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ABSTRACT

The most familiar phase transitions observed in nature are associated with a change

in the state of matter (solid, liquid, and gas). In some rare cases this may involve

the plasma phase. Such transitions are often referred to as first order phase

transitions and often occur commonly such as during the melting of snow or freezing

of lakes and rivers during winter. This project focuses on the most ubiquitous phase

changes such as, liquid-solid and vapor-liquid as well as the less prevalent

vapor-solid transitions. These types of phase transitions are also known as classical

phase transitions. They usually involve symmetry breaking and can be identified by

a singularity in the free energy or one of its derivatives. More modern classification

of phase transitions rely on the order parameters as exemplified by the Landau’s

theory. An order parameter is a quantity that takes a value of zero in the disordered

phase and assumes finite values in the ordered phase. In the case of liquid-vapor

transition, the order parameter is the density.

The study of phase transitions is often complicated by the amount of time required

by these phase changes and the presence of a high free energy barrier. Consequently,

changes occurring close to coexistence are hard or even impossible to follow via

conventional experimental techniques. Molecular simulation is therefore the method

of choice to study these processes. Molecular simulations are numerical experiments

carried out on model systems and have a number of advantages over traditional

experiments. Simulations do not have any limitation as to the type of molecules or

conditions under which they can be applied.

Current simulation methods used to accomplish this task, such as the grand

canonical and Gibbs ensemble Monte Carlo methods, employ the concept of

particles insertion and deletion moves or require the knowledge of at least one point

xv



at coexistence. These type of moves are extremely inefficient when dense fluids are

involved and limit the accuracy of these methods. To circumvent these difficulties,

non-Boltzmann sampling methods such as the umbrella sampling and Wang-Landau

sampling techniques, have been employed to study these phase transitions.

Vapor-solid and liquid-solid phase transitions were studied using a combination of

hybrid Monte Carlo (HMC) and the umbrella sampling on a system of C60

molecules. The crystallization process occurs in two steps, nucleation and growth.

The nucleation step is an activated process that involves a high free energy barrier.

The free energy barrier is overcome through a series of HMC steps. The growth step

on the other hand is studied by means of unconstrained molecular dynamics (MD).

This study illustrates that the body centered cubic structure plays no role in the

crystallization of C60. This is because only the face centered cubic and the

hexagonal closed parked crystal structures were observed in both the nucleation and

growth steps. In addition, the growth process is observed to follow a complex

mechanism known as cross nucleation. The process of cross nucleation has also been

observed in model fluids such as Lennard-Jones fluid and in the experimental study

of D-mannitol.

Hybrid Monte Carlo and configurational bias Monte Carlo (CBMC) were combined

with the Wang-Landau (WL) sample method to study the vapor-liquid equilibria of

Polycyclic aromatic hydrocarbons (PAHs) with four fused benzene rings and

α-olefins (C2 - C6), respectively. These studies are conducted in the

isothermal-isobaric (NPT) ensemble to avoid the particle insertion and deletion

moves that resulted in low acceptance rates in previous simulations. These studies

led to the prediction of the critical temperatures, pressures and densities of both

systems.

xvi



CHAPTER I

INTRODUCTION

1.1 Motivation

Phase transitions are important in a variety of applications in science and

engineering especially in the areas of separation, manufacturing, and processing.1–3

In environmental science for example, first and second order phase transitions play a

vital role in the mobility of atmospheric particles.4 Fast moving gas phase organic

aerosol particles are known to have detrimental health effects.5 Common

illustrations of the importance of phase transitions can be seen in medicinal

application like drug design and drug delivery. Capsules for example, are used to

store drugs that are required to produce a desired effect at a specific location in the

body. Different mechanisms can be used to trigger the release of an encapsulated

content. These could be light activated release, slight changes in Ph or the presence

of certain chemicals may trigger the release of drugs in biological tissues. In most

cases the solubility of the outer coating as well as the active ingredient is vital for

the uptake of the drug. This implies both the coating and active ingredient have to

first undergo a phase change (solid-liquid transition) before they can be absorbed by

the body.6,7 In addition, phase transitions play an important role in drug design

because polymorphism (the phenomenon of one compound having two of more

crystal structures) occurs as a result of inappropriate control of crystallization

(liquid-solid transition).8 This can be wasteful when the inactive crystalline form is

produced. It is worst if the transformation from one form to the other cannot be

discovered early enough as the other form may have a different bioavailability and

may be dangerous to patients. For example, the unintentional formation of 10%

amorphous solid in aspirin leads to moisture uptake and hydrolysis of the drug.9
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Induced hardening in tablets may lead to a decrease in uptake by the body due to

slow solubility rate (solid-liquid transition).10 Also, unanticipated

crystallization/solidification of syrup-like drugs may lead to difficulties in storage

(solid-liquid transition).8,11

Critical properties play a pivotal role in predicting thermodynamic and

transport properties of hydrocarbons in the petroleum industry.12 These properties

are difficult to determine experimentally, given the wide variety of petroleum fluids

(Figure 1b).13 Failure to adequately understand the temperatures and pressures at

which these different phases solidify may result in clogging of pipelines that could be

very costly to maintain. Similarly, knowledge of the properties of these different

phases is critical in the separation and purification process.12

Figure 1. (a) Clogged transportation pipeline due to solidification of petroleum fluids;
(b) Complex phase diagram for a mixture of hydrocarbon fluids.12

The processing and use of various crude oil fractions releases toxic particles and

gases into the environment (Figure 2). These processes involve simple and complex

mixtures of hydrocarbon as depicted in the phase diagram (Figure 1) as well as

variations in temperature (Figure 2). Consequently, they represent most of the

common phase transitions (liquid-vapor, liquid-solid, solid-vapor,etc) studied in this

project.12

2



Figure 2. Separation and use of the different crude oil fraction.

1.2 Importance of Molecular Simulations to the Understanding of Phase Transition

Molecular simulations offer a means to understand macroscopic properties or

behavior through the study of microscopic (interatomic) interactions.14 Simulations

can be viewed as experiments performed on model systems. Such computer

experiments shed light and aid the understanding as well as interpretation of real

world experimental results.15 Molecular simulations have marked advantages over

traditional experiments in that they can be used to study very expensive, dangerous

and/or complex molecular systems and eliminate human errors. By using molecular

simulations, regions and properties that are generally inaccessible by experiments

can be studied. Molecular simulations can be used to confirm and reproduce

experimental results. Even in such situations, molecular simulations reveal

microscopic details that are not visible and cannot be explained by experiments.14

Although large amounts of experimental data on phase properties of a variety of

fluids exist in the literature and have been used to produce phase diagrams as well

as to characterize these fluids, experiments fail with increase in molecular

complexity and instability. Furthermore, most phase transitions occur at extreme

conditions that may not be attainable through experiments but as mentioned

earlier, knowledge of thermodynamic properties at these extreme conditions is

essential for scientific and engineering applications.16 A typical example is the

discovery of the process for destruction of aqueous waste with supercritical water
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oxidation.15 This process is based on the reaction of organic contaminates with

oxygen at temperatures and pressures above the critical point of water. This design

process has been halted because of the need for trials that are difficult to perform

experimentally. Studies are currently being pursued to determine suitable modeling

techniques that can handle aqueous/organic mixtures at high temperatures and

pressures.

As a consequence of these difficulties and discrepancies in experimental results,

molecular simulations are gaining ground in the study of phase transitions.17

Presumably, this can be attributed to the advantages simulations have over

experiments, like the time and the ease of repeating simulations or reproducing

simulation results.14 Numerical studies also permit access to all states of the

modeled system, thus revealing details that are otherwise inaccessible to

experiments. In this line, numerous molecular simulation methods have been

developed. A few of them related to the study of fluid coexistence are detailed in

the next section.

1.2.1 Force Field

The success of computational chemistry (molecular simulations) strongly

depends on the quality of the potential energy function.2,18 Since the real

intermolecular potential for a given molecule is hard to assess, simulations are based

on potential models.19 An adequate force field that can effectively describe

intermolecular and intramolecular interactions and thus accurately predict the

molecular shape as well as thermodynamic properties is therefore crucial for any

model system.20 There are as many potential energy models as there are simulation

techniques.21–24 Most potential energy models can be classified under two main

headings: all-atom and coarse grain model.18,25 These models are used

interchangeably depending on the system under consideration,26 simulation method,

software package,27 and quality of details expected from the simulation.18 In very

complex systems, a combined force field can be used as a potential energy function
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to study the system.25

1.2.2 Parameterization

The potential energy function generally employed for the parameterization of

most atomistic force field takes the form of Equation (1.1).

Etotal = Einternal + Eexternal (1.1)

where

Einternal =
∑

bonds

Kb(b− beq)2 +
∑

angles

Kθ(θ − θeq)2

+
∑

dihedrals

Kφ[1 + cos(nφ− γ)] +
∑

impropers

Kϕ(ϕ− ϕeq)
2

(1.2)

and

Eexternal =
∑

nonbond

(

ǫij

[

(

Rmin,ij

rij

)12

− 2

(

Rmin,ij

rij

)6
]

+

(

qiqj
4πǫ0rij

)

)

(1.3)

Parameters Kb, Kθ, Kφ, and Kϕ represent the bond length, bond angle, dihedral

angle, and improper dihedral angle force constants, respectively; b, θ, φ, ϕ, and γ

are the bond length, bond angle, dihedral angle, improper torsion angle, and the

phase angle respectively. The Lennard-Jones 12-6 potential and Coulombic terms

represent the external or nonbonded interactions. The Lennard-Jones potential is

also used for the van der Waals interactions. ǫij is the Lennard-Jones well depth,

Rmin is the distance at the Lennard-Jones minimum, qi is the partial atomic charge,

ǫ0 is the dielectric constant and rij is the distance between atoms i and j.

Parameterization involves assigning specific values for the parameters in

Equations 1.2 and 1.3 for different atoms and different bonding types. The
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parameter set and atomic charges are implemented mostly as described in the

literature for the given force field.27 The force constant terms are usually adjusted

by fitting vibrational data for model systems associated with bond length, bond

angle, dihedral angle and improper torsion. Gas phase infrared and Raman data are

used as the primary sources for such data.

In order to supplement experimental data, ab initio density functional theory

(DFT) calculations are performed where necessary. This entails assigning

vibrational frequencies in the absence of experimental values. The parametrized

force field is tested by utilizing it to reproduce known results, especially results

obtained from experiments. Such tests help to ensure that the force field treats the

system with sufficient accuracy.

1.3 Advances in Molecular Simulations Studies of Fluid Coexistence

Despite the importance and numerous applications of phase transitions, phase

properties of most systems have not been studied due to the high free energy barrier

associated with phase transitions.28,29 In addition, locating the phase boundary has

been hampered by the difficulties of simulating both coexisting phases with a single

simulation.17 To overcome this difficulty, methods that can efficiently sample the

configurational space of the system under consideration are needed. The trend

changed with the advent of the Gibbs ensemble Monte Carlo (GEMC) scheme by

Panagiotopoulos and co-workers.15 Over the past two decades, different simulation

methods have been developed to determine the vapor-liquid coexistence of various

systems. Some of these schemes rely on the insertion/deletion of particles originally

proposed in the Panagiotopoulos method, or require knowledge of the chemical

potential of the phases involved. Besides, current simulation methods also rely on

experimental data for the determination of some parameters for most systems that

have been adequately modeled. Additionally, the availability of numerous

simulation techniques makes it challenging to select an appropriate methodology for
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the system to be studied.

There are basically two main simulation methods, namely Molecular Dynamics

(MD) and Monte Carlo (MC). Most of the techniques applied for the study of phase

transition are based on MC. This is because MD that rely on Newton’s equations of

motion is inefficient for longtime relaxation phenomenon compared to MC that

depends on random but clever particle movements.2 This is because the integration

process using the equations of motion usually overestimates the transition point due

to a discontinuity in the energy during first order phase transitions.14 Most

molecular simulation applications involve representation of fluid properties for a

single isolated phase. The extension of simulation techniques to multiple phases

proves a versatile tool for the investigation of the phase coexistence of both pure

fluids and fluid mixtures. Two methods have been routinely used for the study of

phase coexistence, namely: Grand Canonical Ensemble Monte Carlo (GCEMC) and

Gibbs Ensemble Monte Carlo (GEMC).

1.3.1 Grand Canonical Ensemble Monte Carlo

The Grand canonical (µVT) ensemble Monte Carlo (GCEMC) simulations keep

the chemical potential µ, temperature T, and volume V constant. This method has

been used to study the vapor-liquid coexistence properties of the Lennard-Jones

fluid. The total configurational energy E and number of particles N are varied

through the insertion and deletion of particles. Both processes occur with equal

probability and each trial is accepted following a Metropolis rule designed to respect

the conditions for detail balance necessary for thermodynamic equilibrium. For an

energy change of insertion ∆EI , the insertion process is accepted with a probability

given by;

Pacc(N −→ N + 1) = min

[

1,
zV

(N + 1)
exp(−β∆EI)

]

(1.4)

where z = exp(βµ) and β = 1/kbT
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Similarly, particle deletion is accepted with a probability given by;

Pacc(N −→ N − 1) = min

[

1,
N

zV
exp(−β∆ED)

]

(1.5)

where ED is the energy change for removing a particle.

In addition to particle insertion/deletion moves, there is also implicit particle

displacement. This ensemble for MC simulations was originally designed considering

adsorption experiments wherein the adsorbed gas is in equilibrium with a reservoir

gas (Figure 3). The adsorbed gas has volume V and the volume of the reservoir is

given by V0-V, where there is exchange of particles between the two volumes. The

reservoir sets the temperature and chemical potential of the system. This method

has been extensively used for the determination of phase coexistence properties.

Figure 3. Setup for GCMC technique showing exchange of particles to ensure a
constant chemical potential.

GCEMC uses the transition matrix or histogram reweighting technique

(non-Boltzmann sampling method used to evaluate averages for a state of interest

from a trajectory or a single simulation run) to obtain information from a single

simulation and to sample all states with equal probability.30 This makes the method

suitable for studies where a large amount of phase equilibria data is needed. The

main observables (variables) for these simulations are the number of particles and

the configurational energy that are easily accessible during the course of the

simulation. Although this method demands that the chemical potential of both
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phases be specified, it is more accurate than the GEMC method.30,31 Varying the

number of particles implies fluctuation of the density ρ = N/V. A plot of the

probability density p(ρ) function versus the density can be used to obtain

information on the nature of the phase coexistence (Figure 4). Because separate

Figure 4. Variation of the probability density p(ρ) and density at the liquid-vapor
phase boundary.

simulations are run for the gas and liquid phases, the location of the liquid-vapor

equilibrium point is discerned through continuous evaluation of the ρ and T

thermodynamic properties of the individual phases, until the integrated weight or

area under each peak is equal. Since the liquid-vapor coexistence is determined by

the equal peak weight criterion, the process must be repeated until the point of

coexistence is found.14 The complexity of the procedure, coupled with the

difficulties associated with obtaining the chemical potential data held back the

study of phase equilibria via this molecular simulation technique.32 Using the

method, it is difficult and at times impossible to insert large chain molecules during

the simulation, and gradual insertion methods fail when using the histogram

reweighting method. Also, more simulations are required for large systems to be

able to overlap the histograms to obtain the liquid-vapor phase boundary.

1.3.2 Gibbs Ensemble Monte Carlo

The development of the Gibbs ensemble sampling method helped revitalize

studies of phase properties via molecular modeling.17 Based on this method, the
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phase coexistence properties could be investigated in a single simulation without the

need to specify the chemical potentials. The Gibbs ensemble method, developed by

Panagiotopoulos, has been widely used in the study of phase coexistence because of

its simplicity and applicability to a large range of systems.31,33,34 This method

simulates phase behavior by following the evolution of a system composed of two

distinct regions in phase space. Each region represents a small volume of a

homogeneous phase. There is no physical interface separating the two phases in the

system.34

Figure 5. Simple illustration of Gibbs sampling technique, phase I and II represent
the vapor and liquid states respectively.

The two phases may be represented in two separate boxes as shown in Figure 5

from which three types of moves can be performed to meet the conditions for

equilibrium. While particles displacement inside each separate box ensures that

there is internal equilibrium, random volume changes between the two boxes satisfy

the condition for equality of pressure, and particle exchange between the two boxes

ensures that the chemical potentials of all the components are equal.35 Although

there is movement of particles within and between the two regions as well as volume

changes, the total number of particles, volume and temperature are constant. Thus

the Gibbs ensemble method can be construed to be a variation of the canonical

ensemble where the number of particles, volume and temperature are fixed.

However, the Gibbs ensemble differs from the NVT ensemble in that particle

exchange and volume changes are performed between the subsystems (boxes), while
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keeping the total number of particles and volume constant.

Figure 6. Characteristic moves in a typical Gibbs sampling technique.

If a one-component system at a constant temperature T, having a total volume

V and total number of particles N, is divided into two regions, the volume and

number of particles in each region will be as follows; VI and NI and VII =V - VI ,

and NII = N - NI for regions one and two respectively. The partition function for

this system QNV T is given by:

QNV T =
1

Λ3NN !

N
∑

NI=0

NI

NINII

∫ V

0

dVI V
NI

I V NII

II

∗
∫

dξNI

I exp [−βUI(NI)]

∫

dξNII

II exp [−βUII(NII)] (1.6)

where Λ is the thermal de Broglie wavelength, β = 1/kBT, ξI and ξII are scaled

coordinates of the particles in both regions and U(NI) is the total interaction

potential of NI particles.

This partition function has been used with the free-energy minimization procedure

to illustrate that the Gibbs ensemble technique gives accurate results of equilibrium

densities for first order phase transitions. The partition function represented by

Equation 1.6 has a probability density ρ(NI , VI ;N, V, T ) given by;
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ρ (NIVI ;NV T ) =
N !

NI !NII !
exp (NI lnVI +NII lnVII − β(UI(NI)− βUII(NII)) (1.7)

Since each type of move within the system results in a new configuration, the

acceptance for the three different moves can be derived from Equation 1.7. Thus, for

displacement of particle within either region or box the acceptance probability is:

ρdispl = min [1, exp (−β∆U)] (1.8)

where ∆U is the configurational energy change associated with particle

displacement.

This acceptance criteria is the same as that for conventional NVT ensemble

simulations. For a change in volume, since the total volume is constant, if the size of

box I is increased by ∆V , there is a corresponding decrease for box II and the

acceptance probability is:

ρvolume = min

[

1, exp

(

−β∆UI − β∆UII +NI ln
VI + δV

VI
+NII ln

VII − δV
VII

)]

(1.9)

Equation 1.9 indicates that the sampling is performed uniformly in the volume

itself. Consequently, the volume change is effected by generating a uniformly

distributed random number between 0 and 1 (ξ), making sure that a negative

volume does not result from any change.

∆V = ξ∆Vmax x min (VI , VI) (1.10)

where ∆Vmax is the maximum fractional volume changed allowed. It is adjusted to

obtain the desired acceptance rate. Finally, the acceptance criterion for the particle

transfer from box II to box I is:
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acctransf = min

[

1,
NIIVI

(NI + 1)VII
exp (−β∆U)

]

(1.11)

where ∆U = ∆UI +∆UII

When the two phases coexist at temperatures and pressures away from the critical

point, the equilibrium densities and compositions can be calculated by averaging the

variables after equilibration. However, since there are three different types of moves

to be performed throughout the simulation, each of them will therefore have a

criterion for accepting a new configuration. Also, for simulations of a

multicomponent system, the pressure could be specified and the system simulated

with a constant number of particle, pressure and temperature (NPT) ensemble. As

such, the probability density and the acceptance criteria are modified.35

Although the GE method does not require prior knowledge of the chemical

potential for the two phases at coexistence, the exchange of particles between the

two regions could be burdensome in the case of high density liquids such as melted

metals. The transfer from low density to high density states could often be rejected

due to the highly unfavorable energetic states (particles overlap) in the liquid phase

after the transfer. Configurational bias Monte Carlo techniques and the

Gibbs-Duhem method are used in the simulation to enhance the acceptance rate for

particle swaps between the two phases.32,34

1.3.2.1 Limitations of the Gibbs Ensemble Method

The dependence of the Gibbs ensemble on particle exchange to achieve a

balance in chemical potential between the coexisting phases introduces a number of

limitations:30,34

1. Because of the low particle acceptance probability, it may not be easily

applied to high density fluids such as the case of fluid-solid equilibria.

2. It becomes inaccurate in the vicinity of the critical point, this makes it
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inappropriate for study of phase properties near the critical point in either

pure fluids or mixtures. This has been the subject of a number of recent

studies that have shown that the inaccuracy is due to interfacial simulation

between the two boxes.

3. For simulations of a multicomponent system that is dilute in one component

the number of particles in one box could become zero due to successive

transfer from the same box. In such a situation the probability of a transfer

from the empty box is zero, which limits the transfer probability.
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CHAPTER II

PHASE TRANSITION

2.1 Introduction

Phase transitions refer to the changes of the states of matter from one form to

the other across a phase boundary. Phase transitions are ubiquitous in nature and

have been explored by engineers as well as scientists for numerous applications. The

most common phases are solid, liquid and gas; in rare cases however, there exist a

plasma phase that is considered the most abundant state of matter in the universe

(Figure 7). The plasma phase is a high energy electrically charged mixture of ions

and electrons that exist at very high temperatures.

Figure 7. Different phases and the processes associated with the change from one
phase to the other.

In addition to observing phase transitions between the different forms of

matter, phase transitions can also occur within the same form of matter. For

example diamond and graphite are two polymorphic forms of carbon. They are
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physically different due to their difference in molecular arrangement and the

conversion from one form to the other is described as solid-solid transition.

However, for clarity, within this dissertation phase transition will refer to the

changes from one state of matter to the other, known as classical phase transitions.

Different thermodynamic parameters can be used to describe the states of a

simple and pure one component system such as water. These include density ρ,

energy E, temperature T, pressure P, and chemical potential µ. A phase diagram

(Figure 8) is the easiest way of representing the phases of a pure system using two

of the thermodynamic parameters.36,37 A common example is the PT phase diagram

of water (Figure 8). For mixtures and complex systems, the phase diagrams can be

very complex. Phase diagrams aid in the understanding of the behavior of single

and multicomponent systems.

Figure 8. Simple temperature and pressure phase diagram.

It has been established that phase transitions are a consequence of competition

between the internal energy E and the entropy S of the system.

F = E − TS (2.1)

In the definition of the free energy (equation 2.1), E favors order while S favors

disorder and depending on the value of the temperature, one of the terms becomes

dominant and thus determines the stable phase.36 Therefore to attain equilibrium,
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the chemical potentials of the coexisting phases must be equal.

2.2 Classification of Phase Transitions

Phase transitions can be classified based on a singularity in the thermodynamic

potential (Gibbs free energy) and/or variation of one of its derivative at the point of

a phase change.36 This classification method is referred to as the Ehrenfest

classification of phase transitions. Based on this scheme, phase transitions are

named relative to the lowest free energy derivative that has a discontinuity at the

transition point.

2.2.1 First-Order Phase Transition

The equations of state for different phases of a pure substance like water are

well-defined, regular, and continuous functions, with continuous derivatives. For a

first-order phase transition, the functions of a given phase undergo a sudden change

to the functions of a new phase. This results in a discontinuity in the first derivative

of the bulk Gibbs free energy of the system as it crosses the phase boundary.38 This

type of transition involves the absorption and release of heat (latent heat) with no

observable change in the phase of the system, leading a mixed-phase regime.38,39 In

the mixed-phase region the two phases coexist in equilibrium, i.e., part of the system

that has completed the transition exists in the new phase and the other part yet to

complete the transition still exists in the old phase as illustrated in Figure 9.39

S = −
(

∂G

∂T

)

p

V =

(

∂G

∂p

)

T

H =
∂(G/T )

∂(1/T )
(2.2)
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Figure 9. Representation of Ehrenfest first-order phase transition.39

2.2.2 Second-Order Phase Transition

Second-order phase transitions can be identified by a continuous first derivative

of the Gibbs free energy and at least one discontinuous second derivative. It does

not involve latent heat as for example, in the ferromagnetic phase transition in

iron.39 Here magnetization, which is the first derivative of the free energy with

respect to the applied magnetic field strength, increases continuously with a

decrease in temperature across the phase boundary, while the response functions

(susceptibilities) are discontinuous.

CP = −T
(

∂2G

∂T 2

)

p

κT = − 1

V

(

∂2G

∂p2

)

β =
1

V

(

∂2G

∂P∂T

)

(2.3)

Ehrenfest system of classification gives the impression that higher order phase

transitions can be deduced based on the discontinuity of higher derivatives.38,39

However, this method cannot be extended consistently. Besides, the method is

limited since it depends on the mean field theory which itself fails in the vicinity of

phase transitions. For example, the Ehrenfest classification is invalid for systems

that show divergences rather than finite discontinuities in the response functions
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Figure 10. Second-order phase transition according to Ehrenfest classification showing
discontinuity in the heat capacity CP (second derivative of Gibbs free energy) as a
function of the temperature T).39

and are not first-order transitions. Moreover, this method of classification tends to

neglect the role of thermodynamic fluctuations given that some systems appear to

undergo first-order phase transition for a specific temperature as depicted in Figure

11(a). But when the temperature is increased, the discontinuity vanishes and the

system then appears to undergo second-order phase transition instead (11(b)). This

phenomenon is common with several systems found in nature and needs to be

accurately classified for a clear understanding phase transitions.

Figure 11. Pictorial representation of the limitation of the Ehrenfest classification of
phase transitions.39
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2.3 Modern Classification of Phase Transition

Two main classes of phase transition are exemplified in the modern

classification of phase transitions namely: First-order and second-order phase

transitions or discontinuous and continuous phase transitions. Unlike the Ehrenfest

classification, the modern classification is based on the order parameter. The

Landau theory is a modern classification scheme that uses the order parameter to

distinguish between transitions.

2.3.1 Order Parameter

An order parameter φ is an extensive thermodynamic variable used to

distinguish between phases. It is a measure of the degree of symmetry in the

ordered phase where it takes a non-zero value (usually one) and vanishes in the

disordered phase.36 Most systems have a natural or particular parameter that can

function as the order parameter (Table 1). Modern classifications of phase

transitions are based on whether the order parameter φ is a scalar or vector

quantity or has a tensor character.

Table 1. Examples of order parameters for different systems and their associated
phase transitions36,38

System Transition Order parameter
Liquid-solid Melting/crystallisation Density ρG G=reciprocal

lattice vector (real scalar)
Liquid-gas Condensation/evaporation Density ∆ρ = ρliquid − ρgas

(real scalar)
Magnetic solid Ferromagnetic (TC) Spontaneous magnetization

M (vector)
Antiferromagnetic (TN) Sublattice magnetization

MS (vector)
Dielectric solid Ferroelectric (TC) Polarization P (vector)

Antiferroelectri (TN) Sublattice polarization
PS (vector)

Quantum liquids Normal fluid←→ superfluid Wavefunction ψ (complex
scalar)
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2.3.2 Landau’s Theory

Landau’s theory is the most popular modern classification scheme for phase

transitions. It assumes that the free energy of a system can be given as a power

series of the order parameter.38 For example, in simple systems with a scalar order

parameter, the free energy proposed by Landau has the form of Equation 2.4.

G = a(T ) +
1

2
r(T )φ2 + d(T )φ3 + u(T )φ4 (2.4)

If the coefficients are functions of temperature, a stable phase is observed when

∂G

∂φ
|φ0 = 0,

∂2G

∂φ2
|φ0 > 0 (2.5)

Following this theory, the high symmetry phase is stable only if the linear term in φ

in Equation 2.4 is absent and r is positive. If r is negative, the system is distorted.

Equation 2.4 is the simplified Landau expression for free energy. However, if φ is a

vector, the dot product should be used, i.e, φ2 = φ.φ.

For a symmetric system, at high temperatures φ = 0, implying that the free

energy minimum is at φ = 0 and symmetry implies the free energy is symmetric, i.e,

G(φ, T) = G(-φ, T). Thus the free energy as a function of φ becomes;

G = a(T ) +
1

2
r(T )φ2 + u(T )φ4 + h(T )φ6 + ... (2.6)

A phase transition will occur if one or more of the expansion coefficient changes sign

as the temperature decreases.

2.3.3 First-Order Phase Transition

Considering the case in which the second non-trivial coefficient u(T) changes

sign while the others maintain their signs. First-order phase transitions, or

discontinuous phase transitions, have stable phases when
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0 = ∂φG(φ, T ) = rφ+ uφ3 + hφ5 + ... (2.7)

Neglecting higher powers of φ, and assuming that φ = 0 is a solution of Equation

2.7 as well as a local minima, two other minima would occur if Equation 2.8 has

non-zero solutions φ = φ± 6= 0.

G(φ, T )−G(0, T ) = 0 =
1

2
rφ2 + uφ4 + hφ6 + ... (2.8)

This implies that Equation 2.8 simplifies to:

u2 = 16rh, φ2
± =

−c±3
√
c2 − 16rh

4h
> 0 (2.9)

The transition temperature is given by

u2(Tc) = 16r(Tc)h(Tc) (2.10)

for which u(Tc) < 0. Thus the order parameter just below Tc is given by

φ0 = ±
√

−u(Tc)
4h

6= 0 (2.11)

The stability of the low-temperature phase, i.e., at T < Tc with respect to the order

parameter, is given by

φ2
0 =

a

4u
(Tc − T ) (2.12)

2.3.4 Second-Order Phase Transition

For a continuous phase transition, G must increase with |φ|, at Tc, r=0, d=0,

and u>0. Considering that r(T) approaches zero at T = Tc while the other
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Figure 12. Variation of Gibbs free energy with the order parameter at different
temperatures for a discontinuous phase transition.38

coefficients are positive, r can be written as a function of T near Tc.

r(T ) = r0(T − Tc) (2.13)

The coefficient u is independent of temperature for temperatures very close to Tc.

The free energy can then be rewritten as

G(φ, T ) =
r0
2
(T − Tc)φ2 + uφ4 + hφ6 + ... (2.14)

As T goes below the critical temperature, the extreme at φ = 0 becomes an unstable

minimum. Two other minima appear at ±φ0 and the order parameter increases

continuously from zero as the temperature is lowered from the critical point. This

type of transition is a second-order phase transition or continuous phase transition.

The order parameter can be determined by applying the condition for a minimum.

∂G

∂φ
= 0 = r0(T − Tc)φ+ uφ3 + ... (2.15)
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The solution of Equation 2.15 as T→Tc becomes

|φ| =
√

r0(Tc − T )/d (2.16)

This affords the critical scaling property

φ ∼ |T − Tc|β (2.17)

Given that the critical exponent β = 1/2, the specific heat capacity is obtained from

C = T∂TS = −T∂2TG (2.18)

For T→Tc+0+ and φ = 0

C = −Ta”(T )→− Tca”(Tc) (2.19)

For T→Tc-0+ and φ2→− r0(T − Tc)/d

C = −Ta”(T )− Tr′(T )(φ2)”− Td(T )(φ4)”→− Tca”(Tc) + Tcr
2
0/(2d) (2.20)

This leads to the scaling property

C ∼ |T − Tc|−α (2.21)

The critical exponent α± = 0, for T→Tc ± 0+.

In simple systems phase transitions can be classified or identified based on the

sign of the coefficient u in the Landau expansion. When u > 0, a continuous or

second-order phase transition is observed, while if u < 0 it indicates a discontinuous

or first-order transition, and at u = 0 there is the tricritical point (only observed for

mixtures).

A common feature of all phase transitions is the nucleation process. The phase
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Figure 13. Variation of Gibbs free energy with the order parameter at different
temperatures for a continuous phase transition.38

boundary in a phase diagram is characterized by the critical nuclei whose direct

observation is often difficult. This is because before the nuclei are big enough to be

visible, they have already passed the critical stage. The characteristic properties of

critical nuclei of different fluids as well as their mechanism of growth have been

extensively studied through simulations and advanced microscopy.13 These

mechanisms are governed by the classical nucleation theory (CNT).40

2.4 Classical Nucleation Theory

2.4.1 Definition

Nucleation is the process by which nuclei are formed from solution. It is the

first irreversible formation of a nucleus of the new (equilibrium) phase.41 The term

“nucleus” refers to the smallest ensemble of atoms, molecules or ions of the new

phase formed during precipitation and which is capable of spontaneous growth.

Examples of nucleation processes include the condensation of a vapor to a liquid

droplet, or the formation of gas bubbles from boiling water. In both processes only

physical changes are involved and no chemical reaction.
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The role of nucleation in the dynamics of most first-order phase transitions and

its application in many industrial processes has greatly influenced research interest

in the nucleation phenomenon.42 Crystal nucleation is an activated process that

requires the handling of less frequent events that occur for a very short time at a

specific location of a liquid sample.43,44 The understanding of the theory of

nucleation has been based on the classical nucleation theory (CNT) for decades.

This is because CNT, though developed using the liquid droplet model, captures the

qualitative features of the nucleation process45 and predicts the nucleation rate

based on bulk material properties.42

CNT contains two ingredients: the first being a thermodynamic estimate of the

reversible work needed to make a critical nucleus (i.e., a nucleus that is equally

likely to dissolve as it is to grow to macroscopic size). The second ingredient of

CNT is an estimate of the rate at which critical nuclei transform into macroscopic

crystallites (growth).46

A system that contains a critical nucleus is said to be at a local free-energy

maximum. The critical nucleus has a high free energy, which makes it less likely of

forming. Thus the time scale for nucleation is much larger than the characteristic

time scale for the microscopic dynamics of the system.44 The nucleation step is the

rate limiting step in a phase transition and a rare event on the timescale of

simulations. As such, special techniques are required for its investigation. Ngale et

al., for example, have used the umbrella sampling technique and hybrid Monte

Carlo simulations to study nucleation in different systems.47

2.5 Theory

The CNT gives the link between the observable quantity (number of crystal

nuclei formed per unit time per unit volume) and the surface free energy.46 It is the

simplest and most widely used theory that describes the process of nucleation,

originally derived for condensation of a vapor into liquid. By analogy, it has also
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been employed to explain precipitation of crystals from supersaturated solutions

and melts.40 Crystallization is importance in many naturally occurring processes, as

well as in the chemical, pharmaceutical, and food industries.48 Gibbs was the first

to attempt a thermodynamic description of the nucleation process in the late 19th

century. He showed that the free energy change for the formation of clusters was

made up of two parts. The free energy change for phase transformation (∆Gv) and

the free energy change for the formation of a surface (∆Gs).
48,49 That is, there is a

cost associated with the creation of a new phase, the interface energy. This is a

penalty term which becomes smaller as the particle surface to volume ratio

decreases. It accounts for the stability of the new phase (solid phase), and is

proportional to the volume of the nucleus. This term also known as the bulk term,

is equal to the number of spheres in the nucleus, n, times the chemical potential

difference ∆µ.50 In a metastable system this leads to a critical size of fluctuation

beyond which growth is favored.

∆µ = µeq − µm (2.22)

where µeq defines the chemical potential of the coexisting equilibrium fluid and solid

phases, and µm the chemical potential of the metastable fluid phase which contains

the nucleus.

The other term describes the free energy needed to create a solid/liquid

interface. It is given a positive sign and proportional to the surface area of the

nucleus.46 This surface term is given by the surface area of the nucleus times the

surface tension γ of the bulk interface between the coexisting solid and fluid phases.

Here any difference between the spherical interface created by the solid nucleus and

the surrounding metastable fluid phase, and the flat interface between the coexisting

solid and fluid phases is ignored.50

These two terms were used by Gibbs to develop an expression for the (Gibbs)

free energy of a spherical nucleus of radius R in the form
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Figure 14. Free energy diagram for nucleation.51

∆G = 4πR2γ − 4

3
πR3ρs∆µ (2.23)

Where ρs is the number density of the bulk solid, ∆µ the difference in chemical

potential between the solid and the liquid, and γ is the solid/liquid surface free

energy density.

It is important to observe that the free energy change for a phase

transformation (∆Gv) of the volume term decreases linearly with n, while the free

energy change for the formation of a surface or the surface term increases as n2/3.

Thus, the function ∆G has a maximum at R = 2γ/(ρs|∆µ|) denoted by ∆G∗ which

defines the height of the nucleation barrier given by

∆G∗ = 16π

3

γ3

(ρs|∆µ|)2
(2.24)

A nucleus with free energy equal to ∆G∗ also has n∗ particles and is known as the

critical nucleus (has equal chance of growing or going into solution). There are two

classes of nucleation processes: homogeneous and heterogeneous nucleation.
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The nucleation theory expresses the rate J of nucleation as the product of an

exponential factor and a prefactor.

J = Kexp(−∆G∗/kBT ) (2.25)

where ∆G∗ is the free energy cost of creating the nucleus at the top of the barrier

(critical nucleus), kB is the Boltzmann constant and T the absolute temperature. K

is the kinetic prefactor which is composed of three terms, i.e.

K = ρZf+
c (2.26)

Z is the Zeldovich factor defined as;

Z =

√

β|∆µ|
6πn∗

(2.27)

f+
c is the rate at which molecules attach to the critical nucleus given by

f+
c =

< [n∗(t)− n∗(0)]2 >

2t
(2.28)

and ρ is the number density of sites for nucleation as the nucleus can form around

any molecule. The product of Z and f+
c defines the rate at which the nucleus at the

top of the barrier actually crosses it.44

Volmer and Weber developed the first expression for the nucleation rate where

they assumed it was proportional to a Boltzmann factor,52 while Farkas provided an

expression for the pre-exponential factor.53 Farkas considered equilibrium reactions

and assumed that every collision of molecules is a potential start toward nucleus

formation and that every molecule that collides with a growing nucleus sticks to

it.44,45
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2.5.1 Homogeneous Nucleation

Homogeneous nucleation is a spontaneous process that occurs in a uniform

solution (form in the bulk). Although it is spontaneous, it is a consequent of a

response to change in some intensive properties such as temperature or pressure.54

The CNT was developed for homogeneous nucleation, wherein it assumes that the

embryo (nucleus) formed from the bulk fluid (liquid) is spherical and possesses

properties of the bulk liquid phase.55 The energy needed to create a droplet of

critical size, is given by ∆G∗ as shown in Equation 2.24, and the rate of nucleation

is given by Equation 2.25.

2.5.2 Heterogeneous Nucleation

Heterogeneous nucleation is sometimes referred to as binary or multiple

nucleation. It is important for many processes such as cloud formation and emulsion

polymerization. It involves the promotion of nucleation by insoluble particles or

impurities in solution or the walls of the container.44 Condensation processes of

practical interest, in fields like atmospheric science, are usually heterogeneous or

ion-induced. Although this type of nucleation process is more common and tends to

occur much more quickly than homogeneous nucleation, it is believed to proceed

through a more complex mechanism of nucleation.55 Heterogeneous nucleation from

the vapor on atomic size particles as studied with the interaction site model shows

that it is highly dependent on the nature of the condensed fluid and the size of the

seed. These factors induce unexpectedly high surface adsorptions that reduce the

barrier to nucleation.56 Thus the nucleation rate near a surface or induced by some

impurities can be many orders of magnitude higher than in the bulk. Consequently,

in many commonly encountered processes heterogeneous nucleation dominates while

homogeneous nucleation turns to be irrelevant.44 The surface of the impurities was

considered as being smooth and flat by Volmer in the late 1920s, from which he was

able to extend the classical nucleation theory by developing an expression for the
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Figure 15. Free energy diagram illustrating the difference between homogeneous and
heterogeneous nucleation.

free energy of heterogeneous nucleation as:52

∆Ghetero = ∆Ghomo ∗ f(θ) (2.29)

The main differences between homogeneous and heterogeneous nucleation are the

presence of nucleating agents such as impurities and/or the container walls, and the

reduction in the nucleation barrier for heterogeneous nucleation (Figure 15).

2.6 Assumption of the Classical Nucleation Theory

During the development of the classical nucleation theory a number of different

assumption were made. Some of these assumptions have been shown to be irrelevant

while others either fail after a certain critical value or the shape of some parameters

are met. One of such assumptions is that the crystal nucleus is incompressible, that

has been shown to be irrelevant.46

Another assumption is that the structure of the crystal nucleus is that of the

stable bulk phase at coexistence. In the presence of a metastable solid phase, this
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assumption is violated as shown by the Ostwald’s step rule.43,57 This is most easily

seen by considering the density of crystal nuclei as a function of their size.

The CNT assumes that the shape of the nucleus is spherical, in order to

minimize the surface energy, and that it possesses the properties and the structure

of the stable crystal phase. However, studies have shown that the shape of the

nucleus is not always spherical. Valeriani et al. for example, showed that NaCl

nucleates into cubic shaped crystallites.43

CNT assumes uniform composition throughout the droplet. However, it is

believed that at the surface of mixed solutions such as alcohol-water and

acetone-water, clusters can have considerable difference in composition compared to

that of the bulk due to the surface enrichment effects.48

2.7 Limitations of the Classical Nucleation Theory

The derivation of classical nucleation theory gives a false estimate of the

pressure inside the critical nucleus. This result in failure of CNT to predict the

metastable phases during the nucleation process.46 The pathway for crystal

nucleation can be strongly influenced by the presence of metastable phases, as can

be shown from the Ostwald’s rule which states that most compounds do not always

nucleate in the stable form but in the form for which the free energy barrier is the

lowest.43

CNT fails systematically in predicting the temperature dependence of the

nucleation rates for most substances, and the behavior of strongly polar fluids. As a

result, nucleation rates predicted by CNT are 1-2 order(s) of magnitude higher than

those reported from experiments.48 CNT ignores molecular level effects relevant to

the homogeneous and heterogeneous nucleation of clusters of only a few molecules,

and is incapable of explaining the observed sign preference in ion-induced nucleation

of dipolar molecules.56
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The classical nucleation theory derived for a vapor/liquid condensation system

is inapplicable to crystallization in solution. This is explained as being due to the

use of the contact angle concept of the Young’s equation (Equation 2.30) in the

description of the interaction between substrate and nucleus by the CNT.

cos θC =
γSG − γSL

γLG
(2.30)

where γSG, denotes the solid-vapor interfacial energy, γSL, the solidliquid interfacial

energy, γLG, the liquid-vapor interfacial energy (surface tension), and θC the

equilibrium contact angle.

This concept is considered crude. However, there are no theoretical developments in

the microscopic direction and the contact angle concept provides little kinetic

information about heterogeneous nucleation. Gibbs free energy on the other hand

ignores the free energy of the electrical double layer that is spontaneously formed

with the production of the embryo where the surface and solution are in contact.58

CNT fails in the prediction of the absolute nucleation rates since the

pre-exponential factor in the kinetic (rate) equations remains undetermined.48 It

cannot also explain polymorphism and cross nucleation since it assumes uniform

composition. But it is known that a lot of compounds can exist in the solid state

with more than one crystalline form.43

The classical theory does not predict nucleation differences due to ion polarity.

Although studies illustrate that water vapor nucleates much more readily around

negative ions than in the presence of positive ions, whereas alcohols and carboxylic

acids, have a preference for positive ions.59

2.8 Steps Toward Improving the Limitations of the Classical Nucleation Theory

The Gibbsian droplet model makes a correction regarding the incompressibility

of the crystal nucleus assumed by the CNT model by considering that the critical
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nucleus is at equilibrium with the parent phase. This suggest that the the critical

nucleus and the parent phase must have the same chemical potential. It introduces

the Laplace pressure which is always positive and predicts that the small nuclei are

denser than the corresponding bulk phase. However, this model cannot be applied

to crystallites because the excess pressure is not equal to 2γ/rs.
46

Molecular dynamics studies have been used to show that the obtained nuclei

present anisotropic shapes in opposition to the spherical assumption of the CNT

that they are spherical.43 Some theories that have been used in an attempt to

correct CNT end up producing similar results. For example, it was suggested that

the use of viscosity in CNT instead of considering the interfacial activation energy

could be a source of error for the theory. Conversely, a study by Tolman and

collaborators gave results closer to CNT than with experiments which indicated

that other problems exist with the classical nucleation theory.60 A number of

models have been put in place in attempts to make corrections to some of the

drawbacks of CNT.

2.8.1 The Self-Consistent Classical Theory (SCCT)

SCCT tries to correct the assumption of uniform composition from the CNT

model by distinguishing the monomers of the new and parent phase. This adjusts

the nonzero free energy of the monomers in an ad hoc way by subtracting the free

energy of the monomer from all cluster sizes. This model, which appears to

underestimate the height of the nucleation barrier, still gives improved agreement

between theory and experiment in the case of homogeneous vapor condensation.57

2.8.2 The Phenomenological Diffuse Interface Theory (DIT)

DIT takes into account atomistic simulations results, which show that the

solid-liquid and vapor-liquid interfaces extend to several molecular layers. It

assumes that bulk crystal properties exist at the center of the nuclei. This approach
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considers a curvature dependent interfacial free energy (surface tension) and usually

improves significantly the agreement between theory and experiment for both vapor

condensation and crystal nucleation.57,59

2.8.3 The Phase Field Models (PFTs)

PFT has two variant forms that rely on either the double-well and interpolation

functions (denoted by PFT/S1 and PFT/S2), or on a Ginzburg-Landau expanded

free energy that reflects the crystal symmetries (denoted by PFT/GL1 and

PFT/GL2). The double-well variation of PFT has a double-well free energy density,

with minima representing the newly formed and the parent phases. PFT/S1, and

PFT/S2 models underestimate the height of the nucleation barrier while PFT/GL1,

and PFT/GL2 models predict it fairly accurately.57

2.8.4 Density Functional Theory (DFT)

Density functional theory has been used in the last several years to develop a

nonclassical approach to nucleation. The properties of the critical nucleus are

obtained from the structure of the free energy of a nonuniform fluid by assuming

that any nucleating system has an inhomogeneous structure, thus eliminating the

basic assumptions of the capillarity approximation. It introduces the temperature

dependence by considering that the free energy of a nonuniform system is a unique

functional of the average density whose minima determine the thermodynamic

states at a given temperature. The results follow the experimental trends more

closely. But the effect of the dipole moment on the free energy was quite small

compared to the experimental results for the study of Stockmayer fluids, which

consist of point dipoles embedded in Lennard-Jones particles. The free energy of the
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fluid in a weighted density approximation may be expressed as follows;

β0F [ρα(r)] =
∑

α

∫

drρα(r)−
∫ ∫

dr dr ′s(|r − r ′|)f1(r)f2(r ′)

+

∫

drΨ[η̄(r)]ρs(r) +
β0
2

∑

α,β

∫ ∫

dr dr ′φα,β
p (|r − r ′|)ρα(r)ρβ(r ′)

+ β0
∑

α

∫

drV α
ext(r)ρα(r) (α, β = 1, 2) (2.31)

The interaction site model together with the DFT incorporates terms for most

of the possible interactions that may occur in a solution during nucleation. This is

done by introducing the first four terms in Equation 2.31, which accounts for

different contributions to the free energy of the system. The first term takes care of

the ideal free energy of a binary mixture of isolated atoms. The decrease in entropy

due to chemical bonding in the formation of a molecule is included separately and

represented by the second term. Short-range repulsive interactions between

molecules are introduced by the third term using a weighted density approximation,

and the fourth term compensates for the long-range part, φα,β
p , of the site-site

interaction potential in a classical mean-field approximation. The atoms in this

model are assumed to interact via a Lennard-Jones type potential with the

additional coulombic interaction of embedded point charges.56

2.9 Conclusion

CNT is based on the continuum thermodynamic treatment of clusters by

imposing the capillarity approximation, which means that small clusters are

considered to have the same properties as the bulk material. The validity of

continuum thermodynamics appears to be doubtful. However, CNT describes basic

principles of nucleation processes and has been successfully used in many cases.

The exponential dependence of nucleation rate makes nucleation very sensitive

to even slight changes in the experimental conditions. This makes the direct
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experimental observation of nucleation difficult, given that the critical nucleus is

small.

Models used to correct the limitations of CNT, either produce the same results

or underestimate the barrier of nucleation. Nonetheless, others have been very

successful giving improved agreement between theory and experiment.
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CHAPTER III

STATE OF THE ART IN MOLECULAR SIMULATIONS

3.1 Statistical Mechanics

Statistical mechanics deals with the bulk properties of a system and tries to

bridge the gap between simulations and experiments. It achieves this by expressing

the bulk properties as a sum over the properties of the individual constituents.61,62

Molecular simulations provide details such as the position and momentum of all

particles within the system. With the help of statistical mechanics these properties

are translated to macrostate properties through a set of state variables such as the

number of particles, volume, and energy of the system. Statistical mechanics

therefore allows for a connection between the microscopic states of a system and the

macroscopic (observable) thermodynamic properties.63 Let Γ=Γ(qi....q3N ; pi...p3N)

specify the microstate of a classical system of independent particles in equilibrium

at time t. Γ will evolve in time in accordance with Newton’s laws and the value of a

particular thermodynamic quantity, Aobs, is considered to be the long time average

of some analogous microscopic value A(Γ), such that

Aobs = 〈A〉time = 〈A(Γ(t))〉time = lim
tobs→∞

1

tobs

∫ tobs

0

A(Γ(t))dt (3.1)

The principles of statistical mechanics can be explained under two main headings:

Lagrangian mechanics and Hamiltonian mechanics.61,62 These will be presented in

the subsequent sections together with the explanation/definition of some common

terms in statistical mechanics.
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3.1.1 Lagrangian Mechanics

Lagrangian mechanics provides a convenient way to study the trajectory of a

system of particles in configuration space.63–65 The Lagrangian is defined as

L = T − V (3.2)

where T is the kinetic energy of the system and V is the potential energy.

For a single particle in three dimensions, the Lagrangian in Cartesian coordinates

can be written as

L(x, ẋ) = 1

2
mẋ2 − V(x) (3.3)

where the bold characters indicate 3D vectors.

The trajectory of the system can be found by solving the Euler-Lagrange equation

of motion for the system,64

d

dt

(

∂L
∂ẋi

)

− ∂L
∂xi

= 0 (3.4)

where i = 1, 2, 3 and indicates the three Cartesian directions.

By substituting in the Lagrangian, one gets

∂L
∂xi

= − ∂V
∂xi

(3.5)

and
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∂L
∂ẋi

=
∂

∂xi

(

1

2
mẋ2

)

=
1

2
m

∂

∂xi
(ẋiẋi)

= mẋi

(3.6)

therefore

d

dt

(

∂L
∂ẋi

)

= mẍ (3.7)

Substituting Equation 3.5 and 3.7 into 3.4 gives

mẍi +
∂V
∂xi

= 0 (3.8)

mẍi = −
∂V
∂xi

(3.9)

Ignoring all i, one gets

mẍ = −∇V (3.10)

Defining force F as

F = −∇V (3.11)

implies that

F = mẍ (3.12)
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The use of scalars (T and V ) in the Lagrangian formulation instead of vectors

makes it simple.65

3.1.2 Hamiltonian Mechanics

Hamiltonian Mechanics is an alternative theoretical formulation for describing a

system. This has several advantages. Instead of requiring that the trajectory of the

system be found by solving a series of second order differential equations, it defines

the dynamics of the system with twice (6N) as many first order equations. The

Hamiltonian formalism uses the idea of generalized coordinates (q, q̇).62,63 In some

cases, like an isolated system of classical particles, normal Cartesian coordinates can

be used as the generalized coordinates. The most general expression of the

Lagrangian of a system in generalized coordinates is given by

L(qi, q̇i, t) =
∑

i

(

1

2
m(q̇i)

2 − V(qi)
)

(3.13)

The variation of Equation 3.13 with time is

dL =
∑

i

[

∂L
∂qi

dqi +
∂L
∂q̇i

dq̇i

]

+
∂L
∂t
dt (3.14)

This can be simplified by noting that

∂L
∂q̇i

= mq̇i = pi (3.15)

where pi is the generalized momentum coordinate.

Substituting this expression into the Euler-Lagrange Equation 3.4 (written with

generalized coordinates) and rearranging gives

∂L
∂qi

= ṗi (3.16)
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Substituting Equation 3.15 and 3.16 into 3.14 yields

dL =
∑

i

[ṗidqi + pidq̇i] +
∂L
∂t
dt (3.17)

Understanding that

pidq̇i = d(piq̇i)− q̇idpi (3.18)

and applying this in Equation 3.17, one gets

dL =
∑

i

[ṗidqi + d(piq̇i)− q̇idpi] +
∂L
∂t
dt (3.19)

Finally, the derivative of the product can be moved to the left side of the equation,

and multiplying both sides by −1 to arrive at

d

(

∑

i

piq̇i − L
)

=
∑

i

[−ṗidqi + q̇idpi]−
∂L
∂t
dt (3.20)

The term in brackets on the left hand side of Equation 3.14 is defined as the

Hamiltonian of the system, H = H(qi, pi, t). The explicit time derivative is

dH =
∑

i

[

∂H
∂qi

dqi +
∂H
∂pi

dpi

]

+
∂H
∂t

dt (3.21)

Comparing the terms of Equations 3.14 and 3.15, one gets Hamilton’s equations

∂H
∂qi

= −ṗi,
∂H
∂pi

= q̇i,
∂H
∂t

= −∂L
∂t

(3.22)

For a system comprised of independent classical particles, i.e., in the absence of any

external field, the Hamiltonian is just the total internal energy of the system.61,63

Recall that the Hamiltonian is defined by a Legendre transformation of the

Lagrangian
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H =
∑

i

piq̇i − L (3.23)

where pi is the one dimensional linear momentum for particle i, or mvi, and m is

the particle mass.

The term q̇i is the velocity of the particle along the same dimension. The product of

pi and q̇i can be written as mv2i and the sum over all i yields twice the kinetic

energy of the whole system, 2T .64 The Hamiltonian is thus

H = 2T − L = 2T − (T − V) = T + V (3.24)

The first of Hamilton’s equations can now be used to obtain Newton’s second law.

In this system, T = T (p) and V = V(q), so one would have

∂H
∂qi

=
∂V(qi)
∂qi

= − d

dt
pi = −

d

dt
(mvi) = −mai (3.25)

Ignoring all i, one can write

∑

i

∂H
∂qi

= ∇V = −F = −ma (3.26)

which yields Newton’s law upon dividing by −1

3.1.3 Phase Space Distribution and Liouville’s Equation

When using the Hamiltonian formalism, the state of a system of N independent,

classical particles at time t is specified by 3N generalized coordinates (q1...q3N) and

momenta (p1...p3N) of the particles. The set of q and p accessible to the system

describes the system’s phase space. Because both p and q are functions of time, a

phase space distribution can be defined, ρ=ρ(q, p, t), which gives the probability

that the system occupies each infinitesimal hypervolume element (d3Nq d3Np) of the

phase space. Here, q and p represent the set of all 3N generalized coordinates and
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momenta, respectively. While this distribution may change with time, no new states

(i.e. points in the phase space) are ever created or destroyed.66 The time evolution

of the distribution must satisfy the continuity equation

∂ρ

∂t
+

3N
∑

i=1

(

∂(ρq̇i)

∂qi
+
∂(ρṗi)

∂pi

)

= S (3.27)

where S is the rate at which new states are created and thus is equal to zero.

Applying the chain rule for the derivation of the products, one gets

∂ρ

∂t
+

3N
∑

i=1

(

∂ρ

∂qi
q̇i +

∂ρ

∂pi
ṗi + ρ

∂q̇i
∂qi

+ ρ
∂ṗi
∂pi

)

= 0 (3.28)

Via Hamilton’s equations, q̇i and ṗi can be replaced in the last two terms of the sum

to get

∂ρ

∂t
+

3N
∑

i=1

(

∂ρ

∂qi
q̇i +

∂ρ

∂pi
ṗi + ρ

∂

∂qi

∂H
∂pi

+ ρ
∂

∂pi

(−∂H
∂qi

))

= 0

∂ρ

∂t
+

3N
∑

i=1

(

∂ρ

∂qi
q̇i +

∂ρ

∂pi
ṗi + ρ

∂2H
∂qi∂pi

− ρ ∂2H
∂pi∂qi

)

= 0 (3.29)

Because the partial derivatives are equal, the last two terms will cancel out for each

i to afford

∂ρ

∂t
+

3N
∑

i=1

(

∂ρ

∂qi
q̇i +

∂ρ

∂pi
ṗi

)

= 0 (3.30)

This equation is the total time derivative of ρ(q, p, t), so it can be simplified to

dρ(q, p, t)

dt
= 0. (3.31)

This is Liouville’s equation which essentially asserts the conservation of phase
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space density. The special case which occurs for conservative and isolated systems

where ∂ρ
∂t

= 0, is of particular importance to this work. Here, the phase space

distribution for the system is not explicitly dependent on time but is stationary.

Equation 3.30 becomes

3N
∑

i=1

(

∂ρ

∂qi
q̇i +

∂ρ

∂pi
ṗi

)

= 0 (3.32)

one solution to which is the famous Maxwell-Boltzmann distribution

ρ ∝ exp(− H
kT

) (3.33)

3.1.4 Ensembles, Ergodicity, and Thermodynamics

As mentioned above, a given system of classical particles (distinguishable,

non–relativistic) is defined by the accessible phase. The set of all points in this

phase space (each one of which represents a unique state of the system) is called an

ensemble. The statistical properties of an ensemble are described by its normalized

phase space distribution. The normalization factor for the distribution is called the

partition function, and provides the thermodynamic potential which connects

statistical (microscopic) and classical (macroscopic) thermodynamics.66–68 There are

a number of commonly used ensembles, each characterized by different fixed

macroscopic quantities of a system, like the microcanonical ensemble, with N, V,

and E fixed, the canonical wherein N, V, and T are constant, and the

isobaric-isothermal that has N, P, and T fixed. The quantities N, V, E, T, and P,

refer to the number of particles, volume, total internal energy, temperature, and

pressure respectively. The relevant aspects of the different ensembles, including the

phase space distribution, partition function, and appropriate thermodynamic

potential, will be discussed briefly in the next section.
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3.1.4.1 Microcanonical Ensemble, NVE

The microcanonical ensemble describes a thermally isolated system where the

number of particles (N) and the volume they occupy (V) remain fixed.61,62 Because

the system is thermally isolated, it will not exchange energy with an external

environment and the Hamiltonian will remain fixed as well. The phase space density

for the microcanonical ensemble is

ρNV E ∝ δ(H(q, p)− E) (3.34)

where δ is the Dirac delta function.

The Hamiltonian is not explicitly time dependent because the distribution is

stationary. The probability of finding the system in a randomly chosen state is zero

for those values of H 6= E and it is equal for all other states. The notion that an

isolated system in equilibrium is found with equal probability in all of its accessible

microstates is called the equal a priori probability postulate and is one of the

cornerstones of statistical mechanics.69 A normalization factor is needed to ensure

that the probability of finding the system anywhere in phase space is equal to one.

This normalization factor is called the partition function and is essentially a sum

over states

QNV E =

∫

δ(H(q, p)− E)d3Nqd3Np (3.35)

For the microcanonical ensemble, the partition function is simply the number of

microstates accessible to the system. Since the statistical entropy of a system is a

function of the number of microstates,

S = kB lnQNV E (3.36)

where kB is Boltzmann’s constant.
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Equation 3.36 is the thermodynamic potential that provides the link between the

microscopic states of a system in the microcanonical ensemble and its bulk

thermodynamic properties. Additional properties are derived through classical

thermodynamic relationships between the fixed parameters and the entropy.66

3.1.4.2 Canonical Ensemble, NVT

The canonical ensemble describes a system with NVT fixed. The phase space

distribution and partition function for the canonical ensemble are typically arrived

at by considering two systems: the system of interest or concerned, which is

designated C, and a much larger system R.61,62 These two systems are subject to

the constraints

C ≪ R

ET = EC + ER (3.37)

where ET is the total energy, EC is the energy of the system and ER that of the

larger system which will be called the reservoir.

Because the system and reservoir can be considered as being independent, the

number of states possible (Ω) for the entire system is given by

ΩC+R = ΩCΩR (3.38)

If a particular microstate, i, of the system with energy Ei is chosen, then

ER = ET − Ei. The probability of finding the system at this state can be expressed

by considering the total number of states possible in R with C at energy Ei divided

by the sum of the total number of states for the reservoir for all possible values of

Ei. This can be expressed as
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pi =
1× ΩR(ET − Ei)
∑

j ΩR(ET − Ej)
(3.39)

The denominator is the canonical partition function, sum over all possible

energy levels of the system, with each energy level supported by multiple states. It

should be noted that in a system of classical particles, the available energy levels are

continuous, and the positions and momenta of the particles themselves are

continuous. Therefore both the denominator and numerator would need to be

coarse grained and the given expressions replaced with an equivalent integral

formulation.61,62 For clarity, however, one can continue assuming that the system

can be described by discrete and countable states, and provide the corresponding

integral expression at the end. Now, entropy relates to the number of microstates by

Equation 3.36 which can be re-written here using Ω

S = kBln(Ω) (3.40)

Solving for Ω gives

Ω = e
S
kB (3.41)

Substituting this into Equation 3.33 and adding subscripts to differentiate our

systems and energy levels yields

Pi =
1× exp(SR(ET−Ei)

kB
)

∑

j exp(
SR(ET−Ej)

kB
)

(3.42)

This is rather cumbersome and can be made simpler via an appeal to the first law of

thermodynamics which provides the relationship between entropy, temperature and

energy:

dE = TdS − PdV (3.43)
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Where E is the total internal energy of the system, T temperature, and P the

pressure.

In the canonical ensemble, the volume is fixed and so the last term vanishes.

Integrating both sides of the resulting differential equation and solving for S with

limits 0 to T and 0 to S for the temperature and entropy respectively, yields

S =
E

T
(3.44)

Substituting this into Equation 3.42 gives

Pi =
1× e

ET−Ei
kBT

∑

j e
ET−Ej

kBT

(3.45)

Introducing the inverse temperature, β= 1
kBT

Pi =
1× eβ(ET−Ei)

∑

j e
β(ET−Ej)

(3.46)

Since ET is a constant, it can factor out of both the numerator and denominator to

give

Pi =
1× e−βEi

∑

j e
−βEj

(3.47)

Notice that the probability as given here does not depend on the total energy of the

combined system, but only on the specific energy of the smaller system that is

immediately being considered. Thus, for system C, the probability of finding it in

state i is proportional to e−βEi , which means

ρ ∝ e−βEi ∝ e−
Hi

kBT
(3.48)

and the partition function is
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QNV T =
∑

j

e−βEj =
∑

j

e
−

Hj

kBT (3.49)

Recall however that this formulation assumes countable energy levels. For a system

of particles with continuous energy levels the partition function becomes

QNV T =

∫

e
−

H(q,p)
kBT d3Nqd3Np (3.50)

The relevant thermodynamic potential in the canonical ensemble is the Helmoltz

free-energy, A

A = −kBT lnQNV T (3.51)

3.1.4.3 Isothermal-Isobaric Ensemble, NPT

The isothermal-isobaric (NPT) ensemble is a statistical mechanical system that

maintains constant temperature and pressure in addition to the number of particles.

In this ensemble, the energy and volume of the system are allowed to fluctuate. It is

important for clear definitions of thermodynamic states of a simulated system and

permits direct comparison with experiments.70 The NPT ensemble has been

extensively used with MC considered the method of choice for processes that require

long relaxation time such as phase transition.71 As a result, the NPT ensemble is

said to be the natural ensemble for the study of first order phase transitions that

involve drastic change in the density of the system.72

The NPT ensemble can be construed as a modification of the canonical (NVT)

ensemble by replacing volume with pressure. As such the NPT partition function is

defined in terms of the canonical partition function rather than the basic

microcanonical (NVE) ensemble. Consider a system in contact with an infinitely

large energy and volume reservoir, then the probability that the system is in a

microstate m is given by:
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℘m ∝ ΩB(EB, VB)

∝ ΩB(ET − Em, VT − Vm)

∝ exp[SB(ET − Em, VT − Vm)/kB] (3.52)

where VT and ET are the total and constant volume and energy respectively.

Applying Taylor’s expansion on Equation 3.52 gives

℘m ∝ exp

[

SB(ET , VT )

kB
− Em

kB

dSB(ET , VT )

dEB

− Vm
kB

dSB(ET , VT )

dVB
+ ...

]

(3.53)

Treating the first term in the exponential as a constant since it is independent of m

and simplifying the derivatives of the entropy base on its relation to temperature

and pressure results to

℘m ∝ exp [−βEm − βPVm] (3.54)

The probability normalization factor isothermal-isobaric partition can now be

introduced to give

℘m =
exp [−βEm − βPVm]

∆(NPT )
(3.55)

∆(NPT ) =
∑

V

∑

all n at V,N

exp [−βEn − βPV ] (3.56)

where the first sum is over all possible volumes of the system while the second sum

is over all microstates at constant V and N. Also notice that the ∆(NPT ) is a
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function of N, P, and T only since the volume varies.

Thus if the pressure term is factored out from the second sum equation 3.56

becomes;

∆(NPT ) =
∑

V

exp [−βPV ]
∑

all n at V,N

exp [−βEn] (3.57)

Recognize that the second sum is the canonical partition function. Changing the

first sum to an integral with respect to the volume of all possible microstaes leads to

the expression of the isothermal-isobaric partition.

∆NPT =

∫ ∞

0

e−βPVQNV TdV

=
1

Λ(T )3NN !

∫ ∞

0

e−βPVZNV TdV (3.58)

where Z represent the configurational integral of the system.

The corresponding thermodynamic potential in the isothermal-isobaric ensemble is

the Gibbs free energy G.

GNPT = − 1

β
ln∆(NPT ) (3.59)

In a MC simulation, fluctuation in energy is accomplished through particles

displacement (same as in the NVT ensemble) while volume fluctuation is achieved

by using volume scaling moves. For a given volume change ∆V the new volume is

given by V ← V +∆V . For the study of phase coexistence, the volume fluctuations

near the critical point can be large as the system move between both phases. In this

case the log-volume scaling moves are used where the change in volume

∆V = ln∆V . However after each volume change, the volume-dependent long range

corrections must be recalculated.
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3.1.4.4 Ergodicity

The ergodic hypothesis is important because like statistical mechanics, it

provides a second link between microscopic and macroscopic states of a system. An

ergodic system is one with a stationary distribution (∂ρ
∂t

= 0) that will sample all of

its accessible phase space (regions where ρens(Γ) is non-zero) before ever repeating a

state. Although ergodicity is difficult to prove for all but the simplest of mechanical

systems, it is almost always assumed to be true-based in part on Liouville’s theorem

and the equal a priori probability postulate of statistical mechanics. If a system is

ergodic, the time average of A(Γ) as t→∞, or even as t approaches the Poincaré

recurrence time (the time taken to complete one cycle through phase space) will be

identical to the ensemble average of A(Γ).73

〈A〉ens =
∫

A(Γ)ρens(Γ)dΓ = 〈A〉time = Aobs (3.60)

where 〈A〉ens indicates the ensemble average and ρens(Γ) the normalized probability

density.

In general, the relationship between ρens(Γ) and the partition function Qens for a

particular ensemble is

ρens(Γ) = Q−1
enswens(Γ) (3.61)

where wens(Γ) properly weights each value of Γ and for each ensemble it is the

function proportional to ρ (i.e., Equation 3.42) such that

Qens =

∫

dΓwens(Γ) (3.62)

The left piece of Equation 3.60 can be rewritten as

〈A〉ens =
∫

wens(Γ)A(Γ)
∫

wens(Γ)dΓ
dΓ (3.63)
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The use of computer simulations to establish the properties of systems, can

therefore be seen as a process of computing the average value of a given ensemble’s

relevant thermodynamic potential. Using this and other thermodynamic properties

that are fixed in defining the ensemble, other thermodynamic quantities of interest

can be calculated. Because of the direct relationship between the partition function

and this thermodynamic potential in each ensemble, the work of simulation becomes

the of estimating the partition function. This can be done either by letting the

system evolve over some long enough timescale via MD simulation or by suitably

sampling the phase space of the ensemble via MC techniques.66

3.2 Simulation Methods

Molecular Dynamics (MD) and Monte Carlo (MC) are two practically

independent techniques. However, limitations of each method sometimes makes one

suitable for a particular task over the other. They are both limited to the study of

relatively small systems (on the order of 1000 particles or less). MD studies different

systems as a function of time, typically in the order of 100 picoseconds. But for

small systems, using restricted force fields, a time scale of up to 100 nanoseconds

can be attained.74 It is designed to work best in the microcanonical (NVE)

ensemble. Consequently simulations in other ensembles such as the canonical

(NVT), grand canonical (µVT) etc., cannot be performed with pure MD. In such

situations, a combination of MD with other techniques can be used or it is replaced

with MC. Conversely, MC can be employed to study many different ensembles such

as NVT, µVT, isobaric-isothermal (NPT) ensembles but is not suitable for systems

in the NVE ensemble. MD, on the other hand, gives details about the trajectory of

the system, which is not possible with MC since it is a random (stochastic)

technique.61,62 A combination of both methods known as the used Hybrid Monte

Carlo (HMC) has also been widely used in molecular modeling. HMC has been

largely employed in the projects conducted for this dissertation and to a limited

extent MC. In this chapter, the different simulation methods are discussed together
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with some sampling techniques used to aid various simulations in sampling rare

events accurately.

3.2.1 Molecular Dynamics

An MD simulation seeks to follow the trajectory of a system as it evolves over

time via Newton’s laws. If the state of an isolated system of N particles is specified

by q = (q1...qN) and p = (p1...pN) where q1, p1 represent the 3-dimensional

generalized position and momenta vectors associated with particle 1, then the

Hamiltonian H(q, p) is
H(q, p) = T (p) + V(q) (3.64)

and Hamilton’s equations are

∂V
∂q

= −ṗ and
∂T
∂p

= q̇ (3.65)

Using Cartesian coordinates (r) in place of the generalized position coordinates and

considering the ith particle, we have

−∇riV = ṗi = fi (3.66)

where fi represents the force on the ith particle.

The evolution of the system is monitored by 3N first order differential equations.

For even smaller systems (N>3) in three dimensions, finding the exact solution

of the system of differential equations is daunting task. Instead, simulations rely on

numerically approximated solutions for solving this problem. Given a set of initial

conditions for the system (q and p specified at t0), the forces on each particle are

calculated via Equation 3.66. This force is used to determine the instantaneous

acceleration on each particle by
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ai =
fi
mi

(3.67)

where the force and the acceleration are assumed to be constant over some short

time interval, δt.

New positions and momenta of each particle at t+ δt are calculated and the system

is advanced to the new point in phase space. The process is then repeated using the

new configuration. This ’step-by-step’ advancement of the system is ideally carried

out using an algorithm that provides a step-wise trajectory through phase space

that closely matches the actual (continuous) trajectory to a desired degree of

accuracy. Before an algorithm is applied to a system that is not exactly solvable, it

is tested on an analytically solvable system. There are several solvable

two-dimensional systems that have been well studied66 and are often used for this

purpose. As a result, a host of schemes for integrating the equations of motion have

been developed, including predictor-corrector algorithms, the Verlet algorithm, the

leap frog, and the velocity-Verlet, discussed in detail below. In addition to closely

approximating the true trajectory of a system, an integration scheme must also

satisfy two important criteria, area preservation and time reversibility.

For isolated systems at equilibrium (where there is no explicit time dependence

in the Hamiltonian), the Hamiltonian, which represents the total energy of the

system, is a constant of motion. This result can be seen by considering the total

time derivative of the Hamiltonian, H(q, p)

dH
dt

=
∂H
∂q

q̇ +
∂H
∂p

ṗ

=
∂H
∂q

(

∂H
∂p

)

+
∂H
∂p

(

−∂H
∂q

)

= 0 (3.68)

Because H remains constant, the phase space that is accessible to the system must
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remain constant as well, this is referred to as area preserving.61,63 Any algorithm

used to advance the system through time must do so in a way that neither increases

nor diminishes the total energy (and thus the accessible phase space) of the system.

Actual trajectories of systems are also time reversible. Systems evolve in such a way

that each point in phase space is on exactly one trajectory through that space. By

reversing the sign of t in the equations of motion, the exact trajectory is traced out

in reverse. The analogy for a system of discrete sates is that each state (at say,

t = 0) leads to exactly one future state (at t = 1). Going backwards in time must

necessarily return to this original state.61–63 An algorithm for which such a time

reversal led to a state point that was different than the original, would indicate that

two initial state points produced the same future state point - which would mean

that 1) the system was not ergodic and 2) area preservation was violated.

Considerations for MD are numerous. To begin with, δt must be chosen based

on balancing computational expense and simulation accuracy. δt is usually very

short, much smaller than the time it takes individual molecules or atoms to move

their own length,66 but because classical systems are theoretically continuous, it is

not bound by a lower limit. The smaller the time over which the potential (and thus

the forces and accelerations) are assumed constant, the greater the accuracy with

which the step-wise produced trajectory of the system match it’s actual trajectory

through phase space. The trade-off for choosing a small δt, however, is a greater

computational expense required to explore the same phase space. Even when the

goal of the simulation is not to obtain a thorough exploration of a system’s phase

space but rather a study of part of the trajectory itself, a similar trade off exists in

terms of the cost per length of trajectory studied.61–63 Choice of an algorithm is

thus based on the following considerations:

1. It is area preserving

2. It is time reversible

3. It is accurate (as needed) for long δt
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3.2.1.1 Velocity Verlet Integrator

Simulations in this dissertation use the Velocity Verlet Algorithm to integrate

the equations of motion. It is chosen for its area preserving and time reversible

properties. It advances the positions and velocities of the system’s particles using

both full time steps (for positions) and half time-steps (for velocities). The details

are as follows:

1. The position of the particles at time t are known.

2. The velocities of the particles at time t are known.

3. The particles’ positions at time t + δt are found by

~ri(t+ δt) = ~ri(t) + ~vi(δt)δt+ ~ai
1

2
(δt) (3.69)

where ~ai is found from Equation 3.66 and 3.67.

4. The velocity at half time-step is calculated from

~vi(t+
δt

2
) = ~vi(t) +

~aiδt

2
(3.70)

This essentially provides updated positions that are accurate to the degree

that the velocities at the mid-point of the time step approximates the average

velocities over the entire time step.

5. The forces and accelerations at t+ δt can be computed via Equation 3.66 and

3.67.

6. The new positions and the velocity at t+ δt are found by

~vi(t+ δt) = ~vi(t+
1

2
δt) + ~ai(t+ δt)

(

1

2
δt

)

. (3.71)

Molecular Dynamics simulations can be used effectively to study the behavior of

systems in isolated systems far from equilibrium. In such cases, solutions to the
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equations of motion provided by the chosen integration scheme provide a system

trajectory that can then be studied. Typically, concerns about the assumption of

ergodicity are less important here, as the initial conditions are chosen to ensure that

the relevant phase space is explored. An example of MD thus applied is found in

early research on the formation of fullerenes (C60).
75 In the study, a system of 500

carbon atoms was evolved using the Brenner empirical bond-order potential (which

will be discussed in detail later) and the Verlet algorithm (with a 0.5 femto-second

(fs) time-step) for integration. Because the actual time scale for formation of C60 is

in the order of a second, simulation of the entire process was not feasible as it would

have required more than 1015 time-steps, each step in turn requiring the calculation

of the gradient of a rather complicated potential function dependent on the position

of 500 atoms. The researchers used several techniques to effectively ‘compress’ time

- namely increasing the effective density of the simulation cell to promote

interactions between the particles and adopting an ‘annealing’ strategy by which the

simulation temperature was decreased at an artificial rate to mimic the cooling that

actually happens at a longer time scale. After several simulations using different

starting temperatures and annealing strategies, the researchers obtained results

which demonstrated the formation of nearly closed cage-like clusters up to C70 in

size. The larger of these structures were then traced backwards in time to provide

clues as to the important dynamical aspects that led to their formation.

For a suitably small system at equilibrium, MD can also be used to determine

statistical information about a particular ensemble described. Care must be used in

describing such a system. The validity of the results depends on the system’s

assumed ergodicity and the notion that the calculated distribution (over the course

of the simulation) of the parameter(s) to be studied will approximate the ensemble

distribution. It is important to remember that evolution of a system governed by

Newton’s laws in the absence of an external field (H does not explicity depend on t)

takes place entirely within the microcanonical (NVE) ensemble because of Equation

3.68. Study within the microcanonical ensemble is therefore relatively
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straightforward. For example, the potential energy distribution of any isolated

system at equilibrium could be derived via MD if the simulation ran long enough to

generate enough system configurations to be representative of the ensemble as a

whole. An example of generating a system average outside of the microcanonical

comes from the work done by Even et al.76 on the dynamics of noble gases

encapsulated in fullerenes. The research entailed a number of MD simulations, each

comprised of a single noble gas atom (Helium, Neon, Argon, Krypton, and Xenon)

placed at the center of a fully formed C60 molecule. Each simulation was carried out

in the canonical NVT ensemble and the potential was a combination of the Brenner

empirical bond order potential and the Lennard-Jones potential (with mixed

interaction parameters obtained by using the Lorentz-Berthelot mixing rules) to

describe the carbon-carbon and carbon-noble gas interactions, respectively. Again

the Verlet algorithm was used for integration and δt was 0.5 fs with a total

simulation time of 500 picoseconds (ps), and five different temperatures, ranging

from 160 K to 800 K, were simulated for each noble gas species. For each

configuration, the distance between the central atom and the center of mass of the

cage was calculated and the corresponding radial distribution function determined.

In addition, carbon atom bond angle data was recorded and the bond angle

distribution determined. The first of these distributions provides clues as to the role

of the central atom’s size (Van der Waals radius) in interactions between it and the

cage itself, while the second gives information about stresses on the cage itself.

In this latter example, a thermostat is required in order to ensure that the

system remains at a constant temperature as the simulation progresses. There are

many types of thermostats that are typically used in NVT MD - each of which

essentially ensures that the total kinetic energy of the system bears a particular

relationship to the kinetic energy distribution that defines the fixed temperature in

question. In the case of the above work, a technique called velocity rescaling was

used to rescale the velocity of the central atom whenever the total kinetic energy of

the system deviated from the average kinetic energy specified by the temperature at
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which the simulation was being run.

One problem faced by MD simulations seeking to explore a representative phase

space is that they are sometimes very dependent on initial conditions, particularly

for large systems. If a randomized choice of initial state starts the system in a region

of phase space that contributes little towards the average of the thermodynamic

quantity of interest, repeated runs might not produce consistent results nor ones

that are in agreement with known parameters of the system. In addition, if the

system’s phase space contains bottlenecks or cyclic trajectories an MD simulation

beginning in such a regime will not be able to provide a representative sample of the

ensemble, even when everything else is working flawlessly.66 The technique to which

we now turn provides an alternative method for estimating thermodynamic averages

(via the partition function) that is not hampered by these considerations.

3.2.2 Monte Carlo Simulation

Monte Carlo simulation for a system of N particles uses an algorithm to

randomly choose a string of ‘states’, Γ (where Γ = Γq,p, with q=~q1...~qN and

P=P1...PN in the phase space (domain) of a system based on a probability

distribution. Quantities of interest are calculated for each of these points (which

represent individual microstates accessible to the system). The averages of these

quantities converge to the actual values of their corresponding thermodynamic

parameters, with an error that diminishes with increasing N. Because of the equal a

priori probability of states hypothesis of statistical mechanics, in its simplest

application to certain molecular systems (for example those in the microcanonical

ensemble), the probability distribution which governs the random sampling is

uniform. Equilibrium values for the quantities of interest will be ‘supported’ by the

greatest number of states, however, which will ensure the convergence described.

In practice, there are drawbacks to using the above method. In even a simple

system of 100 particles in three dimensions, the size of the domain is typically so
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large that the number of configurations that need to be sampled can quickly become

computationally prohibitive. Most modern MC simulations therefore use some type

of importance sampling. In this method, the random generation of configurations is

based on the importance of each configuration to the value of the overall integral

(remember the goal here is essentially that of estimating the value of the partition

function of the system). The partition function is thought of as a weighted

distribution (of integral contributions) of the accessible states, ρ(Γ). If we are

seeking the thermodynamic average of some quantity A(Γ), one can write

〈A〉ens =
∫

A(Γ)ρens(Γ)dΓ (3.72)

where ρ(Γ)ens is the probability distribution for the ensemble.

As mentioned, simply sampling the phase space randomly is undesirable - a great

many configurations will provide little or no contribution to the integral. If we

instead sample based on the weighted distribution, we obtain

〈A〉ens =
〈A(Γ)ρens(Γ)

ρ(Γ)

〉

τ

(3.73)

where τ is used to indicate the total number of trial states.

The widely used Metropolis method makes use of the fact that for most systems, in

obtaining the thermodynamic parameters of interest, the biggest contributions to

the integral come from states that are also the most probable. It chooses

ρ(Γ) = ρens(Γ) to yield

〈A〉ens = 〈A〉τ (3.74)

In other words, we seek to generate (randomly) a chain of states, each member of

which occurs with the the appropriate probability. This is accomplished by

producing a Markov chain which has the equilibrium distribution of the ensemble,

ρens(Γ), as its limiting distribution.
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3.2.2.1 Markov Chains and the Metropolis method

A Markov chain is produced by the following conditions: each trial move must

produce a state which is a member of a finite set of outcomes (in our case the phase

space of the system being considered); and the move to each state must only be

dependent on the state immediately preceding it. If we label the ith state Γi, then

we can define the probability that the chain will move from state n to state m

(called the transition probability) as πmn. Any probability distribution, ρ(Γ)

satisfying the condition of detailed balance (also known as the condition of

microscopic reversibility), also satisfies the relation

ρmπmn = ρnπnm (3.75)

where ρm gives the probability of being in Γm as a stationary distribution for the

Markov chain.

If operating in the canonical ensemble, for example, we therefore want ρ(Γ) to be

ρ(Γ) =
e−H(Γ)

kBT

∫

e
−

H(Γ)
kBT dΓ

(3.76)

or

ρ(Γ) =
e−H(Γ)

kBT

QNV T

(3.77)

The solution to Equation 3.75 that provides the transition probability for this choice

of ρ is given by
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πmn = αmn for ρn ≥ ρm m 6= n

πmn = αmn

(

ρn
ρm

)

for ρn ≤ ρm m 6= n

πmm = 1−
∑

n 6=m

πmn m = n (3.78)

where πmm ensures that it is possible for the system to remain in the same state and

αmnis a symmetrical stochastic matrix66 that provides the probability that a

particular move is attempted.

These rules are referred to as the acceptance criteria and for our example in the

canonical ensemble would typically be written as

acc o→ n = min






1,

e
−

H(Γn)
kBT

QNV T

e
−

H(Γo)
kBT

QNV T






(3.79)

which gives the probability of acceptance of a trial move from an old configuration

to a new configuration as the minimum of two functions. It simplifies to

acc o→ n = min



1,
e
−

H(Γn)
kBT

e
−

H(Γo)
kBT



 (3.80)

and, is conveniently independent of QNV T . In general, the Metropolis acceptance

criteria for a simulation in an ensemble with an equilibrium distribution is

ρens =
σens
Qens

(3.81)

where σens the unnormalized distribution (which typically is known a priori) is thus

acc o→ n = min

[

1,
σn
σo

]

(3.82)

In essence, any trial move will be accepted if the new configuration is more
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probable (or equivalently in the canonical ensemble when it has less total energy, H)
than the old configuration. When the new configuration is less probable, it will be

accepted with a probability equal to the ratio between the new and old probabilities.

To create the Markov chain then, a sample simulation proceeds as follows:

1. For a given system, a random point in phase space is chosen. This is Γ1

2. Based on the defining distribution of the system, σ(Γ1) is determined

3. A randomly selected particle is moved a randomly selected distance, as

determined by α, to generate Γ2 trial

4. σ(Γ2 trial) is calculated and the acceptance criteria applied to the attempted

move

5. If the minimum is 1, the move is accepted and Γ2trial becomes Γ2

6. Otherwise a randomly generated number between 0 and 1 is compared to

σ(Γ2 trial)
σ(Γ1)

. If the number is less than the ratio the move is accepted as above. If

it is greater than the ratio, it is rejected

7. In the case of a rejected trial move, the system remains at the same point in

phase space and Γ2 trial becomes Γ2

The Monte Carlo technique based on Metropolis type acceptance criteria (also

known as Boltzmann sampling) is one of the most widely used techniques in

molecular simulation.77 In particular, it allows for relatively quick determination of

average values for system parameters which are dependent only on particle positions

in the canonical ensemble. It enables researchers to predict likely conformations of

complex molecules (such as protein chains).

MC simulation also forms the foundation for the process of simulated

annealing,78 which seeks to predict the configurational structure of systems that

form through cooling. An example is provided by the work of Tomanek, et al.,
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which examines the growth regime of carbon clusters.79 The work uses a standard

MC approach with Metropolis acceptance criteria in the NVT ensemble. However,

rather than seeking to adequately explore regions of relevant phase space, it simply

allows the random downhill walks in potential energy to produce more stable

configurations. After some specified time, the configuration is stored and used as

the initial configuration for a second simulation at a reduced temperature. The

process continues until the effective temperature is zero and thus the particle

positions are essentially fixed in the configuration of (approximately) absolute

lowest energy for the system.

One drawback of MC comes from this trend towards areas of high density

(probability) phase space. It cannot be effectively used (without modification) to

explore regions of phase space which represent states that are unlikely for a given

system in equilibrium, or to probe high energy states.80 As such, if used to study a

system where there were regions of phase space separated by an energy barrier (for

example a liquid and vapor at coexistence) it would make the simulation extremely

sensitive to initial conditions. The simulation would remain in the bulk phase in

which it begins and leave a large area of phase space unexplored. This difficulty can

be overcome, however, by adapting the MC scheme to sample uniformly along some

chosen physical parameter,81 such as density. There are several ways to accomplish

uniform sampling, one of which is the recently developed Wang-Landau method82

which is used here and is discussed in detail below. Many additional problems faced

by straight MC sampling have been overcome by combining certain facets of MC

with other techniques, including MD. In fact, most studies adapt the relevant

principles of both MD and MC in such novel and specific ways that makes most

simulation details unique.

3.2.3 Hybrid Monte Carlo Method

HMC was originally developed for Quantum Chromodynamics (QCD). It is now

proposed as a method to improve the traditional Markov Chain Monte Carlo
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(MCMC) algorithm.83 However, the theoretical understanding of the phenomenon is

limited and, as such, it is not very popular in statistical applications. HMC involves

globally updating the MC algorithm by introducing momenta conjugate to the

system coordinate variables followed by MD integration of the associated

Hamiltonian equations of motion to generate new coordinates of the system.84

HMC is known to allow for partial momentum updates to keep more dynamic

information between Monte Carlo steps. This requires a momentum flip in case of

generalized HMC. This momentum reversal does not arise with standard HMC since

the momentum vector is replaced by a new random sample after each constant

energy molecular dynamics Monte Carlo step.85 This implies that HMC takes global

moves based on deterministic Hamiltonian dynamics.83

HMC is a modification of Markov Chain Monte Carlo applicable to continuous

state space that makes use of gradient information to reduce the random walk

behavior.86 The gradient guides the sampling by showing the location of states with

high probability. The use of “hybrid” in the name of the algorithm comes from the

fact that different algorithms are used for different parts of the partition function.87

The HMC algorithm is a mixture of molecular dynamics (MD) and Monte Carlo

(MC) algorithms. It therefore combines the advantages of MD and MC

methods.88,89

• It allows for global moves, which consist in integrating the system through

phase space.

• HMC is an exact method; i.e., the ensemble averages do not depend on the

step size chosen.

• Algorithms derived from the method do not suffer from numerical instabilities

due to finite step size as MD algorithms do.

• Temperature is incorporated in the correct statistical mechanical sense.
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• Samples efficiently all configurations of the system since large time steps and

therefore long MD trajectories are used to generate new configurations,

• It samples very efficiently the high-density configurations since it allows for

global and concerted moves of the molecules,

• It satisfies the criterion of robustness since the method can be applied “as is”

to any molecular fluid or systems, however complicated the hamiltonian H

may be.

The idea behind HMC is simple as seen in its method of handling symplectic

integrations. Furthermore, the series of random moves in MC (translations,

rotations and conformational changes) are replaced by a single MD trajectory in the

NVE ensemble. The HMC algorithm is ergodic with respect to the positional

density.90 This ensures that the configurations of the system are efficiently

sampled.89

HMC is based on the hamiltonian function

H (q, p) = 1
2
〈p,M−1p〉+ V (q)

where M−1 is the matrix of inverse masses, 1
2
〈p,M−1p〉 is the kinetic energy, V is

the potential energy, q the positions and p the momenta. The replacement of

conventional MC moves by long MD trajectory permits the system to relax along a

long MD trajectory due to the ease of calculations in the MD method.

Differentiating the hamiltonian yields the equations of motion

q̇ =
dH

dp
= M

−1p ṗ = −dH
dq

= −V (q) = F [q(t)] (3.83)

where V (q) is the derivative of potential energy V with respect to q and F is a

conservative force field.

In the HMC scheme, global moves can be made while keeping the average

acceptance probability, PA, high. HMC is a valuable method when many degrees of
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freedom are coupled and single variable updates are not feasible. It starts with

enlarging the partition function by momenta whose variables are refreshed following

a Maxwellian distribution at the desired simulation temperature.91 A total of NMD

MD steps are then executed using a timestep δt. The change in the total

Hamiltonian, ∆H , is recorded and the “move” is accepted with a probability

Pacc=min [l, exp(-∆H /kBT)]. Notice that this acceptance rate decays

exponentially with the size of the system. This constitutes one global MC step

(Figure 16). Irrespective of whether the move has been accepted or not, the

momenta must always be refreshed before continuing with the next MC step. This

is essential if detailed balance is to be obeyed, as is the use of a time-integration

scheme for the MD integration which is both area-preserving in phase space and

time-reversible.84 It is important to note that the acceptance criteria are dependent

on the timestep (δt), which is given by the total time or trajectory length t and the

number of MD steps NMD. Therefore, increasing NMD increases the accuracy within

the MD part of HMC, which in turn, increases the acceptance rate. The leap frog

variant of the Verlet integrator is mostly used for HMC because it is known to

satisfy the conditions for a detailed balance.

Another important aspect of HMC, like any other simulation technique, is the

development of realistic and efficient potential models for the molecular interactions.

HMC methods are unbiased since they do not show any systematic discretization

errors; the only errors are of statistical origin because of the use of numerical method

in solving the equations of motion. These errors can be minimized by increasing the

number of samplings.93 HMC is a popular method to conduct sampling from the

constant temperature ensemble for molecular systems as such we use it with the

NPT ensemble in the study of the nucleation and growth of C60 nanoparticles from

the supersaturated vapor and from the undercooled liquid discussed in Chapter 4,

where the system is studied under conventional experimental conditions.47,85

Despite the numerous advantages, HMC has a few limitations. It mostly suffers

from inappropriate sampling of the conformational space due to lack of good energy
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Figure 16. Steps require for an HMC algorithm.92
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functions. As such, it works by rejecting moves with high fluctuations in the

energy.90,92 The normal hybrid Monte-Carlo methods break down if the hamiltonian

H is discontinuous. In such cases, the functional space is divided into various

homotopy classes, each being defined by its own winding number and surrounded by

a potential wall. In situations where HMC faces such complications, the acceptance

probability is lowered. It should be noted that it is the MD part of the HMC that

encounters severe problems with the discontinuity. In order to tunnel through this

topological sector barrier with a high acceptance rate, a number of modifications to

the standard HMC algorithm are required.94 Some of these modifications use the

idea that HMC has an advantage that it can easily be combined with other

techniques. For example, HMC has been combined with techniques such as parallel

tempering, dynamical spatial warping, Wang-Landau, and umbrella sampling, to

increase sampling rates in case of high energy barriers between molecular

conformations.47,85,89
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CHAPTER IV

SAMPLING THE LIQUID-SOLID TRANSITION

4.1 Introduction

Crystallization is the process whereby crystalline solids are formed from

solution, melt or vapor. The latter process (deposition or the opposite process to

sublimation) is possible but rarely observed. This is because of the high free energy

difference involved for the direct transformation of matter from the vapor phase to

the solid (crystalline) phase. Crystallization processes are observed commonly in

our everyday life for example, formation of snowflakes, Figure 17, and ice crystals.

This process is rampant in the pharmaceutical and most chemical industries.11

While crystallization is more popular with the pharmaceutical industries,

precipitation is common amongst the chemical industries where it is commonly used

to refer to fast and uncontrolled crystallization.95,96 Crystallization and

precipitation are at times used interchangeably. Although crystallization result from

variation in solubility or concentration while precipitation results from a chemical

reaction. Crystallization is useful as a process of separation and purification in

industry. As a result, an understanding of the process of crystallization is necessary

to obtain the desired products with the required purity as well as for process

efficiency.96 The practice of modifying a crystallization method in order to change

the physical properties of the crystals is referred to as particle engineering.97

A crystal is a three dimensional (3D) solid in which the structural building

blocks (monomers) are arranged in a regular repeating pattern such that the

environment of each monomer is the same throughout the crystal. The monomer

may be an atom, a molecule, group of atoms or group of molecules. There are three
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Figure 17. Examples of crystals from copper (showing a wide variety of crystal forms)
and snowflake.98

main common arrangement of atoms in a crystalline solid, namely: body centered

cubic (BCC), face centered cubic (FCC), and hexagonal close packed (HCP) (Figure

18). The green colored sphere in the BCC structure represents the atom in the

Figure 18. Common crystalline solid structures.

center while in the FCC the green spheres represent the atoms in the six faces.
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4.2 Umbrella Sampling

Umbrella sampling is a thermodynamic, non-Boltzmann sampling technique

developed by Torrie and Valleau for free energy calculations.99 It has become a very

popular sampling technique used in the sampling of rare events (energy barrier

significantly larger than kBT), where conventional sampling methods fail.100 It has

also been applied to small systems to examine the height of the free energy barrier

and the transition from nucleation to spinodal decomposition.101 The development

of the umbrella sampling was based on Monte Carlo simulation methods but more

recently it’s being frequently used with MD simulations.102 This has been attributed

to the efficiency of the method in the calculation of free energy and potential of

mean force (PMF) used to obtain accurate measures of a free energy barrier.103 This

technique has been used in a variety of studies of liquids, solids, and small

molecules, not leaving out the application to structure, dynamics, and energetics of

biological macromolecules.104

Another technique also used to evaluate the free energy is thermodynamic

integration. However, Kastner et al. showed that when thermodynamic integration

is performed along a reaction coordinate, it can be said to be a special case of

umbrella sampling.105 Free energy difference is the driving force of most chemical

and biochemical systems. This makes calculating the free energy difference central

in molecular simulations.100 Conventional sampling methods fail or inadequately

sample areas with high energy. This leads to poor estimates of the free energy, since

high energy regions are also important to accurately trace the free energy profile

within the available computational time.106,107

The umbrella sampling technique can be applied to both equilibrium and

nonequilibrium situations for phenomena that require extremely long simulation

time to be observed.108,109 In the case of equilibrium processes, the application of

bias potentials that are functions of some order parameter enhance the sampling of

phase space that would otherwise be inadequately sampled.107 On the other hand,
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umbrella sampling does not respect the condition for microscopic reversibility

(detail balance); consequently, using it for nonequilibrium systems is difficult. In

such situations, it is necessary to divide the reaction coordinate into several small

windows (Figure 19) that are sampled independently using a specific biased

potential for each window (Figure 20).

Figure 19. Splitting of the reaction coordinate (ξ) shown in dotted line between two
different states (A and B) into several distinct windows.100

Each window is assigned an arbitrary center based on the reaction coordinate

and sampled such that information about the probability and free energy can be

transfered between connected windows. This procedure is sometimes also applicable

to equilibrium studies.109 This technique of splitting the energy profile into several

small windows (Figure 19), performing different biased umbrella samplings (Figure

20) and recombining the results is the strength of the umbrella sampling scheme and

the origin of the name umbrella sampling.100,106 During the sampling, the biased

potential helps keep the system within the center of the different windows.

This technique entails the use of the potential energy in the presence of an

additional or extra potential energy term known as a biased potential (ω).100,106,107

The sampling is done along a chosen reaction coordinate (ξ) or order parameter.

The reaction coordinate can be single or multidimensional; for the specific case of
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Figure 20. An illustration of how individual windows of free energy profile (solid
black curve) are independently sampled (red dash curves) and the bias distribution
obtained at the end of the simulation (bottom black curves).100

umbrella sampling, one has at most two dimensions. The form of the bias potential

has to restrict the variation of the coordinate within a small interval around the

region of interest to ensure efficient sampling of the configurational space.108,109 The

strength of the bias potential is very important; a strong bias will confine the

sampling very close to the center that would call for more simulations before the

system converges. Conversely, if the bias is too weak the system will converge after

fewer simulations. But it may fail to sample the region of interest and does not

ensure the sampling of the unfavorable areas (such as those with high energy) in the

phase space. Considering that the reaction coordinate is divided into several small

windows, the bias potential (ωi), of each window i is an additional potential energy

term that depends only on the reaction coordinate.100,102,110 Then the bias free

energy function is given by

U b(r) = Uu(r) + ωi(ξ) (4.1)

where the superscripts b and u denote biased and unbiased respectively.

76



Subsequently, U(r) will be used for the unbiased potential.

Upon the completion of a simulation, the unbiased free energy needs to be

evaluated to obtain the true Helmholtz free energy Ai(ξ) for the window. This

requires an unbiased distribution function along the coordinate ξ that can be

derived from the Boltzmann weighted average.

〈ρ(ξ)〉 = P u
i (ξ) =

∫

exp[−βU(r)] δ[ξ′(r)− ξ]dNr
∫

exp[−βU(r)]dNr (4.2)

where U(r) is the total energy of the system as a function of some coordinate r and

ξ′(r) is a function that depends on a few or several degrees of freedom N (for

example ξ′(r) may be an angle, a distance, or a complex function of the Cartesian

coordinates of the system).106

Equation 4.2 gives the probability density as a function of the reaction coordinate ξ

and it is the basis of the umbrella method.

Simulation of the biased system yields the biased distribution P b
i along the

reaction coordinate. For an ergodic system (every point in the phase space is visited

during the simulation), the biased probability is defined by Equation 4.3.

P b
i (ξ) =

∫

exp[−βU b(r)] δ[ξ′(r)− ξ]dNr
∫

exp[−βU b(r)]dNr
(4.3)

Substituting for the biased potential from Equation 4.1 in 4.3 and replacing ωi(ξ)

with ωi(ξ
′(r)), since the integration is performed over all the degrees of freedom

except ξ, gives

P b
i (ξ) =

∫

exp{−β[U(r) + ωi(ξ
′(r))]} δ[ξ′(r)− ξ]dNr

∫

exp{−β[U(r) + ωi(ξ′(r))]} dNr
(4.4)

Since the bias potential depends only on the reaction coordinate ξ and the

integration in the numerator of Equation 4.4 is performed over all the degrees of

freedom except ξ, the biased distribution can be rewritten as shown in Equation 4.5.
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P b
i (ξ) = exp[−βωi(ξ)]×

∫

exp[−βU(r)] δ[ξ′(r)− ξ]dNr
∫

exp{−β[U(r) + ωi(ξ′(r))]} dNr
(4.5)

By comparing Equation 4.2 and 4.5 and solving for the unbiased distribution yields

P u
i =P b

i (ξ) exp[βωi(ξ)]×
∫

exp{−β[U(r) + ωi(ξ(r))]} dNr
∫

exp[−βU(r)] dNr

=P b
i (ξ) exp[βωi(ξ)]×

∫

exp[−βU(r)] exp{−βωi[ξ(r)]} dNr
∫

exp[−βU(r)] dNr

=P b
i (ξ) exp[βωi(ξ)] 〈exp[−βωi(ξ)]〉 (4.6)

The Helmholtz free energy Ai(ξ) is determined from Equation 4.6 as

Ai(ξ) = −(1/β) lnP b
i (ξ) − ωi(ξ) + Fi (4.7)

where the biased distribution P b
i (ξ) is obtained from the MD/MC simulation of the

biased system, ωi(ξ) is determined analytically and Fi = −(1/β) ln 〈exp[−βωi(ξ)]〉 is
an undetermined constant that is independent of ξ and represents the free energy

associated with introducing a window potential.

A limitation to the umbrella sampling method is the necessity for an a priori

choice of the reaction coordinate along which to sample.111 Also a miss of some vital

structural changes by the choice of the reaction coordinate may lead to an artificial

lowering or raising of the umbrella sampling results. Similarly, a significant change

in a degree of freedom not accounted for by ξ may result in jumps of the root mean

square difference between average properties of subsequent umbrella sampling

windows.112
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4.2.1 Choice of the Bias Potential

The bias potential has to be such that the sampling along the entire range of

the reaction coordinate is uniform. Thus the ideal choice of the optimal bias

potential is ωopt = −A(ξ). However, the free energy is not known prior to the

simulation as it is to be determined with the use of umbrella sampling. There are

mainly two forms of the bias potential; harmonic and adaptive bias.100

4.2.1.1 Harmonic Bias Potential

The most used biased potential for umbrella sampling takes the form of a

harmonic function, Equation 4.8. The use of this form of the bias produces a

sampling that is confined to a very small region. Therefore, the range of interest of

ξ is divided into a number of small windows. The bias in each window keeps the

sampling around the reference position ξrefi within each respective window i.100,106

ωi(ξ) =
1

2
K(ξ − ξrefi )2 (4.8)

where K represents the strength of the bias and can be window dependent; ξrefi is a

reference point on the reaction coordinate.

The references ξrefi , for each window, are usually evenly distributed along the

reaction coordinate. The more windows there are, the more accurate the estimate of

the free energy. Nonetheless, the time for equilibration increases with the number of

windows. The different windows are sampled independent of each other.

Accordingly, the simulations can be run simultaneously in parallel. Different bias

potentials are used for different windows to sample the configurational space since

the bias potential is gradually increased to force the system over the energy

barrier.110

The main critical parameter of the harmonic biased potential is the strength K

of the potential. A strong bias will confine the sampling very close to the center
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thus requiring more simulations and over representing configurations of higher

energy; whereas, if the bias is too weak it will sample outside the region of interest.

A balance on the strength is vital to carry the system over the potential barrier.

Depending on the method employed for the analysis of the results from respective

umbrella sampling, another critical parameter is that the individual umbrellas have

to overlap. This is pivotal if the weighted histogram analysis (WHAM) method is to

be applied for the analysis.71 Though this requirement is not necessary for the

umbrella integration analysis method, it can be advantageous. If it is discovered

that the series of windows leave a large separation between the distributions,

additional windows can be inserted in the course of the simulation.100

4.2.1.2 Adaptive Bias Potential

The adaptive bias potential is a method aimed at selecting a bias potential that

samples evenly the entire range of interest of the reaction coordinate in one

simulation.71 This is done by choosing ω(ξ) such that

ω(ξ) = −A(ξ) (4.9)

The free energy A(ξ) is not known before the start of the simulation, thus the

process starts with an estimate of ω(ξ) generating an initial estimate of the free

energy. The process then iterates with the negative of the generated free energy

until adequate sampling is obtained. This approach flattens the energy surface

between two minima resulting to uniform sampling of ξ without the addition of a

bias potential.100,113 A drawback with this method is that only the last simulation

result is preserved for the final estimate of the free energy, the rest are discarded.
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4.3 Nucleation and Growth of C60 Nanoparticles

Molecular simulation was used to study the molecular mechanisms of nucleation

and growth of C60 nanoparticles from the supersaturated vapor and from the

undercooled liquid. The interest in this study stems from the importance of

polymorphism in the properties and applications of nanoparticles as well as the

potential use of C60 in cancer treatment.114,115

C60 is a member of the family of compounds known as fullerene. Fullerenes are

molecules made up entirely of carbons and composed of an even number of carbon

atoms, e.g. C60, C70, C76, C84. They can be of various forms such as spherical,

ellipsoid or tube, etc. They are named based on their structures, for example

• Spherical: Buckyballs

• Cylindrical: Carbon nanotubes or buckytubes.116

C60 was the first member of the family to be discovered in 1985 by three scientists;

Harold W. Kroto, Robert F. Curl and Richard E. Smalley.116 C60 as the name

implies, is composed of 60 carbon atoms arranged in a cage consisting of 20

hexagonal and 12 pentagonal rings.

Upon its discovery, C60 was thought to be the most stable molecule known at

the time, with 12500 feasible resonance structures. However, only one of the

resonance forms was found to be dominant because of the absence of pentagon

strain, that is placement of one or more double bonds in pentagons.117 The others

are less stable, hence less prevalent.

4.4 Applications

Since its discovery, C60 has been shown to be promising in a wide variety of

applications, which includes catalysis, electronic devices, material science and

medicine.
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Figure 21. Structure of a Buckyminsterfullerene (C60)

Figure 22. Possible double bond configuration in Buckyminsterfullerene, I is the
stable configuration.117

• Due to its photosensitivity, it could be used as a vector for drug delivery as

well as for the photodynamic treatment of cancer.114

• In material science, C60 nanowires have been envisioned as building blocks for

the future of magnetism and photonic applications.118

• Their high degree of resonance projects them as good acceptors in polymer

based solar cells, e.g., [6,6]-Phenyl C61 butyric acid methyl ester (PCBM).119

Several factors have hindered the advancement of research on fullerenes such as

their insolubility in water, difficulty of obtaining high purity samples, and the

construction of organized electroactive nanostructures by self-assembly.120 Research
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has shown that this difficulty is easily overcome by combining it with some

biodegradable and water soluble polymers.118 This has kept the search for molecular

receptors for fullerenes as an active and challenging area of research since its

discovery.121

To achieve this, the reactivity of C60 has been widely explored. In the formation

of fullerene derivatives, large binding constants are essential for high stability in

solution. A broad variety of molecular fragments that can form a positive

noncovalent interaction with the outer surface of fullerenes have been explored.

Nambo et al.122 recently showed that an aziridine moiety on the fullerene core can

serve as an aid for the controlled synthesis of a range of functionalized fullerene

derivatives. It is important to mention here that addition on the fullerene surface

can take place either across the 6,6-ring junction or the 5,6-ring junction.118 In both

cases there is either ring opening (expansion) fulleroids or the rings stay intact

(closed). This often give rise to the four possible configurations shown in Figure 23.

Due to the high reactivity of C60, a photoactive polyvinyl alcohol PVOH/C60

nanohybrid with very low cytotoxicity, that is water soluble has been synthesized

with very promising properties for the photodynamic therapy of cancer.123

Figure 23. Possible modes of reactions on the C60 surface.118

Since the physical properties of nanoparticles strongly depend on their

crystalline structure, it is important to understand and control the crystal structure

or polymorphs in which C60 crystalizes, the nanostructures they form and the

underlying mechanism. Polymorph selection is a complex process resulting from the

interplay between kinetics and thermodynamics. A complete understanding of this
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process is still not clear.47

Research has shown that the growth of C60 from the supersaturated vapor at

temperatures above room temperature yielded both face centered cubic (FCC) and

hexagonal close packed (HCP) crystalline structures. In contrast the growth of C60

solids from solutions of various organic solvents gave some unusual crystal

morphology such as hexagonal nanosheets and orthorhombic nanowire.124

4.5 Simulation Process

At temperatures above 300 K, C60 molecules rotate freely, thus they may be

treated as physically interacting spheres. Based on this property, Girifalco

developed a pair potential (Equation4.10) describing the interaction between two

C60 molecules.125

Figure 24. A sketch of the parameters as used in the pair potential described by
Girifalco.

φ(r) = −α
[

1

s(s− 1)3
+

1

s(s+ 1)3
− 2

s4

]

+ β

[

1

s(s− 1)9
+

1

s(s+ 1)9
− 2

s10

]

(4.10)

where s = r/2a is the distance between two C60 molecules, scaled by the diameter

(2a) as shown in Figure 24, α and β are constants described by Girifalco, which can

be determined experimentally by computing the energy for the FCC crystal.

The process of crystallization takes place in two steps: nucleation (an activated

process involving a large free energy barrier) and growth that occur under
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unconstrained molecular dynamics(MD) simulation. The growth step may

sometimes be complex and thus proceed by a complex mechanism known as cross

nucleation.126,127 A schematic representation of the crystallization pathway is shown

in Figure 25.

Figure 25. Annotated representation of crystallization.

The study of C60 crystallization involves three different polymorphs; FCC

(considered the most stable) and two metastable forms, HCP and BCC. HCP has

almost the same free energy as FCC while BCC is the least stable.

4.5.1 Nucleation

Nucleation is the early stage of crystallization involving a large free energy

barrier. C60 nucleation is studied from the undercooled liquid at a pressure of 4.6

MPa and a temperature of 1425 K (25% below the melting temperature). First, the

simulation of a critical nucleus at a temperature 25% below the melting point is

performed. At this stage, there is a large free energy barrier. Molecular simulation

studies show that the time scale for the nucleation process is much longer than that

associated with MD simulations. To overcome this energy barrier, a series of hybrid

Monte Carlo (HMC) simulations together with the umbrella sampling bias potential

are carried out on a system of 3,000 C60 molecules. This bias potential imposes a
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fixed value for the global order parameter, Q6, to the system, which allows it to

overcome the free energy barrier of nucleation.128 It should be noted that this bias

potential takes the same value for FCC, BCC and HCP polymorphs and therefore

does not favor the formation of any particular crystal.129 By gradually increasing

the imposed value of Q6, a critical nucleus is formed.

The nucleation starts with the formation of small clusters of the HCP

polymorph (yellow spheres in Figure 26). The stable FCC polymorph starts

nucleating from the metastable HCP. The FCC polymorph increases gradually until

it reaches 42% in the critical nucleus made up 294±10 C60 molecules for the

supersaturated vapor and 45% in the critical nucleus containing 361±21 C60

molecules for the undercooled liquid.

Figure 26. Structure of the pre-critical nucleus (a) and the critical nucleus.

4.5.2 Growth

Once the critical nucleus has been formed, its evolution is followed in the

absence of the bias potential through a series of steps. First, the system of 3000 C60

molecules containing the critical nucleus is embedded in an undercooled liquid of

22,000 C60 molecules. Next, the new system of 25,000 molecules is equilibrated

while maintaining the bias potential on the central subsystem of 3000 molecules.

Configurations of the system are stored every 1,000 time steps during the

equilibration run, and finally, the bias potential is switched off, letting the system
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evolve freely during a molecular dynamic trajectory at fixed temperature and

pressure. For each set of conditions, 20 MD trajectories are generated. These are

employed to check if the critical nucleus formed is genuine. This is done by verifying

that for half of these MD trajectory the nucleus dissolves and for the other half the

growth of the critical nucleus occur. This demonstrated that the critical nuclei

obtained are genuine.

The growth process occurs through a complex mechanism known as cross

nucleation. Cross nucleation, discovered by Yu in his experimental study of the

crystallization of D-sorbitol and D-mannitol,126 is a phenomenon in which an early

nucleating polymorph may cross-nucleate another polymorph instead of consuming

the entire liquid. This phenomenon has also been observed theoretically in

Lennard-Jones fluids.127

Figure 27. Cross-Nucleation in different systems.

Contrary to model fluids such as the Lennard-Jones fluid wherein cross

nucleation leads to polymorph selection,127 polymorph selection was not observed in

the case of C60. Instead, this resulted in a growth mechanism dominated either by

the HCP or the FCC polymorph. This observation is consistent with experimental

results on the crystallization of C60 from vapor, where FCC and HCP crystals were

observed.130
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Figure 28. Growth mechanism in a Lennard-Jones system dominated entirely by the
FCC polymorph (polymorph selection).127

Figure 29. Growth mechanism in C60 dominated by the HCP polymorph (a) or by
the FCC polymorph (b), absence of polymorph selection.47

4.6 Conclusion

Hybrid Monte Carlo simulation and the umbrella sampling bias potential have

been used to elucidate the molecular mechanism underlying the formation of C60

nanocrystals from the undercooled liquid and the supersaturated vapor. During this

study, it was observed that nucleation starts with the formation of small clusters of
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the metastable HCP polymorph consistent with the Ostwald’s step rule. Also the

growth mechanism is found to occur through the complex mechanism known as cross

nucleation, that has previously been reported for model fluids and from experiment.

In addition, the growth step is either dominated by the stable FCC polymorph or

the metastable HCP polymorph, consistent with the literature. Nevertheless, the

metastable HCP polymorph observed here is different from the model fluids where

the metastable polymorph is the BCC polymorph. Another difference observed

during the study of C60 is that unlike the model fluids, where cross nucleation led to

polymorph selection, C60 polymorph selection was not achieved.

These results demonstrate that cross nucleation is a more general phenomenon

than previously anticipated. Due to the large size of the C60 molecule and the

confinement of the liquid pocket of its phase diagram to a tiny temperature interval,

only the FCC and HCP polymorphs which are closer in energy were observed. The

BCC crystals were negligible.

89



CHAPTER V

SAMPLING THE VAPOR-LIQUID TRANSITION

5.1 Introduction

The term Vapor-liquid equilibria refer to the existence of a single liquid phase

in equilibrium with its vapor. This occurs through the process of vaporization, i.e.,

the change from liquid to gas (vapor), and condensation, i.e., the change from vapor

to liquid. These processes are commonly observed in our everyday life, for example,

the presence of water droplets on grass (dew) or on the surface of water bottles see

Figure 30.

Figure 30. Common examples for the process of vaporization and condensation

Vapor-liquid equilibrium (VLE) is a vast research area in Chemical

Engineering.131 This is because a large number of industrial products and materials

are marketed in the crystallized form, which makes crystallization an important

industrial process. The purification of most of these products requires thermal

separation, a non-equilibrium process. Non-equilibrium conditions are necessary
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requirements for crystallization and require information about the VLE properties.

Describing the VLE for polyaromatic hydrocarbons and alkenes is a challenge

for any given model. This is exemplified by the numerous attempts made to

estimate the VLE of these systems, mainly because of poor and empirical prediction

capacities of existing models.26,132 During the last 25 years, a number of simulation

methods have been developed to determine phase equilibria for various systems.

Those techniques which rely on particle insertion/deletion schemes fail for large

molecules.133 Modification of these methods, for instance cavity bias or

configurational bias, has been implemented to determine accurate critical properties

of different molecular scaffolds.134,135

In the petroleum industry, for example, information on the VLE of hydrocarbon

mixture is a cornerstone in process design.136 This is because the design of new

chemicals and processes is constantly carried out for economic vitality. The use of

computational methods to understand phase properties minimizes traditional

experimental methods, known for their expensive and length of time required. As a

result, huge simulation projections for different systems have been made over the

years. The prospect for numerical modeling is that it is likely to become more

efficient over time.132

Knowledge of vapor-liquid behavior of fluids permits the determination of their

distribution between the vapor and liquid phases. This can have a marked impact

on the composition of circulating fluid mixtures in the atmosphere. For instance,

burning of hydrocarbon remains such as tires release PAHs like chrysene (known to

be carcinogenic) into the environment.137

Vapor-liquid equilibria are governed by some fundamental and simple laws,

most of which are applicable only within certain limits.136

• Dalton’s law describes the vapor phase
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Pi

Pt

=
ni

nt

(5.1)

where P is the pressure, n the number of moles, and the subscripts i and t

component i and the total number of components respectively.

This law holds only for low pressures (Pt < Pcr, where Pcr is the critical

pressure). At higher pressures the equation is written in terms of fugacity f as

fi = yift (5.2)

where yi is the molefraction of component i in the vapor phase.

• Raoult’s law describes the liquid phase

P
′

i = xiP
0
i (5.3)

where P
′

i is the partial pressure of component i over the liquid mixture, and

depends only on the vapor pressure of pure i and its liquid mole fraction.

Raoult’s law holds only for ideal mixtures. For nonideal mixtures, liquid phase

behavior is described by replacing the mole fraction with the activity.

P
′

i = γixiP
0
i (5.4)

Both Equations 5.3 and 5.4 are only valid at temperatures below the critical

point (T< Tcr).

• Henry’s law is used at higher temperatures where Raoult’s law fails

P
′

i = Hijxi (5.5)

where Hij is the Henry’s coefficient for substance i in solution j.

Similar to Raoult’s law, Henry’s law is also valid only for ideal system. For

nonideal mixtures, the equation is extended to include the activity coefficient
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γi for the component of interest.

P
′

i = Hijγixi (5.6)

The only logistical difference between Raoult’s law and Henry’s law is the

proportionality constant.138

5.2 Wang-Landau Sampling

The Wang-Landau multiple-range random walk algorithm mostly referred

to as the Wang-Landau sampling, was developed by Wang and Landau as a tool to

study first and second order phase transitions of the two dimensional Potts and

Ising model.82 It allows for the efficient sampling of low probability states (low

probability density region) that otherwise would not be visited by the Boltzmann

scheme. This is achieved through the implementation of Monte Carlo simulations

with concurrent or serial independent random walk, combined with a biased

distribution.82 The goal is to achieve a flat histogram of visited states and estimate

a biasing function, which is essential in the calculation of thermodynamic properties

at phase coexistence. A schematic representation is given in Figure 31.

The methodology in the isothermal isobaric ensemble was developed by

Ganzenmüller et al.139 The NPT ensemble was chosen for simulations of VLE to

avoid the particle insertion and deletion steps that significantly limit the acceptance

rate in dense systems. In any given ensemble, the biasing function is dictated by the

need to achieve a uniform sampling of an extensive variable which allows the

sampling in both vapor and liquid phases. For a given variable X, the probability of

finding X is defined by Equation 5.7.

p(X) =

∫

p(Γ, X)dΓ (5.7)

where Γ is a specific configuration and p(Γ, X) is the joint probability of being in
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Figure 31. Boltzmann distribution (black line) and probability distribution obtained
from Wang-Landau sampling (red curve), ρl is the density in the liquid phase and ρv
the density in the vapor phase.

this specific configuration with a specific value of X.

The biased distribution, pbias(X), should be uniform, i.e., the probability of finding

any of the states along the region comprising the vapor and the liquid state is equal.

If the joint biased probability is defined by

pbias(Γ, X) =
p(Γ, X)

p(X)
(5.8)

then pbias(X) becomes one for any X

pbias(X) =

∫

pbias(Γ, X)dΓ =

∫

p(Γ, X)

p(X)
dΓ = 1 (5.9)

The detailed balance equation is then

pbias(Γo, Xo)acc(o→ n) = pbias(Γn, Xn)acc(n→ o) (5.10)

where acc(o→ n) is the acceptance probability of a trial move from an old (o) to a

new (n) configuration.

The Metropolis solution becomes
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acc(o→ n) = min

[

1,
pbias(Γn, Xn)

pbias(Γo, Xo)

]

(5.11)

The biased joint probability depends on the biasing function, that is estimated

through the iterative scheme of the Wang-Landau method described below. The

Boltzmann probability distribution p(X) as well as thermodynamic properties are

then found as a function of the biasing function.

5.2.1 Sampling in the Canonical Ensemble

The WL method was developed as an improvement of the conventional MC

algorithm; therefore, it was originally designed to uniformly sample states in the

canonical ensemble. The biased distribution is derived from the Boltzmann

probability distribution in Γ

p(Γ) =
V Nexp[−βU(Γ)]
N !Λ3NQ(NV T )

(5.12)

where Λ =
√

h2/2πmkBT is the de Brogle thermal wavelength and U(Γ) is the

potential energy.

In the canonical ensemble the only variable is U(Γ) (function of the particle

positions), p(Γ) can be considered as the joint distribution. The energy distribution

should include those configurations with energy E

p(E) =

∫

p(Γ)δ(U(Γ)− E)dΓ (5.13)

where δ is the delta Dirac function.

The density of states, with energy E, is given by

Ω(NV E) =

∫

δ(U(Γ)− E)dΓ (5.14)
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and hence the energy distribution can be replaced with the following expression

p(E) = Ω(NV E)
V Nexp[−βE(Γ)]

N !Λ3NQ(NV T )
(5.15)

The biased probability is obtained by dividing Equations 5.12 and 5.15 as shown in

Equation (5.8).

pbias(Γ, E) =
1

Ω(NV E)
(5.16)

With this biased probability the final expression of the acceptance criterion can be

derived, according to the detailed balance condition Equation (5.10).

acco→n = min

[

1,
Ω(NV Eo)

Ω(NV En)

]

(5.17)

The biasing function in the canonical ensemble is then the density of potential

energy states with N and V fixed. The Boltzmann probability distribution p(E) is

found by performing a random walk. This gives a flat histogram since the

acceptance probability is biased according to Equation (5.10). Ω(NV E) is modified

systematically in order for the random walk over the allowed energy range to

converge to the true value.

The simulation starts by assigning to all Ω(NV E) an arbitrary value

(Ω(NV E)=1 for all E). Microstates are visited by flipping randomly the spins for

the 2D Ising model. Each time a spin is flipped, the corresponding new density of

states is updated by multiplying the existing value with a modification factor f ,

such that Ω(NV En)→ fΩ(NV En). During the first sweep, f can be as big as the

Napier’s number e. After each sweep the density of states converges to its true value

with an accuracy proportional to lnf .

The walk in energy space continues with random flipping of the spins until all

the states inside the allowed energy region are visited several times and the
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accumulated histogram of visited states H(E) is relatively flat. A flat histogram, as

defined by Wang and Landau in their formulation, is such that the histogram H(E)

for all possible E is not less than 80% of the average one < H(E) >. f is then

reduced and the random walk in energy space is repeated until the same flatness

criterion is achieved. This step is performed several times until the Blotzmann

distributions between the sweeps do not differ significantly. This is achieved when f

becomes smaller than some predefined value, f > 1. f is reduced such that

fn → 1 when n→∞ (5.18)

where n is the sweep number.

The modification factor f is used as a control parameter for the accuracy of the

density of states. The manner in which it is reduced should not allow it to become

f < 1. In the original Wang-Landau sampling it is decreased by the square root of

its predecessor after each sweep (f →
√
f). Obviously, the closer f gets to unity (1),

the more accurate Ω(NV E) becomes. At the end of the simulation, the Ω(NV E)

obtained is rescaled by a factor of 2, corresponding to the Ising model (all spins are

up or down).

The detailed balance condition for the Ising model, Equation 5.19, is not

satisfied since the density of states is changed constantly during the random walk.

1

Ω(Eo)
acco→n =

1

Ω(En)
acco→n (5.19)

Nevertheless, after several sweeps Ω(E) quickly converges to its true value as f

approaches 1. Accordingly, the detailed balance condition becomes satisfied at the

end of the simulation, with an accuracy proportional to lnf .
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5.2.2 Sampling in the Isothermal-Isobaric Ensemble

In the isothermal isobaric ensemble where the number of particles (N), pressure

(P ), and temperature (T ) are fixed, the extensive variable that allows the sampling

of the vapor-liquid region is the volume (V ). Here, the joint probability distribution

is given by Equation (5.20).

p(V,Γ) =
V Nexp[−βU(Γ)− βPV ]

N !Λ3NQ(NPT )
(5.20)

where Q(NPT ) =
∫∞

0
Q(NV T )exp(−βPV )dV is the isothermal isobaric partition

function and Q(NV T ) is the canonical partition function.

The integration of the joint probability over the possible configurations yields

p(V ) =
Q(NV T )exp(−βPV )

Q(NPT )
(5.21)

Substituting Equation 5.20 and 5.21 into the expression for the joint biased

probability in equation (5.8), the joint biased probability in the isothermal isobaric

ensemble is then given by

pbias(V,Γ) =
V Nexp[−βU(Γ)]
N !Λ3NQ(NV T )

(5.22)

This leads to an acceptance probability

acc(o→ n) = min

[

1,
Q(NVoT )V

N
n exp[−βU(Γn)]

Q(NVnT )V N
o exp[−βU(Γo)]

]

(5.23)

In Equation (5.23), the canonical partition function Q(NV T ) is the only

unknown and it plays the role of the biasing function. Obtaining a good estimation

of Q(NV T ) is the core of the simulation. Another important characteristic of the

WL method in the NPT ensemble is that the pressure is not required in the

acceptance criteria as shown in Equation (5.23). The coexistence pressure is found
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after the simulation converges and does not have to be predetermined in

advance.140,141 This is important because the simultaneous prediction of the vapor

pressure in the course of a simulation is a daunting task. First, because pressure is

ignored in the development of most force fields and second, due to the limitations of

the commonly used Lennard-Jones potential.18

In the classical Wang-Landau method with spherical particles in the NPT

ensemble, two types of moves are performed. Random particle translational moves

and volume changes. For this purpose, the volume domain comprising the volume

and liquid range is divided into equal intervals in lnV . The simulation starts by

attributing an arbitrary value of one to Q(NV T ). Each time a new volume interval

is sampled, it is updated by a convergence factor f(Q(NVoT )) → fQ(NVoT ),

starting with lnf = 1.

The updated partition function is higher in value and thus, as it can be seen

from Equation (5.23), the acceptance probability of visiting a new volume increases.

This constant updating is the driving force behind the uniform sampling. Not only

does it allow visits to the low probability volumes, but it also aids the partition

function to converge towards its true value. Once all states in each volume interval

are sampled for a certain amount of time (to ensure a reasonably flat histogram),

another sweep is run with a lower convergence factor (fn =
√

fn−1). The

convergence of the simulation is monitored by tracing the histogram of visited states

and the running estimate of the partition function as shown in Figure 32.

The refinement of the convergence factor is necessary, as a better estimate of

Q(NV T ) is obtained after each sweep. After each simulation run for a given value

of f has converged, the random sampling of the volume interval starts all over.

Estimates of the partition function are kept after each simulation has converged.

The refinement of the convergence factor f is accompanied by a refinement in

Q(NV T ) and when it has the allure of smooth and continuous function (dotted line

in Figure 32), the simulation is over.
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Figure 32. Variation of the canonical partition function Q(NVT) as a function of the
reduced volume for different convergence factors f .

5.3 Determination of Critical Properties of Polyaromatic Hydrocarbons (PAHs)

5.3.1 Introduction

Polycyclic aromatic hydrocarbons (PAHs), sometimes referred to as polynuclear

aromatic hydrocarbons, consist of fused aromatic rings with no substituents or

heteroatoms. They occur naturally in oil, coal, tar deposits and are also byproducts

of combustion.142 PAHs have been extensively studied because they are potent

atmospheric pollutants and known to be carcinogenic.143,144

PAHs are semi-volatile and are usually found sorbed to aerosol particles.

Consequently, vapor-liquid, vapor-solid, and/or solid-liquid equilibrium data for

these compounds are vital reducing their concentrations in the environment. But

limited data is available for PAHs in the literature.145 To circumvent this problem,

molecular simulation appears to be a great tool to predict the critical properties of

PAHs. Previous simulation methods have mostly been employed for phase equilibria

of PAHs with two or three aromatic rings. This can be explained as being due to low

acceptance probability for dense fluids and increasing molecular complexity.23,141,146
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Wang-Landau sampling in the NPT ensemble was used to establish the

vapor-liquid equilibria of three PAHs with 4 aromatic rings see Figure 33. Unlike

prior methods,133 working in the NPT ensemble does not require any

insertion/deletion steps during the simulation. Another advantage is that knowledge

of the pressure at coexistence is not required, since Wang-Landau scheme samples

uniformly a wide range of volumes at a given temperature. Finally, only a single

simulation at a fixed temperature is needed to provide an accurate estimate of the

canonical and isobaric-isothermal partition functions, i.e., Q(N, V, T) and Q(N, P,

T) respectively. Statistical thermodynamics enables estimates of densities and vapor

pressures at coexistence from Q(N, V, T). The scaling laws aid the evaluation of

critical properties of the system. The obtained results are authenticated by

comparing with the available data.

Figure 33. The three PAHs studied Naphthacene(a), Triphenylene(b), and Chry-
sene(c).

5.3.2 The Potential Energy Function or Potential Model

The accuracy of the potential model is a very vital component for any

simulation scheme. The three PAHs studied here consist mainly of carbon atoms
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and CH groups (Figure 33). The DHMD potential developed by Desgranges et al.

in our research group141 is employed to model the PAHs. The potential is a united

atom model that treats each CH group as a single interaction site. This potential

uses a Buckingham exponential-6 functional (Equation 5.24) to describe nonbonding

interactions between two sites i and j belonging to different molecules, with the

assumption that each molecule is rigid and planar. Details of this model can be

found in references141,147.

φ(rij) =
ǫij

1− (6/αij)

[

6

αij

exp

(

αij

[

1− rij
rmij

])

−
(

rmij
rij

)6
]

(5.24)

where ǫ represents the well depth, and rm and α are fitting parameters.

The parameters for various interactions, given in Table 2, were obtained by running

a simulation for napthalene at several temperatures and optimizing the results with

experimental data.141 Interactions between two unlike sites are modeled with the

Lorentz-Berthelot mixing rules (Equation (5.25)).

ǫij =
√
ǫiiǫjj

rmij =
1

2
(rmii + rmjj)

αij =
√
αiiαjj (5.25)

Table 2. Parameters for the DHMD potential

rm(Å) ǫ/kB (K) α
C 3.800 61.74 18.13
CH 4.067 74.06 20.00

The DHMD potential has recently been used to study the vapor-liquid

equilibria of naphthalene, phenanthrene and anthracene with accurate results. This

demonstrates the appropriateness of the model in predicting critical properties of

PAHs. In this work, the bond length between carbon atoms for the three PAHs
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studied was fixed to 1.40 Å. A cutoff radius of 11.13 Å is applied throughout the

simulations together with the standard long-range corrections.62

5.3.3 Simulation Method

5.3.4 Wang-Landau Hybrid Monte Carlo Simulation

The phase behavior of three PAHs mentioned previously were explored by

means of Hybrid Monte Carlo simulations and the Wang-Landau sampling

technique. This method involves combining MD trajectories with WangLandau

(WL) sampling. The choice of MD trajectory over MC random translation is to

allow for concerted moves and to advance the system as a whole. From previous

work, the probability of accepting a MD move from an old configuration o to a new

configuration n is given by

acc(o→n) = min

[

1, exp

(

−(E(n) − E(o))

kBT

)]

(5.26)

where E is the total energy given by the sum of the potential and kinetic energy for

the system.

The equations of motion for translation was integrated by employing the

velocity-Verlet algorithm while that for rotation was integrated using the scheme

proposed by Matubayasi and Nakahara.62,148

The Wang-Landau flat histogram technique proposed by Ganzenmüller et al.

was applied to uniformly sample the simulation volume (V) at a given

temperature.139 The density of the system was changed by varying the volume, and

the simulation ran to determine the temperature at coexistence. The probability of

accepting a volume change move from an old configuration o with coordinates Γo, Vo

to a new configuration n with coordinates Γn, Vn is defined as in Equation 5.23.

Recall that Equation (5.23) has no expression for pressure. In addition an estimate

of the canonical partition function Q(N, V, T) was obtained at the end of the
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simulation.

A system of 100 molecules PAHs was studied for each simulation. Throughout

the simulation temperatures, the upper and lower bounds for the volume were

chosen to correspond to densities of 0.001 and 1.05 g/cm3 respectively. The volume

was divided into 400 uniform intervals of ln(V ) instead of V for sampling

convenience. This changes Equation 5.23 slightly as the factor VN is replaced by

VN+1.

WL-HMC simulations consist of two types of moves, MD trajectories and

random volume changes. One of the objectives of WL sampling in the NPT

ensemble is to gain information on Q(N, V, T); each time an interval of volume is

visited. The quality of the estimate of Q(N, V, T) was controlled by a convergence

factor f in the simulation. At the start of the simulation, Q(N, V, T) was assigned

a value of one and the initial value of f was obtained from lnf = 1. For each value

of f , the number of times a volume interval is visited was recorded in a histogram

H(V) and Q(N, V, T) was adjusted by multiplying it by f . When the histogram

H(V) was reasonably flat (in practice, it is accomplished when all intervals for the

volume have been visited at least 500 times), the simulation had converged. f was

reduced by
√
f and all entries for the histogram were initialized. A new HMC-WL

run was started with these new values of the convergence factor f and Q(N, V, T).

This procedure was repeated until lnf = 10−5. Equation (5.27) is used to validate

that the simulation has converged.

∆n =

∣

∣

∣

∣

lnQfn(N, V, T )− lnQfn−1(N, V, T )

lnQfn(N, V, T )

∣

∣

∣

∣

(5.27)

where Qfn(N,V,T) is the running estimate for the canonical partition function for

the convergence factor fn = e1/2n, and ∆n is the relative error made for a

convergence factor of fn = e1/2n and a measure of convergence for the WL-HMC

simulation.

Figure 34 shows data for ∆n collected during the course of the WL-HMC
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simulations for triphenylene at T = 700 K and T = 950 K.

Figure 34. Relative error on the convergence factor for triphenylene at T=700 and
950 K

At the end of the simulation, the volume distribution was evaluated using the

following equations

p(V ) =
Q(N, V, T )exp(−PV/kBT )

Q(N,P, T )
(5.28)

and

Q(N,P, T ) =

∫ ∞

0

Q(N, V, T ) exp(− PV
kBT

)dV (5.29)

where Q(N, P, T) is the isothermal-isobaric partition function.

When the probability pliq associated with the liquid phase is equal to the

probability pvap associated with the vapor phase, the saturation pressure Pcoex was

calculated. Then the densities for the two coexisting phases, i.e., (ρvap) and (ρliq)

may be calculated by

ρliq =

∫ Vb

0
(N/V )V NQ(N, V, T ) exp(−(PcoexV )/(kBT ))dV
∫ Vb

0
Q(N, V, T ) exp(−(PcoexV )/(kBT ))dV

(5.30)

ρvap =

∫∞

Vb
(N/V )V NQ(N, V, T ) exp(−(PcoexV )/(kBT ))dV
∫∞

Vb
Q(N, V, T ) exp(−(PcoexV )/(kBT ))dV

(5.31)
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5.3.5 Results and Discussions

Simulations in the NPT ensemble using the Wang-Landau sampling method

resulted in the determination of the pressures at coexistence Pcoex. This was

obtained by equating the probability of the liquid and vapor phase (pliq = pvap)) and

the densities of the coexisting phases ρliq and ρvap are obtained from Equation 5.30

and 5.31.

The critical parameters were estimated from the simulation results by fitting

WL-HMC simulated vapor-liquid equilibria results with the density scaling law

(Equation 5.32) and the law of rectilinear diameters (Equation 5.33) to determine

the critical temperature (Tc) and the critical density (ρc) respectively.
89,149 The data

obtained for the coexistence properties of the PAHs studied are polted in Figure 35.

ρl − ρv = B(Tc − T )β (5.32)

ρl + ρv
2

= ρc + A(T − Tc) (5.33)

where ρl and ρv are the liquid and vapor densities respectively, β =0.3265 is the

critical exponent that equals the three-dimensional Ising order-parameter, and A

and B are fitting parameters.

The results for the pressure at coexistence were fitted to Antoine’s law,

Equation (5.34). Values of the Antoine’s parameters A, B, and C in Table 3 are

applied to estimate the critical pressure for the three PAHs. Plots of the fit to

Antoine’s law as a function of temperature are shown in Figure 36.

logP = A− B

T + C
(5.34)

The values of the various properties obtained during the simulations are shown

in Table 4.
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Figure 35. Vapor-liquid equilibria for naphthacene (circles), triphenylene (triangles)
and chrysene (squares). The filled symbols represent the critical point.

Table 3. Antoine’s parameters for the different PAHs.

A B C
Naphthacene 11.1735 5428.61 410.184
Triphenylene 11.1643 5511.73 412.060
Chrysene 11.3757 5833.20 440.904

Table 4. Critical and boiling points for naphthacene, triphenylene and chrysene (stan-
dard deviations are of 5 K for temperatures, 0.50 bar for pressures and 0.010 g/cm3

for densities).

Tc (K) Pc (bar) ρc (g/cm3) Tb (K)
Naphthacene 1041 36.75 0.337 742
Triphenylene 1083 45.04 0.348 755
Chrysene 1054 39.93 0.342 747

Due to the scarcity of experimental data, a direct comparison of the critical

properties predicted by the simulations with experimental data was not possible.

However, a comparison of our results with those obtained via correlations from

molecular structure are in close agreement and our boiling points also match those

estimated from experiments.150
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Figure 36. Saturated vapor pressures for the three PAHs. In all plots the lines
represent Antoine fits.

5.4 Vapor Liquid Equilibria of Alkenes

5.4.1 Introduction

The phase behavior of hydrocarbons (alkanes and alkenes) is of importance in

many applications, especially in the petrochemical industry for the separation of

different hydrocarbon fractions. As a result, the critical properties of these flexible

hydrocarbons have been extensively investigated by experiments and theory. These

groups of compounds are explored in industries either as reactants, products or

intermediates for the development of new products.1,149,151

The study of flexible molecules like alkanes and alkenes via molecular

108



simulations demands special care, especially in the selection of the simulation

method. This is due to the possibility of conformational changes in addition to

molecular overlaps when sampling between the different densities. Although Monte

Carlo simulations are remarkable for their efficiency over MD methods when it

comes to the study of phase properties, they suffer from low acceptance probabilities

in dense fluids due to the large free-energy barrier separating the coexisting

phases.141

Previous works on chain molecules have been done with the help of

configurational-bias Monte Carlo (CBMC) simulation methods in combination with

the very popular Gibbs ensemble Monte Carlo (GEMC)71,133 and the cavity bias

Monte Carlo developed by Mezei et al.134 The former method is commonly referred

to as configurational-bias Gibbs ensemble Monte Carlo (CB-GEMC). These methods

rely solely on the implementation of a specific bias that has to be a function of the

molecular structure. This bias may be difficult to obtain for some molecules, which

hinders their application to such systems.135 The accuracy of these methods also

depends on the high acceptance rate for particle insertion and deletion Monte Carlo

steps. The insertion and deletion Monte Carlo steps become difficult to achieve

either at low temperatures when the liquid phase is very dense or for long alkanes.152

As a result of the enumerated difficulties, in this work GEMC was replaced with

Wang-Landau sampling. The Wang-Landau CBMC (WL-CBMC) simulation in the

NPT ensemble enabled the prediction of the vapor-liquid equilibria of four α-olefins,

propene through hexene (C-3 to C-6).153 WL-CBMC sampling provides a simple,

improved and efficient technique of studying phase coexistence that resolves the low

acceptance probability limitation of previous methods.139 Using this approach, the

chemical potential or any intrinsic properties at phase coexistence are not needed

for the simulation. This work represents the first application of this method to

molecular fluids and the results are in close agreement with both experimental and

other simulation results.89,140,141,151

WL-CBMC simulation technique has mostly been applied to model
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(Lennard-Jones) fluids. The study of α-olefins is in line with our previous work of

estimating vapor-liquid equilibria of molecular fluids. This method is a simple

handy tool suited for probing coexistence properties since it allows the system to

easily overcome the free energy barrier between the equilibrium phases.154,155

5.4.2 Potential Model

The NERD force field developed by Nath and coworkers was used for this

study.21 This is a united atom model developed for alkanes; it has proven to be

efficient for the study of both n-alkanes and branched alkanes.26,89,151,156 The ability

of the method to accurately describe flexible molecules motivated the

parametrization of the potential for alkenes.153 This was achieved with the

parameters indicated in Equations 5.36 to 5.38 and Table 5.153,157 Equation 1.1,

defines the total energy of a system as

Etotal = Einternal + Eexternal

where

Einternal = Bond stretching potential (5.35)

+ Bond bending potential

+ Torsional potential

The bond stretching potential is given by

V (r)/kb =
Kr

2
(r − beq)2 (5.36)

where Kr = 96500K/Å
2
, beq = 1.34Å (C = C), and 1.54Å (C − C)

The bond bending potential is defined by

V (θ)/kb =
Kθ

2
(θ − θeq)2 (5.37)
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where Kθ = 62500K/rad2, θeq = 124◦Å (C − C = C)

And the torsional potential is given by

V (φ)/kb = V0 + V1(1 + cosφ) + V2(1 − cos2φ) + V3(1 + cos3φ) (5.38)

For C − C − C = C

V0 = 47.97 K, V1 = 86.31 K, V2 = −109.71 K, V3 = 282.08 K and

Eexternal = 4ǫ

[

(σ

r

)12

−
(σ

r

)6
]

(5.39)

Table 5. Lennard-Jones parameters.153,157

Propene (CH2=CH-CH3)
σ
CH3(sp

3) = 3.85Å
ǫCH3(sp

3) = 100.0 K
σ
CH2(sp

2) = 3.72Å
ǫCH2(sp

2) = 92.5 K
σ
CH(sp2) = 3.77Å

ǫCH(sp2) = 46.0 K

For longer molecules
σ
CH3(sp

3) = 3.91Å
ǫCH3(sp

3) = 104.0 K
σ
CH2(sp

2) = 3.72Å
ǫCH2(sp

2) = 92.5 K

The parameters Kr, Kθ, and Kφ represent the bond, bond angle, and dihedral

angle force constants, respectively; r, θ, and φ are the bond length, bond angle, and

dihedral angle respectively. The Lennard-Jones 12-6 potential and Coulombic terms

represent the external or nonbonding interactions, with the Lennard-Jones potential

used for the van der Waals interactions. ǫ is the Lennard-Jones well depth, σ is the

exclusion diameter, qi is the partial atomic charge, ǫ0 is the dielectric constant, and

r is the distance between Lennard-Jones interacting sites.21,89
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5.4.3 Simulation Method

5.4.4 Configurational Bias Monte Carlo (CBMC)

Monte Carlo simulation technique, though simple and fast, is limited in the

sampling of chain molecules. This is because it does not account for conformation

changes. Efforts have been made in the past two decades to develop sampling

schemes that can sample different conformations in chain molecules as established

by Kremer and Binder.158 One such sampling scheme involves the socalled reptation

moves mostly common with polymeric molecules, where the molecular conformation

changes with the movement of the entire molecule. This procedure necessitates the

transfer of a monomer from one end of the molecule to the other and a rotation of

the monomer as illustrated in Figure 37.

Figure 37. Examples of reptation moves. To the left the wavy bond is moved to a
new position indicated as broken lines. The right figure indicates that the dotted
cycle is an atom moved to a new position shown by the filled cycle.158,159

This approach cannot be used for monolayers where one end of the molecule is

fixed. Another method suggested is to perform trial moves that involve cooperative

bond rotations that can also incorporate the reassembling of the chain molecule

either as a whole or in parts. However, the randomness of MC sampling method will

result in the vast majority of moves being energetically unfavorable. Figure 38,

illustrates that the fraction of chains without overlap decreases exponentially with
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increasing chain length.157 Siepmann and Frenkel proposed a method that generates

Figure 38. Variation of chain length (number of interaction sites) against the fraction
of interactions without overlap.157

these trial moves with reassembling of the molecular framework in a smart way that

prevents the molecule from overlapping with itself as well as other chains within the

system. This happens, while taking into account intermolecular potentials such as

trans-gauche torsional potential.135 Siepmann and Frenkel researcher group

modified the self-avoiding random walk proposed by Rosenbluth and Rosenbluth

but kept the Rosenbluth ratio weighting factors as the acceptance criterion for

accepting a new configuration.135 In their scheme, many configurations are

discarded before the complete construction of a chain. This makes the reptation

method more efficient than conventional CBMC for long chains and high densities

as indicated in Figure 39.160

Configurational Bias Monte Carlo (CBMC) allows all the conventional MC

moves (translation and rotation) but introduces a new method of changing the

configuration of the individual molecules. The process begins with a random

selection of a chain molecule, say (i), and a segment of the molecule usually referred

to as a bead (j). All the units in the molecule are discarded with indices larger than

j or with a probability smaller than j. Each bead (or monomeric unit) is part of the

molecule and can be considered as a single potential site interacting with its

neighbors through intra- and inter-molecular forces. Next, the same chain length is

regrown using the Rosenbluth self-avoiding random walk algorithm that has the

113



Figure 39. The efficiency of the regrowth (RG) scheme by Siepmann and Frenkel
compared to the conventional CBMC method. lmax, indicates the maximum allowed
recoil steps, and k the number of trial moves.160

following steps:

1. Check if any of the lattice sites neighboring the current end point of the

growing chain are unoccupied. The chain growth can only continue if at least

one neighboring position is not occupied either by other molecules in the

system or by any previous unit of the trial chain that was grown.

2. From the available positions, one is chosen at random and the next segment of

the trial conformation is added at that position. The new Rosenbluth weight

for the trial conformation of length m is calculated following the original

scheme, Equation 5.40.

Wm =
n′

n
Wm−1 (5.40)

where n is the maximum number of choices (number of next-nearest neighbor

sites except the one corresponding to the previous unit, which is dependent

only on the type of lattice used in the simulation and the geometrical

requirements for the test molecule), n′ is the number of available sites for the

walk, and m the number of the new unit. W0 is the Rosenbluth weight at the

start of the regrowth sequence and is equal to the Boltzmann factor of the
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point where the regrowth starts.

In the case when no free neighbor sites are available, the corresponding weight

for the trial attempt is zero and the attempt to grow a trial conformation has

to be abandoned.

3. Otherwise proceed with steps 1 and 2 until the desired length of the trial

chain is reached.

4. The new configuration of the self-avoiding random walk (SAW) is accepted or

rejected based on two criteria. Better results are obtained with one of these

criteria: namely, the one based on the ratio of the Rosenbluth weight of the

trial conformation and the old conformations

Pacceptance =
Wtrial

Wold

(5.41)

Having accepted the SAW outcome of the trial move as a new configuration,

the energy of the old and new configurations are evaluated. The standard

Metropolis acceptance criterion is then applied to decide if the changes

undergone by the system lead to a new configuration.

Step-by-step regrowing of the molecule by the insertion of one bead after the

other results in the more probable configurations with a higher frequency. The

regrowth starts with placing a new bead around the old position, first by

considering the intramolecular interactions for the model. Figure 40 illustrates the

regrowth process wherein a molecule is transferred from the gas phase to the liquid

phase bead-by-bead. The three dark spheres show segments of the molecule that

have been successfully grown in the liquid. The arrows represent trial moves to be

performed for the insertion of the next bead. The energy change for each of the trial

moves is calculated and the move with the right energy requirement is then

accepted (here represented as the shaded sphere).1

The bond energy can be written as a sum of the vibrational, bending and
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Figure 40. Regrowth process between vapor and liquid.1

torsional potentials

Ubond(r, θ, φ) = Uvib(r) + Ubend(θ) + Utors(φ) (5.42)

The length of the bond is often subjected to a harmonic potential with oscillations

around an equilibrium distance. Thus the trial orientations can be distributed on an

outer portion of a sphere, enclosed by two spherical surfaces with radii that are

slightly bigger and slightly smaller than the equilibrium bond distance. Only a

limited number of k trials are generated in order to speed up the simulation. The

probability of generating a new position n from the set of trial configurations r is:

ρn,bonddr =
exp [−un,bond(r)/kBT ] dr
∫

dr exp [−ui,bond(r)/kBT ]
(5.43)

=
exp [−un,bond(r)/kBT ] dr

C

where un,bond is the bond energy of monomer n, and C is the normalization constant

related to the bond energy.

Since r, θ and φ are used to represent the conformations of the molecule (see Figure

5.4.4), it is convenient to work with spherical coordinates:
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dr = r2dr dcosθ dφ (5.44)

The probability that this new trial position is generated then becomes:

ρn,bonddr =
exp [−un,vib(r)/kBT ] exp [−un,bend(θ)/kBT ] exp [−un,tors(φ)/kBT ] r2dr dcosθ dφ

C
(5.45)

A new trial is obtained by generating a random vector within the portion of a

sphere limited by the two radii and calculating the distance (r), bending (θ) and

torsional (φ) angles. The distance and the angles are accepted with a probability

according to Equation 5.45. If rejected, another vector is generated until one gets

accepted. In case the new position corresponds to the second bead in the molecule,

any random vector is accepted with a probability distribution according to the

vibrational energy, since no bending or torsional restraints are present. The

probability of generating the third bead is also simplified, given that no torsional

changes are present.

ρn,bonddr =
exp [−un,vib(r)/kBT ] exp [−un,bend(θ)/kBT ] r2dr dcosθ dφ

C
(5.46)

The next step is to calculate the external, nonbonding energy probability of the

selected bead. At this point, selecting the new position depends on the interactions

with the beads from the other molecules around and those from the same molecule
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separated by more than 3 monomeric units

ρn,ext(rn) =
exp [−un,ext(rn)/kBT ]

∑k
i=1 exp [−ui,ext(rn)/kBT ]

(5.47)

where un,ext(rn) is the external energy for the new bead and the denominator

represents its external configurational partition function. The latter term is given

the symbol wi,ext(n)

ρn,ext(rn) =
exp [−un,ext(rn)/kBT ]

wi,ext(n)
(5.48)

Once the entire chain is regrown, the Rosenbluth factor is calculated:

Wext(n) =
l
∏

i=1

wi,ext(n) (5.49)

where, l is the number of beads regrown.

In order to compare the obtained new conformation to the old (o) one, it is

necessary to repeat the same steps for the old chain. This time, the first step of

evaluating the bonded probability is omitted as it does not influence the final

acceptance criterion for accepting or rejecting the new structure. Each new-bead is

also accepted with 100 % probability as their positions in the old chain are

predetermined. The same number of different trials around the old monomeric unit

however is generated, calculating the external energy for each one (ui,ext(o)) and the

external configurational partition function:

wi,ext(o) =
k
∑

i=1

exp [−ui,ext(ro)/kBT ] (5.50)

After the old conformation is retraced, the Rosenbluth factor is calculated from

Wext(o) =
l
∏

i=1

wi,ext(o) (5.51)
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The correct sampling of the transition from the old to the new chain

conformation is guaranteed by the detailed balance condition, Equation 5.10. The

difference with respect to the conventional MC scheme is that the transition matrix

probability is biased according to the above described method of generating a new

bead from the old one. It depends on the product of generating a trial orientation

according to the bonded probability, Equation 5.44, and the external energy

probability of the selected bead, Equation 5.47.

αo→n = ρi,bond(n)ρi,ext(n)α
′
o→n (5.52)

where α′
o→n is a symmetric transition matrix, such as the transition matrix in a

conventional MC scheme.

The detailed balance condition is

ρoαo→nacco→n = ρnαnoaccno (5.53)

By replacing αo→n with the expression in Equation 5.52, it becomes:

ρoρbond(n)ρext(n)α
′
o→nacco→n = ρnρbond(o)ρext(o)α

′
noaccno (5.54)

Since α′ is symmetric and ρo ∝ exp [−u(o)/kBT ], the left and right side of the

equation can be written as follows:

1. Left side

exp [−u(o)/kBT ]
exp [−ubond(n)/kBT ]

C

exp [−uext(n)/kBT ]
wext(n)

acco→n (5.55)

2. Right side

exp [−u(n)/kBT ]
exp [−ubond(o)/kBT ]

C

exp [−uext(o)/kBT ]
wext(o)

)accno (5.56)
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Since u(o) = ubond(o) + uext(o), one can express the probability of being in the old

configuration as

exp [−u(o)/kBT ] = exp [−ubond(o)/kBT ] exp [−uext(o)/kBT ] (5.57)

Using the above expression, the detailed balance condition can be further simplified.

Having the same bonding configurational partition function for the old and new

bead, the final acceptance criterion becomes

acco→n = min

{

1,
wext(n)

wext(o)

}

(5.58)

The move is accepted based solely on the external nonbonding energy of the

trials for the new and old bead. The convenience of using the Rosenbluth scheme in

the off-lattice case comes from the fact that bond energy is omitted in the final

acceptance rule, which decreases the computational time. If more than one bead is

grown, expressions 1 and 2 would grow with additional terms, corresponding to each

bead in the regrown and its counterpart old conformation. The acceptance criterion

can be simplified again to give this time a product of the wext factors for each new

and old bead, which are the two Rosenbluth factors, Equations 5.49 and 5.51.

acco−→n = min

{

1,
Wext(n)

Wext(o)

}

(5.59)

The CBMC technique is tightly bound with the Gibbs Ensemble Monte Carlo

(GEMC) method especially in the construction of phase diagrams of alkane chains.

The particle exchange moves are necessary to attain equilibrium in the Gibbs

Ensemble. The insertion of a chain molecule in the liquid phase must be

accompanied with a change in the conformational structure of the molecule in order

to avoid overlapping. This is done by inserting bead by bead, in exactly the same

manner that a chain is regrown. The particle exchange move still presents a

challenge for long molecules with complex architecture. The configurational bias
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technique has to be implemented not only for the particle exchange, but also with

the MC move inside each of the simulation boxes, for the regrowth (conformational

change) of the chain. This can be avoided by replacing the MC moves with a hybrid

Monte Carlo (HMC) procedure.22,156,161

Generation of trial positions is time consuming when a branched chain is

considered. The acceptance of a trial configuration of the branched site now

depends on the bond length, the torsional angle and the two angles between the

bond vector and the two existing branches. The acceptance probability is decreased

and the efficiency for successful generation of a branched site is about 2-10 times

lower than that of a linear molecule. This method was later improved by Nath and

Khare22 by growing all the atoms from a branch point simultaneously instead of one

after another. This technique, described in details by Macedonia and Maginn162 was

found to be faster and more efficient. The efficiency of generating new

configurations of branched sites is an order of magnitude higher for simple molecules

and increases with molecular complexity. Yet, the acceptance probability of the

inserted molecule depends on the number of the preliminary established

configurations of a single branched segment.

5.4.5 Wang-Landau Configurational Bias Monte Carlo (WL-CBMC)

The Wang-Landau sampling technique described earlier is this time combined

with Configurational-bias Monte Carlo to study the phase behavior of four

α-alkenes (propene, butene, pentene, and hexene). The use of configurational-bias

facilitates molecular insertion during MC moves. WL sampling similar to the earlier

description was used for an even sampling of the volume (V). The WL flat

histogram technique was used for it’s proven efficiency in evaluating the vapor-liquid

equilibria in variety of systems.82,139–141,151,163 Throughout the simulation four types

of MC moves were performed, which included translational, rotational, regrowth,

and volume changes. Following Ganzenmüller et al.,139 the joint Boltzmann

distribution for a given configuration (Γ) and volume (V) was defined the same as in
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Equation 5.20. Defining the isothermal-isobaric partition function Q(N, P, T) as

Equation 5.60.

Q(N,P, T ) =

∫ ∞

0

Q(N, V, T ) exp(−βPV )dV (5.60)

The volume distribution is given by

p(V ) =

∫

p(Γ, V )dΓ =
Q(N, V, T ) exp(−βPV )

Q(N,P, T )
(5.61)

Combining Equations 5.20 and 5.61 leads to the bias probability (pbias(Γ, V)) for a

given configuration (Γ) and volume (V) given in Equation 5.22.

Like in the case of the PAHs, the pressure simplifies out of Equation (5.23)

leaving the canonical partition function with variable V, and N and T as constant,

as the only biasing function necessary for uniform sampling of V.

100 molecules of each alkene are used for the simulation, and the frequency of

various moves was controlled by assigning fixed percentages for the rate of each

move as follows: 32.8% for translation, rotation, and regrowth (configurational

bias), and 1.6 % for volume changes. The low probability for the volume change

ensures that after each volume change, the new volume bin is efficiently sampled

before the next change. A counter variable was employed to keep track of the

number of times each volume bin was visited, this ensured that a flat histogram was

obtained. The terminal value of the counter was set to 500, after which it was

assumed all moves had been performed equally. This implies that the coexisting

density converged to the true value and the volume distribution was given by

Equation 5.61. Figure 42 shows the running estimate of Q(NVT), that signifies the

simulation converged for the simulation of butene at T=373 K. Once this happens

then the system performs a volume change, it is not possible to predetermine the

number of MC sweeps for each iteration or volume change. Instead, the system is

allowed to freely check if all of the moves have been equally performed and that the

criterion for a flat histogran has been satisfied.163
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Figure 42. Convergence of the running estimate for ln[QN,V,T ] after n iterations for
the WLCBMC simulations of coexistence of butene at T = 373K.

The acceptance criteria for a translation or rotation move from an old

configuration o with potential energy Uo, to a new configuration n with potential

energy Un, as illustrated in previous works is given by

acc(o→n) = min

[

1, exp

(

−(Un − Uo)

kbT

)]

(5.62)

CBMC moves are employed to account for conformational changes as a result of

the flexibility of the molecules. This is achieved by regrowth of the molecule that

changes the internal configuration of a molecule as it is built part by part. These

moves are accepted by a probability given by:

acc(o→n) = min

[

1,
Wn

Wo

]

(5.63)

where Wn and Wo are Rosenbluth factors given by Equation 5.64 for the new and

old conformations respectively.71

W =
Πi=n

i=2

∑j=k
j=1 exp[−βU(i, j)]
kn−1

(5.64)
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where k = number of trial positions and U(i, j) = energy of the jth trial position of

the ith chain segment.

It should be noted that the bond-bending potential is no longer considered for

U(i, j) since it is used in the generation of the trial positions.

The upper and lower limits of the volume for the different molecules are set

based on chosen densities. For propene and butene these limits were 0.005 and 0.6

g/cm3, for pentene 0.0025 and 0.68 g/cm3 and for hexene 0.001 and 0.7 g/cm3

respectively. The volume ranges for all the systems investigated were divided as

described in the case of PAHs.

5.4.6 Results and Discussion

The data obtained for the coexistence properties of the various alkenes is

presented in Figures 43. The presented results were obtained by using a combination

of the Wang-Landau sampling and MC simulation method in the NPT ensemble.

Figure 43. Vapour-liquid equilibria of the different alkenes and their corresponding
critical points extrapolated from the simulation results (shown in filled symbols).
Propene (circles), butene (squares), pentene (diamonds) and hexene (triangles).

The critical parameters were estimated from the simulation results by fitting

WL-CBMC simulated vapor-liquid equilibria results with the density scaling law
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(Equation 5.32), and the law of rectilinear diameters (Equation 5.33) to determine

Tc and ρc respectively.
89,149 The results obtained for the critical temperature and

density for the four alkenes studied are summarized in Table 6.

Table 6. Critical temperatures and densities obtained from the WL-CBMC simulation
compared with those obtained from experiment.164

WL-CBMC Simulated results Experimental Results
Tc (K) ρc (g/cm3) Tc (K) ρc (g/cm3)

Propene 370 0.224 365 0.233
Butene 432 0.236 420 0.233
Pentene 473 0.249 474 -
Hexene 513 0.251 - -

All the results are in close agreement with experiment and previous simulation

results. A relatively satisfactory agreement is observed between our simulation

results and the other results like those of Nath et. al. as presented in Figure 44.21

These results show a negligible discrepancy for the densities in the liquid phase,

which validates our proposed method.

Figure 44. Comparison of results from the Gibbs ensemble Monte Carlo simulations
(circles) and the WLCBMC simulations (squares) for Pentene.21

The results are further validated by the ability to reproduce the volume

distribution for butene (Figure 45), corresponding to the convergence of the

partition function shown in Figure 42. The plot in Figure 42 shows two peaks
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analogous to the liquid and the vapor phase situated to the left and the right

respectively.

Figure 45. Volume distribution for Butene at coexistence at room temperature.

The saturation pressure Pcoex is determined at the end of the simulation by first

evaluating the area represented by each each volume in Figure 45 and applying the

condition of coexistence (i.e., both areas are equal). Figure 46 give the variation of

the vapor pressures as a function of temperature.

Figure 46. Variation of vapor pressure with temperature for propene (circles), butene
(squares), pentene (diamonds) and hexene (triangles).164 WL-CBMC simulation re-
sults are presented as symbols and experimental results are shown as dashed lines.

The plots in Figure 46 also show a comparison of the vapor pressures obtained
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by WL-CBMC with those obtained from experiment for the first three alkenes for

which experimental data is available.
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CHAPTER VI

CONCLUSION

First order phase transition processes are encountered in everyday life.

Knowledge of the thermodynamic properties at the point of the phase change are

necessary in many applications. However, due to the difficulties of obtaining these

properties by experiments, molecular simulation methods are key in assessing the

properties. Here, enhanced sampling methods (Umbrella sampling and

Wang-Landau sampling) are used to study both equilibrium and non-equilibrium

first order transitions.

These methods are simple in that properties at coexistence can be obtained

from a single simulation of equilibrium systems through efficient sampling of the

phase space. This is achieved by the application of a bias potential. Umbrella

sampling uses a bias potential that is a function of the order parameter to sample

the solid-liquid and solid-vapor non-equilibrium transitions in Buckminster fullerene

or buckyball (C60). By gradually changing the order parameter, the system sampled

through the free energy barrier, thus revealing properties of the critical nucleus and

the crystal structure. It is observed that the nucleation and growth processes occur

without passing through the BCC least stable phase as expected from previous

studies on model fluids.

The mechanism of the nucleation and growth from the liquid and vapor are

similar and consist only of the HCP and FCC crystal structures (Polymorph). This

result is consistent with previous studies of C60 clusters. This observation is

attributed to the steepness of the repulsive part of the potential model. This is due

to the large size of the C60 molecule and the confinement of the liquid pocket of its

phase diagram to a very tiny temperature interval. This suggests that polymorph
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selection for spherical systems with dimensions in the nanometer range might

require different strategies. Although there is no clear observation of polymorph

selection, this study shows the successive layers of FCC and HCP in the growth

phase, a process referred to as cross nucleation.

Vapor-liquid equilibrium phase transitions studies on PAHs and α-alkenes were

carried out using the Wang-Landau sampling scheme. This method accurately

samples the microstates of vapor and liquid phases at coexistence by estimating the

partition function. The study was performed in the NPT ensemble and the

convergence of the simulation was confirmed by the continuity of the canonical

partition function at the simulated temperature. To account for conformational

changes during the study of α-alkenes, the configurational bias Monte Carlo

technique was used. This method efficiently samples the phase space by using the

concept of regrowth, thus avoiding the inefficient process of particle insertion and

deletion. It therefore enhances the computational demand and makes the method

reliable for studying larger systems.

The Wang-Landau method has the advantage that only a single simulation at a

given temperature is needed to obtain the coexistence properties of both phases. In

addition prior knowledge of the chemical potential or saturation pressure is not

necessary during the simulation. The simulated results using Wang-Landau

techniques were in good agreements with both experimental results and results from

simulations using different methods. This validates the accuracy of this method.

The simplicity and accuracy of the methods proposed in this project can be

explored for the study of other systems.
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68. Nosé, S. A unified formulation of the constant temperature molecular
dynamics method. J. Chem. Phys. 1984, 81, 511–519.

69. Baranyai, A.; Evans, D. J. New algorithm for constrained molecular dynamics
simulation of liquid benzene and naphthalene. Mol. Phys. 1990, 70, 53–63.

70. Shinoda, W.; Mikami, M. Rigid-body dynamics in the isothermal-isobaric
ensemble: A test on the accuracy and computational efficiency. J. Comput.
Chem. 2003, 24, 920–930.

134



71. Frenkel, D.; Smit, B. Understanding molecular simulation: From algorithms to
applications, 2nd ed.; Elsevier Science, 2002; pp 1–638.
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