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ABSTRACT 

 The prediction and characterization of molecules with small energy gaps between 

their ground and low-lying excited electronic states is of interest in a number of areas.  In 

this dissertation, four types of molecules that probe the characteristic of small gap 

molecules, i.e., [3,3’]bidiazirinylidene (C2N4), tetramethyleneethane (TME) diradical, 

AsnOm and SenOm are described. 

 The recent interest in the search for molecular species having long-lived 

metastable ground states has led to the investigation of the ground and low-lying excited 

electronic states of [3,3’]bidiazirinylidene (C2N4), using  the second order generalized 

Van Vleck perturbation theory (GVVPT2) variant of multireference perturbation theory. 

In all the low-lying electronic excitations it was observed that the CN2 ring is maintained 

and that it is highly multiconfigurational.  

Studies of ground and low-lying excited states of [3,3’]bidiazirinylidene molecule 

continued with the relaxation of the symmetry to C2v. The lowest 1A1 ground state was 

observed to be lower in energy than the lowest 1Ag state for the same molecule in D2h 

symmetry by 0.075 eV (1.73 kcal/mol). This suggests that the molecule has multiple 

minima on its ground state surface.  

 Previously studied low-lying singlet and triplet states of tetramethyleneethane 

(TME) diradical have been revisited using second-order generalized Van Vleck 

perturbation theory.  This was motivated by disagreements for the ground state of TME 



 xix 

molecules between previous experimental and theoretical results, GVVPT2 results on 

TME with C1 symmetry confirms that the ground state of TME diradical is very sensitive 

to geometry. 

 Toxic trace elements released in the environment may have great adverse effect 

on human health and the ecosystem.  Some arsenic and selenium semi-metals and their 

oxides have been found to be toxic and their toxicity depends on its oxidation state.  

GVVPT2 method alongside other methods has been employed in this study to obtain an 

understanding of the species, the structures of the oxides and their transition states.  

Moreover, the barriers between the different structures of the compounds have been 

calculated.  Four stable structures and three transition states for As2O3, and three stable 

structures and two transition states for Se2O3 were observed.  For As2O5 seven stable 

structures and for transition states, and for Se2O5, three stable isomers and one transition 

states were also observed.  In general, results on the metalloid oxides show that they can 

exist in different stable structures and that little energy is needed for the metalloid oxides 

to be transformed from one local minimum to another. 

 

 

 



 1 

CHAPTER I 

INTRODUCTION 

The geometric structures (or isomers) and electronic states in which molecules 

exist affect, sometimes profoundly, their thermal and photochemical reactions.  

Molecules with small energy gaps between their ground and low-lying excited electronic 

states are of interest in a number of areas: as energy carriers or for laser excitation; for 

utilizing both spin and magnetic properties; and relative to environmental pollution.  In 

this dissertation, the prediction and characterization of the electronic structures and 

equilibrium geometries of the following compounds; [3,3′]bidiazirinylidene (C2N4), 

tetramethyleneethane diradical (C6H8), and various arsenic and selenium oxides are the 

points of focus.  The principal technique used in achieving this goal is a high level ab 

initio method that accurately accounts for both dynamic and nondynamic electronic 

correlation effects accurately. These theoretical studies are pertinent in assisting 

experimentalists to gain understanding of the spectroscopic properties, equilibrium 

geometries, and thermodynamic stabilities of these compounds. Transition state 

structures, which are generally experimentally inaccessible or need to be inferred from 

other data, have also been optimized for some of these compounds.  Due to the small 

energy gaps of the compounds studied in this dissertation, the monitoring of their 

structures experimentally are difficult, more so, some occur at elevated temperatures.  

The main high level ab initio electronic structure method used in carrying out the 

studies in this dissertation is the second order generalized Van Vleck perturbation theory 
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(GVVPT2) method [1], a variant of multireference perturbation theory.  The GVVPT2 

level of theory is the method of choice because the low-lying ground and excited states of 

[3,3′]bidiazirinylidene, the low-lying singlet and triplet states of tetramethyleneethane 

diradical, and many of the arsenic and selenium oxides are highly multiconfigurational in 

nature.  To obtain accurate energies, it is necessary to use a multireference method that is 

capable of treating equally both the nondynamic and dynamic electron correlation effects 

of these systems.  The GVVPT2 method meets these requirements, since it gives a 

balanced treatment of nondynamic and dynamic correlation effects [1].  GVVPT2 has 

proved to be sufficiently accurate in describing the ground and excited electronic states of 

closely related polyatomic molecules to the principal molecules of interest, giving results 

comparable to those of coupled cluster with singles and doubles excitations with 

perturbative triples [CCSD(T)] when CCSD is applicable [2, 3], and it is free from 

intruder state problems, guaranteeing smooth potential energy surfaces. In this 

dissertation, GVVPT2 results for the ground states are in general found to agree with 

those of quadratic configuration interaction with single and double excitations (QCISD) 

[4], and CCSD(T), and the excited states results agree with those of equation of motion-

coupled cluster singles and doubles excitations (EOM-CCSD).  Previously, GVVPT2 has 

been shown to be a credible alternative to multireference configuration interaction with 

single and double excitations (MRCISD) [5] which is computationally very intensive.  

GVVPT2 can be applied to a broad range of geometries.  

The B3LYP variant of density functional theory (DFT) [6, 7] was used to 

optimize  the geometries of some arsenic and selenium oxides and their transition states.  

The optimized geometries of the low-lying singlet and triplet states of tetramethyleethane 
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diradical were studied using B3LYP and CASSCF(6,6).  On the optimized geometries 

obtained, GVVPT2 single point calculations were done, using MCSCF [8] optimized 

orbitals.  In the course of performing these studies, codes were written to broaden the 

range of calculations that the existing local codes could handle.  To the University of 

North Dakota Molecular Electronic Structure Code (UNDMOL) package, a spin-

component-scaled MP2 (SCS-MP2) code was realized during dissertation research and is 

presented in this dissertation. The motivation for working on the SCS-MP2 code was to 

get a computationally less intensive method than CCSD(T) for open-shell molecules.  

[3,3′]Bidiazirinylidene (C2N4) 

 

                      

N
N N

N

 

Figure 1. D2h symmetry having two equivalent CN2 rings for C2N4 molecule. 

 

                    

N

N

N

N

 

Figure 2. C2v symmetry having two unequivalent CN2 rings in C2N4 molecule. 
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Research interest in diazirine and its derivatives has increased lately because of 

their applicability.  They are high energy density molecules due to the presence of their 

three-membered CN2 rings which cause them to be highly strained and metastable in 

nature [2, 9].  Upon dissociation and/or combustion, their energy yields can be large, 

leading to their use as explosives, propellants and rocket fuels, and laser excitation 

sources, etc.  They are a preferred source of carbene, a reactive intermediate, which has 

an important role in many areas of chemistry, e.g., in understanding the mechanism of 

some reactions like molecular interactions between small bioactive ligands and proteins 

[10-12], and difluoromethylation of olefins [13, 14].  Their use as a source of carbene is 

due to their relative stability, ease of handling and production of carbenes at short 

irradiation time [10].  In order to have an understanding of the electronic structure and 

properties of the low-lying electronic states of diazirine (DA) and 3,3’ dimethyldiazirine 

(DMD), Han et al. [15], used ab initio quantum chemical methods and found that the first 

excited singlet state is of 1B1 symmetry, resulting from the n-π* transition, while that of 

the triplet state is of the 3B2 symmetry resulting from the π-π* transition.  Theoretical 

studies on difluorodiazirine by Boldyrev et al. [9] showed that it dissociates to CF2 + N2 

with the release of 28.9 kcal/mol energy.  The difluorocarbene diradical produced is used 

for stereospecific difluoromethylation of olefin.  Pandey et al. [2] used the GVVPT2 

method to study the ground and low-lying excited electronic states of difluorodiazirine. 

The GVVPT2 method addressed all the states of interest without any computational or 

mathematical difficulties.  

Since there is still need for novel high energy density molecules with better 

handling and also new carbene sources, a diazirine derivative, [3,3′]bidiazirinylidene 
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(C2N4) with two CN2 rings is investigated in this dissertation.  The geometrical 

parameters and spectroscopic properties of this compound were unknown.  Moreover, 

there is no theoretical or experimental information about the ground or low-lying excited 

states of this compound.  From the theoretical study of related molecules like 

difluorodiazirine, it was anticipated that this molecule should have unusual properties and 

will be multiference in nature, making the use of conventional ab initio methods for its 

study challenging. 

The high level ab initio correlated method GVVPT2 was used to study the ground 

and several low-lying excited states of D2h symmetry (21Ag, 1
1B1g, 1

3B1g, 1
1B2g, 1

3B2g, 

11B3g, 1
3B3g,1

1B2u,1
3B2u, 1

1B3u, and 13B3u) and of C2v symmetry (21A1, 1
1B1, 1

3B1, 1
1B2, 

13B2, 11A2, 13A2) of this molecule.  Its ground and low–lying equilibrium geometries, 

adiabatic and vertical excitation energies and vertical emission energies were obtained. 

These results were expected to give insight into the electronic structure and spectroscopic 

properties of this molecule and to be useful in describing the reaction pathway of its 

photolytic decomposition. 

Tetramethyleneethane diradical (C6H8) 

In recent times, there has been a growing interest in the study of diradicals by 

both experimentalists [16-18] and theoreticians [19, 20].  Diradicals are of interest 

because they are often intermediates or transition states in a number of reactions, 

especially thermal or photochemical reactions [21, 22].  Diradicals account for the 

kinetics, stereochemistry and the magnetic properties of these important reactions [23].  

A good understanding of diradicals is needed to have an insight into the mechanism [17] 

and reactivity of such reactions.  Diradicals can permit both intermolecular and 
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intramolecular coupling reactions because they have two binding sites [17, 18], that is, 

their two electrons can occupy two exactly or approximately degenerate orbitals.  

Slipchenko et al. [17] illustrated this phenomenon by explicitly considering six Slater 

determinants that can be generated by distributing two electrons in two molecular orbitals 

as follows: 

(a)                   (b)                 (c)                (d)                 (e)                 (f) 

2  

1  

 Ms = 0  Ms = 0  Ms = 0          Ms = 0        Ms = 1      Ms = -1 

Figure 3. Slater determinants that can be generated by distributing two electrons in two 
molecular orbitals. 

 

 

From the above determinants in Figure 3, the following six wavefunctions can be written: 
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That is, three singlet and three triplet wavefunctions as shown above, with ji 

representing )2()1( ji  , while   stands for )2()1(  .  From the above wave functions, 

it follows that a diradical can be well described only by a multiconfigurational model, 

such as multiconfigurational self-consistent field (MCSCF) [8, 24, 25].  Because of the 

exact or approximate degeneracy of the orbitals, the low-lying singlet and triplet states of 

diradicals often have close energies [19, 23, 26], thus, determination of the ground state is 

a challenge.  A single reference wave function cannot give a good description of such 

diradical.  A yet better description of the energy of a diradical can be achieved by the 

inclusion of dynamic electron correlation, which can be afforded by the GVVPT2 [1] 

method.  This is the case with tetramethyleneethane diradical, which is a disjoint organic 

radical, see Figure 4.  

                                                                                   
 

 

 

 

 

 

 

 The identification of the ground state of tetramethyleneethane diradical has 

brought a lot of debate between experimentalists [27, 28] and theoreticians [29, 30]. 

Dowd in 1970 [27] synthesized TME and recorded its EPR spectrum.  From its Curie-

Weiss plot, which is linear, he arrived at the conclusion that either the ground state was a 

triplet state, or the singlet and triplet states were degenerate [27, 28].  Borden et al. [30] 

C

CC

CC

C

H

H

H

H

H

H

H

H

Figure 4. Tetramethyleneethane (TME) diradical 
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performed SCF calculations on TME and found the ground state to be singlet. 

Ovchinnikov’s [31] theoretical calculations also showed that the ground state of TME is a 

singlet.  Nachtigall et al. carried out SD-CI/TZ2P [32] single point energy calculations on 

MCSCF(6,6)/3-21G [33] optimized parameters and arrived at a conclusion that the triplet 

state of TME lies energetically about 1.0 – 1.5 kcal/mol below the single state [33] .  This 

finding of his almost reconciled the experiment and theory.  However, Clifford et al. [16] 

carried out negative ion photoelectron spectroscopy of the [TME]- anion and their results 

showed that the ground state of TME in the gas phase is in a singlet state.  Filatov et al. 

[34], in 1999, used the spin-restricted ensemble-referenced Kohn-Sham (REKS) method 

and their calculations indicated that the ground state of TME is the singlet state.   Later, 

in 2001, Pittner et al. [20], used multireference coupled cluster theories (MRCC); their 

result showed the singlet state of TME to be the ground state.  However, high-level 

theoretical calculations for the ordering of the lowest singlet and triplet states of TME are 

still rare.  In Chapter IV of this dissertation, GVVPT2 results on the low-lying singlet and 

triplet states of TME will be presented and discussed. 

 
Arsenic oxides 

 Arsenic oxides and their dimmers can be expected to have rich and complex 

structures with some resemblance to oxides of nitrogen.  Practical interest in the study of 

arsenic in this dissertation is based in part on the fact that arsenic in the environment has 

become a public health concern, due to its toxicity, and because it adversely affects 

power production.  It acts as a chronic poison, and thus poses a risk to humans, animals 

and plants.  It leads to the cause of several diseases like diabetes [35], hypertension [36], 

ischemic heart disease [37], peripheral vascular disease and cancers of the skin, bladder, 
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liver and lung [38-40].  Besides its effect on health, arsenic affects equipment negatively. 

It poisons the catalytic converter used in selective catalytic reduction (SCR) of NOx [41, 

42].  Recently the Department of Toxic Substances Control (DTSC) has been awarded a 

Training Research and Technical Assistance Grant to conduct an Arsenic Relative 

Bioavailability Study by the United States Environmental Protection Agency Region IX 

(USEPA) [43].  Natural sources and occurrences of arsenic in the environment are: 

mineral species, for example arsenopyrite [44]; volcanic actions followed by low 

temperature volatilization; inorganic arsenic of geological origin found in underground 

water used as drinking water, for example in Bangladesh [45, 46]; and organic arsenic 

compounds such as arsenobetaine, arsenocholine, tetramethylarsonium salts, 

arsenosugars and arsenic-containing lipids, mainly found in marine organisms although 

some of these compounds have also been found in terrestrial species [47].  By high-

temperature combustion processes, such as coal-fired power generation plants, burning 

vegetation and volcanic processes, arsenic is emitted into the atmosphere [45, 47, 48].  In 

the course of the emission, a major fraction is trapped on fly ash particles, but a 

significant amount is released into the environment through flue-gas stacks [44].  The 

arsenic released into the atmosphere adds up; therefore there arises a need for an effective 

means of removal of arsenic.  An understanding of the form in which arsenic occurs in 

the fly ash and flue gases is needed.  Because its toxicity and the development of good 

methods for its removal depend on its form and structure, speciation of arsenic release in 

fly ash has been studied experimentally in many areas around the world. Huggins et al. 

[44] and Shah et al. [41] used X-ray absorption fine structure spectroscopy (XAFS) to 

study the oxidation states and speciation of arsenic in fly ash and stated that arsenic is 

http://www.greenfacts.org/glossary/mno/organic-arsenic-compounds.htm
http://www.greenfacts.org/glossary/mno/organic-arsenic-compounds.htm
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present in the As(V) state. Monahan-Pendergast et al. [49] used theoretical methods to 

predict the species of arsenic under atmospheric conditions and the result was that all 

favored reactions can occur under tropospheric conditions. 

 Irrespective of the fact that concerns have been shown about the impending 

danger of the presence of As in the environment, there are relatively few studies in the 

literature about the form, structure and the mechanistic pathway of the formation of 

molecular compounds of arsenic.  However, since the formation of As compounds 

released into the atmosphere usually occurs at elevated temperatures and in chemically 

complex environments, direct experimental studies of the forms, structure and the 

mechanistic pathway of the formation of these species can be a challenge.  From a 

theoretical perspective, only methods that can account for both dynamic and nondynamic 

electron correlation, that is high level ab initio methods, can be expected to be reliable.  It 

is for these reasons that these studies are done, by the use of GVVPT2 and CR-CCSD(T) 

[50-53] methods.  The GVVPT2 and CR-CCSD(T) methods are used to study the types 

of arsenic species likely to be formed, their stabilities and some possible reaction 

pathways. 

Selenium oxides 

 Selenium is both a toxic and an essential element, but the gap between how much 

is essential and how much is toxic is not known precisely and is known to be small [54, 

55].  The toxicological, nutritional, and biochemical impact of selenium on a biological 

system depends on its oxidation state, form [41, 54], and concentration present [41, 54].  

In Australia, both selenium deficiency and toxicity have been experienced [41].  Zheng et 

al. [56] reported that there are about 500 cases of human selenosis in southern China, due 

to the use of selenium-rich carbonaceous shales.  It is reported that domestic animals with 
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a consumption of forage containing 1 mg/kg and above have experienced selenium 

poisoning [57].  On the other hand Clark et al. found that selenium-enriched yeast dietary 

supplements significantly limit the development of colorectal, lung and prostate cancers 

[58].  But the detailed metabolic pathways of selenium compounds acting as anti-

carcinogenic agents in the human body are not fully understood.  This uncertainty 

surrounding selenium reveals that potential hazards exist and indicates the need for 

further research into the structures and forms of selenium compounds found in the 

environment and relevant reaction pathways.  The oxidation states in which selenium is 

present in its compounds are: -2, 0, +4, and +6.  About 70 – 80% of selenium in coal 

occurs in a form related to organic materials, and about 5 – 10% is present with pyrite, 

FeS2 [41, 44, 57], in which it substitutes sulfur.  The form in which selenium occurs is 

known to be directly related to its absorption, metabolic activity, and anti-carcinogenic 

activity.  For example, selenomethionine is suggested to be less toxic than the inorganic 

forms of selenium [54, 59].  Selenium, because of it high volatility during coal 

combustion, is released into the atmosphere through flue gas emission.  Studies on trace 

element emission by Zhang et al. [60] showed that the volatility of selenium increases 

with increases in combustion temperature.  Andren et al. [61] did some chemical tests and 

found that, at about 150°C, flue gas contains mainly elemental selenium.  Meanwhile, 

thermodynamic calculations showed that Se is present as gaseous SeO2 [60] at high 

temperatures with some transforming to gaseous SeO [60, 62]. Some experimental 

techniques like microwave spectroscopy have been used to determine the geometries of a 

few selenium compounds like: SeCl2, SeO and SeO2 [63, 64].  Urban et al. [65] 

performed theoretical studies on the properties and reactions involving selenium 
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compounds present in coal combustion flue gases using density functional theory and a 

broad range of other ab initio methods. Their results revealed that the use of DFT 

B3LYP/LANL2DZ for the prediction of enthalpy changes were inconsistent through each 

reaction, with errors as large as about 50 kcal/mol when compared to experimental 

results.  On the other hand, use of the 6-311++G(3df,3pd) basis set with QCI and CC 

methods did a good job producing differences within 5 kcal/mol for each reaction of their 

experimental value.  Monahan-Pendergast et al. [49] used ab initio methods to study the 

thermochemical properties of selenium species thought to be released into the atmosphere 

during coal combustion.  They studied the following reactions: 

Se + OH → SeOH                                                                                                            (7) 

Se+HO2 → SeO + OH                                                                                                      (8) 

SeO + HO2 → SeO2 + OH                                                                                                (9) 

Their results showed that the best performance was obtained from the used of QCISD/6-

311G* and QCISD with the ECP28MWBl variant of Stuttgart psuedopotentials. The 

above methods and basis set were then used to perform single point energy calculations. 

Their results showed that the selenium atom is more likely to be oxidized by the OH 

radical to form SeOH rather than by HO2 radical to form SeO. The oxidation of SeO was 

favored [57] by reaction with HO2 and not by OH radicals.  Irrespective of the known 

potentially adverse effects of selenium in the environment, relatively few studies on 

selenium have been recorded in the literature.  There is some experimental and theoretical 

information on the monomeric selenium oxides like SeO, SeO2, and SeO3, but for the 

dimeric selenium oxides Se2O3 and Se2O3, no studies have been reported prior to this 

dissertation.  
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 Some of the work presented in this dissertation involves the use of computational 

methods to study plausible forms of selenium oxides released into the atmosphere during 

high temperature combustion processes.  In addition, the possible reaction pathways 

through which these oxides are produced are predicted.  This study of both the 

monomeric and dimeric selenium oxides is the first of its kind.  GVVPT2, B3LYP and 

CR-CCSD(T) methods are used to study the monomeric selenium oxides, while the 

dimeric selenium oxides were studied using the B3LYP and CR-CCSD(T) methods.  The 

B3LYP method was used to obtain the optimized geometries and single point energy 

calculations were done on the optimized geometries using GVVPT2 and CR-CCSD(T) 

for the monomeric oxides and CR-CCSD(T) for the dimeric oxides. 

 

Organization and Structure 

The work presented in this dissertation is organized by molecular systems under 

consideration, with each major type of molecule and related species studied constituting a 

chapter.  This introductory chapter gave an overall insight as to the reason why there was 

need for working on the systems studied in this dissertation.  The detailed description of 

the theoretical electronic structure methods used is presented in Chapter II.  In Chapter 

III, the equilibrium geometries of the ground and low-lying electronic states, adiabatic 

energy separations of the excited states, vertical excitation energies, and vertical emission 

energies of the diazirine derivative, with two CN2 rings, i.e., C2N4, in both D2h and C2v 

symmetry are presented.  In Chapter IV, the GVVPT2 results for the lowest-lying singlet 

and triplet states of the organic disjoint diradical, tetramethyleneethane, are discussed.  In 

Chapter V, the study of the different forms of arsenic oxides released into the atmosphere 

during high temperature combustion processes, and the reaction pathways for their 
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formation, which is a challenge theoretically, are presented.  In Chapter VI, results on a 

closely related study on the selenium oxides are presented.  Chapter VII provides 

description of the development of closed and open shell spin-component-scaled (SCS) 

MP2 methods in the UNDMOL program environment.  This development is expected to 

facilitate further studies on systems that are too large to study using CCSD and especially 

CCSD(T). 
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CHAPTER II 
 

METHODS OF MOLECULAR ELECTRONIC STRUCTURE THEORY 

 Modern quantum mechanical methods can be divided into two main classes: ab 

initio electronic structure methods that optimize the wavefunction, and the density 

functional theory method that optimizes the electron density directly.  Both categories of 

quantum mechanical methods are used to study systems presented in this dissertation, 

with the nature and size of the chemical system under investigation having determined 

which of these techniques was used for a particular study. 

 The compounds investigated in this dissertation are molecules with small energy 

gaps between their ground and low-lying excited electronic states. Description of such 

systems involves exploration of potential energy surfaces (PESs), which are complex and 

cannot in general be well described with the use of single reference methods. 

Multiconfigurational electronic structure techniques such as multiconfigurational self-

consistent field (MCSCF) theory [66] and second-order generalized Van Vleck 

perturbation theory (GVVPT2) [67-71] are used.  The multiconfigurational wave 

function, both at the MCSCF and GVVPT2 levels of theory, were generated through use 

of the macroconfigurational approach [4, 72, 73].  For the study of tetramethyleneethane 

diradical and the metalloid oxides, because of their size, the B3LYP DFT method was 

employed to calculate optimized geometrical parameters.  
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 A description of the Hartree-Fock method, the method that provides the starting 

point molecular orbitals used for the more elaborate theoretical methods, begins this 

chapter.  Then a description of second-order Møller-Plesset perturbation theory method is 

presented.  A brief review of coupled-cluster (CC) methods is then given.  This is 

followed by a discussion of MCSCF (including complete and incomplete model spaces) 

and GVVPT2 methods.  In the final part of the chapter, the DFT method will be 

described. 

The Hartree-Fock Approximation 

 Non-relativistic quantum electronic structure methods are developed to find 

approximate solutions to the non-relativistic time-independent Schrödinger equation [73, 

74] (i.e., Equation 10), for a chemical system [67, 75-77]. 

 Eˆ                                                                                                   (10)    

where Ĥ is the Hamiltonian operator,   is the wavefunction and E is the energy of the 

system in a specific electronic state.  The systems referred to in this dissertation are 

isolated molecules and radicals, although a molecule could in principle be part of an 

extended system (e.g., liquid).  All the physical and chemical information, such as dipole 

(and multipole) moments, polarizability, etc. about a physical system can be obtained 

from the wavefunction, once it is constructed properly.  For a molecule containing N 

electrons and M nuclei, the Hamiltonian operator can be written as follows  
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The first term in Equation (11) is the kinetic energy operator for the electrons; the 

second term is the kinetic energy operator for the nuclei; the third term represents the 

coulomb attraction between electrons and nuclei; the fourth and fifth terms represent the 

repulsion potential between electrons and between the nuclei respectively.  Atomic nuclei 

are much heavier than the electrons; they tend to move much slower than the electrons 

surrounding them.  It can then be approximated that the electrons are moving in a field of 

fixed nuclei.  This leads to the Born-Oppenheimer Approximation [78, 79] which states 

that the wavefunction of the electrons can be treated separately from that of the nuclei as 

follows 

elecnuc 
 (12)                                  

with the following electronic Hamiltonian  
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In a compact manner, the electronic Hamiltonian can be written as 

 
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                                                              (14)  

 where T̂ is the kinetic energy operator, and V̂ is the potential energy operator; 

superscripts nuc and elec indicate nuclei and electrons respectively.  The electronic 

Schrödinger equation is then written as 
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Solving for elec  for various nuclear geometries produces the potential energy surface 

(PES) for the nuclei, from which important information about the system can be obtained 

(such as the equilibrium geometries and vibrational frequencies).  

The solution for a one electron system, like the hydrogen atom, can be calculated 

exactly.  The Hartree-Fock theory assumes that in a many electron system, each electron 

is experiencing an average or mean electric field from all other electrons and nuclei.  E.g. 

the H- ion with two electrons is solved by neglecting instantaneous  interactions, which 

leads to a separable Hamiltonian and the total electronic wavefunction describing the 

motion of the two electrons,  21 r,r , would just be the product of two one-electron 

wavefunctions (orbitals), )r()r( 2H1H  .  For more electrons, a general product 

wavefunction would be 

)r(.).........r()r()r()r.,..........r,r,r( NN332211N321HF                                               (16)  

But this function does not satisfy the antisymmetry principle, which states that a wave 

function of fermions must be antisymmetric with respect to the interchange of any set of 

spin space coordinates X = {r, ω}, with ω representing the generic spin coordinates (α or 

β) and r representing the three spatial degrees of freedom.  Including spin degrees of 

freedom, products of orbitals change from the spatial orbital form, )r( , to the spin 

orbital form, )x( , 

)x(.).........x()x()x()x.,..........x,x,x( NN3k2j1iN321HF                                    (17) 
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For Eq. 17 to satisfy the antisymmetry principle, a determinant of spin orbitals, called a 

Slater determinant, must be constructed. For N electrons, the determinant is written as 

follows, 

)x()x()x(

)x()x()x(

)x()x()x(
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1

NNNjNi

2N2j2i
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                                                                            (18) 

The factor (N!)-1/2 is the normalization factor.  N electrons are occupying N spin orbitals (

kji ,,,   ) without specification of which electron occupies a particular orbital.  Since 

the rows of the determinant are labeled by the electrons and the columns are labeled by 

the spin orbitals, interchanging two rows corresponds to interchanging the coordinates of 

two electrons.  This changes the sign of the determinant, resulting in the Slater 

determinant meeting the requirement of the antisymmetry principle (i.e., Pauli exclusion 

principle).  If two electrons with the same spin occupy the same spin orbital, this will 

correspond to having two columns of the determinant equal, causing the determinant to 

equal zero.  

The Hartree-Fock wavefunction for a two electron particle is thus 

   )x()x()x()x(
2

1
x,x 1j2i2j1i21                                                                (19)  

The Hamiltonian can be divided into a term containing only one-electron terms,  
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and the two electron operator  j,i ,                                                                              

    
ijr

1
j,i                                                                                     (21) 

So that electronic Hamiltonian can be written as  

    NN
jii

elec Vj,iihĤ  


                                                  (22)      

with VNN being just a constant for a fixed set of nuclear coordinates {R}. 

The Hartree-Fock energy can be calculated as follows, assuming that the wavefunction is 

normalized 

HFelecHFHF ĤE                                                                 (23) 

The variational theorem, which states that the energy of an approximate wavefunction is 

always an upper bound of the true energy, is then employed.  Beginning with some initial 

guess of one electron wavefunctions (e.g., by ignoring the interactions between 

electrons), the guess orbitals will be refined iteratively, using the mean field of all other 

electrons. Because of this approach, Hartree-Fock is called a Self-Consistent method.  

The best approximate spin-orbital is that which by varying the parameters minimizes the 

electronic energy Eelec within the functional space, leading to the correct molecular 

orbitals.  This functional space is large and leads to marginal improvements with 

substantial computational effort.  Instead, the molecular orbitals are obtained as a linear 

combination of a set of basis functions (called “atomic orbital” basis functions, which are 

usually atom-centered Gaussian type functions), 
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 


  
1

iC                                                                                                    (24) 

In Eq. (24),  are the optimized, or molecular, orbitals, and   is the set of basis 

functions or atomic orbitals.  Lagrange’s method of undetermined multipliers is the 

mathematical method used in the HF approximation to calculate the molecular orbitals.  

In a situation where the basis set functions (atomic orbitals) are not orthonormal as is 

usual, the molecular orbital coefficient C can be obtained by solving the generalized 

eigenvalue problem involving the Fock matrix, 

FC = SCε                                                                                                           (25) 

where ε are the Lagrange multipliers.  S is the overlap matrix of the basis set functions 

  S                                                                                                     (26) 

The Fock operator if̂  (one electron Hamiltonian operator) in the one electron 

approximation is related to the orbitals  

)i(
r

Z
f̂ HF

M

1A iA

A2
i2

1
i  



                                                                            (27) 

because )i(HF  is the average potential experienced by the ith electron due to the 

presence of the other electrons.  As stated earlier, 



M

1A iA

A2
i2

1

r

Z
)i(h  is the kinetic 

and potential energy of attraction to the nuclei of the ith electron.  The eigenvalue can be 

computed as follows, 
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 


   iiif̂                                                                                            (28) 

where i  is the Lagrange multiplier, which is equivalent to the Fock matrix element in 

the HF approximation 

iii f̂                                                                                           (29) 

The diagonalization steps are repeated iteratively until C converges, the Fock matrix also 

depends on C through construction of VHF.  Since the HF determinant is invariant with 

respect to unitary transformation of occupied spin orbitals (those included in the 

determinant), the resulting molecular orbitals obtained from Eq. 25 can be brought to 

canonical form and Eq. 28 transformed to 

 iiiif̂                                                                              (30) 

in which i are orbital energies.  

 In the restricted Hartree-Fock (RHF) approximation, the same set of spatial 

orbitals is used to describe two electrons with opposite spins (α and β).  In Restricted 

Open-shell Hartree-Fock (ROHF), the doubly occupied orbitals are described using the 

same set of spatial orbitals, similar to RHF.  For unrestricted Hartree-Fock (UHF), two 

sets of spatial orbitals are used, one for spin-up and the other for spin-down.  Clearly, 

only ROHF and UHF can be used for open shell cases.  

Møller-Plesset Perturbation (MP2) Theory 

Second-order many-body perturbation theory [also known as Møller-Plesset 

perturbation theory (MP2)] is the simplest and least expensive ab initio electronic 
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structure method for including electron correlation [69, 80].  This method is not 

variational (i.e., it does not give an upper bound of the exact energy), but it is size 

consistent.  In this method, the total Hamiltonian of the system is divided into two parts: a 

zero order part, H0, is the Hartree-Fock Hamiltonian which has known eigenfunctions and 

eigenvalues, and a perturbation V. 

 The Hamiltonian is partitioned as follows 

 H = H0 + V                                                                                                       (31) 

where H0 is  

    
i

HF

i
0 )i()i(hH                                                                                (32) 

and the perturbation V, is 

 


 
ji

HF1
ij )i(rV                                                                          (33) 

where )i(HF stands for the Coulomb and exchange interactions of the ith electron with 

the other electrons in the Hartree-Fock sense.  From the expression for the Hartree-Fock 

energy, one can see that 

)x(
r
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dx)x(
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      )x(irj)x(jrj 1j
j

1
121i

j

1
12                                                   (35) 

The expectation value of HF  for orbital i can be found to be 
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          jiijjjiiii
j

HF                                                                                (36) 

The Hartree-Fock Slater determinant,  0
0 , is an eigenfunction of H0, therefore, 

              H0
 0
0

 
=    0

0
0

0                                                                                       (37) 

having eigenvalues  

           
i

i
0

0                                                                                                 (38) 

where, i , is the orbital energy for the ith electron.  Note that the zero-order energy is 

different than the Hartree-Fock energy of the system because the Hartree-Fock 

Hamiltonian is the exact Hamiltonian. 

The first order correction to the energy is as follows 

   
00

1
0 V                                                                                     (39) 

                                 0
i

HF
00

ji

1
ij0 ir  



                                             (40) 

                                      
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                                   
ji

jiijjjii
2

1
                                                                 (42) 

Eq. 38 gives the zero-order energy and Eq. 42 gives the first-order correction to the 

energy; these can be summed to give the Hartree-Fock energy 
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The above results show that to obtain correlation energy there is need to go to second 

order or higher. 

 Second order energy correction is as follows 

                       
    


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n
0

n
0

0

2

n02
0

V
                                                                            (44) 

n  is a Slater determinant corresponding to an electron configuration that is excited 

relative to the HF reference and will have higher energy.  But determinants for single, 

triple and higher order excitations do not contribute to the second order correction  2
0 , 

e.g., for a single excitation 

                          0V a
i0                                                                                      (45) 

Only a double excitation determinant, ab
ij , can give a non-zero contribution 

                            jaibjbiar ab
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1
ij0  



                                                           (46) 

resulting in the following energy eigenvalue,  
baji

0
0  , that is 

                           ab
ijbaji

0
0

ab
ij0                                                (47) 

This results in the following second order energy correction 
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The second-order energy can be expressed as a sum over contributions from each pair of 

electrons in occupied orbitals 
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2
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                                                                                           (50) 

and the contribution from each pair involves a sum over pairs of virtual orbitals 
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The MP2 energy can therefore be written as shown below 

     2
0

1
0

0
0

2MP
0                                                                            (52) 

   2
0

HF2MP
0                                                                                   (53) 

Coupled Cluster Theory (CC) 

 Coupled Cluster methods are one of the most accurate high-level theoretical 

means of accounting for the correlation energy with HF functioning as a reference [50, 

81]. This method was introduced in quantum chemistry by Cizek [4, 82, 83].  The CC 

theory is not variational but it is size consistent.  Substituted configurations are 

introduced in the wavefunction in CC methods in an exponential manner rather than 
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additively, as is the case of CI.  It is assumed that the exact wave function, , has a non-

zero projection on the reference HF state.  The ground-state wave function in a single 

reference CC theory for an N-electron system is represented as follows: 

 Te                                                                                                         (53) 

where 
 
is the exact wavefunction, T is the coupled cluster excitation operator, and 

 is the reference wavefunction (i.e., single determinant, usually Hartree-Fock).  The 

excitation operator can be written as a linear combination of single, double, triple, and up 

to N excitations for an N electron system as follows 

 T = T1 + T2 + T3 +…………….TN                                                                      (54) 

The single and double excitation operators can be defined as 
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where a
iE , ab

ijE , etc., are orbital excitation operators, and ab
ij

a
i t,t , are cluster amplitudes to 

be determined in order to construct the coupled cluster wavefunction. 

The orbital excitation operators are given by 
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where aX and iX  are creation and annihilation operators, respectively, and σ stands for 

spin-up (α) or spin-down (β) eigenfunctions for a particle with spin 
2

1
.  For example, 

 a
i

a
i E ,                                                                                                      (59) 

 ab
ij

ab
ij E .                                                                                                    (60) 

The exponential operator is defined by the following expansion 
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and thus 

 ...........)TTT(......)TTT(......)TTT(1e 3
321
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T    

(62) 

The CC chain of equations used for the cluster amplitudes is obtained by projecting the 

connected-cluster form of the electronic Schrӧdinger equation, (i.e., Eq. 53),  

    EeH
C

T
N                                                                                            (63) 

onto the excited configurations generated by T, where  HHHN  is the electronic 

Hamiltonian, and  HEE  is the correlation energy when 
 
is the Hartree-

Fock determinant and subscript C indicates the connected part of a given expression. 

Recalling Eqs. (59) and (60) 
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  a
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  ab
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the equations determining the cluster operators are obtained from   
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when T is restricted to singly and doubly excited clusters.  The CC approximation that 

results is CCSD [68, 84], and the correlation energy will be determined by T1 and T2 

amplitudes as follows, 

 


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121NCCSD T

2

1
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Despite the accuracy of CCSD for system that are qualitatively well-described by 

a single Slater determinant, it has however proven to be insufficient for the description of 

systems that are multiconfigurational in nature.  Truncating T to singly, doubly, and triply 

excited clusters (i.e., T = T1 + T2 + T3) results in the CCSDT approximation.  The 

inclusion of the triple excitations has proven to be very expensive and almost impractical; 

to go around this difficulty, different approximations have been developed.  In CCSD(T) 

the triple excitation is included perturbatively (i.e., treated noniteratively) [73, 85, 86] . 

The CCSD(T) method has been quite effective and accurate in systems in which CCSD is 

applicable, but in systems that involve bond breaking CCSD(T) is inadequate.  In the CR-

CCSD(T) [87] method, complete renormalization, including the triple (T) corrections, is 
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performed.  This method has improved the description of bond breaking, while retaining 

the single reference description.  CCSD(T) is inadequate to study excited states of 

systems when a suitable single determinant reference does not exist.  As a remedy, the 

equation of motion EOM-CCSD(T) extension is used for the calculation of excited states 

[24, 25] . 

 The quadratic configuration interaction with singles and doubles (QCISD) method 

is an intermediate method between configuration interaction and coupled cluster theory  

developed by Pople et al. [25, 88-90].  This method was used in this present work, and 

gives results often approximately equal to that of CCSD at a lower cost. 

Multiconfigurational Self-Consistent Field (MCSCF) Theory 

 The equilibrium geometries of molecules, including the structures of reactants and 

products, often may be described reasonably well by single-reference wavefunction 

methods.  For such cases, Hartree-Fock is a good zero-order approximation, on which 

correlation energy can be efficiently and accurately calculated by the use of such single-

reference methods as, many-body perturbation theory(MBPT) [i.e., Møller-Plesset 

perturbation theory(MP2)] [24, 91], and the coupled cluster methods [92, 93].  However, 

chemistry involves much more than that; it involves the formation and breaking of bonds 

and the excitation of atoms or molecules into excited electronic states.  In such cases, the 

Hartree-Fock determinant does not dominate the wavefunction, and sometimes can just 

be one of a number of important electronic configurations (i.e., different arrangements of 

electrons) that ought to be included in the description of the wavefunction.  An example 

of a system where the use of a Hartree-Fock wavefunction as a reference fails even for 

the ground state is that of diradicals, because they usually have low-lying unoccupied 
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orbitals and hence low-lying excited electronic states.  Trimethylenemethane (TMM) is 

one of such diradicals.  TMM has four π electrons that can be distributed over four π type 

orbitals in different ways as shown below in Figure 5, having the following energy 

diagram as shown in Figure 6. 
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   Figure 5. Isomerization of trimethyleethane diradical [94]. 

 

 

 

Figure 6. Energy diagram for trimethylenemethane [17, 94]. 

 

Therefore a qualitatively correct zero order description of TMM or other such diradicals 

will need to be a multiconfigurational model, such as provided by the 
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multiconfigurational self-consistent field (MCSCF) [95, 96] method. The general form of 

a MCSCF wavefunction can written as 

 
I

IIMCSCF A                                                                                         (69) 



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
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I A                                                                                                   (70) 




 ii C                                                                                                      (71) 

MCSCF
 
is a linear combination of several configuration state functions (CSFs), I that 

are generated from one or more configurations.  The different arrangements of electrons 

in the molecular orbitals, i , differentiate one configuration from the other.  In MCSCF 

the configuration mixing coefficients KA  and the MO expansion coefficients iC  
are 

optimized variationally.  For the configuration interaction (CI) method, only the 

configuration mixing coefficients KA  are optimized.  Full optimized reaction space 

(FORS) [96] or a complete active space SCF (CASSCF) [97] is a MCSCF wavefunction 

in which the active electrons are rearranged in all possible ways among the active 

orbitals.  This is a Full CI type of wavefunction in the valence space. 

The drawback with the CASSCF method is that too many configurations to be 

computationally feasible are often generated.  To solve this problem, the restricted active 

space SCF (RASSCF) [92, 98] and the quasi-complete active space SCF (QCAS-SCF) 

[99] methods were developed.  These methods are designed in such a way that the 

orbitals in the model space are divided into three categories: orbitals with limited number 
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of electrons, a fully active orbital set, and orbitals with limited number of vacancies.  In 

this work, a more flexible alternative, the macroconfigurational approach [95] developed 

by Prof. Hoffmann’s group, has been used.  Since the MCSCF wavefunction is an analog 

of the Hartree-Fock wave function for systems without a simple one-configuration 

description, accurate energies for the system can be acquired only by the inclusion of 

correlation corrections. 

Macroconfiguration Approach 

 The macroconfiguration approach is a technique developed by Prof. Hoffmann’s 

research group to construct physical, reasonable, compact model spaces.  This approach 

results in significant improvement of computational methods like MCSCF and 

multireference correlated methods used in describing dynamic correlation effects.  The 

issue of constructing truncated configuration spaces, with the right choice of reference 

configurations, which describe the nondynamic part of the correlation energy correctly 

and provide adequate references for use in obtaining a good description of dynamic 

correlation, is addressed. Even though full exploitation of the concept of 

macroconfigurations is relatively recent [92, 99], some ideas were already used in the 

restricted active space SCF (RASSCF) [100, 101] method, the restricted configuration 

interaction (RCI) [102] method and in the quasicomplete active space (QCAS-SCF) 

method.  In CASSCF, the set of orbitals are divided into groups of Core (C), active (A), 

and virtual (V) orbitals.  It has only one macroconfiguration: 0Nd2 VAC C , where dC is the 

number of closed shell (or core) orbitals and N is the number of active electrons.  

RASSCF, in addition, partitions active orbitals into three groups (A1, A2, A3) and a subset 

of macroconfigurations  NNNNVAAAC 321
0N

3
N
2

N
1

N2 321C  , is used to describe it. 
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In the QCAS-SCF method, there is the possibility of using one fixed macroconfiguration 

with an arbitrary number of groups.  In contrast, the macroconfiguration approach 

supports an arbitrary number of macroconfigurations. 

 In general, consider a fixed partitioning, N = (N1, N2, …….,Ng) of N electrons in 

g disjoint orbital groups {G1, G2, …….Gg}; a macroconfiguration is 

 æ(N): g211
N

g
N
2

N
1 GGG                                                                                           (72) 

A macroconfiguration specifies occupation numbers of fixed groups, unlike conventional 

electron configurations that give the occupancies of separate orbitals.  The group (N1, N2, 

…….,Ng) occupation numbers must obey the following restrictions 

 tt d2N0   g,1t ,                                                                                        (73) 

 NNNN g21   ,                                                                                     (74) 

where dt is the number of orbitals in group Nt (  g,1t ) and N is the number of active 

electrons. A CAS model space is created when g = 1, giving the single 

macroconfiguration 0N

g
N
2

N
1

N2 VAAAC g21C   and a RAS-type model space is obtained 

when g = 3, etc.  In principle, a model space that includes all desired reference 

configurations can be obtained.  

Through the following inequalities, 

 2N1 V  ,                                                                                                        (75) 
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the group occupancies of all external macroconfigurations, æext(n, nv) =

Vg21C NN

g
N
2

N
1

N2 VAAAC  , excited relative to a given model macroconfiguration æmod(n
0) 

= 0N

g
N
2

N
1

N2 VAAAC
0
g21C  , through single and double excitations into the virtual orbitals 

can be obtained. MCSCF-type schemes based on macroconfiguration descriptions of 

configuration spaces can guarantee the equitable treatment of correlation effects for all 

the states considered.  The set of configurations in the model and external spaces can be 

generated independently, since they are created by disjoint sets of configurations and 

their configuration structure proves to be quite regular.  The model and external spaces 

are direct sums of the spaces of the included model and external macroconfigurations, 

and the configuration space of each macroconfiguration is a direct sum of its 

configurations.  Duplication in the list of external macroconfigurations is avoided by 

comparing generated configurations with previously generated ones.  This technique, 

originally suggested by Panin and Simon of generating excited macroconfigurations, is 

computationally effective, and is also flexible in the fact that any desired additional 

restrictions on occupancies of separate (active and/or virtual) groups in external 

macroconfigurations is allowed.  In the GVVPT2 program and other multireference 

techniques, macroconfigurations allow one to: (1) use effectively physical considerations 

in constructing compact model spaces and in generating external spaces; (2) eliminate the 

need of storage of large lists of external configurations and to efficiently generate the 

desired subsets of such configurations during calculations; and (3) omit effectively 
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Hamiltonian matrix blocks corresponding to noninteracting macroconfiguration pairs, 

which can decrease drastically the number of configurations pairs that must be explicitly 

calculated. 

Second-Order Generalized Van Vleck Perturbation Theory (GVVPT2) 

 In an attempt to recover dynamic electron correlation energy, with the use of 

multiconfiguration self-consistent field (MCSCF) wavefunction as the zeroth-ordered 

wavefunction, many methods can be applied.  The Multi-reference Configuration 

Interaction including Single and Double excitations (MRCISD) method is effective, but 

computationally is often too costly, since it scales as ~n6.  Thus MRCISD is good for 

studying systems with three or four atoms (when entire potential energy surfaces are 

needed).  Multi-reference (MRPT) and quasidegenerate (QDPT) perturbation theories, 

which scale as ~n5, are alternate methods that have been found to be computationally 

efficient for the description of dynamic electron correlation in molecules, but they are 

plagued with some drawbacks, notably the “intruder state” problem.  It is a situation 

where the energy of the perturber is comparable to that of the zeroth-order wavefunction, 

resulting in a nearly zero denominator in the perturbative correction, causing divergent 

behavior in the PES curve.  Recently, much progress has been made in order to resolve 

this problem [5, 103, 104],  Moreover, as shown by Roos et al. [103], useful chemical 

information can still be obtained from potential energy surfaces that have localized 

singularities.  The general applicability of the MRPT and QDPT methods has been 

limited because of the presence of “intruder states” and their removal by complex 

methods. 
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 To circumvent the limitations observed in the MRPT and QDPT methods, a 

subspace-selective method, GVVPT2, was developed by the Hoffmann group. In the 

GVVPT2 method, a reference space (L) which contains an expansion of the set of target 

wavefunctions 
pN21p ,,,   of the pN - lowest electronic states, is partitioned 

into the “model” (or MCSCF) space LM (dim LM > NP) and an “external” space, LQ.  The 

LM space and the LQ space are connected through electron excitations.  In the model 

space, LM, the reference functions   PN

1PP  are generated, which constitute the subspace 

called the “primary” subspace (LP), while its orthogonal complement is the “secondary” 

subspace (LS): LPLS = LM.  A physically reasonable selected MCSCF model space will 

generate external configurations that can be expected to be energetically well separated 

from the lowest MCSCF states of interest (i.e., the LP space), and have only a perturbative 

effect on this primary subspace.  There is some uncertainty of partitioning the model 

space into an unrelaxed primary subspace LP and it complement space LS. This ambiguity 

is removed with the use of self-consistent quasidegenerate perturbation theory (SC-

QDPT) [105].  However, it has been shown that there is a possibility of omitting primary 

space relaxation when a primary space that consists of all low-lying potentially 

quasidegenerate states is used.  Moreover, GVVPT2 completely avoids the problem of 

possible quasidegeneracy between the secondary and external subspaces [105-107].  

Considering the block-diagonal part of the Hamiltonian matrix in the LP LQ 

space as the unperturbed Hamiltonian (H0 = PHP + QHQ) and its off-diagonal block (V = 

PHP + QHP) as the perturbation, the P-Q interactions are taken into account first-order in 
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the wavefunction. Within the model space, the second-order perturbatively corrected 

Hamiltonian matrix is as follows [1] 

  QPQPQPPQ2
1

PP
eff
PP ZZ   ,                                                                  (78) 

 ,ZQPSQ
eff
SP                                                                                                    (79) 

 ,SS
eff
SS                                                                                                           (80) 

where contributions from the external CSFs to the final wavefunction are determined by 

the elements of anti-Hermitian matrix ZQP (the P-Q rotational parameters).  The system of 

linear equations below is used to determine the rotational parameters 

  ,HZE QPQP
P
0QQ                                                                                     (81) 

where P is the primary space, and   PN
1PPP

P
0 HE  are the energies of the reference 

states (i.e., MCSCF energies within the LM space).  However, these second-order QDPT 

basic equations are block-diagonal and scale as n6 and so are further approximated in the 

GVVPT2 method.  The QDPT method allows the effects of the secondary states on the 

perturbed primary ones (through the ,ZQPSQ
eff
SP  term), which is not the case with 

widely used multireference second-order perturbation theories such as the CASPT2 

method developed by Roos et al. [108], MRPT2 by Murphy and Messmer [109], and 

MCQDPT by Hirao and Nakano [110].  Such effects are usually small but they can be 

important [1].  In the realization of the GVVPT2 method, the off-diagonal matrix 

elements are discarded and the required diagonal elements of the matrices )EH( P
0QQ 
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[of Eq. (81)] are approximated beginning with the conventional, Møller-Plesset-type, 

one-electron Hamiltonians, P
0

P
q

P
0qq )EH( 

 
[5, 111].  To some extent this 

approximation proves to work well, but sometimes the “intruder state” problem occurs 

[112] , where the P
0

P
q  differences are small or even negative.  In the present version of 

the GVVPT2 method developed by Hoffmann and coworkers [1], the “intruder state” 

problem was fixed by a theoretically well-justified formula for nonlinear responses to P-

Q perturbations. Namely, a stabilized perturbation theory [1] is used to calculate the 

rotational parameter Zqp 

 
 

qpp
m,0

p
m

p
m,0

p
m

qp H
E
~

E
~

tanh
Z

ee

ee




                                                                             (82) 

where P
m,0 e

E is the degeneracy-corrected zero-order energy of the p-th primary state.  This 

incorporates degeneracy corrections and allows for the effects of all external CSFs that 

are created by a given external configuration me, which have degenerate energy p
me
 ,

 

     .H4E
~

e

eee

mq

2
qp

2p
0

p
m2

1p
0

p
m2

1p
m,0 



                                                 (83) 

The new Zqp parameters are continuous for all regions of the potential energy curves (i.e., 

for all p
0

p
q   energy differences).  In the p

0
p
me


 
main region, Eqs. (82) and (83) 

reduce to the same result as the conventional theory, while, in the p
0

p
me


 
region, they 

lead to small rotational parameters and small negative contributions of intruder states to 

the correction energy of a specific primary state.  This version of the GVVPT2 program 

has been used in all the calculations reported in this dissertation.  The revised GVVPT2 
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[1] method results in smooth potential energy surfaces even when the surfaces are in 

close proximity. 

 The main challenge in the use of a multireference method like GVVPT2 is that of 

constructing a well-balanced model space.  The macroconfiguration technique can help in 

overcoming this problem.  

Density Functional Theory (DFT) 

Density functional theory (DFT), since being adopted by quantum chemists, has 

been very widely used for simulating ground state energy surfaces in molecules.  Density 

functional theory (DFT) uses directly the electron density to describe N-electron systems, 

unlike the ab initio wavefunction methods described earlier which use complicated 

many-body expansions as the means for describing N-electron systems.  The idea of DFT 

was originated in 1927 by Thomas and Fermi [113, 114] who came up with an 

approximate potential energy of a system, which is composed of classical (coulomb) and 

non-classical (exchange-correlation) components, in terms of a classical component alone 

and then computing the kinetic energy using a non-interacting electron gas.  The Thomas-

Femi (TF) model was improved on in 1930 by Dirac [115], who introduced a formula for 

the exchange-energy of a uniform electron gas, leading to what became known as the 

Thomas-Femi-Dirac (TFD) model.  These models were not sufficiently accurate for 

predicting molecular binding, therefore making them practically far from being 

chemically useful [116]. A major breakthrough in DFT was reached when Hohenberg 

and Kohn [117] used a functional of the total electron density of a system to come up 

with an exact expression for the ground state electronic energy of an atom or molecule.  
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         eene VVTE  

          xcEJdrrT                                                                  (84) 

This reduced the many-body problem of N electrons from 3N spatial coordinates to 3 

spatial coordinates.  Eq. 84 is subject to the condition that   Ndrr  , where N is the 

total number of electrons in the system,  T  is the kinetic energy functional,  J  is the 

classical (coulomb) repulsion energy and  xcE  is the exchange-correlation energy 

functional. The above expression is exact and can be applied to any system, but lacks 

definite formulas to obtain the various quantities.  

 In 1965 the Kohn-Sham method [118] came into existence when Kohn and Sham 

made a major advance in developing an indirect approach to obtain the  T  functional. 

This achievement led to a major change in the field of DFT and turned it into a practical 

tool for serious calculations. The idea that Kohn and Sham had was to develop simple 

formulas for a fictitious system of non-interacting electrons, to use in obtaining the exact 

kinetic energy functional through molecular orbitals for such systems.  Furthermore they 

redefined the  xcE  term to account for the difference between the kinetic energy of the 

fictitious and that of the real system, in addition to considering the nonclassical part of 

the electron-electron repulsion term.  The effective external potential )r(eff  experienced 

by the system of non-interacting electrons is given by 

      
 

 
 r

E

r

J
rr xc

eff 






  
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                 rdr
rr

r
r xc




                                                                         (85) 

where the exchange correlation is expressed as    
 r

E
r xc

xc 


 , and the total electron 

density  r  can be obtained by solving N one-electron equations 

   iiieff
2 r

2

1




                                                                                  (86) 

Once the so-called Kohn-Sham orbitals, i  are obtained, the total density,  r is given 

by 

     
s

2

i

N

i

rr                                                                                          (87) 

Eqs. (85), (86), and (87) must be solved iteratively since )r(eff depends on  r through 

the xc term.  These are the equations generally known as Kohn-Sham equations.  The 

total energy of the ground state can then be written as 

 
          




 drrrErddr
rr

rr

2

1
E xcxc

N

i
i                                      (88) 

 The exact  rE xc  functional in the KS total energy expression has an unknown 

form.  Approximation of Exc therefore remains a focal point of research in DFT and has 

led to a multitude of different variants of DFT.  One of these variant forms of DFT i.e.,  

with the hybrid functional, B3LYP [6, 7, 119] has been used in some of the work 

presented in this dissertation.  
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B3LYP 

B3LYP is a hybrid exchange-correlation density functional that includes Becke’s 

three-parameter exchange energy term [7] and Lee-Yang-Parr’s [119] correlation term. 

The acronym of this DFT variant gives the impression that the correlation contribution all 

comes from the LYP functional, but most practical implementations use only the non-

local correlation energy contribution from the LYP functional and the local contribution 

comes from the Vosko, Wilk and Nuasir (VWN) [120] functional.  The form of the 

B3LYP functional is 

             VWN
c

LYP
c

HF
x0

88B
xx

LDA
x0

LYP3B
xc Ec1cEEaEaEa1E       (89) 

where the empirical coefficients a0, ax, and c were determined by Becke in 1993 as 0.2, 

0.72, and 0.81, respectively.  The first two terms are the Becke’s exchange energy term 

and are defined as 

   dr
xsinhbx61

x
bdr

4

3

2

3
E

1

2

,

3

1

88B
x

3
4

3
4







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 
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







                              (90) 

with ,x
3
4









  

and b = 0.0042. 

HF
xE is the Hartree-Fock exchange energy, and the LYP term is given as 

    
 






 dr

)r(d1

e)r(t2)r(t)r(b)r(
aE

3
1

3
1)r(c

WHF
3

2

LYP
c                                  (91) 
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where 



  2

i i

2

i
HF

8

1

)r(

)r(

8

1
)r(t  is the Hartree-Fock kinetic energy density and 





 2

2

W
8

1

)r(

)r(

8

1
)r(t  is the local Weizsacker kinetic-energy density;  

a = 0.04918, b = 0.132, c = 0.2533, and d = 0.349. 

The correlation term by Vosko, Wilk and Nuasir is given by Eqs. (92) – (94) [120] 

   ),,x(E c
VWN
c                                                                                           (92) 
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where 
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where ,cbxx)x(X 2   ,)bc4(Q 2
1

2  and A, b, c, and x0 are parameters assuming 

different values for each individual .c  
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  Riley et al.[121] assessed the performance of the B3LYP method in its ability to 

calculate molecular properties, such as bond lengths, bond angles, ground state 

vibrational frequencies, heats of formation, conformation energies, reaction barrier 

heights, electron affinities (EA) and ionization energies (IP).  B3LYP was found to 

produce results with the lowest errors for bond lengths, and bond angles, and was the 

most accurate of the hybrid-GGA class for calculating vibrational frequencies [121].  

Also Raymond and Wheeler [122] used the B3LYP method to study numerous small 

inorganic molecules; they obtained results which were not only comparable to 

experimental results but comparable to results from other computational studies found in 

the literature.  Maung et al. [123] used different DFT functionals to evaluate the bond 

dissociation energies for simple selenium-containing molecules and their calculations 

showed that B3LYP with the 6-311G*, 6-311+G(d,p) and 6-311++G(d,p) basis sets, 

produced the most accurate DFT energy (4.6 kcal mol-1 different from experiment) [124].  

Moreover, B3LYP calculations have less basis set sensitivity compared to MP2 

calculations [123, 125] because in progressing from a small basis set, e.g. 3-21G* to the 

extended basis set, e.g. 6-311++G(3df,3pd), the predicted bond dissociation energy for 

HSe-H bond changes only by 2.0 kcal/mol [123].  As a result, the B3LYP method, with 

appropriate basis sets, was used in obtaining optimized geometrical structures in this 

dissertation when optimizations using wave function methods were deemed as 

unnecessarily costly. 
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CHAPTER III 

GROUND AND LOW-LYING EXCITED ELECTRONIC STATES OF 
[3,3’]BIDIAZIRINYLIDENE (C2N4) in D2h symmetry 

Introduction 

Diazirine and its derivatives have been studied extensively with emphasis on synthesis 

and understanding the mechanisms of their decomposition [10, 126-130]. They 

decompose and generate carbenes through thermolysis or photolysis with short irradiation 

time [10, 126].  Diazirine and its derivatives are a class of highly strained compounds 

[15], with the characteristic feature being their three-membered CN2 rings.  The particular 

compound of interest in this study, [3,3’]bidiazirinylidene (C2N4) (Figure 1, Chapter I), is 

a derivative of diazirine with D2h symmetry; it consists of two CN2 rings.  Based on 

previous investigations of substituted diazirines [131], [3,3’]bidiazirinylidene was 

postulated to be electronically and geometrically similar, especially in the ring moieties.   

In particular, the compound is expected to be metastable with respect to its dissociation 

products.  Recently, there has been renewed interest in the search for molecular species 

having long–lived metastable ground states not only because their decomposition is 

accompanied by the release of energy, but products are often formed in excited electronic 

states.  Consequently, these types of molecules are possible energy carriers and/or laser 

excitation sources.  Examples include: difluorodiazirine (F2CN2), which dissociates with 

the release of energy to form CF2 + N2 [2], CO4, and CO2N2 [132, 133].  To the best of 

our knowledge, the ground- and low-lying excited electronic states of this diazirine 
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derivative have not been characterized either experimentally or theoretically prior to our 

paper [134].  Moreover, we are not aware of any other studies on compounds with 

multiple CN2 rings; their investigation may identify new directions for novel high energy 

density molecules. 

The theoretical investigation of C2N4, especially its excited electronic states, is a 

significant computational challenge and, like other diazirine derivatives, requires high–

level methods that allow for a balanced treatment of dynamical and nondynamical 

electron correlation.  The second-order generalized Van Vleck perturbation theory 

(GVVPT2) [1, 135], a variant of multireference perturbation theory, has been proven to 

describe well the ground and excited electronic states of closely related molecules, such 

as difluorodiazirine (F2CN2) [2] and difluorodioxirane (CF2O2) [136].  Additionally, the 

GVVPT2 method has been shown to elucidate other particularly difficult excited state 

electronic structures, including those of disulfur monoxide (S2O) [137] and the 

azabenzenes [138], which also require balanced treatments of dynamical and 

nondynamical correlation effects.  Its results are in good agreement to those of coupled 

cluster with single and double excitations (CCSD) [72] with perturbative triples 

CCSD(T) [4], when CCSD is applicable, although GVVPT2 is more widely applicable 

than single reference CCSD.  GVVPT2 is a credible alternative to the significantly more 

computationally intensive multireference configuration interaction with single and double 

excitations (MRCISD) method for many problems. 

 In this chapter, the results of the equilibrium geometries of the ground and low-

lying electronic states of the diazirine derivative C2N4 determined at the GVVPT2 level 

using a cc-pVDZ [139] basis are reported.  Taking into account that studies on related 
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diazirines showed significant geometry changes with electronic state, optimization of 

geometries for all states was considered essential.  Based on previous theoretical and 

experimental studies of related molecules with three-membered rings in their ground 

states (e.g., difluorodiazirine [2], dioxirane [136] and fluorofluoroxydioxirane [3]), low–

lying excited states are expected to be produced by excitations located within the ring 

fragment with the retention of the ring moiety, but leading to elongation of the N–N bond 

length.  Consequently, several low–lying excited states of D2h symmetry (21Ag, 11B1g, 

13B1g, 11B2g, 13B2g, 11B3g, 13B3g, 11B2u, 13B2u, 11B3u, and 13B3u) of this molecule were 

examined.  Besides the adiabatic energy separations for the excited states, additional 

calculations were performed to obtain the vertical excitation energies from the ground 

state and the vertical emission energies from the excited states.  Harmonic frequencies of 

the equilibrium ground state geometry were also determined, at the multiconfigurational 

self-consistent field (MCSCF) level, to predict the vibrational spectroscopy and estimate 

the rigidity of the molecule.  Calculations with larger basis sets (cc-pVTZ [139] and aug-

cc-pVTZ [139, 140]) were performed to assess basis set effects.  All MCSCF and 

GVVPT2 calculations were performed using a local electronic structure software suite 

(i.e., UNDMOL).  Additional studies of the ground-state geometry were also performed 

at other levels of theory: Hartree–Fock (RHF); second–order Møller–Plesset perturbation 

theory (MP2); coupled cluster with single and double excitations (CCSD); and quadratic 

configuration interaction with single and double excitations (QCISD) [4].  These 

calculations were performed using the Gaussian 03 program [141].  CCSD(T) [4] 

calculations on the ground state and additional calculations to characterize the excited 

states using EOM-CCSD [50, 142, 143] were done using GAMESS [144, 145]. 
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The first part of this chapter is divided into three additional sections.  In Section 2, 

computational details, including a description of the model space constructed using the 

macroconfiguration approach [96], is given.  Section 3 presents the results of the study 

and a discussion that includes a comparison of features of C2N4 relative to those for 

difluorodiazirine, for which both experimental and theoretical results are available.  A 

final section summarizes the work. 

Computational details 

The model spaces used in this study include all spin and space symmetry-allowed 

configurations generated by single and double excitations from the 14 highest occupied 

orbitals to the 10 lowest unoccupied orbitals.  From preliminary single-reference studies 

of the 11Ag ground state, orbital groups for MCSCF and subsequent GVVPT2 

calculations were constructed as follows: the fourteen highest occupied orbitals were 

divided into two subgroups (G1 and G2) involving eight and six orbitals, respectively.  

The first subgroup includes the eight lowest orbitals: G1 = (3ag, 3b1u, 4ag, 2b2u, 2b3g, 4b1u, 

5ag, 2b3u).  The second subgroup involves the six highest lying occupied valence orbitals: 

G2 = (5b1u, 6ag, 1b2g, 3b2u, 3b3g, 2b3u).  The 10 lowest virtual orbitals were also divided 

into two subgroups (V1 and V2), involving six and four orbitals, respectively: V1 = (1b1g, 

1au, 4b2u, 2b2g, 6b1u, 5b2u), V2 = (4b3g, 7ag, 7b1u, 5b3g).  Figure 7 shows the orbitals of the 

groups G2 and V1 that proved to be qualitatively significant for the low-lying excited 

electronic states. Based on this partitioning of the valence orbitals, fourteen 

macroconfigurations describing single and double excitations from G1 and G2 to V1 and 

V2 were created.  Although the same model space could be generated from just three 

macroconfigurations using two groups, both computational efficiency and interpretability 
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is increased with the used granulation.  

             

 

                

 

                            

 

                               

 

Figure 7. 3-D plots of orbitals of groups G2 and some of V1 of [3,3’] bidiazirinylidene in 
D2h symmetry. 
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The list of macroconfigurations determining the incomplete model space used 

includes: the closed–shell macroconfiguration describing the ground state, 

 (G1)
16 (G2)

12 (V1)
0 (V2)

0; 

macroconfigurations describing all single excitations from G1 or G2 to V1 or V2,  

 (G1)
15 (G2)

12 (V1)
1 (V2)

0,            (G1)
15 (G2)

12 (V1)
0 (V2)

1, 

 (G1)
16 (G2)

11 (V1)
1 (V2)

0,            (G1)
16 (G2)

11 (V1)
0 (V2)

1; and 

 macroconfigurations describing all double excitations from G1 and/or G2 to V1 and/or 

V2, 

 (G1)
14 (G2)

12 (V1)
2 (V2)

0,            (G1)
14 (G2)

12 (V1)
0 (V2)

2, 

 (G1)
16 (G2)

10 (V1)
2 (V2)

0,            (G1)
16 (G2)

10 (V1)
0 (V2)

2, 

 (G1)
14 (G2)

12 (V1)
1 (V2)

1,           (G1)
16 (G2)

10 (V1)
1 (V2)

1, 

 (G1)
15 (G2)

11 (V1)
2 (V2)

0,           (G1)
15 (G2)

11 (V1)
0 (V2)

2, 

 (G1)
15 (G2)

11 (V1)
1 (V2)

1. 

 The ground state has 1Ag symmetry and its model space is spanned by 1390 

configuration state functions (CSFs) created by 856 configurations.  The dimension of the 

corresponding external space depends on the basis set used.  For the cc-pVDZ atomic 

basis, the external space is spanned by 199,054,113 CSFs (26,803,566 configurations); 

the cc-pVTZ basis leads to a much larger dimension of about 1.43 billion CSFs (more 

than 187 million configurations).  The dimensions of the model space for excited states 
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were as follows: for 1B2u and 3B2u states (as well as for 1B3g and 3B3g states), the model 

spaces were spanned by 1303 CSFs and 1824 CSFs, respectively (created by 782 

configurations); for 1B3u and 3B3u states, the model spaces were spanned by 1183 CSFs 

and 1672 CSFs respectively (created by 694 configurations); for the 11B2g and 13B2g 

states, the model spaces were spanned by 1181 CSFs and 1680 CSFs respectively 

(created by 682 configurations); and the model spaces for  both 1B1g and 3B1g states were 

spanned by 1672 CSFs (created by 656 configurations).  The dimensions of the external 

spaces for triplet states were significantly larger than for 1Ag symmetry (for example, 

380.1 million CSFs for cc-pVDZ), but those for the singlet excited states were similar to 

that for the ground state (approximately 199 million CSFs).  The current GUGA-based 

GVVPT2 program in UNDMOL [135] can perform the described calculations in 

reasonable time; e.g., a typical GVVPT2 calculation required 11 minutes for 199 million 

total CSFs and 1390 model CSFs on a 2.0 GHz dual-core AMD Opteron processor 2212.  
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Table 1. Comparison of Optimized Geometries of the Ground State of C2N4 cc-pVDZ. 

 

 MP2 MCSCF CCSD QCISD CCSD(T) GVVPT2 

 

RCC (Å) 

 

1.300 

 

1.296 

 

1.302 

 

1.302 

 

1.304 

 

1.303 

 

RCN (Å) 

 

1.433 

 

1.420 

 

1.428 

 

1.429 

 

1.437 

 

1.433 

 

RNN (Å) 

 

1.290 

 

1.251 

 

1.265 

 

1.266 

 

1.278 

 

1.282 

 

NCN (deg) 

 

53.5 

 

52.3 

 

52.6 

 

52.6 

 

52.6 

 

53.1 

 

CNN (deg) 

 

63.3 

 

63.9 

 

63.7 

 

63.2 

 

63.2 

 

63.4 
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Table 2. Comparison of optimized geometries of the ground state of C2N4 to that of 
F2CN2 at the GVVPT2 level of theory. 

 
 

 

 

 

 

 

 

 

a Reference [2] 

Electronic and molecular structures 

The geometry of the 11Ag ground state of C2N4 was optimized at the GVVPT2 

level of theory using both cc-pVDZ and cc-pVTZ basis sets.  Optimizations with other 

methods were performed using the cc-pVDZ basis set.  Comparing the structural 

parameters for the ground state of the C2N4 molecule optimized at the GVVPT2 level to 

that obtained using the MP2, CCSD, and QCISD methods shows (Table 1) that they are 

in close agreement except for the N–N bond length.  The RCC bond length is about 0.001 

Å longer than that from the CCSD and QCISD methods and 0.003 Å longer than that 

from the MP2 method; the RCN bond length is 0.005 Å and 0.004 Å longer than that with 

 C2N4 

N

N N

N

 

F2CN2 

N

N F

F

 

cc-pVDZ cc-pVTZ cc-pVDZa cc-pVTZa 

RCC (Å) 1.303 1.288 - - 

RCN (Å) 1.433 1.424 1.421 1.417 

RNN (Å) 1.282 1.268 1.288 1.281 

NCN (°) 53.1 52.9 53.9 53.7 
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using CCSD and QCISD, respectively, but the same as for the MP2 method, but 0.004 Å 

shorter than with CCSD(T).  There is greater variation between methods for the predicted 

RNN bond lengths: the GVVPT2 result is 0.017, 0.016 and 0.031 Å longer than that of 

CCSD, QCISD, and MCSCF, respectively, and 0.008 Å shorter than that of MP2.  The 

CCSD(T) N—N bond length is quite close to the GVVPT2 value, 0.004 Å; as in the case 

of F2CN2 [2], GVVPT2 and CCSD(T) are in good agreement.  The NCN angle 

predicted by GVVPT2 is only 0.5° larger than that for the CCSD and QCISD methods, 

0.8° larger than for MCSCF, but is 0.4° smaller than that for the MP2.   

 Experimental results for C2N4 are not available.  To gain further understanding of 

the results of the calculations, the optimized parameters for C2N4 are compared to those 

of F2CN2, which has been investigated both experimentally and theoretically (see Table 1 

in Ref. 2), as can be seen from Table 2.  RCN and RNN bond lengths and the NCN angle 

obtained at the GVVPT2 level using the cc-pVDZ and cc-pVTZ basis sets for the C2N4 

molecule are in good agreement with those for F2CN2.  RCN and RNN bonds for C2N4 using 

the cc-pVDZ basis are only 0.012 Å and 0.006 Å longer than those for F2CN2, 

respectively, and the NCN angle in C2N4 is only 0.8° smaller than that for F2CN2.  

These results show that [3,3’]bidiazirinylidene is quite similar to F2CN2, and that 

GVVPT2 can be expected to describe the electronic structure of C2N4 to similar accuracy.  

GVVPT2 calculations for the ground state of C2N4 show that the leading 

configuration is ···· (1b3u)
2(6ag)

2(1b2g)
2(3b3g)

2(5b1u)
2(3b2u)

2(2b3u)
2 with an amplitude of 

0.73.  This amplitude is much smaller than it is in the MCSCF calculation (where the 

amplitude is 0.93).  Similar results are obtained for the excited states, which demonstrates 

the significant effect of dynamic correlation on the reference configurations.  
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Table 3. Vibrational frequencies (cm-1) of the 11Ag state calculated at HF/cc-pVDZ, 
MP2/cc-pVDZ and MCSCF/cc-pVDZ levels of theory. 

vibration HF MP2 MCSCF 

υ1 (B2u) 

υ2 (B3u) 

υ3 (B2g) 

υ4 (Au) 

υ5 (B3g) 

υ6 (Ag) 

υ7 (B2u) 

υ8 (B3g) 

υ9 (B1u) 

υ10 (Ag) 

υ11 (B1u) 

υ12 (Ag) 

196.7 

306.3 

400.9 

410.0 

545.2 

680.5 

1099 

1149 

1291 

1801 

1906 

2293 

173.5 

263.9 

298.7 

364.4 

443.8 

605.4 

819.0 

890.3 

1109 

1352 

1486 

2078 

270.3 

311.5 

375.9 

449.2 

533.2 

608.2 

934.4 

995.5 

1127 

1470 

1562 

2084 

 

Frequency calculations of the C2N4 molecule at the HF, MP2 and MCSCF levels 

of theory with the cc-pVDZ basis are given in Table 3 at their respective equilibrium 

geometries.  The NN symmetric and asymmetric stretching frequencies at 1470 cm-1 and 

1562 cm-1 (at the MCSCF level) of C2N4 can be compared to the NN stretching mode of 

F2CN2 [9, 146] with a frequency of about 1650 cm-1, which is characteristic of a N═N 

double bond.  The B2u and B3g symmetric and asymmetric CN stretching frequencies of 

934.4 cm-1 and 995.5 cm-1 (at the MCSCF level) are similar to the B2 asymmetric CN 

stretching frequency in F2CN2 [9, 146]  at 1091 cm-1.  The similarity of the vibrational 

spectrum of C2N4 to that of F2CN2 corroborates the supposition that they have similar 

electronic structures. 

The stability of C2N4 relative to dissociation to N2 + C2N2 was surveyed by a 

series of GVVPT2 calculations along an approximate reaction path. A path in which the 

distance between one N2 moiety and the C2N2 fragment was gradually varied, with all 
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other geometrical parameters held constant, is shown in Figure 8.  The abscissa is labeled 

by the distance from the center of the two carbons to the center of the two nitrogen atoms.  

As can be seen in Figure 8, the dissociation energy is predicted to be no larger than 1.32 

eV (30.4 kcal/mol) with the barrier no larger than 5.64 eV (130 kcal/mol).  Relaxation of 

geometrical parameters will lead to a lowering of these limits. 

 

Figure 8. Cut along PES through the equilibrium geometry of the 11Ag state of C2N4 
leading to dissociation to N2 + C2N2. 

 

 In the 11B1g excited state, the leading configuration by which this state is related 

to the ground state can be described as the 2b3u => 4b2u single electron excitation, as can 

be seen in Figure 9.  The amplitude of this configuration is 0.631.  Qualitatively the 

excitation is from a π-bonding N–N orbital to a σ-antibonding N–N orbital, which is 

consistent with the observed elongation of the N–N bond length (by +0.046 Å); RCN also 
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increases by +0.034 Å (Table 4).  The RCC bond increases for this excitation by +0.035 Å.  

The leading configurations for the triplet state (13B1g) can be described as two, single 

electron excitations, 5b1u => 1au and 6ag => 1b1g, having amplitudes of 0.541 and 0.566, 

respectively.  These electron transitions are from σ-bonding N–N orbitals to π-

antibonding N–N orbitals.  They lead to elongation of the N–N bond by 0.094 Å, but the 

C–C bond does not change. 

z yx z yx

2b3u
4b2u

1e

 

 

 

z yx z yx

5b1u
1au

1e

z yx z yx

6ag
1b1g

1e

 

Figure 9. The leading excitations for the 1 1,3B1g excited state of C2N4. 

 

 Unlike the B1g states, the electronic structures for the 11B2g and 13B2g states are 

similar.  The leading configuration of both states can be described as the one-electron 

I 

II 
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excitation 3b3g =>1b1g relative to the closed-shell reference (Figure 10).  The amplitude of 

this configuration in the 11B2g state is 0.626, and it is 0.597 in the 13B2g state.  This 

configuration corresponds to excitation from the antisymmetric, banana-type, three-

centered N–C–N bonding orbital to a π-antibonding N–N orbital.  The excitation leads to 

the elongation of the N–N and C–N bonds, with the shortening of the C–C bond (Tables 

2 and 4) and retention of the CN2 ring moiety.  The analogous excitations are responsible 

for transitions from the 11A1 ground state to the 11B1 and 13B1 excited states of F2CN2.  

The curious shortening of the C–C bond is related to loss of C–C π-antibonding character 

in excitation from the 3b3g orbital.  GVVPT2 calculations for the 13B2g state of C2N4 

predict that the N–N bonds increase by +0.012 Å and the C–C bond decreases by 0.024 Å 

relative to the ground state.  This is similar to (but smaller than) the corresponding 

changes in F2CN2: increment of +0.031 Å (GVVPT2/cc-pVDZ), +0.038 Å (experimental) 

[2] in the N–N bond length.  

z yx z yx

3b3g
1b1g

1e

 

Figure 10. The leading excitations for the 1 1,3B2g excited state of C2N4. 
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Table 4. GVVPT2/cc-pVDZ-optimized geometries of the excited states of C2N4. 

 21Ag 11B1g 13B1g 11B2g 13B2g 11B3g 13B3g 11B2u 13B2u 11B3u 13B3u 

 

RCC (Å) 

 

1.926 

 

1.338 

 

1.303 

 

1.269 

 

1.279 

 

1.409 

 

1.409 

 

1.393 

 

1.360 

 

1.276 

 

1.279 

 

RCN (Å) 

 

1.769 

 

1.467 

 

1.421 

 

1.449 

 

1.447 

 

1.412 

 

1.367 

 

1.379 

 

1.370 

 

1.465 

 

1.447 

 

RNN (Å) 

 

1.427 

 

1.328 

 

1.376 

 

1.282 

 

1.294 

 

1.388 

 

1.388 

 

1.402 

 

1.382 

 

1.286 

 

1.295 

 

NCN(deg) 

 

47.6 

 

53.8 

 

57.9 

 

52.5 

 

53.1 

 

58.9 

 

59.5 

 

61.1 

 

60.6 

 

52.04 

 

53.1 

 

CNN(deg) 

 

66.2 

 

63.1 

 

61.0 

 

63.7 

 

63.4 

 

60.6 

 

61.0 

 

59.5 

 

59.7 

 

64.0 

 

63.4 
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 For the 11B3g and 13B3g excited states of C2N4, the leading configurations mainly 

involve the 2b3u => 1au one electron excitation relative to the ground state (Figure 11).  

The amplitudes for these configurations are 0.625 for the singlet state and 0.621 for the 

triplet state. The corresponding electronic excitations in F2CN2 are responsible for 

transitions from 11A1 to the 11B2 and 13B2 excited the triplet states.  The excitation is 

from a π-bonding N–N orbital to a π-antibonding N–N orbital, leading to an increase in 

RNN by +0.106 Å for both states.  These large increases in the N–N bond length also 

result in a large increase in the N–C–N angle (+5.8° for the singlet, +6.4° for triplet) with 

respect to the ground state. 

z yx z yx

2b3u
1au

1e

 

Figure 11. The leading excitations for the 1 1,3B3g excited state of C2N4. 

 

Qualitatively, the excitations involved in the 11B2u and 13B2u excited states of 

C2N4 are similar and have the same nature as those in the 11B3g and 13B3g states: an 

excitation from a π-bonding N–N orbital to a π-antibonding N–N orbital.  The leading 

configurations of the 11B2u and 13B2u states can be described as the 2b3u => 1b1g single 

excitation relative to the ground state reference (Figure 12).  The 1b1g orbital is a 

symmetric combination of π-antibonding N–N orbitals, while the 1au orbital (of 

importance in the 11B3g and 13B3g states) is the antisymmetric combination.  The 
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amplitude for the 2b3u => 1b1g configuration is 0.645 for the singlet state and 0.618 for 

the triplet.  This excitation leads to an increase in RNN by +0.120 Å for the singlet (11B2u) 

and +0.100 Å for the triplet (13B2u) excited states.  The N–C–N angle is also increased 

during these excitations: for the singlet state by +8.0° and by +7.5° for the triplet state 

(13B2u). 

z yx z yx

2b3u
1b1g

1e

 

Figure 12. The leading excitations for the 1 1,3B2u excited state of C2N4. 

 

 The leading configurations of both the 11B3u and 13B3u excited states are 

qualitatively described in terms of the 3b3g => 1au single excitation relative to the closed-

shell reference (Figure 13).  This is analogous to electronic transition from 11A1 to 11B1 

and 13B1 states in the F2CN2 molecule.  The excitation is from the antisymmetric, banana-

type, three-centered N–C–N bonding orbital to a π-antibonding N–N orbital.  The 

amplitude of the configuration is 0.621 for the singlet (11B3u) and 0.594 for the triplet 

state (13B3u).  The excitation is similar to that for the 11B2g and 13B2g excited states 

discussed above, except that the 1au orbital is the antisymmetric combination of π-

antibonding N–N orbitals while the 1b1g orbital is the symmetric combination.  As with 

the B3u states, there is an elongation of the N–N bond (by 0.004 Å in the present case) 

and an identical decrease in the C–C bond (by 0.024 Å).   
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z yx z yx

3b3g
1au

1e

 

Figure 13. The leading excitations for the 1 1,3B3u excited state of C2N4. 

 

 The second singlet state of the same symmetry as the ground state (21Ag) is highly 

multiconfigurational with the following leading configurations: the closed-shell 

configuration with amplitude of 0.364; a two-electron excitation from 2b3u to 1b1g with 

amplitude of 0.196; and another two-electron excitation from 2b3u to 1au with amplitude 

of 0.134, relative to the ground state reference (Figure 14).  The excitations are from a π-

bonding N–N orbital to π-antibonding N–N orbitals.  As expected, this excitation leads to 

a significant increase in the N–N bond (of 0.145 Å), but also, unlike all other excited 

states discussed, a very large increase in the C–C bond (of 0.623 Å). 
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z yx

1au

2e
z yx

z yx
2b3u

1b1g

2e

 

Figure 14. The leading excitations for the 2 1Ag excited state of C2N4. 

               

 In Figure 15, the vertical and adiabatic excitation energies of the low–lying 

excited states of C2N4 with respect to the ground state, calculated using the GVVPT2/cc-

pVDZ level of theory, are shown. The lowest energy vertical excitation is to the 13B2g 

triplet state, which is not symmetry-allowed because of both spin and dipole selection 

rules, and has an energy of 2.33 eV, followed by the spin forbidden but dipole allowed 

transition to 13B3u with an excitation energy of 2.37 eV.  The lowest-energy spin and 

dipole symmetry-allowed excitation is to 11B2u at an energy of 2.57 eV (wavelength of 

482.4 nm), followed by a spin allowed but dipole forbidden transfer to 11B3g with an 

excitation energy of 2.66 eV.  A pair of spin-forbidden transitions to 13B2u and 13B3g, 

with excitation energies of 2.71 eV and 2.75 eV, respectively, are the next lowest 
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transitions.  The excitation energy of 11B2g is 3.03 eV and of 11B3u is 3.07 eV.  The 11B1g 

and 13B1g states are predicted to have yet higher excitation energies of 5.75 eV and 5.66 

eV, respectively. 

 

Figure 15. Vertical and adiabatic excitation energies (eV) of low-lying excited states of 
C2N4, calculated at the GVVPT2/cc-pVDZ level of theory. 

 

 EOM-CCSD//CCSD calculations were performed for all singlet excited states.  

The low-lying transition characteristic of diazirine rings (i.e., from the antisymmetric, 

banana-type, three centered N—C—N bonding orbital to a π-antibonding N—N orbital), 

which gives the 11B2g and 11B3u states in C2N4, is predicted to occur at 3.97 and 4.02 eV, 

respectively.  This may be compared to the value of 4.27 eV in CH2N2 that was recently 

calculated by Fedorov et al. [131] Furthermore, a dipole strength of 0.072 and an 

11Ag 0.0

13B2g 2.3313B3u 2.37
11B2u 2.5711B3g 2.6613B3g 2.75 13B2u  2.71

11B2g 3.03 11B3u 3.07

21Ag 5.04

11B1g 5.75 13B1g 5.66

11B2u 1.45
21Ag 1.8513B2u 1.93

13B3u 2.2613B3g 2.21

11B2g 2.95

13B2g 2.22

11B3u 3.25

13B1g 5.00

11B3g 2.43

11B1g 5.49

 

vertical adiabatic
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oscillator strength of 0.00711 were calculated for the 11B3u state of C2N4, which is to be 

compared to the CH2N2 calculations of Fedorov et al. that obtained 0.037 and 0.004 

respectively [131].  

 Because Rydberg orbitals could have an effect on excitation energies, additional, 

more accurate, calculations were performed using GVVPT2 with the aug-cc-pVTZ basis.  

The results of these calculations are given in Table 5, which also provides the results 

using the cc-pVDZ basis and the change in predicted excitation energies.  The relative 

energies of most of the excited states are stabilized (by an average of 0.38 eV) with the 

use of the larger basis.  However, there are some exceptions: both singlet and triplet B3u 

states are stabilized less than the ground state, as is the lowest 1B1g state. (N.B. The 

lowest triplet B1g has a very minor stabilization of 0.07 eV.)  Although there is some 

change in the predicted order of excited states between the cc-pVDZ and aug-cc-pVTZ 

results, especially in the relatively dense region between 2 and 3 eV, the order of allowed 

transitions from the ground state (i.e., to 11B2u and 11B3u) is unchanged. 

 Adiabatic excitation energies were calculated from the corresponding optimized 

geometries of each low-lying excited state.  From GVVPT2/cc-pVDZ calculations, the 

11B2u state has the lowest adiabatic excitation energy of 1.45 eV, followed by the 21Ag 

excited state.  The large differences between the vertical and adiabatic excitation energies 

are not surprising considering that the equilibrium geometries of the excited states are 

significantly different from that of the ground state.  The relaxation energies of the 

excited states relative to the vertical excitation energies from the 11Ag equilibrium 

geometry are: 11B1g is stabilized by 0.26 eV, 11B2g by 0.08 eV, 13B2g by 0.11 eV, 11B3g 

by 0.23 eV, 13B3g by 0.54 eV, 11B2u by 1.12 eV, 13B2u by 0.78 eV, 13B3u by 0.11 eV, and 
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21Ag by 3.19 eV.  The greatest change is seen for 21Ag (3.19 eV) followed by 11B2u (1.12 

eV).  The excess internal energies of all other states are below 1.0 eV.  

Table 5. Comparison of cc-pVDZ and aug-cc-pVTZ  GVVPT2 vertical excitation 
energies (eV) of low-lying excitation states of C2N4. 

State aug-cc-pVTZ cc-pVDZ difference 

13B2g 1.99 2.33 -0.34 

13B2u 2.11 2.71 -0.60 

13B3g 2.21 2.75 -0.54 

11B2u 2.30 2.57 -0.27 

11B3g 2.41 2.66 -0.25 

13B3u 2.45 2.37 +0.08 

11B2g 2.59 3.03 -0.44 

11B3u 3.14 3.07 +0.07 

21Ag 4.54 5.04 -0.50 

13B1g 5.59 5.66 -0.07 

11B1g 5.78 5.75 -0.03 

 

Vertical emission energies from all the excited state minima relative to the 11Ag 

ground state surface have been calculated.  The transitions that are both spin and dipole 

allowed are those from the 11B2u and 11B3u excited states, occurring at 1.33 eV and 2.85 

eV respectively.  The remaining transitions are: 11B1g emits with 5.50 eV, 13B1g with 4.40 

eV , 21Ag with 3.30 eV, 11B2g with 2.78 eV, 13B3u with 2.28 eV, 13B2g with 2.23 eV, 

13B2u with 1.79 eV, 11B3g with 1.55 eV, and 13B3g with 1.50 eV.  These values are 

smaller than the corresponding vertical transition absorptions by 0.25 eV for the 11B1g, 
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1.26 eV for 13B1g, 0.25 eV for 11B2g, 0.10 eV for 13B2g, 1.11 eV for 11B3g, 1.25 eV for 

13B3g, 1.24 eV for 11B2u, 0.92 eV for 13B2u, 0.22 eV for 11B3u, 0.09 eV for 13B3u, and 

1.74 eV for 21Ag.  This suggests that the ground state potential energy surface (PES) has 

a smaller low–energy domain than does those of the excited states; a similar observation 

was made for F2CN2 [2]. 

Summary 

 GVVPT2 calculations using the cc-pVDZ basis set have been used to investigate 

the equilibrium geometries, adiabatic energy differences and absorption and emission 

energies of several low-lying electronic states of [3,3’]bidiazirinylidene (C2N4).  

Additional calculations using the aug-cc-pVTZ basis were performed to assess basis 

effects on absorption energies. GVVPT2 results for the ground state of C2N4 were found 

to be similar to those of difluorodiazirine (F2CN2), which has also been investigated 

experimentally.  It was observed that the GVVPT2 method addressed all the states of 

interest without encountering mathematical or computational difficulties.  Additionally, 

MP2, MCSCF, QCISD, CCSD and CCSD(T) calculations were performed for the ground 

state, with results being qualitatively similar to GVVPT2 with the greatest differences 

occurring for the N–N bond lengths.  GVVPT2 N–N bond lengths were greater than 

those predicted by QCISD (0.016 Å), CCSD (0.017 Å), MCSCF (0.031 Å) and CCSD(T) 

(0.004 Å) and shorter than predicted by MP2 (0.008 Å), consistent with an earlier study 

of the related molecule F2CN2 [2]. As in the earlier study, particularly good agreement 

was noted between GVVPT2 and CCSD(T).  The results of these calculations show that a 

balanced treatment of nondynamic and dynamic correlation effects is important for a 

correct description C2N4.  Geometry optimization at the GVVPT2/cc-pVTZ level showed 
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trends similar to that previously observed for F2CN2: shorter N–N and C–N bond lengths 

when compared to the calculation using a smaller basis set (cc-pVDZ).  Frequency 

calculations for this molecule at the SCF, MP2 and MCSCF levels of theory are also 

similar to those obtained experimentally for F2CN2.  The NN symmetric and asymmetric 

stretching frequencies at 1470 cm-1 and 1562 cm-1 of C2N4 are similar to the NN 

stretching mode of F2CN2 with a frequency of 1650 cm-1, which is characteristic of a 

N═N double bond. The B2u and B3g symmetric and asymmetric CN stretching 

frequencies of 934.4 cm-1 and 995.5 cm-1 are similar to the B2 asymmetric CN stretching 

frequency in F2CN2 at 1091 cm-1. This similarity in their vibrational spectra supports the 

expectation that they should have electronically and geometrically similar CN2 rings.  

All the calculations of the low-lying excited states confirm the expectation, based 

on earlier studies of diazirine, of retaining the CN2 ring when excitation occurs but with 

the resulting elongation of the N–N bond length compared to that of the ground state 

geometry.  It was found that the 11B2g and 13B2g states can be described qualitatively by a 

single excitation within the ring fragments from an N–C–N banana-type bond to a π-

antibonding N–N orbital.  This electronic transition corresponds to the transition from the 

11A1 to the 11B1 and 13B1 excited states in F2CN2.  The 11B3u and 13B3u states also 

correspond to the same transition in F2CN2.   The average excitation energy to 1,3B1 in 

F2CN2 is 2.8 eV at the GVVPT2/cc-pVDZ level, whereas the average excitation energy 

of the corresponding states in C2N4 (i.e., 1,3B2g and 1,3B3u) is 2.7 eV.  Because EOM-

CCSD calculations give an average value that is somewhat larger (i.e., 4.0 eV for the 

average of 1B2g and 1B3u, further study seems warranted.  

The 11B3g and 13B3g states are both described by a one electron transition within 
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the ring fragments from a π-bonding N–N orbital to a π-antibonding N–N orbital, which 

corresponds to the transition from the ground state to the 11B2 and 13B2 excited states in 

F2CN2.  The 11B2u and 13B2u states correspond to the same transition in F2CN2, and differ 

from the 11B3g and 13B3g states of C2N4 in that the symmetric combination of antibonding 

orbitals is involved rather than the antisymmetric.  Most excited states are predicted to be 

produced with less than 1 eV of excess internal energy (i.e., difference between vertical 

and adiabatic energies) except for the 21Ag (3.19 eV) and 11B2u (1.12 eV) states, which is 

of particular interest since excitations to the latter is spin- and dipole-allowed.   

A comparison of geometric parameters, harmonic frequencies and electronic 

excitation spectrum of the 11A1g ground state of C2N4 to that of the 1A1 state of F2CN2 

suggests that C2N4 could also be synthesized and characterized.  Moreover, the low-lying 

electronic excitations of C2N4, as with F2CN2, are located in the CN2 ring moiety and lead 

to retention of the ring structure.  These common characteristics, and a computed one 

dimensional approximate dissociation path to N2 + C2N2 (barrier ≤ 130 kcal/mol; ∆E ≤ 

30.4 kcal/mol), suggest that C2N4 may be metastable with respect to its dissociation 

products C2 + 2N2.  [3,3’]bidiazirinylidene, arguably the simplest molecule with multiple 

CN2 rings, could be the prototype for new investigations of novel molecules. 
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GROUND AND LOW-LYING EXCITED ELECTRONIC STATES OF 
[3,3’]BIDIAZIRINYLIDENE (C2N4) in C2v symmetry 

Introduction 

Studies on [3,3’]bidiazirinylidene (C2N4) continued in which the restriction to D2h 

symmetry was relaxed to C2V symmetry (Figure 2, Chapter 1).  In C2v symmetry, this 

derivative of diazirine consists of two CN2 rings of potentially different bond lengths and 

angles.  It is still expected to be high-lying with respect to its dissociation products [2, 

15].  To the best of our knowledge, the ground- and low-lying excited electronic states of 

this [3,3’]bidiazirinylidene (C2N4) with this symmetry have not yet been characterized 

either experimentally or theoretically.  

The theoretical investigation of this molecule and particularly its excited 

electronic states is a vital computational challenge and, like other diazirine derivatives, 

requires high-level methods that can allow a balanced treatment of dynamical and 

nondynamical electron correlation.  A variant of multireference perturbation theory, the 

second-order generalized Van Vleck perturbation theory (GVVPT2) [1], has proved to be 

accurate in describing the ground and excited electronic states of closely related 

polyatomic molecules, like difluorodiazirine (F2CN2) [2], difluorodioxirane (CF2O2) 

[136] and a previous investigation of  [3,3’]bidiazirinylidene when only states of D2h 

symmetry were considered [134].  The GVVPT2 method has also been shown to describe 

well other particularly difficult excited state electronic structures, such as disulfur 

monoxide (S2O) [137] and the azabenzenes [138], for which balanced treatments of 

dynamical and nondynamical correlation effects is also a need.  Its results are in close 

agreement to those of coupled cluster with single and double excitations (CCSD) [72], or 

even CCSD(T) [4], when CCSD is applicable, and GVVPT2 is more widely applicable 
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than single reference CCSD.  For many problems, GVVPT2 is a reliable alternative to the 

significantly more computationally intensive multireference configuration interaction 

with single and double excitations (MRCISD) method.  

In this latter part of Chapter III, the C2v symmetry 11A1 ground state of C2N4 has 

been investigated at the GVVPT2 level of theory using the cc–pVDZ basis set [139] as 

implemented in the local electronic structure suite named as UNDMOL.  Several low-

lying excited states of C2v symmetry (21A1, 1
1A2, 1

3A2, 1
1B1, 1

3B1, 1
1B2, and 13B2) were 

also studied at the GVVPT2/cc-pVDZ level of theory.  Based on previous work for this 

molecule in D2h
 symmetry [134], and other three-membered ring compounds, low-lying 

excited states are expected to be produced by excitations located in the CN2 fragments 

with the retention of the diazirine ring moiety but leading to elongation of the C–N and/or 

N–N bond lengths.  The energies of the ground and low-lying excited states are expected 

to be equal or lower than those of C2N4 in the D2h symmetry, because of possible 

relaxation in symmetry constraints.  Further insight into the states is acquired by studying 

harmonic frequencies of the equilibrium geometries of the ground and low-lying excited 

states in C2v symmetry.  The studies of the ground-state geometry were also performed at 

other levels of theory: second-order Møller-Plesset perturbation theory (MP2); coupled 

cluster with single and double excitations (CCSD); and quadratic configuration 

interaction with single and double excitations (QCISD) [4].  These calculations were 

performed using the Gaussian 03 program [141]. CCSD(T) [4] calculations on the ground 

state and additional calculations to characterize the excited states using EOM-CCSD [50, 

142, 143] were done using GAMESS [144, 145].  
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This part of Chapter III is divided into three additional sections.  In Section 2, 

an overview of computational features, including a detailed account of an incomplete 

model space constructed using the macroconfiguration approach [96], is done.  Section 

3 presents the results of our study and a discussion that includes a comparison of 

features of C2N4 in C2v symmetry relative to that in D2h symmetry and to those of 

difluorodiazirine, for which both experimental and theoretical results are available.  A 

final section summarizes the work. 

Computational details 

All spin and space symmetry allowed configurations generated by single and 

double excitations from a HF-like reference are included in the model spaces used in 

this study.  The model space was created from excitation from the 15 highest occupied 

orbitals to the 9 lowest unoccupied valence orbitals.  From preliminary single reference 

studies of the 11A1 ground state, construction of groups of orbitals for MCSCF and 

subsequent GVVPT2 calculations were done as follows: the fifteen highest occupied 

orbitals were divided into three subgroups (G1, G2 and G3) involving eight, five and two 

orbitals, respectively.  The first subgroup G1 includes the eight lowest orbitals: G1 = 

(5a1, 6a1, 7a1, 3b2, 4b2, 8a1, 9a1, 1b1).  The second subgroup, G2, involves the next five 

valence orbitals: G2 = (10a1, 2b1, 11a1, 5b2, 6b2).  And the third subgroup, G3, involves 

the highest lying valence orbital and the lowest virtual orbital: G3= (3b1, 1a2).  The nine 

lowest virtual orbitals are also divided into two subgroups (V1 and V2) involving five 

and four orbitals, respectively: V1 = (12a1, 13a1, 2a2, 4b1, 7b2) and V2 = (14a1, 8b2, 9b2, 

10b2).  Figure 16 shows the orbitals that have proven to be qualitatively significant for 

the low-lying excited states.  On the basis of this partitioning of the high–lying 
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occupied and low–lying unoccupied orbitals, thirty five macroconfigurations describing 

single and double excitations from G1, G2 and G3 to V1 and V2 were created.   

                                                                                         

                                                                                                                                                             

        

                                           

  

Figure 16. [3,3’] bidiazirinylidene in C2v symmetry 3-D plots of orbitals of groups G2 and 
some of V1. 
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The list of macroconfigurations determining the incomplete model space used 

includes: the closed–shell macroconfiguration describing the ground state, 

 (G1)
16 (G2)

10 (G3)
2 (V1)

0 (V2)
0, 

macroconfigurations describing all single excitations from G1, G2 or G3 to V1 or V2,  

 (G1)
16 (G2)

10 (G3)
1 (V1)

1 (V2)
0,           (G1)

16 (G2)
9 (G3)

2 (V1)
0 (V2)

1, 

(G1)
16 (G2)

10 (G3)
1 (V1)

0 (V2)
1,           (G1)

16 (G2)
9 (G3)

1 (V1)
2 (V2)

0, 

(G1)
16 (G2)

9 (G3)
3 (V1)

0 (V2)
0,            (G1)

16 (G2)
9 (G3)

2 (V1)
1 (V2)

0, and 

macroconfigurations describing all double excitations from G1 ,G2 and/or G3 to V1 and/or 

V2,  

(G1)
16 (G2)

10 (G3)
0 (V1)

2 (V2)
0,         (G1)

16 (G2)
10 (G3)

0 (V1)
1 (V2)

1,          

(G1)
15 (G2)

10 (G3)
3 (V1)

0 (V2)
0,         (G1)

16 (G2)
10 (G3)

0 (V1)
0 (V2)

2,      

(G1)
15 (G2)

10 (G3)
2 (V1)

1(V2)
0,          (G1)

16 (G2)
9 (G3)

1 (V1)
1 (V2)

1,    

            (G1)
15 (G2)

10 (G3)
2 (V1)

0 (V2)
1,        (G1)

16 (G2)
9 (G3)

1 (V1)
0 (V2)

2,      

(G1)
15 (G2)

10 (G3)
1 (V1)

2 (V2)
0,        (G1)

16 (G2)
8 (G3)

4 (V1)
0 (V2)

0,          

(G1)
15 (G2)

9 (G3)
4 (V1)

0 (V2)
0,         (G1)

16 (G2)
8 (G3)

3 (V1)
1 (V2)

0,            

(G1)
15 (G2)

9 (G3)
3 (V1)

1 (V2)
0,         (G1)

16 (G2)
8 (G3)

3 (V1)
0 (V2)

1,             

(G1)
15 (G2)

9 (G3)
3 (V1)

0 (V2)
1,         (G1)

16 (G2)
8 (G3)

2 (V1)
2 (V2)

0,            

(G1)
15 (G2)

9 (G3)
2 (V1)

2 (V2)
0,         (G1)

16 (G2)
8 (G3)

2 (V1)
1 (V2)

1,             
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(G1)
15 (G2)

9 (G3)
2 (V1)

1 (V2)
1,         (G1)

16 (G2)
8 (G3)

2 (V1)
0 (V2)

2,             

(G1)
15 (G2)

9 (G3)
2 (V1)

0 (V2)
2,         (G1)

15 (G2)
10 (G3)

1 (V1)
0 (V2)

2,          

(G1)
14 (G2)

10 (G3)
4 (V1)

0 (V2)
0,       (G1)

15 (G2)
10 (G3)

1 (V1)
1 (V2)

1,          

(G1)
14 (G2)

10 (G3)
3 (V1)

1 (V2)
0,       (G1)

14 (G2)
10 (G3)

3 (V1)
0 (V2)

1,         

(G1)
14 (G2)

10 (G3)
2 (V1)

2 (V2)
0,       (G1)

14 (G2)
10 (G3)

2 (V1)
1 (V2)

1,        

(G1)
14 (G2)

10 (G3)
2 (V1)

0 (V2)
2.             

 The ground state has 1A1 symmetry and its model space is spanned by 9943 

configuration state functions (CSFs) created by 4396 configurations.  The external space 

is spanned by 1,293,102,969 CSFs (1,181,175,072 configurations) for the cc-pVDZ basis 

set.  The dimensions of the model space for excited states were as follows: for the 1A2 

and 3A2 states, their model spaces were spanned by 8161 CSFs and 12881 CSFs 

respectively (created by 3441 configurations); for the 1B1 excited state the model space 

were spanned by 3444 CSFs (created by 1426 configurations); for the 3B1 state the model 

space were spanned by 6446 CSFs (created by 1762 configurations), the model spaces for 

both 11B2 and 13B2 states were spanned by 9807 CSFs and 15299 CSFs respectively 

(created by 4315 configurations).  The external space dimension for the triplet excited 

states increased significantly (for example, 2.3 billion CSFs), but those for the singlet 

excited states remained approximately the same as that of the ground state 

(approximately 1.3 billion CSFs). The dimension of the external space of C2N4 in C2v 

symmetry is much larger than that for the D2h symmetry.  Our current GUGA-based 

GVVPT2 program [135], can perform the calculations in reasonable time; e.g., a typical 
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GVVPT2 calculation takes 27.5 minute for 1.4 billion  total CSFs and 4396 model CSFs 

on a 2.0 GHz  dual-core AMD Opteron processor 2212. 

Table 6. Comparison of optimized geometries of the ground state of C2N4 in C2v 
symmetry. 

 

                                                                  cc-pVDZ 

 

 

 

MP2 

 

MCSCF 

 

CCSD 

 

QCISD 

 

 

CCSD(T) 

 

GVVPT2 

 

RCC (Å) 

 

1.300 

 

1.297 

 

1.301 

 

1.302 

 

1.270 

 

1.297 

 

RCN(1) (Å) 

RCN(2) (Å) 

 

1.433 

 

1.422 

1.420 

 

1.429 

 

1.429 

 

1.438 

1.438 

 

1.422 

1.435 

 

RNN(1) (Å) 

RNN (2)(Å) 

 

1.290 

 

1.265 

1.253 

 

1.264 

 

1.266 

 

1.285 

1.285 

 

1.265 

1.281 

 

NCN (°) 

 

53.5 

 

52.8 

52.3 

 

52.5 

 

52.6 

 

53.1 

 

52.8 

53.0 

 

CNN (°) 

 

63.3 

 

63.6 

63.8 

 

63.7 

 

63.7 

 

63.5 

 

63.6 

63.5 
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Table 7. Comparison of optimized geometries of the ground state of C2N4 in C2v 
symmetry to that in D2h symmetry and F2CN2. 

 GVVPT2/cc-pVDZ 

C2N4 F2CN2
a 

N

N
N

N

 

C2v 

N

N N

N

 

D2h 

N

N F

F

 

C2v 

RCC (Å) 1.297 1.303 - 

RCN(1) (Å) 

RCN(2) (Å) 

1.422 

1.435 

1.433 1.421 

RNN(1) (Å) 

RNN(2) (Å) 

1.265 

1.281 

1.282 1.288 

NCN(1) (°) 

NCN(2) (°) 

52.8 

53.0 

53.1 53.9 

a Ref. [2]. 

 
Electronic and molecular structures 

GVVPT2 calculations for the ground state of [3,3’]bidiazirinylidene show that the 

leading configuration is ···· (4b2)
2(10a1)

2(11a1)
2(2b1)

2(5b2)
2(6b2)

2(3b1)
2···· with an 

amplitude of 0.851.  This amplitude is smaller than it is for the MCSCF calculation (i.e., 

leading configuration: 0.92), similar results were obtained for the excited states, 

demonstrating the effect of dynamic electron correlation on the reference configurations.  

The next most important configuration can be described as a 3b1
2 => 1a2

2 two-electron 

excitation relative to the closed shell reference.  Qualitatively the excitation is from a π-
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bonding N–N orbital to a π-antibonding orbital, having amplitude of 0.159.  Insight into 

the short C–C and N–N bonds compared to those of D2h symmetry (Table 2 in Ref. 134) 

stems from the large contribution of these configurations.  The considerable 

multiconfigurational nature of zero-order wavefunctions corroborates the expectation that 

the [3,3’]bidiazirinylidene molecule, particularly in C2v symmetry, is a difficult problem 

that requires a good method to describe dynamic and nondynamic electron correlation. 

Optimization of the geometry of the ground state of C2N4 molecule in C2v 

symmetry was performed with the model space described in Section 2 at the GVVPT2 

level of theory and at other levels of theory, MP2, CCSD, CCSD(T) and QCISD, using 

the cc-pVDZ basis set.  The optimized structural parameters for the ground state of the 

C2N4 molecule obtained at the GVVPT2 level were compared to those for the other 

methods.  Five parameters were obtained after the GVVPT2 calculations were performed 

as opposed to three parameters optimized for C2N4 at MP2, CCSD, CCSD(T) and QCISD 

levels of theory at D2h symmetry [134].  The GVVPT2 results show close agreement to 

those for CCSD, CCSD(T), QCISD, and MP2 levels of theory (Table 6).  The RCC bond 

length is about 0.004 Å and 0.005 Å shorter than those for the CCSD and QCISD 

methods respectively, 0.003 Å shorter than that for the MP2 method, and 0.027 Å  longer 

than that of CCSD(T); the RCN(1) bond length is 0.007 Å shorter than those using CCSD 

and QCISD, 0.011 Å and 0.016 Å shorter than that for the MP2  and CCSD(T) result 

respectively, but the RCN(2) bond length is 0.006 Å longer than those using CCSD and 

QCISD, and 0.002 Å longer than that for the MP2, but 0.003 Å shorter than the CCSD(T) 

result.  For the RNN(1) bond length, the GVVPT2 result is 0.001 Å, 0.025 Å  and 0.020 Å 

shorter than those for QCISD, MP2, and CCSD(T) results respectively, but it is 0.001 Å 



80 
 

longer than that for CCSD; the RNN(2) bond length is 0.017 Å and 0.015 Å longer than that 

for CCSD and QCISD respectively, but 0.009 Å and 0.004 Å shorter than that for the 

MP2 and CCSD(T) results respectively.  The NCN(1) angle predicted by GVVPT2 

differs by only 0.3° and 0.2° and the NCN(2) angle is 0.5° and 0.4° larger than that for 

the CCSD and QCISD methods, but, as shown in Table 6, the  NCN(1) angle differ by  

0.7° and 0.3° and the NCN(2) angle is  0.5° and 0.1° smaller than that of MP2 and 

CCSD(T) results respectively.  The CNN (1 and 2) angles are 0.1 and 0.2 smaller than 

those of CCSD and QCISD, and are 0.3° and 0.2° larger than that of MP2, and 0.1°  

larger than that for CCSD(T).  

Experimental results for C2N4 are not available.  To further understand the results 

of the calculations, the optimized parameters for C2N4 in this symmetry are compared to 

those of this same molecule in D2h symmetry (see Table 1 in Ref. 134), and to those of 

F2CN2 which has been investigated both experimentally and theoretically (see Table 1 in 

Ref. 2).  RCC, RCN and RNN bond lengths and the NCN angle obtained at the GVVPT2 

level using the cc-pVDZ basis sets for the C2N4 molecule in C2v symmetry are close to 

those obtained in D2h symmetry (which agree with those for F2CN2), as shown in Table 7.  

RCC, RCN(1) and RNN(1) bond lengths for C2N4 in C2v symmetry are only 0.006 Å, 0.011 Å 

and 0.017 Å shorter and the RCN(2) and RNN(2) bond lengths are 0.002 Å and 0.001 Å 

longer than those  using D2h symmetry, respectively.  The NCN(1) andNCN(2) 

angles of C2N4 in C2v are 0.3° and 0.1° smaller than that for D2h symmetry.  These results 

show that the electronic structure of the [3,3’]bidiazirinylidene molecule, when allowed 

to relax to  C2v symmetry, is very similar to the results in D2h symmetry, as expected.  
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Frequency calculations of the C2N4 molecule at the MCSCF level of theory with 

the cc-pVDZ basis for the ground and the low-lying excited states are given in Table 8.  

[3,3’]bidiazirinylidene molecule is seen to be a minimum at this level of theory.  

Table 8. Vibrational frequencies (cm-1) of the ground and low-lying excited states of 
C2N4 in the C2v at the MCSCF/cc-pVDZ levels of theory. 

 

 

In the 11A2 excited state, there are three major configurations relating this state to 

the closed-shell reference.  They can be described as a two-electron excitation 6b2 3b1 => 

1a2 2a2 with amplitude of 0.803, and two three-electron excitations 1b1 6b2 3b1 => 1a2 2a2 

4b1, and 5b2 6b2 3b1 => 1a2 2a2 7b2 having amplitudes 0.159 and 0.102 respectively 

(Figure 17).  These correspond to excitations from antisymmetric, banana-type, three-

vibration 11A1 11A2 13A2 11B1 13B1 11B2 13B2 

υ1 (B2) 

υ2 (B1) 

υ3 (B1) 

υ4 (A2) 

υ5 (B2) 

υ6 (A1) 

υ7 (B2) 

υ8(B2)  

υ9 (A1) 

υ10 (A1) 

υ11(A1)  

υ12(A1) 

228.2 

293.2 

357.4 

412.6 

509.5 

616.0 

939.6 

1006 

1150 

1477 

1611 

2117 

168.7 

279.2 

282.2 

403.1 

446.6 

575.0 

704.9 

1023 

1247 

1303 

1642 

2125 

157.0 

247.5 

314.8 

442.2 

532.0 

563.8 

803.1 

904.6 

1064 

1266 

1518 

1871 

265.8 

314.0 

365.7 

458.8 

512.1 

573.1 

790.4 

862.2 

1024 

1270 

1718 

2155 

1.42 

2.87 

318.1 

330.1 

482.4 

565.3 

623.6 

917.1 

1042 

1658 

1698 

2038 

147.1 

217.8 

293.6 

327.8 

437.1 

525.9 

606.8 

888.7 

1102 

1238 

1581 

1903 

199.0 

267.1 

316.5 

446.7 

535.8 

537.9 

747.4 

920.8 

1053 

1278 

1504 

1840 
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centered N–C–N bonding orbitals (5b2 and 6b2) and π-bonding N–N orbitals (1b1 and 

3b1) to two π-antibonding N–N orbitals (1a2 and 2a2), and one antisymmetric, banana-

type, three-centered N–C–N antibonding orbital (7b2).  The result is elongation of the 

RCC(1), RNN(1) and RNN(2) bond lengths by +0.048 Å, +0.212 Å and +0.011 Å respectively.  

The RCN(1) and RCN(2) bond lengths are shortened by 0.097 Å and 0.032 Å (Table 9).   

 The triplet state (13A2) is more highly multiconfigurational than the singlet state.  

It has five dominant configurations relating this state to the ground state.  Three of the 

excitations can be described in terms of the 6b2 3b1 => 1a2 13a1 two-electron excitation.  

They differ only with respect to their electron spins.  Their amplitudes are 0.628, 0.423 

and 0.184 for the first, second and third leading configurations.  The fourth and fifth 

leading configurations and their amplitudes are  

  5b2 6b2 3b1 => 1a2 4b1 13a1  (0.134)  

 2b1 6b2 3b1 => 1a2 2a2 13a1  (0.105),  

and can be described as three-electron excitations.  All five major configurations 

correspond to excitations from antisymmetric, banana-type, three-centered N–C–N 

bonding orbitals (5b2 and 6b2) and π-bonding N–N orbitals (2b1 and 3b1) to π-antibonding 

C–N and N–N orbitals (1a2, 2a2 and 13a1) (Figure 17).  The effect of these excitations is 

elongation of the RCC(1), RNN(1) and RNN(2) bond lengths by +0.076 Å, +0.288 Å and 

+0.023 Å respectively and shortening of the RCN(1) and RCN(2)  bond lengths by 0.078 Å 

and 0.036 Å.  These excitations also lead to a great increase in one of the N–C–N angles 

(+15° and +1.8° for angles 1 and 2 for the singlet, +17.8° and 2.5° for the angles 1 and 2 

for the triplet) with respect to the ground state (Table 9).  
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Figure 17. The leading excitations for the 11,3A2 excited states of C2N4 
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Figure 17. cont. 
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Figure 17. cont. 
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Table 9. GVVPT2/cc-pVDZ-optimized geometries of the excited states of C2N4 in C2v 
symmetry. 

  

21A2 

 

11B1 

 

13B1 

 

11B2 

 

13B2 

 

11A2 

 

13A2 

 

11A1 

 

RCC (Å) 

 

1.391 

 

1.279 

 

1.270 

 

1.414 

 

1.370 

 

1.345 

 

1.373 

 

1. 297 

 

RCN(1) (Å) 

RCN(2) (Å) 

 

1.361 

1.360 

 

1.462 

1.452 

 

1.494 

1.466 

 

1.417 

1.323 

 

1.415 

1.346 

 

1.325 

1.403 

 

1.344 

1.399 

 

1.422 

1.435 

 

RNN(1) (Å) 

RNN(2) (Å) 

1.488 

1.486 

1.317 

1.220 

1.257 

1.343 

1.296 

1.577 

1.295 

1.603 

1.477 

1.292 

1.553 

1.304 

1. 265 

1.281 

NCN(1)(°) 

NCN(2)(°) 

56.9 

56.9 

49.7 

53.6 

49.7 

54.5 

54.5 

72.4 

54.5 

73.1 

67.8 

54.9 

70.6 

55.6 

52.8 

53.1 

 

CNN(1)(°) 

CNN(2)(°) 

 

66.3 

66.2 

 

65.3 

63.2 

 

65.1 

62.8 

 

62.8 

53.8 

 

62.8 

53.5 

 

56.1 

62.6 

 

54.7 

62.2 
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Unlike the situation for the A1 and A2 states, the leading configuration of the 

singlet and triplet B1 states are the same.  Both have two leading configurations relating 

them to the ground state.  They can be described as the one-electron excitation 6b2 => 1a2 

and the three-electron excitations 6b2 3b1
2 =>1a2 2a2

2 (Figure 18).  The amplitudes of 

these leading configurations for the 11B1 state are 0.839 and 0.118 and for the 13B1 state 

are 0.842 and 0.121.  These excitations are from the antisymmetric, banana-type, three-

centered N–C–N bonding orbital (6b2) and π-bonding N–N orbital (3b1) to π-antibonding 

N–N orbitals (1a2 and 2a2).  Both 11B1 and 13B1 excitations lead to the elongation of one 

of the N–N bonds and shortening of the other N–N bond.  The C–N bonds all increased in 

length but both excitations lead to shortening of the C–C bond (Table 9). This 

observation is in agreement with experimental and theoretical results obtained for the 

electronic transition from the 11A1 to the 11B1 and 13B1 excited states of the F2CN2 
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molecule [2].  GVVPT2 calculations for C2N4 in the 13B1 state predict that the N–N bond 

length increases by +0.062 Å and the C–C bond decreases by 0.027 Å relative to the 

ground state.  This is quite similar to the corresponding changes in F2CN2: increment of 

+0.031 Å (GVVPT2/ccpVDZ), +0.038 Å (experimental) [2] in the N–N bond length.  

The result is also in agreement to that obtained for C2N4 in the D2h symmetry [134].  
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Figure 17. The leading excitations for the 1 1,3B1 excited state of C2N4. 
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 The 11B2 and 13B2 excited states of C2N4 are not as multiconfigurational as the 

other states.  Their leading configuration can be described as a 3b1 => 1a2 single 

excitation, relative to the closed-shell reference (Figure 19).  The amplitudes for these 

excitations are 0.858 for the singlet state (11B2) and 0.863 for the triplet state.  

Qualitatively, this is an excitation from a π-bonding N–N orbital (3b1) to a π-antibonding 

N–N orbital (1a2), leading to increases in both RNN bonds by +0.031 Å and +0.296 Å for 

the 11B2 state and +0.030 Å and +0.322 Å for the 13B2 state (Table 9).  Corresponding 

electronic transitions for the F2CN2 molecule are from the 11A1 to the 11B2 and 13B2 

excited states [2].  These large increases in the N–N bond length also results in a large 

increase in the N–C–N angles (+1.7° and 19.3° for the singlet, +1.7° and 20.0° for triplet) 

with respect to the ground state.  Similar results were obtained for this molecule in the 

D2h symmetry [134]. 
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Figure 18. The leading excitations for the 1 1,3B2 excited state of C2N4. 

 

The 21A1 excited state is highly multiconfigurational.  The leading configurations 

of this state are: the closed-shell reference configuration with amplitude 0.288 and three 

two-electron excitations 3b1
2

 => 1a2
2

 with amplitude 0.713, 3b1
2

 => 2a2
2 with amplitude  

0.325 and 2b1 3b1
 => 1a2 2a2 having amplitude 0.131 ( Figure 20).  This corresponds to 
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excitation from the weakly π-bonding N–N orbitals (2b1 and 3b2
1) to the π-antibonding 

N–N orbital (1a2 and 2a2).  The effect of these excitations is elongation of the RCC(1), 

RNN(1) and RNN(2) bond lengths by +0.094 Å, +0.223 Å and +0.205 Å respectively and the 

shortening of the RCN(1) and RCN(2)  bond lengths by 0.061 Å and 0.075 Å (Table 9).  
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Figure 19. The leading excitation for the 2 1A1 excited state of C2N4. 
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 The GVVPT2/cc-pVDZ level of theory was used to calculate the vertical and 

adiabatic excitation energies of C2N4.  In Figure 21, vertical and adiabatic excitation 

energies of the low-lying excited states with respect to the ground state are given.  The 

calculations show that the vertical excitation to the 13B2 triplet state has the lowest energy 

(2.54 eV).  This excitation is a spin-symmetry forbidden but dipole-allowed transition.  

The next state is the 11B2 excited state, having excitation energy of 3.01 eV.  This low-

lying excited state is a spin- and dipole-allowed transition.  This is followed by a spin-

forbidden but dipole symmetry-allowed excitation to 13B1 at energy of 3.42 eV, followed 

by a spin- and dipole-allowed transfer to 11B1, with excitation energy of 4.25 eV.  A pair 

of transitions, spin- and dipole-forbidden and spin-allowed transitions to 13A2 and 21A1, 

with excitation energy of 5.33 eV and 5.57 eV, respectively, is the next lowest 

transitions.  The state with the highest transition is predicted to be the 11A2 having an 

excitation energies of 6.04 eV. 

 Vertical excitations using EOM-CCSD//CCSD were performed for all singlet-

excited states.  The low-lying transition to the 11B1 is predicted to be at 3.97 eV and that 

to the 11B2 is at 4.26 eV of C2N4. These transitions are those characteristic of the 

diazirine ring (i.e., from the antisymmetric, banana-type, three-centered N–C–N bonding 

orbital and π-bonding N–N orbital to π-antibonding N–N orbitals).  Fedorov et al. [131] 

recently obtained a vertical excitation energy of 4.27 eV for CH2N2, which is comparable 

to that of the 11B2 state of C2N4.  Furthermore, a dipole strength of 0.080 and an oscillator 

strength of 0.0083 were computed for the 11B2 state of C2N4; these are comparable to 

those calculated by Federov et al. [131] i.e., 0.037 and 0.004, respectively for CH2N2. 
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                        vertical                                                           adiabatic 

Figure 20. Vertical and adiabatic excitation energies (eV) of low-lying excited states of 
C2N4, calculated at the GVVPT2/cc-pVDZ level of theory. 

 

 Optimized geometries were obtained for each low-lying excited state using 

GVVPT2/cc-pVDZ calculations.  Adiabatic excitation energies were calculated from the 

corresponding optimized geometries.  The state with the lowest adiabatic excitation 

energy is the 13B2 excited state having an adiabatic excitation energy of 1.17 eV, 

followed by the 21A1 state having adiabatic excitation energy of 1.70 eV.  The adiabatic 

excitation energies for the 11B2, 13B1, 11B1, 13A2, and 11A2 are shown in Table 9.  

11A2 6.04 

21A1 5.57 

11B1 4.20 

13B1 3.40      

13B2 2.54 

11A1 0.0 

11B2 3.01 

13A2 5.33 

13B2 1.17 

21A1 1.70 
11B2 1.93 

11B1 3.80 

13B1 2.36 

11A2 4.83 

13A2 4.20 
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Differences between the vertical and adiabatic excitation energies are due to substantial 

differences between the equilibrium geometries of the excited and the ground state 

geometries.  The relaxation energies of the excited states relative to the vertical excitation 

energy from the 11A1 equilibrium geometry are: 11A2 is stabilized by 1.21 eV, 13A2 by 

1.12 eV, 11B1 by 0.39 eV, 13B1 by 1.05 eV, 11B2 by 1.07 eV, 13B2 by 1.37 eV and 21A1 

by 3.87 eV.   The greatest change is seen for 21A2 (3.87 eV) followed by 13B2 (1.37 eV).   

From all the excited state minima, vertical emission energies relative to the 11A1 

ground state surface are: 11A2 emits with 4.78 eV, 13A2 with 4.14 eV, 11B1 with 3.84 eV, 

13B1 with 2.35 eV, 11B2 with 1.88 eV, 21A2 with 1.42 eV and 13B2 with 1.05 eV.  These 

values are smaller than the corresponding vertical absorption transitions by 1.26 eV for 

the 11A2, 1.19 eV for 13A2, 0.04 eV for 11B1, 1.07 eV for 13B1, 1.13 eV for 11B2, 1.48 eV 

for 13B2, and 7.00 eV for 21A1.  This suggests that, with respect to the excited states, the 

ground state potential energy surface (PES) has a narrower low-energy domain.  

The adiabatic excitation energies of the low-lying excited states of the C2N4 

molecule in C2v symmetry in relation to symmetry-related groups of this molecule in D2h 

symmetry are expected to be lower.  This is because, in C2v symmetry, the geometry can 

be relaxed and the relaxation is expected to be larger for high-energy species, such as 

excited electronic states, than for the ground state.  This expectation is met for some low-

lying excited states: 11A2 state is lower than 1B1g state by 0.797 eV; the 13A2 state is 

lower than 3B1g state by 0.830 eV; the 13B2 state is lower than 3B2u state by 0.815 eV; and 

the 21A1 state is lower than 21Ag by 0.204 eV.  But for the 11B2 state relative to the 1B2u 

state, the 11B1 state relative to 1B3u and the 13B1 state relative to the 3B3u state, this 
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lowering was not observed.  The abnormality is likely caused by the presence of multiple 

isomers on the lower symmetry surface. 

Summary 

 The equilibrium geometries and absorption and emission energy calculations of 

low-lying excited states of [3,3’]bidiazirinylidene (C2N4) in C2v symmetry, relative to the 

ground state, have been performed at the GVVPT2 level of theory using the cc-pVDZ 

basis set.  The GVVPT2 method has proven to be capable of dealing with all the states of 

interest without experiencing mathematical or computational difficulties, although C2N4 

in this symmetry is highly multiconfigurational.  GVVPT2 results are consistent with 

those of CCSD, QCISD and MP2. The seeming success of MP2, despite the substantial 

multiconfigurational nature of the zero-order wave function of this molecule in C2v 

symmetry should be thought of as a result of fortuitous cancellation of errors.  GVVPT2 

results for the ground state of [3,3’]bidiazirinylidene are similar to those in D2h symmetry 

and also to those of difluorodiazirine (F2CN2), which has been investigated 

experimentally.  Frequency calculations for this molecule at the MCSCF levels of theory 

for the ground state and all low-lying excited states show that they are at least local 

minima.  The CN2 ring is retained when excitation occurs but with resulting elongation of 

the N–N and/or C–N bond lengths compared to that of the ground state geometry.  It was 

found that the 11B2 and 13B2 states can be described by the 3b1 => 1a2 single excitation, 

which is spin allowed for the 11B2 and spin forbidden for the 13B2 transition in the ring 

moiety.  The B2 states are the only states that were found to have just one leading 

configuration, all the other states are highly multiconfigurational.  For the 11B1 and 13B1 

states the electronic transitions consist of one and three electron transitions 6b2 => 1a2 
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and 6b2 3b1
2 => 1a2 2a2

2.  The energies of the excitations were 3.80 eV (spin and dipole 

allowed) and 2.36 eV (spin-forbidden but dipole allowed) transitions.  These electronic 

excitations correspond to transitions from 11A1 to the 11B1 and 13B1 excited states in the 

F2CN2.  The results showed that C2N4 is more highly multiconfigurational in C2v 

symmetry than it is in D2h symmetry.  
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CHAPTER IV 

MULTIREFERENCE PERTURBATION THEORY STUDIES OF THE LOWEST 
SINGLET AND TRIPLET ELECTRONIC STATES OF 

TETRAMETHYLENEETHANE DIRADICAL 

Introduction 

 Diradicals are important intermediates in a number of thermal and photochemical 

reactions [147, 148].  They also provide insight into spin-spin-coupling phenomena. The 

properties of these diradicals are strongly affected by the relative energies of the low-

lying singlet and triplet states.  Specifically this determines the observed magnetic 

properties and the reactivity of the ground state of the diradical compound. 

 The relative ordering of the low–lying singlet and triplet states of diradicals is not easily 

observed experimentally or predicted theoretically, especially if their energy differences are 

small, which is the case with tetramethyleneethane, a disjoint diradical.  Tetramethyleneethane 

is thought to be the central intermediate in the dimerization of allene to form 1,2-

dimethylenecyclobutane [147] and in the thermal rearrangement of this compound [148].  The 

building block of many compounds with ferromagnetic and electrical conductivity properties is 

found to be tetramethyleneethane; [149-151] also it is observed to be incorporated into many 

ring systems [152].  The ground electronic state of tetramethyleneethane has been a subject of 

debate since Dowd (1970) [27] recorded the electron paramagnetic resonance (EPR) spectrum 

of this diradical [27, 153] and stated that its ground state is a triplet. Based on a
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Curie-Weiss plot, the observation of a straight line suggested that the ground state is a 

triplet or that the triplet and singlet states are degenerate [20].  Results obtained for 

tetramethyleneethane from early ab initio studies contradict this experimental result. 

Theoretical studies showed that the singlet state lies below the triplet state by more than 1 

kcal/mol [33, 154]. Moreover, Clifford et al. [16] in 1998 recorded the gas–phase 

negative ion photoelectron (NIPE) spectra of TME- and obtained results that contradicted 

those obtained previously from the earlier matrix isolation EPR studies.  They found that 

the energy of the singlet state of TME is 2.0 kcal/mol below that of the triplet state.  

Clifford et al. [16] suggested that Dowd’s observation was because the matrix locked the 

TME into the triplet equilibrium structure, which is a position in which the singlet is 

above the triplet state in energy.  Spin–restricted open–shell Kohn–Sham (ROKS) and 

spin–restricted ensemble–reference Kohn–Sham (REKS) methods where used by Filatov 

and Shaik [34] to study the triplet and singlet states of TME, respectively [34].  Their 

results showed that the singlet state of TME is lower in energy by about 3 kcal/mol than 

the triplet state.  The minimum geometry for the singlet state was found to have D2d 

symmetry and the triplet had D2 symmetry (torsion angle 50.1°).  Spin–orbit coupling 

matrix elements were also calculated by Filatov and Shaik between the 3B1 and 1A states 

and were found to be very small.  Pittner et al. [20] did theoretical studies on 

tetramethyleneethane using the TDCCSD and BWCCSD methods.  Their results likewise 

showed that the singlet state is lower in energy than the triplet state. 

In this chapter, the second–order generalized Van Vleck perturbation theory 

(GVVPT2) [1] variant of multireference perturbation theory is used to describe this 

diradical.  Because GVVPT2 analytical gradients have only been recently derived, and 
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production-level computer programs are not yet operational, other methods were used in 

conjunction with the GVVPT2 method for geometry optimization. Geometry 

optimizations were done at B3LYP and CASSCF(6,6) levels of theory, with the use of 

cc-pVDZ (correlation consistent polarized valence double zeta) basis sets.  The Gaussian 

03 suite of programs [141] was used to perform B3LYP and CASSCF(6,6) optimizations.  

The local suite referred to as UNDMOL was used in this study for GVVPT2 calculations. 

A concise review of the computational methods is presented in the following 

section, emphasizing features pertinent to this study.  Section 2 also describes other 

computational details, which include a description of the model space used for both the 

singlet and  triplet state, constructed using the macroconfiguration approach [96].  In 

Section 3, the results of the relative stability of the low-lying triplet and singlet states 

with respect to torsion angle are presented and discussed.   

Computational details 

The symmetry of the compound was D2 for both B3LYP and CASSCF(6,6) levels 

of theory, but the current implementation of UNDMOL only allowed the use of  C1 

symmetry for the GVVPT2 calculations.  An incomplete active space for model space 

was used in this study, including all spin and space symmetry allowed CSFs generated by 

single and double excitations from the three highest occupied orbitals to the three lowest 

unoccupied valence orbitals.  Excitations were also allowed from the 13 core orbitals.  

Initial orbitals were obtained at a specific geometry from RHF calculations. Subsequent 

initial orbitals for other geometries were obtained from MCSCF orbitals at adjacent 

geometries.  Although a CASSCF reference can be described by a single 
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macroconfiguration, it is computationally advantageous to divide it into multiple 

macroconfigurations. 

The list of macroconfigurations determining the complete model space used 

includes: the closed-shell macroconfiguration describing the ground state, 

 (n0)
6 (v0)

0 

and macroconfigurations describing  the other excitations, 

(n0)
5 (v0)

1  

(n0)
4 (v0)

2 

(n0)
3 (v0)

3 

(n0)
2 (v0)

4 

(n0)
1 (v0)

5 

(n0)
0 (v0)

6 

without any space symmetry restriction, the singlet state was spanned by 175 CSFs 

(created by 141 configurations) and the triplet state was spanned by 189 CSFs (created by 

139 configurations).  The dimensions of the corresponding external spaces of both the 

singlet and the triplet states at the cc-pVDZ level were 423,941,364 CSFs (created by 

73,396,125 configurations) and 788,956,146 CSFs (created by 73,396,125 

configurations) respectively.  Our current GUGA-based GVVPT2 program [135] can 

perform the described calculation in reasonable  time; e.g. a typical GVVPT2 calculation 
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takes 21 minutes for the singlet state (i.e., 423 million external and 175 model CSFs) on a 

2.0 GHz dual-core AMD Opteron processor 2212. 

 Geometry optimization calculations for tetramethyleneethane were done at the 

B3LYP level of theory using both the ordinary and augmented cc-pVDZ and cc-pVTZ, 

i.e., the aug-cc-pVDZ and aug-cc-pVTZ, basis sets in order to determine the most cost 

effective basis set to use for this study.  The results obtained when unaugmented basis 

sets (cc-pVDZ and cc-pVTZ) were used are not very different from those using the 

augmented counterparts (aug-cc-pVDZ and aug-cc-pVTZ).  However, the use of 

augmented basis sets results in higher computational costs (cc-pVDZ takes 2 minutes 

59.8 seconds, while the augumented cc-pVDZ takes 18 minutes 26.5 seconds and cc-

pVTZ takes 34 minutes 2.3 seconds and the augmented cc-pVTZ takes 240 minutes 11.8 

seconds ).  Specifically, the standard deviation (STDEV) is 0.0019 h (1.2 kcal/mol) 

(Table 10). Based on this observation, the less expensive basis set cc-pVDZ was used for 

all other calculations.   

Table 10. Energies in Hartree for TME at the B3LYP level of theory for the triplet and 
singlet states for different basis sets. 

Basis set ES ET ΔE 

cc-pVDZ -233.3079619 -233.3317654 0.0238035 

cc-pVTZ   -233.3877828   -233.4086412   0.0208584 

aug-cc-pVDZ   -233.3284794   -233.3484102   0.0199308 

aug-cc-pVTZ -233.3918072 -233.4112957 0.0194885 

STDEV   0.001941287 (1.2 kcal/mol) 
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To investigate the dependence of the energies of the singlet and triplet states on 

the torsion angle, optimized geometries of the compounds were obtained for different 

torsion angles at the B3LYP/cc-pVDZ (Table 11) and CASSCF(6,6)/cc-pVDZ (Table 12) 

levels of theory. At the B3LYP level of theory, for all torsion angles the triplet state was 

lower in energy than the singlet state.  The minimum point for the singlet state was 0° (Eh 

= -233.307962 h) and that for the triplet state was 45° (Eh = -233.3368629 h).  GVVPT2 

studies on B3LYP optimized geometries showed that at some torsion angles (0°-27.5° 

and 78.5°-90°) the singlet state is the lowest-lying state while at other angles (27.5°-

78.5°), the triplet state is the lowest-lying state (Figure 22).  At the GVVPT2 level of 

theory for B3LYP optimized structures, the minimum for the singlet state was 90° (Eh = -

232.5690632 h), and the minimum for the triplet state is at 45° (Eh = -232.5683043 h), 

Table 13 and Figure 23.  

The CASSCF(6,6) geometry optimization on TME showed that the singlet state is 

the lowest state at all torsion angles.  The minimum energy for the singlet state at the 

CASSCF level of theory occurs at 55° and that for the triplet state is at 50° (Figure 24).  

GVVPT2 studies on CASSCF(6,6) optimized structures gave a torsion angle of 90° as the 

minimum energy point for the singlet state and 45° as that for the triplet state (Figure 25).  

Because of the dependence of GVVPT2 single point energy results on the B3LYP and the 

CASSCF(6,6) optimized structure, and the fact that in B3LYP optimized structures at 

torsion angles of 55°, the energy difference between the singlet and the triplet state is 

about 3.95 kcal/mol with the triplet lower in energy than the singlet, GVVPT2 

optimization calculations will be done at torsion angles 30°, 60°, and 90° in the future. 
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Table 11. Energies and energy difference for B3LYP/cc-pVDZ optimized structures of 
singlet (ES) and triplet states (ET). 

Torsion 

angle/degree ES ET (ES-ET). 

0 -233.3079619 -233.3317655 0.023804 

5 -233.3078257 -233.3319662 0.024140 

10 -233.3073933 -233.3325094 0.025116 

15 -233.3066272 -233.3332777 0.026650 

20 -233.3054935 -233.3341433 0.028650 

25 -233.3039567 -233.3349902 0.031034 

30 -233.3019946 -233.3357308 0.033736 

35 -233.2996113 -233.3363058 0.036694 

40 -233.2968396 -233.3366849 0.039845 

45 -233.2937343 -233.3368626 0.043128 

50 -233.2903623 -233.3368516 0.046489 

55 -233.2868064 -233.3366843 0.049878 

60 -233.2831826 -233.3364042 0.053222 

65 -233.2796335 -233.3360646 0.056431 

70 -233.276341 -233.3357166 0.059376 

75 -233.2735013 -233.3353951 0.061894 

80 -233.2713027 -233.3351363 0.063834 

85 -233.2699044 -233.3349721 0.065068 

90 -233.2692597 -233.3349166 0.065657 
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Table 12. Energies and energy difference for CASSCF(6,6)/cc-pVDZ optimized 
structures for the singlet (ES) and the triplet states (ET). 

Torsion 

angles/degree ES ET (ES - ET) 

0 -231.8316174 -231.8256171 -0.006000 

5 -231.8316933 -231.8258087 -0.005885 

10 -231.8318919 -231.826334 -0.005558 

15 -231.8321511 -231.8270808 -0.005070 

20 -231.8324144 -231.8279284 -0.004486 

25 -231.8326457 -231.8287733 -0.003872 

30 -231.83283 -231.8295366 -0.003293 

35 -231.8329663 -231.8301644 -0.002802 

40 -231.8330607 -231.8306267 -0.002434 

45 -231.8331208 -231.8309148 -0.002206 

50 -231.833152 -231.8310392 -0.002113 

55 -231.8331585 -231.8310249 -0.002134 

60 -231.8331438 -231.830907 -0.002237 

65 -231.8331127 -231.8307248 -0.002388 

70 -231.8330712 -231.8305169 -0.002554 

75 -231.8330269 -231.8303173 -0.002710 

80 -231.8329876 -231.8301542 -0.002833 

85 -231.8329607 -231.8300479 -0.002913 

90 -231.8329512 -231.8300111 -0.002940 
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Table 13. Energies and energy difference for GVVPT2/cc-pVDZ calculations on B3LYP 
optimized structures for the singlet (ES) and the triplet states (ET). 

Torsion 

angle/degree ES ET (ES - ET) 

0 -232.5680167 -232.5633628 -0.004654 

5 -232.5680655 -232.5634323 -0.004633 

10 -232.5681042 -232.5640173 -0.004087 

15 -232.568045 -232.5648189 -0.003226 

20 -232.5678006 -232.565696 -0.002105 

25 -232.5673133 -232.5665375 -0.000776 

30 -232.5665787 -232.5672593 0.000681 

35 -232.5656286 -232.567809 0.002180 

40 -232.5645474 -232.5681586 0.003611 

45 -232.5634754 -232.5683043 0.004829 

50 -232.5624428 -232.568262 0.005819 

55 -232.5617685 -232.5680691 0.006301 

60 -232.5616113 -232.5677704 0.006159 

65 -232.5622191 -232.5674157 0.005197 

70 -232.5634892 -232.5670529 0.003564 

75 -232.5653349 -232.5667241 0.001389 

80 -232.5672307 -232.5664635 -0.000767 

85 -232.5686439 -232.5662995 -0.002344 

90 -232.5690632 -232.5662429 -0.002820 
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Table 14. Energies and energy difference for GVVPT2/cc-pVDZ calculations on 
CASSCF(6,6) optimized structures for the singlet (ES) and the triplet states (ET). 

Torsion 

angle/degree ES ET (ES – ET) 

0 -232.5687261 -232.5628669 -0.005859 

5 -232.5687741 -232.562946 -0.005828 

10 -232.5689252 -232.5635155 -0.005410 

15 -232.5690894 -232.5648189 -0.004270 

20 -232.5692172 -232.5651609 -0.004056 

25 -232.5692939 -232.5659891 -0.003305 

30 -232.5693314 -232.5667026 -0.002629 

35 -232.5693565 -232.567247 -0.002109 

40 -232.5693968 -232.5675948 -0.001802 

45 -232.5694688 -232.5677421 -0.001727 

50 -232.5695736 -232.5677059 -0.001868 

55 -232.5696998 -232.5675203 -0.002180 

60 -232.56983 -232.5672296 -0.002600 

65 -232.5699479 -232.5668827 -0.003065 

70 -232.5700433 -232.5665269 -0.003516 

75 -232.5701126 -232.5662043 -0.003908 

80 -232.5701572 -232.5659487 -0.004208 

85 -232.5701812 -232.5657851 -0.004396 

90 -232.5701888 -232.5657281 -0.004461 
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Figure 21. Plot of the partial optimization of tetramethyleneethane vs. torsion angle at 
B3LYP/cc-pVDZ level of theory. 
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Figure 22. Plot of the partial optimization of tetramethyleneethane vs. torsion angle at 
GVVPT2/cc-pVDZ level of theory on B3LYP optimized structures. 
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Figure 23. Plot of the partial optimization of tetramethyleneethane vs. torsion angle at 
CASSCF(6,6)/cc-pVDZ level of theory. 
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Figure 24. Plot of the partial optimization of tetramethyleneethane vs. torsion angle at 
GVVPT2/cc-pVDZ level of theory on CASSCF(6,6) optimized structures. 
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the ground state electronic structure was the triplet state.  The singlet TME had a 

minimum at 90° (-232.234742 Hartree) and the minimum geometry for the triplet 

state was found to be 45° (-232.238500 Hartree) (Figure 23).  GVVPT2 single point 

GVVPT2 plot on CASSCF(6,6) optimized TME low-lying singlet and 

triplet states

-232.571

-232.57

-232.569

-232.568

-232.567

-232.566

-232.565

-232.564

-232.563

-232.562

0 10 20 30 40 50 60 70 80 90 100

Torsion angles/degree

E
n

e
rg

y
/H

a
rt

re
e

Singlet State Triplet State



109 
 

energy calculation on CASSCF(6,6) optimized geometries showed that the singlet 

state energy is the ground state is always lower than the triplet (Figure 25).
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CHAPTER V 

THEORETICAL STUDY OF ARSENIC OXIDES  

Introduction 

The discharge, deposition, and control of toxic trace elements emitted during coal 

combustion are of environmental interest.  Trace elements are by definition present in 

small or very small concentrations.  Moreover, the concentrations of trace elements, and 

their speciation, vary over time.  Effective remediation of the elements is facilitated by as 

full as possible understanding of their thermodynamic stabilities and kinetic reactivities.  

Arsenic is one of the trace elements found in fly ash and hot flue gases [44, 155-157].  

The forms in which arsenic is mostly likely to occur in flue gas during coal combustion is 

elemental (As) or as oxides [155, 158]. 

The oxidation states in which arsenic is found are: -3, +3, and +5.  Arsenic 

in the +3 oxidation state and in the inorganic form is its most toxic form [157].  The 

organs which are most affected by arsenic are: the gastrointestinal tract, circulatory 

system, liver, kidney and the skin [41].  Excess arsenic in drinking water from 

underground wells causes serious outbreaks of ill health, as reported in Bangladesh 

[55].  Besides all the other effects of arsenic in the environment and health, arsenic, 

especially in the form of As2O3, has been thought to deactivate the catalyst used in 

selective catalytic reduction (SCR) units.  Deactivation of SCR will lead to poor 

catalytic performance, and increase the cost of NOx control [157, 159]. 



111 
 

The structures and oxidation states of the monoxides of arsenic have been studied 

experimentally, and to some extent, theoretically.  Anderson et al. [160] analyzed the 

emission spectra of the ground state (2Π) of AsO, and its bond length was observed to be 

1.623 Å [160].   Kushawaha et al. [161] also investigated the electronic spectrum of AsO 

and observed bands in the regions 6550 – 5800 Å and 5150 – 4140 Å.  Essig et al. [162]  

measured the infrared spectrum of AsO and accurately determined a set of molecular 

parameters e.g., frequency which was 966.6 cm-1.  Knight et al. [163] did electron spin 

resonance (ESR) studies on AsO2 molecule in neon matrix and found that As isotropic 

hyperfine interactions (Aiso) parameter was 937 MHz. Theoretical studies of some of the 

monomeric arsenic oxides have also been done [49, 163-167], but an understanding of 

the mechanisms of their formation have not been thoroughly investigated.  Direct 

experimental measurements are difficult because often their occurrences are at high 

temperatures and in complex environments.  The dimeric arsenic oxides have not been 

studied, to the best of our knowledge, either experimentally or theoretical.  

The theoretical studies of these oxides require high-level methods that will 

provide a balanced treatment of dynamic and nondynamic electron correlation.  The 

present work makes use of the GVVPT2 method, with cc-pVDZ [139] and cc-pVTZ 

[139] basis sets, to study the structures of the monomeric arsenic oxides.  Optimized 

geometries for monomeric and isomers of dimeric oxides were also obtained using the 

B3LYP/6-311G* method.  The optimized parameters for the monomeric arsenic oxides 

from both the GVVPT2/cc-pVTZ and B3LYP/6-311G* methods were compared, in order 

to validate the use of DFT for geometry optimization of plausible dimers.  At the 

optimized geometries obtained at the B3LYP level of theory, single point energy 
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calculations were done at the CR–CCSD(T) [50-52] level of theory to compute accurate 

energies of the isomers and some barriers.  Harmonic frequencies of the equilibrium and 

transition-state structures were computed to verify the type of stationary point (i.e., 

minimum or transition state) and to assist in the vibrational spectroscopy.  A local 

electronic structure software suite (i.e., UNDMOL) was used to perform GVVPT2 

calculations.  B3LYP optimization calculations were done using the Gaussian 03 program 

[141].  GAMESS US was used for the CR-CCSD(T) [52] calculations. 

There are four sections in this chapter.  Section 2 contains a detailed description 

of the reference space used for this study.  Other computational details are also included 

in that section. In Section 3, the results are presented and are discussed in relation to the 

stability of the arsenic oxides.  Finally, Section 4 summarizes the work.  

Computational details 

 The geometries of the monomeric arsenic oxides were obtained using GVVPT2 

with an energy-based optimization.  In this study, a complete active space for MCSCF 

(i.e., CASSCF) was used to obtain the orbitals for the GVVPT2 study.  The model space 

is denoted as follows, (m|n), where m is the number of orbitals and n is the number 

electrons.  In a complete active space, all possible configurations are allowed.  

  The largest pertinent molecular point group symmetry that is currently available 

in UNDMOL is C2v, which was used for studying the monomeric arsenic oxides: AsO, 

AsO2, and AsO3.  The active space was chosen such that it includes the most important 

high occupancy molecular orbitals, G1 (i.e., G1 = HOMO, HOMO-1,…..) and the low 

occupation molecular orbitals, G2 (i.e., G2 = LUMO, LUMO+1, ….).  For AsO, the set of 
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8 valence molecular orbitals (i.e., 2s and 2p orbitals of O, and the 4s and 4p orbitals of 

As) having seven electrons, were divided into two subgroups: G1 = (4b2, 5b1, 4b1, 11a1), 

and G2 = (5b2, 6b1, 13a1, 12a1).  The AsO2 molecule had 10 valence orbitals in its active 

space (i.e., the 2p of each O, and the 4s and 4p of arsenic) divided into two subgroups as 

follows: G1 = (7b2, 6b2, 4b1, 2a2, 12a1, 11a1, 10a1) and G2 = (8b2, 5b1, 13a1), with of 13 

active electrons.  And AsO3, with G1 = (8b2, 7b2, 6b2, 5b1, 4b1, 2a2, 14a1, 13a1, 12a1) and 

G2 = (9b2, 6b1, 16a1, 15a1), had 17 active electrons.  The above calculations can be 

performed by the current GUGA-based GVVPT2 program in UNDMOL [135] in a 

reasonable amount of time; as an example, 10 minutes is required to run a typical 

GVVPT2 calculation with a total of 53.4 million CSFs and 3498 model space CSFs on a 

2.0 GHZ dual-core Opteron processor 2212.  

Results and discussion 

Monomeric Arsenic oxides 

Arsenic monoxide (AsO) 

The predictions of spectroscopic constants and experimental data for the ground 

state of AsO are listed in Table 15.  As can be seen from Table 15, the cc-pVTZ basis set 

gives significantly better agreement with experimental values of spectroscopic constants, 

especially the equilibrium bond length, re, harmonic frequency, ωe, and rotational 

constant, Be, than the cc-pVDZ basis set at both theory levels (i.e., MCSCF and 

GVVPT2).  GVVPT2 improves the quality of predicted values of re and Be relative to 

experimental data as compared to MCSCF.  The GVVPT2 predicted value of the 

dissociation energy De is 109.6 kcal/mol with the (6|7) active space, in contrast to the 

84.7 kcal/mol predicted by MCSCF.  Increasing the active space to (8|7) by adding two 
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a1 orbitals did not lead to improvement of the result, but led to slightly poorer results for 

re and Be with the use of the larger basis set.  The AsO optimized structure was also 

obtained at the B3LYP/6-311G* level of theory and the parameters compared to those 

obtained at the GVVPT2(6|7)/cc-pVTZ level of theory, and found to be in close 

agreement.  The re bond length of AsO at the GVVPT2 level is smaller than that obtained 

at the B3LYP level by 0.002 Å (Table 16).   The formation of AsO from the reaction of 

As and O is predicted to be feasible at both the B3LYP and CR-CCSD(T) level of 

theories.  The calculated energies of reactions are -47.9 kcal/mol as obtained at the 

B3LYP level, and -34.2 kcal/mol and -47.5 kcal/mol at the CR-CCSD(T) level of theory 

with the use of cc-pVDZ and cc-pVTZ basis sets respectively (Table 15). 

Table 15. Some thermodynamic constants for the ground state of AsO. 

Method re(Å) ωe(cm-1)   Be(cm-1)    De (kcal/mol) 

MCSCF(6|7)/cc-pVDZ 1.661 906.3 0.4635 74.9 

MCSCF(6|7)/cc-pVTZ 1.637 956.5 0.4770 84.7 

MCSCF(8|7)/cc-pVTZ  1.640 952.1 0.4754 88.3 

GVVPT2(6|7)/cc-pVDZ 1.657 917.5 0.4655 91.1 

GVVPT2(6|7)/cc-pVTZ 1.630 982.9 0.4815 109.6 

GVVPT2(8|7)/cc-pVTZ 1.641 954.6 0.4747 107.5 

Exp.a,b 1.6236 967.08 

(965.90) 

0.48482 

(0.48552) 

 

a Ref. [168].  

b The values for the 2
1/2  and 2

3/2  states with the latter in parenthesis. 
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Table 16. Comparison of B3LYP/6-311G* structures to that of GVVPT2/cc-pVTZ. 

 Parameters B3LYP GVVPT2 

 AsO re
1
(Å)  1.632 1.630  

 AsO2 
  

re
1
(Å) 1.647 1.634  

θ (Degrees) 126.2  129.1 

     AsO3 

re
1
(Å) 1.613 1.606 

re
2
(Å) 

 
        θ (Degrees) 

1.669 
 

102.3 

1.662 
  

100.2 

 

Arsenic dioxide (AsO2) 

AsO2 was optimized at both the GVVPT2 level of theory using the cc-pVTZ basis 

set and the B3LYP DFT level of theory using the 6-311G* basis set.  The lowest doublet 

states of all four irreducible representations of C2v symmetry, i.e., 2A1, 
2A2, 

2B1, and 2B2 

states, were optimized at the GVVPT2 level of theory; only the geometry of the 2A1 state 

was obtained at the B3LYP level.  The re bond length for the two methods agree well.  

The re obtained at the GVVPT2(10|13)/cc-pVTZ is smaller than that of B3LYP/6-311G* 

by 0.013 Å and the angle θ by 2.9˚, as shown in Table 16.  These results can be compared 

with previous theoretical study by Knight et al. [163] for the 2A1 state using MP2/DZP.  

The bond length re obtained by Knight et al. [163] is shorter by 0.004 Å and 0.017 Å to 

those calculated at the GVVPT2 and B3LYP level of theories respectively (Table 17).  

Harmonic frequencies of the ground states of AsO2 were calculated at the MCSCF, 

GVVPT2 and B3LYP methods, and are shown in Table 18.  The MCSCF, GVVPT2 and 
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B3LYP results for the symmetric stretch and bend differ by a small amount in the range 

of 5 – 28 cm-1.  In contrast, the asymmetric stretching vibration (ω3) of AsO2 has a 

difference of 236.4 cm-1.  This is symptomatic of an imbalance in the number of orbitals 

of each symmetric type, as was noted by Theis et al. [169].  The formation of AsO2 from 

the reaction of AsO and O is predicted to be feasible by the MCSCF method, with a 

reaction enthalpy -54.1 kcal/mol, by the GVVPT2 method with a reaction enthalpy of -

50.7 kcal/mol (Table 20), by the B3LYP method with a reaction energy of -22.0 

kcal/mol, and also by the CR-CCSD(T) method with reaction energies of -17.9 kcal/mol 

and -26.8 kcal/mol using the cc-pVDZ and cc-pVTZ basis sets respectively (Table 29). 
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Table 17. Optimized geometries and experimental values for AsO2 and AsO3 at the 
GVVPT2/cc-pVTZ level of theory. 

Oxides Symmetry Active space   r1(Å) r2(Å)  (degree) 

AsO2 

2A1
 (7|9) 1.623  121.0 

2A1 (10|13) 1.634  129.1 

2A1
a  1.630  135 

2A2
 (7|9) 1.693  100.4 

2A2 (10|13) 1.703  104.3 

2B1
 (7|9) 1.741  102.7 

2B1 (10|13) 1.744  107.7 

2B2
 (7|9) 1.662   91.1 

2B2 (10|13) 1.687   93.7 

2B2
 b  1.682   92.3 

      

AsO3 

2A1 (7|7) 1.643 1.587 115.4 

2A1
 (12|17) 1.675 1.618 119.9 

2A2 (7|7) 1.674 1.575 109.6 

2A2
 (12|17) - - - 

2B1 (7|7) 1.596 1.738 137.5 

2B1
 (12|17) 1.616 1.726 130.1 

2B2 (7|7) 1.630 1.569 103.9 

2B2
 (12|17) 1.662 1.606 100.2 

a Optimized by MP2 with the DZP basis set, from Ref.  [163]. 
b Optimized by B3LYP with the aug-cc-pVTZ basis set, from Ref. [166]. 

 

 

 



118 
 

Table 18. Harmonic frequencies (cm-1) of  AsO2. 

Oxides Symmetry Method ω1(a1)   ω2(a1) ω3 (b2) 

AsO2 

2A1
 MCSCF 873.3 255.9 870.2 

2A1
 GVVPT2 890.7 275.5 1043.7 

2A1 B3LYP 858.1 271.9 807.3 

 

Arsenic trioxide (AsO3) 

             The optimized parameters obtained from this work on the geometry at both the 

GVVPT2/cc-pVTZ level with the (10|13) active space and B3LYP/6-311G* are 

compared in Table 16, and they are in close agreement.  Experimental results for AsO3 

are not available.  The re1 and re2 bond lengths for the B3LYP calculations are longer than 

those for the GVVPT2 calculation by 0.007 Å and the OAsO angle by 2.1°.  The 

symmetry of the ground state was predicted to be the 2B2 electronic state.   No other 

theoretical results are known for this molecule.  The formation of AsO3 from the 

oxidation of AsO and AsO2 was predicted to be feasible at both the MCSCF and 

GVVPT2 levels of theory, with the largest exothermically being the oxidation of AsO.  

The reaction energies (the energy sum of the binding energies of the products minus that 

of reactants {Table 19}) are -60.5 kcal/mol and -6.4 kcal/mol at the MCSCF level of 

theory for the oxidation of AsO and AsO2 respectively, and at the GVVPT2 level the 

energies are -65.2 kcal/mol and -14.5 kcal/mol respectively (Table 20).  Using B3LYP, 

almost the same prediction was reached.  The energies of reactions were -17.4 kcal/mol 

and 4.7 kcal/mol for the oxidation of AsO and AsO2 respectively.  At the CR-CCSD(T) 
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level of theory convergence was not attained for a single point energy calculation of the 

AsO3 molecule (Table 29).  

 

Figure 25. Arsenic trioxide (AsO3). 

 

Reaction enthalpies of the oxidation of monomeric arsenic oxides 

The binding energies for the monomeric arsenic oxides and O2 are given in Table 

19. They were used to calculate reaction enthalpies (the energy sum of the products 

minus that of reactants) and the results are recorded in Table 20.  The GVVPT2 method 

shows that the order of stability for the arsenic monoxides is as follows 

AsO < AsO2 < AsO3  

That is, the stability increases as the number of oxygen atoms bonded to the As atom 

increases. The same trend is observed for the MCSCF results, but not for B3LYP level of 

theory.  At the B3LYP level, AsO is the most stable, followed by AsO2 and least stable 

AsO3 molecule (Table 29).  AsO3 molecule did not converge at the CR-CCSD(T) level of 

theory.  
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Table 19. Total binding energies (kcal/mol) of the arsenic monoxides. 

Molecules Symmetry MCSCF GVVPT2 

O2 
3

gX   -88.2  -122.0  

AsO 2X   -84.7  -109.6  

AsO2 
2A1 -182.9  -221.3  

AsO3
 2B2 -233.4 -296.8 

 

 

Table 20. Reaction enthalpies (kcal/mol) for the oxidation of As oxides. 

Reaction MCSCF GVVPT2 

AsO( 2X  ) + ½ O2 AsO2 (
2A1) -54.1 -50.7 

AsO( 2X  ) + O2 AsO3(
2B2) -60.5 -65.2 

AsO2(
2A1) + ½ O2  AsO3(

2B2) -6.4 -14.5 

 

Dimeric Arsenic Oxides 

Computationally, it was expensive to perform calculations on the dimeric arsenic 

oxides using the multireference GVVPT2 method, since only an energy-only optimizer is 

available for production runs.  Moreover, since the optimized parameters obtained using 

the B3LYP method agree well with those obtained using the GVVPT2 method for 

monomeric arsenic oxides,  geometry optimization for the dimeric oxides was done at the 

B3LYP level of theory (using the 6-311G* basis set).  This also corroborates the 

conclusions in the recent work by Mbote et al. [170] for which compounds optimized at 



121 
 

the B3LYP level of theory followed by GVVPT2 single point calculations gave good 

descriptions of molecules.  On the optimized geometries, CR-CCSD(T) single point 

energy calculations were done using cc-pVDZ and cc-pVTZ basis sets to obtain accurate 

energies of the systems.  

 

Diarsenic trioxides (As2O3) 

On investigating the As2O3 molecule, at the B3LYP level of theory using the 6-

311G* basis set, four minima and three transition states were observed: isomers 1, 2, 3, 

and 4, and transition states: TS12, TS23, and TS34 as shown in Figure 27.  The harmonic 

frequencies, which confirm the stationary points as minima and saddle points, are shown 

in Tables 22.  Isomer 1 is a cage structure, having equal bond lengths i.e., RO1-As2, RO1-As3, 

RO4-As2, RO4-As3, RO5-As2, and RO5-As3, are 1.866 Å long.  The RO1-As2, RO4-As2, and RO5-As3, of 

isomer 2, 3, and 4, and the transition states TS12, TS23 and TS34 are shorter than that of 

isomer 1 by 0.021 Å–0.254 Å.  The RO1-As3 bond length of isomer 2 and transition state 

TS12 are longer than that of isomer 1 by 0.266 Å–0.280 Å, but those of isomer 3, 4, and 

transition states TS23 and TS34 are shorter by 0.047 Å–0.049 Å.  The RO4-As3 bond length 

for isomer 2 and transition state TS12 are longer than that of isomer 1 by 0.266 Å–0.280 

Å.  But isomers 3, 4, and transition states TS23 and TS34 do not have a RO4-As3 bond; 

there is no RO5-As2 bond for any isomer or transition state besides isomer 1.  The bond 

angles: O5As3O1, As3O1As1, and O1As2O4 of isomer 2, 3, 4, and transition states 

TS12, TS23, and TS34 are larger than that of isomer 1 by 10.4°–53.4°, as the RO4-As3 and 

RO5-As2 bonds break and the structure changes from a cage form to an open chain form 

(Table 23).    
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At the B3LYP level of theory, isomer 2 with Cs symmetry was the most stable 

with a relative energy to isomer 1 of -0.47 kcal/mol.  The next stable isomer was isomer 

1, then 3 with a relative energy of 0.19 kcal/mol, and isomer 4 was observed as the least 

stable.  The barrier height between isomer 1 and 2, i.e., TS12, is about 12.4 kcal/mol, that 

between isomer 2 and 3, i.e., TS23, is 1.2 kcal/mol and that between isomer 3 and 4, 

TS34, is 0.89 kcal/mol.  At the CR-CCSD(T) level of theory, with the use of both the cc-

pVDZ and cc-pVTZ basis sets, isomer 1, which is the cage form with C2V symmetry, 

became the most stable isomer.  The next was isomer 4 with a relative energy of 2.6 

kcal/mol and 2.0 kcal/mol for the cc-pVDZ and cc-pVTZ basis sets respectively.  Then 

isomer 3 with a relative energy of 2.8 kcal/mol and 2.2 kcal/mol for the cc-pVDZ and cc-

pVTZ basis.  The least stable isomer was found to be isomer 2 (Table 21 and Figure 28).  

Transition state TS12 at the CR-CCSD(T) level of theory had an energy barrier of about 

21.46 kcal/mol with the use of the cc-pVDZ basis and 18.17 kcal/mol with the cc-pVTZ 

basis, transition state TS23 had relative energies of 4.4 kcal/mol and 3.4 kcal/mol for the 

two basis set.  The transition state between isomer 3 and 4 with the use of both basis sets 

was less than 4 kcal/mol (Table 21).  

 

Figure 26. Diarsenic trioxide (As2O3). 
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Table 21. Relative energies of diarsenic trioxide (As2O3) isomers. 

Molecule 
Sym 

6-311G* 
cc-pVDZ              cc-pVTZ 

  
B3LYP 

CR-CCSD(T) 
 Isomer 1 C2v  0.00   0.0   0.0 

Isomer 2 Cs  -0.47 6.0 4.5 

Isomer 3 C2  0.19 2.8 2.2 

Isomer 4 Cs  0.92 2.6 2.0 

TS 12 C1  12.4 21.5 18.2 

TS 23 C1  1.2 4.4 3.4 

TS 34 C1  0.89 3.4 2.5 

 

Table 22.  Vibrational frequencies of diarsenic trioxide (As2O3) isomers and transition 
states (in cm-1) calculated using B3LYP/6-311G*. 

Frequenci

es/As2O3 

1 (C2v) 2 (Cs) 3 (C1) 4 (Cs) TS12 TS23 TS34 

1 325.8 123.0 55.4 10.9 -225.9 -72.7 -18.5 

2 329.5 139.3 67.5 79.4 164.3 69.8 56.8 

3 405.6 203.3 70.4 114.9 338.5 128.3 105.5 

4 408.0 239.2 279.5 223.2 351.0 284.6 274.1 

5 424.4 328.0 329.6 299.4 362.8 325.1 305.1 

6 587.1 464.8 429.7 491.4 466.0 504.3 465.8 

7 624.9 781.6 690.9 691.3 713.9 668.5 693.5 

8 626.5 845.8 987.7 975.5 770.2 935.5 976.4 

9 720.1 1011.1 996.0 996.2 864.5 1003.9 998.0 
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Table 23. Optimized geometries of diarsenic trioxide (As2O3) isomers and transition 
states at the B3LYP/6-311G* level of theory. 

Compound 1 2 3 4 TS12 TS23 TS34 

RO1-As2 1.866 1.700 1.819 1.845 1.738 1.770 1.841 

RO4-As2 1.866 1.700 1.619 1.617 1.738 1.642 1.616 

RO4-As3 1.866 2.146 - - 2.032 - - 

RO1-As3 1.866 2.146 1.819 1.802 2.032 1.894 1.797 

RO5-As2 1.866 - - - - - - 

RO5-As3 1.866 1.612 1.619 1.671 1.649 1.613 1.625 

O5As3O1 82.1 103.2 106.8 106.7 89.4 104.3 105.9 

As3O1 As2 81.4 96.3 134.8 129.7 86.1 113.8 130.8 

O1As2O4 82.1 95.5 106.8 103.4 91.8 101.1 104.7 
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Figure 27. Relative energies in kcal/mol of diarsenic trioxide (As2O3) isomers and 
transition states using the CR-CCSD(T) method. 

 
 

Diarsenic pentaoxide (As2O5) 

 B3LYP optimization of diarsenic pentaoxide (As2O5) (Figure 29) resulted in 

seven minima, isomer 1 with D3h symmetry, isomer 3 with C2v symmetry, isomers 2, 4, 

and 6, with Cs symmetry and isomers 5 and 7 with C1 symmetry.  The following 

transitions states were observed, TS13, between isomer 1 and 3 has Cs symmetry, TS24 

and TS35 with Cs symmetry and TS67 with C1 symmetry.  The harmonic frequencies 

which confirm the stationary points minima and saddle point are shown in Table 27.  The 

RO2-As1 and RO7-As6 bond of isomer 1 are equal and have a bond length of 1.603 Å long.  
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Isomer 2 
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∆E = 3.4 

Diarsenic trioxide: As2O3 

TS 23 
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They are shorter than those of the other isomers and transition states by 0.002 Å–0.265 Å.  

The RO3-As1 bond length of isomer 1 is longer than those in any other isomers and 

transition states by 0.003 Å–0.247 Å except for isomer 2.  The RO3-As1 bond length of 

isomer 2 is longer than that of isomer 1 by 0.047 Å.  Isomer 5 does not have a RO3-As1 

bond.  Isomers 2, 3, 4, 5, 6, and 7 and the transition states have their RO4-As1, RO5-As1, and 

RO3-As6 bond lengths shorter than that of isomer 1 by 0.003 Å–0.246 Å, except the RO4-As1, 

and RO5-As1 bonds of isomer 4 which are longer by 0.119 Å.  Isomer 4, TS13, TS35, and 

TS67 do not have a RO3-As6 bond.  Also isomers 5, 6, 7 and TS12 do not have a RO4-As1 

bond.  The RO5-As1 bond  is absent in transition states TS12, TS35, and TS67.  In looking 

at the RO4-As6 and RO5-As6 bond lengths of isomers 3, 5, and 6, and transition states TS12 

and TS35, they are shorter than that of isomer 1 by 0.036 Å–0.224 Å.  But the RO4-As6 and 

RO5-As6 bond lengths of isomers 2 and 4 and transition state TS67 are longer than that of 

isomer 1 by 0.049 Å–0.360 Å when the bond is present.  The only isomers having the 

RO7-As1 bond are isomers 2 and 4, and the bond lengths are shorter than that of isomer 1 

by 0.079 Å–0.087 Å.  The O5As1O3 bond angles of isomers 3, 5, 6, and 7 are all larger 

than that for isomer 1 by 7.8°–30.5° except that of isomer 2 which is less by 1.0°.   The 

transition states did not possess aO5As1O3 bond angle (Tables 26 and 28). 

The reference point for the As2O5 isomers and transition states was isomer 6.  It 

had the lowest energy at the B3LYP level of theory, followed by isomer 3 with a relative 

energy of 4.2 kcal/mol, then isomer 5 with a relative energy of 5.9 kcal/mol; the next 

most stable is isomer 1 with a relative energy of 7.1 kcal/mol.  Isomers 2, 4 and 7 have 

relative energies of 38.6 kcal/mol, 32.2 kcal/mol and 31.1 kcal/mol respectively.  

Transition states TS13, TS24, TS35, and TS67 have relative energies of 15.4 kcal/mol, 
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43.3 kcal/mol, 5.9 kcal/mol and 33.0 kcal/mol respectively.  CR-CCSD(T) single point 

energy calculations,  using cc-pVDZ and cc-pVTZ basis sets, were done on the B3LYP 

optimized structures, and the following result were obtained.  Isomer 1 became the most 

stable with a relative energy of -12.0 kcal/mol and -19.1 kcal/mol respectively; the next 

most stable isomer was isomer 3 with a relative energy of -5.7 kcal/mol and -14.1 

kcal/mol, then isomers 5, 2, 4, and 7 with relative energies as follows: isomer 5, -0.54 

kcal/mol and -8.1 kcal/mol, isomer 2, 9.0 kcal/mol and 9.1 kcal/mol, isomer 4, 25.2 

kcal/mol and 26.8 kcal/mol and isomer 7, 36.4 kcal/mol and 38.8 kcal/mol respectively.  

The relative energies of the transition states are as follows: TS13, 3.3 kcal/mol and -3.5 

kcal/mol; TS35, -0.27 kcal/mol and -7.7 kcal/mol; TS24, 41.9 kcal/mol and 41.5 

kcal/mol; and TS67, 38.6 kcal/mol and 40.6 kcal/mol respectively (Table 24).  

 The presence of multiple energetically close structures and the existence of low 

barriers between the minima for both diarsenic trioxide (As2O3) (e.g., isomers 3 and 4, 

with relative energies of 2.8 kcal/mol and 2.6 kcal/mol respectively and barrier height of 

3.4 kcal/mol), and diarsenic pentaoxide (As2O5) (e.g., isomers 3 and 5, with relative 

energies of -5.7 kcal/mol and -0.54 kcal/mol respectively and having barrier height of -

0.27 kcal/mol) suggests that mechanistic studies of these species should take into account 

their isomerizations.  This is particularly important to consider when studies with 

elevated temperatures are performed, as e.g., would be relevant for some coal flue gas 

studies. 

Reaction energies of dimeric arsenic oxides 

The B3LYP energies were used to calculate the reaction energies of the oxidation 

of As and the monomeric arsenic oxides to produce dimeric arsenic oxides.  The reaction 
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of the monomeric arsenic oxides to produce the dimeric oxides was also examined and 

predictions of the most stable oxide and plausible reactions were made.  The obtained 

results are given in Table 29, and suggest that the formation of both As2O3 and As2O5 are 

favored from the monomeric oxides, but As2O3 (heat of reaction, -78.8 kcal/mol) tends to 

be slightly more stable than As2O5 (heat of reaction, -58.9 kcal/mol).  At the CR-

CCSD(T) level of theory, convergence for some of the monomeric oxides was not 

attained, so that we were unable to use this method to predict the stability of dimeric 

oxides. 

 

 

Figure 28. Diarsenic pentaoxide (As2O5). 
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Table 24. Relative energies of diarsenic pentaoxide (As2O5) optimized structures. 

 

 

 

 

 

 

 

Molecule Sym 6-311G* cc-pVDZ 

 

      cc-pVTZ 

 

  B3LYP CR-CCSD(T) 

Isomer 1 D3h 7.1 -12.0 -19.1 

TS 13 Cs 15.4 3.3 -3.5 

Isomer 3 C2v 4.2 -5.7 -14.1 

Isomer 4 Cs 32.2 25.2 26.8 

TS 24 Cs 43.3 41.9 41.5 

Isomer 2 Cs 38.6 9.0 9.1 

Isomer 6 Cs 0.0 0.0 0.0 

TS 67 C1 33.0 38.6 40.6 

Isomer 7 C1 31.1 36.4 38.8 

TS 53 Cs 5.9 -0.3 -7.7 

Isomer 5 C1 5.9 -0.5 -8.1 
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Table 25. Vibrational frequencies of diarsenic pentaoxide (As2O5) compounds obtained at 
the B3LYP/6-311G* level of theory. 

Frequencies/

As2O5 

1 (D3h) 3 (Cs) 4 (C2v) 5 (Cs) 6(C1) 8 (Cs) 11 

1 174.1 33.5 80.2 67.2 28.5 197.3 39.4 

2 174.1 168.9 96.5 70.1 40.7 199.9 72.5 

3 175.4 172.1 189.0 154.4 76.3 234.5 111.0 

4 175.4 299.1 193.2 175.0 201.8 330.2 167.8 

5 345.0 369.3 223.8 202.4 223.1 340.9 200.7 

6 345.0 380.2 242.2 252.1 228.5 383.7 238.5 

7 399.5 442.6 321.5 310.8 288.9 416.7 247.9 

8 441.0 443.3 331.1 321.3 309.8 447.9 306.6 

9 441.0 525.8 349.1 400.8 336.5 538.9 387.7 

10 532.6 589.0 479.2 574.5 549.6 577.5 534.8 

11 673.4 623.9 810.4 623.9 716.0 632.2 626.0 

12 673.4 670.7 818.3 808.6 909.6 657.0 852.5 

13 728.6 672.0 919.1 840.1 928.5 714.0 899.1 

14 1004.0 747.9 1025.4 899.2 1038.1 846.4 1015.4 

15 1025.2 862.6 1042.5 1036.6 1049.5 1014.9 1022.7 
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Table 26. Optimized geometries of diarsenic pentaoxide (As2O5) isomers at the 
B3LYP/6-311G* level of theory. 

Isomers 1 3 4 5 6 8 11 

RO2-As1 1.603 1.757 1.611 1.765 1.611 1.868 1.630 

RO3-As1 1.852 1.899 1.611 3.608 1.822 1.849 1.795 

RO5-As1 1.852 1.812 2.071 1.677 1.611 1.849 1.612 

RO3-As6 1.852 1.818 3.647 1.604 1.771 1.816 - 

RO4-As6 1.852 1.901 1.693 2.212 1.623 1.836 1.912 

RO7-As6 1.603 - 1.604 - 1.609 1.606 1.611 

RO7-As1 - 1.777 - 1.765 - - - 

O5As6O3 - 82.0 - 103.3 - 83.6 - 

O5As1O3 83.6 82.2 105.8 - 110.6 91.3 114.0 

As1O4 As6 79.4 80.8 93.9 92.8 - - - 

O4As6O7 129.7 - 93.9 - 139.5 119.8 99.6 

O4As1O7 - 112.2 - 123.6 - - - 

O2As1O4 As6 - 145.2 102.7 144.7 - - - 

O2As1O3 As6 - - - - 95.4 61.0 -10.2 
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Table 27. Vibrational frequencies of diarsenic pentaoxide  (As2O5) transition states 
obtained at the B3LYP/6-311G* level of theory. 

Frequencies/As2O5 TS 13 TS 35 TS 24 TS 67 

1 -162.6 -188.1 -29.0 -106.5 

2 105.5 114.5 52.2 100.9 

3 160.1 137.6 88.8 126.1 

4 193.6 140.3 200.0 166.7 

5 237.7 319.2 222.3 189.6 

6 317.7 345.5 229.6 206.7 

7 368.5 372.9 289.6 261.0 

8 369.7 397.9 312.5 322.4 

9 401.4 429.2 341.3 373.4 

10 476.4 587.4 563.1 431.1 

11 751.1 626.3 707.6 658.5 

12 754.9 756.4 904.2 813.6 

13 841.3 767.4 927.0 867.5 

14 1019.9 878.2 1035.2 1004.1 

15 1033.6 884.1 1048.8 1018.2 
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Table 28. Optimize geometries of diarsenic pentaoxide (As2O5) transition states at the 
B3LYP/6-311G* level of theory. 

Transition states TS 13 TS 35 TS 24 TS 67 

RO2-As1 1.605 1.756 1.610 1.657 

RO3-As1 1.664 - 1.610 1.764 

RO3-As6 - 1.670 - - 

RO4-As1 - 1.723 1.836 1.611 

RO5-As1 - 1.723 - - 

RO5-As6 1.732 - 1.628 2.027 

RO4-As6 1.732 - 1.765 - 

RO7-As6 1.601 - 1.608 1.610 

RO7-As1 - 1.767 - - 

As1As6O3 - 65.9 - - 

O2As1O3 141.0 - 138.8 107.1 

As1O4 As6 - - 111.8 - 

O5As6O7 132.2 - 139.6 101.1 

O4As1O7 - 119.3 - - 

O2As1As6 O4 66.1 114.4 - - 
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Table 29. Arsenic oxides:  reaction energies (kcal/mol). 

Reaction  B3LYP 
CR-CCSD(T) 

cc-pVDZ                cc-pVTZ 

As (X 4S) + 
2

1
O2 (X 3-) → AsO (X 2Π)  -47.9 -34.2 -47.5 

AsO (X 2Π) + 
2

1
O2 (X 3-) → AsO2 (X 2A1)  -22.0 -17.9 -26.8 

AsO (X 2Π) +  O2 (X 3-) → AsO3 (X 2B2)  -17.4 - - 

AsO2 (X 2A1) + 
2

1
 O2 (X 3-) → AsO3 (X 2B2)  4.7 - - 

AsO (X 2Π) + AsO2 (X 2A1) → As2O3 (X 1A')  -78.8 - - 

AsO2 (X 2A1) + AsO3 (X 2B2) → As2O5 (X 1A1')  -58.9 - - 

As2O3 (X 1A') + O2 (X 3-) → As2O5 (X 1A1')  2.5 - - 
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Figure 29. Relative energies of diarsenic pentaoxide (As2O5) compounds and transition 
states. 

 

Summary 

Spectroscopic constants predicted for AsO by GVVPT2/cc-pVTZ are in good 

agreement with those obtained experimentally.  The equilibrium geometries for the 

electronic ground states for AsO2 and AsO3 were located.  The corresponding 

dissociation limits, and the binding energies of the monomeric oxides, were calculated.  

The monomeric trioxide was predicted as the most stable monomeric oxide from 
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GVVPT2 studies with reaction enthalpy of -65.2 kcal/mol obtained from the oxidation of 

AsO.  The dimeric oxides, As2O3 and As2O5 are favored over the monomeric arsenic 

oxides (i.e., the reaction energies are -78.8 kcal/mol for As2O3 and -58.9 for As2O5 at the 

B3LYP level of theory), with As2O3 predicted to be the most stable form, but by a small 

amount.  The most stable As2O3 structure predicted from the CR-CCSD(T) studies with 

both the use of cc-pVDZ and cc-pVTZ basis was isomer 1, i.e., the cage form.  The 

relative energies of all the other isomers were higher.  The relative energies for isomer 2 

were higher than that of isomer 1 by 6.0 kcal/mol and 4.5 kcal/mol when calculated with 

the cc-pvDZ and cc-pVTZ basis sets, that for isomer 3 were 2.8 kcal/mol and 2.2 

kcal/mol higher and those for isomer 4 were 2.6 kcal/mol and 2.0 kcal/mol higher also. 

The predicted barrier height between isomer 1 and 2 is 21.5 kcal/mol and 18.2 kcal/mol 

with the use of cc-pVDZ and cc-pVTZ basis sets respectively.  The barrier heights for 

isomers 2 and 3, and 3 and 4, were less than 5 kcal/mol.  For diarsenic pentaoxide 

(As2O5), isomer 1 was predicted to be the most stable, having the lowest relative energies 

(-12.0 kcal/mol and -19.1 kcal/mol) with respect to reference isomer 6 using both the cc-

pVDZ and cc-pVTZ basis sets.  The predicted barrier height between isomers 1 and 3 is 

3.7 kcal/mol and 2.5 kcal/mol for the two basis sets.  These energy barriers can easily be 

surmounted, and partially so when these reactions occur at high temperatures.  Thus the 

possibility of multiple reactions and reaction pathways are predicted. 
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CHAPTER VI 

THEORETICAL STUDY OF SELENIUM OXIDES  

Introduction 

The collection, processing, and combustion of coal for the production of 

electricity are some of the largest means by which trace elements, including selenium, are 

released into the environment [41].  This has led to an increasing interest in the 

thermodynamic stabilities and kinetic reactivities of compounds, and especially oxides, of 

the emitted trace elements.  In turn, such information can give insight into strategies to 

mitigate a particular trace element’s effects on the environment, including human health.  

In particular, one desires as complete as possible understanding of the chemical forms, 

structures, and oxidation states of the trace element [54, 55, 171].  Selenium is one of the 

trace elements that is released in greatest abundance with flue gases during coal 

combustion because of its relatively high volatility compared to other trace elements [62, 

172, 173].  Selenium is known to have the following oxidation numbers: -2, 0, +2, +4, 

and +6; [41, 62] and consequently supports a wide variety of bonding environments.  

Although selenium is an essential trace element, because it protects the cell membrane 

and can act as an antioxidant [55], high concentrations of selenium are known to be 

harmful.  However, the margin between the essential quantity and the toxic is small for 

selenium [41, 55, 174].  Since the toxicity of selenium depends on its form and 

concentration, there is particular need to fully understand the species, oxidation states,
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and relative abundances in which selenium exists in the environment.  Selenium is 

released into the atmosphere as Se, SeO, and SeO2 [41, 44, 60, 62].  The selenium oxides, 

SeO [175-177], SeO2 [64, 178-180], and SeO3 [63, 181, 182]  have been studied 

experimentally, but theoretical studies are limited [49, 164, 183].  From consideration of 

sulfur chemistry, it can be expected that polymeric forms of the most abundant oxides 

exist and may be relevant in understanding the environmental chemistry [184-186].  

However, to the best of our knowledge, little is known, either experimentally or 

theoretically, about the dimeric selenium oxides. 

 High-level theoretical methods that provide a balanced treatment of both dynamic 

and nondynamic electron correlation are expected to be needed for the characterization of 

especially the dimeric oxides.  Because so little was known about the possible isomers of 

relevance to this study, a variety of electronic structure methods were used, with 

GVVPT2 used as appropriate. For both the monomeric and dimeric selenium oxides, 

optimized geometries (i.e., minima and transition states) were obtained at the B3LYP/6-

311G* DFT level of theory [6, 7].  At these equilibrium geometries, CR-CCSD(T) 

calculations [50-53] with the use of cc-pVDZ and cc-pVTZ basis were performed to 

obtain accurate energies.  Geometry optimizations were also performed on the 

monomeric oxides using GVVPT2 and compared with the B3LYP results.  On the 

B3LYP optimized geometries, GVVPT2 calculations were done and the results compared 

to those obtained at the CR-CCSD(T) level of theory.  Using GVVPT2 as the second step 

in a composite calculation was recently successfully used by Mbote et al. [170].  The 

optimized structures of both the isomers and the transition states of dimeric oxides had: 

C2, C2v, Cs, or only C1 symmetry.  For the prediction of the vibrational spectroscopy and 
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to confirm the curvature of the potential energy surfaces at the stationary points, 

harmonic frequency calculations were performed. A local electronic structure software 

suite (i.e., UNDMOL) was used to perform GVVPT2 calculations.  Gaussian 03 [141] 

was used for B3LYP optimization, and GAMESS US [144, 145]  was used for the CR-

CCSD(T) studies. 

 There are four sections in this chapter.  Section 2 is composed of a review of the 

GVVPT2 method and also a detailed description of the reference spaces used for this 

work.  In Section 3, the results are presented and discussed.  Finally, Section 4 provides a 

summary. 

Computational details 

 The model spaces used for the GVVPT2 calculations in this study were of the 

MCSCF complete active space variety.  The model space was denoted as follows, (m|n), 

where m is the number of orbitals and n is the number of electrons.  In a complete active 

space calculation, all possible configurations are allowed. 

The monomeric selenium oxides, SeO, and SeO2, were studied using C2v 

symmetry, while SeO3 was studied in C2v and D3h symmetry.   The active spaces used 

consisted of the most important highest occupied molecular orbitals, G1 (i.e., G1 = 

{HOMO, HOMO-1, ……}) and the low-lying unoccupied molecular orbitals, G2 (i.e., G2 

= {LUMO, LUMO+1…..}).  Initial active spaces were derived from a simple valence 

picture, but needed to be expanded.  For SeO, the set of 6 valence molecular orbitals (i.e., 

2p orbitals of O, and the 4p orbitals of Se) having 8 electrons, were divided into two 

subgroups:  G1 = (5b2 4b2 5b1 4b1 11a1), and G2 = (12a1).  The SeO2 molecule had in its 
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active space 10 valence orbitals (i.e., the 2p of each O, and 4s and 4p of selenium), which 

were divided in two subgroups as follows: G1 = (7b2 6b2 4b1 2a2 12a1 11a1 10a1), and G2 

= (8b2 5b1 13a1), and 14 active electrons were distributed.  For SeO3, 13 active orbitals 

(i.e., the 2p of each O, and the 4s and 4p of Se) containing 18 electrons, were divided in 

two subgroups: G1 = (8b2 7b2 6b2 5b1 4b1 2a2 14a1 13a1 12a1) and G2 = (9b2 6b1 16a1 

15a1).  The described calculations can be performed by the current GUGA-based 

GVVPT2 program in UNDMOL [135] in reasonable times; as an example, 2 min 16 sec 

is required to run a typical GVVPT2 calculation with a total of 21.2 million CSF’s and 

504 model space CSF on a 2.0 GHZ dual-core Opteron processor 2212. 

Results and discussion  

Monomeric selenium oxides 

Selenium monoxide (SeO) 

Molecular parameters and the spectroscopic constants calculated for SeO, which 

has a ground state symmetry of 3A2, using the MCSCF and GVVPT2 method and the cc-

pVDZ and cc-pVTZ basis sets and experimental data for the ground state are shown in 

Table 30.  The cc-pVTZ gave results in closer agreement with experiment (e.g., the bond 

lengths re for MCSCF results are greater than the experimental by +0.019 Å and that of 

the GVVPT2 are less, by -0.010 Å), than did the cc-pVDZ basis (i.e., the MCSCF and the 

GVVPT2 results are greater than experimental by +0.051 Å and +0.022 Å, respectively, 

for the equilibrium bond length re), harmonic frequency ωe, and rotational constant Be at 

both levels of theory.  GVVPT2 results are most significantly improved over MCSCF 

relative to the experimental results for re and Be.  The predicted value for the dissociation 

energy De, by the GVVPT2/cc-pVTZ method with the (6|8) model space is 104.3 
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kcal/mol as opposed to 70.0 kcal/mol for MCSCF.  The re obtained at the B3LYP/6-

311G* level of theory is longer than that at the GVVPT2/cc-pVTZ level of theory by 

0.025 Å (Table 32), and is similar to the MCSCF result.  

Table 30. Some thermodynamic constants for the ground state (3A2) of SeO. 

Method re 

(Å) 

ωe 

(cm-1) 

De 

(kcal/mol) 

MCSCF(6|8)/cc-pVDZ 1.699 803.9 62.5 

MCSCF(6|8)/cc-pVTZ 1.667 855.3 70.0 

GVVPT2(6|8)/cc-pVDZ 1.670 878.6 87.9 

GVVPT2(6|8)/cc-pVTZ 1.638 947.7 104.3 

Exp.a,b 1.648 

(1.633) 

914.69 (915.43)  

a Ref. [175, 176].  

b The values for the 3
1 0X 

 , and 3
2 1X   states with the latter in parenthesis. 

 

Selenium dioxide (SeO2) 

 Since GVVPT2/cc-pVTZ gave results which agreed with experimental ones 

noticeably better than cc-pVDZ did for SeO, only the cc-pVTZ basis set was used for 

SeO2 geometry optimization.  The molecular symmetry was C2v and the ground state 

wave function had 1A1 symmetry.  The r1 (O—Se) bond length and the OSeO bond 

angle agree well, probably fortuitously, with those of experiment (Table 31). The 

differences in r1 bond length for the GVVPT2/cc-pVTZ method using the following 

model spaces (7|10), and (10|14) to that of experiment are about 0.001 Å and 0.004 Å, 
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respectively, and are both within the experimental error bar.  The B3LYP/6-311G* 

results (cf. Table 32) agree with those of GVVPT2/cc-pVTZ using the (10|14) model 

space by approximately 0.01 Å.  The MCSCF, GVVPT2 and CR-CCSD(T) methods 

predicted that the formation of SeO2 from oxidation of SeO is favorable, having reaction 

energies of -73.3 kcal/mol, -63.1 kcal/mol and -31.1 kcal/mol respectively (Table 36 and 

43).  The MCSCF, GVVPT2 and B3LYP predicted harmonic frequencies for SeO2 are in 

good agreement with experimental values for the vibrations of the ground state (Table 

34). 

Table 31. Optimized geometries and experimental values for selenium dioxide (SeO2) at 
the GVVPT2/cc-pVTZ level of theory. 

Oxides Symmetry Active space   r1(Å) r2(Å)  (degree) 

 1A1
 (7|10) 1.608    - 113.2 

1A1 (10|14) 1.612    - 115.2 

1A1 (exp.)a      1.607±0.006      - 113.50±0.05 

a From Ref.  [64]. 
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Table 32. Comparison of B3LYP/6-311G* structures to that of GVVPT2/cc-pVTZ of 
monomeric selenium oxides. 

 Parameters B3LYP GVVPT2 

 SeO r1(Å)  1.663 1.638  

 SeO
2
 

  

r1(Å) 1.622 1.612 

θ (Degrees) 115.1  115.2 

     SeO3 

r
1
(Å) 1.6135 1.598 

r
2
(Å) 

 
        θ (Degrees) 

1.6134 
 

120.1 

1.608 
  

120.6 

 

 

Table 33. Harmonic frequencies (cm-1) of selenium dioxide (SeO2). 

Oxides Symmetry Method ω1(a1)   ω2(a1) ω3 (b2) 

SeO2 

1A1
 MCSCF 931.3 373.2 993.9 

1A1 GVVPT2 959.6 378.2 985.9 

1A1
 B3LYP 924.6 358.3 965.4 

Exp.  920.0a 364.0a 968a 

a From Ref. [180]. 

 

Selenium trioxide (SeO3) 

The predicted Se—O bond lengths for SeO3 (Figure 31), 1.598 Å in D3h 

symmetry, are shorter than the experimental value of r1, 1.6878 Å [63] (Table 33).  By 

relaxing one bond length and optimizing the molecular geometry in C2v symmetry, the 
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obtained bond length was found to be close to the optimized one for the 1A1′ electronic 

state to within 0.01 Å.  Optimization at the B3LYP/6-311G* level of theory gave bond 

lengths which are in good agreement with GVVPT2/cc-pVTZ results, for both r1 and r2 

bond lengths; they differ by 0.016 Å and 0.005 Å respectively.  The OSeO bond angle 

is less than that of GVVPT2 by -0.5°.  The B3LYP/6-311G* bond lengths are shorter by -

0.0743 Å than those obtained experimentally; they are shown in Table 32 and 33.  

Because of the close agreement of theoretical values and the disagreement with 

experiment, further calculations and experimental studies are needed to establish 

definitely the equilibrium geometry of monomeric SeO3.  The MCSCF, GVVPT2 and 

CR-CCSD(T) methods predicts that the formation of SeO3 from the oxidation of SeO is 

favorable having reaction energies of -64.4 kcal/mol and -67.1 kcal/mol and -20.5 

kcal/mol respectively.  But the formation of SeO3 from the oxidation of SeO2 oxide is not 

favorable, based on predicting by the MCSCF and CR-CCSD(T) methods, having 

energies of reaction of +8.7 kcal/mol and +10.6 kcal/mol. The GVVPT2 method predicts 

this reaction energy to be very slightly exothermic, -4.0 kcal/mol (Table 36 and 43). 

 

 

Figure 30. Selenium trioxide (SeO3). 

    re 

    θ 
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Table 34. Optimized geometries at GVVPT2/cc-pVTZ level of theory and experimental 
values for selenium trioxide (SeO3). 

Oxides Symmetry Active space   r1(Å) r2(Å)  (degree) 

SeO3 

1A1 (C2v) (7|8) 1.586 1.557 121.3 

1A1 (C2v)
 (12|18) 1.574 1.608 120.6 

1A1′ (D3h)
 (12|18) 1.598   

exp. (D3h)
  1.6878±0.0002 a 

    1.69±0.01 b 

 

a The experimental value is for r0, from Ref. [63].  
b From Ref. [181].  
 

Reaction enthalpies for the oxidation of monoxides and dioxides of selenium 

The binding energies of the selenium oxides and O2 are shown in Table 35.  These 

results were used to calculate the reaction enthalpies given in Table 36.  The order of 

stability predicted by the GVVPT2 method is as follows: 

SeO3
~
 SeO2 > SeO 

I.e., SeO3 was found to be more stable or having almost the same stability as SeO2, and 

the least stable is seen to be SeO.  
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Table 35. Total binding energies (kcal/mol) of the monomeric selenium oxides. 

Molecules Symmetry MCSCF GVVPT2 

O2 
3

gX   -88.2  -122.0  

SeO 3X   -70.0  -104.3  

SeO2 
1A1 -187.2  -228.4 

SeO3
 1A1′ -222.6 -293.4 

 

 

Table 36. Reaction enthalpies (kcal/mol) for the oxidation of monomeric selenium 
oxides. 

Reaction MCSCF GVVPT2 

SeO( 3X  ) + ½ O2SeO2 (
1A1) -73.1 -63.1 

SeO( 3X  ) + O2SeO3(
1A1) -64.4 -67.1 

SeO2(
1A1) + ½ O2SeO3(

1A1) 8.7 -4.0 

 

 

 

Dimeric Selenium Oxide 

Based on the results for the monomeric selenium oxides, studies on dimeric 

oxides were done using the B3LYP variant of DFT with the 6-311G* basis set and CR-

CCSD(T) with the use of cc-pVDZ and cc-pVTZ basis sets.  B3LYP was used to 

optimize geometries.  At the B3LYP optimized geometries, CR-CCSD(T) calculations 

were performed to obtain accurate energies.  
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Diselenium trioxide (Se2O3) 

 In the study of the diselenium trioxide (Se2O3) molecule (Figure 32), three 

minima were observed: isomers 1, 2, and 3, and two transition states: TS13 and TS23 

(Figures 34 and Table 37); no cage structures were observed.  The RO4-Se2 and RO5-Se3 

bonds of Se2O3 isomers and transition states are longer than the re bond length of SeO2 

(i.e., 0.005 Å – 0.023 Å longer) and SeO3 (0.009 Å – 0.045 Å longer) obtained at the 

B3LYP level of theory, but shorter than that of SeO (0.005 Å – 0.036 Å shorter).  The 

RO1-Se2 and RO1-Se3 bond lengths are all longer than the re bond length of SeO, SeO2 and 

SeO3, (i.e., from 0.293 Å – 1.117 Å longer), but the RO1-Se3 bond of TS13, is shorter by 

0.007 Å to that of SeO.  The O5Se3O1 and O1Se2O4 angles of Se2O3 are smaller than 

those of SeO2 and SeO3, except for the O1Se2O4 angle of TS13 which is 36.8° larger 

than that of SeO2 and 30.8° larger than that of SeO3 (Table 32 and 38).   

The harmonic frequencies for Se2O3 (i.e., the modes dominated by Se2—O4 and 

Se3—O5 stretching, and O4—Se2—O1 and O5—Se3—O1 wagging frequencies), agree well 

with those of SeO2.  The frequencies of these isomers and their transition states, 

calculated at the B3LYP/6-311G* level, are shown in Table 39.  Since the bond lengths 

and bond angles of the different structures are similar, (e.g., the RO4-Se2 and RO5-Se3 bond 

lengths of all the different structures differ by 0.005 Å and the O5Se3O1 angles by 7.0°) 

the possibility of isomerization was further examined using energy differences. 

  At the B3LYP level of theory, diselenium trioxide isomer 1, with C2 symmetry, 

was the most stable, followed by isomer 3, having Cs symmetry and relative energy of 

2.74 kcal/mol to isomer 1; the least stable was found to be isomer 2 with Cs symmetry, 

having a relative energy of 9.09 kcal/mol to isomer 1.  However, at the CR-CCSD(T) 
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level of theory, with the use of the cc-pVDZ basis set, diselenium trioxide isomer 2 is the 

most stable having a relative energy of -2.31 kcal/mol to isomer 1, followed by isomer 1, 

and the least stable is isomer 3 with a relative energy of 2.22 kcal/mol to isomer 1.  But 

with the cc-pVTZ basis, there is some rearrangement in the stabilities; diselenium 

trioxide isomer 1 is again predicted to be the most stable, and then, almost isoenergic, to 

isomer 2 having a relative energy to isomer 1 of 0.89 kcal/mol; isomer 3 was found to be 

the least stable with relative energy of 1.94 kcal/mol.  The barrier height between isomer 

1 and 3, TS13, and that between isomer 2 and 3, TS23, at the B3LYP level are 29.95 

kcal/mol and 18.02 kcal/mol respectively.  The barrier heights decreased with the use of 

the CR-CCSD(T) method.  With the cc-pVDZ basis, the barrier heights were 26.19 

kcal/mol and 7.17 kcal/mol and when the cc-pVTZ basis was used the barrier heights 

increased slightly to 28.75 kcal/mol and 12.28 kcal/mol (Table 37).  

 

Figure 31. Diselenium trioxide (Se2O3). 

   RO5-Se3  

    RO4-Se2 
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Table 37. Relative energies of diselenium trioxides (Se2O3) isomers in kcal/mol. 

 
Sym 6-311G* cc-pVDZ cc-pVTZ 

Molecule 
 

B3LYP CR-CCSD(T) 

isomer 2 Cs 9.09 -2.13 0.89 

TS 23 C1 18.02 7.17 12.28 

isomer 3 Cs 2.74 2.22 1.94 

TS 13 C1 29.95 26.19 28.75 

isomer 1 C2 0.00 0.00 0.00 

 

 

Table 38. Optimized geometries of diselenium trioxide (Se2O3) isomers and transition 
states at the B3LYP/6-311G* level of theory. 

Isomer 1 2 3 TS13 TS23 

RO1-Se2 1.879 1.806 1.884 2.720 1.875 

RO4-Se2 1.627 1.658 1.626 1.638 1.641 

RO1-Se3 1.879 1.850 1.884 1.656 1.839 

RO5-Se3 1.627 1.631 1.626 1.649 1.632 

O5Se3O1 109.03 103.63 110.0 109.8 106.8 

 Se3O1 Se2 86.21 116.50 85.83 71.9 113.3 

O1Se2O4 109.03 99.60 110.0 151.9 111.9 
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Table 39. Vibrational frequency of diselenium trioxide (Se2O3) isomers/transition states 
(in cm-1) calculated using B3LYP/6-311G*. 

Se2O3 

Frequencies 1 (C2) 2 (Cs) 3 (Cs) TS13 TS23 

1 125.28 (B) 69.394 (A’) 109.24(A’) -174.64 (A) -127.81 (A)             

2 127.63 (A) 83.549  (A”) 166.10 (A”) 80.966 (A) 112.33 (A) 

3 208.49 (A) 217.28 (A’) 221.11 (A’) 119.66 (A) 149.89 (A) 

4 274.58 (A) 229.06 (A”) 247.21 (A”) 131.25 (A) 235.27 (A) 

5 333.85 (B) 302.68 (A’) 318.64 (A’) 227.94 (A) 294.97 (A) 

6 394.18 (B) 483.99 (A’) 377.83(A”) 349.38 (A) 387.31 (A) 

7 623.77 (A) 570.84 (A’) 608.48 (A’) 841.70 (A) 531.33 (A) 

8 924.93 (B) 860.17 (A’) 922.46(A”) 873.92 (A) 894.23 (A) 

9 941.36 (A) 923.48 (A’) 948.96 (A’) 919.25 (A) 922.71 (A) 
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Figure 32. Relative energies of diselenium trioxide (Se2O3) isomers and transition states 
in kcal/mol. 

 

Diselenium pentaoxide (Se2O5) 

The study of diselenuim pentaoxide (Se2O5) (Figure 35), using CR-CCSD(T) with 

both cc-pVDZ and cc-pVTZ basis sets on the B3LYP/6-311G* optimized geometries, 

resulted in three minima: isomers 1, 2, and 3, and one transition state between isomers 1 

and 2, TS12, with a relative barrier height of 0.56 kcal/mol and 0.12 kcal/mol for each of 

the two basis sets (Table 40).  No transition state was isolated for the transition between 

diselenium pentaoxide isomer 3 and the others. 
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The RO4-Se1 and RO7-Se5 bonds lengths of Se2O5 isomers and the found transition 

state are shorter than the re bond length of: SeO (i.e., 0.056 Å – 0.058 Å shorter), SeO2 

(i.e., 0.015 Å – 0.017 Å shorter) and SeO3 (0.0084 Å shorter), at the B3LYP level of 

theory.  But the RO2-Se1, RO2-Se5, RO3-Se1, and RO6-Se5 bond lengths are longer than the re 

bond length of SeO (i.e., 0.261 Å – 0.179 Å longer), SeO2 (i.e., 0.302 Å – 0.22 Å longer) 

and SeO3, (i.e., 0.3106 Å – 0.2286 Å longer).  The O4Se1O3 and O6Se5O7 angles of 

Se2O5 are smaller than those of SeO2 and SeO3 (Table 32 and 41).  The expectation of 

isomerization is also plausible with Se2O5.  The bond lengths and bond angles for the 

isomers are approximately the same (e.g., the RO4-Se1 and RO7-Se5 bond lengths of all the 

isomers differ by 0.002 Å and the  Se1O2Se5 bond angles differ only by 0.1°) (Table 

41). 

The harmonic frequencies for Se2O5 (i.e., the normal modes dominated by Se1—

O4 and Se5—O7 stretching, and O3—Se1—O4 and O6—Se5—O7 wagging frequencies) 

agree well with those of SeO2.  The frequencies of these isomers and their transition state 

calculated at the B3LYP/6-311G* level are shown in Tables 42. 

The predicted most stable structure of diselenium pentaoxide, isomer 2, has 

relative energies of -3.27 kcal/mol and -3.95 kcal/mol to isomer 1 for each of the two 

basis sets, respectively.  The next most stable minimum, isomer 3, has relative energies of 

-1.16 kcal/mol and -0.94 kcal/mol; the least stable diselenium pentaoxide isomer is 1 

(Table 40).  Both Se2O3 and Se2O5 have isomers that are energetically close.  The low 

barriers between the minima suggest that isomerization should be taken into 

consideration in mechanistic studies of these species.  This is particularly significant 
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when these species are considered at elevated temperatures, such as in flue gases in coal 

combustion.  

 

Figure 33. Diselenium pentaoxide (Se2O5). 

 

Table 40. Relative energies of the diselenium pentaoxides (Se2O5) isomers. 

 

 

 

 

 

 

 

 

  
cc-pVDZ 

 
cc-pVTZ 

Molecule B3LYP/6-311G* CR-CCSD(T) 

isomer 1 0.00 0.00 0.00 

TS 12 4.94 0.56 0.12 

isomer 2 -1.49 -3.27 -3.95 

              isomer 3 0.05 -1.16 -0.94 



154 
 

Table 41. Optimized geometries of diselenium pentaoxide (Se2O5) isomers and transition 
states at the B3LYP/6-311G* level of theory. 

Compounds 1 2 5 TS12 

RO4-Se1 1.606 1.607 1.605 1.606 

RO3-Se1 1.924 1.905 1.924 1.899 

RO2-Se1 1.858 1.851 1.867 1.842 

RO2-Se5 1.858 1.851 1.847 1.842 

RO6-Se5 1.924 1.905 1.918 1.899 

RO7-Se5 1.606 1.607 1.606 1.606 

O4Se1O3 101.86 109.44 101.86 104.76 

 Se1O2 Se5 117.98 118.43 117.44 122.22 

O6Se5O7 101.86 109.44 108.94 104.76 
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Table 42. Frequencies of diselenium pentaoxide (Se2O5) minima obtained at the 
B3LYP/6-311G* level of theory. 

Frequencies/Se2O5 1 (C2) 2 (C2) 5 (C1) TS12 (C2) 

1 49.543 (B) 69.64 (B) 74.988 -237.24 

2 144.95 (A) 136.02(A) 142.70 14.865 

3 210.30(A) 199.58(A) 212.74 174.70 

4 227.50 (B) 247.43 (B) 252.43 211.30 

5 238.83(A) 321.24(A) 266..37 236.32 

6 304.43 (B) 322.34 (B) 319.36 315.55 

7 339.13(A) 367.39(A) 349.13 327.80 

8 340.71(A) 377.30 (B) 371.68 363.11 

9 502.56 (B) 464.39(A) 467.05 455.46 

10 505.17(A) 504.14 (B) 497.94 507.61 

11 522.02(A) 523.15(A) 520.30 525.42 

12 596.68(B) 597.04 (B) 592.37 612.99 

13 903.83(A) 875.33(A) 896.70 890.12 

14 980.40(B) 980.19 (B) 978.27 981.43 

15 986.80 (B) 985.79 (B) 990.30 987.63 
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Figure 34. Relative energies diselenium pentaoxide (Se2O5) isomers and transition state 
in kcal/mol. 

 

 

Reaction energies of selenium oxides 

 The reaction energies of oxidation for Se and the selenium monoxides using 

B3LYP and CR-CCSD(T) energies were used to predict the most stable oxide.  At the 

B3LYP level of theory, the results shown in Table 43 suggest that the dimeric oxides can 

be formed from the monomeric oxides, with Se2O5 more likely to be formed as opposed 

to Se2O3.  But at the CR-CCSD(T) level of theory their formation is not feasible.  
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 Table 43. Reaction energies (kcal/mol) of selenuim oxides . 

Reaction 
B3LYP/6-

311G* 

CR-CCSD(T) 

 
cc-pVDZ cc-pVTZ 

Se (3Pg) + 
2

1
O2 (X 3-) → SeO ( 3X  ) -38.4 -29.8 -40.6 

SeO ( 3X  ) + 
2

1
O2 (X 3-) → SeO2 (

1A1) -24.3 -18.2 -31.1 

SeO ( 3X  ) + O2 (X 3-) → SeO3(
1A1) 

-7.6 1.4 -20.4 

SeO2 (
1A1) + 

2

1
 O2 (X 3-) → SeO3 (

1A1) 16.72 19.6 10.6 

SeO ( 3X  ) + SeO2 (
1A1) → Se2O3 (

1A1) -10.01 - - 

SeO2 (
1A1) + SeO3 (X 2B2) → Se2O5 (

1A1) -19.48 - - 

Se2O3 (
1A1) + O2 (X 3-) → Se2O5 (

1A1) -17.05 - - 

 

 

Summary 

 The equilibrium geometries of SeO, SeO2, and SeO3 were predicted using the 

GVVPT2/cc-pVTZ method and those of SeO and SeO2 are observed to be in agreement 

with experimentally obtained values.  The relatively large deviations for SeO3, which is 

also observed in B3LYP optimizations, suggest that either the electronic structure of 

SeO3 is very complex, and requires MRCISD, or beyond, level calculations or that the 

experimental values need to be re-examined.  Furthermore, the dissociation limits and 

binding energies for SeO2 and SeO3 were calculated.  From the calculation, SeO3 was 

observed to be the most stable, with SeO2 being almost the same but slightly less, and 

then SeO.  The most stable Se2O3 isomer predicted using CR-CCSD(T)/cc-pVDZ, was 

isomer 2 with relative energy of -2.13 kcal/mol to the reference isomer 1.  For CR-

CCSD(T)/cc-pVTZ, it was isomer 1 that was observed to the most stable isomer.  The 
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barrier height between diselenium trioxide 1 and 2, TS12, and between diselenium 

trioxide isomers 2 and 3, TS23 was shown to be 28.75 kcal/mol and 12.28 kcal/mol with 

the use of the cc-pVTZ basis.  For diselenium pentaoxide (Se2O5) the most stable 

structure, predicted by CR-CCSD(T)/cc-pVDZ and cc-pVTZ methods is isomer 2 

followed by isomer 3 and the least stable, was isomer 1.  The barrier height predicted 

between isomers 1 and 2 was relatively small, i.e., 0.56 and 0.12 kcal/mol for the two 

basis sets, revealing the possibility of isomerization.  
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CHAPTER VII  

AN ALGORITHM DESIGN FOR SPIN-COMPONENT SCALED SECOND-ORDER 
MØLLER-PLESSET PERTURBATION THEORY 

Introduction 

 The computation of correlation energy of a system at the MP2 level of theory 

requires the evaluation of the four-centered electron repulsion integrals (ERIs), which is a 

time-consuming procedure in general quantum chemical calculations.  But in recent 

times, with the advances in computer technology alongside the improvements in quantum 

chemical algorithms, the computational cost of this process has been reduced to the 

extent that calculations on systems that could only be addressed by DFT a few years ago 

could now be considered by MP2 calculations.  Consequently, assessment of the 

adequacy of calculations that scale as MP2 is timely.   

Spin–Component-Scaled Second–Order Møller–Plesset Perturbation (SCS-MP2) theory 

The HF wavefunction is the best possible wavefunction that can be expressed as a 

Slater determinant, and usually gives 99% of the total energy of the system.  However, 

the 1% error in this calculation cannot be neglected, since it is comparable in size to the 

strength of chemical bonds.  This error comes from the description of the HF 

wavefunction of electron–electron repulsion in an average sense without including the 

actual electron correlation.  Consequently, higher levels of theory that could possibly 

correct this limitation in the calculation of electronic energies of molecules are required.  

There are several powerful techniques presently that can accurately account for the 
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correlation energy of many particle system with errors < 1 kcal/mol [187]; i.e., methods 

like coupled-cluster, especially with the R12 extension.  However, the limitation to most 

of these techniques is cost [188-190].  Second-order Møller-Plesset perturbation theory 

(MP2) [191] is the simplest and least expensive ab initio method for including electron 

correlation effects in electronic structure calculations.  However, MP2 is less robust than 

high-accuracy methods when applied to complicated correlation problems occurring in 

compounds like biradicals, transition states or metal-containing compounds.  In addition 

MP2 needs large basis sets to obtain accurate results [76].  Grimme showed recently that 

the accuracy of standard MP2 results improve remarkably by separately scaling the 

opposite spin (αβ) and same-spin (αα + ββ) components of the MP2 correlation energy 

[69].   This method is termed Spin–component–scaled second–order Møller–Plesset 

perturbation theory (SCS–MP2).  In this method, the correlation energy contributions 

from antiparallel-spin (αβ, “singlet”) pairs of electrons are scaled by 
5

6
COS  , and that 

for parallel–spin (αα, ββ, “triplet”) pairs of electrons are scaled by 
5

2
to

5

1
CSS  .  The 

reason for the variation is that low–level methods for electron correlation, like MP2, 

show a systematic energy bias towards unpaired electrons while the contributions from 

spin–paired electrons are underestimated. 

The exact one–particle basis set correlation energy Corr  is 

HFExact
Corr    .                                                                                         (95)  

At the MP2 level, the correlation energy can be separated into a sum over antiparallel and 

parallel spin components, 
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     2
SS

2
OS

2
2MPSCSCorr EE    ,                                                                           (96) 

where  2
SSE and   2

OSE are given by contributions from electron pairs with αα, ββ, and αβ 

spin as 

   
ij ji

jiij
2

SS e
2

1
e

2

1
E                                                                                     (97)                              

and  

  
ji

ji
2

OS eE                                                                                                       (98)                                                                  

with the pair energies: 

 
ab

ba
ij

ab
ijij )jbia)(TT(e ,                                                                                  (99) 

)bjai)(TT(e ab
ji

ba

ba
jiji  ,                                                                                 (100)      


ba

ba
jiji )bjia(Te ,                                                                                            (101)                                                                                         

where T are the doubles amplitudes.  ( )jbia
 
is a two–electron integral in Mulliken’s 

notation, and ij and ab are occupied and virtual spin orbitals; β spin is designated by an 

over–line.  

In the frame-work of MP2 theory, T, which defines the first order correction wave 

function, is  
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εεεε

jb)ia(
T

baji

ab
ij 
 ,                                                                                         (102) 

where ε represents canonical HF orbital energies.  Inserting equations 97 – 102, step 

wise, into the MP2 correlation energy equation as shown below gives the SCS–MP2 

correlation energy expression.  This simple modification increases the accuracy of MP2 

dramatically. 

 The MP2 correlation energy is  

 

baji

2
orb.sp

vir

ab

orb.sp
occ

ij

2
0

abij

4

1
E


                                                                                (103) 

It can be rewritten from physicist’s notation to chemist’s notation as follows 

   jaibjbiabaijabijabij                                        (104) 

The general definition of two electrons integral is as shown below,  

  )2()2()1()1(rdrd)2()2(
r

1
)1()1(bjai bjai2

3
1

3
bj

12

aibjai
                   (105) 

2
3

1
3

bj

12

ai rdrd)2()2(
r

1
)1()1(

bjai
                                            (106) 

 jbia
bjai                                                                                        (107)  

Inserting the fluctuation potential matrix element into Eq. 103 obtains 

      
baji

2orb.sp
vir

ab

orb.sp
occ

ij

2
0

jaibjbia

4

1
E




                                                                                (108)  
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(A - B)2 can be evaluated by the use of the expression below 

         
B,AB,A

2

B,A

BAA2ABBBAABA , because “A” can be “B” and 

“B” can be “A”.  This is used to obtain equation 110. 

Conversion of equation 109 from molecular spin orbitals to spatial molecular orbitals is 

shown below 

                  
 







 mo

ijab

mo

ijab ab
ij

D

jaibjbiajaib

ab
ij

D

jaibjbiajbia
2mso

ijab ab
ij

D

jaibjbia
  (109)  

      
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Expanding Eq. 103 gives 
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Eq. 111 is converted from spin orbitals to molecular orbitals to obtain 

        
baji

mo
vir

ab

mo
occ

ij

2
0

jaib2bjia4*jbia

2

1
E




                                                                   (112)   

Eq. 112 can be separated into its αα, ββ, and αβ components 
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Introducing scaling factors discussed above, results in  
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Therefore, the spin component scaled Moller-Plesset perturbation energy can be written 

  2
2MPSCS

HF2MPSCS
0 

                                                                                  (116) 

This result improves the MP2 energy making it comparable to that of CCSD(T) but much 

less expensive [69]. 

 Actual computation of the SCS-MP2 energy is mostly dominated by calculation 

of the two electron integrals over molecular orbitals.  The MO exchange integrals (ia|jb) 

are computed from a transformation of the atomic orbitals (AO) or symmetry orbitals 

(SO) ERIs over restricted MO index ranges, in our case by the “mctrans” code in the 

UNDMOL package, i.e., 

[ia|jb] = (ia|jb) = 


 
,,,

bjai )|(CCCC ,                                                              (117) 

where,  , ,   and  denote SOs, and iC  is the MO coefficient matrix for the  

transformation from the SO to the MO basis. 

 The transformation process of Eq. (117) is performed in four steps: 
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(iv|λσ) = 


 iC)|( ,                                                                                            (118) 




 aC)|i()|ia( ,                                                                                            (119) 




 jC)|ia()j|ia( ,                                                                                             (120) 




 bC)j|ia()jb|ia( .                                                                                             (121) 

where the cost of each step is ON4, OVN3, O2VN2, O2V2N, respectively, where N, O, V, 

represent the numbers of atomic basis functions, occupied orbitals, and virtual orbitals 

respectively.  The cost of calculation of (ia|jb) is the sum of the quarter transformations 

and is seen to scale as the fifth power of the system size.  The integrals formed are stored 

on disk.  After reading the exchange and coulomb integrals from disk and the one 

electron molecular orbital integral contributions, the orbital energies i are calculated (as 

in Eq. 30 in Chapter II). 

 

 

 

 

 

 



166 
 

 The SCS-MP2 energy can then be calculated using the following scheme: 

Loop i = 1, nocc 

  Loop j = 1, nocc 

   Loop  a = 1, nvirt 

    Loop  b = b, nvirt 

    )/()jb|ia(t bjai
ij
ab      

   ij
abijRHF2MPSCS t)}jb|ia)(3/1()jb|ia(*)15/23){(2(EE   

    End loop 

   End loop 

  End loop 

 End loop 

Performance of the SCS-MP2 energy calculation 

The MP2 and SCS-MP2 programs for correlation energies were programmed in a 

development version of the UNDMOL program.  On MP2/6-31G* optimized geometries, 

energy calculations at the MP2 and SCS-MP2 level of theory using the Dunning cc-

pVTZ basis [139] were carried out. These calculations were done with the 

implementation of the frozen core approximation (i.e., the molecular orbital 

corresponding to the C, N, O, F, 1s orbitals were kept doubly occupied).  
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The performance of the present SCS-MP2 code and MP2 is assessed relative to the higher 

correlation method QCISD(T).  In this study, the test molecules are those described by 

Jung et al. [79], which also provides QCISD(T) results as well as results of an earlier 

implementation of SCS-MP2.  Table 44 shows the percentage of total QCISD(T) 

correlation energy that is recovered by MP2 and SCS-MP2 by the use of the present code.  

The values from our implementation agree with those of Jung et al. [79].  The average 

recovery percentage for the molecules studied with the present SCS-MP2 code in this 

dissertation is (93.9 ± 1.8), that by Jung et al. [79] is (93.8 ± 1.8), and that from MP2 is 

(92.5 ± 5.8).  The small difference from the results of the Jung et al. study is presumably 

due to differences in the integral evaluation and/or transformation.  Table 44 reveals that 

SCS-MP2 (93.9 ± 1.8), performs better than MP2 (92.5 ± 5.8) not only in the average but 

notably in the standard deviation. 
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 Table 44. Total correlation energy (CE) recovered by MP2, and SCS-MP2 relative to 
QCISD(T). 

Molecule QCISD(T) (mH)a MP2 %CE SCS-MP2 %CE 

C2H4 -375.4 89.4 90.9 

H2O -276.1 95.0 94.0 

H2O2 -525.6 95.1 93.7 

HCN -371.8 94.2 92.9 

HF -281.3 96.9 94.9 

H2 -39.3 80.6 96.7 

N2 -398.5 96.1 93.9 

Average %  92.5 ± 5.8 (92.5 ± 
5.9)  

93.9 ± 1.8 (93.8 ± 
1.7) 

aRef. [79]. 
aThe values in parenthesis are those from Jung et al. [79] 
 

Open-shell-spin-component-scaled second-order Møller-Plesset perturbation theory 
(Open-shell SCS-MP2) 

As noted in the preceding subsection, a highly efficient and size-extensive means 

of obtaining correlation energy for the electronic structures of many molecules is done by 

Møller-Plesset perturbation theory, also known as many-body perturbation theory 

(MBPT) [189].  In low order MBPT, accurate results can be obtained only when a 

reasonably good reference function is available to represent the problem.  Existing spin-

component-scaled MP2 is based on closed (restricted) HF, and is thus applicable to 

problems amenable to RHF.  Unrestricted Hartree-Fock (UHF) has usually served as the 

reference for open-shell systems.  This reference function has significant advantages in 

bond breaking situations.  There are some disadvantages also, like the recurring existence 
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of several different UHF solutions, leading to ambiguities in the choice of an UHF 

solution.  And most importantly, since UHF functions are not eigenfunctions of spin, they 

are often contaminated by states of higher spin multiplicity [189].  This harmful effect on 

correlation energy is observed in the low-order MBPT approximations, but is reduced in 

CCSD, CCSDT and its approximations CCSD(T), CCSDT-n, and CCSD+T(CCSD).  

Because MBPT(n) is unable to eliminate this spin contamination effect, in order to solve 

this problem, different UHF-based spin-projected MBPT methods have been developed;  

these remove just one (or a few) contaminants in UHF-MP2, but are not applicable easily 

in higher orders of MBPT.  Moreover, the spin-projected MBPT methods will not usually 

be size extensive.  In addition, they do not reliably determine relative energy differences 

between open- and closed-shell molecules at a given MBPT(n) level.  In addition, 

evaluation of analytical gradients within such projected approaches, which are an 

essential part of any widely used method in quantum chemistry, is difficult.  To eliminate 

spin contamination in open shell systems, calculations can be based on high-spin 

restricted open-shell Hartree-Fock (ROHF) solutions, which are spin eigenfunctions of 

the reference state.  On this basis, Bartlett and co-workers developed the ROHF-CC 

method [189].  Hubac and Carsky [73, 192, 193] worked on ROHF-based-MBPT, but 

they redefined H0 as a sum of diagonal Fock operators, changing the meaning of 

MBPT(n) from the usual canonical (Møller Plesset) Hartree-Fock case.  The disadvantage 

is that certain invariant properties are lost. Wolinski and Pulay [194] presented another 

ROHF-MBPT method.  This method retains the order-by-order, usual canonical orbital 

self-consistent field (SCF) theory, but brings in a non-diagonal resolvent operator, which 

requires an iterative solution.  But this does not lead to high accuracy, except with the 
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inclusion of the triple contribution in MBPT(4) which will make it expensive and 

impractical, leading to the recommendation of a noniterative approach. 

 The ROHF-MBPT method presented by Bartlett and co-workers [72] is 

noniterative and can easily be applied to any order of perturbation theory.  This method is 

not a fully spin adapted approach.  The advantages are that it facilitates readily treating 

any order, subject to the projected spin eigenfunction property

)1S(SŜ MBPT
2

ROHF  , although )1S(SŜ MBPT
2

MBPT  , and retains the 

invariance properties of MBPT/CC theory to transformations among just occupied or 

unoccupied orbitals.  It also allows the development of analytical gradients.  

This present work is based on the use of the ROHF-MBPT method of Bartlett and 

co-workers [195-198] to develop a method and computer program for spin-component 

scaling in open-shell systems.  We refer to it as open-shell-spin-component-scaled 

second-order Møller-Plesset perturbation theory (open-shell SCS-MP2).  

In the following equations, i, j, k, …… represent occupied orbitals; a, b, c, … 

represent unoccupied orbitals; and p, q, r, ….. are generic indices representing either kind 

of orbital. 

The general expression for MBPT(n) energy is 

abij
4

1
ftE

ia ijab

)1n(b
iaai

)1n(a
i

)n(                                                                             (122) 

That for MBPT(2) is 



171 
 

     jaibjbia
4

1
ftE

unocc,occ

ijab

)1(ab
ijai

occ

i

unocc

a

)1(a
i

2
0                                                          (123) 

 Since the MBPT(n) energy is invariant to rotations that mix occupied or virtual orbitals 

among themselves, unitary transformations can be used to rotate the ROHF eigenvectors.  

This will bring the occupied-occupied and virtual-virtual blocks of the Fock matrices to 

diagonal form resulting in the formation of semicanonical orbitals.  This also results in 

unequal α and β orbitals, but the eigenfunction property of the reference function is not 

affected.  

 Using semicanonical orbitals, the first-order T amplitudes can be expressed as 

follows: 

 First-order amplitudes  

a
i

ia)1(a
i

D

f
t                                                                                                                       (124)  

ab
ij

)1(ab
ij

)1(ab
ij

D

abij
t                                                                                                    (125) 

aaii
a
i ffD                                                                                                                 (126) 

bbaajjii
ab
ij ffffD                                                                                                 (127)                                                                                

Substituting Equation 124, 125, 126 and 127 into Equation 123 will obtain Equation 128, 

which is the MP2 general expression 
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As before, a matrix element of the fluctuation potential is 

baijabijabij  , in physicists notation                                                              (129) 

Conversion from physicist’s notation to chemist’s notation 

   jaibjbiaabij                                                                                                    (130) 

gives 
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The operator, qjpjqhpf
occ

1j
pq 



 , will be examined in greater detail.                      

For any xy orbital pair 
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From equation 132 fii can be calculated as follows 
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Conversion from molecular spin orbitals to spatial molecular orbitals is as shown below  
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ni  = 1 or 2                                                                                                                  

if nj =2  => closed shell                                                                                             

if nj =1  => open shell 
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Note that, unlike usual MP2, fia has nonzero entries.  This result from transformations 

which change the wave function and, because of these nonzero entries, it is considered as 

a 1st order term. fia can be obtained from equation 133 as shown below 
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Equation 149 is obtained by substituting σj in expression 148, 
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To obtain equation 150 the number of electrons for ni is inserted, for a high spin case 

when ni is singly occupied, σi has only an α spin 
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We conjecture that as was the case for closed shell MP2, the triplet and the singlet 

contributions are scaled differently to the obtain E(OS-SCS-MP2)
(2) energy.  Since the 

correlation for electron pairs are not expected to be strongly affected by the total spin of 

the system, the scaling factors are those proposed by Grimme which are CSS = 1/3 and 

COS  = 6/5. 

This equation is then substituted in to the original OS-SCS-MP2 equation 
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 Evaluation of the quantities follows the algorithm for closed-shell SCS-MP2, 

although there are more terms in the open-shell case.  A practical concern is the 

development of an efficient unrestricted transformation program, which currently does 

not exist in UNDMOL.  Full development of the method will require optimization of the 

weighing parameters ( i.e., CSS and COS), because, although they can be expected to be 

close to Grimme’s values for closed shells, small changes are to be expected. 
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