraction ([M–e–]+) was observed in 100% and 85% relative abundance, 

respectively. Additionally, an oxygen adduct ([M–H+O]+) was observed in 75% relative 

abundance. In negative mode, 1-hydroxypyrene was mainly ionized via deprotonation, 

yielding the [M–H]– ion. As seen in positive mode, an oxygen adduct ([M–2H+O]–) was 

again observed. 

5.2.2. Oxy-PAHs 

High resolution MS data of several major fragmentation pathways for 7 oxy-

PAHs (Tables 11 & 12) is, to our knowledge, reported for the first time in this work. 

In positive mode, several common trends were observed among the oxy-PAHs 

investigated. The major ionization pathway for most of the ketone and diketone 

compounds studied was protonation (spectra shown in Appendix IX), mirroring 

observations made in previous studies.32,67–69 The most prevalent fragmentation trend was 

the loss of –CO from the protonated molecular ion, which showed a high degree of 

stereoselectivity between the studied compounds. Successive losses of –CO giving the 

[M+H–C2O2]+ ion were observed for only two compounds, 9,10-phenanthrenedione and 

pyrene-4,5-dione (Appendix IX). This seems to be a highly stereoselective process since 

neither of the other two 3-ring diketone PAH species exhibit this fragment ion. This 

fragmentation is postulated to occur through a ring-opening mechanism (Schemes 3 & 4). 
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Scheme 2 

For 9,10-phenanthrenedione, the [M+H–C2O2]+ ion is similar in structure to a 

deprotonated biphenyl cation (Scheme 3). In contrast, for pyrene-4,5-dione, this process 

could result in a structure that resembles a deprotonated phenanthrene cation (Scheme 4). 

The ring-opening mechanism would explain the lack of formation of either the [M+H–

CO]+ or [M+H–C2O2]+ ions for 9,10-anthracenedione, whose linear aromatic structure 
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creates a relatively high energy barrier for such a process to occur. A similar ion was not 

observed with 1,4-phenanthrenedione either, suggesting that the close proximity of the 

carbonyl groups is a requirement for the ring-opening mechanism to occur. 

Dimerization was observed only for two studied species, anthrone and 9,10-

anthracenedione. Anthrone exhibited a small degree of dimerization (Appendix IX), most 

likely into a structure similar to a protonated bianthrone ion. The anthrone dimer was 

observed with three ions of similar abundances: m/z 385, 386, and 387 (Appendix IX). A 

similar dimer was observed for 9,10-anthracenedione, suggesting loss of CO prior to the 

dimerization. For anthrone, a fragment of m/z 165 was attributed to C13H9., formed 

possibly by the loss of –CH2O from the [M+H]+ ion; however, the exact mechanism for 

this process is unclear.   

In positive mode, aldehyde derivatives exhibited similar ionization pathways as 

the ketone and diketone species. The major ionization pathway was via protonation 

(Appendix IX). The loss of –CO from the protonated ion was observed with both 

aldehyde species, showing significant differences in stereoselectivity (Table 11). In 

contrast to the –CO loss mechanism proposed for the diketone species, here it seems to 

proceed through a different pathway (Scheme 5). Rather than the loss of the protonated 

aldehyde group (as CH2O), leaving a cationic phenanthrene structure at m/z 177, the ion 

at m/z 179 was observed, which would result from the loss of –CO. This most likely 

occurs through a two-step mechanism, with the two hydrogens on the protonated 

aldehyde group undergoing hydrogen rearrangement and transfer to the aromatic ring 

followed by the cleavage of the C–C bond and loss of –CO. The loss of –O was also 

observed for both species, not showing any degree of stereoselectivity (Appendix IX). 
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Table 11. Pseudomolecular ions and fragments observed for oxy-PAHs with APCI in 
positive mode. 

  Measured Rel.     Formula Mass 

 

Massa Ab. 

  
Mass Error 

Compound (Da) (%) Fragmentb Formulac (Da) (ppm)d 

           anthrone 195.07934 ± 0.00043 100 [M+H]+ C14H11O 195.08040 -5 ± 2 

 
165.06976 ± 0.00070 10 [M+H–CH2O]+ C13H9 165.06990 -0.8 ± 4.3 

 
385.12075 ± 0.00125 8 [M+M–3H]+ C28H17O2 385.12231 -4 ± 3 

 
223.07483 ± 0.00047 4 [M+H+CO]+ C15H11O2 223.07530 -2 ± 2 

           9,10-anthracene- 209.06013 ± 0.00040 100 [M+H]+ C14H9O2 209.05971 2 ± 2 
dione 193.06482 ± 0.00033 30 [M+H–O]+ C14H9O 193.06479 0.1 ± 1.7 

 
385.12241 ± 0.00151 10 [M+H+M–O2]+ C28H17O2 385.12230 0.3 ± 3.9 

           9,10-
phenanthrene- 181.06486 ± 0.00021 100 [M+H–CO]+ C13H9O 181.06479 0.4 ± 1.1 
dione 209.06165 ± 0.00033 90 [M+H]+ C14H9O2 209.05971 9 ± 2 

 
153.06918 ± 0.00009 60 [M+H–C2O2]+ C12H9 153.06988 -4.6 ± 0.6 

 
226.08584 ± 0.00011 50 [M+NH4]+ C14H12NO2 226.08620 -1.6 ± 0.5 

 
223.07472 ± 0.00030 50 [M+CH3]+ C15H11O2 223.07530 -3 ± 1 

           1,4-
phenanthrene- 209.05992 ± 0.00043 100 [M+H]+ C14H9O2 209.05971 1 ± 2 
dione 239.07032 ± 0.00018 50 [M+H+CH2O]+ C15H11O3 239.07020 0.5 ± 0.7 

 
181.06548 ± 0.00087 15 [M+H–CO]+ C13H9O 181.06479 4 ± 5 

           pyrene-4,5-dione 233.05827 ± 0.00029 100 [M+H]+ C16H9O2 233.05970 -6 ± 1 

 
205.06545 ± 0.00056 85 [M+H–CO]+ C15H9O 205.06470 4 ± 3 

 
177.06969 ± 0.00025 70 [M+H–C2O2]+ C14H9 177.06980 -0.6 ± 2.5 

 
250.08569 ± 0.00036 60 [M+NH4]+ C16H12NO2 250.08620 -2 ± 1 

           phenanthrene-9- 207.07998 ± 0.00017 100 [M+H]+ C15H11O 207.08040 -2.0 ± 0.8 
carboxaldehyde 221.09549 ± 0.00019 90 [M+CH3]+ C16H13O 221.09600 -2.3 ± 0.9 

 
191.08501 ± 0.00036 60 [M+H–O]+ C15H11 191.08550 -3 ± 2 

 
179.08487 ± 0.00024 40 [M+H–CO]+ C14H11 179.08553 -4 ± 1 

 
233.06034 ± 0.00051 10 [M+CO–H]+ C16H9O2 233.05970 3 ± 2 

 
165.06739 ± 0.00007 5 

 
C11H10Na 165.06747 -0.5 ± 0.4 

           anthracene-9- 207.07961 ± 0.00042 100 [M+H]+ C15H11O 207.08040 -4 ± 2 
carboxaldehyde 179.08665 ± 0.00064 50 [M+H–CO]+ C14H11 179.08553 6 ± 4 

 
178.07803 ± 0.00036 20 [M+H–CHO]+ C14H10 178.07770 2 ± 2 

 
191.08519 ± 0.00022 8 [M+H–O]+ C15H11 191.08550 -2 ± 1 

                      
a Measure masses are reported as averages of the masses observed at three different points along the peak. 
b Fragments shown to depict changes in the empirical formula and don’t necessarily represent the fragmentation pathway. 
c Possible emperical formula matches for the observed mass were calculated with elemental ranges of C:8–18, H:6–16, 
O:0–4, and Na:0–1 for monomers and C:16–32, H:12–32, O:0–4, and Na:0–1 for suspected dimers. 

 d Calculated SD values from the observed masses are in ppm error to show its influence on emperical formula 
estimations. 
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Scheme 3 

 

Scheme 4 

For 9-phenanthrenecarboxaldehyde, an abundant ion of [M+15]+, which was not 

observed for any other oxy-PAH besides 9,10-phenanthrenedione, was attributed to the 

formation of a [M+CH3]+ adduct. Scheme 4 shows the proposed pathway for the 

[M+CH3]+ adduct formation through the addition of methanol followed by the loss of 

water (Scheme 5).  
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Scheme 5 

The ionization of oxy-PAHs with APCI in negative mode resulted in very limited, 

if any, fragmentation compared to positive mode, with observed fragments having lower 

relative abundances (Table 12). Similar to the previous work, all oxy-PAH species with 

the exception of anthrone and 9-phenanthrenealdehyde featured the major ion resulting 

from associative electron capture giving the [M+e-]- anion.32,69 For anthrone, the main 

ionization pathway was deprotonation forming the [M–H]- anion while 9-

phenanthrenealdehyde was not ionized at all. 

Additional fragmentation/ionization processes in negative mode were observed 

for anthrone, 1,4-phenanthrenedione, and 9-anthracenecarboxaldehyde (Appendix X). 

We identified an oxygen adduct of the deprotonated ion (i.e., [M–H+O]–) confirmed by 

high mass accuracy (-2 ± 5 ppm; Table 12), which was previously proposed to be a 
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[M+CH3]– ion.66 We were able to eliminate the hypothetical [M+CH3]–  adduct based on 

the high mass error -166 ± 5 ppm from the measured value. The process for this oxygen 

adduct formation is proposed for 1,4-phenanthrenedione in Scheme 6. A deprotonated 

methanol anion ([CH3O]–) may undergo a nucleophilic addition to the aromatic system to 

create a Meisenheimer complex ([M+OCH3]–) and then CH4 is lost to leave the [M–

H+O]– ion.70  

Table 12. Pseudomolecular ions and fragments observed for oxy-PAHs with APCI in 
negative mode 

  Measured Rel.     Formula Mass 

 

Massa Ab. 

  
Mass Error 

Compound (Da) (%) Fragmentb Formulac (Da) (ppm)d 

           anthrone 193.06546 ± 0.00015 100 [M–H]– C14H9O 193.06589 -2.2 ± 0.8 

 
208.05230 ± 0.00057 30 [M–2H+O]– C14H8O2 208.0529 -3 ± 3 

 
385.11995 ± 0.00827 10 [M+e–M–4H]– C28H17O2 385.1234 -9 ± 2 

           9,10-anthracene- 208.05187 ± 0.00031 100 [M+e–]– C14H8O2 208.05298 -5 ± 2 

dione 

          
           9,10-phenanthrene- 208.05205 ± 0.00073 100 [M+e–]– C14H8O2 208.05298 -4 ± 3 

dione 

          
           1,4-phenanthrene- 208.05282 ± 0.00074 100 [M+e–]– C14H8O2 208.05298 -0.8 ± 3.6 

dione 195.04460 ± 0.00082 45 [M+e––CH]– C13H7O2 195.0451 -3 ± 4 

 
223.03901 ± 0.00075 20 [M–H+O]– C14H7O3 223.04007 -5 ± 3 

           pyrene-4,5-dione 232.05187 ± 0.00110 100 [M+e–]– C16H8O2 232.05298 -5 ± 5 

           phenanthrene-9- 

carboxaldehyde 

          
           anthracene-9- 206.07313 ± 0.00042 100 [M+e–]– C15H10O 206.07371 -3 ± 2 

carboxaldehyde 221.06031 ± 0.00120 50 [M–H+O]– C15H9O2 221.0608 -2 ± 5 

                      

a Measure masses are reported as averages of the masses observed at three different points along the peak. 
b Fragments are shown to depict changes in the empirical formula and not necessarily reflect the fragmentation pathway. 

 c Possible empirical formula matches for the observed mass were calculated with elemental ranges of C:8–18, H:6–16, O:0–4, and 
Na:0–1 for monomers and C:16–32, H:12–32, O:0–4, and Na:0–1 for suspected dimers. 

 d Calculated SD values from the observed masses are in ppm error to show its influence on empirical formula estimations. 
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Scheme 6 

5.2.3. Nitro-PAHs 

The APCI ionization/fragmentation of 3–4 ring PAH derivatives containing one 

or two nitro groups were investigated, expanding the current understanding of these 

processes by evaluating the ionization processes and confirming the identities of 

fragments with HRMS data. The ionization/fragmentation processes of doubly-

substituted nitro-PAHs in APCI have not, to our knowledge, been previously studied. The 

studied species were chosen to represent differences in the location of the nitro-group 

(constitutional isomers) and structure of the aromatic backbone, allowing any stereo- or 

structure-specific processes to be observed.  

In positive mode each compound exhibited similar ionization/fragmentation 

processes with different relative abundances (see Table 13). All species consistently 

yielded [M+H–16]+ ions, resulting from the loss of oxygen following protonation 

([M+H–O]+) as shown in Scheme 7. This process was highly stereoselective and was the 

most prevalent ionization process for 9-nitroanthracene and 9-nitrophenanthrene but was 
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not observed for 3-nitrophenanthrene (Appendix X). All singly substituted nitro-PAHs 

studied exhibited a [M+H–30]+ fragment. Our high-resolution MS data support a 

previous experimental interpretation 71 of this ion as a result of nitro group reduction 

resulting in the [M+3H-O2]+ ion. Mass error calculations (data not shown) using the loss 

of –NO for the [M+H–30]+ ion result in an error > 100 ppm, compared to < 10 ppm for 

the reduction of the –NO2 group to –NH3
+. Surprisingly, the relative abundance of 

[M+H]+ was low for all singly substituted nitro-PAH species studied (ranging from 5–

50% of the base peak response). This may be due to a competition between protonation 

of the neutral molecule and gas-phase reduction and oxidation. 

Analysis of doubly substituted nitro-PAHs (namely 9,10-dinitroanthracene and 

1,6-dinitropyrene) in positive mode resulted in more complicated spectra, arising from 

competing fragmentation pathways for two separate nitro groups (Table 13). As 

expected, the nitro group reduction to their respective protonated amines was the major 

ionization pathway for both compounds. However, the highest response in the MS spectra 

of 1,6-dinitropyrene was a result of reduction of one nitro group ([M+H–30]+) while both 

nitro groups in 9,10-dinitroanthracene showed high reactivity towards reduction, giving 

[M+H–62]+ as the base peak. Both species exhibited [M+H–O]+ fragments with different 

relative abundances.  
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Table 13. Pseudomolecular ions and fragments observed for nitro-PAHs with APCI in 
positive mode. 

  Measured Rel.     Formula Mass 

 

Massa Ab. 

  
Mass Error 

Compound (Da) (%) Fragmentb Formulac (m/z Da) (ppm)d 

           9-nitro- 208.07546 ± 0.00024 100 [M+H–O]+ C14H10NO 208.07569 -1.1 ± 1.2 
anthracene 194.08603 ± 0.00082 17 [M+3H–O2]+ C14H12N 194.09643 -53.5 ± 4.2 

 
194.08603 ± 0.00082 17 [M+H–NO]+ C14H10O 194.07262 69.1 ± 4.2 

 
224.07114 ± 0.00060 10 [M+H]+ C14H10NO2 224.07060 2.4 ± 2.7 

 
178.07725 ± 0.00003 3 [M+H–NO2]+ C14H10 178.07770 -2.6 ± 0.1 

           
           3-nitro- 194.09626 ± 0.00031 100 [M+3H–O2]+ C14H12N 194.09643 -0.9 ± 1.6 
phenanthrene 194.09626 ± 0.00031 100 [M+H–NO]+ C14H10O 194.07262 121.8 ± 1.6 

 
208.07553 ± 0.00012 80 [M+H–O]+ C14H10NO 208.07569 -0.8 ± 0.6 

 
178.07699 ± 0.00015 15 [M+H–NO2]+ C14H10 178.07770 -4.0 ± 0.8 

 
224.07080 ± 0.00048 6 [M+H]+ C14H10NO2 224.07060 0.9 ± 2.1 

           9-nitro- 208.07512 ± 0.00031 100 [M+H–O]+ C14H10NO 208.07569 -2.7 ± 1.5 
phenanthrene 194.09530 ± 0.00012 70 [M+3H–O2]+ C14H12N 194.09643 -5.8 ± 0.6 

 
194.09530 ± 0.00012 70 [M+H–NO]+ C14H10O 194.07262 116.9 ± 0.6 

 
178.07645 ± 0.00044 10 [M+H–NO2]+ C14H10 178.07770 -7.0 ± 2.5 

 
224.07182 ± 0.00064 5 [M+H]+ C14H10NO2 224.07060 5.4 ± 2.8 

           1-nitropyrene 218.09619 ± 0.00162 100 [M+3H–O2]+ C16H12N 218.09643 -1.1 ± 7.5 

 
248.06993 ± 0.00109 50 [M+H]+ C16H10NO2 248.07060 -2.7 ± 4.4 

 
232.07624 ± 0.00100 40 [M+H–O]+ C16H10NO 232.07569 2.4 ± 4.3 

 
202.07816 ± 0.00035 20 [M+H–NO2]+ C16H10 202.07770 2.3 ± 1.7 

           
           9,10-dinitro- 207.09072 ± 0.00041 100 [M+3H–O4]+ C14H11N2 207.09160 -4.2 ± 2.0 
anthracene 208.07501 ± 0.00045 90 [M+2H–NO3]+ C14H10NO 208.07570 -3.3 ± 2.2 

 
209.07809 ± 0.00014 60 [M+5H-2O2] C14H13N2 209.10732 -139.8 ± 0.7 

 
194.07443 ± 0.00050 60 [M+2H–N2O3]+ C14H10O 194.07260 9.4 ± 2.6 

 
224.07017 ± 0.00069 25 [M+H–NO2]+ C14H10NO2 224.07060 -1.9 ± 3.1 

 
223.08860 ± 0.00070 22 [M+3H–O3]+ C14H11N2O 223.08650 9.4 ± 3.1 

 
239.08356 ± 0.00144 8 [M+3H–O2]+ C14H11N2O2 239.08150 8.6 ± 6.0 

 
180.08218 ± 0.00074 8 [M+2H–CNO4]+ C13H10N 180.08078 7.8 ± 4.1 

 
178.07527 ± 0.00096 4 [M+2H–2NO2]+ C14H10 178.07770 -13.6 ± 5.4 

 
253.06031 ± 0.00062 3 [M+H–O]+ C14H9N2O3 253.06077 -1.8 ± 2.4 

           1,6-dinitro- 263.08100 ± 0.00014 100 [M+3H–O2]+ C16H11N2O2 263.08151 -2.0 ± 0.5 
pyrene 277.06074 ± 0.00014 60 [M+H–O]+ C16H9N2O3 277.06070 0.1 ± 0.5 

 
247.08933 ± 0.00050 30 [M+3H–O3]+ C16H11N2O 247.08660 11.0 ± 2.0 

 
233.08177 ± 0.00329 25 [M+5H-2O2]+ C16H13N2 233.10730 -109.5 ± 14.1 

 
232.07572 ± 0.00044 25 [M+2H–NO3]+ C16H10NO 232.07570 0.1 ± 1.9 

 
231.07159 ± 0.00177 25 [M+H–NO3]+ C16H9NO 231.06786 16.1 ± 7.7 

 
246.07829 ± 0.00021 25 [M+2H–O3]+ C16H10N2O 246.07870 -1.7 ± 0.8 

 
261.06604 ± 0.00015 20 [M+H–O2]+ C16H9N2O2 261.06590 0.5 ± 0.6 

 
218.09593 ± 0.00020 15 [M+4H–NO4]+ C16H12N 218.09640 -2.1 ± 0.9 

 
216.08061 ± 0.00026 10 [M+2H–NO4]+ C16H10N 216.08080 -0.9 ± 1.2 

                      
a Measure masses are reported as averages of the masses observed at three different points along the chromatographic peak. 
b Fragments are shown to depict changes in the empirical formula and don’t necessarily reflect the fragmentation pathway. 

 c Possible empirical formula matches for the observed mass were calculated with elemental ranges of C:8–18, H:6–16, O:0–4, and 
Na:0–1 for monomers and C:16–32, H:12–32, O:0–4, and Na:0–1 for suspected dimers. 

 d Calculated SD values from the observed masses are in ppm error to show its influence on empirical formula estimations. 
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Scheme 7 

APCI-MS analysis of both singly and doubly substituted nitro-PAHs in negative 

mode showed significantly lower fragmentation compared to the positive mode 

(Appendix X; see also Table 14). For all species studied, the most abundant in the MS 

spectra was the ion produced via associative electron capture by the neutral molecule, 

giving [M+e–]–. This corroborates the observation reported in previous work using low 

resolution MS detection.26,29 The associative addition of oxygen following deprotonation, 

[M–H+O]–, was common for singly substituted nitro-PAHs. The oxygen adduct has been 

observed in previous studies.28,29 To evaluate the eluent solvents as possible oxygen 
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contributors to the [M–H+O]– ions, direct infusion of 1-nitropyrene at 1 ppm was 

performed in various solvents; the results are shown in Figure 8. When 1-nitropyrene was 

dissolved in acetonitrile (devoid of any oxygen), the response ratio of [M–H+O]–:[M+e–]– 

(m/z 262:m/z 247) was minimal; this was in stark contrast to oxygenated solvents. The 

exact mechanism for the observed oxygen mechanism is not certain. It should be noted 

that doubly substituted nitro-PAHs did not undergo this oxygen addition to either of the 

nitro groups. Thus the presence of the second nitro group might play a key role in 

deactivating the deprotonated ion towards oxygen addition. As with positive mode, 

stereoselectivity was observed, mainly between singly substituted nitro-PAHs, with 9-

nitrophenanthrene exhibiting a low relative abundance (~ 8% of [M+e–]– base peak) for 

the [M–H+O]+ ion while 3-nitrophenanthrene and 9-nitroanthracene yielded abundances 

of 30% and 50% relative to the base peak. 

 

Fig. 8. The contribution of various solvents to formation of [M–H+O]– ions for 1-
nitropyrene in APCI with negative polarity. Spectra were recorded and averaged during 
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the direct infusion of 1-nitropyrene (at 1 ppm with 5 mM formic acid) in three different 
solvents at a flow rate of 0.2 mL min-1. The height of each mass peak was used as the 
response (intensity, counts per second). 
Table 14. Pseudomolecular ions and fragments observed for nitro-PAHs with APCI in 
negative mode. 

  Measured Rel.     Formula Mass 

 

Massa Ab. 

  
Mass Error 

Compound (m/z Da) (%) Fragmentb Formulac (m/z Da) (ppm)d 

           9-nitro- 223.06308 ± 0.00062 100 [M+e-]- C14H9NO2 223.06388 -4 ± 3 
anthracene 238.05027 ± 0.00102 50 [M-H+O]- C14H9NO3 238.05097 -3 ± 4 

 
193.06543 ± 0.00030 20 [M+e-–NO]- C14H9O 193.06589 -2 ± 2 

 
208.05150 ± 0.00095 3 [M-H+O–NO]- C14H8O2 208.05243 -4 ± 5 

 
256.06066 ± 0.00090 3 [M+e-+HO2]- C14H10NO4 256.06153 -3 ± 3 

           3-nitro- 223.06250 ± 0.00049 100 [M+e-]- C14H9NO2 223.06388 -6 ± 2 
phenanthrene 238.04966 ± 0.00107 30 [M-H+O]- C14H8NO3 238.05097 -5 ± 4 

 
209.05960 ± 0.00109 3 [M+e-+O–NO]- C14H9O2 209.06080 -6 ± 5 

 
193.06676 ± 0.00043 2 [M+e-–NO]- C14H9O 193.06589 5 ± 2 

           9-nitro- 223.06354 ± 0.00086 100 [M+e-]- C14H9NO2 223.06388 -2 ± 4 
phenanthrene 238.05060 ± 0.00114 8 [M–H+O]- C14H8NO3 238.05097 -2 ± 5 

 
209.05954 ± 0.00054 4 [M+e-+O–NO]- C14H9O2 209.06080 -6 ± 3 

 
193.06529 ± 0.00057 4 [M+e-–NO]- C14H9O 193.06589 -3 ± 3 

 
208.05276 ± 0.00127 3 [M–H+O–NO]- C14H8O2 208.05243 2 ± 6 

           1-nitropyrene 247.06206 ± 0.00079 100 [M+e-]- C16H9NO2 247.06388 -7 ± 3 

 
217.06424 ± 0.00096 30 [M+e-–NO]- C16H9O 217.06589 -8 ± 4 

 
262.05055 ± 0.00105 27 [M–H+O]- C16H8NO3 262.05097 -2 ± 4 

 
233.05968 ± 0.00149 5 [M+e-+O–NO]- C16H9O2 233.06080 -5 ± 6 

           9,10-dinitro- 268.04708 ± 0.00089 100 [M+e-]- C14H8N2O4 268.04896 -7 ± 3 
anthracene 238.04936 ± 0.00070 60 [M+e-–NO]- C14H8NO3 238.05097 -7 ± 3 

 
254.04414 ± 0.00035 10 [M+e-+O–NO]- C14H8NO4 254.04588 -7 ± 1 

 
223.06213 ± 0.00069 4 [M+e-+H–NO2]- C14H9NO2 223.06388 -8 ± 3 

 
208.05118 ± 0.00074 4 [M+e-–N2O2]- C14H8O2 208.05298 -9 ± 4 

 
193.06499 ± 0.00042 2 [M+e-+H–N2O3]- C14H9O 193.06589 -5 ± 2 

           1,6-dinitro- 292.04801 ± 0.00131 100 [M+e-]- C16H8N2O4 292.04896 -3 ± 4 
pyrene 262.05035 ± 0.00115 20 [M+e-–NO]- C16H8NO3 262.05097 -2 ± 4 

 
276.05313 ± 0.00148 10 [M+e-–O]- C16H8N2O3 276.05404 -3 ± 5 

                      
a Measure masses are reported as averages of the masses observed at three different points along the peak. 
b Fragments shown to depict changes in the empirical formula and don’t necessarily represent the fragmentation pathway.  
c Emperical formula matches for the observed mass were calculated with elemental ranges of C:8–18, H:6–16, O:0–4,  
and Na:0–1 for monomers and C:16–32, H:12–32, O:0–4, and Na:0–1 for suspected dimers. 

    d Calculated SD values from the observed masses are in ppm error to show its influence on emperical formula estimations. 

 

5.2.4. Products from the Heterogeneous Ozonation of PAHs 

In this study, the interpretation of APCI ionization/fragmentation pathways 

together with HRMS data demonstrated above enabled the identification of unknown 

products72,73 upon exposure of pyrene adsorbed on a quartz filter to ozone (see the 

chromatogram in Figure 9). We were able to confirm the identity of two compounds 

using standards and tentatively identify five additional compounds based on the EICs 
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(obtained with high resolution of ±0.03 m/z) for the major fragment ions  observed with 

the standards (Table 15; mass spectra shown in Appendix XII).  

Hydroxy-PAHs, carboxy-PAHs and carbonyl-PAHs identified were the products 

formed through the ring-opening mechanism as opposed to a more energy-intensive 

direct oxidation.72–74 Although most of these products have previously been observed 

both in aqueous media and on model particles,72,74,75 this is the first time when the high 

resolution MS data were used to confirm their identification. 

From the mass spectra of each chromatographic peak, specific trends in common 

ions were observed (Figure 11). Several compounds showed a significant fragment of m/z 

205, possibly corresponding to an ionized phenanthrene carbonyl structure. Common ions 

of m/z 205, 235 and 191 enabled the identification of three compounds: 4-carboxy-5-

phenanthrenecarboxaldehyde, phenanthrene-4,5-dicarboxaldehyde and 5-

(hydroxymethyl)-4-phenanthrenecarboxylic acid. The isomers of the last two compounds 

were assigned based on what could be possible through the ring-opening oxidation of 

pyrene. The first compound confirmed by a standard seemed to coelute with 4-

phenanthrenecarboxylic acid (also confirmed by the corresponding standard). 4-carboxy-

5-phenanthrenecarboxaldehyde was previously observed from pyrene ozonation while 

adsorbed on azelaic acid particles.74 The dicarboxaldehyde was identified based on the 

concurrent ions of m/z 205 (from the neutral loss of –CH2O) and m/z 191 (loss of –CO2),  
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Fig. 9. HPLC-APCI-HRMS smoothed TIC and EIC chromatograms of products formed 
during the heterogeneous ozonation of pyrene in a small-scale flow reactor. Numbers 
shown correspond to those listed in Table 15 and Appendix XII. 
 
both from the protonated ion of m/z 235.  This product was previously observed during 

aqueous and heterogeneous ozonation of pyrene,74–76 but not in atmospheric studies. The 

acid derivative was identified through the observed [M+H]+, [M+H–H2O]+ and [M+H–

CH2O2]+ ions. While this  compound was previously reported as a result of pyrene 
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ozonation in aqueous solution 75,76, to our knowledge it was not reported in heterogeneous 

ozonation reactions. We were not able to unequivocally identify the last of the m/z 205 

peaks, however, this compound could be possibly identified as another isomer of 

phenanthrene carboxylic acid. 
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Table 15. Ion fragments observed for species tentatively identified from HPLC-APCI-HRMS analysis of extracts of filters collected 
during flow-reactor experiments of the ozonation of pyrene.  

      Measured Rel.     Formula Mass 

Peak Proposed tR Massb Ab. 

  
Massd Errore 

#a Compound (min) (m/z Da) (%) Fragmentc Formula (m/z Da) (ppm) 

1 4-carboxy-5-phenanthrene- carboxaldehyde 18.18 235.07392 ± 0.00040 100 [M+H–O]+ C16H11O2 235.07536 -8 ± 2 

  
18.18 251.06876 ± 0.00045 65 [M+H]+ C16H11O3 251.07027 -5 ± 2 

  
18.18 205.06395 ± 0.00041 40 [M+H–CH2O2]+ C15H9O 205.06479 -3 ± 2 

  
18.18 191.08474 ± 0.00052 25 [M+H–CO3]+ C15H11 191.08550 -4 ± 3 

  
18.18 233.05831 ± 0.00063 20 [M+H–H2O]+ C16H9O2 233.05971 -5 ± 3 

  
18.18 265.08434 ± 0.00052 20 [M+H+CH2]+ C17H13O3 265.08590 -5 ± 2 

  
18.18 177.06856 ± 0.00039 5 [M+H–C2H2O3]+ C14H9 177.06988 -5 ± 2 

             2 4-phenanthrene-carboxaldehyde 18.28 205.06503 ± 0.00034 100 [M+H–H2O]+ C15H9O 205.06479 -0.4 ± 1.7 

  
18.28 221.06055 ± 0.00107 50 [M+H–2e–]+ C15H9O2 221.06036 -4 ± 5 

  
18.28 223.07667 ± 0.00037 40 [M+H]+ C15H11O2 223.07536 4 ± 2 

             3 4-oxapyrene-5-one 19.43 221.06031 ± 0.00037 50 [M+H]+ C15H9O2 221.05971 5 ± 2 

  
19.43 193.06518 ± 0.00024 100 [M+H–CO]+ C14H9O 193.06479 3 ± 1 

  
19.43 177.07143 ± 0.00043 25 [M+H–CO2]+ C14H9 177.06988 9 ± 2 

             4 4-phenanthrene-carboxaldehyde 19.54 207.08104 ± 0.00015 40 [M+H]+ C15H11O 207.08044 3.7 ± 0.7 

  
19.54 191.08438 ± 0.00043 100 [M+H–O]+ C15H11 191.08553 -3 ± 2 

  
19.54 179.08597 ± 0.00010 5 [M+H–CO]+ C14H11 179.08553 1.9 ± 0.5 

             5 phenanthrene-4,5-dicarboxaldehyde 19.84 235.07533 ± 0.00046 100 [M+H]+ C16H11O2 235.07536 -0.2 ± 2.0 

  
19.84 205.06556 ± 0.00062 50 [M+H–CH2O]+ C15H9O 205.06479 3 ± 3 

  
19.84 191.08508 ± 0.00098 5 [M+H–CO2]+ C15H11 191.08553 -7 ± 5 

             6 [1,1'-biphenyl]-2,2',6,6'-tetracarboxaldehyde 19.93 239.06893 ± 0.00054 100 [M+H–CO]+ C15H11O3 239.07027 -6 ± 2 

  
19.93 251.07065 ± 0.00050 10 [M+H–O]+ C16H11O3 251.07027 4 ± 2 

  
19.93 267.06482 ± 0.00052 10 [M+H]+ C16H11O4 267.06518 -3 ± 2 

             7 5-(hydroxymethyl)-4-phenanthrenecarboxylic acid 21.45 235.07457 ± 0.00068 100 [M+H–H2O]+ C16H11O2 235.07536 -4 ± 3 

  
21.45 205.06375 ± 0.00101 60 [M+H–CH4O2]+ C15H9O 205.06479 0.6 ± 4.9 

  
21.45 191.08645 ± 0.00041 20 [M+H–CH2O3]+ C15H11 191.08553 7 ± 2 

  
21.45 253.08556 ± 0.00041 5 [M+H]+ C16H13O3 253.08592 -2 ± 2 

a Peak numbers correspond to peaks labeled in Fig. 9.  
         b Measure masses are reported as averages of the masses observed at three different points along the chromatographic peak. 

   

86 
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Two additional products proposed to result from a ring-opening attack by ozone 

were tentatively identified as [1,1'-biphenyl]-2,2',6,6'-tetracarboxaldehyde (peak 6 in 

Figure 9) and 4-oxapyrene-5-one (peak 3 in Figure 9). The former was identified based 

on the [M+H–O]+ and [M+H–CO]+ ion fragments observed with the aldehyde standards. 

For 4-oxapyrene-5-one, similar to the studied diketone species, a [M+H–CO]+ ion was 

observed. In addition, a [M+H–CO2]+ ion was observed that was not with the other 

ketone standards. 

5.3. Conclusions 

Derivatives of PAHs containing a mixture of functional groups (i.e., hydroxyl, 

carboxylic acid, carbonyl, and nitro groups) were analyzed with APCI-HRMS. High 

resolution data for common fragmentation patterns between 3-4 ring PAH derivatives 

with similar functional groups were reported for the first time. Stereospecific pathways 

were found, providing useful information in identifying unknown species with no 

available standards. In analyzing products from the ozonation of pyrene with APCI-

HRMS, many products were tentatively identified based on common ions of m/z 205 and 

235 and 191 as well as relative intensities of common ionization/fragmentation patterns 

exhibited by standard compounds. For the first time high resolution MS data are reported 

to support the identification of these products. Some of the products identified are, for the 

first time, reported as occurring from the heterogeneous ozonation of pyrene. 
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CHAPTER 6 

6. HETEROGENEOUS NITRATION AND OZONATION OF 3- AND 4-RING 

POLYCYCLIC AROMATICE HYDROCARBONS IN A SMALL-SCALE 

FLOW REACTOR. 

6.1. Experimental 

6.1.1. Materials and Reagents 

All standards used in this study are listed in Table 16. Stock solutions were 

prepared in a concentration of 100 µg mL-1 in dichloromethane (DCM, high-resolution 

GC grade, Fisher Scientific, Pittsburgh, PA, USA). The internal standard method was 

employed for quantification using an internal standard (IS) solution consisting of 

deuterated fluoranthene in DCM (~100 µg mL-1). Additionally, recovery standard (RS) 

solutions (100 µg mL-1; listed in Table 16) were used to correct for any errors resulting 

from the extraction process. The derivatization agent, N,O-

bis(trimethylsilyl)trifluoroacetamide (BSTFA) with 1% of trimethylchlorosilane 

(TMCS), was obtained from Sigma-Aldrich (Atlanta, GA, USA) and used to derivatize 

polar PAH derivatives with hydroxy groups (hydroxy-PAHs) and/or carboxylic acid 

groups (carboxy-PAHs) to trimethylsilyl derivatives to increase the sensitivity of their 

analysis. 

For flow reactor experiments dry air (< 7 ppm H2O), dry nitrogen (< 3 ppm H2O) and 

nitrogen dioxide (380.1 ppm in dry air) were obtained from Airgas (Chicago, IL, USA). 
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Table 16. List of standards, recovery standard and internal standards used in this study 
with select physical and experimental information. 
          Confirmation Ions    

  
Empirical MW Quan. (Relative Abundance) 

 Compound Formula (g mol-1) Ion 1 2 Use 

        PAHs 

      
 

phenanthrene C14H10 178 178 152 (10) 89 (10) Standard 

 
anthracene C14H10 178 178 152 (10) 89 (10) Standard 

 
fluoranthene C16H10 202 202 101 (10) 88 (5) Standard 

 
pyrene C16H10 202 202 101 (10) 88 (5) Standard 

 
phenanthrene-d10 C14D10 188 188 184 (20) 160 (10) RSb 

 
anthracene-d10 C14D10 188 188 184 (20) 160 (10) RS 

 
fluoranthene-d10 C16D10 212 212 106 (10) 92 (5) ISd 

 
pyrene-d10 C16D10 212 212 106 (10) 92 (5) RS 

nitro-PAHs 

      
 

9-nitrophenanthrene C14H9NO2 223 165 176 (90) 223 (60) Standard 

 
9-nitroanthracene C14H9NO2 223 176 223 (90) 165 (80) Standard 

 
3-nitrofluoranthene C16H9NO2 247 247 200 (75) 189 (60) Standard 

 
1-nitropyrene C16H9NO2 247 201 247 (85) 189 (60) Standard 

 
9-nitrophenanthrene-d9 C14D9NO2 232 232 184 (95) 202 (90) RS 

 
9-nitroanthracene-d9 C14D9NO2 232 232 184 (95) 202 (90) RS 

 
3-nitrofluoranthene-d9 C16D9NO2 256 256 210 (100) 208 (75) RS 

 
1-nitropyrene-d9 C16D9NO2 256 256 210 (100) 208 (75) RS 

oxy-PAHs 

      
 

9,10-anthracenedione C14H8O2 208 208 180 (95) 152 (75) Standard 

 
9,10-phenanthrenedione C14H8O2 208 180 152 (50) 208 (50) Standard 

 
anthrone C14H10O 194 194 165 (65) 

 
Standard 

 
2-chloroanthraquinone C14H7ClO2 242 242 214 (65) 186 (55) RS 

hydroxy-PAHs 

      
 

1-hydroxypyrene C16H10O 218 218 
  

Standard 

 
1-hydroxypyrene-d9 C16D10O 227 227 197 (50) 99 (15) RS 

 
2'-chloro-2-hydroxy-4- C14H11ClO2 247 211 135 (30) 246 (25) RS 

 
methylbenzophenone 

                      
a Sigma-Aldrich (Atlanta, GA, USA). 

     b Denotes "Recovery Standard" used to correct for error arising from extraction and sample preparation steps. 
c CDN Isotopes (Pinte-Claire, Canada). 

     d "Internal Standard" used to correct for volume changes in the final sample submitted to GC-MS analysis. 

 

6.1.2. Flow Reactor 

The home-built flow reactor used in this study consisted of three main parts: a gas 

injection/dilution system, a mixing chamber, and a reaction chamber (Appendix VI). The 

gas injection/dilution system delivered breathing quality air, industrial grade nitrogen, 

and ultra-high purity nitrogen dioxide (at 10 ppm in balance nitrogen) to a mixing 

chamber composed entirely of Teflon (31.5 cm length x 9.0 cm I.D.) through ¼” stainless 
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steel tubing.  Two-way stainless steel valves were used for selecting the gases used in 

each experiment. All gas flows through the reactor system were regulated with mass flow 

controllers (Alicat Scientific, Tucson, AZ, USA) to achieve the desired dilution of gases. 

After the mixing chamber stainless steel tees directed flow to the reaction chamber, gas 

analyzer, and exhaust vent. During ozonation experiments ozone levels at the outlet of 

the mixing chamber were measured using a photometric O3 gas analyzer (Teledyne, 

Thousand Oaks, CA, USA). For nitration experiments NO2 concentrations were 

measured using a chemiluminescence NOx analyzer (Teledyne). The gas mixtures from 

the mixing chamber were supplied to the Teflon reaction chamber (43 cm in length x 9.0 

cm I.D.) through an inlet located on top of the chamber. A quartz window was located 

directly above the reactor chamber inlet where a UV light (356 nm) was housed for 

photochemical experiments. At the bottom of the reaction chamber was a Teflon-coated 

aluminum filter support where 90 mm filters (surrogate particle phase) were placed 

during each reaction experiment. The outlet of the reactor chamber was located under the 

filter support. Following the outlet of the reaction chamber two polyurethane foam (PUF) 

filters were placed in series to collect residual gas phase species exiting the reaction 

chamber. The total flow through the reaction chamber was controlled using an oil-less 

pump (Model VT 4.8; Becker, Cuyahoga Falls, OH, USA) with a mass flow controller 

positioned between the reaction chamber and the pump. The flow drawn by the pump 

was always kept lower than the gas flow exiting the mixing chamber to prevent over 

pressurization of the reaction chamber.  

6.1.3. Reaction Experiments 

In this study general trends in the desorption and reactive uptake of four PAHs 

(phenanthrene, anthracene, fluoranthene, and pyrene) were evaluated, focusing on the 
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identification of the majority of the products formed. An allotted amount of a PAH stock 

solution was spiked over either a quartz tissue filter (90 mm I.D., PALL Corporation, 

Port Washington, NY) or Teflon filter (90 mm I.D., Sterlitech Corporation, Kent, WA, 

USA)  and allowed to evaporate at room temperature for 60 s. All quartz filters were pre-

baked at 500 °C for 12 h and then placed in the small scale flow reactor system (as shown 

in Appendix VI) and exposed to the experimental conditions specified in Table 17 with 

reaction times ranging between 5–300 min. Gas phase species exiting the reaction 

chamber were collected with two PUF filters placed in series after the quartz (is some 

experiments Teflon) filter. PUF filters were pre-cleaned via sonication for 30 min in 

DCM. For all experiments no breakthrough through the first PUF filter was observed 

(i.e., the amounts observed on the second PUF filter were less than 1% of those observed 

on the first). The conditions of the experiments that were performed in this study are 

summarized in Table 17. To determine PAH loss through desorption, initial experiments 

were performed under an atmosphere composed of only air or only nitrogen. Additional 

experiments were performed in the presence of UV light to determine the impact of 

photolysis on the loss of PAHs without the presence of oxidizing species.  

Table 17. List of flow reactor experiments performed in this study (each done in 
triplicate). Oxidants along with their final concentrations (ppm). 

          
Experiment Atmosphere Oxidant Photolysis  Total Gas Flow 

   
(356 nm) (L min-1)a 

          

     1 Air - No 2.5 
2 Air - Yes 2.5 
3 N2 - No 2.5 
4 Air NO2 (7.5 ppm) No 2.5 
5 N2 NO2 (7.5 ppm) No 2.5 
6 Air O3 (1.25 ppm) No 1.5 
7 Air O3 (1.0 ppm) Yes 1.5 

8 Air 
O3 (1.6 ppm)  

NO2 (9.6 ppm) 
No 1.5 

  
NO2 (9.6 ppm) 

  
9 Air O3 (1.6 ppm)  Yes 1.5 

  
NO2 (9.6 ppm) 

  
          

a Mass flow (corrected by temperature and pressure) 
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To accurately account for the analyte recoveries, a daily control sample was 

prepared by spiking the same amount of PAHs (4 µg) and RS compounds (1 µg) to DCM 

in parallel to each reaction experiment. These control solutions were prepared so that the 

final analyte concentrations in the controls were the same as those in the samples, 

assuming 100% recovery of starting reagent and products. All reaction and control 

experiments were performed in triplicate and evaluated based on the average ± one 

standard deviation.  

To assess any background contamination present on the filters, in the small 

reaction chamber system, or in the supplied nitrogen gas, blank extractions were 

performed in triplicate on: 1) filters not submitted to the chamber, and 2) filters exposed 

to N2 gas for 90 min. Detected species from all desorption experiments were compared to 

oxidation experiments with NO2 and O3 to avoid misidentification of oxidation products. 

6.1.4. Extraction and Sample Preparation 

Upon the completion of each reaction experiment, the filter was extracted using 

10 mL of DCM using 30 min sonication. Prior to each extraction 40 µL of RS solution at 

100 µg mL-1 of each compound (listed in Table 16) was added. After sonication, the 

extract was filtered over deactivated glass wool. The vial and filter was further washed 

twice with 10 mL of DCM each time. Ultimately all DCM solvent fractions obtained 

were combined and evaporated under a stream of nitrogen to ~0.5 mL. The concentrated 

extract was then divided into two parts, for 1) direct analysis and 2) analysis following 

the derivatization. The derivatization was performed using 100 µL of BSTFA (60 °C, 3 

h). Prior to GC-MS analysis, 10 µL of IS solution (fluoranthene-d10 at 100 µg mL-1) was 

added to each final sample volume. 
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6.1.5. GC-MS Analyses 

The analyses were performed using an Agilent 6890N GC equipped with 5975C 

MSD (EI). All injections (1.0 µL) were into a splitless injection (1 min) port with a 30 psi 

pulse for 1.0 min using a splitless liner with deactivated glass wool (Restek, Bellefonte, 

PA). A 30 m DB-5MS column (J&W Scientific, Inc., Folsom, CA, USA) with a 0.25 mm 

I.D. and a 0.25 µm film thickness was used for all separations. Ultra pure helium 

(99.999%) was used as the carrier gas with a constant flow rate of 1.0 mL min-1. The 

initial oven temperature was set to 40 °C held for 1.0 min, then ramped to 140 °C with a 

rate of 20 °C/min, then ramped to 290 °C with a rate of 10 °C, and held for 12 min. The 

injector temperature was set to 250 °C and the transfer line was set at 280 °C. All MS 

data was acquired in total ion current (TIC) mode with a mass range of m/z 50–550. For 

all analyses a 3.5 min solvent delay was used, expect for the analysis of derivatized 

samples which had a 5 min solvent delay. 

6.1.6. HPLC-APCI-HRMS Analyses 

HPLC-MS analyses were performed on an Agilent 1100 HPLC coupled to high 

resolution Time of Flight MS G1689A Series 6200. All HPLC separations were 

performed using a Restek C18 200 mm x 3.2 mm reverse phase HPLC column with 5 µm 

particle size. A binary solvent system consisting of A: water, B: methanol was used. A 

gradient program at flow rate of 0.5 mL min-1 started with 20% B for 5 min, followed 

with an increase to 90% B at 20 min, and hold at 90% until 27 min, and then was linearly 

decreased to 20% at 30 min and held at 20% B for 5 min to allow for equilibration.  The 

column oven temperature was set to 30 °C and injection volume was 50 µL. 

APCI was performed in both positive and negative modes. Drying gas (N2) was 

set to 300 °C at a flow of 3 L min-1. For all experiments the capillary voltage was set to 
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4500 V. In order to minimize the contribution of post-source fragmentation, the 

fragmentor voltage was set to 120 V for all experiments. All HPLC-HRMS analyses were 

performed with the corona discharge current set at 10 µA. For experiments evaluating the 

contribution of the corona current to gas-phase ion fragmentation the corona discharge 

current was varied within the range of 4–25 µA. 

6.2. Results and Discussion 

The aim of this project was to study the oxidation of PAHs in the presence of 

either nitrogen dioxide, ozone, or both, focusing on the identification of product species 

to enable their later identification in atmospheric studies performed either in chambers or 

outdoor. 

6.2.1. Desorption and Background Contamination 

Prior to studying oxidation processes of PAHs, small chamber experiments were 

performed using either N2 gas or air without any other reactant to determine desorption 

rates (Figure 10). Under an N2 atmosphere combined recoveries in the gas and particle 

phase for phenanthrene, fluoranthene and pyrene were near 100 % for both 90 and 300 

min exposure (Figure 10). As expected, evaporation of the 3-ring PAHs (~25% at 90 

min) was more pronounced than those of 4-ring PAHs (<5% at 90 min). Total recoveries 

for anthracene were lower, with ca. 20% lost for both exposure times. The formation of 

9,10-anthracenedione and anthrone (not quantified) was observed in the particle phase, 

most likely attributing to the fraction of anthracene lost. This was unexpected and is 

possibly due to the presence of oxygen in the form of SiO2 in the quartz filter. 

When exposed to air only, the loss of phenanthrene and anthracene from the 

particle phase was slightly higher than with the exposure to N2 only (Figure 10). While 
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the majority of this mass loss was recovered in the gas-phase, small amounts of 9,10-

anthracenedione and 9,10-phenanthrenedione were observed on the quartz filter.  

 

Fig. 10. Recoveries of PAHs in both the gas and particle phases during N2 desorption 
experiments, from 90 and 300 min durations. Recoveries are shown as mole percent of 
moles originally spiked to the quartz filter. Standard deviations were calculated from 
recoveries determined during triplicate experiments. 

6.2.2. Reaction with NO2  

As reported previously, for reaction times ranging from 5 min to 300 min, 

exposure of PAHs to NO2 led to a selective loss of anthracene and pyrene (Appendix 

XIII).77 The nitration reaction products reported previously as well as newly observed 

reaction products from phenathrene are listed in Table 18, including their characteristic 

EI-MS ions and retention times. As in previous work for the reaction with NO2, the major 

products were 1-nitropyrene and 9-nitroanthracene (Figure 11; TIC chromatogram shown 

in Appendix XIV, confirmed by individual standards).77,78 While relatively less reactive, 

the nitration of phenanthrene resulted in the formation of 9-nitrophenanthrene. This is, to 

our knowledge, the first report of the formation of this product from the heterogeneous 

nitration of phenanthrene. 
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In contrast to previous studies, mass balance on the nitration of pyrene was closed 

with the molar amount of 1-nitropyrene recovered (43±12 nanomoles at 90 min) being 

similar to the amount of pyrene lost (Figure 11). For other species yields were at least 

60%, with significant amounts of parent PAHs, and for some, unexpected oxygenated 

products. 
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Table 18. Products observed from the reaction between a mixture of PAHs, pyrene only, and anthracene only with NO2 while 
adsorbed to a quartz filter substrate. 

                    MS Methods 
 

Identified Parent Empirical  

 

tR EI-MS Major Ions (Relative Abundance) Used For 
 

Oxidation Product PAH Formula MW (min) 1 2 3 4 Identificationa Standard 

            PAHs + NO2 

          
 

9-nitroanthracene anthracene C14H9NO2 223 16.73 176 (100) 223 (95) 193 (80) 165 (85) EI-MS & APCI-HRMS 9-nitroanthracene 

 
9-nitrophenanthrene phenanthrene C14H9NO2 223 17.433 165 (100) 176 (80) 223 (60) 193 (25) EI-MS 9-nitrophenanthrene 

 
1-nitropyrene pyrene C16H9NO2 247 20.804 201 (100) 274 (90) 217 (70) 189 (60) EI-MS & APCI-HRMS 1-nitropyrene 

            Pyrene + NO2 

          
 

1-nitropyrene pyrene C16H9NO2 247 20.804 201 (100) 274 (90) 217 (70) 189 (60) EI-MS & APCI-HRMS 1-nitropyrene 

            Anthracene + NO2 

          
 

anthrone anthracene C14H10O 194 14.309 194 (100) 165 (75) 
  

EI-MS & APCI-HRMS anthrone 

 
9,10-anthracenedione anthracene C14H8O2 208 14.518 208 (100) 180 (88) 152 (67) 

 
EI-MS & APCI-HRMS 9,10-anthracenedione 

 
9-nitroanthracene anthracene C14H9NO2 223 16.005 176 (100) 223 (95) 193 (80) 165 (85) EI-MS & APCI-HRMS 9-nitroanthracene 

                        
a Products were identified through two different MS methods: 1) EI-MS detection following separation by GC and 2) APCI-HRMS detection following separation by HPLC. 

 
 

  

 

 

 

 

97 



98 
 

Additional products from the oxidation of anthracene were observed, including 

anthrone and 9,10-anthracenedione, which are not expected oxidation products in the 

presence of NO2. These products were confirmed from experiments with anthracene 

alone in the presence of NO2. The relative percentage of the formed products is similar to 

those observed during exposure to N2 only and thus their formation is most likely due to 

interaction with the SiO2 framework of the quartz substrate. This is similar to previous 

studies reporting the formation of 9,10-anthracenedione when adsorbed to magnesium 

oxide (MgO) and SiO2.78 Understanding the mechanisms behind this reaction artifact is 

essential, thus warranting further investigation. 

Nitration experiments in the presence of UV radiation yielded similar trends for 

anthracene and pyrene loss. However, the formation of 9-nitroanthracene and 1-

nitropyrene was significantly lower, most likely due to photodegradation. Both 

phenanthrene and fluoranthene showed more pronounced losses compared to nitration 

under dark conditions, however, none of the targeted products (i.e., those with available 

standards in this study) were observed.  
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Fig. 11 Yields (mole % recovered) of PAHs and their oxidation products observed after 
exposing a mixture of 3- and 4-ring PAHs with NO2 for 300 min. All products were 
found only in the particle phase. 

6.2.3. Reaction with O3 

The losses of PAHs during heterogeneous ozonation corresponded to those 

previously reported and were less selective compared to nitration experiments (Appendix 

XIII).72,79,80 In contrast to reactions with NO2, ozonation yielded significantly higher 

number of products (20 with O3 compared to only 3 with NO2;Table 19; TIC 

chromatograms shown in Appendix XIV). The experiments were performed with a 

mixture of PAHs as well as pyrene and anthracene individually to confirm the 

relationship between parent and product species (see the chromatograms in Appendix 

XV). Several of these species reported previously have been identified and confirmed 

with standards, other compounds were confirmed based on low resolution MS. 72,80 In our 

work further confirmation was achieved using APCI with high resolution TOF MS with 

mass error < 10 ppm. Most of the products observed were those resulting from the 

ozonation of pyrene, which has been suggested to occur through two previously proposed 
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general pathways.81 The first pathway is suggested to involve the addition of ozone to the 

more reactive C9═C10 double bond and subsequent ring-opening.81 From this multiple 

products containing a phenanthrene backbone and a mixture of hydroxyl, aldehyde and/or 

carboxylic acid groups can be produced.14 The second proposed pathway involves the 

addition of ozone without breaking any C═C double bonds, producing products with 

carbonyl and/or hydroxyl groups and is suggested to be more energy intensive and 

dependent on PAH-surface interactions.81 In the present study no pyrene derivatives with 

hydroxyl groups that are produced through the second pathway were identified. 

A number of the pyrene ozonation products observed shared a characteristics 

fragment ion, m/z 205 (Figure 12). This fragment is proposed to resemble the 

deprotonated radical cation of 4-phenanthrenecarboxaldehyde. From the ring-opening 

mechanism described above, pyrene ozonation can result in a variety of functional 

groups, including aldehyde, carboxylic and methylhydroxyl groups. In addition, most of 

the pyrene ozonation products had similar ion fragments of m/z 176 (Appendix XVI), 

resulting from the loss of all functional groups and giving a deprotonated radical ion of 

phenanthrene. Both the ions of m/z 205 and 176 may be useful in online instruments (e.g., 

an aerosol mass spectrometer) when monitoring the oxidation.of anthracene, 

phenanthrene and pyrene. In our study two major aldehyde products were observed, 

including 4-phenanthrenecarboxaldehyde and phenanthrene-4,5-dicarboxaldehyde. 

This is the first time, to our knowledge, that the production of 4-

phenanthrenecarboxaldehyde from the heterogeneous ozonation of pyrene has been 

reported. Yao et al. observed the formation of 4-phenanthrenecarboxaldehyde upon 

ozonation of pyrene while in an acetonitrile/water solution 75.
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Table 19. Products observed from the ozonation reaction of a mixture of PAHs, pyrene only, and anthracene only while adsorbed to a 
quartz filter substrate. 
              APCI-HRMS Data 

       
[M+H]+ Ion (Da) [M–H]– or [M+e–]– Ion (Da) 

  
Parent 

 

EI-MS Major Ions (Rel. Ab.) Observed Calculated Error Observed Calculated Error 

Identified Oxidation Product PAH MWa 1 2 3 Mass Mass (ppm) Mass Mass (ppm) 

PAHs + O3 

           
 

1,1’-biphenyl-2,2’-dicarboxaldehyde phenanthrene 210 181 (100) 152 (37) 210 (3) 211.07300 211.07536 -11 209.05864 209.06080 -10 

 
anthrone anthracene 194 194 (100) 165 (75) 

 
195.07911 195.08044 -7 193.06543 193.06589 -2 

 
9,10-anthracenedione anthracene 208 208 (100) 180 (88) 152 (67) 209.05980 209.05971 0.4 208.05291 208.05298 -0.3 

 
9,10-phenanthrenedione phenanthrene 208 180 (100) 152 (60) 208 (40) 209.06145 209.05971 8 208.05191 208.05298 -5 

 
4-phenanthrenecarboxaldehyde pyrene 205 205 (100) 176 (20) 151 (15) 207.08028 207.08044 -1 206.07180 206.07371 -9 

 
4-oxapyrene-5-one pyrene 220 220 (100) 163 (43) 192 (21) 221.06070 221.05971 5 220.05056 220.05298 -11 

 
phenanthrene-4,5-dicarboxaldehyde pyrene 234 205 (100) 176 (30) 218 (10) 235.07472 235.07536 -3 233.05992 233.06080 -4 

 
n-hydroxyanthracene anthracene 194/266 266 (100) 251 (20) 191 (15) 195.08095 195.08044 3 193.06552 193.06589 -2 

 
4-hydroxy-5-phenanthrenecarboxaldehyde pyrene 222/294 205 (100) 293 (50) 176 (25) 223.07584 223.07536 2 221.05991 221.06080 -4 

 
4-phenanthrenecarboxylic acid pyrene 222/294 205 (100) 294 (75) 279 (65) 223.07431 223.07536 -5 221.05883 221.06080 -9 

 
1-hydroxypyrene flu/pyr 218/290 290 (100) 259 (55) 275 (50) 219.08129 219.08044 4 217.06608 217.06589 1 

 
4-ring hydroxy-PAH B flu/pyr 218/290 290 (100) 259 (55) 275 (50) 219.08141 219.08044 4 217.06535 217.06589 -2 

 
4-ring hydroxy-PAH C flu/pyr 218/290 290 (100) 259 (55) 275 (50) 219.08144 219.08044 5 217.06521 217.06589 -3 

 
4-ring hydroxy-PAH D flu/pyr 218/290 290 (100) 275 (30) 259 (20) 219.08133 219.08044 4 217.06581 217.06589 -0.4 

 
4-ring dihydroxy-PAH A flu/pyr 234/380 290 (40) 380 (30) 202 (30) 235.07451 235.07536 -4 233.05985 233.06080 -4 

 
4-ring dihydroxy-PAH B flu/pyr 234/380 290 (60) 380 (30) 202 (20) 235.07400 235.07536 -6 233.05849 233.06080 -10 

 
4-carboxy-5-phenanthrenecarboxaldehyde pyrene 250/322 205 (100) 293 (90) 189 (35) 251.07035 251.07027 0.3 249.05758 249.05572 7 

 
4-hydroxyphenanthro(4,5-cde)oxepin-6-one pyrene 250/322 189 (100) 294 (50) 205 (30) 251.07159 251.07027 5 249.05485 249.05572 -3 

 
3-ring carboxy-PAH A pyrene 222/294 293 (100) 189 (85) 205 (30) 223.07561 223.07536 1 221.06053 221.06080 -1 

 
3-ring carboxy-PAH B pyrene 222/294 293 (100) 189 (70) 279 (30) 223.07454 223.07536 -4 221.05981 221.06080 -4 

Pyrene + O3 

           
 

4-phenanthrenecarboxaldehyde pyrene 205 205 (100) 176 (20) 151 (15) 207.08028 207.08044 -1 206.07105 206.07371 -13 

 
4-oxapyrene-5-one pyrene 220 220 (100) 163 (43) 192 (21) 221.06070 221.05971 5 220.05219 220.05298 -4 

 
phenanthrene-4,5-dicarboxaldehyde pyrene 234 205 (100) 176 (30) 218 (10) 235.07472 235.07536 -3 233.06032 233.06080 -2 

 
4-hydroxy-5-phenanthrenecarboxaldehyde pyrene 222/294 205 (100) 293 (50) 176 (25) 223.07584 223.07536 2 221.05887 221.06080 -9 

 
3-ring carboxy-PAH A pyrene 222/294 293 (100) 189 (85) 205 (30) 223.07561 223.07536 1 221.06053 221.06080 -1 

 
3-ring carboxy-PAH B pyrene 222/294 293 (100) 189 (70) 279 (30) 223.07454 223.07536 -4 221.05981 221.06080 -4 

 
4-carboxy-5-phenanthrenecarboxaldehyde pyrene 250/322 205 (100) 293 (90) 189 (35) 251.07035 251.07027 0.3 249.05481 249.05572 -4 

 
4-hydroxyphenanthro(4,5-cde)oxepin-6-one pyrene 250/322 189 (100) 294 (50) 205 (30) 251.07159 251.07027 5 249.05369 249.05572 -8 

Anthracene + O3 

           
 

anthrone anthracene 194 194 (100) 165 (75) 
 

195.07911 195.08044 -7 193.06543 193.06589 -2 

 
9,10-anthracenedione anthracene 208 208 (100) 180 (88) 152 (67) 209.05980 209.05971 0 208.05291 208.05298 0 

 
9-methoxyanthracene anthracene 208 193 (100) 208 (60) 165 (50) ND 

  
ND 

  
 

n-hydroxyanthracene anthracene 195 266 (100) 251 (25) 165 (10) ND 
  

ND 
    n,n-dihydroxyanthracene anthracene 210 354 (100) 235 (10) 265 (10) ND     ND     

a For hydroxy- and carboxy-PAHs the MW for both the non- and BSTFA-derivatized molecule are shown. 
       b (1) indicates observed with EI-MS and (2) indicates observed with APCI-HRMS 
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In this work pyrene was confirmed as the parent PAH through experiments with 

pyrene alone exposed to O3 (Appendix XV). Multiple 3-ring carboxylic acid derivatives 

(Table 19) were also observed. This is in contrast to previous studies where only a single 

carboxylic acid derivative was observed from the heterogeneous and aqueous phase 

ozonation of pyrene.72,75 These were confirmed to be a product of pyrene ozonation by 

performing experiments with pyrene only.  

To our knowledge, we have for the first time identified from the heterogeneous 

ozonation of pyrene  phenanthrene derivatives with mixed functional groups, previously 

only reported from the aqueous ozonation of pyrene.75 4-carboxy-5-

phenanthrenecarboxaldehyde and 4-hydroxyphenanthro(4,5-cde)oxepin-6-one are 

difficult to identify due to similar molecular ions before and after derivatization  (m/z 250 

and m/z 322, respectively) despite having different functional groups (see EI-MS and 

APCI-HRMS spectra in Appendix XVII). 
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Fig. 12. EIC GC-MS chromatograms of the common ion m/z 205 showing products formed during the ozonation of 3- and 4-ring 
PAHs from the analysis of the filter extract without derivatization (top) and after derivatization with BSTFA (bottom). Inset of the top 
chromatogram shows an EIC of m/z 205.06±0.03 observed after the HPLC-APCI-HRMS analysis of the same extract. 
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4-Hydroxy-5-phenanthrenecarboxyaldehyde was identified upon derivatization of 

the hydroxy group. Previously the identification of this product (with a molecular ion of 

m/z 293) was uncertain due to the MS spectra resembling that of a 

phenanthrenecarboxylic acid.72 However analysis of standards of 4- and 9-

phenanthrenecarboxylic acid showed a molecular ion of m/z 294 after derivatization. 

Although the molecular ion (M+•) of 4-hydroxy-5-phenanthrenecarboxaldehyde would be 

m/z 294, the aldehyde group is easily deprotonated, thus giving a [M–H]+• molecular ion 

with m/z 293.  

Similarly as for pyrene, this is the first time, to our knowledge, that hydroxy-

fluoranthenes have been identified in heterogeneous ozonation reaction with fluoranthene 

(Table 19). Originally these hydroxy species were thought to be a product from the 

ozonation of pyrene, however experiments with pyrene only did not yield these products 

(Appendix XV). The specific isomeric identity of these hydroxyfluoranthenes could not 

be established due to standards not currently being available. 

For anthracene the two major products observed were 9,10-anthracenedione and 

anthrone. The amount of 9,10-anthracenedione observed from the ozonation of 

anthracene was significantly higher (ca. 3-fold) than that observed during either 

desorption experiments or nitration. In contrast, the anthrone response was similar to that 

during desorption experiments, and therefore this product is not believed to be formed 

from the ozonation of anthracene. This finding conflicts with previous studies that report 

anthrone as a major product from anthracene ozonation. The ozonation of phenanthrene 

also produced two major products: 9,10-phenanthrenedione and 1,1’-biphenyl-2,2’-

dicarboxaldehyde, the former of which has not been previously reported. 
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6.2.4. Reaction with NO3/N2O5 

Experiments were performed exposing PAHs to NO3/N2O5 (formed by reacting 

NO2 and O3) under dark conditions. The loss of PAHs for the heterogeneous reaction 

with a mixture of NO2 and O3 was comparable to that with ozone alone and to previous 

studies (Appendix XIII).72,77,79,82 However, the product pattern significantly differed 

(Table 20; GC-MS TIC chromatograms shown in Appendix XIV). For the nitration with 

NO2 alone, only three major nitration products were observed. By contrast, when NO2 

was employed in combination with O3, numerous nitro- 3-ring and 4-ring PAHs were 

observed. While the reaction of NO2 with phenanthrene produced 9-nitrophenanthrene, 

oxidation by NO3/N2O5 resulted in multiple nitrophenanthrene isomers These additional 

nitro-PAH products have not been reported in heterogeneous nitration or ozonation 

studies (Figure 13a). It was possible that these may be nitroanthracene isomers, however, 

experiments with anthracene alone produced only 9-nitroanthracene and no other 

products (Figure 13a). In addition to the nitro-phenanthrene products, phenanthrene 

yielded the same two oxy- products as observed from its reaction with ozone (Table 20). 

Anthracene, however, yielded a hydroxy-nitroanthracene isomer that has not been 

previously reported from heterogeneous oxidation studies (Table 20). In addition, 

experiments with anthracene alone yielded a hydroxyanthracene and a 

dihydroxyanthracene species (Table 20; mass spectra shown in Appendix XV). Similar to 

pyrene ozonation, the reaction of pyrene with NO3/N2O5 yielded products with similar 

m/z 205 ion fragments (EIC shown in Appendix XVIII). 

The difference in the reaction products between NO2 and NO2+O3 can be 

attributed to  the formation of the nitrate radical which may further react with NO2 

producing dinitrogen pentoxide, both of which have been found to be more potent 
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oxidizers than either NO2 or O3.14,20 In our study, significantly lower concentrations 

(Appendix XIX) of nitration products were observed upon the addition of UV light to the 

experiment, likely due to reduced NO3 lifetimes by photolysis.  
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Table 20. Products observed from reactions of a mixture of PAHs, pyrene only, and anthracene only with O3+NO2 (N2O5/NO3). 
              APCI-HRMS Data 

       
[M+H]+ Ion (Da) [M–H]– or [M+e–]– Ion (Da) 

  
Parent 

 

EI-MS Major Ions (Rel. Ab.) Observed Calculated Error Observed Calculated Error 

Identified Oxidation Product PAH MWa 1 2 3 Mass Mass (ppm) Mass Mass (ppm) 

PAHs + NO2 + O3 

           
 

1,1’-biphenyl-2,2’-dicarboxaldehyde phenanthrene 210 181 (100) 152 (37) 210 (3) 211.07391 211.07536 -7 209.05826 209.06080 -12 

 
anthrone anthracene 194 194 (100) 165 (75) 

 
195.07838 195.08044 -11 193.06562 193.06589 -1 

 
9,10-anthracenedione anthracene 208 208 (100) 180 (88) 152 (67) 209.05903 209.05971 -3 208.05488 208.05298 9 

 
9,10-phenanthrenedione phenanthrene 208 180 (100) 152 (60) 208 (40) 209.05871 209.05971 -5 208.05250 208.05298 -2 

 
4-oxapyrene-5-one pyrene 220 220 (100) 163 (43) 192 (21) 221.05870 221.05971 -5 220.05320 220.05298 1 

 
phenanthrene-4,5-dicarboxaldehyde pyrene 234 205 (100) 176 (30) 218 (10) 235.07568 235.07536 1 233.06167 233.06080 4 

 
4-phenanthrenecarboxaldehyde pyrene 205 205 (100) 176 (20) 151 (15) 207.07997 207.08044 -2 206.07129 206.07371 -12 

 
9-nitroanthracene anthracene 223 176 (100) 223 (95) 193 (80) 224.07282 224.07060 10 223.06350 223.06388 -2 

 
9-nitrophenanthrene phenanthrene 223 165 (100) 176 (80) 223 (60) 224.07074 224.07060 1 223.06287 223.06388 -5 

 
n-nitrophenanthrene A phenanthrene 223 165 (100) 193 (60) 223 (30) 224.07154 224.07060 4 223.06333 223.06388 -2 

 
n-nitrophenanthrene B phenanthrene 223 165 (100) 176 (80) 223 (45) 224.07036 224.07060 -1 223.06334 223.06388 -2 

 
n-nitrophenanthrene C phenanthrene 223 223 (100) 176 (75) 165 (45) 224.07057 224.07060 0 223.06342 223.06388 -2 

 
n-nitrophenanthrene D phenanthrene 223 223 (100) 177 (60) 176 (55) 224.07044 224.07060 -1 223.06321 223.06388 -3 

 
n-nitrofluoranthene A fluoranthene 247 201 (100) 247 (90) 189 (45) 248.07166 248.07060 4 247.06234 247.06388 -6 

 
n-nitrofluoranthene B fluoranthene 247 201 (100) 247 (90) 189 (40) 248.07096 248.07060 1 247.06482 247.06388 4 

 
n-nitrofluoranthene C fluoranthene 247 247 (100) 201 (80) 189 (60) 248.07130 248.07060 3 247.06340 247.06388 -2 

 
n-nitrofluoranthene D fluoranthene 247 247 (100) 201 (90) 189 (35) 248.07156 248.07060 4 247.06293 247.06388 -4 

 
1-nitropyrene pyrene 247 201 (100) 247 (90) 217 (70) 248.06991 248.07060 -3 247.06529 247.06388 6 

 
1-hydroxypyrene pyrene 218/290 290 (100) 259 (55) 275 (50) 219.08129 219.08044 4 217.06608 217.06589 1 

 
4-ring hydroxy-PAH B flu/pyr 218/290 290 (100) 259 (55) 275 (50) 219.08141 219.08044 4 217.06535 217.06589 -2 

 
4-ring hydroxy-PAH C flu/pyr 218/290 290 (100) 259 (55) 275 (50) 219.08144 219.08044 5 217.06521 217.06589 -3 

 
4-ring hydroxy-PAH D flu/pyr 218/290 290 (100) 275 (30) 259 (20) 219.08133 219.08044 4 217.06581 217.06589 0 

 
4-ring dihydroxy-PAH A flu/pyr 234/380 290 (40) 380 (30) 202 (30) 235.07566 235.07536 1 233.06025 233.06080 -2 

 
4-ring dihydroxy-PAH B flu/pyr 234/380 290 (60) 380 (30) 202 (20) 235.07531 235.07536 0 233.06022 233.06080 -3 

 
4-carboxy-5-phenanthrenecarboxaldehyde pyrene 250/322 205 (100) 293 (90) 189 (35) 251.07089 251.07027 2 249.05715 249.05572 6 

 
4-hydroxyphenanthro(4,5-cde)oxepin-6-one pyrene 250/322 189 (100) 294 (50) 205 (30) 251.07082 251.07027 2 249.05383 249.05572 -8 

 
n-hydroxy-n-nitroanthracene anth/phen 239/311 311(100) 281 (25) 265 (20) 240.06408 240.06552 -6 239.05733 239.05879 -6 

 
4-ring nitro-hydroxy PAH  flu/pyr 263/335 320(100) 335(30) 290(30) 264.06480 264.06552 -3 263.05719 263.05879 -6 

Pyrene + NO2 + O3 

           
 

4-phenanthrenecarboxaldehyde pyrene 205 205 (100) 176 (20) 151 (15) 207.07997 207.080441 -2 206.07128 206.07371 -12 

 
4-oxapyrene-5-one pyrene 220 220 (100) 163 (43) 192 (21) 221.05866 221.05975 -5 220.05358 220.05298 3 

 
1-nitropyrene pyrene 247 201 (100) 247 (90) 217 (70) 248.06989 248.07060 -3 247.06652 247.06388 11 

 
phenanthrene-4,5-dicarboxaldehyde pyrene 234 205 (100) 176 (30) 218 (10) 235.07481 235.07535 -2 233.05897 233.06080 -8 

 
4-carboxy-5-phenanthrenecarboxaldehyde pyrene 220 220 (100) 163 (43) 192 (21) 251.07121 251.07027 4 249.05917 249.05572 14 

 
4-hydroxyphenanthro(4,5-cde)oxepin-6-one pyrene 234 205 (100) 176 (30) 218 (10) 251.07220 251.07027 8 249.05544 249.05572 -1 
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Table 20. cont. 
              APCI-HRMS Data 

       
[M+H]+ Ion (Da) [M–H]– or [M+e–]– Ion (Da) 

  
Parent 

 

EI-MS Major Ions (Rel. Ab.) Observed Calculated Error Observed Calculated Error 

Identified Oxidation Product PAH MWa 1 2 3 Mass Mass (ppm) Mass Mass (ppm) 

Anthracene + NO2 + O3 

           
 

anthrone anthracene 194 194 (100) 165 (75) 
 

195.07838 195.08044 -11 193.06562 193.06589 -1 

 
9,10-anthracenedione anthracene 208 208 (100) 180 (88) 152 (67) 209.05903 209.05971 -3 208.05488 208.05298 9 

 
9-nitroanthracene anthracene 223 176 (100) 223 (95) 193 (80) 224.07282 224.07060 10 223.06350 223.06388 -2 

 
n-hydroxyanthracene anthracene 194/266 266 (100) 251 (20) 165 (18) 195.08095 195.08044 3 193.06552 193.06589 -2 

  n-hydroxy-n-nitroanthracene anthracene 239/311 311(100) 281 (25) 265 (20) 240.06408 240.06552 -6 239.05733 239.05879 -6 

a For hydroxy- and carboxy-PAHs the MW for both the non- and BSTFA-derivatized molecule are shown. 
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Fig. 13. Extracted Ion Chromatograms (EIC) of a) m/z 223 (M•+ of 3-ring nitro-PAH) and b) m/z 247 (M•+ of 4-ring nitro-PAH) of 
extracts from the reactions of a mixture of PAHs with NO2 only (top) and PAHs with NO2+O3 (bottom). An EIC of an extract from 
the reaction anthracene with NO2 only (middle) is also shown. 

109 
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The reaction of NO3/N2O5 with 4-ring PAHs yielded additional products not 

observed with either NO2 or O3 alone (Figure 13b). Fluoranthene yielded four nitro 

products that were not observed from its reaction with NO2, while pyrene produced only 

1-nitropyrene. This observation suggests that in the presence of a strong oxidant 

fluoranthene is less stereoselective than the more stereo-directing pyrene. 

6.3. Conclusions 

The heterogeneous oxidation of 3- and 4-ring PAHs in the presence of NO2, O3 or 

NO2+O3 were investigated in a small-scale flow reactor. Major products observed from 

each reaction were identified using a combination of available standards and the use of 

EI-MS spectral libraries and high resolution APCI-MS TOF data. The reaction of PAHs 

with NO2 was found to be selective among the species studied, with anthracene and 

pyrene being more reactive than phenanthrene and fluoranthene. Ozonation of all of the 

PAHs was less selective, producing multiple species for each PAH reactant, some of 

which have not been previously identified. The reaction of NO2+O3 (NO3/N2O5) with the 

studied PAHs produced additional species not observed with their reaction with either 

NO2 or O3 alone. Multiple isomers of nitrophenanthrene and nitrofluoranthene were 

observed, of which the former species have not been previously reported. The reaction of 

anthracene with NO3/N2O5 also produced hydroxy-nitro derivatives, also not previously 

reported in literature. 

6.4. Future Work 

The oxidation of anthracene while adsorbed to the quartz filter and exposed to 

only air or N2 was not expected. The only products observed and assumed to result from 

these losses of anthracene were 9,10-anthracenedione and anthrone. Preliminary 

experiments using Teflon filters resulted in limited losses of anthracene while both 
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products were not observed. Thus it is proposed that the SiO2 framework of the filter 

plays a key role in this process; however, further work needs to be performed to gain a 

better understanding.  

This work focused on identifying the products formed during the heterogeneous 

oxidation of PAHs while exposed to NO2, O3 or NO3/N2O5. While a mass balance was 

achieved and reported here for the nitration of pyrene forming 1-nitropyrene, mass 

balances for other major oxidation products still needs to be performed. 
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CHAPTER 7 

7. FORMATION AND DECAY OF AEROSOL-ASSOCIATED NITRATED PAHs 

IN DIESEL ENGINE EXHAUST EXPOSED TO ATMOSPHERIC 

OXIDANTS. 

7.1. Experimental 

7.1.1. Chemicals and Materials 

Nitrogen monoxide (NO) and nitrogen dioxide (NO2) were obtained from Airgas (Grand 

Forks, ND, USA).  

7.1.2. Large-Scale Aerosol Chamber 

Diesel exhaust aging experiments were performed in a 10 m3 atmospheric 

simulation reactor bag (see diagram in Figure 14). The reactor was housed in an 

enclosure, which also included on-line instrumentation, air sampling units (for off-line 

analysis), a gas dilution and injection system and a transfer line system to inject diesel 

engine exhaust. The reactor bag was composed of transparent 2 mil (54 µm thick) 

fluoroethylene propylene (FEP) film (Dupont, Johnston, Iowa, USA) and was made by 

sealing four sheets at 2.35 m x 1.45 m each using an industrial sealer (West Coast 

Plastics, Inc., Culver City, CA, USA) (see Figure 15). The reactor was supported by 

netting stretched approximately 0.1 m off the chamber floor to reduce stress on the 

reactor bag walls and seals. The walls of the chamber were made with fire-proof drywall 

paneling supported by a steel frame. On the inside of the enclosure the walls were lined 

with 5 mil mirror sheeting (Nielsen Enterprises, Kent, WA, USA) to enhance light 
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Fig. 14. Schematic representation of the large-scale aerosol chamber used for 
investigating the fate of PAHs and polar PAH derivatives during the aging of diesel 
engine exhaust. 

intensity within the enclosure. The temperature inside the enclosure (and reactor bag) was 

controlled through two industrial air conditioners (17400 BTU/h at 1800 W; General 

Electric, Fairfield, CT, USA) and two electric base-board heaters. Ultraviolet irradiation 

was provided by eighty-one 40 in. ultraviolet black lights (40 W; Sylvannia, Danvers, 

MA, USA) installed along all four walls and the ceiling of the enclosure 
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The inlet and outlet lines for the reactor bag were located at approximately half 

the bag height (~ 0.8 m) and were supported by a Teflon plate. Both the inlet and outlet 

lines were 0.5” O.D. stainless steel (Swagelok, Solon, OH, USA). The openings of the 

gas inlet line was positioned to elute at the center of the bag while the particle inlet line 

was positioned towards the outside to avoid biased interactions prior to mixing. The 

outlet line was also positioned near the bag wall. Before each experiment the reactor bag 

was flushed with at least three whole volumes of the bag at a mass flow rate of 1.8 m3 h-1 

with UV irradiation for a minimum of 10 h (two entire bag volumes). 

 

Fig. 15. Diagram of the FEP bag used to house atmospheric simulation reactions as 
viewed from the top (left) and the front (right). Locations of the seals are shown with 
dotted lines. 
 

7.1.3. Diesel Engine 

All experiments performed with injected diesel engine exhaust (DE; containing 

diesel exhaust particles (DEP) and gases) are listed in Table 21. All diesel exhaust aging 

experiments were carried out using a 2.4L displacement four-cylinder diesel engine 
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(Kubota, Torrance, CA, USA) with a standard power output of 49.2 kW. Prior to exhaust 

injection, the diesel engine was run at 1100 rpm for approximately 10 min until the 

engine temperature reached at least 110 °F. During injection of diesel exhaust into the 

reactor bag the engine was run at 1000 rpm with no added engine loads and the exhaust 

pipe outlet covered at ~90% to direct exhaust through the sampling line and into an 

exhaust dilution system. All runs were performed using standard diesel fuel (without 

winterizing additives) obtained from local fuel stations (Kroger, Grand Forks, ND, USA). 

Diesel exhaust was sampled from the engine exhaust pipe through a 0.5 in. O.D. 

stainless steel tube connected to an ejector diluter (see schematic representation in 

Appendix XX) where the exhaust was diluted with filtered and dried air. The ejector 

diluter was built using 316 stainless steel, with a design based on the commercially 

available Dekati DI-1000 diluter. The outlet of the diluter was connected to the inlet of 

the reactor bag by a heated transfer line composed of 0.5” O.D. stainless steel tubing. 

Prior to turning on and running the diesel engine, both the dilution air line (~ 1.5 m) and 

diluter-reactor transfer line (~ 2 m) were heated above 150 °C to limit condensation of 

exhaust gases in the walls of the diluter and transfer line. Injection of diesel exhaust was 

controlled by a stainless steel 3-way ball valve (Swagelok) located at the end of the 

transfer line immediately prior to the reactor bag inlet. Initial experiments using only the 

dilution air as the means to draw sample from the engine exhaust resulted in PM mass 

concentrations (µg m-3) being too low for detecting targeted PAHs and derivatives. 

Therefore for the final experiments the engine exhaust was partially covered to induce 

added flow through the exhaust sampling line (giving final a dilution ratio of ~ 1.5–2:1). 

During the diesel engine warmup period the valve diverted the diluted exhaust through a 
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stainless steel line which discarded the exhaust into the ambient air outside of the 

building housing the chamber system. Injection of the diesel engine exhaust into the 

reactor was then performed by diverting the exhaust into the chamber by a 3-way valve.
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Table 21. List of experiments performed in the large-scale reaction chamber evaluating PAH oxidation during the aging of diesel 
engine exhaust. 
                      

   
Reactor Conditions Dp

mean 

Exp. # Gas Light T RH [DEP]max [O3]0 [NO]0 [NO2]0 t0 tend 

 

Injected 

 

(°C) (%) (µg/m3)a (ppb) (ppb) (ppb) (nm) (nm) 

                      

           1 Air Dark 24.8–25.7 12.0–13.4 10 2 76 25 38 59 

2b Air UV – – 10 – – – 39 54 

3 Air Dark 26.5–27.5 16.1–16.9 105 14 746 179 72 100 

4 Air Dark 25.7–26.4 19.4–22.9 802 99 3357 2 72 142 

5 Air UV 25.8–26.7 16.7–17.0 1110 102 3336 10 82 181 

6 Air Dark 25.1–26.0 15.8–16.7 744 88 3376 1 75 154 

7 Air UV 24.8–26.1 17.1–17.3 1150 102 3724 10 73 211 
                      
a For reactions under dark [DEP]max=[DEP]0; for reactions with UV 
[DEP]max≠[DEP]0 

     b Temperature, RH, and gas concentration data was not 
available. 
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7.1.4. Air Sampling Procedures 

Air sampling was done using two different systems: one for collecting aerosols 

under 1.0 µm in diameter (PM1) and another for aerosols under 2.5 µm (PM2.5). PM1 was 

collected using a particulate air sampling system (URG, Chapel Hill, NC, USA) 

consisting of a 1.0 µm cyclone, gooseneck adapter and a dual-filter cassette (for 90 mm 

diameter quartz filters). All components were made of aluminum and coated with Teflon 

to minimize interactions of both aerosols and gas-phase components. In order to collect 

residual gas-phase species not retained by the quartz filters, two successive polyurethane 

foam (PUF) filters were placed downstream of the quartz filter cassette. For PM2.5 

sampling a similar system was used but was obtained from BGI (Waltham, MA, USA) 

and consisted of a 2.5 µm cyclone with a dual-filter cassette (for 47 mm diameter glass-

fiber filters). For both samplers quartz fiber filters were used, with each sampler having 

two filters in series to correct for collection of gases collected along with the aerosols. Air 

flow through both sampling systems was held constant at 16.7 L min-1, necessary to 

maintain the particle diameter cut-offs (i.e., 1.0 µm for the PM1 and 2.5 µm for the PM2.5 

sampler), using vacuum pumps The flow of the PM1 sampler was controlled using a mass 

flow controller which the PM2.5 sampler flow was controlled automatically by the 

sampler firmware. The air sampler inlets were installed at the very end of the outlet 

sampling line since the air flows of the samplers were significantly higher than all other 

on-line instrumentation. 

Prior to use, both the quartz and glass fiber filters were prebaked at 500 °C for a 

minimum of 12 h. Filters were collected from the air sampling systems at the 1- and 4-

hour points (from t0) during the reaction, immediately placing the filter cassettes (with 

filters still inside) into Ziploc bags and placing them into a freezer at -20 °C until 
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extraction. PUF filters were placed into an amber-glass jar with a PTFE-lined cap, sealed 

and placed into a Ziploc bag and placed into a -20 °C freezer until extraction. 

7.1.5. Online Analysis Instrumentation 

The size distribution and mass of aerosols in the chamber were monitored by a 

scanning mobility particle sizer (SMPS) (TSI, Minneapolis, MN, USA), which consisted 

of a radioactive source (Kr-85) for producing a bipolar charge distribution on the sampled 

aerosols, a differential mobility analyzer (DMA) (TSI Model 3080) for classifying 

particles into narrow size fractions, and a condensation particle counter (CPC) (TSI 

Model 3775) for measuring the number concentration of the classified quasi-

monodisperse aerosols. The DMA sheath air and aerosol sampling flow rates (for the 

CPC) were set to 1.8 and 0.3 L min-1, respectively. These flow rates along with a 0.071 

cm impactor (on the DMA inlet) specified an analysis range of 19.8–964.7 nm aerosol 

diameters. Size distribution and concentrations were measured in 3 min intervals using 

the Aerosol Instrument Manager (AIM) software (TSI).  

Concentrations of NOx species were measured by a chemiluminescence NOx 

analyzer (Teledyne Model T200, San Diego, CA, USA). The NOx analyzer was 

calibrated using NO and NO2 stock gases (stock concentration at 1 and 10 ppm, 

respectively) and diluting with clean, dry air in the range of 0–1000 ppb for NO and 0–

2000 ppb for NO2. Ozone levels in the reactor bag were monitored by a photometric 

ozone analyzer (Teledyne Model 400E). The ozone analyzer was calibrated using an 185 

nm ozone generator (UVP, Upland, CA, USA) and dilution with clean, dry air in the 

range of 0–1500 ppb. Both the NOx and O3 analyzers were connected to the outlet 

sampling train of the reactor bag with 0.25” O.D. Teflon tubing (Swagelok). 

7.1.6. Filter Extraction and Sample Preparation Methods 
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Quartz filters collected during the aerosol simulation chamber experiments were 

extracted using sonication extraction. Prior to extraction, filters were spiked with 

recovery standard (RS) solutions composed of deuterated analogues of target PAH 

analytes and standards with similar structure but not naturally found in atmospheric 

aerosols (see Table 18 for list of RS compounds used). The filters were then extracted 

with 20 mL of dichloromethane three separate times (giving a final extract volume of 60 

mL). The final extract volume was then reduced to ~ 0.2 mL using a gentle stream of 

nitrogen. The reduced extract volume was then transferred to an amino-propyl solid 

phase extraction (SPE) cartridge (Sep Pak, Waters, Milford, MA, USA). The extract was 

then fractionated into three individual volumes by elution with a series of solvent 

systems, starting with a non-polar solvent (n-hexane), then a mildly polar solvent system 

(20% DCM in n-hexane) and then a highly polar solvent (methanol) (see Section 3.1.3 for 

the detailed procedure). These SPE fractions were then evaporated down to 0.2 mL under 

nitrogen and split into two equal volumes of ~ 0.1 mL. The first volume was spiked with 

an internal standard (fluoranthene-d10) and analyzed directly by GC-MS. The second 

volume was evaporated to dryness under nitrogen and then 100 µL of BSTFA was added 

(similar to optimized method in Section 3.1.3). The sample was then incubated at 70 °C 

for 6 h to allow for complete derivatization of hydroxyl and carboxylic acid groups. The 

derivatized samples were then spiked with internal standard (IS; fluoranthene-d10) and 

analyzed by GC-MS. 

GC-MS analysis was performed using the same system and conditions described 

in Section 3.1.4. The GC-MS data were acquired either in selected-ion monitoring (SIM) 

mode or a combination of the total ion current (TIC) and SIM modes, i.e., selected-ion-
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total-ion (SITI). SITI combines the advantages of improved sensitivity, resulting from the 

use of SIM monitoring single ions, with simultaneous compound identification using 

TIC. A dwell time of 25 ms was used for all ions listed in Table 1 for both SIM and TIC 

mode and a range of 50–500 m/z was used for TIC. For the PM sample analysis SITI 

mode was employed. 

7.1.7. Data Processing 

For quantification of PAHs and derivatives in filter extracts an internal standard 

method was used employing fluoranthene-d10. A single IS used was correcting for final 

volume changes of sample injected. To ensure and monitor for recoveries during the 

sample preparation RS mixture was added (Table 1) to each sample. The RS mixture 

consisted of representative species for each class of compounds studied and its recoveries 

were determined based using least square calibration curves. RSs were used to correct for 

analyte loss during the extraction and fractionation procedures. 

GC-MS data was processed using MSD Chemstation (Agilent). SMPS data was 

processed using the AIM software (also used for data acquisition) and Origin 9.1. 

Integrations of the aerosol mass curves for the diesel exhaust aging experiments were 

performed using the Origin software. 

7.2. Results and Discussion 

7.2.1. Evaluating the Performance of the Aerosol Chamber 

The overall purpose of the large-scale chamber was to simulate atmospherically 

relevant conditions. In comparison to the small-scale flow reactor, particle removal due to 

wall deposition is generally lower, however, the rates must still be determined to 

accurately interpret the behavior of diesel engine exhaust particles (DEP). For aerosols 

the three main impeding processes are wall loss, coagulation and 
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condensation/evaporation.83 Typically, depending on the specific chemistry occurring on 

or around the aerosol, both coagulation and wall loss are the predominate processes.83 For 

NO, NO2 and O3 gases, outside gas-phase reactions, the only major process affecting 

their concentration in the reactor bag is wall loss, a first-order process. To more 

accurately evaluate the changes in concentrations of aerosols and gases during diesel 

exhaust aging experiment, the loss rates for both aerosols and individual gases need to 

first be determined and used to correct data obtained from the aging experiments. 

To evaluate the wall losses of gases, preliminary experiments were performed 

using NO, NO2 and O3 gases (those monitored during the diesel engine exhaust 

experiments) individually. Results from wall loss experiments for each of these gases are 

shown in Figure 16.  

 

 

Fig. 16. Removal rates due to wall deposition of a) NO2 and b) O3 gases observed during 
experiments performed with each gas individually in clean, dry air. 
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During the exposure of NO2 to air, the rate of NO2 decline was observed to be 

first order, with  kwall=1.0x10-6 s-1. This loss rate agrees with previous studies reporting 

wall deposition rates of NO2 to FEP surfaces.84 Exposure of O3 to air only led to a stable 

concentration of O3, observing a slight increase in levels over a ~8 h period (kwall=-

3.0x10-7 s-1). This behavior also agrees well with previous studies.83,84 To evaluate loss 

rate for particles in the reactor bag, experiments were performed with the injection of 

ammonium sulfate particles mixed with air (see Figure 17).  

 

Fig. 17. Wall deposition rates of ammonium sulfate particles observed during a duplicate 
experiments performed in the large-scale aerosol chamber with exposure to air in dark 
conditions. 
 

Dry ammonium sulfate particles were chosen as a surrogate to DEP based on their 

limited susceptibility to coagulation and condensation processes relative to DEP,83 

thereby allowing for a simpler estimation of particle wall loss rates. By keeping the 

particle number concentration small and the water levels low, contributions of both 

coagulation and condensation processes are minimal. From duplicate experiments with 
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ammonium sulfate using a starting particle concentration of around 2000 cm-3, wall loss 

was observed to be first-order with kwall=8.3x10-5 s-1, following those previously reported 

for similar conditions (e.g., temperature, particle concentration, and experiment 

duration).83,84  

7.2.2. Aging of Diesel Exhaust (DE) 

Diesel exhaust (DE) aging experiments were performed by mixing the exhaust 

with air and then aging in two different environments: dark conditions and in the 

presence of UV irradiation. Experiments were performed with maximum DEP 

concentrations in the range of 10–1200 µg m-3, however, to characterize the targeted 

organics in the aerosols (present at the ng/g level), high mass loadings of diesel exhaust 

particles (DEP) (700–1200 µg m-3) were used. Under dark conditions, the DEP exhibited 

particle number loss rates were greater than those observed with ammonium sufate 

particles (5.2–6.5 x 10-4 versus 8.3 x 10-5 s-1, respectively) as well as a slightly increased 

mean particle diameter (Dp) over the reaction time (Figure 18). The increase in Dp
mean 

signifies contributions of either coagulation of the DEP particles, condensation of gas-

phase species onto the DEP, or both. Additionally, the increased rate of particle number 

loss relative to ammonium sulfate indicates a contribution from coagulation, which is 

expected with the very high number concentrations used. The DEP mass concentration 

did not show an increase during the reaction (Figure 19a & 19b). However, this may be a 

result of higher rates of wall losses that dominate over rates of coagulation. 
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Fig. 18. Normalized (left) and raw (right) particle size distributions at 0, 30, 120 and 240 
min during diesel exhaust again experiments under dark conditions (a,b) and with UV 
exposure (c,d). 
 

When DEP was exposed to UV irradiation, the DEP mass concentration increased 

during the first 30 min of the reaction (Figure 19e), indicating the condensation of 

products formed during the photo-oxidation of gas-phase DE species. This is further 

supported by a similar rate of particle concentration decrease (Figure 19d) with a greater 

shift to a larger mean Dp compared to the reaction in dark conditions (Figure 19f; see 

Figure 19e for changes in mass concentrations).
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Fig. 19. SMPS measurements during DEP+Air experiment in dark conditions (top) and with UV irradiation (bottom), showing (a,d) 
total PM1 particle concentration, (b,e) mass concentrations, and (c,f) number concentrations for DEP at different Dp (nm). For figured 
a,b,d,e results from duplicate experiments are shown. Only the first 30 min of the reaction is shown to highlight the increase in mass 
concentration which began to decline after 30 min. 
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Changes in the distribution of the total mass of material in the reactor bag 

between the gas and particle-phases can also be viewed with the changes in masses 

observed for the filters collected in the air samplers during the reaction. By assigning all 

of the material collected by the top quartz filter as that being particle-phase only and that 

collected by the bottom quartz and both PUF filters as that being only gas-phase, the 

percentage of material in the particle phase can be estimated (Figure 20). The relationship 

between the DEP mass concentrations observed by the SMPS during the experiment and 

the mass changes of the top quartz filter (particle-phase only) was tested and found to 

have a direct correlation (see Figure 20c). 
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Fig. 20. Phase distributions of total mass collected on quartz and PUF filters during diesel 
exhaust aging experiments in the presence of a) air only and b) air with UV exposure. 
Mass collected on the top quartz filter was deemed to be all particle phase materials 
whereas the total mass collected onto the bottom quartz and two PUF filters were of gas 
phase. c) Comparison of observed PM1 mass collected on the top quartz filter during the 
first hour of the reaction to PM1 measured by the SMPS during diesel exhaust aging 
experiments at different DEP mass loadings over the same time frame. 
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Despite the DEP not showing an increase in mass concentration while aged under 

dark conditions, the higher particle-to-gas phase ratio observed at 4 h compared to 1 h 

(determined from the ratio of the mass on the top to bottom filters in the air sampler) still 

shows a degree of condensation. As expected, the distribution was more to the particle 

phase for DEP aging with UV exposure.  

7.2.3. Kinetics of Polycyclic Aromatic Hydrocarbons During DE Aging 

3–4 ring PAHs were monitored by analyzing extracts of the filters collected 

during each experiment of DE aging. Under dark conditions, all 3–4 ring PAHs 

(phenanthrene, anthracene, pyrene and fluoranthene) increased in their concentrations in 

the particle phase (mass of PAH per mass of PM; µg g-1) during the reaction (Figure 21a) 

while their particle mass concentrations per volume of air (µg m-3) decrease (Figure 21b), 

as would be expected through particle wall losses. Anthracene exhibited the largest 

increase in its particle-phase concentration and had the smallest change in its volumetric 

concentration over the same time frame. With UV exposure, PAHs were present in 

significantly lower concentrations in the filter extracts and all had a large decrease in 

their particle-phase and volumetric concentrations through the reaction (Figure 21c & 

21d). This information indicates that significant photo-degradation was occurring. 

In general, the transition from gas-phase to particle-phase through condensation 

onto DEP particles was similar for all of the 3–4 ring PAHs under dark conditions, being 

at 25–35% of their individual mass in the particle phase at 1 h and increasing to 68–75% 

at 4 h (Figure 22a). With UV exposure, they also showed similar behaviors between each 

other in that the percent of their individual masses in the particle phase was similar at the 

1 and 4 hour points of the reactions (~50%) (Figure 22b).  
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Fig. 21. Concentrations of 3–4 ring PAHs in terms of mass (left) and volume (right) 
concentrations obserbed during diesel exhaust aging experiments in the presence of air 
only (a,b) and air with UV exposure (c,d). 
 

 
Fig. 22. Phase distributions of 3–4 ring PAHs observed during diesel exhaust aging 
experiments in the presence of a) air only and b) air with UV exposure. 
 
It is unclear as to why the phase distributions of PAHs observed during both experiment 

(dark and with UV exposure) are significantly different. It is expected that UV irradiation 
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will decrease the overall mass of PAHs in the reactor volume, however, the phase 

distribution should remain similar. 

7.2.4. Identification of Products Formed During the Aging of DE 

With DE exposed to air under dark conditions, three nitro-PAH species were 

observed: 9-nitroanthracene, 1-nitropyrene and 3-nitrofluoranthene. These species were 

only observed in the extracts of the bottom quartz filters and not present in the top filter 

extracts (Figure 23). Both 1-nitropyrene and 3-nitrofluoranthene have been known to be 

emitted directly through diesel engine exhaust.13 However, their complete partitioning 

into the gas-phase was not expected here. At 4 h into the reaction, only 9-nitroanthracene 

is observed, while both 1-nitropyrene and 3-nitrofluoranthene were not present, showing 

contributions of gas-phase oxidation processes. 

During reactions with DE exposed to UV irradiation, the nitro-PAH species were not 

observed. This information shows that they are highly susceptible to photochemical 

processing, which corroborates previously reported studies.85 

 

Fig. 23. Nitro-PAH species observed diesel exhaust aging experiments in the presence of 
a) air only and b) air with UV exposure. 
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7.3. Conclusions 

A large-scale aerosol chamber was designed and constructed to evaluate the 

photo-degradation and nitration of PAHs emitted in the exhaust of a diesel engine. Initial 

work was performed investigating the performance of the Teflon reactor bag in terms of 

the loss rates of gases and particles due to various processes. From injecting individual 

gases and model particles (ammonium sulfate), loss rates agreed with those previously 

reported for similar reactor designs. 

In experiments with DE in the presence of air under dark conditions, PAHs were 

monitored at the 1 and 4 h points of the reaction. The phase distribution of PAHs favored 

the gas-phase at 1 h, however, at 4 h an increased percentage was found in the particle 

phase, showing continual condensation of PAHs originally emitted into the gas-phase 

onto the particle surfaces. In the presence of UV irradiation, a significantly lower total 

concentration of PAHs in the reactor was observed in both phases. All of the 3–4 ring 

PAHs exhibited a sharp decline in their total levels from 1 to 4 h, most likely due to 

photo-degradation processes. 

During DE aging experiments in dark conditions, three nitro-PAH species were 

observed. All three species were found only in the gas phase and were not present in the 

particle phase, and their concentrations decreased significantly from 1 to 4 h of the 

reaction. 

7.4. Future Work 

This work has focused on monitoring PAHs and their nitrated products (nitro- and 

amino-PAHs) during the aging of freshly emitted DE in the presence of air, air with UV 

irradiation and air with added NO2 gas. Based on the work performed with the small flow 

reactor, the number of oxidation products in the presence of UV or NO2 is expected to be 
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small compared to reactions with other gas-phase oxidants. Thus, future work using 

added O3 gas as well as NO2+O3 (giving the NO3 radical and N2O5) is planned to be 

performed. 

So far this work has evaluated only PAHs and oxidation products observed during 

the aging of material emitted solely in DE. However, future work needs to be performed 

in evaluating the characteristics of different PAH scenarios, i.e., at various concentrations 

of PAHs that start in the gas-phase . This will require injection of additional PAH 

material (as a mixture of standards) into the reactor following the injection of DE. 
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CHAPTER 8 

8. ESTIMATION OF THE EFFECTIVE ΔHvap AND Ea
vap FOR PAHs DUE TO 

MATRIX EFFECTS ON THE SURFACE OF ATMOSPHERIC AEROSOLS. 

8.1. Experimental 

8.1.1. Chemicals and Materials 

Standards used in this study as well as the different model particles used in this 

study are listed in Table 22 along with various physical parameters. All stock solutions 

and particle suspensions were prepared with DCM (high-resolution GC grade, Fisher 

Scientific, Pittsburg, PA, USA). 

8.1.2. Preparation of Standards and Model Particles 

All particle surfaces were cleaned prior to use by calcination in an oven at 550 °C 

for 12 h and then stored in a sealed glass jar until used. For adsorption of individual 

organic standards onto particle surfaces, particles were first weighed in 2.0 mL glass vials 

to ca. 50 mg. Stock solutions of an individual PAHs at high concentrations (15000–30000 

ppm) were added to the particles and the suspension brought to ca. 1 mL with DCM. The 

amount of stock solutions spiked to the particles varied depending on the experiment. The 

DCM was then evaporated under a gentle stream of nitrogen with the vial on a shaker 

plate at 250 rpm (Labnet, Edison, NJ, USA). The DCM was evaporated until the particles 

moved freely at the bottom of the vial.  
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Table 22. List of PAH standards used in the study along with their physical parameters. 
                                                
Compound MW Tboil 

 
ΔHvap

0 
 

pi
o 

 
Tfus 

 
ΔHfus

0 
Name (g mol-1) (°C) Ref. 

 
(kJ mol-1) Ref. 

 
(torr)a Ref. 

 
(°C) Ref. 

 
(kJ mol-1) Ref. 

                                                    

                          naphthalene 128.17 217 ± 5 [14] 
 

43.9 ± 0.80 [8] 
 

1.59b x 10-1 [8] 
 

80.1 ± 0.7 [14] 
 

19.1 ± 0.8 [14] 
phenanthrene 178.22 340 ± 4 [3] 

 
55.8 ± 0.80 [8] 

 
2.06 x 10-4 [8] 

 
99 ± 2 [14] 

 
16.57 ± 0.09 [15] 

anthracene 178.22 340 ± 2 [3] 
 

55.8 ± 0.80 [8] 
 

2.06 x 10-4 [8] 
 

217 ± 3 [8] 
 

29.84 ± 0.45 [15] 
pyrene 202.25 404 ± 2 [8] 

 
63 ± 0.80 [8] 

 
2.28 x 10-6 [8] 

 
151 ± 3 [14] 

 
16.68 ± 0.54 [15] 

fluoranthene 202.25 375 ± 3 [8] 
 

59.8 ± 0.8 [8] 
 

1.73 x 10-5 [8] 
 

112 ± 2 [14] 
 

18.73 ± 0.61 [14] 
                                                    
a Vapor pressure values at 298 K. 

            b Indicates that the solid has a significant sublimation pressure at ambient temperatures 
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8.1.3. Thermogravimetry-Differential Scanning Calorimetry 

All thermogravimetry-differential scanning calorimetry (TGA-DSC) analyses 

were performed on a SDT-Q600 system (TA Instruments, New Castle, DE, USA). 

Analyses were performed with a dynamic oven program with linear heating rates (5–100 

°C/min) and using nitrogen purge gas (20–100 mL/min). In optimizing the TGA-DSC 

method, two different sample cup types were used: alumina and aluminum pans, each 

with different sample cup configurations. Analyses with the alumina cup were performed 

with and without an alumina sample cup lid placed loosely over the cup opening. For the 

aluminum pans, samples were analyzed without a lid, with an aluminum lid placed 

loosely over the cup, with a lid crimped to the top of the pan, or with a pierced lid 

crimped to the top of the pan. 

8.1.4. Calculations of Vaporization Enthalpies and Activation Energies 

Vaporization enthalpies were estimated through two different techniques. The 

first of them utilized the heat flow signal measured during the TGA-DSC runs (Figure 

24), using calculation schemes reported by Rojas & Orozco.86 The heat flow curve was 

integrated within the temperature range by which vaporization occurred with respect to a 

baseline (determined through the analysis of blank sample cups). This area under the heat 

flow curve (A; W·s) was then divided by the mass lost during vaporization to give the 

heat capacity, Q (J g-1), exhibited by the sample during the process (Eq. 1).  

 
 

finalinitial

i
mm

sWA
Q




  Eq. 1 

The calculated value of Q was then multiplied by the molecular weight of the species 

being vaporized to obtain the vaporization enthalpy ΔHvap (J mol-1) (Eq. 2). 

  1
,

 molgMWQH iivap  Eq. 2 
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The mass loss curve (TGA curve; example in Figure 24) was used to calculate the values 

for the activation energy of vaporization Ea
vap, using two separate calculation methods 

based on the linearization of the Arrhenius equation. The first, referred to as the 

“derivative method,” uses the Friedman equation in the following form: 

  
RT

E
A

m

m

dT

dm vap

a











 lnln 0  Eq. 3 

 By plotting ln(m0/m[dm/dT]) against 1/T, the activation energy can be calculated from 

the slope of the resulting curve, which is close to linear during the 

sublimation/vaporization process.87–90 Alternatively, another method called the “integral 

method,” relates the activation to the mass differential functions in the following manner: 
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 Eq. 4 

Plotting the left-hand term against 1/T, similar to the derivative method, allows for the 

determination of Ea
vap from the slope of the near-linear curve (in the range of 

sublimation/vaporization).88,89 Since the process of vaporization is highly endothermic, 

we can assume that Ea
vap ≈ ΔHvap. Therefore, for the sake of simplification, all values will 

be represented in terms of ΔHvap for the remainder of this paper. 
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Fig. 24. An example TGA curve (A) with overlayed DSC (B) and DTG (C) curves 
obtained during the TGA-DSC analysis of anthracene standard (neat; solid crystal). 
Standard values were obtained from Reference 86. 
 

8.1.5.  Data Processing 

Integration of heat flow curves was performed using Origin 9.1 software 

(OriginLab, Northampton, MA, USA). All other processing of TGA-DSC data was done 

using Microsoft Excel. In addition to determining values of ΔHvap and Ea
vap, each TGA 

(mass loss) curve was evaluated by determining values of Tlow, Thigh and Tavg (an example 

of how they were determined is shown in Figure 25). Tavg is the temperature where the 

maximum value of dm/dT was observed. Tlow was then the temperature at which the 

tangent of dm/dT at Tavg intersected a straight line at m/m0=1 and Thigh was the 

temperature at the point the tangent line intersected a line at m/m0=0. These values were 

then used as tracers to provide extra numerical information of the TGA curve and thus 

vaporization behavior. 
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Fig. 25. Example of a TGA curve showing the determinations of Tlow, Thigh and Tavg. 

8.2. Results and Discussion 

8.2.1. Optimization of Thermogravimetry-Differential Scanning Calorimetry for 

Accurately Determining Vaporization Enthalpies and Activation Energies 

Prior to defining changes in vaporization enthalpies of PAHs when adsorbed to 

particle surfaces, optimization of the TGA-DSC analysis method was performed to 

increase the accuracy and precision of calculated ΔHvap and Ea
vap values. The 

instrumental parameters and conditions were first evaluated prior to evaluating the data 

processing methods. The main focus of the optimization was to achieve accurate and 

precise determinations of ΔHvap and Ea
vap for selected compounds in the form of neat 

standards. 

The impact of the sample mass loaded for analysis to the resulting values of ΔHvap 

calculated from the heat flow curves is shown in Figure 26. In ranging the sample mass 

between 1–8 mg (of neat phenanthrene standard), the calculated values of ΔHvap 

decreased in a linear trend. The TGA curves also exhibited major differences in the onset 

(Tlow) and ending (Thigh) temperatures of vaporization while the general shapes of each 
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were similar. Additionally the determined ΔHvap values were lower than the standard 

values or those reported in previous work using DSC86 as well as those determined when 

using aluminum sample pans. It is proposed that this is mainly a product of a limited heat 

transfer efficiency of the alumina sample cup, which is evaluated later in this work (see 

Table 23). 

 

Fig. 26. Comparison of heat flow curves obtained with TGA-DSC analysis of 
phenanthrene with different mass loadings. Analyses were performed with alumina 
samples cups (no lid) with dT/dt=0.33 K s-1 and a N2 purge flow rate of 20 mL min-1. 
 

The impact of the sample purge gas flow rate (gas which increases the uniformity 

of the temperature throughout the TGA-DSC oven) was also evaluated (Appendix XXI). 

Using neat phenanthrene, analyses were performed with purge gas flows in a range of 

20–100 mL min-1. The calculated enthalpies were the highest when using a purge gas 

flow of 20 mL min,-1 and the lowest at 50 mL min-1.  Therefore a 20 mL min-1 purge flow 

was used for all subsequent analyses in this work. 

Initial experiments using alumina sample cups consistently provided ΔHvap values 

significantly lower than those reported in previous works.86,91 These underestimations of 
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the ΔHvap values could be due to the inefficient heat transfer from the samples through the 

alumina material and finally to the platinum head of the thermocouple sensor. To test this 

hypothesis, analyses were also performed with aluminum sample cups. For each sample 

cup material, experiments were done using three different types of lid configurations: cup 

with no lid, cup with a loose lid, a crimped lid, or a crimped lid with a pierced hole (hole 

diameter=150 µm). The latter two configurations were only available with aluminum 

sample pans. The results from these tests are shown in Table 23 (TGA curves are shown 

in Appendix XXII). Vaporization onset temperatures and calculated ΔHvap values were 

considerably lower with the alumina pans without lids compared to analyses with either 

loose or crimped lids. Aluminum pans with a crimped pierced lid provided the most 

accurate results, yielding boiling points and ΔHvap values similar to those previously 

reported.86 To note, the crimped aluminum pans without a pierced hole exhibited highly 

inconsistent vaporization behavior due to over-pressurization in the sample cup during 

heating. Aluminum pans consistently yielded significantly higher calculated ΔHvap values 

compared to those with alumina pans, again most likely due to enhanced heat transfer 

efficiency of the aluminum. 

To conclude, aluminum pans with both a crimped and pierced lid provide the 

most accurate and precise determinations of ΔHvap as well the shape of the TGA and DSC 

curves. Therefore this sample cup configurations was used in the remainder of the work
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Table 23. Determinations of ΔHvap, Tlow, Thigh and Tavg values for phenanthrene when analyzed with sample cup types and 
configurations. 
                                  
Sample 

               
Rojas Method 

Cup Lid Lid 
 

Tlow 
 

Thigh 
 

Tavg 
 

ΔHvap
0 

Materiala Typea Positiona   (°C)   (°C)   (°C)   (kJ mol-1) 

                   alumina open – 
 

215.7 ± 2.1 
 

229.3 ± 2.4 
 

227.9 ± 2.2 
 

36.75 ± 2.36 
alumina full loose 

 
273.4 ± 3.1 

 
305.8 ± 3.5 

 
318.2 ± 3.1 

 
44.63 ± 1.54 

aluminum full loose 
 

252.9 ± 2.8 
 

285.6 ± 3.0 
 

281.6 ± 3.8 
 

78.97 ± 4.10 
aluminum full crimped 

 
ND 

aluminum pierced crimped 
 

329.9 ± 2.6 
 

339.0 ± 0.5 
 

336.5 ± 0.7 
 

95.05 ± 2.48 
                                      
a For each analysis the reference sample cup was the same material, lid type and lid position as the sample cup. 
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8.2.2. Vaporization of Individual Standards of Organic Aerosol Species 

To assess the applicability of the optimized TGA-DSC method, it was expanded 

to the analysis of multiple PAH species (those containing 2–4 aromatic rings). Each 

standard was analyzed three times (n=3) and ΔHvap and Ea
vap values were determined 

from the DSC and TGA data, respectively. The use of the Rojas, Derivative or Integral 

methods have not been previously reported for PAHs with non-isothermal TGA and DSC 

analysis. These methods allow for the calculation of ΔHvap or Ea
vap from a single non-

isothermal run, thereby decreasing analysis time compared to traditional isothermal 

methods that require multiple runs at different heating rates to accurately calculate the 

values. Therefore, in this work, the methods are compared in terms of the accuracy and 

precision to previously reported ΔHvap values. 

Table 24 shows the experimental values as well as the calculated ΔHvap and Ea
vap 

values for each PAH as a neat standard. All of the analyses were performed with the 

same heating rates (0.33 K s-1) since it has been reported that both the derivative and 

integral methods are sensitive to changing temperature ramps from run to run.89 During 

each run, mass losses can occur through either sublimation or vaporization, however, 

sublimation was not observed (i.e., Tlow>>Tfus). Therefore, all enthalpies and activation 

energies resulted from vaporization alone (see Appendix XXIII for the TGA, DSC and 

DTG curves for each neat standard). In general, the Rojas method for calculating ΔHvap 

from the DSC heat flow data yielded higher values than either methods for determining 

Ea
vap. The exception to this was anthracene, for which the integral method provided the 

highest value. For the most part, the values of ΔHvap as determined using the integral 

method were closer to those determined with the Rojas method. Therefore the integral 

method was used for the remainder of the work in this study. ΔHvap should be either equal 
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or slightly smaller than Ea
vap for the process of vaporization of a molecule from liquid to 

gas, as with any highly endothermic reaction. Thus, differences observed in this work is a 

function of limitations in the calculation methods in accurately defining the terms (see 

Figure 27 for comparisons of calculated Ea
vap and ΔHvap values). In the linearization 

methods, limitations can arise from the somewhat arbitrary determination of which points 

to include in the linear region of the resulting curve. To avoid potential errors arising 

from this constraint, both methods were performed using the same points within the same 

temperature region. The regions used for each compound are shown in Appendix XXIV. 

In comparing the measured values for Ea
vap to ΔHvap reported in previous studies, each 

compound exhibited slightly higher values, however, a linear trend is observed. This is 

likely to arise from differences in instrumentation. The determined Thigh values for the 

neat standards of each PAH was found to show a linear relationship to the calculated 

Ea
vap values (see Figure 28). Therefore Thigh of a vaporization process may serve as an 

observable by which to estimate values of Ea
vap. 

 

Fig. 27. Comparison of calculated Ea values to ΔHvap values (left) and a comparison of 
the calculated ΔHvap and Ea values in this work to those reported previously (right).
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Table 24. Values of ΔHvap and Ea as well as Tlow, Thigh and Tavg values for neat standards of 2–4 ring PAHs using the derivative and 
integral methods. 
                                              

              
Rojas Method 

 
Friedman Method 

 
Kissinger Method 

Compound 
 

Tlow 
 

Thigh 
 

Tavg 
 

ΔHvap
0 

 
Ea 

 
Ea 

Name   (°C)   (°C)   (°C)   (kJ mol-1)   (kJ mol-1)   (kJ mol-1) 

                         naphthalene 
 

221.4 ± 1.1 
 

227.6 ± 0.6 
 

224.7 ± 0.8 
 

71.62 ± 3.17 
 

66.04 ± 0.20 
 

59.73 
 

2.34 
phenanthrene 

 
329.9 ± 2.6 

 
339.0 ± 0.5 

 
336.5 ± 0.7 

 
95.05 ± 3.17 

 
85.59 ± 0.51 

 
88.34 

 
3.11 

anthracene 
 

333.1 ± 4.2 
 

341.5 ± 0.8 
 

339.5 ± 0.5 
 

82.72 ± 3.17 
 

82.41 ± 3.05 
 

83.97 
 

1.53 
pyrene 

 
367.8 ± 2.4 

 
391.4 ± 0.7 

 
386.6 ± 1.8 

 
105.87 ± 3.17 

 
89.74 ± 1.57 

 
97.71 

 
0.75 

                                                  
Each compound was analyzed by TGA-DSC in triplicate (n=3). 
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Fig. 28. Relation of calculated Ea
vap values to the observed Thigh for each of the PAH neat 

standards investigated. Ea
vap values were calculated using the Integral method. For each 

the value shown is the mean of triplicate analyses (n=3). 
 

8.2.3. Vaporization of Organic Aerosols Species Adsorbed to Model Particles 

In addition to determining both ΔHvap and Ea
vap values for neat PAH standards, 

the calculation methods were used to evaluate the contribution of surfaces of surrogate 

particles on the adsorption of anthracene. These effective vaporization enthalpies 

(ΔHvap
eff) and activation energies (Ea

vap,eff) can help gain insight into the extent of matrix-

analyte interactions that occur on the surfaces of real-world PM in the atmosphere. While 

theoretical models have been reported for PAH-surface interactions for carbon surfaces, 

experimental work showing their vaporization behavior is very limited. The surrogate 

particles were chosen as to represent a range of surface types (polarities) observed in 

various real-world PM matrices. The elemental or black carbon fraction of PM consists 

primarily of short stacks of graphene sheets arranged in a highly disordered fashion. 

Therefore graphite and other similar surfaces were investigated. The particles used in this 

study are listed in Table 25. 
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Table 25. Surrogate particles used in this study to evaluate the adsorption of anthracene 
on different surfaces using TGA-DSC data. 

          

    
Surface 

Surrogate 
  

Dp
mean Area 

Particle Manufacturer Purity (µm) (m2 g-1) 
          

     silica Sigma-Aldrich 99% 75–100 480 
graphite Sigma-Aldrich ≥99.9% ≤20 50 
graphene USRN ≥99.5% 4–12 – 
activated carbon Sigma-Aldrich ≥99.5% 100–150 >500 
coronene Sigma-Aldrich 97% – – 
          

 

Calculated values Ea
vap,eff for anthracene adsorbed on various particle surfaces are shown 

in Table 26. Values for ΔHvap
eff were not determined due to the inability to accurately 

integrate the heat flow curve above the baseline during vaporization of relatively small 

amounts of the anthracene (≤150 µg per mg of surrogate particle). Rather the Integral 

method was used to estimate Ea
vap,eff. All PAH species were observed to exhibited some 

degree of adsorption (Table 26), with naphthalene exhibiting the strongest adsorption 

behavior. This may be due naphthalene’s smaller size enabling stronger π-π* interaction. 
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Table 26. Values of Ea
eff for anthracene adsorbed to various surrogate particle surfaces. 

                                        
Adsorbed Substrate % mT Tlow 

 
Thigh 

 
Tavg 

 
Ea

vap,eff 
 

Ea
ad 

Analyte Surface (T > Tboil
0) (°C)   (°C)   (°C)   (kJ mol-1)   (kJ mol-1) 

                      naphthalene neat – 221.4 ± 1.1 
 

227.6 ± 0.6 
 

224.7 ± 0.8 
 

59.73 ± 2.34 
    

 
silica 75 214.8 ± 2.6 

 
282.4 ± 2.9 

 
251.7 ± 5.0 

 
80.30 ± 0.98 

 
20.57 ± 2.54 

                      phenanthrene neat – 329.9 ± 2.6 
 

339.0 ± 0.5 
 

336.5 ± 0.7 
 

88.34 ± 3.11 
    

 
silica 60 320.4 ± 1.6 

 
378.5 ± 2.7 

 
356.3 ± 3.8 

 
94.89 ± 0.66 

 
6.55 ± 3.18 

                      pyrene neat – 367.8 ± 2.4 
 

391.4 ± 0.7 
 

386.6 ± 1.8 
 

97.71 ± 0.75 
    

 
silica 15 350.5 ± 1.5 

 
417.8 ± 2.6 

 
390.1 ± 2.7 

 
103.06 ± 2.25 

 
10.81 ± 5.61 

                      anthracene neat – 333.1 ± 4.2 
 

341.5 ± 0.8 
 

339.5 ± 0.5 
 

83.97 ± 1.53 
    

 
silica 25 279.0 ± 2.4 

 
366.5 ± 3.9 

 
336.9 ± 5.7 

 
94.79 ± 5.40 

 
5.35 ± 2.37 

 
graphite 0 248.9 ± 3.8 

 
302.1 ± 7.8 

 
278.3 ± 4.9 

 
70.63 ± 3.14 

    
 

graphene 7 230.0 ± 2.7 
 

322.0 ± 4.0 
 

275.3 ± 2.5 
 

74.78 ± 3.02 
    

 
activated carbon 0 150.1 ± 1.0 

 
258.2 ± 2.5 

 
208.0 ± 1.0 

 
40.48 ± 2.67 

    
 

coronene 0 202.2 ± 0.8 
 

241.7 ± 1.5 
 

228.9 ± 1.5 
 

65.13 ± 2.55 
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with the pure-carbon surfaces (e.g., graphite).92,93 These interactions are believed to be 

predominated by π–π* electron donor-acceptor (π–π* EDA) interactions between a single 

anthracene molecule and the arene surface of graphite.93 However, in this work, it was 

observed that when added to the graphite-like surfaces, anthracene evaporated at 

significantly lower temperatures compared to that observed with the neat standard. This 

in turn resulted in decreased Ea
vap,eff values relative to Ea. In contrast, anthracene seemed 

to incorporate adsorption behavior to the surfaces of silica particles as seen through the 

increased Ea
vap,eff values compared to Ea

vap. The enthalpy of adsorption (ΔHvap
ad) can then 

be estimated through the following relation (assuming that Ea
vap=ΔHvap for an adsorption 

process): 

 vap

eff

vap

ad

vap HHH   Eq. 5 

Therefore for silica particles ΔHvap
ad = 10.81 kJ mol-1. For the other particle surfaces any 

calculation of ΔHvap
ad would result in negative values, indicating that no adsorption 

process would be occurring.  

The values of ΔHvap
eff presented so far have been determined assuming only a 

single process for the vaporization of the bulk anthracene (i.e., βΔHvap
eff). Based on the 

TGA curves for the vaporization of anthracene from the particles surfaces (Figure 28), 

vaporization of anthracene when added to silica, graphite or activated carbon particles 

indeed exhibit this behavior. However, the TGA curves of anthracene on graphene and 

coronene show what essentially could be a “multiple site process” vaporization scheme. 

It is proposed that the first step of this two-process mechanisms involves the vaporization 

of a bulk of the anthracene on the surface (Figure 29). This leaves a small fraction of 



150 
 

“trace” amounts of residual anthracene (closer to concentration levels exhibited in real-

world PM) which has more access to “high-energy” active  

 

Fig. 29. TGA curves from the vaporization of anthracene from the surfaces of different 
surrogate particles. 
 

sites on the particle surface. Enthalpies in this range would then refer to the trace amount 

only (αΔHvap
eff) (see Figure 29). Recently, Lazar et al. showed that for graphene, only 

0.24±0.03% of the total surface area includes these high-energy sites.92 It is assumed that 

the interaction of anthracene with these stronger adsorption sites is a more “true” 

adsorption process. This is characteristic for interactions of small amounts of PAHs 

embedded in organic matrices of PM. Such an adsorption process would essentially 

require, at least within the temperature range, ΔHvap
eff values greater than ΔHvap

 and the 

mass loss to continue at temperatures beyond the Tavg value observed for the neat 

standard (i.e., 339.5±0.5 °C). The latter requirement was observed in the TGA curve for 

anthracene on graphene, but not on coronene. For graphene, the mass loss rate (dm/dT) 

observed in the temperature range above Tavg was linear but lower than that observed for 
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the bulk anthracene region, resulting in calculated αΔHvap
eff values lower than βΔHvap

eff. 

Therefore, ΔHvap
eff was estimated using our proposed method based on the observed Thigh 

values (described in section 8.2.1). 

 

Fig. 30. TGA curves of anthracene as a neat standard and adsorbed to graphene 
nanoparticles. The regions of the two-process vaporization scheme (“bulk” and “trace” 
behavior) are shown. 
 

8.2.4. Modeling the Influence of Particle Surface Chemistry on Organic Aerosol 

Partitioning 

In the atmosphere, gas-phase organic species emitted by various incomplete 

combustion processes partition between the gas-phase and the surface of atmospheric 

aerosols. The fraction by which any compound is in the aerosol phase is given by the 

equilibrium partitioning coefficient: 

 
MG

A
K A 

  Eq. 6, 
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in which G is the concentration of the species in the gas phase (mass per volume of air; 

µg m-3), A is the concentration of it in the aerosol phase (µg m-3), and M is the mass 

concentration of the total absorbing particle phase.94 The partitioning coefficient KA (m-3 

µg-1) is then inversely proportional to the saturation vapor pressure (c*) of the compound. 

This partitioning generalization can be extended to those products formed upon oxidation 

of the original pollutant in the gas phase (Figure 30). These products are typically less 

volatile than their precursor, thus having an increased KA value.  

 

 

Fig. 31. Simplified representation of the partitioning of primary gas-phase organic 
species and their products from oxidation between the gas and aerosol phases. 
 

KA values are dependent on the affinity of the compound for both phases, which is 

fundamentaly a function of partial pressure (p) and vaporization enthalpy (ΔHvap). 

Currently, models focused on investigating the partitioning of organics in the atmosphere 

typically employ standard values for these physical parameters. This limits the accuracy 

of these models in that the partitioning can be grossly over- or underestimated due to 

uncompensated interactions of the target species with the aerosol surface, which is 

comprised of a dynamic mixture of a large number of other organic pollutants. These 

“matrix-analyte” interactions (giving rise to ΔHvap
eff) need to be accounted for in order to 
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more correctly model the behavior of organic pollutants on aerosol surfaces. In this work, 

anthracene was observed to interact differently with various surrogate particle surfaces. 

This provides insight into the diversity in interactions which may exist on the surface of 

atmospheric aerosols. Experimentally derived values for the contribution of adsorption of 

single molecules to the surface of aerosols can be used to implement more accurate 

representation of organic pollutant portioning in the atmosphere. 

8.3. Conclusions 

In this work a method utilizing TGA-DSC was optimized for determining values 

of ΔHvap and Ea
vap for PAH species. The method was then applied to investigating the 

adsorption behavior of anthracene on various surrogate particle surfaces, including 

different types of carbon surfaces (e.g., graphite, graphene and coronene) and silica. 

Unexpectedly, naphthalene showed the strongest adsorption to silica. Anthracene, while 

expected to show significant adsorption to carbon surfaces, exhibited vaporization at 

decreased temperatures compared to the neat standard. For graphene, however, two 

different types of vaporization were observed in the TGA curves, a “multiple site” 

process where ΔHvap
eff  is not a single value. The first process involved vaporization of 

the bulk of anthracene added to the graphene surface (~90–95% of the added mass) and 

the second for the residual amount of anthracene. The second vaporization step continued 

to display mass loss beyond the standard boiling point (Tavg=[dm/dT]max) observed for the 

neat standard, thus showing “true” adsorption of anthracene to the surface. It is 

hypothesized that for graphene anthracene does not show adsorption characterics with the 

surface at the bulk concentrations (~150 µg mg-1 particle) but at “trace” concentrations 

(<20 µg) is allowed to come into better contact with the low number of “high energy” 

sites as described in previous computation models. This can then extend to describing the 
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non-adsorption of anthracene to the other carbon surfaces, which relative to graphene, do 

not provide high-energy sites due to disorganized layers of arene sheets. 

8.4. Future Work 

This work describes the interactions of anthracene with surrogate particles 

surfaces. Additional work should be performed extending to other PAHs species. 

Evaluations need to be performed looking at similarities/differences between species with 

the same number of aromatic rings but different in their ring configurations. The 

desorption of these PAHs needs to also be investigated on the surface of real-world PM. 

Experiments can be performed looking at the desorption behavior of PAHs already 

embedded into the surface of the PM as well those with deuterated PAH analogues spiked 

to the surface. This may allow to observe possibly differences between species embedded 

in the matrix versus those adsorbed to the outer layer of the matrix.
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Appendix I. SPE elution distribution profiles of PAHs and their oxidation products in 
extracts of WS PM. The elution trends were consistent with those observed using 
standard mixtures. Response of individual compounds was determined based on the peak 
area of quantitation ions (see Table 1) using SITI-SIM data. The total recovery (shown as 
the secondary axis) was based on the combined mass concentrations of all species 
evaluated within that class. Nitro-PAHs were not observed and thus are not shown. 
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Appendix II. SPE elution distribution profiles of PAHs and their oxidation products in 
extracts of SRM 2975 diesel exhaust PM. The elution trends were consistent with those 
observed using standard mixtures. Response of individual compounds was determined 
based on the peak area of quantitation ions (see Table 1) using SITI-SIM data. The total 
recovery (shown as the secondary axis) was based on the combined mass concentrations 
of all species evaluated within that class. Hydroxy-PAHs were not observed and thus are 
not shown. 
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Appendix III. TIC chromatograms of SPE fractions of WS PM extract. Identified and 
quantified species are labeled above their corresponding chromatographic peak. Each 
chromatogram was obtained using MS detection with EI in SITI mode. 
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Appendix IV. TIC chromatograms of individual SPE fractions for extracts obtained using PFE with DCM (left column), Soxhlet with 
DCM (middle column), and Soxhlet with MeOH (right column). Each chromatogram was obtained using MS detection with EI in 
SITI mode. 
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Appendix V. TIC chromatograms of extracts obtained using a) PFE with DCM, b) 
Soxhlet with DCM, and c) Soxhlet with MeOH. Names of non-polyaromatic polar 
compounds that were identified are shown above their respective chromatographic peaks. 
Each chromatogram was obtained using MS detection with EI in SITI mode. 
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Appendix VI. Schematic representation of the small-scale flow reactor used for the ozonation of pyrene.  
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Appendix VII. APCI-HRMS spectra of carboxy-PAHs in both positive and negatives 
modes. Spectra shown are average spectra taken over the width of the chromatographic 
peak. Neutral losses or additions shown reflect only the change in the empirical formula 
and do not necessarily represent the specific ionization process or pathway. Each spectra 
was recorded during FIA with 50% methanol in water at a flow rate of 0.2 mL min-1 
using a capillary voltage of 4500 V, fragmentor voltage of 120 V and corona current of 
10 µA. 
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Appendix VIII. APCI-HRMS spectra of carboxy- and hydroxy-PAHs in both positive and 
negatives modes. Spectra shown are average spectra taken over the width of the 
chromatographic peak. Neutral losses or additions shown reflect only the change in the 
empirical formula and do not necessarily represent the specific ionization process or 
pathway. Each spectra was recorded during FIA with 50% methanol in water at a flow 
rate of 0.2 mL min-1 using a capillary voltage of 4500 V, fragmentor voltage of 120 V 
and corona current of 10 µA. 
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Appendix IX. APCI-HRMS spectra of oxy-PAHs in both positive and negatives modes. 
Spectra shown are average spectra taken over the width of the chromatographic peak. 
Neutral losses or additions shown reflect only the change in the empirical formula and do 
not necessarily represent the specific ionization process or pathway. Each spectra was 
recorded during FIA with 50% methanol in water at a flow rate of 0.2 mL min-1 using a 
capillary voltage of 4500 V, fragmentor voltage of 120 V and corona current of 10 µA. 
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Appendix IX. cont. 
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Appendix X. APCI-HRMS spectra of a) 1,4-phenanthrenedione and b) 9-
anthracenecarboxaldehyde showing the formation of an oxygen adduct proposed to occur 
through the formation of a Meisenheimer complex intermediate. Spectra shown are 
average spectra taken over the width of the chromatographic peak. Neutral losses or 
additions shown reflect only the change in the empirical formula and do not necessarily 
represent the specific ionization process or pathway. Each spectra was recorded negative 
mode during FIA with 50% methanol in water at a flow rate of 0.2 mL min-1 using a 
capillary voltage of 4500 V, fragmentor voltage of 120 V and corona current of 10 µA. 
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Appendix XI. APCI-HRMS spectra of nitro-PAHs in both positive and negatives modes. 
Spectra shown are average spectra taken over the width of the chromatographic peak. 
Neutral losses or additions shown reflect only the change in the empirical formula and do 
not necessarily represent the specific ionization process or pathway. Each spectra was 
recorded during FIA with 50% methanol in water at a flow rate of 0.2 mL min-1 using a 
capillary voltage of 4500 V, fragmentor voltage of 120 V and corona current of 10 µA. 
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Appendix X. cont. 
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Appendix XII. APCI-HRMS spectra (left) and extracted ion chromatograms (right) of 
tentatively identified products formed during the ozonation of pyrene in a small-scale 
flow reactor. HPLC separation was performed using a C18 200 mm x 3.2 mm column 
(Restek) with 5 µm particle size. A gradient program of A:H2O and B:MeOH was used 
with a 0.2 mL min-1 flow rate: 20% B for 5 min, linear increase to 90% B at 20 min and 
held to 27 min, linear decrease to 20% B at 30 min and held to 35 min. Each spectra was 
recorded using a capillary voltage of 4500 V, fragmentor voltage of 120 V and corona 
current of 10 µA. 
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Appendix XII. cont. 
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Appendix XIII. Recoveries of particle phase PAHs from a) NO2, b) O3, and c) NO2+O3 
experiments. Recoveries are shown as mole percent of moles originally spiked to the 
quartz filter (22.4 nanomoles for 3-ring PAHs and 19.9 nanomoles for 4-ring PAHs). 
Standard deviations were calculated from recoveries determined during triplicate 
experiments. 
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Appendix XIV. Total Ion Current (TIC) chromatograms from the analysis of extracts of quartz fiber filters collected during a PAH 
oxidation reaction in the small-scale flow reactor. A mixture of 3–4 ring PAHs (phenanthrene, anthracene, pyrene and fluoranthene) 
was exposed to a) NO2, b) O3, and c) NO2+O3. Names of the identified products are shown above their respective chromatographic 
peak. Species identified as background contaminants are labeled with a “c” above their respective chromatographic peak. All GC-MS 
analyses were performed on a 30 m DB-5ms column (0.25 mm I.D.; 0.25 µm film thickness) in splitless mode (1 min splitless time 
with a 30 psi pulse for 1.0 min). Species were identified by comparing the MS spectra either to standards or to MS spectral libraries 
(NIST 2005 & 2008). Species that were identified without any specifically assigned stereochemistry are signified with an “n” and 
labeled alphabetically by retention time (e.g. “n-nitrophenanthrene A”). 
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Appendix XIV. cont. 
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Appendix XIV. cont.  
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Appendix XV. Total Ion Current (TIC) chromatograms from the analysis of extracts of quartz fiber filters collected during a PAH 
oxidation reaction in the small-scale flow reactor. Reactions of a) a mixture of 3–4 ring PAHs (phenanthrene, anthracene, pyrene and 
fluoranthene), b) pyrene only, and c) anthracene only with O3 are shown.  
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Appendix XVI.  EIC chromatograms of the common ion m/z 176 showing products formed during the reaction of 3- and 4-ring PAHs 
with a) NO2, b) O3, c) O3 with BSTFA derivatization, d) NO2+O3, e) NO2+O3 with BSTFA derivatization. 
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Appendix XVI. cont.  
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Appendix XVI. cont.  
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Appendix XVII. EI-MS (left) and APCI-HRMS (right) spectra of unknown compounds from the oxidation of PAHs tentatively 
identified in this work. EI-MS spectra was recorded following GC separation and APCI-HRMS spectra were recorded following 
HPLC separation. Each spectra shown is an averaged spectra over the chromatographic peak and subtracted by background spectral 
signals. 
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Appendix XVII. cont.  
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Appendix XVII. cont.  
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Appendix XVIII. EIC chromatograms of the common ion m/z 205 showing products formed during the reaction of 3- and 4-ring 
PAHs with NO2+O3 (N2O5/NO3). Chromatograms were obtained from the analysis of the filter extract without derivatization (top) and 
after derivatization with BSTFA (bottom).  
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Appendix XIX.  Overlayed EIC chromatograms of  m/z 223 showing decreased  amount of 3-ring nitro-PAH derivatives observed 
during  the reaction of PAHs with NO2+O3 (N2O5NO3) in the presence of UV.  
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Appendix XX. Schematic representation of the diesel exhaust ejector diluter used to sample exhaust emitted from a diesel engine and 
transfer it to the reactor bag in the large-scale aerosol chamber.  
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Appendix XXI. DSC heat flow curves obtained from the TGA-DSC analysis of 
phenanthrene standard (neat) using different N2 purge gas flow rates. Analyzed using 
alumina sample cups with a linear heating ramp of dT/dt=0.33 K s-1. 
 

 
 

 

 

 

 

 

 

 

 

 

 



186 
 

Appendix XXII. Comparison of heat flow curves obtained with TGA-DSC analysis of 
phenanthrene with different sample pan types and configurations. Analyzed using 
aluminum sample cups with a linear heating ramp of dT/dt=0.33 K s-1. 
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Appendix XXIII. Mass loss (TGA) curves (right) obtained for neat standards of 2–4 ring 
PAHs with overlayed DSC curves; their respective DTG curves are shown on the right. 
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Appendix XXIV. Mass loss (TGA) curves obtained for neat standards of 2–4 ring PAHs 
with overlayed curves determined from the Integral (left) and Derivative (right) methods 
(for each the range used for determining the Ea value is shown). 
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