University of North Dakota

January 2015

Molecular Mechanisms Underlying Wing Color Pattern Development In Vanessa Cardui And Evolution OfThe Polycomb Repressive Complex 2

Heidi Connahs

Follow this and additional works at: https:// commons.und.edu/theses

Recommended Citation

Connahs, Heidi, "Molecular Mechanisms Underlying Wing Color Pattern Development In Vanessa Cardui And Evolution Of The Polycomb Repressive Complex 2" (2015). Theses and Dissertations. 1758.
https://commons.und.edu/theses/1758

MOLECULAR MECHANISMS UNDERLYING WING COLOR PATTERN

 DEVELOPMENT IN VANESSA CARDUI AND EVOLUTION OF THE POLYCOMB REPRESSIVE COMPLEX 2by

Heidi Connahs
Bachelor of Science, Brighton University, East Sussex, UK, 2002
Master of Science, Tulane University, New Orleans, Louisiana, 2009

A Dissertation
Submitted to the Graduate Faculty
of the
University of North Dakota
In partial fulfillment of the requirements

For the degree of Doctor of Philosophy

Grand Forks, North Dakota
May
2015

This dissertation, submitted by Heidi Connahs in partial fulfillment of the requirements for the Degree of Doctor of Philosophy from the University of North Dakota, has been read by the Faculty Advisory Committee under whom the work has been done and is hereby approved.
Tun Chen

Turk E. Then, Co-advisor

This dissertation is being submitted by the appointed advisory committee as having met all of the requirements of the School of Graduate Studies at the University of North Dakota and is hereby approved.
Wayne swisher
Dean of the School of Graduate Studies

PERMISSION

Title Molecular mechanisms underlying wing color pattern development in Vanessa cardui and evolution of the polycomb repressive complex 2

Department Biology
Degree Doctor of Philosophy
In presenting this dissertation in partial fulfillment of the requirements for a graduate degree from the University of North Dakota, I agree that the library of this University shall make it freely available for inspection. I further agree that permission for extensive copying for scholarly purposes may be granted by the professors who supervised my dissertation work, or in their absences, by the Chairperson of the department or the dean of the School of Graduate Studies. It is understood that any copying or publication or other use of this dissertation or part thereof for financial gain shall not be allowed without my written permission. It is also understood that due recognition shall be given to me and to the University of North Dakota in any scholarly use which may be made of any material in my dissertation.

TABLE OF CONTENTS
LIST OF FIGURES x
LIST OF TABLES xiii
ACKNOWLEDGMENTS xv
ABSTRACT xvii
CHAPTER
I. WING COLOR PATTERNING, PHENOTYPIC PLASTICITY AND EPIGENETICS 1
Lepidoptera As A Model System For Understanding Color Pattern Development. 2
The Development of Butterfly Wings and Color Pattern Elements 4
Phenotypic Plasticity of Wing Patterns. 7
Why is Plasticity So Important in Evolution? 8
Environmental Effects on Trait Integration and Modularity 10
Molecular Mechanisms Underlying Phenotypic Plasticity 12
What is Epigenetics? 12
Research Objectives 15
II. TRANSCRIPTOME ANALYSIS OF THE GENE REGULATORY NETWORK UNDERLYING WING PATTERN DEVELOPMENT AND PIGMENTATION IN THE PAINTED LADY BUTTERFLY VANESSA CARDUI 20
Abstract 20
Introduction 21
Study System 27
Methods 28
Tissue Collection 28
cDNA Library Construction and Illumina Sequencing 29
Transcriptome Assembly and Sequence Annotation 29
Quantitative PCR Validation 30
Statistical Analyses 31
Results 32
Correlation of qPCR and RNA-seq Data 33
Wing GRN Patterning Genes 33
Ommochrome Pigmentation 38
Melanin Pigmentation 39
Discussion 42
Temporal Expression Patterns of the Wing GRN 42
Melanin Genes Up-regulated During Late Pupation 45
Ommochrome Gene Expression Mirrors the Wing GRN. 46
Conservation and Divergence of Pigment Gene Expression Across Butterflies 47
Conclusions 48
III. PHENOTYPIC PLASTICITY REVEALS MODULARITY OF EYESPOT DEVELOPMENT IN THE PAINTED LADY BUTTERFLY VANESSA CARDUI 49
Abstract 49
Introduction 50
Methods 54
Butterfly Rearing and Experimental Setup 54
Eyespot Color Analysis. 55
Statistical Analyses 56
Results 58
Eyespot Size 59
Black Border (Outer Ring) 60
Yellow Pigment 61
Orange Pigment 63
Blue Scales. 64
Black Focus 65
Tests for Modularity and Integration 67
Discussion 71
Eyespot Size Plasticity Varies Across Wing Segments 72
Inner Pigment Rings Are More Sensitive to Perturbations Than the Eye Spot Border 74
Do Gradient Models Adequately Explain How The Same Pigment Develops in Different Rings? 76
Temperature Shock Alters Patterns of Integration and Modularity 78
Conclusions 79
IV. TEMPERATURE SHOCK AND HEPARIN ALTER EXPRESSION OF GENES INVOLVED IN EYESPOT DEVELOPMENT. 81
Abstract 81
Introduction 82
Methods 86
Transcriptome Analysis 86
Temperature and Heparin Experiment: Butterfly Rearing and Eyespot Dissections 87
RNA Isolation and Quantitative Real Time PCR 88
Statistical Analyses 90
Results 91
Expression of Polycomb Repressive Complex Genes During Wing Development 91
Comparison of Pupal Development Time and Pigmentation for Eyespot Dissections 92
Differential Expression of Patterning and Pigment Genes Across Eyespots 93
Effects of Temperature and Heparin on Pigment, Patterning and Polycomb Genes 95
Discussion 96
Expression Patterns of Pigment and Patterning Genes Across Hindwing Eyespots 97
Heparin Increases Expression of Patterning Genes, but Has No Effect on Genes Promoting Melanization 98
Engrailed, sal and tan are Thermosensitive Genes 101
Polycomb Repressive Complex Genes are Expressed During Wing Development 102
Conclusions 104
V. MOLECULAR EVOLUTION OF AN EPIGENETIC SILENCER: POLYCOMB REPRESSIVE COMPLEX 2 105
Abstract 105
Introduction 106
Function of the PRC2 108
Origin and Evolution of the PRC2 110
Research Questions 111
Methods 112
Mapping of Domains 114
Gene Tree Comparisons 114
Results and Discussion 114
Nematodes Do Not Reconstruct The Monophyletic Relationship of Animals 116
SANT1 Domain is Poorly Conserved in Primitive
Taxa and Nematodes. 122
Low Conservation of the Drosophila EZ-ESC
Binding Region 124
Identification of Suz12 Homologs in Nematodes 124
Evolutionary Conservation and Divergence in β-Blades and Loops of ESC. 126
Why Are Polycomb Genes So Different in Nematodes Compared to All Other Animals? 128
Conclusions 132
VI. EPILOGUE 134
Drosophila Wing Gene Regulatory Network is Conserved in V. cardui and Peaks in Expression During the Larval and Early Pupal Stages 135
Eyespots Reveal Complex Patterns of Trait Integration and Modularity That Are Disrupted Following Plastic Responses to Environmental Perturbation 136
Environmental Perturbation Alters Expression of Patterning and Pigment Genes While Polycomb Genes Remain Unaffected 137
The Evolution of the Polycomb Repressive Complex 2 Shows Conservation Across Diverse Metazoans and Significant Divergence in Nematodes 138
APPENDICES 141
REFERENCES 205

LIST OF FIGURES

Figure Page
1.1. Nymphalid groundplan described by Nijhout (2001) 3
1.2. Live pupal wing of Vanessa cardui at 3 days post-pupation, no pigmentation is visible at this stage 5
1.3. Patterning gene expression in butterfly eyespots. 6
1.4. Dorsal and ventral wings of Vanessa cardui. The arrows point to the dorsal and ventral eyespots respectively 18
2.1. Bivariate analysis of fold change expression for RNA-seq and qPCR. 34
2.2. RNA-seq and qPCR data for patterning and pigment genes showing fold change expression. 35
2.3.Wing gene regulatory network. 37
2.4. RNA-seq expression patterns for the different functional groups of the wing GRN 38
2.5. RNA-seq temporal expression patterns for ommochrome genes. 40
2.6. RNA-seq temporal expression patterns for melanin genes 41
3.1. Images of eyespots from the different treatment groups illustrating representative phenotypes. 55
3.2. Color composition of eyespot in Vanessa cardui. 56
3.3 Appendix. Bivariate analysis of the sum of all pigments in each eyespot relative to the total eyespot area. 154
3.4. Eyespot size across all four eyespots in the different treatments. 59
3.5. Area of the black border (outer ring) across all four eyespots in the different treatments. 60
3.6. Area of yellow pigment across all four eyespots in the different treatments 62
3.7. Area of orange pigment across all four eyespots in the different treatments 64
3.8. Area of blue pigment across all four eyespots in the different treatments 65
3.9. Area of the black focus across all four eyespots in the different treatments. 66
3.10. Hypotheses of integration and modularity for control eyespots based on overall phenotype data 67
3.11 Appendix. Partial correlation matrices for eyespot size and proportion of each color ring 156
3.12 Appendix. Edge exclusion deviance matrices based on partial correlations and calculated using the EED formula described in the methods 157
3.13. Comparison of phenotypic correlations within and between control and temperature shock groups for eyespot size and pigment rings. 68
4.1. Appendix. Representative images of pupal hindwings at 6 days post-pupation prior to eyespot dissections 160
4.2. Adult hindwing of Vanessa cardui with eyespots labelled 89
4.3. Expression of the polycomb repressive complex during larval and pupal wing development in V. cardui. 92
4.4. Appendix Gene expression patterns across all three hindwing eyespots (Control only) for the patterning genes and melanin genes. 161
4.5. Expression of genes across eyespots for each treatment group for
V. cardui 96
5.1. Major components of the PRC2 in invertebrates, showing the interaction between Ez and Suz12 and ESC, adapted from O’Meara \& Simon, (2012). 108
5.2 Appendix. Reconstruction of the animal phylogeny based on the Tree of Life website 181
5.3. Phylogenetic tree of Enhancer of zeste. 117
5.4. Phylogenetic tree of ESC. 118
5.5. Phylogenetic tree of Suz12. 119
5.6. Multiple sequence alignment of the enhancer of zeste (EZ) SET domain. 121
5.7. Appendix. Amino acid alignment of the CXC domain from enhancer of zeste 182
5.8. Appendix. Amino acid alignment of the SET domain from EZ. 183
5.9. Multiple sequence alignment of the enhancer of zeste (EZ) SANT domains (SANT1 top two panels, SANT2 bottom panel) for representatives across major animal groups. 123
5.10. Appendix. Amino acid alignment of the SANT1 domain from EZ 186
5.11. Appendix. Amino acid alignment of the SANT2 domain from enhancer of zeste 191
5.12. Appendix. ESC-EZ binding site identified in Drosophila melanogaster is poorly conserved across all taxa. 192
5.13. Multiple sequence alignment of the Suz12 VEFS box 125
5.14. Appendix. Amino acid alignment of the VEFS domain from Suz12. 193
5.15. Appendix. Amino acid alignment of the Zinc finger domain from Suz12 197
5.16. WD-40 repeats of the ESC protein for select taxa across major animal groups 129
5.17. Appendix. Amino acid alignment of the WD40 repeats from Esc. 198

LIST OF TABLES

Table
Page
2.1. Appendix. NCBI Blastn and Blastp results for Vanessa cardui transcripts
following transcriptome assembly with CLC Genomics Workbench
and multiblast (Blastx) against the Drosophila peptide database (FlyBase). 142
2.2. Appendix. Primers used for qPCR validation... 149
2.3. Appendix. Summary of de-novo transcriptome assembly performed
using CLC Genomics.. 150
2.4. Appendix. References for classification of functional groups in the wing GRN... 151
3.1. Appendix. Dunn-Šidák corrections for multiple comparisons following
2-way ANOVA for treatment x eyespot interactions comparing changes in
pigment area $\left(\mathrm{cm}^{2}\right)$. .. 153
3.2. Percent difference in area $\left(\mathrm{cm}^{2}\right)$ for eyespot size and pigmentation in
response to temperature shock $\left(37^{\circ} \mathrm{C}, 48 \mathrm{hrs}\right.$.) relative to the control................... 70
3.3. Total number of edges across all traits between each pair of eyespots for
the Control and temperature shock $\left(37^{\circ} \mathrm{C}, 48\right.$ hrs.) groups. 71
4.1. Age of pupae at time of eyespot dissection and total duration of pupation
for butterflies reared to adults across treatment groups. 88
4.2. Appendix. List of primer pairs used for quantitative real time PCR. 158
4.3. Results from two-way ANCOVA of gene expression.
Main effects include treatment (control, temperature, heparin), eyespot
number $(1,2,3)$ and the interaction between treatment and eyespot. 94
5.1A. Appendix. Taxon list for Enhancer of zeste (Ez) with accession numbers
for NCBI and Uniprot. ... 162
5.1B. Appendix. Taxon list for Suppressor of zeste (Suz12) with accession numbers for NCBI and Uniprot. NF indicates no record found in that database. .. 166
5.1C. Appendix. Taxon list for Embryonic Sex Combs (ESC) with accession numbers for NCBI and Uniprot. 169
5.2A. Appendix. Domain sequence divergence for Enhancer of zeste 173
5.2B. Appendix. Domain sequence divergence for Suz12. 176
5.2C. Appendix. Domain sequence divergence for ESC. 177

ACKNOWLEDGMENTS

This PhD has been a very long journey and I have many people to thank who have provided continual support and encouragement along the way. First and foremost I wish to express my sincere gratitude and appreciation to my PhD advisors, Dr. Rebecca Simmons and Dr. Turk Rhen. I thank Dr. Simmons for her warm encouragement and providing a cheerful, fun and supportive environment to work in. I especially thank her for training me in phylogenetics, assisting with rearing hundreds of butterflies including working with me during weekends. I also thank Dr. Rhen for his extraordinary patience, the many long hours he committed to training me in transcriptomics, qPCR and statistical analyses, without which I would not have been able to conduct this research. I also thank him for introducing me to the exciting field of epigenetics and for the many interesting conversations we had. I am extremely grateful to both advisors for always being available whenever I needed help. I would also like to thank my committee members Dr. Diane Darland and Dr. Brian Darby for their insightful comments and guidance and their generosity in allowing me to borrow whatever equipment I needed from their labs! I also thank Dr. Holly Brown-Borg for agreeing to be part of my advisory committee. I would like to thank the graduate students, in particular Katherine Hernandez, Justin Burum, Riley McGlynn and Stephanie Snyder for the many laughs we had, even their persistent teasing about my 'love' of the polar vortex and for helping me to survive in North

Dakota! I would also like to thank other friends who have been supportive over the years, including Christina Gomez-Mira, Kate Scheurer, Genoveva Rodriguez, Mark Tobler and also Rebecca Forkner who has always believed in me and has been an inspiring mentor. I am also very grateful to Ken and Maureen Drees for providing me a place to live when I first arrived and for their continued support. I am also very grateful to Archana Dhasarathy for being a wonderful teacher, and for her support in helping me land my dream post-doc! I am also thankful to Annette Aiello who has been an important mentor to me over the last 12 years and has provided many letters of recommendation that have helped me get to where I am today. I also wish to thank those who provided funding for my research including Graduate Women in Science (GWIS), Adele Lewis Grant Fellowship, Dr. Diana Wheeler, Vice President of Research office at UND, NSF Experimental Program to Stimulate Competitive Research (EPSCoR) Doctoral Dissertation Award, the Biology Department Academic Programs and Student Awards Committee (APSAC), and additionally, the School of Graduate Studies for the Summer Research Fellowships. I am also grateful to Dr. Ike Schlosser and Dr. Jeffery Carmichel for their support during my time here. I also want to thank all of the undergraduate students who assisted with my research including Joslin Seidel, Kasey Chelemedos, Kiara Pochardt, Jace Kussler, Boma Afonya and Whitni Redman. I also cannot finish without thanking Kathleen Peterson, who has helped me through the most difficult times and has been a guiding light during my time here. Finally, I wish to express my deepest thanks to my wonderful family who have been an enormous support to me throughout this long journey. I hope this will make them very proud.

This dissertation is dedicated to the memory of my beautiful mother

$$
(1956-2011)
$$

Abstract

In this dissertation, I present four papers. Three explore different aspects of wing color pattern development in the painted lady butterfly, Vanessa cardui; while the fourth examines the evolution of an epigenetic silencer complex across invertebrate animals. In the first paper, I used transcriptomics to identify patterning genes from the Drosophila wing gene regulatory network (GRN) in larval and pupal wings of V. cardui and to examine how temporal expression dynamics of this gene network correspond to expression of ommochrome and melanin pigment genes. This study identified key developmental periods of gene upregulation and highlights the temporal separation between peak expression of patterning and melanin pigment genes. In the second paper, I present evidence that hind wing eyespots of V. cardui exhibit phenotypic plasticity. Using morphometrics, I quantified how temperature shock and heparin modify eyespot size and pigment ring composition. This information is used to examine whether eyespot plasticity was a function of trait integration or modularity. In the third paper, I used qPCR to explore the role that epigenetic mechanisms may play in phenotypic plasticity of V. cardui eyespots. I examined expression of an epigenetic silencer, the polycomb repressive complex (PRC) in developing wings and in modified eyespots at 6 days postpupation. I present evidence that the PRC is expressed during butterfly wing development and exhibits a similar pattern of expression to the wing GRN. Polycomb genes were not differentially expressed in eyespots modified by temperature shock and heparin sulfate;

however, expression of several patterning genes was altered by these treatments. In the final paper, I present a comprehensive phylogenetic analysis of the PRC2 across nonvertebrate animals. This analysis revealed that the evolutionary history of the PRC2 does not reconstruct the known phylogeny of animals, due to significant sequence divergence in the nematode lineage. Thus, PRC2 has undergone significant evolutionary changes in nematodes that may be a consequence of Hox gene depletion and re-organization in this lineage.

CHAPTER I
 WING COLOR PATTERNING, PHENOTYPIC PLASTICITY AND EPIGENETICS
 Introduction

An important challenge in evo-devo is to understand the evolution of morphological diversity by identifying the molecular and environmental factors that promote the development of novel phenotypes. The extraordinary diversity of animal color patterns is perhaps one of the most dramatic examples of morphological diversity and represents an ideal system to address such questions. Colors and patterns mediate how animals interact with their environment by serving as visual communication signals to attract mates and deter predators. Some animals including insects, fish and amphibians use aposematic coloration to warn of their toxicity (Prudic et al., 2006), or alternatively to allure mates (Maan \& Cummings, 2009). Camouflage enables leaf-mimic insects to blend perfectly with their surroundings (Vallin et al., 2006). In addition to ecological benefits, color patterns confer physiological benefits such as protection from ultra-violet light (Protas \& Patel, 2008). Thus, a variety of selective forces from the environment help shape the evolution of color pattern variation. Although the ecological function of animal pigmentation has been well documented across a broad range of taxa, precisely how color patterns develop at the molecular level and how the environment influences these
processes remains poorly understood (Wittkopp et al., 2002; Miyazawa, et al. 2010; Werner et al. 2010).

Lepidoptera As A Model System for Understanding Color Pattern Development

 Lepidoptera are an excellent model for studying the evolution and development of animal color patterning. Lepidoptera are an extremely diverse order with approximately 20,000 described species of butterflies and between 150,000-250,000 described species of moths (Brock \& Kaufman, 2006). The enormous diversity observed in this group is characterized by a stunning array of wing color patterns. These patterns are generated by colored scales that are modified sensory bristles; a synapomorphy that gave the order its scientific name; scaled wings (Knüttel \& Fiedler, 2001; Mcmillan et al. 2002). Coloration can be the result of pigmentation that is synthesized de novo during scale development in the pupa, or it can develop as structural modifications that result in iridescent scales.In most plants and animals, color patterns are arranged randomly and are quite variable (Nijhout, 2001; Ohno \& Otaki, 2012). This is especially the case in vertebrates; for example, the markings of leopards are highly variable within a species, and even between the left and right sides of an individual (Nijhout, 2001; Miyazawa et al., 2010). In contrast, wing color patterning in Lepidoptera is highly organized and essentially represents two-dimensional anatomical structures (Ohno and Otaki 2012). Color patterns are generally fixed and can be used as characters to distinguish different species, which have subtle modifications of pattern elements. Thus, wing color patterns are likely to follow distinct developmental pathways with individual pattern elements developing autonomously from adjacent pattern elements. This allows an uncoupling of changes across the different elements, increasing the opportunity for diversification of color
patterns. These specific characteristics of butterfly wing patterns make them an ideal model system for dissecting the processes underlying morphological diversification.

Wing color patterns are highly modular and their diversity can be thought of as modifications to the Nymphalid groundplan, a system that has been developed to describe the general symmetrical color patterns of Nymphalid butterflies (Nijhout, 2001).

Although this system was originally based on Nymphalids, its utility has been extended to many other Lepidoptera, including moths. Wing color patterns are composed of at least three symmetry systems laying side by side in parallel form from the anterior costal margin to the posterior hind margin; 1. the border symmetry system, 2. the central symmetry system and 3 . the basal symmetry system near the proximal base site of the wing (Figure 1.1). Each symmetry system is a collection of elements. These elements appear to be regulated by eyespot focal organizers as well as the wing margin, which also acts as an organizing center (Nijhout 1991).

Figure 1.1 Nymphalid groundplan described by Nijhout (2001). Panel A emphasizes the vertical pattern elements. Panel B emphasizes the wing veins that break up the symmetry system.

The Development of Butterfly Wings and Color Pattern Elements

The development of butterfly wings begins inside the immature caterpillar where imaginal discs within the meso and meta-thorax will differentiate into fore and hindwings respectively. These imaginal discs develop as an invagination of the body wall and form an undifferentiated epithelial bilayer representing the dorsal and ventral wing surfaces (Macdonald et al., 2010; Cho \& Nijhout, 2013; Iwata et al., 2014). During the early larval period, the imaginal discs grow continuously until the late larval stage where they rapidly expand in size (Kremen \& Nijhout, 1998; Nijhout et al., 2007). Following pupation, the wings are extruded through the body wall to assume their final adult position (Cho \& Nijhout, 2013). During early pupation, the epithelial wing cells divide and differentiate into scale and socket cells which are regularly arranged in parallel rows (Figure 1.2). Array formation of scale cells has been shown to be complete by approximately two days post-pupation (Iwata et al., 2014). Each individual scale develops as a flattened projection of a scale-building cell that will become colored as a single pigment during later stages of pupation. Why each individual scale develops one specific pigment out of all the possible range of pigments present on the wing is one of the most fascinating yet poorly understood aspects of wing color pattern development. The specification of a single pigment suggests that molecular mechanisms must be employed that repress alternative pigmentation pathways.

The development of wing color patterns is initiated during the late larval and early pupal stages, when scale cell fate determination and differentiation takes place (Otaki et al. 2005). Although pigments are not visible during these early stages, gene expression
patterns have already established the template of wing color patterns (Brunetti et al., 2001) (Figure 1.3).

Figure 1.2 Live pupal wing of Vanessa cardui at 3 days post-pupation, no pigmentation is visible at this stage. Bottom image shows a close-up of the wing revealing thousands of tiny parallel rows of developing scale cells that form perpendicular to the proximal-distal axis of the wing. The branching lines represent developing wing veins also shown clearly in the top image.

Pattern elements are formed in response to positional information from a putative morphogen signal that is emitted from organizing centers through passive diffusion (Nijhout 1991). Color pattern formation can be divided into four sequential steps: 1.

Signaling, 2. Reception, 3. Interpretation, and 4. Expression (Otaki et al., 2005a; Otaki, 2008c). The signaling step is a process of morphogen production and emission from an
organizing center, such as an eyespot center, resulting in the establishment of a stable morphogen gradient. These signals are received and interpreted by neighboring scale cells through an array of receptors and signal transducers. This process ultimately results in pigment biosynthesis and color pattern development. Many aspects of this signaling process remain a mystery, including the link between morphogen signaling and expression of patterning genes, and how these early pupal events trigger expression of genes involved in pigment formation at subsequent developmental stages.

Figure 1.3 Patterning gene expression in butterfly eyespots. Extracted from Brunetti et al. (2001) showing immunolabelling of patterning genes (En/Inv - green) and Spalt - purple) in the eyespots of the African butterfly, Bicyclus anynana during the first 24 hours of pupation.

Butterfly eyespots are the most widely studied color pattern elements. Eyespots are an evolutionary novelty in Lepidoptera, functioning as a visual signal for mating and for predator deterrence. Intriguingly, some of the patterning genes identified in butterfly eyespots are the same as those expressed in the regulatory network for wing development in the fruit fly (Carroll et al., 1994; Brunetti et al., 2001; Carroll et al., 2001). The finding that genes can be re-used and co-opted for novel functions has been one of the most
fascinating discoveries in the field of Evo-Devo (Carroll et al., 2001; Monteiro, 2012). In the case of butterfly wings, it appears that wing color patterns may have evolved via cooption of the wing gene regulatory network. Thus, ectopic expression of wing patterning genes outside of their normal expression domains may have produced the diversity of wing color patterns that we observe today. Currently, little is known about this wing gene regulatory network in butterfly wings, other than the spatial expression of individual genes in pattern elements such as eyespots (Brunetti et al., 2001). Therefore, we do not have a clear understanding of the composition of this network, the temporal expression dynamics, or correspondence with pigment gene expression during wing color pattern development.

Phenotypic Plasticity of Wing Patterns

Although wing color patterns are largely fixed and can be used to distinguish different species, many butterflies exhibit phenotypic plasticity in response to environmental conditions. The well-studied African butterfly Bicyclus anynana displays seasonal variation in wing color patterns (Roskam \& Brakefield, 1999). The wet season butterflies have wings with conspicuous eyespots to deter active summer predators, whereas wings of dry season butterflies display cryptic coloration that matches the background of dead leaves (Lyytinen et al. 2004). Thus, plasticity enables these butterflies to express the optimal phenotype for particular environmental conditions (de Jong et al. 2010) by revealing hidden phenotypic and genetic variability. Environmental changes may alter the timing or intensity of the initial signaling step, resulting in heterochronic uncoupling of receptors and transducers. This alteration, in turn, could lead to changes in gene expression or even expression of novel genes that modify wing color patterns.

It is important to emphasize that wing pattern modifications occur without any changes to the underlying genetic code. These environmentally induced changes in gene expression may arise simply as a byproduct of a generalized stress response with no immediate ecological benefit, or may lead to the evolution of an adaptive phenotype, as in the case of B. anynana. Regardless of whether the phenotype is adaptive or not, plasticity plays a fundamental role in promoting morphological diversification in butterfly wings.

Why is Plasticity So Important in Evolution?

One of the most interesting ideas to emerge about phenotypic plasticity is the potential role it may play in facilitating speciation (West-Eberhard, 1989; Pigliucci et al. 2006; Pfennig et al., 2010; Fitzpatrick, 2012; Minelli \& Fusco, 2012). Speciation can occur when selection on phenotypic or behavioral traits drives a population into genetically isolated groups resulting in assortative mating. Given that selection acts on phenotypes, rather than genotypes, any phenotypic variation has the potential to promote evolutionary change, whether it is due to mutation or environmentally induced plasticity (WestEberhard, 2005). It has been proposed that when plastic traits are adaptive and persist in a population they may eventually become constitutively expressed even in the absence of the environmental factor that induced the plasticity (West-Eberhard, 2005). The mechanism by which plastic traits become canalized is known as genetic assimilation. Genetic assimilation is a special case of a more general phenomenon known as genetic accommodation which refers to the evolution of either plastic or canalized traits (Braendle \& Flatt, 2006; Pfennig \& Ehrenreich 2014).

These ideas, introduced by Waddington (1942) and West-Eberhard (2005), have remained highly controversial due in part to limited empirical evidence in natural populations. Further, at the core of these ideas is the notion that plasticity is heritable and can promote the evolution of adaptive phenotypes (Braendle \& Flatt, 2006; Ghalambor et al. 2007; Pfennig et al., 2010; Wund, 2012). In addition, adaptive plasticity is typically assumed to dampen divergent selection, because different genotypes may converge on the same phenotype. Convergent phenotypes would reduce the power of selection to filter out particular genotypes as more or less fit (Crispo, 2008; Pfennig et al., 2010; Fitzpatrick, 2012). In this sense, adaptive plasticity appears to act as a buffer against selection by inducing phenotypes that can survive in a range of conditions, thus constraining evolutionary processes by shielding genetic variation (Ghalambor et al. 2007; Wund, 2012). It has been argued that adaptive plasticity can accelerate evolution compared to random mutations because an environmental factor can affect numerous individuals simultaneously, increasing the chance that selection can act on variation in regulatory genes controlling favorable plastic traits (West-Eberhard, 2005; Pfennig et al. 2010; Shaw et al., 2014). In this way, phenotypic plasticity influences which particular phenotypes are exposed to selection. If the induced phenotype is adaptive, and there is genetic variation for plasticity, these environmentally induced regulatory networks will be selected and may eventually become genetically assimilated (Schlichting \& Smith, 2002; Pigliucci et al., 2006).

The butterfly genus, Vanessa (Nypmphalidae), seems to exemplify the idea that phenotypic plasticity can cause individuals in one species to resemble related species, occupying different environments (Price et al. 2003; Pfennig et. al 2010; Wund, 2012).

Vanessa butterflies are characterized by several orange pattern elements that form a large patch in the middle of the forewings, the size of which varies across different species (Otaki 2008; Hiyama et al. 2012). It is possible to modify the size of this orange patch by exposing butterfly pupae to temperature shock treatments. Interestingly, the color patterns of modified individuals can be arranged in a progressively linear series that resemble the natural color patterns of other, related species (Otaki \& Yamamoto, 2004). Otaki (2008a) speculated that the ancestral species of Vanessa was isolated to mountainous regions and therefore exposed to fluctuating temperatures resulting in wing color pattern modifications. Otaki (2008a) proposed that these color pattern modifications represent ancestral expressions of phenotypic plasticity that have since become genetically assimilated in derived species. These color pattern modifications are induced by different degrees of cold shock and are thought to be a physiological byproduct of a cold shock hormone (Otaki, 2008a). Selection for increased cold shock resistance would also lead to modified wing patterns due to trait integration (Otaki, 2008a). Thus, phenotypic plasticity of an ancestral species may have facilitated divergence during the course of speciation in Vanessa (Otaki 2008).

Environmental Effects on Trait Integration and Modularity

Though phenotypic plasticity has been widely studied, most research has focused on examining plasticity of a single trait. In contrast, an organisms' phenotype comprises a multitude of traits that may even be correlated with each other (phenotypic integration). Exposure to novel environments may affect plasticity of multiple traits, particularly if traits are integrated (Price et al. 2003; Pfennig et al. 2010; Montague et al. 2012). Therefore, to fully understand the role of phenotypic plasticity in generating novel
phenotypes, it is also important to consider how the environment influences suites of developmental traits, and whether correlations among traits vary based on environmental conditions. Studies in plants and birds have shown that variation in plasticity among different traits can alter patterns of integration and modularity (Schlichting, 1989; Montague et al., 2012), which could have important evolutionary consequences by changing the outcome of selection (Schlichting, 1989; Schlichting \& Smith, 2002; Montague et al., 2012). Despite the common occurrence of phenotypic plasticity in butterflies, there are no studies examining the impact of environmental conditions on patterns of modularity and integration. Studies that have examined modularity and integration in B. anynana reveal complex patterns of both concerted and independent evolution across different eyespots (Beldade et al. 2002; Allen, 2008). Identifying integrated versus modular traits can be instructive for understanding the degree of morphological flexibility within a phenotype and potential evolvability. Modular traits are presumed to evolve independently allowing selection to optimize these traits. Integrated traits are more likely to be constrained by pleiotropy, whereas, modularity has been proposed as a mechanism that promotes plasticity by facilitating the independent evolution of novel traits and alternative phenotypes (Snell-Rood et al. 2010). In contrast, research on clonal plants has demonstrated integration can reduce plasticity, but it can also enhance plasticity, by increasing the availability of resources (Alpert, 1999). Underlying processes promoting plasticity seem to be related to the specific nuances of the environment and the genetic background of the organism. Plasticity may vary across different levels of morphological organization and environmental conditions. Thus, it is
important to understand the potential roles of modularity and integration in promoting/constraining phenotypic plasticity, and ultimately, morphological diversity.

Molecular Mechanisms Underlying Phenotypic Plasticity

The idea of phenotypic plasticity has become an important concept in understanding how organisms cope with environmental variation (West-Eberhard, 1989). Until recently, these expressions of plasticity were thought to be ecologically important, but not heritable. Further, phenotypic plasticity was once considered a nuisance in evolutionary biology (Pigliucci, 2005; Forsman, 2014); however, its significance to evolution has since been argued by numerous authors including: West-Eberhard (1989, 2003, 2005), Schlichting, (1986) and Pigliucci, (2001). This discussion resulted in wide acceptance of the importance of phenotypic plasticity as an ecological phenomenon, though its evolutionary importance still remains controversial. Although phenotypic plasticity has been documented across all domains of life, we still do not have a clear understanding how alternative phenotypes are generated at the molecular level (Wray et al., 2003; Pfennig \& Ehrenreich, 2014). Because the genetic make-up of an organism, does not change, epigenetic regulation is a plausible explanation for the molecular basis of phenotypic plasticity (Jablonka \& Lamb, 2002; Champagne, 2013; Geng et al., 2013).

What is Epigenetics?

The term epigenetics was first coined by Waddington (1942) to explain the interactions among genes and differential gene expression during development. Today, epigenetics refers to the process by which heritable changes in gene expression alter an organisms' phenotype without any changes to the DNA coding sequence. Gene expression is regulated by transcription factors, cis-regulatory elements, non-coding RNAs, DNA
methylation and histone modifications. It has become evident that the structure of chromatin contributes to transcriptional regulation. The chromatin structure of DNA is dynamic and can be tightened or unwound by a suite of enzymes that are involved in the addition and removal of various chemical moieties to histones (e.g., methyl or acetyl groups, ubiquitin). Generally speaking, DNA methylation of cytosines is involved in silencing genes, while histone acetylation is involved in unraveling the chromatin, enabling the activation of genes (Feil \& Fraga, 2011). This dynamic process of unwinding and rewinding the chromatin appears to be sensitive to endogenous and exogenous signals (Feil \& Fraga, 2011). One of the most well studied histone modifiers is polycomb repressive complex (PRC2), which catalyzes the trimethylation of lysine 27 on histone 3 resulting in chromatin compaction and gene silencing (Margueron \& Reinberg, 2011; Jeffrey et al., 2013). The PRC2 has received significant attention because it is known to regulate expression domains of Hox genes, which play a critical role in animal development and morphogenesis (Müller et al., 2002). Additionally, the PRC2 is involved in stem cell biology and cancer (Müller et al., 2002).

Evidence is accumulating that nutrition, environmental chemicals, stressors, and pharmaceutical agents can affect the epigenetic state (Feil \& Fraga, 2011; Crews \& Gore, 2012). For example, maternal diet has been shown to influence the epigenetic state of a transposable element in the Agouti gene of A_{vy} mice as well as their offspring (Waterland \& Jirtle, 2003; Dolinoy, 2008). The agouti gene regulates the production of pigment in individual hair follicles. If this gene is not properly methylated the mice develop yellow instead of brown fur and are obese and prone to diabetes and cancer. Providing a methylenriched diet to female mice before and during pregnancy permanently increases DNA
methylation of the agouti gene in offspring and largely reverses the deleterious phenotype (Waterland, \& Jirtle, 2003). These results show that environmental factors can influence animal coloration (= phenotypic plasticity) via epigenetic mechanisms. In contrast, most research investigating molecular and developmental mechanisms of animal color patterns have examined this question by looking at the genetic basis of these traits. For example, research on Drosophila and Lepidoptera have revealed the genetic basis for wing patterning including a variety of structural and regulatory genes that control pigmentation (Wittkopp et al., 2002; Reed et al., 2011; Tong et al. 2012). Similarly research on mice and zebra fish have also revealed a suite of genes involved in coloration (Bennett \& Lamoreux, 2003; Quigley et al., 2004). Despite this work, many colors and patterns displayed by animals are induced by environmental conditions. Some animals change color instantaneously to match their surroundings (flounder and flatfish; Protas \& Patel, 2008), while other animals produce distinctive color morphs in response to environmental stressors (polyphenism in moths and butterflies; Rountree \& Nijhout, 1995; Nijhout, 2003). These observations suggest that the molecular mechanisms regulating these changes are flexible and sensitive to the environment. Given that environmental changes are known to alter color patterns, I decided to examine whether epigenetic mechanisms explain phenotypic plasticity in animal coloration.

Although epigenetic regulation of color patterning has not been investigated, research suggests that epigenetic mechanisms may underlie developmental plasticity. DNA methylation has been shown to be critical for caste development in honeybees (Lyko et al., 2010; Weiner \& Toth, 2012). Honeybee larvae are genetically identical and are fed a diet of royal jelly. Larvae that are fed more royal jelly develop into queens while
those fed less royal jelly develop into workers. When researchers down-regulated DMNT3, an important DNA methyltransferase, in honeybee larvae, all the treated larvae developed into queens (Lyko et al., 2010). A component in royal jelly may function by repressing DNMT3 preventing methylation of genes involved in reproduction (Kucharski et al., 2008). Epigenetic mechanisms may also be involved in regulating the switch between winged and wingless morphs in pea aphids (Srinivasan \& Brisson, 2012). These examples provide tantalizing clues of the potential importance of epigenetic mechanisms in shaping morphological diversity in insects. All of these studies have focused on the role of DNA methylation in regulating plasticity; however, chromatin remodelers such as the PRC2 may also be involved. Studies of the PRC have been focused primarily in vertebrate systems with an emphasis on biomedical applications (Cao \& Zhang, 2004; Sparmann \& van Lohuizen, 2006; Willert \& Nusse, 2012; Zeng et al., 2012). With the exception of Drosophila little is known about this complex in other invertebrates including its evolutionary history, patterns of expression during development, and its potential role in regulating phenotypic plasticity. Further insight into the PRC in nonmodel organisms will help diversify current knowledge on this important epigenetic regulator.

Research Objectives

The introduction outlined above provides an overview to four major areas that I explore in this dissertation, 1) the gene regulatory network underlying butterfly wing color pattern development, 2) phenotypic plasticity of wing color patterns, 3) patterns of PRC expression in butterfly wings and 4) evolution of the polycomb repressive complex 2 in invertebrates. The study system for this research is the cosmopolitan butterfly, Vanessa
cardui (Linneaus1758) (Nymphalidae) commonly known as the Painted Lady. Vanessa cardui is a long distance migrant and is one of the most widespread of all butterflies, occurring on every continent with the exception of Antarctica and South America (Brock \& Kaufman, 2006; Wahlberg \& Rubinoff, 2011). Vanessa cardui is a popular and wellknown butterfly particularly among children largely because it is colorful, relatively cheap to purchase and easy to rear in captivity. For this reason, it has served as an important educational tool for learning about lepidopteran lifecycles and is also an ideal system for developmental studies. Interestingly, NASA selected V. cardui along with the Monarch (Danaus plexippus) as the first butterflies to travel into space as part of an educational outreach experiment to observe their development in microgravity (www.nasa.gov/mission_pages/station/expeditions/expedition22/butterflies). Thus, V. cardui has served as a valuable educational tool to inspire student interest in science.

Most scientific research on V. cardui has focused on their migration ability (Stefanescu et al., 2007; Brattström et al., 2008), ecology (Bowers, 1998; O’Neill et al., 2010) and morphology of the dorsal wing patterns (Otaki \& Yamamoto, 2004; Otaki, 2007). There are very few studies examining the molecular basis of wing color pattern development. Most work investigating the molecular basis of wing color patterning has been conducted in B. anynana, Junonia coenia and Heliconius butterflies (Carroll et al., 1994; Monteiro et al., 1994; Beldade, et al., 2006; Joron et al. 2006). Studies from B. anynana and J. coenia have revealed that some genes from the regulatory network for Drosophila wing development are also expressed in butterfly eyespots and other wing regions. While spatial expression patterns for some of these genes have been described in butterflies, there has been no investigation on the temporal dynamics of this network in
butterfly wings. The genes in this network are known as patterning genes, as they define specific regions on the wings of Drosophila and also appear to define aspects of pattern elements on butterfly wings, such as the colored rings of the eyespots (Brunetti et al. 2001). Research suggests that these patterning genes must be involved in regulating the expression of downstream pigment genes (Beldade \& Brakefield, 2002). Thus, it would be valuable to determine the timeline for expression of patterning and pigment networks, and examine whether these networks overlap during wing color pattern development. If so, this would suggest that patterning genes directly regulate pigment genes. If they are temporally separated, this would suggest regulation is indirect. In Chapter 2, I utilize a transcriptomic approach to investigate temporal dynamics of the Drosophila wing gene regulatory network during wing color pattern development in V. cardui. To accomplish this, I sampled imaginal discs at multiple time points during larval and pupal development. In addition, I also examined expression patterns of two different pigmentation pathways. The melanin pathway is involved in producing brown and black pigments while the ommochrome pathway is involved in the production of red, yellow and orange pigments. This research provides the first expression timeline comparing the wing GRN and pigment pathways during wing pattern development in butterflies. These results also provide molecular resources on the entire wing transcriptome for V. cardui.

Previous work reveals V. cardui, like other species of Vanessa, exhibit phenotypic plasticity of dorsal wing patterns when exposed to temperature shock and pharmacological agents during early pupation (Otaki 2008). Less attention has been paid to the ventral hindwings, where these butterflies display a series of beautiful, complex eyespots composed of different colored rings (Figure 1.4).

Figure 1.4 Dorsal and ventral wings of Vanessa cardui. The arrows point to the dorsal and ventral eyespots respectively. Image extracted from www.jardinsauvage.fr

Nijhout (1984) demonstrated that these eyespots exhibit phenotypic plasticity when exposed to cold shock; however, there has been no detailed quantitative analysis of the response of these eyespots to environmental perturbation. It is also not known if the different eyespots exhibit similar responses; for example, if eyespot size or color composition is altered or whether particular pigments or eyespots are sensitive to perturbations. Furthermore, while studies have examined patterns of integration and modularity of eyespots, they have only been conducted in a single butterfly species, B. anynana. It is also unclear if these patterns are disrupted when butterflies are exposed to novel environments. In Chapter 3, I conduct a quantitative analysis on the response of V. cardui hindwing eyespots to environmental perturbation including heat shock and injection of heparin sulfate, which has been shown to mimic the effects of cold shock in butterflies (Serfas \& Carroll, 2005). This study also compares patterns of integration and modularity of eyespot size and coloration following pupal exposure to heat shock. This information provides interesting insights into patterns of plasticity, integration and modularity across different eyespots and between the colored rings. These changes could influence the response of wing patterns to selection when exposed to novel environments.

In Chapter 4, I expand on this research to examine the molecular basis underlying eyespot plasticity in V. cardui following heat shock and heparin injection. I use quantitative PCR to examine expression of a select group of genes from the wing gene regulatory network and genes involved in the melanin pigmentation pathway. Furthermore, I examine expression of polycomb repressive complex 2 during wing color pattern development and across eyespots exposed to environmental perturbation to explore whether epigenetic mechanisms are involved in regulating wing color patterns. This research provides information on newly identified genes expressed in butterfly eyespots including expression patterns of an epigenetic silencer, the PRC2.

Finally in Chapter 5, I take a broad approach in examining processes regulating morphological diversity by investigating the evolution of the PRC2 across a wide diversity of invertebrate animals. I examine how this epigenetic silencer has evolved from the earliest extant metazoans, including sponges and comb jellies, through to the pre-vertebrate lineages, including tunicates and cephalochordates. This analysis encompasses three of the core subunits of the PRC2 to examine if the evolution of these closely interacting subunits exhibit similar evolutionary histories and if their evolution mirrors the known phylogeny of animals. Lastly, I explore the evolution of the major domains that comprise each of these subunits and examine whether these functional units have remained highly conserved or diverged significantly across this morphologically diverse group of animals.

CHAPTER II

TRANSCRIPTOME ANALYSIS OF THE GENE REGULATORY NETWORK UNDERLYING WING DEVELOPMENT AND PIGMENTATION IN THE PAINTED LADY BUTTERFLY, VANESSA CARDUI.

Abstract

Introduction: Butterfly wing color patterns are an important model system for understanding the evolution and development of morphological diversity and animal pigmentation. Color patterns develop from a complex network composed of highly conserved patterning genes and pigmentation pathways. Patterning genes are involved in regulating pigment synthesis however the temporal expression dynamics of these interacting networks is poorly understood. Here, we employ next generation sequencing to describe expression patterns of the wing gene regulatory network (GRN) and look for evidence of correlated expression with genes involved in pigmentation.

Results: Homologs of genes involved in wing development in Drosophila are expressed in the developing wings of Vanessa cardui. Most of these genes exhibit peak levels in expression during the late larval and early pupal stages and then decline throughout pupal development. The most highly expressed genes included the Hox cofactor extradenticle, the selector gene vestigial and the signaling gene serrate. Serum response factor and

achaete-scute, which are involved with wing vein positioning and scale building, were expressed at the lowest levels across all developmental stages. Ommochrome pigment genes exhibit a similar expression pattern to the wing GRN, with the exception of kynurenine formamidase, which increased one day prior to butterfly eclosion. In contrast, expression of genes involved in melanin synthesis increase from larval to pupal development with the highest levels occurring one day prior to eclosion.

Conclusions: Here we provide a detailed expression timeline for all major genes involved in wing patterning, melanin and ommochrome pigmentation. Our results reveal that patterning genes display coordinated expression patterns with other members of the network despite significant differences in function, and exhibit a developmental peak that corresponds with ommochrome but not melanin gene expression.

Introduction

A fundamental question in biology centers on understanding the origin and evolution of morphological diversity and its regulation at the genome level. Arguably, among the most striking examples of morphological variation are the stunning array of colors and patterns that decorate the wings of butterflies. The spectacular diversity of butterfly wing patterns has been shaped by natural selection to serve a variety of adaptive functions, ranging from mate recognition and courtship to predator avoidance and deterrence (Brakefield \& French, 1999; Brunetti et al., 2001a; Beldade \& Brakefield, 2002). Although many of the ecological processes shaping color patterns are well documented, the underlying molecular and developmental program generating these patterns still remains largely unknown (Beldade \& Brakefield, 2002; Werner et al. 2010; Martin et al., 2012). The emergence of the exciting field of Evo-devo positioned butterfly
wings as a valuable model system for studying morphological diversity and adaptation (Nijhout, 2001; Beldade \& Brakefield, 2002; Monteiro \& Prudic, 2010; ffrench-Constant, 2012) and stimulated an increased focus on the discovery of genes and regulatory mechanisms underlying color pattern development (Carroll et al., 1994; Martin \& Reed, 2010; Reed et al., 2011; Stoehr, et al., 2013).

Over the past two decades, research has revealed that genes involved in wing color pattern development also belong to an ancient gene regulatory network (GRN) for wing construction (Brakefield \& French, 1999; Keys et al., 1999; Saenko et al., 2008). This network has been proposed to serve as a pre-patterning template for downstream pigment genes (Mcmillan et al., 2002; Beldade \& Brakefield, 2002; ffrench-Constant, 2012). Studies on wing development in Drosophila melanogaster, ants and aphids have characterized expression patterns of this gene regulatory network (Abouheif \& Wray, 2002, Brisson et al. 2010); however, no comprehensive analysis has been conducted in butterfly wings. Thus, we do not have a clear understanding of the expression dynamics of this network during butterfly wing development and how it may correspond to temporal changes in pigment gene expression.

The wing GRN is comprised of least 18 major developmental genes representing selector genes, morphogens and a suite of transcription factors that co-operate in wing development (Abouheif \& Wray, 2002). Selector genes encode a unique class of transcription factors that act as master switches, controlling genes that regulate the development of specific cells, tissues and organs (Carroll et al., 2001; Mann \& Carroll, 2002; Wolpert, 2003). Selector genes include the Hox genes, which function as regional selector genes and specify segment identity along the anterior/posterior axis; for example,
ultrabithorax (ubx) which regulates butterfly hindwing identity (Weatherbee et al., 1999; Krupp et al. 2005). At a finer scale, field-specific selector genes control growth of entire fields of cells and structures whereas compartment specific selector genes regulate development of dorsal/ventral or anterior/posterior identity (Carroll et al., 2001; Halder \& Carroll, 2001). Many of these genes are also pleiotropic and have important developmental roles outside of the wing (Monteiro \& Podlaha, 2009).

Development of the imaginal disc to the adult wing is governed by an intricate network of patterning genes that appear to have been conserved in holometabolous insects for over 300 million years (Abouheif \& Wray, 2002). Wing development is initiated when morphogen and selector genes map out a coordinate system by dissecting the wing into functionally distinct compartments (anterior/posterior $[\mathrm{A} / \mathrm{P}]$, dorsal/ventral [D/V] and proximal/distal [P/D]). Early in development, the compartment selector genes, apterous (ap) and engrailed/invected (en/inv) subdivide the wing disc into D / V and A / P regions, respectively (Carroll et al., 1994; Keys et al., 1999; O'Keefe \& Thomas, 2001). Activity of these selector genes initiates a signal transduction cascade, triggering expression of other genes that regulate wing development.

Expression of en/inv induces signaling of the short-range molecule hedgehog (hh) from posterior to anterior regions (Wolpert, 2003). Diffusion of $h h$ creates the A / P boundary, which induces expression of the long-range morphogen, decapentaplegic (dpp) in a thin stripe of anterior cells along the A / P boundary, promoting outgrowth of the wing blade (Posakony et al. 1990). Dpp activity also induces expression of other developmental genes, including the transcription factor spalt (sal), which plays a key role in wing vein development during pupation (de Celis \& Barrio, 2000).

In dorsal compartments, ap induces the expression of serrate (ser) and delta, two important ligands for the receptor notch (Neumann \& Cohen, 1996). The signaling of these ligands induces the diffusion of another long-range morphogen, wingless (wg), which coordinates the dorsal/ventral boundary and the wing margin, the edges of which are marked by the transcription factor cut and the field-specific selector distal-less (dll) (Carroll et al., 1994; Krupp et al., 2005; Macdonald et al., 2010; Iwata et al., 2014). Later in development, a feedback loop between $w g$ signaling and ligands ser and delta maintain $w g$ and cut activity at the D / V boundary, sculpting the final wing shape (Milán \& Cohen, 2000, Macdonald et al., 2010). Wingless also induces expression of the field selector genes, vestigial (vg) and scalloped ($s d$) that together promote wing differentiation (Bray, 1999; Carroll et al., 2001).

In addition to regulating wing development, many of these selector genes and morphogens appear to have been redeployed in novel developmental contexts to specify wing color patterns (Beldade \& Brakefield, 2002; Martin \& Reed, 2010; Monteiro \& Podlaha, 2009; Oliver et al., 2012). Eyespots are the most well studied wing color pattern elements and studies have revealed that at least 12 genes are expressed in the focus and concentric colored rings (Brunetti et al., 2001; Monteiro et al. 2003; Otaki, 2011; Saenko et al. 2011; Oliver et al., 2012; Oliver et al. 2013). Intriguingly, many of these genes are the same developmental genes involved in the wing GRN indicating a potential co-option event (Monteiro, 2012). In nymphalid butterflies, the focus of the eyespot is associated with expression of antennepedia, en, sal, dll and notch (Brunetti et al., 2001; Oliver et al., 2012). The morphogens $w g$ and $d p p$ may also play a role in eyespot positioning and appear to function as a signal that activates $d l l$ and sal expression (Beldade \& Brakefield,

2002; Monteiro et al. 2006; Held, 2012). Many of these same wing developmental genes are also expressed in other pattern elements. For example, $w g$ is involved in the development of stripes on the wings of moths and butterflies and expression of env/inv has been correlated with the development of the disc spots in saturniid moths (Monteiro et al., 2006; Martin \& Reed, 2010).

These studies reveal a remarkably diverse role of the wing GRN during development in controlling both wing size and shape and in generating novel wing color patterns. However, developmental genes are not the whole story; wing color patterns are ultimately the product of pigment synthesis pathways in individual scales (ffrenchConstant, 2012). Coloration can be the result of pigmentation that is synthesized de novo during scale development in the pupa, or it can develop as structural modifications that result in iridescent scales (Knüttel \& Fiedler, 2001).

Wing color patterns are determined when each scale cell specifies a particular color pigment and pattern diversity arises with variation in the color, size and arrangement of these pigments. Studies on Heliconius butterflies have identified specific pigment genes associated with particular color pattern elements (Ferguson \& Jiggins, 2009; Ferguson et al. 2011; Reed et al., 2011). Major pigment pathways include pteridins (white), the ommochromes (red, yellow and orange-- found only in nymphalids), and the melanins (black, brown and tan) (Reed \& Nagy, 2005; Ferguson \& Jiggins, 2009; Martin \& Reed, 2010; Ferguson, Maroja, et al., 2011). The ommochrome pathway is characterized by the enzymes tryptophan oxidase (vermillion), kynurenine 3-hydroxylase (cinnabar) and kynurenine formamidase (kf) (Reed \& Nagy, 2005; Ferguson \& Jiggins, 2009). These enzymes convert the precursor tryptophan into a variety of ommochrome
pigments. In general, ommochrome pigments appear earlier in pupal wing development than melanin pigments (Koch et al. 2000; Ferguson \& Jiggins, 2009; Iwata et al., 2014;). The melanin pigmentation pathway has also been well characterized in Drosophila and Lepidoptera and is comprised of the enzymes, tyrosine hydroxylase (pale), Dopa decarboxylase ($D D C$), NBAD hydrolyase (tan), NBAD synthetase (ebony) and yellow (Wittkopp \& Beldade, 2009). Ebony has been shown to be up-regulated in non-melanic tissues, while tan is associated with melanin pigmentation (Ferguson \& Jiggins, 2009).

While many of the genes involved in pigmentation are well characterized, the connection between the developmental genes in the wing GRN and pigmentation pathways remains unclear (Mcmillan et al., 2002; Hines et al., 2012). A link has been established between developmental genes and specific pigments; for example, en has been mapped to the ring of gold scales around the eyespots of Bicylcus (Brunetti et al., 2001; Monteiro et al., 2006; Oliver et al., 2012). Melanin pigmentation has also been shown to be associated with sal expression in pierid butterflies (Stoehr et al., 2013) and wg signaling in Heliconius butterflies (Gibert et al. 2007; Martin et al. 2012). These examples clearly illustrate a role for patterning genes in regulating downstream pigment genes, yet an important challenge remains understanding the underlying mechanisms linking these interacting networks.

Next generation sequencing has become a valuable tool for surveying the transcriptome of non-model organisms (Ekblom \& Galindo, 2011). Although Lepidoptera are a diverse order of insects, there are still relatively few well annotated genomic resources (Ferguson et al., 2010). Advances in our understanding of the transcriptome during wing color pattern development has come primarily from microarray studies on
the temporal patterns of gene expression during pupation in Heliconius erato (Hines et al., 2012), EST data from larval and pupal wings from B. anynana (Beldade et al. 2006), 454 sequencing of pooled larval and pupal wings in Heliconius melpomene (Ferguson et al., 2010) and Illumina sequencing of microRNA expression of pooled larval and pupal wings in Heliconius melpomene (Surridge et al., 2011). Here, we use Illumina sequencing to examine temporal expression patterns of the wing GRN and pigment genes during larval and pupal development. This work serves as a valuable contribution towards our understanding of the wing transcriptome during color pattern development.

Study System

Our current understanding of the genes involved in wing color pattern development is based on a small selection of species, primarily Junonia coenia, Bicyclus anynana and members of Heliconius (Oliver et al., 2013; Supple et al., 2013). A greater diversity of species should be examined to better understand how wing color patterning has evolved in butterflies. We used the painted lady butterfly, Vanessa cardui Linneaus (Nymphalidae) as our study organism. Vanessa cardui is a long distance migrant and is one of the most widespread of all butterflies occurring worldwide with the exception of South America (Brock and Kauffman 2006). Similar to Bicyclus and Heliconius butterflies, the wing color patterns of V. cardui have been well studied; however, in contrast to Bicyclus and Heliconius, fewer molecular resources are available (but see Brunetti et al., 2001; Macdonald et al., 2010; Oliver et al., 2012). Furthermore, V. cardui is closely related to well-studied models, which will facilitate comparative analysis of gene expression patterns across different genera within the same family.

Methods
 Tissue Collection

Vanessa cardui caterpillars and artificial diet were purchased from Carolina Biological Supply Company (Burlington, NC). The caterpillars were reared individually at ambient temperature $\left(\sim 28^{\circ} \mathrm{C}\right)$. Wing discs were dissected from caterpillars at two developmental time points in the final instar (2 days and 4 days post-molt), and at three time points in the pupal stage (2 days, 5 days and 8 days post-pupation). Prior to harvest, larvae were weighed. The thorax, including the first abdominal segment, was harvested and placed immediately in RNAlater ${ }^{\circledR}$ (Ambion) and stored at $4^{\circ} \mathrm{C}$ for at least 48 hours prior to dissection. Pupal wings were dissected from live pupa using a Zeiss Stemi-2000 Microscope and placed immediately in RNAlater and stored at $4^{\circ} \mathrm{C}$. Imaginal wing discs were carefully dissected from the larva and placed in RNAzol® RT (Molecular Research Center Inc.) for RNA isolation. For pupal wing samples, samples were placed in RNAzol for RNA isolation. All tissues were weighed and processed using an electric homogenizer followed by RNA isolation using isopropanol. Concentration of RNA was measured using a ND-1000 spectrophotometer (NanoDrop products, Wilmington, DE) (A260/A280 >1.8) and integrity was assessed using electrophoresis on a formaldehyde-agarose gel. The RNA samples were diluted in water to a concentration of $25 \mathrm{ng} / \mu \mathrm{l}$ in $50 \mu \mathrm{l}$. For larval wing samples, 5 individual larvae were pooled for each developmental time point for a total of 10 individuals (one biological replicate per time point). For the 2 and 5-day pupal wings, 4 individuals were pooled, and 3 were pooled for the 8 -day time point. Two biological replicates were prepared for each pupal time point. The samples were shipped on dry ice over night to the Utah Microarray and Genomic Analysis Facility (University
of Utah, Salt Lake City, UT) for library preparation and sequencing on an Illumina Hiseq 2000 sequencer.

cDNA Library Construction and Illumina Sequencing

Library construction was performed using the Illumina TruSeq RNA Sample Preparation Kit v2.. Briefly, total RNA (100 ng to 4 ug) was poly-A selected using poly-T oligoattached magnetic beads. The Poly-A RNA was eluted from magnetic beads, fragmented and primed with random hexamers. First strand cDNA synthesis was performed using Superscript II Reverse Transcriptase (Invitrogen) and then converted to blunt-ended fragments with an A-base following second strand synthesis. Adapters containing a Tbase overhang were ligated to the A-tailed DNA fragments. The ligated fragments were PCR-amplified (12 cycles) and the amplified library purified by Agencourt AMPure XP beads (Beckman Coulter Genomics). Concentration of the amplilfied library was measured with a NanoDrop spectrophotometer. To determine the size distribution of the sequencing library an aliquot was resolved on an Agilent 2200 Tape Station. Quantitative PCR (KapaBiosystems Kapa Library Quant Kit) was used to calculate the molarity of adapter ligated library molecules and the concentration of the libraries was adjusted to a concentration of 10 nM . Library concentration was further adjusted in preparation for Illumina sequence analysis.

Transcriptome Assembly and Sequence Annotation

De-novo transcriptome assembly was conducted using CLC Genomics Workbench 6.5.1 with a word size of 40 . The parameters were modified throughout the assembly and mapping process to optimize similarity and length fraction required for robust mapping and assembly. Mismatch, insertion and deletion costs were set at 2, 3 and 3 respectively.

Following completion of the assembly, a multiblast (tblastn) was conducted through CLC Genomics using the Drosophila peptide database downloaded from FlyBase. Results from the multiblast were used to mine the transcriptome for genes from the wing gene regulatory network and genes involved in ommochrome and melanin pigmentation. Genes of interest that were not retrieved from the Drosophila multiblast were obtained from NCBI and used to build a list a proteins from related insect species for a separate tblastn multiblast against the V. cardui transcriptome. Using these two approaches we were able to identify most genes of interest from our transcriptome. Top hits of V. cardui transcripts from the multiblast were used in a reciprocal blastn search against the nonredundant database at NCBI to validate the identity of each gene and also to annotate start and stop codons (Appendix Table 2.1). All assembled contigs (including annotated and non-annotated) were used for RNA-seq analysis, which was also performed using CLC genomics. Expression values were normalized to reads per kilobase of exon per million reads mapped (RPKM). Gene expression analyses for target genes were performed in JMP version 10.0.2 SAS Institute Inc. Data were log or square root transformed where necessary to meet assumptions of normality and equal variance.

Quantitative PCR Validation

An independent experiment was designed to validate the transcriptome results. Wing discs and pupal wings were dissected at the same developmental stages as the transcriptome study with seven biological replicates per stage. RNA isolation was performed as described above. RNA quality was checked for degradation on a formaldehyde-agarose gel and examined for genomic DNA contamination using qPCR, with primers for the glutamate receptor, which also served as the housekeeping gene.
cDNA synthesis was performed with an iScript kit (BioRad) in a single run for all samples using $1 \mu \mathrm{~g}$ of input RNA ($20 \mu \mathrm{l}$ reaction). An aliquot of cDNA was diluted to the equivalent of 2 ng total RNA input $/ \mu \mathrm{l}$ for qPCR . Primers were designed for the following genes: wg, sal, en, dll, ddc, pale, ebony, tan, vermillion, $k f$, and cinnabar (Appendix table 2.2). cDNA ($2 \mathrm{ng} / \mu \mathrm{l}$) was amplified from wing samples using PRC Accuzyme ${ }^{\mathrm{TM}} 2 \mathrm{x}$ reaction mix (Bioline). Glutamate receptor was selected as a housekeeping gene based on results from the transcriptome data. The PCR was checked for a single band (75bp) on a 1% agarose gel, purified using a Thermo Scientific purification kit and quantified using Nanodrop. Standard curves were generated using an initial concentration of 2 picograms of PCR product and serial 10 -fold dilutions. qPCR was performed using $2 \mu \mathrm{l}$ of cDNA template with Evagreen Supermix (BIO-RAD) ($10 \mu \mathrm{l}$ reaction/well), and run on a CFX384 Real time system (Bio-rad C1000 Thermocycler) with the following conditions $95^{\circ} \mathrm{C} 30 \mathrm{~s}, 95^{\circ} \mathrm{C} 5 \mathrm{~s}, 60^{\circ} \mathrm{C} 5 \mathrm{~s}$ for 40 cycles.

Statistical Analyses

RNA-seq analysis was performed on RPKMs to compare the expression of genes from the GRN and genes involved in melanin and ommochrome pigmentation. We also examined expression of two putative receptors associated with the ommochrome pathway, scarlet and white. Twelve genes were also selected for quantitative PCR to validate expression patterns observed with the transcriptome analysis (Table 2.2). Twoway ANOVA was conducted for all analyses in JMP Version 11.0.0 (SAS Institute Inc., Cary, NC) using the glutamate receptor as an internal control. For qPCR validation we selected four genes from the GRN, all three ommochrome genes and all melanin genes with the exception of yellow of which there were multiple paralogs. Due to the single
biological replicate for the larval stages, statistical analyses were performed only on pupal stages for the RNA-seq analysis. All developmental stages were analyzed from the qPCR experiment.

Results

A total of 17 libraries of raw reads (50 bp) were used to assemble the wing transcriptome for V. cardui. Four libraries were from the early $4^{\text {th }}$ instar and eight libraries were from the late $4^{\text {th }}$ instar, with $15-18$ million reads per library. The pupal stages were each represented by two libraries. The total number of reads obtained from the larval libraries was $265,105,531$ reads and $181,176,198$ reads from pupal libraries. A greater number of libraries were obtained for the larval stages as these included treatment groups for a separate experiment that is not part of the current study. Only data from the control groups (2 libraries one each from early and late $4^{\text {th }}$ instar) were used for downstream expression analyses for comparison across developmental stages. Appendix Table 2.3 presents a full summary of the transcriptome assembly. A total of 446,282,529 raw reads were used to construct the transcriptome. The final transcriptome comprised 89,069 contigs with a mean length of 779.8 bp and N 50 of 1266 bp after removal of short sequences $<200 \mathrm{bp}$. Mapping of the raw reads back to the transcriptome revealed that 91% of the reads mapped to the final assembly. When larval and pupal libraries were mapped separately, 94% of reads from the larval libraries and 87% of reads from the pupal libraries mapped to the assembled transcriptome.

Of the 89,069 contigs, only a small handful of putative genes were identified that exhibited constant levels of expression across all developmental stages. Following blast searches we identified one of these genes as a putative glutamate receptor. The remaining
contigs did not match any known sequences on NCBI and are likely non-coding RNA. Quantitative PCR confirmed that expression of the glutamate receptor did not vary across developmental stages ($\mathrm{p}>0.05, \mathrm{~F}=0.6$). Actin and GAPDH were also examined as potential internal controls however expression was variable across developmental stages, which was verified by qPCR.

Correlation of qPCR and RNA-seq Data

A bivariate analysis of fold change in expression relative to the early $4^{\text {th }}$ larval stage for all twelve genes (including the glutamate receptor) revealed that the RNA-seq and qPCR results are largely consistent with each other (Figure 2.1). Examination of fold change of each gene individually reveals very similar expression patterns and a high correlation between the RNA-seq and qPCR analysis for most genes (Figure 2.2). Weaker correlations were found for genes expressed at very low levels e.g. dll and en.

Wing GRN Patterning Genes

Both the transcriptome and qPCR analyses revealed a dynamic pattern of expression during wing development from larval to pupal stages. For the wing patterning genes, the transcriptome analysis revealed that 13 out of the 17 genes had relatively low expression, less than 50 RPKM across all developmental stages. There was no expression of $A b d-A$ in the wing transcriptome. For the analyses of the transcriptome pupal data, we categorized genes into the following three functional groups: 1 . selector genes, 2. signaling molecules and 3. general transcription factors (Figure 2.3 and see Appendix Table 2.4 for literature references). For most patterning genes, peak expression occurred during the late larval and early pupal stages followed by a sharp decline at 5 or 8 days post-pupation (Figure 2).

Figure 2.1 Bivariate analysis of fold change expression for RNA-seq and qPCR. Fold change is relative to the early $4^{\text {th }}$ larval wing for all developmental stages across all genes. The regression shows a strong correlation for results obtained using these two different methods. Data points for RNA-seq are the result of one pooled (5 individuals) biological replicate for larval stages and two pooled (3-5 individuals) biological replicates for pupal stages. Data points for qPCR are based on 7 biological replicates. Correlation coefficient, p value for the hypothesis $\mathrm{r}=0$, and sample size for gene expression data for 12 genes are also presented (dll, en, wg, sal, vermillion, kf, cinnabar, pale, $d d c$, ebony, tan and glutamate receptor)

Figure 2.2 RNA-seq and qPCR data showing fold change expression for patterning and pigment genes. Fold change is calculated for individual genes at each developmental stage relative to early $4^{\text {th }}$ instar. Correlation coefficient, p value for the hypothesis $r=0$ are also presented.

Figure 2.2 cont. RNA-seq and qPCR data for pigment genes showing fold change expression. Fold change is calculated for individual genes at each developmental stage relative to early $4^{\text {th }}$ instar. Correlation coefficient, p value for the hypothesis $r=0$ are also presented.

Figure 2.3 Wing gene regulatory network. Model of the gene regulatory network for wing development characterized from Drosophila melanogaster and adapted from Abouheif and Wray (2002). The network depicts the hierarchy of patterning genes involved in the establishment of the imaginal disc and developmental of wings during the larval stages. The different functional groups are color-coded to highlight their role and placement within the network.

Within each functional group, there was a significant interaction between gene and developmental stage (day post-pupation); selector genes: $\mathrm{F}_{(14,23)}=7.8 \mathrm{p}<0.0001$), signaling molecules, $\left(\mathrm{F}_{(6,11)}=17.85, \mathrm{p}<0.0001\right)$ and general transcription factors $\left(_{(6,}{ }_{(6,}\right.$ $10)=53.24, \mathrm{p}<0.0001)$. Within the selector genes, $v g$ was the most highly expressed gene across all pupal stages, while cut was expressed at the lowest levels at days 5 and 8 . For the signaling molecules, $d p p$ and ser were expressed at significantly higher levels than $h h$
and $w g$ across all pupal stages. Extradenticle was the most highly expressed transcription factor and aschaete scute $a c / s c$ exhibited the lowest expression levels while expression of serum response factor (srf) was barely detectable.

Figure 2.4. RNA-seq expression patterns for the different functional groups of the wing GRN. Larval stages represent one pooled biological replicate; pupal stages represent two pooled biological replicates. Error bars represent 1 SD from the mean.

Ommochrome Pigmentation

In V. cardui, white pigmentation is deposited at 5 days and red pigmentation is deposited around 6 days post-pupation (Figure 2.5). The transcriptome and qPCR analysis revealed that expression of pigment genes involved in ommochrome synthesis is upregulated during the larval wing stages with most genes exhibiting a peak in expression during the late larval stages and 2 days post-pupation. Expression patterns of the three pigment
genes, vermillion, $k f$ and cinnabar varied significantly during pupal development with a significant interaction between gene and developmental stage $\left(\mathrm{F}_{(4,8)}=32.2, \mathrm{p}<0.0001\right)$. The transcriptome analysis revealed that only cinnabar and $k f$ exhibited a peak in expression at 2 days post-pupation and both declined significantly at 5 days postpupation.

Interestingly, $k f$, exhibited a dramatic increase in expression from $5-8$ days postpupation, while expression levels of cinnabar did not vary between these two stages. The transcriptome data showed that vermillion exhibited a gradual decline in expression during pupation with significant decline between days 5 and 8 post-pupation. The qPCR results also produced the same overall trend, although it suggests that vermillion does exhibit a significant peak in expression at 2 days post-pupation. Overall, $k f$ was the most highly expressed ommochrome gene. Scarlet and white ommochrome receptors declined in expression across pupal development. A significant interaction was observed between gene and day $\left(\mathrm{F}_{(2,5)}=44.87, \mathrm{p}<0.001\right)$ (Figure 2.5). Both genes exhibited a peak at 2 days post-pupation and the white receptor was expressed at significantly higher levels across all pupal stages.

Melanin Pigmentation

The qPCR and RNA-seq analysis revealed that genes involved in the melanin synthesis pathway exhibit a very different pattern from the wing GRN and ommochrome genes. Most melanin genes increased in expression during pupation and a significant interaction was observed between gene and day $\left(\mathrm{F}_{(18,29)}=88.6, \mathrm{p}<0.001\right)$ (Figure 2.6). Expression of most melanin genes peaked at 8 days post-pupation, which is one day prior to butterfly emergence.

Figure 2.5 RNA-seq temporal expression patterns for ommochrome genes. Hypothesized ommochrome pigment biosynthesis pathway in butterfly wings based on the pathway in Drosophila melanogaster ommatidia (Ryall \& Howells, 1974) and adapted from (Reed \& Nagy, 2005). Tryptophan enters the scale cell from the hemolymph through the putative karmoisin transporter where it is converted to ommochorome precursors via oxidation of three major enzymes encoded by vermillion, $k f$ and cinnabar (Reed \& Nagy, 2005; Reed et al., 2008). The final conversion of 3-OHK to ommochromes (orange xanthommatin and red dihydro- xanthommatin) occurs in pigment granules. Uptake of ommochrome precursors into pigment granules is thought to occur through the scarlet and white transporters as in D. melanogaster (Warren et al. 1996). Wings from Vanessa cardui at 5 days post-pupation and 6 days at onset of ommochrome pigmentation.

We also identified multiple paralogs of the yellow gene and annotated the full coding sequence for six paralogs, yellow, yellow-b, yellow-c, yellow-d, yellow-f3 and yellow- x.

Although most melanin genes increased in expression during pupation, some of the yellow paralogs exhibited contrasting patterns of expression. In particular, yellow exhibits a dramatic peak at 5 days post-pupation, while yellow-f3 and yellow-d exhibit a sharp
decline at this pupal stage, as does ebony. Yellow and yellow-f f are also the only melanin genes, which do not show a peak in expression at 8 days post-pupation. Similar to the ommochrome genes, expression of melanin genes was also evident in the larval stages, albeit at much lower levels, long before black pigmentation is visible (around 7 days post-pupation), Overall, pale (TH) was the most highly expressed melanin gene and ebony and yellow- $f 3$ were expressed at the lowest levels.

Figure 2.6. RNA-seq temporal expression patterns for melanin genes. The melanin biosynthesis pathway adapted from (Wittkopp \& Beldade, 2009). Tyrosine hydroxylase (TH) encoded by the pale gene catalyzes the conversion of the precursor tyrosine to dopa, which is further catalyzed to dopamine by dopa decarboxylase ($d d c$). Dopa and dopamine are converted into black melanin and brown melanin respectively through the action of phenol oxidases. Yellow is required for the production of black melanin, though its specific biochemical function is unknown (Wittkopp, et al. 2002). Dopamine is converted to NBAD by ebony, (N- β-alanyl dopamine synthetase, NBAD synthetase) which produces tan pigmentation. NBAD is oxidized to produce yellow sclerotin or converted back to dopamine by the enzyme tan (NBAD hydrolyase) to produce tan pigment (Wittkopp et al. 2002). Wings from Vanessa cardui at 7 and 8 days post-pupation illustrate development of melanin pigmentation.

Discussion

Here, we describe the first transcriptome analysis of larval and pupal wing development in the painted lady butterfly, Vanessa cardui. Using next generation sequencing with Illumina Hiseq2000 we successfully assembled the transcriptome using short reads (50bp), and obtained a final assembly of 85,065 contigs, over which $50 \%(40,000)$, were greater than 200bp. The total number of contigs, mean contig length and N50 are within the ranges recently reported for Illumina sequencing in other arthropods (Van Belleghem et al., 2012 Croucher et al. 2013; Li et al., 2013). A major goal of this study was to identify and quantify expression patterns of genes from the wing GRN previously characterized in Drosophila and compare temporal expression patterns with genes involved in pigmentation. We identified all the major genes that are depicted in the wing GRN with the exception of $A b d-A$ and obtained full coding sequences for 10 of the 17 genes examined. We also identified all of the major enzymes involved in the ommochrome and melanin pigmentation pathways that have been characterized in Drosophila and other butterfly species. We identified several paralogs of yellow-y, some of which were assembled into very short sequences (yellow-e, yellow-f4, yellow-h2 and yellow-h3).

Temporal Expression Patterns of the Wing GRN

It has been suggested that genes involved in the wing GRN may play a role in prepatterning the downstream pigment genes (Mcmillan et al., 2002; Reed \& Nagy, 2005). Therefore, we would expect patterning genes to be upregulated during late larval or early pupal stages, and pigment genes to be upregulated later in pupal development. Results from the RNA-seq analysis revealed that the different members of the wing GRN exhibit
very similar temporal patterns of expression. Most genes are upregulated during the larval stages and early pupal stages and then decline significantly during pupation. Extradenticle, ser, omb and $v g$ were the most highly expressed genes across all developmental stages, with the exception of 2 days post-pupation. At 2 days post pupation, sal and $d p p$ were more highly expressed than $v g$ and $o m b$.

Overall, exd was the most highly expressed gene throughout wing development (32-157 RPKMs) and interestingly exhibited increased expression shortly before eclosion. Extradenticle is a homeobox transcription factor, which acts as a cofactor for Hox genes in the specification of segmental identity (Rauskolb et al. 1995). Interactions of Hox genes with cofactors are thought to be critical in the selective regulation of Hox target genes such as $u b x$, due to their low DNA binding specificities. Hox genes have also been shown to function independently of cofactors, particularly in the case of distal appendages in arthropods and vertebrates (Galant et al., 2002). Transcript levels of exd are uniform throughout the imaginal wing disc in Drosophila (Rauskolb et al., 1995). However, the protein is mostly expressed in the cytoplasm with nuclear distribution restricted only to the notum and wing hinge (Aspland \& White, 1997). Thus, the spatial distribution of exd suggests it is involved in regulating proximodistal polarity in addition to segmental identity. In Drosophila, exd interacts with the selector gene en to mediate repression of en target genes, indicating that exd has functions in addition to its role as a Hox cofactor (González-Crespo \& Morata, 1995, Kobayashi, 2003). Whether exd exhibits a similar functional role and spatial patterning during butterfly wing development is currently unknown.

We detected extremely low transcript abundance for two genes located at the base of the wing GRN hierarchy, $a c / s c$ and barely detectable levels of srf. Serum response factor is a MADS box transcription factor involved in wing vein formation and differentiation of intervein wing tissue in both Drosophila and butterflies (Montagne et al., 1996; Galant et al., 1998). Achaete scute encodes a basic helix-loop-helix (bHLH) transcription factor involved in bristle development in Drosophila. Patterns of ac/sc expression in wing discs of Precis coenia are similar to that of Drosophila; this gene regulates development of innervated sensory scales (Galant et al., 1998). In pupal wings, expression of $a c / s c$ is also observed in scale precursor cells that later differentiate into the socket and scale cells (Galant et al., 1998). Transcript levels of srf were barely detectable across all developmental stages but peak expression of $a c / s c$ was observed during the larval wing stages and 2 days post-pupation, which then dropped to barely detectable levels at 5 and 8 days. These results indicate that very low levels of these proteins are required in the regulation of vein and scale development and that the functional role of $a c / s c$ is likely restricted to larval and early pupal stages.

For the selector genes, $v g$ emerged as the most highly expressed gene across all developmental stages. Overall, the range of expression of most genes across developmental stages was very similar, which is consistent with the observation that developmental genes are very tightly regulated (Macneil \& Walhout, 2011). Of the signaling molecules, $d p p$ and ser were consistently expressed at the highest levels with $w g$ and $h h$ exhibiting the lowest levels of expression. Expression of $h h$ and $w g$ declined to barely detectable levels at 5 and 8 days post-pupation, suggesting that they play more
important functional roles during larval and early pupal stages. These results also show no differences in expression levels between short versus long range signaling molecules.

Recent detailed work on live pupal imaging in the butterfly Junonia orithya has provided a window into the physiological processes during wing development from 0h post-pupation through butterfly eclosure, thus capturing temporal patterns of pigment deposition (Iwata et al., 2014). This imaging study revealed a potential organizing center for the marginal band system and a prospective eyespot focus immediately following pupation with the eyespot focus becoming apparent within the first 48 hours. Some of the genes from the wing GRN involved in eyespot development are already expressed in the larval wing disc (Keys et al., 1999; Martin \& Reed, 2010; Monteiro et al., 2013).

Fluorescent imaging has revealed expression of en, sal and dll within the first 24h of pupal wing development in V. cardui (Brunetti et al., 2001). The results reported here support the hypothesis that late larval and early pupal stages are a critical and potentially sensitive period for establishment of wing patterning.

Melanin Genes Up-regulated During Late Pupation

In contrast to the wing GRN, genes involved in the melanin pathway exhibited a pattern of increasing expression during wing color pattern development with the highest levels occurring at 8 days post-pupation. These expression patterns mirror the patterns of melanin pigment deposition on the wing which appear late in pupal development (Figure 2.6). We found that tyrosine hydroxylase (pale), displayed a sharp increase from the early to mid pupal stages with extremely high expression at 8 days followed by increased expression of $d d c$ and $t a n$. The qPCR data revealed a strong downregulation of tan and ebony during upregulation of pale and $d d c$ (day 5 post-pupation). These results suggest
that down-regulation of tan and ebony during this developmental period may be required for appropriate melanization.

The yellow genes showed a complex pattern of expression, indicating multiple functions of these enzyme products. Among the melanin genes tan, ebony, yellow-d and yellow- $f 3$ all exhibit similar expression profiles during pupation with a significant decline at day 5. In Drosophila, yellow-y and ebony have opposite effects on pigmentation with yellow-y promoting melanization and ebony involved in melanin repression (Wittkopp et al., 2002). However, contrasting roles of yellow genes have also been observed, for example yellow- d is associated with melaninized regions in Bombyx mori (Xia et al., 2006) and unmelanized regions in Heliconius species (Ferguson et al. 2011; Hines et al., 2012). The functional role of the yellow genes is not well understood, although different yellow genes appear to exhibit variable patterns of expression during development (Han et al., 2002, Ferguson et al. 2011; Hines et al., 2012). The diversity of patterns of yellow genes suggests that they may have different functional roles in regulating the intensity of melanin pigmentation in Vanessa and other insects.

Ommochrome Gene Expression Mirrors the Wing GRN

Expression patterns of the ommochrome pigment genes, particularly vermillion and cinnabar, were similar to those of the wing GRN. In V. cardui, ommochrome pigmentation becomes visible at 6 days post-pupation, one day prior to melanin deposition. Interestingly, genes involved in ommochrome pigmentation are upregulated long before the pigments are visible on the wing compared to melanin genes, which are upregulated within a few days prior to melanin pigmentation. Similarly, genes that are involved in generating pattern templates that are destined to develop black pigment are
upregulated more than a week prior to melanization. In fact strong upregulation of melanin pigment genes occurs during the developmental period when patterning genes are being downregulated. These results show that timing of gene upregulation for patterning genes corresponds with upregulation of the ommochrome genes, but not the melanin genes. Either melanin regulation of patterning genes occurs indirectly through some as yet unknown developmental pathway or low levels of patterning genes are required for melanization.

It has been suggested that developmental patterning genes may alter the morphology or rate of wing scale development which then ultimately influences pigmentation (Koch et al., 2000; ffrench-Constant, 2012). Our results suggest that if scale maturation is linked to competency in responding to pigment precursors then scales maturing earlier will be exposed to a high availability of ommochrome precursors and those maturing later to melanin precursors. A number of studies have shown that exposure to temperature shock and pharmacological treatments during early pupation can alter patterns of melanin pigmentation (Nijhout, 1984; Serfas \& Carroll, 2005; Otaki, 2007). If patterning genes influence scale morphology or development rate, this could explain why perturbations that occur during this developmental window alter patterns of melanin pigmentation later in pupation.

Conservation and Divergence of Pigment Gene Expression Across Butterflies

Surprisingly, comparison of our results with those of Hines et al. (2012), revealed that pale, $d d c$, tan, ebony and vermillion show very similar temporal expression patterns between V. cardui and Heliconius species despite these butterflies exhibiting widely divergent wing patterns. Similar to the Hines et al. (2012) study we also found that the
putative ommochrome transporters scarlet and white were expressed at relatively low levels particularly during late pupation. Not all genes however were comparable across species. Hines et al. (2012) found slightly different expression patterns of yellow-y and yellow-d compared to V. cardui. Differences were also observed for the ommochrome genes with opposing patterns of expression for cinnabar and $k f$. Our study has revealed that several of the pigment genes exhibit a sharp decline at 5 days post-pupation, just one day prior to ommochrome pigmentation. Whether this decline in expression is related to ommochrome pigmentation or due to the white pigments visible on the wing at this developmental stage remains unclear.

Conclusions

In sum, we found a strong correlation between the RNA-seq and qPCR results. Our results highlight that genes in the wing GRN generally exhibit similar expression patterns despite significant differences in function. Extradenticle emerged as the most highly expressed gene in the network while $a c / s c$ and $s r f$ were expressed at the lowest levels. Whether exd plays any role in regulating wing color patterning or if its function is restricted to controlling other aspects of wing development is currently unknown. This work highlights the differences in temporal expression patterns between the wing GRN and genes involved in melanin and ommochrome pigmentation. We have shown that expression of ommochrome genes is correlated with upregulation of the wing GRN in the larval and early pupal stages while melanin genes are upregulated much later in pupal development. These results raise questions about the molecular mechanisms in which patterning genes regulate the expression of different pigments whether by directly interacting with pigment pathways or indirectly by altering scale development.

CHAPTER III

PHENOTYPIC PLASTICITY REVEALS MODULARITY OF EYESPOT DEVELOPMENT IN THE PAINTED LADY BUTTERFLY, VANESSA CARDUI.

Abstract

Homology among eyespots suggests they share a common developmental basis and may function as an integrated unit in response to selection. Despite strong evidence of genetic integration, eyespots also exhibit phenotypic plasticity indicating an underlying flexibility in pattern development. These observations call into question whether eyespots are developmentally integrated or if they function as independent modules. Modularity in eyespot development could facilitate phenotypic plasticity by allowing uncoupling of traits both within and between different eyespots, promoting pattern diversification. We conducted a morphometric analysis to examine whether eyespots of Vanessa cardui exhibit phenotypic plasticity and identify which eyespots and eyespot features are most sensitive to perturbation by temperature shock and injection of heparin sulfate. In both treatments, the two central eyespots exhibited the highest levels of plasticity and the inner pigment rings were more strongly affected than the outer ring. We observed changes in both the strength of phenotypic correlations and patterns of integration and modularity. Phenotypic plasticity of eyespots was associated with a loss of integration among eyespots and a doubling of independent modules, suggesting that plasticity promotes

modularity. The results of our study suggest that phenotypic plasticity is associated with altered patterns of phenotypic correlations that may have consequences for selection in different environments.

Introduction

Eyespots are one of the most striking and diverse features displayed on butterfly wings. These colorful pattern elements are composed of concentric rings that can vary widely in size, number and color composition even on the same wing surface. The contrasting colors of concentric rings create a bold, conspicuous pattern, which may have evolved as a visual signal to intimidate or deflect predators (Nijhout, 1996; Stevens et al., 2008). In some butterfly species, eyespots appear to have evolved specialized functions; dorsal eyespots are employed for courtship display while ventral eyespots are used for predator deterrence (Prudic et al., 2011; Oliver et al., 2014). The complexity and diversity of butterfly eyespots has drawn the attention of evolutionary biologists to understand not only their functional role but also the underlying developmental program that generates these patterns (Carroll et al., 1994; Brakefield et al., 1996; Keys et al., 1999; Koch et al., 2003; Beldade et al. 2008; Monteiro et al., 2013).

Several models have been proposed to explain eyespot formation based on a series of elegant studies that manipulated eyespot development and identified genes involved in their initial establishment (Monteiro et al., 1997; Brunetti et al., 2001; Dilão \& Sainhas, 2004; Beldade et al., 2008; Otaki, 2011). Eyespot specification begins in the late larval wing discs where a group of organizing cells, the focus, form the presumptive eyespot center (French \& Brakefield, 1995; Beldade et al. 2002). Gradient models propose that organizing cells emit one or more putative long-range morphogens that
diffuse radially through gap junctions forming a concentration gradient (Monteiro et al., 1997; Nijhout, 1980). During early pupation, the surrounding epidermal scale cells are thought to respond to positional information specified by the concentration gradient. These scale cells trigger an unknown series of molecular events that lead to the synthesis of different colored pigments. Although the identity of the focal signaling molecule(s) is currently unknown, a number of transcription factors and morphogens have been implicated in regulating eyespot development (Brunetti et al., 2001). Interestingly, the genes identified in eyespot development are the same as those involved in wing development, thus co-option of the wing gene regulatory network may explain how eyespots originated (Oliver et al., 2012). Experimental data suggests that modifications of these developmental networks may have generated eyespot diversity by altering properties of the focal signal and/or response thresholds of scale cells (Brakefield et al., 1996).

In many butterflies, eyespots develop as a series of homologous pattern elements along the wing margin known as the border ocelli system (Monteiro et al., 2003). Each eyespot develops within a wing cell created by a border of wing veins that specify different wing compartments. Artificial selection for eyespot size, color and shape, have revealed correlations among serially repeated eyespots providing strong evidence of developmental integration (Monteiro et al., 1997; Monteiro et al., 1997; Beldade \& Brakefield, 2003). Genetic coupling among eyespots, perhaps due to linkage or pleiotropy, prompted the idea that the entire border ocelli functions as a discrete integrated unit separate from other pattern elements on the wing (Brakefield \& French, 1999; Brakefield, 2001). Despite evidence of developmental integration among eyespots,
many studies have also documented modularity (individuality) between wing compartments including selection experiments uncoupling the size of eyespots on the same wing surface (Brakefield et al., 1996; Monteiro et al., 1997; Beldade et al., 2002). These results suggest that eyespots in different wing cells are regulated independently either by different networks, sub-networks or differences in network sensitivity. Most of these studies have been conducted in the African butterfly Bicyclus anynana (but see Breuker et al., 2007) and reveal a complex picture where different levels of integration and independence regulate eyespot development.

Modularity is a common theme in organismal development, enabling spatial partitioning of semi- autonomous developmental units that are then free to diversify in function or morphology (Magwene, 2001; Allen, 2008; Klingenberg, 2008). In this way, modularity can promote flexibility during development (Breuker et al. 2007). Modularity may facilitate rapid responses to environmental heterogeneity through phenotypic plasticity by permitting independent networks or sub-networks to be induced by environmental cues (Breuker et al., 2006; Moczek, 2010; Snell-Rood et al., 2010). This idea is pertinent to eyespot development as many butterflies exhibit phenotypic plasticity in response to changing environmental conditions with some eyespots exhibiting greater sensitivity than others (Brakefield et al., 1996; Gibbs \& Breuker, 2006; Mateus et al., 2014). Variability in plasticity across eyespots implies differences in how the underlying developmental network integrates and responds to environmental cues resulting in altered pattern development.

To better understand the evolution of eyespot diversity researchers have used a variety of experimental approaches to modify eyespot development. The most common
approach is to conduct perturbation experiments (cautery, temperature shock, injection of hormones and pharmacological agents) and examine which aspects of pattern development are modified (Nijhout, 1984; Takayama \& Yoshida, 1997; Serfas \& Carroll, 2005; Otaki et al., 2005; Mateus et al., 2014). Although modifications are not always representative of phenotypic plasticity in wild populations, some of these modifications mimic patterns found in related species or resemble aberrant wing patterns that are occasionally observed in nature (Nijhout, 1984; Otaki, 2007). These studies provide a way to dissect the underlying organization of eyespot development in the absence of transgenic tools (Serfas \& Carroll, 2005; Otaki, 2008). Studying which eyespots or eyespot features are more susceptible to modification may reveal developmental biases or constraints that have influenced the evolution of eyespot diversity (Nijhout, 1984; Brakefield, 2001).

Here we use heat shock and heparin injections on the painted lady butterfly Vanessa cardui (Nymphalidae) to explore phenotypic plasticity and look for evidence of integration and modularity in eyespot development. Heparin is an extracellular proteoglycan that modifies morphogen gradients by a variety of mechanisms including controlling diffusion, signaling, and intracellular trafficking (Yan \& Lin, 2009). Heparin is thought to influence secretion of a cold shock hormone and has been shown to modify wing color patterns in other species of butterflies, although the precise mechanism by which this occurs remains unknown (Serfas \& Carroll, 2005; Martin et al., 2012). A number of studies have also shown that V. cardui is sensitive to heat and cold shock resulting in modified wing patterns (Otaki \& Yamamoto, 2004; Otaki, 2007). Using these treatments as a tool, we examine whether eyespots or eyespot traits (color and size) in V.
cardui are equally sensitive to perturbations or whether responses to these treatments are eyespot or trait specific. Finally we examine whether phenotypic plasticity is associated with altered patterns of integration and modularity for different eyespot traits.

Methods
 Butterfly Rearing and Experimental Setup

Vanessa cardui caterpillars and artificial diet were purchased from Carolina Biological Supply Company (carolina.com). Caterpillars arrived as $2^{\text {nd }}$ instar larvae and were randomly assigned to the following treatment groups, temperature shock, heparin injection and control. Caterpillars were reared in individual containers in ambient conditions $\left(23^{\circ} \mathrm{C}\right)$ under a 12 -hour light : dark cycle and fed 3 grams of artificial diet every other day until pupation at approximately 7 days. Within 12 hours of pupation caterpillars assigned to the temperature treatment were transferred to an incubator set at $37^{\circ} \mathrm{C}$ for 48 hours. A stock solution of heparin (Sigma Aldrich) $(5 \mu \mathrm{~g} / \mathrm{ul})$ was prepared by diluting 0.005 g in 1 ml of UV treated water. Caterpillars assigned to the heparin group were injected with $2 \mathrm{ul}(10 \mu \mathrm{~g})$ of heparin using a Hamilton needle (2 mm) within 12 hours of pupation. Injections were performed at the margin of the left wing and the needle was cleaned with 70\% ethanol between each injection. Sham injections were also performed with and without water for a small group of pupae to ensure there was no effect of the needle or water injection on the wing phenotype. Following the treatments, all pupae were returned to the same rearing conditions as the control group. All pupae were placed in clean containers with paper tissue to act as support material to ensure successful eclosion of butterflies. Throughout the experiment, containers containing caterpillars and pupae were arranged with alternating treatment groups to reduce potential variation in environmental conditions.

Eyespot Color Analysis

Following eclosion, butterflies were immediately placed at $-20^{\circ} \mathrm{C}$ for storage until wing pattern analysis. Butterflies were spread on a pinning board for a minimum of 3 days. Hind wings of the butterflies were carefully removed and images captured using a Canon digital camera (DP70) mounted on an Olympus SZX12 microscope. Images of the ventral surface included a scale bar. Morphometric measurements were made using ImageJ (NIH) and the number of pixels was calibrated to one cm . Unmanipulated V. cardui have a series of marginal eyespots composed of five major concentric rings; an outer black border, a yellow ring, an orange ring, blue coloration, and finally a black center (Figure $3.1+3.2$). The area of the wing was measured along with eyespot area, and area of the individual colored rings.

Figure 3.1. Images of eyespots from the different treatment groups illustrating representative phenotypes. Panel A Control, Panel B Temperature shock, Panel C Heparin, Panel D Heparin extreme phenotype with complete loss of central eyespots. (14 = Eyespots 1-4).

Figure 3.2. Color composition of eyespot in Vanessa cardui. Each of the four eyespots represents a combination of these different color elements that were measured for the color pattern analysis.

Total eyespot area and sum of the area of the different colored pigments were compared throughout the process to ensure measurements were consistent. This entire experiment was replicated three times (May 2013, June and September 2014). The heparin treatment was only included in the September 2014 experiment as a single study. Heparin eyespots were measured twice and the average of these measurements was used in the final analyses.

Statistical Analyses

Measurements of total eyespot area and sum of eyespot pigments were assessed using bivariate correlations to ensure high repeatability between the two sets of measurements for each eyespot. A two-way ANOVA was performed using Type III sums of squares to compare differences in eyespot size and area of the different pigments both within the control group and also between the control and treatment groups (Control $n=45$, Heparin $\mathrm{n}=20$, Temperature shock $\mathrm{n}=46$). The model consisted of treatment and eyespot as main effects, overall wing size as a covariate for eyespot size, date as a blocking factor for
replicated experiments and interaction terms for treatment x eyespot, wing x treatment and date x treatment where appropriate. All data were examined for normality of residuals (Shapiro Wilk $\mathrm{p}>0.05$) and equal variance (Levene Test $\mathrm{p}>0.05$). A DunnŠidák correction for multiple comparisons was used when the interaction term was significant. All analyses were performed in JMP version 11 (SAS, Institute, Cary, NC). For analyses of color proportions relative to eyespot size, data were analyzed with a oneway ANOVA or non-parametric tests including Welch ANOVA and Kruskal-Wallis. The proportion of each color was also analyzed to examine whether changes in pigmentation were simply related to eyespot size or whether there were specific changes in the relative size of each ring. Eyespots were analyzed individually due to the dramatic effects of heparin on eyespot size resulting in a large number of outliers for the whole model. Heparin was excluded from some of these analyses due to the presence of many zero measurements.

Associations among eyespots and eyespot traits were assessed using measures of conditional independence (modularity) and graphical modeling as described in Magwene (2001). Graphical Modeling was conducted for eyespots from the control and temperature shock treatment only. Partial correlations between all eyespots for eyespot size and \% area of each pigment ring were obtained for the control and temperature treatments separately using multiple regression after checking for normality and equal variances between all associations (Control $\mathrm{n}=45$, Temperature shock $\mathrm{n}=46$). Wing size was included as a covariate. Partial correlations represent the association between two variables (size or color) after accounting for correlations among all other variables. Edge Exclusion Deviance (EED) is a theoretical measure of whether a particular edge can be
eliminated from a saturated model of complete integration Magwene (2001). EED was calculated using the following formula $-\mathrm{N} \ln .\left[1-\mathrm{pij}^{2}\right]$ where N represents sample size and pij is the partial correlation between two variables. The strength of the edge (correlation) was calculated using $-(0.5) \ln$. [1- $\left.\mathrm{pij}^{2}\right]$. The value of each EED is tested against the χ^{2} distribution with one degree of freedom. Values less than $3.84(\mathrm{p}<0.05)$ are rejected as having an edge i.e. the traits are not significantly integrated thus inferring modularity (Allen, 2008). Values greater than 3.84 indicate the traits are developmentally integrated (not conditionally independent). The matrix of EED values was used to construct a graphical model illustrating patterns of integration and modularity among all eyespots. Eyespots that are not connected i.e. those with no edge are inferred to be conditionally independent (modular). Integrated eyespots are those with significant edges that are correlated independent of their associations with the other eyespots.

Results

All results for multiple comparisons using the Dunn-Šidák post hoc test are presented in Appendix Table 3.1. Bivariate plots for regression analyses of total eyespot area and sum of pigment area revealed a high correlation between these two sets of measurements for all eyespots across each treatment $\left(r^{2}=0.95-0.99\right)$ (Appendix Figure 3.3). A one-way ANOVA was conducted to compare wing area across the treatment groups using date as a covariate. There was no date by treatment interaction for the replicated experiments ($\mathrm{F}_{(2,}$ $\left.3_{313)}=1.9, \mathrm{p}<0.14\right)$ and no effect of either treatment on wing area $\left(\mathrm{F}_{(2,92)}=2.8, \mathrm{p}=0.07\right)$, however date was significant $\left(\mathrm{F}_{(2,92)}=7.7, \mathrm{p}=0.001\right)$ with larger wings observed in the experiment conducted in June. As wing area was not significantly different between
treatments it was used as a covariate in a 2 way ANOVA to examine differences in eyespot size. The sham injections had no effect on any trait examined (data not shown).

Eyespot Size

For eyespot area, there was no date $\left(\mathrm{F}_{(2,302)}=0.05, \mathrm{p}=0.9\right)$, date by treatment interaction $\left(\mathrm{F}_{(2,94)}=1.6, \mathrm{p}=0.2\right)$ or date by wing interaction $\left(\mathrm{F}_{(2,380)}=1.73, \mathrm{p}=0.17\right)$; however, there was a treatment by eyespot interaction ($\mathrm{F}_{(2,380)}=27.2, \mathrm{p}<0.0001$). Within the control group, eyespot 1 was significantly larger than eyespots 2,3 and 4 . Eyespot 2 was larger than eyespot 3 although there was no difference in size between eyespots 2 and 3 compared to eyespot 4 . The treatments had variable effects on eyespot size; heparin dramatically reduced the size of eyespots 2 and 3 often eliminating them entirely while it had no effect on the size of eyespots 1 and 4 (Figure 3.4). Temperature shock significantly reduced the size of all eyespots with the exception of eyespot 4 .

Figure 3.4 Eyespot size across all four eyespots in the different treatments. Data represent the area in cm^{2} with error bars representing 1 SE from the mean. The 2-way ANOVA was performed on square-root transformed data.

Black Border (Outer Ring)

There was no date by treatment interaction for the replicated experiments $\left(\mathrm{F}_{(2,348)}=2.0\right.$, $\mathrm{p}=0.12$) although date was significant $\left(\mathrm{F}_{(2,424)}=10.45, \mathrm{p}<0.0001\right)$; butterflies reared in June had a larger black margin compared to those reared in May and September. Within the control group, the area of the black border varies across all eyespots. Eyespot 1 exhibits the largest border, followed by eyespot 4 with the two central eyespots possessing the smallest black border. A significant treatment by eyespot interaction was found $\left(\mathrm{F}_{(6,424)}=4.62, \mathrm{p}<0.0001\right)$. However, overall neither treatment had an effect on the area of this eyespot ring for most eyespots. The exception is that butterflies treated with heparin had a significantly smaller black border in eyespot 3 compared to control groups (Figure 3.5).

Figure 3.5 Area of the black border (outer ring) across all four eyespots in the different treatments. Data represent the area in cm^{2} with error bars representing 1 SE from the mean. The 2-way ANOVA was performed on square-root transformed data.

Differences were observed in the proportion of the black border relative to eyespot size. Butterflies exposed to temperature shock had a proportionally larger black border in eyespot $1\left(\mathrm{~F}_{(2,105)}=7.6, \mathrm{p}=0.001\right)$ and eyespot $2\left(\mathrm{~F}_{(1,88)}=6.24, \mathrm{p}<0.05\right)$. No differences were observed for the other eyespots or the heparin treatment.

Yellow Pigment

Due to the strong effects of heparin on eyespot pigmentation, the analysis of yellow pigment was conducted first by examining the effects of temperature on all eyespots, and then examining the effect of both treatments on eyespots 1 and 4 . No date by treatment interaction was found for the replicated experiments $\left(\mathrm{F}_{(2,348)}=0.99, \mathrm{p}=0.3\right)$, although butterflies reared in May had overall smaller area of yellow ($\mathrm{F}_{(2,348)}=9.8, \mathrm{p}<0.0001$). There was a significant treatment by eyespot interaction $\left(\mathrm{F}_{(6,348)}=5.15, \mathrm{p}=0.0017\right)$. In the control group, the amount of yellow pigmentation exhibited a gradual decline in area over the four eyespots, with the largest amount of yellow pigment observed in eyespot 1 and the smallest amount in eyespot 4. A similar pattern was also observed in the temperature treatment. Temperature shock had a marginally significant effect on reducing the area of yellow pigmentation in eyespot 1 although there was no effect on the overall proportion of this pigment compared to the control (Figure 3.6). There was a significant reduction in the area of yellow pigment in eyespots 2 and 3 .

Figure 3.6 Area of yellow pigment across all four eyespots in the different treatments. Data represent the area in cm^{2} with error bars representing 1 SE from the mean. The 2way ANOVA was performed on $\log 10$-transformed data.

When eyespot size was considered, the proportion of yellow pigment was reduced in eyespot $2\left(\mathrm{~F}_{(1,87)}=7.3, \mathrm{p}=0.01\right)$ but no reduction was observed in eyespot $3\left(\mathrm{~F}_{(1,86)}=\right.$ $3.5, \mathrm{p}=0.28$). There was no effect of temperature shock on the area or proportion of yellow pigment in eyespot 4.

A separate analysis including heparin treatment was done for eyespots 1 and 4 only because heparin abolished eyespots 2 and 3 in many butterflies. For this comparison, there was no treatment x eyespot interaction for yellow pigmentation in eyespots 1 and 4 across all treatments $\left(\mathrm{F}_{(2,212)}=0.95, \mathrm{p}=0.3885\right)$, however, treatment and eyespot were significant with more yellow pigment observed in eyespot 1 compared to eyespot 4 .

Heparin significantly increased the area of yellow pigment in both eyespots $\left(\mathrm{F}_{(2,212)}=\right.$ 37.73, $\mathrm{p}<0.0001$) and the proportion of yellow pigment in eyespot $1\left(\mathrm{~F}_{(2,102)}=14.3, \mathrm{p}=\right.$ 0.0001), and eyespot $4(\mathrm{~F}=13.9, \mathrm{p}=0.001$ Welch ANOVA) compared to the control (Figure 3.6).

Orange Pigment

The analysis revealed no date $\left(\mathrm{F}_{(2,344)}=0.9, \mathrm{p}=0.4\right)$ or date by treatment interaction $\left(\mathrm{F}_{(2,}\right.$
 ${ }^{387)}=10.8 \mathrm{p}<0.0001$). Within the control group, the area of orange pigmentation was significantly larger in eyespot 1 compared to eyespots 2,3 and 4 while no difference was observed among the latter eyespots. Temperature shock had no effect on the area of orange pigment in any eyespot; however, the proportion of orange in eyespot 1 was affected by both treatments $\left(\mathrm{F}_{(2,104)}=34.43, \mathrm{p}=0.001\right)$ with the highest proportion found in the temperature treatment (Figure 3.7). The proportion of orange pigment in temperature-shocked butterflies was similar to control butterflies for eyespot $2(\mathrm{~F}=7.6$, $\mathrm{p}=0.12$, Welch ANOVA, $\left.\chi^{2}=2.8, \mathrm{p}=0.09\right)$ and eyespot $4\left(\mathrm{~F}_{(1,82)}=1.9, \mathrm{p}=0.12\right)$; however, a significantly higher proportion of orange was found in eyespot $3(\mathrm{~F}=5.8, \mathrm{p}=$ 0.02 Welch ANOVA, $\chi^{2}=6.0, \mathrm{p}=0.02$).

Heparin significantly reduced the area of orange pigment in eyespot 1 but increased this color in eyespots 2,3 and 4 . The proportion of orange pigment was also significantly reduced in eyespot 1. It was not possible to examine the proportion of orange in the remaining eyespots due to the strong effects of heparin on eyespot size.

Figure 3.7 Area of orange pigment across all four eyespots in the different treatments. Data represent the area in cm^{2} with error bars representing 1 SE from the mean. The 2way ANOVA was performed on $\log 10$-transformed data.

Blue Scales

Heparin virtually eliminated blue scales in all eyespots, thus only the temperature and control groups were compared for eyespots 1-3 as this structural color is rarely observed in eyespot 4. There was no date $\left(\mathrm{F}_{(2,261)}=1.3, \mathrm{p}=0.4\right)$ or date by treatment interaction $(\mathrm{F}$ $(2,261)=0.9, p=0.4)$. However, there was a significant treatment by eyespot interaction (F $(2,264)=15.08, \mathrm{p}<0.0001)$. Within the control group, the area of blue was significantly higher in eyespot 1 versus eyespots 2 and 3, however no difference was observed between eyespots 2 and 3 . Temperature shock had no effect on the area of blue pigment in eyespot 1 however the treatment significantly increased the amount of blue pigment in eyespots 2 and 3, with the strongest effect observed in eyespot 2 (Figure 3.8). There was no effect of temperature on the proportion of blue in eyespot $1\left(\mathrm{~F}_{(1,88)}=2.3, \mathrm{p}=0.1\right)$. However, the proportion of blue was significantly higher in eyespots $2\left(\mathrm{~F}_{(1,86)}=100.7\right.$, $\mathrm{p}=<0.0001)$ and $3\left(\mathrm{~F}_{(1,83)}=55.8, \mathrm{p}=0.0001\right)$ compared to the control.

Figure 3.8 Area of blue scales across all four eyespots in the different treatments. Data represent the area in cm^{2} with error bars representing 1 SE from the mean. The 2-way ANOVA was performed on square-root transformed data.

Black Focus

For the black focus, there was no date x treatment interaction $\left(\mathrm{F}_{(2,349)}=0.7, \mathrm{p}=0.5\right)$ although date was significant. Butterflies reared in September had a smaller black focus compared to those reared in May and June $\left(\mathrm{F}_{(2,425)}=15.11, \mathrm{p}<0.0001\right)$. There was a significant treatment by eyespot interaction $\left(\mathrm{F}_{(2,425)}=13.77, \mathrm{p}<0.0001\right)$. In the control butterflies, the area of the black focus varied significantly across eyespots. There was no difference in the area of the black focus between eyespot 1 and 2 however comparisons between all other eyespots were significantly different with the smallest focus observed in eyespot 3 and the largest in eyespot 4. Both treatments significantly reduced the size of the black focus in most of the eyespots (Figure 3.9). Heparin did not affect the size of the black focus in eyespot 1 ; however this treatment significantly reduced the size of the black focus in the three other eyespots with a dramatic reduction in eyespot 4 .

Temperature shock significantly reduced the size of the black focus in all eyespots however the strongest effect was observed in eyespot 2 .

Both treatments significantly reduced the proportion of the black focus in eyespot $1\left(\mathrm{~F}_{(2,103)}=24.4, \mathrm{p}<0.0001\right)$ and also had significant effects in eyespot $2\left(\mathrm{~F}_{(2,103)}=2.14\right.$ $\mathrm{p}<0.0001$) and eyespot $3\left(\mathrm{~F}_{(2,95)}=50.12, \mathrm{p}<0.0001\right)$. Heparin significantly increased the proportion of the black focus in the central eyespots, largely because the black focus was all that remained. In contrast, temperature shock reduced the proportion of the black focus in the two central eyespots and also in eyespot $4\left(\mathrm{~F}_{(1,82)}=18.2, \mathrm{p}<0.0001\right)$. Heparin also dramatically reduced the proportion of the black focus in eyespot 4 by eliminating it completely in many individuals.

Figure 3.9 Area of the black focus across all four eyespots in the different treatments. Data represent the area in cm^{2} with error bars representing 1 SE from the mean. The 2way ANOVA was performed on square-root transformed data. Sample sizes are shown in the bars.

Tests for Modularity and Integration

Based on results from the phenotype data, we tested the prediction that eyespots 2 and 3 form an independent module that may exhibit weak integration between eyespots 1 and 2 . Eyespot 4 would represent a further independent module that also may exhibit weak integration with eyespot 1 for the black border (Figure 3.10). Matrices for partial correlations and EED values are presented in Appendix Figures 3.11 and 3.12 respectively. The graphical model for control eyespots reveals that eyespot size in V. cardui is highly integrated across eyespots (Figure 3.13). The strength of integration is highly variable with eyespots 2 and 4 exhibiting the weakest edge strength. Overall, the yellow ring and black focus display similar integration patterns across eyespots with a lack of integration between eyespots 2 and 4 . Only orange pigment and the black border showed evidence of integration between these two eyespots, and overall exhibited the lowest levels of integration.

Figure 3.10 Hypotheses of integration and modularity for control eyespots based on overall phenotype data. A represents the most intergrated model inferring weak integration between neighboring eyespots and between eyespots 1 and 4 (for the black border). B represents the most conservative model showing weak integration only between eyespots 1 and 2.

Figure 3.13 Comparison of phenotypic correlations within and between control and temperature shock groups for eyespot size and pigment rings. Edges infer integration among eyespots based on edge exclusion deviance values above the critical value from the χ^{2} distribution. Eyespots without edges are conditionally independent from all other eyespots, $\chi^{2}<3.84, \mathrm{p}<0.05$. Edge strength values represent the strength of integration between eyespots. Temperature shock results in a doubling of independent modules (shown by red numbered boxes).

Figure 3.13 cont. Comparison of phenotypic correlations within and between control and temperature shock groups for eyespot size and pigment rings. Edges infer integration among eyespots based on edge exclusion deviance values above the critical value from the χ^{2} distribution. Eyespots without edges are conditionally independent from all other eyespots, $\chi^{2}<3.84, \mathrm{p}<0.05$. Edge strength values represent the strength of integration between eyespots. Temperature shock results in a doubling of independent modules (shown by red numbered boxes).

These results suggest that for many traits the eyespots are largely integrated with some eyespots demonstrating modularity for certain pigments. Following temperature shock, patterns of integration were largely intact for eyespot size, with only one edge removed between eyespots 1 and 3. Edge strengths weakened for some eyespots but increased for others. The pigment genes displayed very different patterns of integration compared to controls with an overall loss of integration among eyespots resulting in a doubling of independent modules. The yellow ring and black focus were reduced to two independent modules and the orange pigment was reduced to three. Examination of the blue ring revealed an independent module composed of eyespots 2 and 3 in both the control and
temperature group. These modules reflect changes in the proportions of color for temperature shock relative to the control (Table 3.2).

Table 3.2. Percent difference in area $\left(\mathrm{cm}^{2}\right)$ for eyespot size and pigmentation in response to temperature shock ($37^{\circ} \mathrm{C}, 48 \mathrm{hrs}$.) relative to the control. Module number represents groups identified using graphical modeling (Fig. 9) that corresponds to percent changes in pigmentation.

	Eyespot no.	Temperature	Module
Spot size	1	-11.2	0
	2	-14.7	0
	3	-19.0	0
Black focus	4	-10.9	0
	1	-46.5	1
	2	-56.1	1
Blue	3	-45.5	1
	4	-24.2	2
Orange	1	-3.2	1
	2	44.3	2
	3	21.8	2
Yellow	1	14.6	1
	2	11.7	2
	3	10.0	2
	4	21.1	3
Black border	1	-11.7	1
	2	-18.1	2
	3	-22.8	2
	4	-5.6	1
	1	7.6	0
	2	23.3	0

The black border exhibited an increase in patterns of integration between eyespots and a new edge was created between eyespots 2 and 3 for the orange pigment. Overall, in both the control and treatment groups, the two central eyespots retained the highest number of edges between each other across all traits (Table 3.3) and displayed some of the highest edge strength values. We also observed a general trend of concerted changes in response
to the treatment. Yellow pigment rings and the black focus declined in response to temperature shock across all eyespots while the orange pigment ring and blue region increased.

Table. 3.3 Total number of edges across all traits between each pair of eyespots for the Control and temperature shock ($37^{\circ} \mathrm{C}$, 48 hrs .) groups. The two central eyespots (ES2 and ES3) are highlighted as showing the highest number of edges and no change in edge number following temperature shock.

	Control	Temperature shock	Difference
ES1 vs. ES2	3	3	0
ES1 vs. ES3	3	2	-1
ES1 vs. ES4	4	3	-1
ES2 vs. ES3	$\mathbf{5}$	$\mathbf{5}$	$\mathbf{0}$
ES2 vs. ES4	4	2	-2
ES3 vs. ES4	3	1	-1

Discussion

We have found that hind wing eyespots of the butterfly Vanessa cardui exhibit phenotypic plasticity in response to temperature shock and injection of heparin sulfate. Temperature shock had subtle but significant effects on eyespot development, while eyespot morphology was dramatically altered by heparin sulfate. Despite the use of two very different treatments we observed common effects on eyespot development indicating that some underlying property of the eyespots influence pattern modification. We found that eyespots in V. cardui exhibit both concerted and individual responses to environmental perturbation providing evidence for developmental integration for eyespot size, but also modularity for individual eyespots and specific eyespot elements. Our
results suggest that particular eyespots and eye spot elements are sensitive to environmental perturbations.

Eyespot Size Plasticity Varies Across Wing Segments

Eyespots often vary in size across the wings of butterflies with some eyespots appearing more conspicuous than others. In V. cardui the posterior eyespot (eyespot 1) was found to be significantly larger than the other three eyespots, which were all similar in size. Wings with large eyespots or a series of three small eyespots are known to confer a protective benefit by intimidating predators (Stevens et al., 2008). Thus, predation may have shaped this particular combination of eyespot sizes in V. cardui. Given that eyespot size is a plastic trait in many butterfly species (Brakefield et al., 1996; Lyytinen et al. 2004), we examined whether eyespot size in V. cardui is also phenotypically plastic and whether plasticity varies across eyespots.

Our experiments revealed that both treatments had significant and variable effects on size of different eyespots independent of wing area. Temperature shock significantly reduced the size of eyespots 1-3 while heparin significantly reduced the size of eyespots 2 and 3. While similar reductions in eyespot size have been reported following heparin injections in another Nymphalid, Junonia coenia (Serfas \& Carroll, 2005) temperature shifts have been shown to have opposite effects in B. anynana (Brakefield et al., 1998; Oliver, et al., 2013). Thus, temperature seems to have complex effects on butterfly eyespot development, increasing eyespot size in some species while decreasing it in others.

Grafting experiments have revealed that eyespot size is regulated by some property of the focal organizing cells such as a morphogen signal (Monteiro, et al., 1994;

French \& Brakefield, 1995; Beldade et al., 2008). Thus, warmer temperatures may increase the concentration of this signal in B. anynana while weakening the focal signal in V. cardui. The precise mechanisms by which temperature and heparin alter eyespot size remain unknown (Serfas \& Carroll, 2005; Oliver et al., 2013) although many hypotheses have been proposed to explain plasticity of eyespot size (Brakefield et al., 1998; Oliver et al., 2013). Research by Oliver et al. (2013) in B. anynana has shown that while changes in temperature do not alter the temporal order of gene expression for eyespot associated genes; cooler temperatures lead to earlier onset of gene expression. Thus, temperature may induce heterochronic shifts in expression of eyespot-associated genes (Oliver et al., 2013). In addition to temperature-induced variation in expression of eyespot genes, hormone titers have also been implicated in regulating eyespot size plasticity (Brakefield, 1996). These treatments may have reduced eyespot size by altering the dynamics of hormone signaling and/or selector genes, or by modifying the competency of scale cells to respond appropriately to morphogen signals (Brakefield, 2001). Whatever the mechanism that resulted in modified eyespots, in both treatments the two central eyespots were most affected.

Interestingly, neither temperature shock nor heparin affected the size of eyespot 4 suggesting it is less plastic. These results demonstrate that eyespot plasticity varies across the wing in V. cardui. Centrally positioned eyespots appear more vulnerable to environmental perturbations. Although eyespots are formed from a common developmental program, eyespot development in V. cardui may fall into three independent developmental modules: (1. eyespot 1, 2. eyespots 2 and 3, and 3. eyespot 4) that exhibit different levels of phenotypic plasticity (Figure 3.8). These developmental
modules may have evolved due to differences in the focal signal, or variation in the timing of eyespot development driven by anterior-posterior gradients in transcription factors across the wing (Keys et al., 1999; Monteiro, 2014). Whether eyespot size plasticity has evolved in response to selection for mate attraction or predator avoidance in V. cardui is currently unknown.

Inner Pigment Rings Are More Sensitive to Perturbations Than the Eyespot Border

Eyespots are composed of a series of concentric rings of different colors that also exhibit phenotypic plasticity. Variation in eyespot rings in response to environmental conditions may provide opportunities for the generation of novel eyespot patterns if certain eyespot rings are easily modified. In V. cardui, exposure to heparin and temperature shock produces an overall simplification of the eyespot pattern. Simplification is particularly evident in the heparin treatment, which virtually eliminated eyespots 2 and 3 and strongly impacted the inner rings of eyespots 1 and 4 . The bleaching effects of heparin were strikingly similar to those observed in V. cardui following cold shock (Nijhout, 1984) and sodium tungstate (Otaki \& Yamamoto, 2004). Similar to previous work (Serfas \& Carroll, 2005), we found individual variation in the response to heparin, with some butterflies exhibiting stronger effects on eyespot development than others (Figure 3.1 C + D). This pattern is also observed in butterflies exposed to cold shock with a range of aberrant forms produced. However, heparin does not have similar effects in all butterfly species. In contrast to a bleaching effect, Martin et al. (2012) found that heparin increases melanization in Heliconius butterflies. Heparin is thought to influence wingless signaling which may be involved in promoting melanin synthesis in Heliconius, but suppressing its production in other butterflies.

Interestingly, both cold shock (Nijhout 2001) and heparin show similar effects where the black border or outer ring is more resistant to modification and in many individuals is the only remaining eyespot ring. Serfas and Carroll (2005) also found similar effects of heparin on the black outer ring in eyespots of Junonia coenia. In our experiments, neither temperature shock nor heparin had any effect on the overall area of the black outer ring, although the proportion was increased by temperature shock when controlling for size in eyespots 1 and 2. Interestingly, heparin altered the color of the dorsal hind wing eyespots changing their color from black to white, a phenotype that closely resembles aberrant forms of the sister species V. kershawi (Otaki, 2007). In fact many wing pattern modifications in response to cold shock, heparin and sodium tungstate resemble the range of phenotypes observed across different species within Vanessa including occasional wild-caught aberrant individuals of V. cardui (Otaki \& Yamamoto, 2004). These observations suggest developmental constraints in eyespot formation resulting in a limited range of phenotypic possibilities.

Black pigmentation is also found in the focal region of the eyespot. In heparin treated butterflies, the two central eyespots were mostly eliminated leaving just partial remnants of the black focus, some of which developed as orange pigment. Temperature shock also significantly reduced the black focus in all eyespots with the strongest effects occurring in the two central eyespots. Although temperature shock did not produce any bleaching effect, it did increase the amount, both area and proportion, of the structural blue color in the focal region of the two central eyespots, particularly for eyespot 2 . Thus, in the two central eyespots the black focus appears to have been partially replaced or masked by expansion of blue. The blue region may also have expanded at the expense of
the yellow ring, which also decreased in response to temperature shock for all eyespots with the exception of eyespot 4 .

Replacement and expansion of pigment rings have also been observed in other butterflies. In the Goldeneye mutant of B. anynana, the outer ring of gold scales replaced the inner ring of black scales due to changes in the expression domains of transcription factors. In these mutants, Spalt expression was replaced by Engrailed/Invected in scales that originally developed black pigment (Brunetti et al., 2001). Expansion of the blue ring in response to temperature shock observed here may have occurred via a similar mechanism. Spalt also corresponds to black pigmentation in V. cardui; thus, temperature shock may repress Spalt expression and/or increase expression of Engrailed/Invected. Immunolabeling experiments would be required to test this hypothesis.

Do Gradient Models Adequately Explain How the Same Pigment Develops in Different Rings?

These results and those of others (Nijhout, 1984; French \& Brakefield, 1995) suggest that the outer ring of eyespots is less vulnerable to perturbations than the inner pigment rings. These observations indicate that expression of morphogens or transcription factors are less stable in the focal region. For V. cardui the most sensitive eyespot ring appears to be the black focus, which was significantly modified in all eyespots by both treatments. Several studies have shown that temperature shock can reduce melanin pigmentation (Gibert et al. 2007; Otaki, 2007); however, in the case of V. cardui eyespots it is not melanin per se that is affected, but where this pigment is localized that influences its vulnerability to perturbation. These results raise two important questions regarding the development of concentric colored rings. First: how can a concentration gradient produce the same color in both the focus and the outer most ring? Second: how do environmental
perturbations significantly modify the inner pigment rings while not affecting the outermost ring?

According to current models, the eyespot develops from an organizing focus at the center of the eyespot, which contains the highest concentration of a putative morphogen signal. This morphogen diffuses radially through the wing epidermis to produce concentric rings of colored scales (Nijhout, 1978; French \& Brakefield, 1995; Brakefield \& French, 1999). Thus, each ring represents a different threshold response to the diffusing morphogen resulting in a signal transduction cascade leading to the development of different colored pigments (Monteiro, 2014).

According to this model both low and high concentrations of the putative morphogen leads to the same colored pigment, suggesting that these two eyespot regions are producing melanin via alternative mechanisms. Spatial differences in interactions between hormones and transcription factors could influence how epidermal cells interpret the signal, leading to the synthesis of the same pigment. Immunolabeling however does not show evidence of similar expression patterns in the focus and outer rings during the first 24 hours of pupation. Fluorescent labeling of eyespot 4 in V. cardui shows that different genes are expressed in the inner and outer rings with co-expression of Distalless and Spalt in the focus and Engrailed in the outer ring (Brunetti et al., 2001). Work by Brunetti et al. (2001) suggests that similar pigments produced at the ends of the concentration gradient are due to expression of different eyespot genes. These different expression profiles may also explain why the outer ring is less vulnerable to perturbation if certain expression domains are more resistant to environmental changes. It also suggests that different genes are involved in producing the same pigment.

It is important to note that expression patterns vary substantially during wing color pattern development (Reed et al. 2007) and we do not yet have a detailed time series of expression patterns during eyespot development but rather snapshots at particular time points. Clearly, variation in threshold responses to a concentration gradient cannot explain the same pigment developing in different rings. Further work is required to develop models that adequately explain the diversity of different eyespot pigment patterns including those composed of different rings of the same pigment.

Temperature Shock Alters Patterns of Integration and Modularity

Studies investigating integration and modularity of butterfly eyespots have produced conflicting results, suggesting that developmental processes influencing multi-trait correlations are complex and labile. We investigated patterns of integration and modularity in V. cardui and examined whether phenotypic plasticity is associated with changes in phenotypic correlations among eyespot traits. We tested the hypothesis that patterns of integration and modularity would follow those described in Figure 3.8 and that these patterns would explain variation in phenotypic plasticity. We did not find support for our hypothesis; the graphical models revealed that most traits were largely integrated across eyespots in control butterflies with some evidence of modularity in eyespot 1 and 3. Contrary to studies documenting strong correlations between neighboring eyespots, we observed that eyespots 1 and 2 exhibited conditional independence for several pigments although they were highly correlated for size. The two central eyespots, however, do appear to be more tightly co-regulated as they displayed the highest number of edges and among the strongest edge strength values. Fewer edges were observed for the orange and blue ring and black border, indicating stronger
integration for eyespot size than pigmentation suggesting greater independence between eyespots during pigment synthesis.

A growing number of studies have demonstrated that phenotypic correlations among traits are not necessarily static and are modified in different environmental conditions (Schlichting, 1989; Urren et al., 2002; Plaistow \& Collin, 2004; Montague et al., 2012). We also found that temperature shock altered patterns of integration and modularity in V. cardui. Overall, there was a loss of integration among eyespots with a corresponding doubling of independent modules. Thus, eyespot modularity did not predict plasticity: (e.g. the two central eyespots were integrated with the other eyespots in the control butterflies), but phenotypic plasticity generated novel independent modules. The two central eyespots retained their connections to each other for all traits, with exception of the black border, providing further evidence that they are strongly integrated. Patterns observed for the yellow, orange and blue ring and black focus reveal distinct modules that closely correspond to changes in the proportion of these different pigments. In addition to an increase in modularity, new correlation patterns emerged that were not present in the controls. Temperature -induced plasticity generates novel patterns of integration and modularity, which may be due to variation in plasticity between different traits. These results lend support to the idea that phenotypic correlations are dependent on environmental conditions (Schlichting, 1989).

Conclusions

Overall, we found that the central eyespots and inner pigment rings were highly sensitive to modification. In contrast, eyespot 4 and the black border were more resistant to perturbation. This variation between eyespots has also been observed in other species.

Gibbs \& Breuker, (2006) found that one of the hind wing eyespots (HW-OC4) in Precis aegeria, was more sensitive to resource shortage during development compared to the other eyespots. We observed that the central eyespots appear to have linked responses to stimuli; this is also observed in other species. A number of studies have also revealed that neighboring eyespots appear to be more highly integrated compared to distant eyespots (Beldade et al., 2002; Breuker et al. 2007; Allen, 2008). Monteiro et al. (2003) discovered a mutant produced by x-rays with reduced eyespots 3 and 4, yet the remaining hind wing eyespots were unaffected. Why certain eyespots or eyespot rings are more sensitive to perturbation remains unclear. Hormones or morphogens that influence pigment pathways seem to be subject to alteration in specific regions of the wing. It is clear however that changes in environmental conditions disrupt patterns of integration and promote modularity leading to variation in phenotypic plasticity and novel eyespot patterns. Whether environmentally induced phenotypic correlations influence selective regimes and ultimately the evolution of novel phenotypes still remains a topic of intense investigation (Schlichting \& Smith, 2002; Snell-rood et al., 2010; Fitzpatrick, 2012; Montague et al., 2012).

CHAPTER IV

TEMPERATURE SHOCK AND HEPARIN ALTER EXPRESSION OF GENES INVOLVED IN EYESPOT DEVELOPMENT

Abstract

Phenotypic plasticity in wing color patterns is commonly observed in butterflies; however, underlying changes in gene expression that cause plasticity are poorly understood. Environmentally induced changes in wing color patterns may be caused by changes in patterning/pigmentation genes or upstream regulators such as epigenetic modifiers. Here we investigated whether melanin suppression in eyespots following temperature shock and heparin injections was caused by upregulation of an epigenetic silencer, the polycomb repressive complex (PRC) and associated down-regulation of patterning and pigment genes. We first investigated whether the PRC is expressed during butterfly wing development. We found that all major genes from PRC1 and the PRC2 are dynamically expressed and peak in expression during late larval and early pupal stages. Despite evidence of PRC expression in butterfly wing tissue we did not observe treatment effects on transcription of two PRC genes, polycomb and enhancer of zeste in modified eyespots though polycomb was expressed at significantly higher levels than enhancer of zeste. Temperature shock significantly increased expression of tan, spalt and engrailed,

while heparin increased expression of distal-less and engrailed. Expression of engrailed was altered in both treatments, suggesting it is a highly sensitive gene. This work expands current knowledge on genes expressed in butterfly eyespots and provides a foundation for future studies investigating epigenetic regulation of wing color patterns.

Introduction

Many organisms respond to changes in the environment by modifying their phenotype, a phenomenon referred to as phenotypic plasticity (West-eberhard, 1989; Schlichting \& Smith, 2002; Pigliucci, 2005). These developmental adjustments to the environment may be driven by a generalized stress response or an adaptive phenotypic change that leads to enhanced fitness. Precisely how environmental factors shape the developmental trajectory of an organism is poorly understood, but likely involves complex interactions across multiple levels including genetic and epigenetic regulation. Thus, a key step towards understanding the molecular basis of phenotypic plasticity will require identifying environmentally sensitive genes or networks that generate alternative phenotypes.

Butterfly wings are an excellent model system to investigate the molecular basis of phenotypic plasticity. Many butterfly species exhibit distinct seasonal morphs or plasticity in wing color patterns ranging from expansion of melanin pigment across the wing to local changes affecting specific color pattern elements (Roskam \& Brakefield, 1999; Otaki, 2008; Simpson et al., 2011). Butterfly eyespots have been widely studied as a highly plastic trait. These spots can vary in size, number and color composition in response to temperature shifts and pharmacological treatments (Nijhout, 1984; Serfas \& Carroll, 2005; Dhungel \& Otaki, 2009; Monteiro et al., 2013). The focus on butterfly eyespots has resulted in the identification of a number of patterning genes that are
expressed during eyespot development, including selector genes (distal-less, spalt, engrailed), Hox genes (ultrabithorax, antennepedia), morphogens (wingless and hedgehog) and receptors (notch and ecdysone receptor). These patterning genes are part of the general toolkit for animal development; thus, any disruption or modification in their expression has the potential to induce significant changes in morphology.

Temperature, for example is known to alter expression of some of these patterning genes leading to dramatic changes in eyespot size. In the polyphenic butterfly, Bicyclus anynana, the conspicuous eyespots of wet season morphs exhibit larger spatial expression of the selector gene distal-less compared to the smaller eyespots of dry season morphs. Variation in temporal expression of notch and engrailed has also been linked to temperature-induced plasticity in eyespot size, although it is not precisely clear how temperature causes these shifts in gene expression.

Expression of several patterning genes have also been mapped to eyespot rings providing strong evidence of their involvement in pigmentation (Brakefield et al., 1996). Spalt and distal-less correspond to melanic scales in several butterfly species, suggesting their expression is involved in regulatory switches that trigger upregulation of melanin genes (pale, ddc, tan and yellow). Similar to eyespot size, scale color can be modified in response to environmental perturbations as evidenced by seasonal polyphenisms, implying that the regulatory system underlying pigmentation is also flexible.

The precise molecular mechanisms regulating phenotypic plasticity are not well understood although epigenetic mechanisms provide a plausible explanation. Epigenetics involves changes in gene expression without changing the underlying DNA sequence (Feil \& Fraga, 2011). Epigenetic mechanisms include DNA methylation and histone
modifications that regulate gene silencing and activation. Polycomb repressive complex 1 (PRC1) and polycomb repressive complex 2 (PRC2) are well-studied epigenetic regulators that respond to internal and external stimuli by catalyzing mono-ubiquitination of lysine 119 of histone 2 A and trimethylation of lysine 27 on histone 3 , respectively (Margueron \& Reinberg, 2011). These histone modifications result in chromatin compaction and silencing of Hox and thousands of other development genes (Feil \& Fraga, 2011), including those identified in butterfly eyespots. Early studies of PRC revealed that mutations within the complex lead to ectopic expression of developmental genes outside of their normal domains resulting in dramatic homeotic transformations (Lewis, 1978; Jürgens, 1985; Struhl \& Akam, 1985). These studies highlight the crucial role of the PRC in regulating cell fate and differentiation and raise the possibility that environmentally induced changes in PRC expression may mediate phenotypic outcomes.

In insects, PRC1 contains 4 major proteins, Polycomb ($P c$), Polyhomeotic ($P h$), Sex combs extra (Sce/Ring) and Posterior sex combs (Psc), while PRC2 contains three major proteins, Enhancer of zeste (Ez), Supressor of zeste (Suz12) and Extra sex combs (Esc). Enhancer of zeste catalyzes the trimethylation of lysine 27 on histone 3 (H3K27me3), which leads to propagation of this mark on neighboring histones (Cao et al., 2002; Panning, 2010; van der Velden et al., 2012). Polycomb recognizes this mark through its chromodomain and initiates binding of the PRC1 via catalyzing H2AK119ub1 (Margueron \& Reinberg, 2011), and together these two complexes cooperate to regulate chromatin compaction and gene silencing.

In recent years there has been a surge of interest in the role of epigenetic regulation in phenotypic plasticity in insects. These studies have focused primarily on

DNA methylation in Hymenoptera, revealing that epigenetic control plays an important role in regulating diet-induced plasticity in caste determination (Foret, \& Maleszka, 2008; Kucharski et al., 2008; Chittka \& Chittka, 2010; Lyko et al., 2010; Weiner \& Toth, 2012; Hunt et al., 2013a, 2013b). Epigenetic regulation, mostly in the form of DNA methylation has also been investigated in a number of other insects including the pea aphid, locusts, beetles, and stick insects (Krauss et al, 2009; Hunt et al., 2010; Boerjan et al., 2011; Feliciello et al., 2013). In contrast, there are very few studies investigating epigenetic regulation in Lepidoptera. Although, evidence of DNA methylation has been observed in the silkworm, Bombyx mori (Xiang et al., 2010) and the cabbage moth (Mandrioli \& Volpi, 2003), Mammestra brassica and expression of both PRC complexes has been observed in B. mori (Li et al., 2012). However, no published studies have examined epigenetic regulation in butterflies or wing tissue of Lepidoptera.

We have previously demonstrated phenotypic plasticity in the painted lady butterfly, Vanessa cardui, in response to temperature shock and heparin injection. Exposure of pupae to temperature shock reduced eyespot size and melanin pigmentation; heparin dramatically altered eyespot formation and pigmentation. These observations led to the hypothesis that alterations in pigmentation may be due to the PRC repressing genes involved in patterning and pigmentation. Here we test this hypothesis by examining 1) whether the PRC is expressed in butterfly wings and 2) whether reduced melanin pigmentation is associated with a down-regulation of patterning/pigment genes and upregulation of the PRC. We also examine how expression of patterning and pigment genes varies across eyespots that differ in size and color composition.

Methods

Transcriptome Analysis

As part of a larger effort to explore the transcriptome during wing color patterning in V. cardui, we examined whether the PRC is expressed during wing pattern development, particularly during initial stages of eyespot establishment (larval and early pupal stages). Vanessa cardui caterpillars and artificial diet were purchased from Carolina Biological Supply Company (NC). Caterpillars were reared individually at ambient conditions $\left(28^{\circ} \mathrm{C}\right)$. Wing discs were dissected from caterpillars at two stages in the fourth instar, the final stage prior to pupation. Prior to dissection, caterpillars were cut in half after the first abdominal segment and the thorax was placed immediately in RNAlater ${ }^{\circledR 8}$ (Ambion). The samples were stored at $4^{\circ} \mathrm{C}$ for 2 days. Both fore and hind wing discs were carefully dissected from the thorax and placed in RNAlater ${ }^{\circledR}$ in preparation for RNA isolation. Pupal wings were dissected from live pupa at 2, 5 and 8 days post-pupation. Following dissections, both fore and hind wings per individual were placed immediately in RNAlater ${ }^{\circledR}$ (Ambion) and stored at $4^{\circ} \mathrm{C}$. RNAzol was used to extract RNA form larval and pupal wing samples. RNA concentration was assessed on a spectrophotometer (A260/A280 > 1.8) and integrity was checked on a 1% formaldehyde-agarose gel.

The RNA from each sample was diluted to $25 \mathrm{ng} / \mu \mathrm{l}$ in RNAse free water. RNA from wing discs (both fore and hindwings) was then pooled into a single biological replicate for each stage. Thus, each pooled sample contained wing discs from 5 individuals for the early $4^{\text {th }}$ and late $4^{\text {th }}$ instar. There were two biological replicates for each pupal stage representing pooled fore and hindwings from 3-5 individuals. The RNA samples were shipped overnight on dry ice to the Huntsman Cancer Institute at the

University of Utah Microarray and Genomic Analysis Facility for library preparation and sequencing using illumina Hiseq 2000 sequencer. Transcriptome assembly and RNA-seq analysis was performed using CLC Genomics 6.5.1. Details for cDNA library preparation, illumina sequencing and transcriptome assembly are provided elsewhere (Chapter 2).

Temperature and Heparin Experiment: Butterfly Rearing and Eyespot Dissections

Vanessa cardui caterpillars and artificial diet were purchased from Carolina Biological Supply Company (NC). Caterpillars were reared individually in a growth chamber at $28^{\circ} \mathrm{C}$ 16L: 16D cycle. Caterpillars were randomly assigned to treatment groups: 1. Control, 2. Heparin injection and 3. Temperature shock at $37^{\circ} \mathrm{C}$. Heparin injections ($10 \mu \mathrm{~g}$ in $2 \mu 1$ water) were performed using a Hamilton syringe within 12 hours of pupation on the left side of pupa close to the wing. The needle was cleaned with 70% ethanol between injections. For the temperature treatment, pupae were moved to an incubator set at $37^{\circ} \mathrm{C}$ for 48 hrs. Following treatments, all pupae were returned to the growth chamber. Pupae were harvested for dissections at a time point when pigments are visible on the cuticle (6 days post-pupation) (Appendix Figure 4.1). Pigments were used as a landmark for estimating when pupae reached a similar developmental stage. Images were taken of the pupae to document cuticle pigmentation prior to dissections. Wings were dissected from live pupae (6 days post-pupation) under Zeiss Stemi 2000-C microscope. One of the dissected hind wings was immediately placed in RNAlater® (Life Technologies) and the other hind wing was photographed using an Olympus DP70 camera mounted on an Olympus SZ12 microscope. Images of the hind wings and pupae were carefully examined to select butterflies with similar levels of pigmentation (Appendix Figure 4.1).

The duration of pupation until dissection time was also calculated to compare pupal age in the control and treatment groups (Table 4.1). Butterflies with similar hind wing phenotypes and age were selected for quantitative real time PCR. A subset of butterflies from each group was reared to adults for morphometric analysis of eyespots (Chapter 3).

Table 4.1. Age of pupae at time of eyespot dissection and total duration of pupation for butterflies reared to adults across treatment groups. SE represents 1 standard error from the mean and $\mathrm{n}=$ sample size.

	Pupal age at dissection (days)	$\overline{\mathrm{SE}}$	Pupal age at dissection (hrs.)	SE	N	Age at eclosure (days)	SE	n
Control	6.88	0.13	165.8	2.6	8	7.81	0.16	21
Heparin	6.80	0.13	167.0	1.6	10	7.74	0.14	19
Temperature	6.00	0.0	144.8	1.2	8	6.69	0.18	26

RNA Isolation and Quantitative Real Time PCR

The first, second and third eyespots (Figure 4.2) were carefully dissected from select hind wings and placed immediately in RNAlater. Micro dissections of all three eyespots were conducted on the same wing simultaneously and were performed by alternating between the control and each treatment group to prevent any systematic bias in dissections. Each dissected eyespot was transferred to 100μ of RNAzol ${ }_{\circledR}$ RT (Molecular Research Center Inc.) and processed using an electric homogenizer for 1 minute each. Eyespots for all treatment groups were processed at the same time, alternating between treatments and eyespots to reduce any bias in processing. RNA was quantified using a ND-1000 spectrophotometer (NanoDrop products, Wilmington, DE). All samples were treated with Dnase 1 followed by ethanol precipitation. RNA was diluted to $2 \mathrm{ng} / \mu \mathrm{l}$ and qRT -PCR was conducted using primers for β-actin to confirm absence of genomic DNA contamination.

Total RNA was reverse transcribed using ABI High Capacity Reverse Transcription kit (Applied Biosystems) using 100ng input RNA. All samples were converted to cDNA in the same run using an ICycler thermocycler (Bio-rad) with the following conditions: $95^{\circ} \mathrm{C} 30 \mathrm{~s}, 95^{\circ} \mathrm{C} 5 \mathrm{~s}, 60^{\circ} \mathrm{C} 5$ s for 40 cycles. cDNA was diluted with RNAase free water to $2 \mathrm{ng} / \mu \mathrm{l}$ for quantitative PCR. Each $10 \mu 1$ reaction consisted of $2 \mu \mathrm{l}$ cDNA (4 ng), $5 \mu \mathrm{l}$ Evagreen Supermix (BioRad), $0.3 \mu \mathrm{l}$ of forward and reverse primer ($10 \mu \mathrm{M}$), and $2.4 \mu \mathrm{l}$ of RNAse free water. Reactions were performed on a CFX384 Real time system (Bio-rad C1000 Thermocycler) with an initial incubation at $95^{\circ} \mathrm{C}$ for $30 \mathrm{~s}, 95^{\circ} \mathrm{C}$ and $60^{\circ} \mathrm{C}$ for 5 s each over 45 cycles.

Figure 4.2 Adult hindwing of Vanessa cardui with eyespots labelled. Only eyespots 1-3 were dissected for qRT-PCR. The bottom panel shows close up of representative images of eyespots 1-3 for each treatment group. Two images are shown for heparin to illustrate individual variation in response to treatment.

Genes were selected based on studies demonstrating expression in developing eyespots: engrailed (en), spalt (sal), distal-less (dll) and ultra-bithorax (ubx)(Brunetti et al., 2001;

Tong et al., 2014). Genes involved in the melanin synthesis were also examined: tan, ebony, ddc and pale (Wittkopp et al., 2003). Enhancer of zeste (Ez) was chosen from the

PRC2, as it is involved in the trimethylation of lysine 27 on histone 3. The polycomb (Pc) gene of the PRC1 was selected as it recognizes the trimethylation mark and initiates assembly of the PRC1. Primers from the following genes (Appendix Table 4.2) were designed using the software Primer Express (Life Technologies). Primers were based on sequences obtained from the wing transcriptome for Vanessa cardui (Chapter 2). Gene identity was confirmed in a tblastx using the Drosophila peptide database and a reciprocal blastn in NCBI. All genes retrieved an E value $=0.0$ and mapped to homologous sequences in related butterflies or Bombyx mori. Primers were used to amplify cDNA to generate a standard curve for qRT-PCR in the following manner: 25 ng of cDNA was amplified in a $50 \mu \mathrm{l}$ reaction using the 2 x Acuzyme kit (Bioline) using the following conditions $\left(94^{\circ} \mathrm{C}, 60^{\circ} \mathrm{C}\right.$, and $68^{\circ} \mathrm{C}$ for 30 s each over 40 cycles). The PCR product was purified using GeneJET PCR purification kit (Thermoscientific) and run on a 1% agarose gel to confirm the presence of a single band. A series of ten fold dilutions was generated using a starting concentration of 2 picograms $/ \mathrm{ml}$.

Statistical Analyses

All analyses were conducted in JMP version 10.0 (SAS). Pupal gene expression was analyzed using only RPKM (reads per kilobase exon per million reads). A two-way ANCOVA was employed with day and gene as main effects and log expression as the dependent variable. The glutamate receptor was identified as a suitable internal control based on the transcriptome analysis, which revealed consistent levels of expression during all stages of pupal wing development. For the temperature and heparin experiment, gene expression was analyzed using a two-way ANCOVA with treatment and eyespot as main effects, treatment by eyespot as an interaction term and ashl as a
covariate. Ashl was selected as an internal control as it did not vary in expression with treatment or eyespot. All data were square root transformed and the residuals checked for normality. Homoskedasticity was checked visually by plotting residuals and also by conducting a Levene test for equal variances.

Results

Expression of Polycomb Repressive Complex Genes During Wing Development
The transcriptome analysis revealed that all major genes of PRC 1 and PRC2 are expressed during development of larval wing discs and the pupal wing. Genes from both complexes exhibited dynamic changes during wing development with higher levels of expression during the late larval and early pupal stages with a dramatic decline during late pupation (Figure 4.3). Expression of PRC1 genes varied significantly among pupal stages with the highest levels observed at day 2 followed by day 5 then day $8\left(\mathrm{~F}_{(2,11)}=\right.$ $108.3 \mathrm{p}<0.0001$). There was a significant gene x day interaction with Psc showing an increase in expression from day 5 to day $8\left(\mathrm{~F}_{(10,11)}=5.3, \mathrm{p}<0.001\right)$. Overall, Ring was the most highly expressed gene and $P c$ was expressed at the lowest levels.

Pupal expression levels varied among the PRC2 genes with Suz12 exhibiting significantly higher expression than $\operatorname{esc}\left(\mathrm{F}_{(2,8)}=7.5, \mathrm{p}=0.015\right)$. Although no gene by day interaction was observed $\left(\mathrm{F}_{(4,8)}=2.5 \mathrm{p}=0.13\right)$. All genes exhibited a significant peak in expression at 2 days post-pupation $\left(\mathrm{F}_{(2,8)}=335.8, \mathrm{p}<0.0001\right)$ and no difference in expression was observed between days 5 and $8\left(\mathrm{~F}_{(1,5)}=3.7, \mathrm{p}=0.13\right)$. We have previously confirmed that patterns of gene expression are highly correlated $\left(R^{2}=0.75\right)$ between RNA-seq and qPCR data (Chapter 2).

Figure 4.3 Expression of the polycomb repressive complex during larval and pupal wing development in V. cardui. RPKM represents reads per kilobase of exon per million reads mapped. Panel A shows expression levels for members of polycomb repressive complex 2. Panel B shows expression levels for members of the polycomb repressive complex 2. E4 and L4 represent early and late $4^{\text {th }}$ instar, 2,5 and 8 days represent number of days following pupation. Error bars are $1 \pm$ SE from the mean. No error bars are present for the larval stages as these represent one biological replicate of 5 pooled samples. Pupal stages represent the mean RPKM of 2 biological replicates of 3-5 pooled samples.

Comparison of Pupal Development Time and Pigmentation for Eyespot Dissections

We found that butterflies exposed to $37^{\circ} \mathrm{C}$ for 48 hours within 12 hours of pupation developed faster than control butterflies, eclosing at 7 days post-pupation compared to 8 days for controls (Table 4.1). Heparin injected butterflies eclosed at the same time as control butterflies. Pigmentation appeared 22 hours earlier in pupae exposed to temperature shock compared to the control and heparin pupae. Due to the advanced
development in temperature treated butterflies, eyespots were dissected one day earlier than control and heparin groups to ensure that all pupae were at a similar developmental stage. No significant difference was observed in pupal age at dissection time between the heparin and control groups (Table 4.1).

At 6 days post-pupation, butterfly eyespots are not fully formed; the melanin border that forms around eyespot 1 and 4 is not completely developed however all eyespots exhibit some degree of melanin and blue pigmentation. Temperature effects on eyespot pigmentation are difficult to distinguish from the controls at this developmental stage. In contrast, heparin effects are visible, showing dramatic modifications in eyespot formation and overall pigment patterns on the hind wing (Appendix Figure 4.1). Heparin injections have variable effects on butterfly wing patterns, although eyespots 2 and 3 exhibit dramatic reductions in black and blue pigmentation. Eyespots were greatly reduced in size or almost eliminated in many heparin treated butterflies. The melanin border, however, appeared less susceptible to the modifying effects of heparin compared to the other pigment elements.

Differential Expression of Patterning and Pigment Genes Across Eyespots.

A total of 16 genes were tested for differences in gene expression in response to the treatments and across the different eyespots. Actin and glutamate receptor were tested as potential internal controls, but showed significant treatment effects (Table 4.3).

Expression of ashl did not vary with treatments or across eyespots and was selected as a covariate for analysis of all other genes (Table 4.3).

Table 4.3 Results from two-way ANCOVA of gene expression. Main effects include treatment (control, temperature, heparin), eyespot number ($1,2,3$) and the interaction between treatment and eyespot. Ash1 did not vary with treatment, eyespot or treatment x eyespot interaction and was used as an internal control for the analysis of all genes.
Significant results ($\mathrm{p} \leq 0.05$) are indicated with an asterisk.

Gene	Treatment F		Eyespot F	Interaction				
		p		p	$d f$	F	p	$d f$
Ash1	0.03	0.97	1.86	0.16	2, 67	0.51	0.72	4, 67
Actin	3.65	0.03*	2.9	0.06	2, 65	3.2	0.02*	4, 65
Glutamate	11.96	<0.0001*	0.62	0.54	2, 66	0.37	0.83	4, 66
$D d c$	2.32	0.10	2.71	0.07	2, 66	0.96	0.43	4, 66
Ebony	2.93	0.06	1.37	0.26	2, 66	0.18	0.95	4,66
Tan	8.64	<0.001*	4.27	0.02*	2, 66	0.60	0.66	4,66
Pale	2.77	0.07	3.34	0.04*	2, 65	1.13	0.35	4, 66
$U b x$	0.98	0.34	3.07	0.05*	2, 66	1.37	0.27	4, 66
Dll	3.08	0.05*	3.20	<0.05*	2, 66	0.38	0.82	4, 66
En	4.9	<0.01*	5.20	<0.001*	2, 66	1.63	0.18	4,66
Sal	4.48	0.02*	2.68	0.07	2, 66	0.33	0.86	4, 66
Ez	0.97	0.38	0.86	0.43	2, 65	1.08	0.37	2, 65
Pc	0.39	0.68	0.48	0.62	2, 66	0.97	0.43	4,66

Across all eyespots and treatment groups, sal was the most highly expressed gene followed by en, $u b x$ and $d l l$ (Appendix Figure 4.24). Wingless was also tested but expression was barely detectable at 6 days post-pupation. Engrailed, $u b x$ and $d l l$ varied in expression across eyespots with eyespot 1 exhibiting higher expression than eyespots 2
and 3 (Appendix Figure 4.4). Overall, the most highly expressed pigment gene in eyespots was pale followed by $d d c$, tan and ebony and expression of pale and tan was significantly higher in eyespot 1 compared to eyespots 2 and 3 (Appendix Figure 4.4).

Effects of Temperature and Heparin on Pigment, Patterning and Polycomb Genes.

We did not observe any treatment effects or treatment by eyespot interaction on expression of pale or $d d c$ (Table 4.3). Temperature shock significantly increased expression of tan. Although the interaction term was not significant, the effects were most pronounced in eyespots 2 and 3 (Figure 4.5, Table 4.3). Heparin had a marginally significant effect on expression of ebony $(\mathrm{p}=0.06)$. Both temperature shock and heparin significantly increased expression of en and sal (Table 4.3). Although a treatment by eyespot interaction was not observed, the treatments appear to have more strongly affected expression of genes in eyespot 2 (Figure 4.5). Heparin significantly increased expression of $d l l$ expression particularly in eyespot 1 (Figure 4.5). There were no treatment effects on $E z$ or $P c$ at this developmental stage (6 days post-pupation) and no variation in expression across eyespots (Table 4.3). However, expression of Pc was measured at significantly higher levels than $E z$ across all eyespots $\left(\mathrm{F}_{(1,45)}=75.58\right.$, $\mathrm{p}<0.0001$).

Figure 4.5 Expression of genes across eyespots for each treatment group for V. cardui. Data represent the least square means for square root transformed data. Errors bars are 1 \pm SE of the mean. Expression values of each gene are in attagrams (ag) of mRNA per nanogram ($n g$) of total RNA. Sample sizes: Control $n=8$, Temp $n=8$, Heparin $n=10$.

Discussion

Phenotypic plasticity in butterfly wing patterns is a well-documented phenomenon, yet few studies have examined how environmental perturbations alter gene expression. Another unexamined issue is the possibility that epigenetic regulation of patterning and pigmentation genes is the source of this plasticity. We have previously shown that Vanessa cardui exhibits phenotypic plasticity in response to temperature shock and heparin injection with significant effects on size and pigmentation across three hindwing eyespots. In this study, we quantified expression of pigment, patterning and polycomb
genes in these hindwing eyespots and identified the most highly expressed genes and those varying in expression across eyespots. We also identified which genes are sensitive to environmental perturbation and associated with phenotypic plasticity. Our results suggest that although genes involved in epigenetic regulation are expressed in V. cardui wings, temperature and heparin treatments had no effect on their expression in modified eyespots, however expression of some patterning and pigment genes was significantly affected.

Expression Patterns of Pigment and Patterning Genes Across Hindwing Eyespots

 Studies on butterfly eyespots have focused primarily on examining spatial expression of patterning genes in larval wing discs and early pupal stages (Carroll et al., 1994; Brunetti et al., 2001; Reed et al., 2007; Oliver et al., 2012; Oliver et al, 2013). Brunetti et al. (2001) have shown that in V. cardui, sal, en and dll are expressed in spatial patterns in eyespot 4 that correspond with yellow and black pigment rings. We also observed expression of these genes in the other hindwing eyespots at 6 days post-pupation along with the Hox gene $u b x$. Expression of Hox genes has also been observed in the eyespots of other butterfly species. Ultrabithorax has been identified in Precis coenia, and both $u b x$ and antennapedia have been observed in B. anynana (Weatherbee et al., 1999; Saenko, et al. 2011; Tong, et al., 2014). These studies suggest that in addition to their role in controlling segmental identity along the anterior-posterior axis (Gellon \& McGinnis, 1998), Hox genes may have evolved a functional role in eyespot development.Across all eyespots, in control and treatment groups sal was the most highly expressed gene and also the only patterning gene that did not vary in expression across the three eyespots. In contrast, en, $d l l$ and $u b x$ exhibited significantly higher expression in
eyespot 1 relative to eyespots 2 and 3, which is significantly smaller in size. These results indicate that expression levels of these genes vary across the wing between large and small eyespots. A number of studies have implicated a role for these genes in regulating eyespot size. Recent transgenic experiments in B. anynana, have shown that both RNAi reduction of distal-less and overexpression of $u b x$ resulted in butterflies developing smaller eyespots (Monteiro et al., 2013; Tong et al., 2014). A similar trend was also observed in a homeotic $u b x$ mutant of P. coenia where increased expression of $d l l$ led to the development of larger eyespots (Weatherbee et al., 1999). Thus, $u b x$ and $d l l$ appear to have conserved roles in regulating eyespot size in different butterfly species, and may also perform a similar function in V. cardui.

Expression of two genes from the melanin synthesis pathway also varied across eyespots in control and treatment groups. Pale and tan were more highly expressed in the larger eyespot, which has significantly more black pigment than the two central eyespots. Interestingly, pale and $d d c$ were more highly expressed than tan and ebony in all eyespots, which is the same order of expression levels, observed for the entire wing (pale $>d d c>$ tan $>e b o n y$) (Chapter 2). These results are in contrast to expression levels observed for Heliconius butterflies, where tan and ebony exhibit higher expression levels than $d d c$ (Hines et al., 2012). Thus, expression levels of these biosynthetic enzymes appear to have diverged in different butterfly species.

Heparin Increases Expression of Patterning Genes but Has No Effect on Genes Promoting Melanization.

Heparin is an extracellular proteoglycan that is known to modify the activities of morphogens such as wingless, decapentalplegic and hedgehog (Yan \& Lin, 2009). It is
widely proposed that eyespot development is regulated by diffusion of a putative morphogen that interacts with transcription factors such as sal, dll and en to determine the differentiation of concentric colored rings (Brunetti et al., 2001; Mcmillan et al., 2002). Variation in expression of this putative morphogen could affect the concentration gradient required to set up the concentric rings and this may alter expression of these downstream transcription factors. Heparin severely disturbs eyespot development in V. cardui and also Junonia coenia (Serfas \& Carroll, 2005), resulting in an overall loss or bleaching of the eyespots; however, it is not clear whether the effects of heparin on morphogen diffusion results in an increase or decrease in expression of patterning genes. We could not examine effects of heparin on wingless because this morphogen is barely detectable at 6 days post pupation. However, we found that heparin injection within 12 hours of pupation results in increased expression of en and dll during the developmental period when pigments are deposited in the wing. Serfas and Carroll (2005) found that injection of heparin significantly reduced the spatial expression of $d l l$ in the hind wing eyespot of Junonia coenia at 2 days post-pupation, suggesting that heparin decreases transcription of key eyespot genes. Because we did not measure expression during early pupation, we do not know whether heparin influences gene expression dynamics during development. However, the results from our study and those of Serfas and Carroll (2005) suggest that heparin may have distinct effects on eyespot patterning genes at different stages of pupal development.

Although heparin significantly reduced melanin pigmentation in all eyespots, the treatment had no effect on decreasing expression of enzymes required for melanization (pale, $d d c$ and tan). We expected that ebony might exhibit increased expression because
it inhibits formation of melanin pigmentation (Wittkopp et a., 2002). Though not significant, we did observe a trend for higher expression of ebony in all eyespots, which may have contributed to the suppression of melanin pigment in these eyespots. These results suggest that the dramatic effects of heparin on pigmentation are not due to altered expression levels of enzymes that promote melaninization. Although heparin had no significant effect on transcript levels of these melanin genes, the treatment may have perturbed their spatial expression by modifying expression domains of patterning genes prior to melanization. Alternatively, heparin may have affected downstream cascades by binding to pigment precursors, or altering levels of precursors that are transported into scale cells.

Our results do show that during the period of pigmentation, heparin elevated expression of $d l l$ and en, which was also associated with increased expression of ebony. Whether patterning genes directly or indirectly influence expression of pigment genes remains unknown, although in Drosophila the Hox gene, $A b d-B$ has been shown to directly regulate expression of melanin pigment gene yellow (Jeong et al., 2006). Serfas and Carroll (2005) propose that heparin may alter the secretion of a cold shock hormone that may be present in the hemolymph, influencing activity of an intracellular regulator involved in pigmentation. Butterflies exposed to cold shock exhibit similar phenotypes to those injected with heparin (Nijhout, 1984). Thus, the effect of heparin on pigmentation may not be due to direct effects of patterning genes on pigment genes but is potentially mediated by a cold shock sensitive regulator. Regardless of the mechanism, these results suggest that altered expression of $d l l$ and en and potentially ebony are involved in the dramatic phenotypic changes in eyespot pigmentation in response to heparin.

Engrailed, Sal and Tan Are Thermosensitive Genes.

Similar to the heparin treatment, temperature shock had no detectable effect on the early acting enzymes (i.e., pale and $d d c$) in the melanin pathway. There was also no effect on ebony expression. However, tan expression was significantly increased in the two central eyespots. This observation was surprising because the two central eyespots show a reduction of melanin pigmentation and an increase in blue scales. The structural blue color is produced not by pigments but changes in scale microstructure that interfere with reflectance of incident light (Ghiradella, 1991). Structural colors however are backed by melanin pigmentation which intensifies the color by absorbing excess light (Ghiradella, 1991), which may explain upregulation of tan. Thus, melanin pigmentation may have increased in these eyespots but was simply masked by changes in scale structure leaving only the blue color visible. In addition to melanin pigmentation tan may also regulate scale microstructure or morphology. Many pigment genes including tan are pleiotropic and are known perform multiple functions during development (Wittkopp \& Beldade, 2009).

In addition to changes in tan expression, we also observed increased expression of sal and en, particularly in eyespot 2, which exhibits the largest increase in blue coloration. It has been proposed that patterning genes may also act pleiotropically to regulate two separate developmental pathways involving pigmentation and scale ultrastructure (Janssen et al. 2001). If patterning genes influence the development of scale microstructure, then temperature-induced upregulation of sal and en may explain the development of blue scales. The molecular basis of structural color determination is
unknown; therefore we can only speculate how a change from a pigmented to a structural color may have occurred in response to temperature shock.

Finally, we cannot rule out the possibility that temperature shock reduced expression of the yellow gene, which is also involved in melanin production (Wittkopp et al., 2002; Ferguson, et al. 2011). Changes in expression of this gene could have played an important role in the final color fate of these scales. In V. cardui, as in other butterflies, there are at least 10 paralogs of the yellow gene (Ferguson, et al. 2011); however, their individual function in melanin pigmentation remains unclear. Further work is required to determine the function of these different paralogs and examine whether any members of the yellow gene family are also thermosensitive.

Polycomb Repressive Complex Genes Are Expressed During Wing Development

To explore the potential role of epigenetic regulation of plasticity in wing color patterns, we examined whether genes within the PRC are expressed during wing color pattern development. If the complex were involved in regulating expression of eyespot genes it would likely have an effect during the early stages of eyespot development (i.e., during the late larval and first 2 days of pupation). It is not possible to dissect butterfly eyespots at these stages; instead, we examined whether the PRC1 and PRC2 were expressed in whole wing tissue during these larval and pupal stages. We show that all major genes that comprise PRC1 and PRC2 are expressed during wing development in a dynamic and stage-specific pattern. Expression peaks during early pupation when wing patterns are being established and declines significantly during late pupation in a similar manner to patterning genes (Chapter 2). Genes within the PRC2 exhibited relatively similar patterns of expression although overall expression of Suz 12 was significantly higher than Esc.

Within the PRC1, transcript levels among the genes were more variable; $P c$ was expressed at the lowest levels and Ring were expressed at the highest levels throughout pupation.

The PRC has been shown to vary in expression and composition across different tissues, cell types and developmental stages (Gunster et al., 2001). Our results suggest that although expression levels of the PRC vary during wing development the composition of the major components does not change. Surprisingly, we found that within the PRC2, Esc was transcribed at similar levels to Suz12 and Ez. Expression of Esc is thought to occur primarily during oogenesis and early embryogenesis compared to Ez and Suz 12 which are expressed throughout development (Tie, et al., 1998; Ng, et al., 2000). Our observations of Esc expression in V. cardui during pupation suggest that this gene may have evolved additional functions in wing development.

To examine whether changes in expression of patterning and pigment genes were also associated with altered expression of the PRC, we focused on two genes from each complex, $P c$ (PRC1) and $E z$ (PRC2). Both genes were expressed at consistent levels across eyespots with no effects of either treatment on their expression. Although we did not observe any treatment effects on expression for either gene at this developmental stage, we did find that expression of $P C$ was significantly higher than $E z$ in all three eyespots. Whether these differences in expression have functional consequences for regulating genes involved in pattern development would be an interesting avenue for future studies, as would investigation of expression of the PRC at different stages of eyespot development.

Conclusion

We identified a suite of genes that were sensitive to environmental perturbation during eyespot development. Engrailed was shown to be a highly sensitive gene as it was the only gene that was affected by both treatments. Interestingly, en expression is known to exhibit increased variability during later stages of eyespot pattern formation in larval wing discs compared to notch and sal (Reed et al., 2007). This variability in expression may contribute to its sensitivity in responding to environmental perturbation suggesting it may be involved in regulating eyespot plasticity in V. cardui. Genes involved in the polycomb complex were not sensitive to developmental perturbations; however, we only sampled at one time point during late stages of eyespot development. Thus, we cannot rule out the possibility that polycomb, patterning or pigment genes show significant responses at earlier or later stages during pupation. Because expression of these genes varies dramatically during wing development, a fine-scale time series analysis is essential to obtain a robust picture of gene expression dynamics. Our results do suggest that perturbations during early pupation can alter gene expression much later in development during pigmentation and these changes may have consequences for scale color fate.

CHAPTER V

MOLECULAR EVOLUTION OF AN EPIGENETIC SILENCER: POLYCOMB REPRESSIVE COMPLEX 2

Abstract

The polycomb repressive complex comprises a group of interacting proteins that play a crucial role in maintaining silencing of genes involved in organismal development. The evolution of this complex has received some attention in vertebrates and plants, which have experienced multiple duplication events during their evolution. Little is known about the evolutionary history of these proteins and their domains in invertebrate animals, other than a lack of gene duplication in these taxa. Here, we conducted a large-scale phylogenetic analysis of three core members of polycomb repressive complex 2 (Enhancer of zeste, Suz12 and Extra sex combs) to examine the degree of conservation and divergence across invertebrate animals. We found that the gene trees do not reconstruct the known phylogeny of these animals, nor do they share similar evolutionary histories. Nematodes display significant sequence divergence in all functional domains, which does not reconstruct a monophyletic Animalia. We also identify residues and domains that are highly conserved versus those displaying significant sequence divergence during the evolution of early metazoans. These findings demonstrate that polycomb genes are generally highly conserved across lineages that exhibit dramatically different modes of development.

Introduction

Animal development is coordinated by a complex interplay of genetic and epigenetic regulators that control spatial and temporal patterns of gene expression. During early development, maternal factors and segmentation genes initiate the developmental program that establishes which genes are switched on or off (Schroeder et al., 2004; Levine, 2008). These initiating factors are expressed along a concentration gradient and determine the appropriate expression domains of homeotic (Hox) genes that define regional identity along the anterior-posterior axis (Gellon \& McGinnis, 1998; Carroll et al. 2001). While maternal factors and segmentation genes set up the initial cascade of expression patterns, their transient nature means additional mechanisms are required to maintain cell identity throughout the lifetime of the organism (Ringrose \& Paro, 2007; Schwartz \& Pirrotta, 2007).

The cellular memory system that functions in heritable gene silencing is propagated by a group of proteins called the polycomb repressive complex (PRC) (Margueron \& Reinberg, 2011; Pirrotta, 2011). The PRC plays a critical role in determining cell identity via negative regulation of Hox clusters and many other developmental genes (Breiling, et al. 2007; Margueron \& Reinberg, 2011). Genome wide mapping in human embryonic fibroblasts has identified thousands of polycomb gene targets in addition to Hox genes including transcription factors, morphogens, receptors and signaling proteins that are important in developmental processes and cell fate decisions (Bracken et al. 2006, O’Meara \& Simon, 2012). In each cell only the specific genes required for a particular development pathway are active while alternative genetic programs are silenced by the PRC (Schwartz \& Pirrotta, 2007; Prezioso \& Orlando, 2011).

The two major PRC complexes that have been most intensively studied are PRC1 and PRC2. PRC1 is composed of 4 major core components, Polycomb (Pc), Sex combs extra (dRing1/Sce), Polyhomeotic (Ph), and Posterior sex combs (Psc) proteins (Kerppola, 2009). PRC was originally named based on mutation screens that identified polycomb gene misexpression as a source of homeotic transformations in Drosophila (Lewis, 1978; Jürgens, 1985; Struhl \& Akam, 1985). Mutations in the polycomb (Pc) gene in Drosophila transformed posterior legs into anterior legs that contain comb like bristles, and mutations in other polycomb group genes resulted in similar phenotypes due to altered expression of Hox genes. The polycomb gene contains a chromodomain that binds tri-methylated lysines on histone 3 , a mark that is propagated by PRC2. The canonical model proposes that PRC1 is recruited to H 3 K 27 me 3 following methylation activity of PRC2 and that interaction between both complexes is necessary for transcriptional repression (Schwartz \& Pirrotta, 2007; Kerppola, 2009; Klose et al. 2013).

In invertebrates, PRC2 is made up of three major core subunits. The first protein, enhancer of zester (EZ) is composed of four major domains, SANT1, SANT2, CXC and the catalytic SET domain. Extra sex combs (ESC) is composed primarily of WD40 repeats and suppressor of zeste (Suz12) is characterized by two domains, the zinc finger and VEFS box (Cao and Zhang 2004, Schuettenbruger et al 2007, Margueron \& Reinberg, 2011) (Figure 5.1). Despite the important role of PRC silencing in organism development and disease, the link between H3K27me3 and subsequent polycomb mediated chromatin compaction are poorly understood. This link may involve interference of transcriptional machinery or other chromatin remodelers such as SWI/SNF (Dellino et al., 2004; Wilson et al., 2010; Simon \& Kingston, 2013).

Figure 5.1 Major components of the PRC2 in invertebrates, showing the interaction between Ez and Suz12 and Ez and ESC, adapted from O'Meara \& Simon, (2012). Schematic (right) illustrates the major domains present in each polycomb gene and some of the interactions that have been identified by Ciferri et al. (2012). The N terminal region of ESC interacts with a region downstream from the SANT1 domain of EZ. The SANT1 domain also interacts with the VEFS domain, while the SET domain interacts with the zinc finger of Suz12 and the CXC domain binds the zinc finger of Suz12. SANT domains are known to couple histone tail-binding to enzymatic activity (Shaver et al. 2010). These interactions likely facilitate coupling of histone 3 to the SET domain, and mediate its methyltransferase activity through the interactions with VEFS domain and active chromatin marks (Ciferri et al. 2012).

Function of the PRC2

Initially, PRC2 was thought to function in the permanent repression of genes based on early developmental decisions. However, it has become apparent that the activity of the PRC2 is highly dynamic and dependent on particular developmental stages, cell cycle and interactions with activator complexes (Pirrotta, 2011). In addition to body patterning, PRC2 also plays an important role in a variety of other biological processes including differentiation, cell cycle regulation, apoptosis, cell identity maintenance, proliferation, pluripotency and stem cell self-renewal (Whitcomb et al. 2007, Pirrotta, 2011; Margueron \& Reinberg, 2011).

Recent work has begun to unravel the molecular architecture of the polycomb subunits and their interacting domains (Ciferri et al., 2012). Despite this work, details of
their interactions are still poorly understood due to a lack of structural information regarding the active site of EZ (O'Meara \& Simon, 2012). The catalytic SET domain of EZ has methyltransferase activity, which is critically dependent on its interaction with both the WD40 domains of ESC and the VEFS domain of SUZ12 (Cao \& Zhang, 2004; Han et al., 2007; O'Meara \& Simon, 2012; Ciferri et al., 2012). The assembly of PRC2 onto chromatin is initiated by ESC, by its recognition of the H3K27 tri-methylation mark through its WD40 domain (Hansen \& Helin, 2009). This interaction promotes the spread of H3K27 tri-methylation by the complex. The conserved WD domain folds into a seven bladed β-propeller that functions as a scaffold for protein interactions (Han et al., 2007).

The top portion of the β-propeller features an aromatic cage that can specifically bind repressive chromatin marks such as H3K27me3 and H3K9me3 (O'Meara \& Simon, 2012), while the bottom of the propeller (C terminus) binds an N-terminal motif on EZ (Jones et al., 1998; Han et al., 2007; Ciferri et al., 2012). Thus, ESC presents the H3 substrate to the catalytic site of EZ facilitating the propagation of H3K27me3 (Han et al. 2007). Methylation then occurs when AdoMet (the methyl donor) and lysine 27 are bound to the catalytic binding site of the SET domain. Following de-protonation of the lysine residue a methyl group is transferred from AdoMet to the lysine side chain (Hamamoto et al. 2015). Spreading of H3K27me3 will only proceed if neighboring nucleosomes are in contact with Suz12, which appears to be able to 'sense' the local chromatin landscape (Ciferri et al., 2012; Herz et al., 2013). The critical role of Suz12 has been demonstrated in knockdown experiments, resulting in cell growth defects and genome-wide decreases of H3K27 tri-methylation in addition to upregulation of certain Hox genes (Cao \& Zhang, 2004). In addition to stimulating the methyltransferase activity of PRC2, Suz12 can also
inhibit its activity via its interaction with H3K4me3 at the C-terminal of the VEFS domain (Schmitges et al. 2011). In this way, the PRC2 can 'sense' marks associated with active transcription and adjust its own methyltransferase activity. Similarly, repressed chromatin can stimulate PRC2 methyltransferase activity creating a positive feedback loop (Margueron \& Reinberg, 2011; Schmitges et al., 2011; O’Meara \& Simon, 2012). In addition to the VEFS domain, Suz12 also possess a C 2 H 2 zinc finger, the function of which is currently unknown (Schmitges et al. 2011). Thus, PRC subunits function as molecular cogs that facilitate fine-tuning of the PRC2 methyltransferase activity through their ability to detect the local chromatin landscape (O’Meara and Simon 2012).

Origin and Evolution of the PRC2

The PRC2 is an ancient epigenetic regulator that arose very early in the evolution of eukaryotes. All three major PRC2 subunits are present in unicellular algae (Shaver et al. 2010); in contrast, PRC1 is less conserved, indicating that it is more recently derived than PRC2 (Shaver et al., 2010; Derkacheva \& Hennig, 2013). It has been proposed that PRC2 may have originally evolved as a defense mechanism against genomic parasites, later evolving specialized functions for developmental regulation (Shaver et al. 2010, Dekacheva and Hennig 2013). PRC2 appears to be largely conserved across algae, fungi, insects and mammals, while it has been lost independently in some lineages (e.g. yeast) (Shaver et al., 2010; Margueron \& Reinberg, 2011). Its function has also diversified in some lineages; for example, the PRC2 is essential for embryo development in animals while in plants it is required for developmental transitions (embryo to seedling, vernalization, flowering) (Derkacheva and Hennig 2013).

Specialization in lineages may be driven in part by gene duplication and the
gain/loss of functional domains. Both PRC1 and PRC2 have experienced multiple duplication events in vertebrates (Whitcomb et al., 2007; Senthilkumar \& Mishra, 2009) and plants (Hennig \& Derkacheva, 2009). Furthermore, PRC1 and PRC2 paralogs have evolved specialized expression patterns and functional roles due to the evolution of novel domains (Gunster et al., 2001; Whitcomb et al., 2007). Vertebrate Hox genes also display duplication events; thus, Hox genes and PRC may have co-evolved, driving the evolution of specialization during vertebrate development (Whitcomb et al., 2007). In contrast, no subunit duplication within PRC has been observed in invertebrates with the exception of Psc in PRC1. These observations raise the question why polycomb gene expansion did not occur in invertebrate animals, which are also morphologically diverse. Diversification in invertebrates may have occurred within the polycomb genes themselves by changes in domain architecture or binding motifs, rather than through gene duplication.

Research Questions

Although the evolution of polycomb genes and their paralogs have been examined in vertebrates and plants, less is known about the evolution of polycomb genes and their domains in invertebrates. Here, we conducted a detailed examination of PRC2 evolution across invertebrates. Specifically, we examine 1) whether the evolutionary histories of EZ, Suz 12 and ESC are consistent or have diverged from the known phylogeny of animals 2) whether the polycomb genes share a similar or divergent evolutionary history and 3) whether it is possible to identify regions of conservation/divergence in sequence features of each major domain. Understanding the evolutionary history of these proteins will provide insights into PRC2 function in animal development and the role of these domains and residues in the evolution of early metazoans.

Methods

Sequences were retrieved as mRNA from both NCBI non-redundant database and UniprotKB and were recorded as complete or partial based on its database annotation. A variety of approaches were used to obtain sequences for the majority of invertebrate taxa for which data were available including BlastN, BlastP, tBlastN and position specific iterative PSI-Blast using default settings. Sequences were retrieved for the three major subunits of the PRC2: EZ, Suz12 and ESC. Sequences from Drosophila melanogaster were used as a seed for retrieval of invertebrate sequences for initial searches. Multiple taxa from these initial results were then used as seeds for subsequent searches to recover a broader range of taxa, particularly taxa at the base of the animal tree. Sequences for Mnemiopsis leidyi were obtained from the draft genome at the Mnemiopsis Genome Project portal (research.nhgri.nih.gov/Mnemiopsis, accessed January 2014) using the Cnidarian, Nematostella vectensis, as a seed. Sequences were verified using SMART (smart.embl-heidelberg.de)(Letunic et al., 2014) for identification of specific domains (e.g. VEFS box). Nematode sequences were obtained from WormBase (www.wormbase.org/), Uniprot and NCBI. For outgroups, sequences from the Fungi were collected from both NCBI and UniprotKB and for choanoflagellates which were obtained from the Broad Institute (www.broadinstitute.org). Accession numbers for all taxa included in the study are in listed in Appendix Table 5.1A (EZ), 5.1B (Suz12) and 5.1C (ESC).

All sequences were subject to quality control by checking several criteria. Sequences were translated in Expasy (web.expasy.org/translate/) using the compact setting to check for open reading frames and to verify the absence of internal stop codons.

Translated sequences were immediately examined in SMART using Pfam and outlier homologs (schnipsel database) to identify conserved domains. Domain position and amino acid length was recorded. The following domain sequences were also collected: SANT 1 and 2 (EZ), CXC (EZ), the Set domain (EZ), Zinc Finger (Suz12) and VEFS box (Suz12), and all WD40 repeats (ESC). Sequences without any recovered domains were discarded. Nucleotide sequences for phylogenetic analysis of the entire proteincoding region were translated to protein sequences in Seaview (Gouy et al. 2010). Taxa that was only available as protein sequences were incorporated into this final dataset after checking for the presence of appropriate domains in SMART.

Protein sequences were aligned in Seaview using MUSCLE. Ambiguous regions were removed using Gblocks (relaxed settings) (Talavera \& Castresana, 2007). Following removal of ambiguous regions, the final alignments were reduced to 261,264 and 392 amino acids for Suz12, ESC and EZ respectively. Phylogenetic trees were constructed using MrBayes version 3.1.2 with a fixed Blosum62 model (Henikoff \& Henikoff, 1992). Two simultaneous analyses of four Markov Chain Monte Carlo chains (one heated, three cold) were conducted; cold chains were sampled every 100 runs. The analysis was stopped when runs converged on results that had <0.01 split frequencies. Posterior probabilities were used to assess the strength of relationships found via these methods. All trees were edited in PAUP (Swofford, 1993). Fungi and choanoflagellates were designated as outgroups. Taxon sampling for each gene region is given in Appendix Table 5.1.

Mapping of Domains

The presence of domains in each gene (Ez, Suz12 and ESC) was recorded from SMART (Pfam and schnipsel). Pairwise comparisons were also conducted using NCBI BLAST using Drosophila melanogaster to obtain percent similarity scores for the entire protein and individual domains for all taxa. A combined approach using SMART, BLAST and multiple sequence alignments identified both conserved domains and divergent sequences. Domains that were highly conserved and considered homologous (e-value $<0.0001)$ across all taxa were mapped onto the known phylogeny of animals with the taxon sampling from phylogenetic analyses described above. Jalview was used for multiple sequence alignment and annotation of binding sites and percent similarity.

Gene Tree Comparisons

A two-sided Kashino-Hasegawa test was also conducted in PAUP to examine if gene trees topologies were significantly different from each other and from the known animal phylogeny. The animal phylogeny was reconstructed using classification information obtained from the Tree of Life website (tolweb.org/tree/) (Appendix Figure 5.2). Prior to the pairwise comparisons each gene and species tree was pruned in MacClade (Maddison \& Maddison, 2000) to ensure each dataset contained identical taxa.

Results and Discussion

Overall, the gene trees correctly reconstructed relationships within clades, particularly for insects. Relationships at deeper nodes were less well resolved despite strong branch support (Figures 5.3-5.5). The Suz12 gene tree was poorly resolved, with a large polytomy at the base of the main animal clade (Figure 5.5). This polytomy may be due to the a reduction in amino acid data used to construct the Suz12 gene tree; after removing
ambiguously aligned data the Suz12 alignment was reduced to 34% of the total gene length. Two thirds of Suz12 was highly variable; the remaining third was extremely conserved lacking phylogenetic signal to resolve the relationships of distantly related species. Similar to the EZ and ESC tree, Suz12 resolved within clade relationships between molluscs, plathelminthes, nematodes and insects with the exception of Lepidoptera (Danaus plexippus and Bombyx mori) and the pea aphid Acryrthopisiphon pisum.

The evolutionary history of the three core subunits of PRC2 has diverged significantly not only from the known phylogeny of animals but also from each other ($\mathrm{p}<0.0001$ for all KH pairwise comparisons between gene trees). The lack of similarity between gene trees is surprising, given the close interactions between the proteins in the PRC2 (Jones et al., 1998; Cao \& Zhang, 2004; Han et al., 2007; Ciferri et al., 2012). Although KH comparisons reveal that the different genes trees did not reconstruct the same relationships among taxa, it is still possible that coevolution has occurred at individual residues or functional domains. It may be that changes in binding sites for one protein may influence substitutions in the complimentary binding site in a different protein. Three-dimensional modeling would be one approach for further examination of fine-scale co-evolution between major protein domains within PRC2.

The observation that the individual gene trees are not consistent with the known animal phylogeny was less surprising. Gene trees often do not reconstruct species trees due to gene duplication, extinction or deep coalescences that occur if related species do not share paralogs (Nichols, 2001; Maddison, 2008). Although deep coalescence is often associated with closely related species it can also occur at deeper nodes in the phylogeny
leading to violation of monophyletic relationships (Degnan \& Rosenberg, 2009). One of the main drivers for the mismatch of gene trees with the animal tree appears to be the extremely divergent protein sequences found in the nematodes, as discussed below.

Nematodes Do Not Reconstruct the Monophyletic Relationship of Animals

We assumed that polycomb genes would be most divergent in outgroups and early lineages (i.e. sponges, comb jellies and placozoans) compared to those animals with more complex body plans. As expected, polycomb genes in fungi and choanoflagellates varied in amino acid composition in multiple domains compared to metazoans, reflecting distant common ancestry and developmental functional differences. Contrary to our expectation, we found that polycomb genes were remarkably conserved from comb jellies to arthropods despite significant differences in morphology and development.

The most surprising result involved the phylogenetic position of nematodes; all three genes placed nematodes as sister to fungi, exclusive of the remainder of animals (Figures 5.3-5.5). These results did not appear to be due to long-branch attraction in this lineage, based on a comparison of overall branch length in each gene tree. Shaver et al. (2010) and Luo et al., (2009) also report similar findings despite different taxon sampling, alignment software and phylogenetic approaches.

To further explore the unusual placement of Nematoda, we investigated whether its position in gene trees was due to domain loss or sequence divergence. Our results show significant sequence divergence in nematodes compared to other animals. Amino acid changes can result from conservative or non-conservative substitutions with the latter potentially altering the physiochemical properties of the residue and ultimately protein function (Betts \& Russell, 2007).

Figure 5.3 Phylogenetic tree of Enhancer of zeste. Open circles represent posterior probability $=1$, closed circles represent posterior probability >0.9. Taxa are color coded by major groups. Bottom right shows schematic of domains (SANT1, SANT2, CXC and SET). Unlabeled taxa possess all 4 domains. Labeled taxa show conserved domains whereas missing domains are highly divergent.

Figure 5.4 Phylogenetic tree of ESC. Open circles represent posterior probability = 1, closed circles represent posterior probability >0.9. Taxa are color coded by major groups (see methods). Bottom right shows schematic of domains (Seven WD40 repeats). Unlabeled taxa possess all 7 repeats. Labeled taxa show the conserved repeats and missing repeats are divergent.

Figure 5.5 Phylogenetic tree of Suz12. Open circles represent posterior probability = 1, closed circles represent posterior probability >0.9. Taxa are color coded by major groups (see methods). Bottom right shows schematic of domains (zinc finger and VEFS box). Unlabeled taxa possess both domains. Labeled taxa show the conserved VEFS box and a missing zinc finger that is highly divergent.

We compared multiple sequence alignments for each domain of EZ, Suz12 and ESC to examine whether nematodes displayed non-conservative substitutions at conserved sites. Overall, we found that many of the amino acid changes involved non-conservative substitutions, which we also observed in fungi and choanoflagellates. The substitutions that occurred in nematodes were generally not the same as those observed in fungi and choanoflagellates, indicating that these different lineages have not converged on substitutions with similar physiochemical properties.

Mutation studies in Drosophila melanogaster have identified residues with important functional roles. Remarkably, many of these studies have revealed that even a single non-conservative substitution can dramatically alter PRC2 assembly and enzymatic activity (Jones et al., 1998; Tie et al., 1998; Ketel et al., 2005; Han et al., 2007; Joshi et al., 2008; Rai et al., 2013). Some important functional motifs for histone methylation have been identified in the catalytic SET domain of EZ. These include FLF, a hydrophobic motif that contacts the lysine substrate, YCG a motif involved with the catalytic site, and GWG, a motif involved in methyl donor binding (Dillon et al. 2005; Joshi et al., 2008). Another highly conserved region is the pseudoknot, which brings together two highly conserved motifs (RFANHS and EELFFDY) to form an active site adjacent to the methyl donor (Ado/Met) binding region (Dillon et al., 2005). We found that these motifs are extremely well conserved even across distantly related taxa; however, nematodes and fungi have accumulated non-conservative mutations at these sites (Figure 5.6). The mollusk Aplysia californica also displayed a non-conservative mutation in the Ado/Met binding region; deletions at this site are found in echinoderms (Strongylocentrotus purpuratus) and in one species of nematode (Trichinella spiralis),
suggesting that these animals may have evolved different methyl donor binding sites. We also observed a similar pattern in the highly conserved CXC domain with nematodes and fungi displaying the most divergent sequences. Despite divergence in fungi and nematodes, cysteine residues, which help to stabilize PRC2, were largely conserved (Appendix Figure 5.7). The overall high conservation of these regions across phylogenetically distant taxa suggests that some functional constraints have been relaxed in certain taxa.

Figure 5.6. Multiple sequence alignment of the enhancer of zeste (EZ) SET domain. Functional binding sites (BS) and structural regions identified in the literature are annotated above the sequence. Taxa are organized by pairwise identity (ID) and e-value scores compared to Drosophila melanogaster. Red boxes indicate non-conservative amino acid changes/deletions in functional motifs. Full taxon alignment in Appendix Figure 5.8. Percentage identity to the consensus sequence is color coded from dark blue $(>80 \%)$ to light blue ($>40 \%$) and white ($<40 \%$).

SANT1 Domain is Poorly Conserved in Primitive Taxa and Nematodes.

Enhancer of zeste is also composed of two SANT domains, which were less conserved than the SET and CXC domains even between closely related taxa (Figure 5.9). Identification of SANT1 via SMART was not possible for many basal taxa, including fungi, comb jelly (Mnemiopsis leiydi), sponge (Amphemidon queenslandica), placozoan (Trichoplax adhaerens), nematodes and platyhelminths. Sequences from these species also had poor similarity scores in a Blast pairwise alignment with D. melanogaster (Appendix: Table 5.2). Multiple sequence alignment highlighted several conserved residues (Gln, Glu and Leu) in nematodes and platyhelminthes in the N-terminus, suggesting these lineages possess a divergent SANT1 compared with other animals. Sponge and comb jelly had only small fragments that were identified in the SANT1 region; it is unclear whether these basal taxa have lost this domain entirely or if it is so divergent that it is no longer recognizable or even functional. Trichoplax adhaerens does share many conserved residues with distantly related taxa (i.e. Drosophila melanogaster) despite having a poor Blast score, indicating that SANT1 may have an ancient origin. Fungi and choanoflagellates also share some residues with other taxa, although it is difficult to determine if this region is homologous to SANT1 or whether this domain is a metazoan duplication of SANT2 because of the low similarities to both regions. Compared with SANT1, the SANT2 domain appears to be more conserved across the phylogeny, though sequence conservation declines within fungi, nematodes and certain basal taxa compared to the remainder of species sampled.

Conservation		
Consensus		
	$10,20, \quad 30,40$	ID
Drosophila_melanogaster	TQCVWTGADQALYRVLHKVYLKNYCAIAHNML-TKTCRQVYEFAQKEDAE	100\%
Apis_mellifera	SEPSWTGSEQSLFRALHKAFPGNPCALAQ IM L-t	58\%
Branchiostoma_floridae	LPDGWNGADASLFRVLRAVYFNNYCSIAQLIG-TKSCKQVYEFAQWEGST	62\%
Capitella_teleta	TTKOWTGAEESMFRVLHEVFYNNYCTIAKIL-KTKSCOQVYEFSKTEASH	55\%
Aplysia_californica	TTDEWTGAEESLVRVLTGVYRSNYCSIAKLI-RTKSCKQVYDFAVKEEAH	59\%
Strongylocentrotus_purpuratus	- SDEWNGRESSLFRVLRNVYYNNYCAMARLLR-TKTC IQ VAEFSAKEGEA	55\%
Ciona intestinalis	REVEWDGAESTLFRVLHETLLTNFCAISKMI-KTKNCOQVFAFALREASN	50\%
Nematostella_vectensis	QQSEWSGAEASLLRVLRTVYFNNYCTIAKLI-EtKTCKEVYAFGESEES-	50\%
Trichoplax_adhaerens	K SDSWTGAEISLFRVLQP IYVNDYCTIANLIQ-TKNCKQQ LRVLLIEVRE	50\%
Mnemiopsis leidyi	----WTCSEESLFNALSPVFOQNACSLATVL-NSKTCRQGTSLS-...--	38\%
Ascaris_suum	DADSWTIGQESMFTVLKRNYKSDFCKIAACLAPPKTCRQVFAYSLRTGP-	33\%
Monosiga_brevicollis	K SQ AWTQRDM SLFEVGQSIYGYDYCELSRYIGGGKTCAQVF--------	36\%
Loa_loa	ED INWTAQQESMFIALRRTYKNDFCKLAEVLAPSKSCRELYAYSFRTAP-	24\%
Schistosoma_mansoni	RDCDWNPVEISLYQVLAPMYYHLYCTLSNLI-GTKKCSEVLSYASAQNHS	29\%
Trichinella_spiralis		33\%
Clonorchis_sinensis	SQ SVWTPVEISLIQVLAPVFYPQYCTLARLL-GTKTCQDVLSRSTSGLTN	31\%
Caenorhabditis_remanei	ALAEMAIPDGGM IA TM SDtF---CDFAHKNSKIRTCRDAYGFAEYITER	29\%
Caenorhabditis_briggsae	----TKROFSDFLNMDKGVVKNFCQTAKLF-PNVSCSSWFKSLLDSASY	25\%
Cryptococcus_neoformans	LEKEWSESDKQQLIDILSAYGSRLCGLKDVF--NRTCAEVASILQDRSRG	60\%
Conservation		

Figure 5.9 Multiple sequence alignment of the enhancer of zeste (EZ) SANT domains (SANT1 top two panels, SANT2 bottom panel) for representatives across major animal groups. Taxa are organized by pairwise identity (ID) and e-value scores compared to Drosophila melanogaster. Nematodes are placed within the grey box. Full taxon alignment in Appendix Figures 5.10 and 5.11. Percentage identity to the consensus sequence is color coded from dark blue ($>80 \%$) to light blue ($>40 \%$) and white ($<40 \%$).

Low Conservation of the Drosophila EZ-ESC Binding Region.

In addition to the four major domains described above, EZ possesses an N-terminal motif of 33 amino acids, known as EBD. This motif has been identified in Drosophila as an important binding region for ESC (Jones et al., 1998; Han et al., 2007). Similar to Jones et al. (1998) we found that this motif was poorly conserved across taxa (Appendix Figure 5.12). Despite the low similarity of this region, Jones et al. (1998) demonstrated that asparagine at position 40 was crucial for ESC binding and that this particular residue was highly conserved across fly, mouse and human. We also found high conservation of this residue with the exception of Hydra vulgaris, nematodes and fungi. Four residues, W-1, N-4 in the N-terminus and K-44, W-47 in the C-terminus were highly conserved within insects and some non-insect arthropods (Appendix Figure 5.12). Outside of arthropods, there is low conservation suggesting that this ESC-EZ binding region has undergone significant evolutionary changes and may have evolved species or lineage-specific motifs for binding ESC if residues other than asparagine are required.

Identification of Suz12 Homologs in Nematodes

Suz12 is the least studied protein of the three core subunits. Though the functional role of Suz12 is still not fully understood, the VEFS box is known to be an important binding site for EZ (Yamamoto et al. 2004). Using SMART we were able to identify the VEFS box in all taxa with Suz12 homologs, which is supported by significant BLAST scores in pairwise alignments with D. melanogaster (E-value $>4 \mathrm{E}-04$). As in other studies, we found no evidence of Suz12 homologs in the Caenorhabiditus lineage (Ketel et al., 2005). Homologs were identified for other nematode species, indicating that this
polycomb gene has not been entirely lost in nematodes as previously assumed (Birve et al., 2001) (Figure 5.13).

Although Suz12 homologs were identified in nematodes, we found that the DSE-E-D motif was highly divergent. Mutations in this motif, particularly the first aspartic acid (D), have been shown to reduce histone methyltransferase activity by at least 10 -fold in Drosophila (Ketel et al., 2005). Other highly conserved residues downstream from DSE-E-D motif have been shown to play important roles in catalytic efficiency (EK) and EZ-Suz12 assembly (W, N) (Rai et al., 2013) and these also displayed non-conservative mutations in fungi, choanoflagellates and nematodes. It is unknown whether these nonconservative mutations have similar negative consequences to the alanine substitutions used in the mutagenic experiments (Simon et al. 1995; Ng et al. 2000).

$$
\text { Consensus LE E EDAEYD }+ \text { QRPYITGHNRLY }
$$

Figure 5.13 Multiple sequence alignment of the Suz12 VEFS box. Functional motifs and binding sites (BS) are annotated above the sequence. Red boxes indicate nonconservative residues in known functional regions. Taxa are organized by pairwise identity (ID) and e-value scores compared to Drosophila melanogaster. Nematodes, sponge, fungi and choanoflagellates are placed within the grey box. Full taxon alignment in Appendix Figure 5.14. Percentage identity to the consensus sequence is color coded from dark blue ($>80 \%$) to light blue ($>40 \%$) and white $(<40 \%)$.

The zinc finger is another region that has been shown to be critical for EZ-Suz12 binding and PRC2 assembly (Birve et al., 2001; Rai et al., 2013). The $\mathrm{Cis}_{2}-\mathrm{His}_{2}$ zinc finger was less conserved than the VEFS box and was not recognized by SMART for nematodes and some platyhelminthes. These sequences also produced low BLAST scores (Appendix Table 5.2) when compared to Drosophila melanogaster. No record of this domain was found for either T. adhaerens or Drosophila simulans, which possessed fragmented residues in this region suggesting loss of this domain in these taxa. In contrast, this domain was identified in fungi by SMART; however, Blast scores of this domain were very poor (Appendix Table 5.2B). Thus, results from SMART and Blast are not always universally successful in identifying homologs.

In some fungi, choanoflagellates and nematodes the highly conserved terminal H and $\mathrm{C}-\mathrm{H}$ residues were replaced by non-conservative substitutions (Appendix Figure 5.15). Recent work has shown that while the zinc finger is dispensable for PRC2 assembly and enzymatic activity, it is critical for Suz12 binding at chromatin targets (Rai et al., 2013). These results suggest that the non-conservative mutations observed in fungi and nematodes may have evolved as alternative binding sites or that other residues in the protein perform this function.

Evolutionary Conservation and Divergence in $\boldsymbol{\beta}$-blades and Loops of ESC

In order to assemble onto chromatin targets, Suz12 and EZ must bind in a complex with ESC. The ESC protein is largely composed of WD40 repeats which adopt a circular β blade propeller structure and function as a scaffold for protein-protein interactions. External loops also protrude from the top and bottom surface of this structure, serving as additional binding sites for protein interactions (Ng , et al. 1997; Ng et al. 2000). We
found that most taxa possessed all seven repeats; all of which are required for ESC function due to the structural constraints of the β-propeller (Simon et al. 1995; Tie et al. 1998). Taxa missing repeats were most likely due to the presence of partial sequences in the database. Interestingly, our data suggest that functional importance may vary across repeats. In pairwise comparisons with D. melanogaster, we found very high conservation for WD40-5 (75\%) followed by WD40-4 (67\%) and WD40-3 (63\%) with a similarity of $53-59 \%$ for the remaining repeats. Some of these repeats, particularly WD40-1, 2, 6 and 7, were difficult to identify in fungi and nematodes due to high sequence divergence; these could only identified in SMART using the outlier homologs database or in sequence alignments with related taxa.

We annotated the multiple alignments with the β-strands and exposed loops to examine the degree of conservation in these protein-binding regions. Each repeat folds into four stacked β-strands (a, b, d and d). On top of the β-propeller structure are two exposed loops per repeat that connect the specific β-strands, which include the $d-a$ and b c loop and on the bottom surface, the $\mathrm{a}-\mathrm{b}$ and $\mathrm{c}-\mathrm{d}$ loop. The external loops and the $\mathrm{d} \beta$ strand are the most exposed parts of ESC serving as potentially important binding sites for protein interactions and therefore should be subject to strong evolutionary constraints (Ng et al., 1997; Jones et al., 1998). Overall, we found that the a-b loop exhibited very poor conservation compared to the d-a loop and the b-c loop, which were more highly conserved across taxa particularly in WD3, 4 and 5 (Figure 5.16). Furthermore, a region of the WD4 d-a loop (RDE-216 and M-263), important for efficient binding of EZ, was also divergent in nematodes, plathelminthes and the outgroups (Tie et al., 1998; Ng et al., 2000). These residues were highly conserved across all other taxa.

As for the other polycomb genes, we found that residues shown to be important for ESC function in D. melanogaster (Jones et al., 1998; Ng et al., 2000, 1997) were replaced by substitutions that alter amino acid properties in fungi, choanoflagellates and nematodes. Additionally the results suggest that the $\mathrm{d}-\mathrm{a}$ and $\mathrm{b}-\mathrm{c}$ loops are under strong purifying selection in particular repeats, while in others, selection appears to be relaxed. Thus, WD3, 4 and 5 may be the primary binding sites for assembly of PRC2, while loops in other repeats may be involved in lineage specific protein interactions.

Why Are Polycomb Genes So Different in Nematodes Compared to All Other Animals?

The results of our study raise the question as to why polycomb genes have been able to tolerate so many non-conservative substitutions in nematodes compared to all other animals. The PRC is an important regulator of the Hox gene cluster, which has been dramatically reduced, dispersed, and reorganized throughout the genome in nematodes (Aboobacker \& Blaxter, 2003). Divergence in Hox gene sequence evolution may provide some explanation for the unusual placement of nematodes in the polycomb phylogeny, indicating potential co-evolutionary changes between the Hox and polycomb group genes. Intriguingly, although nematodes appear to have PRC2 homologs, a functional PRC1 has not been identified, suggesting that nematodes have evolved alternative strategies for gene repression, possibly reflected in the divergent sequences observed in this study.

Figure 5.16. WD-40 repeats of the ESC protein for select taxa across major animal groups. External loops are annotated above the sequence alignment and outlined as red boxes. Each β-blade is indicated as arrows below. Non-conservative substitutions in functional motifs in WD40 are shown in small red boxes. All taxa are organized by pairwise identity (ID) and e-value to Drosophila melanogaster. Full taxon alignments in Appendix Figure 5.17. Percentage identity to the consensus sequence is color coded from dark blue ($>80 \%$) to light blue ($>40 \%$) and white ($<40 \%$).

WD40-1
Drosophila_melanogaster Saccooglossus_kowalevskii Caphnia_pulex
Capitella tel
Capitella_teleta
Apis_mellififera
trongylocentrotus_purpuratus ydra_vulgaris
Loa loa ranchiostoma_fl
Lottia_gigantea lonorchis_sinensi chistosoma_mansoni Caenorhabditis_elegan eloidogyne_hapla ncylostoma_ceylanicum cryptococcus neoforman Salpingoeca_punctatus

WD40-3
rosophila_melanogaster accoglossus_kowalevski
Daphnia_pulex
Apis_mellifera
Capitella_teleta
Schistosoma_mansoni
clonorchis_sinensis
iona_intestinali
ottia_gigantea
Hydra_vulgaris
Strongylocentrotus_purpuratu
Unemiopsis_leidyi
Branchiostoma_floridae
ncylostoma_ceylan
eloidogyne_hapla
salpingoeca_punctatus
oa_loa
Caenorhabditis_japonica
Caenorhabditis elegans

Figure 5.16 cont. WD- 40 repeats of the ESC protein for select taxa across major animal groups. External loops are annotated above the sequence alignment and outlined as red boxes. Each β-blade is indicated as arrows below. Non-conservative substitutions in functional motifs in WD40 are shown in small red boxes. All taxa are organized by pairwise identity (ID) and e-value to Drosophila melanogaster. Full taxon alignments in Appendix Figure 5.9. Percentage identity to the consensus sequence is color coded from dark blue ($>80 \%$) to light blue ($>40 \%$) and white ($<40 \%$).

The lack of a Suz12 homolog in Caenorhabiditis also supports this view. Within Nematoda, Hox sequence evolution has been more rapid in Caenorhabiditis (Aboobaker \& Blaxter, 2003); we also found a similar trend with the greatest sequence divergence in polycomb genes for this lineage. An unusual rapid rate of sequence evolution may be a hallmark of the Nematoda, as evidenced by the more rapid evolution of orthologs in C. elegans versus other metazoans (Mushegian et al. 1998; Coghlan \& Wolfe, 2002). Nematodes have very short generation times, increasing the opportunity for accumulation of chromosomal rearrangements and mutations over evolutionary time. This rapid rate of protein evolution may be in response to selection for reduced genome size, increased development rates and the staggering range of specialized lifestyles exhibited by nematodes (Kortschak et al. 2003). Based on these findings we propose that the evolutionary tinkering of polycomb genes in nematodes may have been a consequence of relaxed selection due to the dispersion, rapid evolution and loss of Hox genes and/or selection of novel binding sites for alternative interacting partners/cofactors.

Conclusions

The evolution of the polycomb repressive complex in invertebrate animals has remained largely conserved even across distantly related taxa from sponges and comb jellies to early deuterostomes. Despite overall strong conservation in residues of known functional importance, certain domains, for example the Suz12 zinc finger, the SANT1 domain from Enhancer of zeste and some of the ESC WD40 repeats, appear to be subject to relaxed selection. These regions were more divergent and sometimes difficult to identify with current databases. These divergent sequences were mostly found in primitive taxa but surprisingly also in nematodes, which may reflect differences in Hox gene regulation.

Strong conservation is likely due to structural constraints and important binding sites between the different polycomb subunits, while divergent regions may have evolved for lineage-specific protein interactions. This work provides insight into the evolution of PRC2 and reveals that the subunits of this complex have distinct evolutionary histories. The β-propeller structure of Extra sex combs emerges as the most conserved element, while Enhancer of zeste SANT1 domain is the most divergent.

CHAPTER VI

EPILOGUE

My journey into the field of Evo-Devo was initially inspired by the work of Dr. Sean B. Carroll; my introduction to his work was through his Howard Hughes Medical Institute lectures on science and his book, From DNA to Diversity: Molecular Genetics and the Evolution of Animal Design. Together, these resources introduced me to the fascinating insight that, despite the extraordinary diversity of morphological forms, animal bodies are built from a common genetic toolkit. Furthermore, diversity can arise from differential gene expression of conserved genes and co-option of regulatory networks. This research led me to the exciting work on the evolution and development of butterfly wing color patterning by researchers such as Antonia Montiero, Paul Brakefield, Patricia Beldade, Fred Nijhout, Robert Reed, and Chris Jiggins. The work of these authors has played a major influential role in the development of my research and also my enthusiasm for this field.

Studying Evo-Devo raised my awareness of the current debate regarding the potential limitations of the Modern Synthesis. Many biologists including Sean Carroll, Massimo Pigliucci, Carl Schlicting and Mary West-Eberhard are calling for an extension of the Modern Synthesis to incorporate gene regulatory networks, phenotypic plasticity and epigenetics in generating heritable, novel phenotypes. Below, I highlight some of the
main conclusions from this dissertation that focuses on each of these areas. In doing so, I identify possible future avenues of research that would greatly improve understanding of butterfly wing pattern development.

1. Drosophila Wing Gene Regulatory Network is Conserved in V. cardui and Peaks in Expression During Late Larval and Early Pupal Stages.

Prior to this dissertation, there was little information available on gene expression patterns in the developing wings of V. cardui. There have also been no studies examining the temporal dynamics of the wing gene regulatory network for any butterfly species and the correspondence of these networks to temporal dynamics of the downstream pigment genes. Many genes have been highly conserved across major animal phyla and are redeployed in novel developmental contexts to produce a diversity of animal forms. The research conducted in Chapter 2 reveals that the regulatory genes characterized in the network for wing development in Drosophila are also expressed in the developing butterfly wing. These results indicate high conservation of this regulatory network between insects separated by ~ 200 million years, despite significant differences in wing morphology. In V. cardui, and probably other butterflies, expression of genes in this regulatory network expression peaks as wing color patterns are being established. Expression then declines dramatically during late pupal development, as melanin gene expression is at peak levels. In contrast, the peak in expression of ommochrome genes overlaps with expression of the patterning genes.

Taken together, these results demonstrate that patterns of expression appear to be highly coordinated during wing development. With the exception of the Hox cofactor extradenticle, expression of all genes declined to low levels as pupal development progressed. One important observation was that genes involved in melanin synthesis have
peak expression during late pupation in conjunction with increased expression of extradenticle. Whether this Hox cofactor has been co-opted to perform a novel developmental function in wing color patterning or whether it has simply retained its role in notum development (as observed in Drosophila) is completely unknown. If patterning genes directly regulate melanin pigment genes, then either low expression levels are sufficient or regulation is via an indirect and as yet unidentified pathway. Immunohistochemistry work examining spatial expression patterns of Extradenticle would help elucidate its function in butterfly wings.

2. Eyespots Reveal Complex Patterns of Trait Integration and Modularity That Are Disrupted Following Plastic Responses to Environmental Perturbation.

The development of butterfly wing colors patterns seems to involve gene regulatory networks that have been co-opted in specific regions of the wing. Environmental stimuli also alter the expression of these networks. Chapters 3 and 4 demonstrate that hindwing eyespots exhibit phenotypic plasticity in response to temperature shock and pupal injection of heparin sulfate. Chapter 3 revealed a number of interesting observations regarding eyespot plasticity. First, plasticity varies significantly across different eyespots, with the centrally located eyespots exhibiting the highest levels of plasticity for both treatments. These results strongly imply that some intrinsic property of these eyespots, perhaps morphogen or hormone levels along the central wing axis enhances their susceptibility to environmental perturbation. Whether this sensitivity is due to variation in morphogen gradients during early pupation remains an intriguing question for future investigations.

Not only does plasticity vary across different eyespots, but also between the colored rings that comprise an individual eyespot. The outermost ring exhibits the lowest degree
of plasticity compared to the inner pigment rings, suggesting this ring is highly buffered to environmental perturbations. These results reveal that patterns of integration and modularity are highly complex, with integration of some traits (size) and modularity of others (pigment). I also found that these associations can be disrupted by environmental perturbations and may potentially alter the outcome of selection.

Finally, the results of this study raised queries regarding the effectiveness of concentration gradient models to explain the formation of the same pigment in different rings. Both the focal ring and the outer ring develop black pigment so it is not clear how a declining morphogen gradient from the interior to the outer ring can trigger the expression of the same pigment. These results call for a revised model to explain how rings located at different places within an eyespot display the same pigment.

3. Environmental Perturbation Alters Expression of Patterning and Pigment Genes While Polycomb Genes Remain Unaffected.

Although phenotypic plasticity is commonly observed in butterflies, few studies have tested whether environmental factors alter expression of genes involved in pigment synthesis or epigenetic modifications. Chapter 4 presents evidence that the epigenetic silencer, the polycomb repressive complex 1 and 2 , is expressed during butterfly wing development and shows similar developmental trends and expression levels to those observed for the wing gene regulatory network.

Although it is thought that ESC is expressed primarily during embryogenesis, I observed similar expression of levels for ESC with EZ and SUZ12. This observation indicates that ESC may have additional functions during post-embyronic development in butterflies. Upregulation of this complex during the late larval and early pupal stages suggests these genes may play a role in the establishment of wing color patterns. Any role
that the PRC2 may play in eyespot development must occur prior to six days postpupation; I did not observe differential expression of PRC2 genes in modified eyespots. Eyespot plasticity was associated with altered expression of Engrailed, Spalt and Distalless, highlighting these as environmentally sensitive patterning genes. Only a single pigment gene (tan) was affected despite significant changes in eyespot pigmentation.

This is the first study to quantify expression patterns of pigment and patterning genes in butterfly eyespots. A handful of genes have previously been identified in butterfly eyespots; this study reveals novel genes expressed in this pattern element. Finally, because this study represents a single snapshot of gene expression, more studies are needed to explore the temporal dynamics of these genes during eyespot development. In particular future work should examine whether epigenetic mechanisms (DNA methylation and histone modifications) are involved in the regulation of patterning and pigment genes in butterflies.

4. The Evolution of Polycomb Repressive Complex 2 Shows Conservation Across Diverse Metazoans and Significant Divergence in Nematodes.

The PRC2 is a well-known epigenetic silencer, that regulates Hox genes and other developmental genes that influence animal morphogenesis. Most studies of the PRC focus on vertebrates and the PRC1, because it has experienced many duplication events. Chapter 5 broadens the focus from butterflies to a comprehensive phylogenetic analysis. This work examines the evolutionary history of the PRC2, an epigenetic silencer, across most invertebrates, starting from the earliest extant animals.

The phylogenetic analysis revealed that the evolutionary history of the major components of the PRC2 has diverged significantly from the known phylogeny of animals. Gene trees of each component of PRC2 also differ from each other, despite their
protein interactions. These results suggest that the three major core subunits of the PRC2 have experienced different selection pressures relative to each other and for neutrally evolving genes used for constructing animal phylogenies. These results do not exclude the possibility of coevolution between individual residues, which represent important binding sites.

An important observation from this study was that, despite the relatively high conservation of the core subunits across morphologically diverse taxa, PRC2 appears to have diverged significantly in the Nematoda. This result is particularly interesting considering that Hox genes also exhibit significant divergence in this lineage. It is possible that the divergence of PRC2 may have been influenced by changes in Hox organization in the nematode genome. Perhaps, in nematodes, PRC2 is more redundant due to the evolution of other regulatory mechanisms. These observations are intriguing but purely correlational. Future studies exploring PRC regulation of Hox genes in nematodes may shed light into the significant divergence that has occurred in these two important and conserved complexes that regulate animal morphogenesis.

Animals have evolved all manner of shapes, sizes, colors and patterns. Unraveling how such diversity arises from a common developmental toolkit has been an important and exciting challenge in evolutionary biology. Moving forward will require identifying the role of gene and network co-option, phenotypic plasticity and epigenetics in driving the evolution of morphological novelties. Thus, far, research on butterfly wing patterns has focused on the genetic aspects of pattern development including the genetic underpinnings of phenotypic plasticity. Here, I have attempted to broaden the scope of understanding wing pattern plasticity by incorporating the potential role of epigenetics. I
hope future investigations will also embrace the possibility that non-genetic mechanisms also play an important role in generating novel wing patterns. Finally, my work on the evolution of polycomb repressive complex 2 demonstrates high conservation of this epigenetic silencer across morphologically diverse animals. This analysis supports the widely observed conservation of genes across the animal phylogeny emphasizing that gene regulation rather than diversity in coding genes underlies the diversification of metazoans. My future work will continue to examine underlying mechanisms for the extraordinary diversity of animals beyond what genetic diversity can explain.

APPENDICES

Appendix Table 2.1

NCBI Blastn and Blastp results for Vanessa cardui transcripts following transcriptome assembly with CLC Genomics Workbench and multiblast (Blastx) against the Drosophila peptide database (FlyBase). Length of V. cardui transcript provided in amino acids (aa) and basepairs (bp). Status of the V. cardui coding sequence is provided as partial or complete. Complete is the length of the coding sequence.

Gene	Length	Coding sequence	Blastp best hit sp./Accession no.	Query cover	Identity	E-value
Ultrabithorax	253 aa	Complete	Junonia coenia	100\%	100\%	0.0
			Q87940.1			
Ultrabithorax	762 bp	Complete	Junonia coenia	100\%	91\%	0.0
			AY074760.1			
Wingless	392 aa	Complete	Helicoverpa armigera	100\%	93\%	0.0
			AHN95659.1			
Wingless	1179 bp	Complete	Helicoverpa armigera	100\%	82\%	0.0
			KJ206240.1			
Decapentaplegic	379 aa	Complete	Danaus plexippus	100\%	90\%	0.0
			EHJ78539.1			
Decapentaplegic	1110 bp	Complete	Bombyx mori	100\%	72\%	7e-159
			NH_001145329.1			
Spalt	1058 aa	Partial	Danaus plexippus	100\%	76\%	0.0
			EHJ67088.1			
Spalt	4558 bp	Partial	Bombyx mori	64\%	78\%	0.0
			XM_004931039.1			

Appendix Table 2.1 cont.

Gene	Length	Coding sequence	Blastp best hit sp./Accession no.	Query cover	Identity	E-value
Cut	1200 aa	Partial	Danaus plexippus	78\%	91\%	0.0
			EHJ1235.1			
Cut	4333 bp	Partial	Bombyx mori	77\%	75\%	0.0
			XM_004922717.1			
Invected	141aa	Complete	Junonia coenia	100\%	97\%	1e-93
			AAB46364.1			
Invected	426 bp	Complete	Precis coenia	100\%	84\%	$3 \mathrm{e}-126$
			L41929.1			
Vestigial	695 aa	Partial	Bombyx mori	46\%	68\%	5e-108
			XP_0049252918.1			
Vestigial	2134 bp	Partial	Bombyx mori	37\%	80\%	2e-169
			XM_004925861.1			
Distal-less	357 aa	Complete	Bicyclus anynana	100\%	97\%	0.0
			AAL69325.1			
Distal-less	1074 bp	Complete	Junonia coenia	98\%	86\%	0.0
			AF404110.1			
Engrailed	362 aa	Complete	Bombyx mori	100\%	76\%	0.0
			XP_004933319.1			
Engrailed	1089 bp	Complete	Bombyx mori	100\%	73\%	0.0
			XM_004933262.1			

Appendix Table 2.1 cont.

Gene	Length	Coding sequence	Blastp best hit sp./Accession no.	Query cover	Identity	E-value
Extradenticle	367 aa	Complete	Bombyx mori	100\%	96\%	0.0
			XP_004928672.1			
Extradenticle	1104bp	Complete	Bombyx mori	93\%	82\%	0.0
			XM_004928615.1			
Hedgehog	382 aa	Complete	Bombyx mori	100\%	84\%	0.0
			XP_004925213.1			
Hedgehog	1149 bp	Complete	Bombyx mori	99\%	75\%	0.0
			XM_004925156.1			
Scalloped TEF-1	317 aa	Complete	Danaus plexippus	100\%	86\%	0.0
			EHJ63836.1			
Scalloped TEF-1	954 bp	Complete	Bombyx mori	100\%	83\%	0.0
			AK38837.1			
Aschaete-scute	106 aa	Partial	Junonia coenia	100\%	96\%	1e-65
			AAC24714.1			
Aschaete-scute	319 bp	Partial	Junonia coenia	100\%	87\%	$4 \mathrm{e}-105$
			AF071498.1			
Serrate	875 aa	Partial	Danaus plexippus	99\%	85\%	0.0
			EHJ63211.1			
Serrate	2625 bp	Partial	Bombyx mori	65\%	81\%	0.0
			XM_004925686.1			

Appendix Table 2.1 cont.

Appendix Table 2.1 cont.

Gene	Length	Coding sequence	Blastp best hit sp./Accession no.	Query cover	Identity	E-value
Ddc	404 aa	Partial	Danaus plexippus	100\%	92\%	0.0
			EHJ63554.1			
Ddc	1212 bp	Partial	Vanessa carye	92\%	92\%	0.0
			JQ786196.1			
Yellow	494 aa	Complete	Heliconius erato	99\%	80\%	0.0
			ADX87341.1			
Yellow	1485 bp	Complete	Heliconius melpomene	86\%	77\%	0.0
			GU063822.1			
Yellow-b	454 aa	Complete	Heliconius melpomene	99\%	85\%	0.0
			ADX87345.1			
Yellow-b	1365 bp	Complete	Heliconius melpomene	94\%	76\%	0.0
			GU063825.1			
Yellow-	408 aa	Complete	Heliconius erato	99\%	88\%	0.0
			ADX87347.1			
Yellow-c	1227 bp	Complete	Heliconius erato	100\%	78\%	0.0
			GU063827.1			
Yellow-d	896 aa	Complete	Danaus plexippus	100\%	79\%	0.0
			EHJ69631.1			
Yellow-d	1341 bp	Complete	Heliconius melpomene	92\%	72\%	0.0
			GU063831.1			

Appendix Table 2.1 cont.

	Gene	Length	Coding sequence	Blastp best hit sp./Accession no.	Query cover	Identity	E-value
	Yellow-e	268 aa	Partial	Danaus plexippus	84\%	90\%	$7 \mathrm{e}-149$
				EHJ78055.1			
	Yellow-e	806 bp	Partial	Heliconius numata	78\%	78\%	$2 \mathrm{e}-144$
				GU063835.1			
	Yellow-f3	467 aa	Complete	Papilio xuthus	95\%	68\%	0.0
				NBAM18870.1			
	Yellow-f3	1401 bp	Complete	Papilio xuthus	73\%	70\%	$3 \mathrm{e}-126$
				AK402248.1			
$\stackrel{\rightharpoonup}{ \pm}$	Vermillion	410 aa	Complete	Danaus plexippus	100\%	87\%	0.0
				EHJ70119.1			
	Vermillion	1233 bp	Complete	Vanessa cardui	54\%	99\%	0.0
				partial DQ005628.1			
	Cinnabar	1347 bp	Complete	Bombyx mandarina	93\%	73\%	0.0
				EF210332.1			
	Cinnabar	448 aa	Complete	Bombyx mori	95\%	78\%	0.0
				ABM68366.1			
	$\boldsymbol{K} \boldsymbol{f}$	297 aa	Complete	Heliconius melpomene	100\%	90\%	0.0
				ACS66705.1			
	$\boldsymbol{K} \boldsymbol{f}$	894 bp	Complete	Heliconius melpomene	100\%	77\%	0.0
				GQ183897.1			

Appendix Table 2.1 cont.

Gene	Length	Coding sequence	Blastp best hit sp./Accession no.	Query cover	Identity	E-value
Scarlet	671 aa	Complete	Danaus plexippus	100\%	76\%	0.0
			EHJ70567.1			
Scarlet	20146 bp	Complete	Bombyx mori	91\%	72\%	0.0
			NM_001256993.2			
White	686 aa	Complete	Bombyx mori	100\%	88\%	0.0
			BAH03523.1			
White	2061 bp	Complete	Bombyx mori	99\%	75\%	0.0
			NM_001043569.1			
Serum response factor	318 aa	Partial	Bombyx mori	41\%	98\%	1E-87
			XP_004933723.1			
Serum response factor	2202 bp	Partial	Juonia coenia	16\%	92\%	1E-149
			AF120007.1			

*Top hit for serrate nucleotide sequence was Bm8 interacting protein

Appendix Table 2.2. Primers used for qPCR validation.

Gene	Primer sequences
Glutamate receptor	Forward -TGGTATCGTCGCCATATTCG
	Reverse - GGAGAATATCAGCGCACCGA
Wingless	Forward - AAAAGCTGGCGAACCAAACA
	Reverse - GGTTGCGTGAACTCCTGGAT
Spalt	Forward - GAAAACGATGGAGGGCAAGA
	Reverse - AGTCCATGCTGCAGTCGTCA
Engrailed	Forward - GTACACCTGCACCACCATCG
	Reverse - CGGTGAGTTCGGTTGGACTTT
Distal-less	Forward - GGCTTGGGATGTAAAGGTTGG
	Reverse - TGGTGGCTTCACGTCACAA
Ddc	Forward - ACGACATCGAGCGCGTTATA
	Reverse - GCTGTCGGGAAATAGGCGT
Tan	Forward - ATCCCCACGCAAGAAGACAG
	Reverse - GCAAGTGACCCGCATAGCA
Pale	Forward - CTCGTAGATGACGCCCGCT
	Reverse - GTGCACGAGCCTCTTCAAGC
Ebony	Forward - CATCCTGACTTTGGCCGTCT
	Reverse - TGCCAGCGAACAAGATGAGA
$\boldsymbol{K} \boldsymbol{f}$	Forward - GCATGTGGTCGACGAGGTTT
	Reverse - TCGCTTGCTGTGGTAACGAA
Vermillion	Forward - AATGCGTGAACCCAACGAAG
	Reverse - GGATCGGTATATTTCCCGCC
Cinnabar	Forward - ACGAGGACATCGAGTGTCCC
	Reverse - AATGGAACGCCCTCGTACAT

Appendix Table 2.3

Summary of de-novo transcriptome assembly performed using CLC Genomics.

Descriptive Statistic	Value
Total size of transcriptome	$31,689,449 \mathrm{bp}$
Total number of reads	$446,282,529$
Mean no. reads for early 4th larval libraries	$25,699,084.3$
Mean no. reads for early 4th larval libraries	$27,632,760$
Mean no. reads for 2 day pupal libraries	$23,187,027.7$
Mean no. reads for 5 day pupal libraries	$28,375,390.5$
Mean no. reads for 8 day pupal libraries	$34,585,348.5$
Total number of contigs (unigenes)	89,065
Mean contig length	779.8 bp
Median contig length	446 bp
Max contig length	$15,506 \mathrm{bp}$
N50	$1,266 \mathrm{bp}$

* contigs >200bp

Appendix Table 2.4. References for classification of functional groups in the wing GRN.

Gene	Abbreviation	Function	Reference
Cut	cut	Selector gene	Brewster et al. (2001)
Apterous	$a p$	Selector gene	O'Keefe \& Thomas (2001)
Ultrabithorax	$u b x$	Selector gene	Mann \& Hogness (1990)
Distal-less	dll	Selector gene	Gebelein et al. (2002)
Scalloped	sd	Selector gene	Halder \& Carroll (2001)
Vestigial	vg	Selector gene	Mann \& Carroll (2002)
Engrailed	Selector gene	Zecca et al. (1995)	
Invected	Spp	Signaling moleculer gene	Shen \& Dahmann (2005)
Decapentaplegic	Signaling molecule	Werner et al. (2010)	
Wingless	Sh	Signaling molecule	Ingham \& Mcmahon (2001)
Hedgehog	Signaling molecule	Walters et al. (2005)	
Serrate	Transcription factor	Umemori et al. (2007)	
Optomotor blind	omb	Transcription factor	Rauskolb et al. (1993)
Extradenticle	exd	Transcription factor	Organista \& De Celis (2013)
Spalt			

Appendix Table 2.4 cont.

Gene	Abbreviation	Function	Reference
Ashaete-scute	$a c / s c$	Transcription factor	García-Bellido \& De Celis (2009)
Serum response factor	srf	Transcription factor	Chai \& Tarnawski (2002)

Appendix Table 3.1. Dunn-Šidák corrections for multiple comparisons following 2-way ANOVA for treatment x eyespot interactions comparing changes in pigment area $\left(\mathrm{cm}^{2}\right)$. Significance indicated when $\mathrm{p}<0.006$ for all 14 comparisons and $\mathrm{p}<0.009$ for 6 comparisons.

Eyespot multiple	Eyespot	Black				
comparisons	Area	border	Yellow	Orange	Blue	Black focus
Control E1 vs E2	$\mathrm{p}<0.0001$	$\mathrm{p}<0.0001$	NS	$\mathrm{p}<0.0001$	$\mathrm{p}<0.0001$	NS
Control E1 vs E3	$\mathrm{p}<0.0001$	$\mathrm{p}<0.0001$	$\mathrm{p}<0.0002$	$\mathrm{p}<0.0001$	$\mathrm{p}<0.0001$	$\mathrm{p}<0.0001$
Control E1 vs E4	$\mathrm{p}<0.0001$	$\mathrm{p}<0.0001$	$\mathrm{p}<0.0001$	$\mathrm{p}<0.0001$		$\mathrm{p}<0.001$
Control E2 vs E3	$\mathrm{p}<0.0001$	NS	$\mathrm{p}<0.05$	NS	NS	$\mathrm{p}<0.0001$
Control E2 vs E4	NS	$\mathrm{p}<0.0001$	$\mathrm{p}<0.0001$	NS		$\mathrm{p}<0.0001$
Control E3 vs E4	NS	$\mathrm{p}<0.0001$	$\mathrm{p}<0.0001$	$\mathrm{p}<0.008$		$\mathrm{p}<0.0001$
Control E1 vs Heparin E1	NS	NS	NS	NS		$\mathrm{p}<0.005$
Control E1 vs Temp E1	$\mathrm{p}<0.001$	NS	$\mathrm{p}<0.006$	NS	NS	$\mathrm{p}<0.0001$
Control E2 vs Heparin E2	$\mathrm{p}<0.0001$	NS	NS	$\mathrm{p}<0.0001$		$\mathrm{p}<0.0001$
Control E2 vs Temp E2	$\mathrm{p}<0.01$	$\mathrm{p}<0.05$	$\mathrm{p}<0.0001$	NS	$\mathrm{p}<0.0001$	$\mathrm{p}<0.0001$
Control E3 vs Heparin E3	$\mathrm{p}<0.0001$	$\mathrm{p}<0.0001$	NS	$\mathrm{p}<0.0001$		$\mathrm{p}<0.0001$
Control E3 vs Temp E3	$\mathrm{p}<0.002$	NS	$\mathrm{p}<0.0001$	NS	$\mathrm{p}<0.005$	$\mathrm{p}<0.0001$
Control E4 vs Heparin E4	NS	$\mathrm{p}<0.05$	$\mathrm{p}>0.05$	$\mathrm{p}<0.0001$		$\mathrm{p}<0.0001$
Control E4 vs Temp E4	NS	NS	NS	NS		$\mathrm{p}<0.0001$

*Only 6 comparisons shown for blue pigment due to absence of blue in eyespots of butterflies treated with heparin and the lack of blue pigment in eyespot 4 for all treatment groups. $\mathrm{p}>0.006 \mathrm{NS}$

Eyespot 1: Control $\mathrm{r}^{2}=0.99 \mathrm{n}=45, \mathrm{p}<0.0001$

Eyespot 3: Control r ${ }^{2}=0.97 \mathrm{n}=44, \mathrm{p}<0.0001$

Eyespot $1: 37^{\circ} \mathrm{Cr}^{2}=0.98 \mathrm{n}=45, \mathrm{p}<0.0001$

Eyespot 2: $\mathrm{r}^{2}=0.97$ Control $\mathrm{n}=45, \mathrm{p}<0.0001$

Eyespot 2: $37^{\circ} \mathrm{Cr}^{2}=0.99 \mathrm{n}=46, \mathrm{p}<0.0001$

Appendix figure 3.3. Bivariate analysis of the sum of all pigments in each eyespot relative to the total eyespot area. Plots reveal a strong correlation in the measurements of the pigment area to the total eyespot area indicating area of the individual pigments were measured with high precision.

Eyespot 3: $37^{\circ} \mathrm{Cr}^{2}=0.95 \mathrm{n}=46, \mathrm{p}<0.0001$

Eyespot 1: Heparin $r^{2}=0.98 n=20, p<0.0001$

Eyespot 3: Heparin $\mathrm{r}^{2}=0.99 \mathrm{n}=20, \mathrm{p}<0.0001$

Eyespot 2: Heparin $\mathrm{r}^{2}=0.99 \mathrm{n}=20, \mathrm{p}<0.0001$

Eyespot 4: Heparin $r^{2}=0.98 \mathrm{n}=20, \mathrm{p}<0.0001$

Appendix figure 3.3 cont. Bivariate analysis of the sum of all pigments in each eyespot relative to the total eyespot area. Plots reveal a strong correlation in the measurements of the pigment area to the total eyespot area indicating area of the individual pigments were measured with high precision.

Size	ES1	ES2	ES3	ES4
ES1	$*$	0.523	0.2	0.47
ES2	0.795	$*$	0.574	0.367
ES3	0.589	0.761	$*$	0.443
ES4	0.453	0.411	0.315	$*$

Border	ES1	ES2	ES3	ES4
ES1	$*$	0.35	0.29	0.57
ES2	0.01	$*$	0.16	0.28
ES3	0.156	0.387	$*$	0.32
ES4	0.125	0.29	0.653	$*$

Yellow	ES1	ES2	ES3	ES4
ES1	$*$	0.083	0.215	0.5
ES2	0.387	$*$	0.298	-0.15
ES3	0.416	0.567	$*$	0.1
ES4	0.34	0.151	0.446	$*$

Orange	ES1	ES2	ES3	ES4
ES1	$*$	-0.0122	-0.12	-0.2
ES2	0.15	$*$	0.52	-0.026
ES3	-0.0767	-0.17	$*$	-0.18
ES4	0.34	0.4	-0.026	$*$

Blue	ES1	ES2	ES3	ES4
ES1	$*$	0.16	0.2	$*$
ES2	0.18	$*$	0.57	$*$
ES3	0.1589	0.676	$*$	$*$
ES4	$*$	$*$	$*$	$*$

Black focus	ES1	ES2	ES3	ES4
ES1	$*$	0.418	0.322	-0.113
ES2	0.379	$*$	0.651	0.051
ES3	0.683	0.549	$*$	0.182
ES4	0.47	0.004	0.397	$*$

Appendix figure 3.11. Partial correlation matrices for eyespot size and proportion of each color ring. Values below the diagonal represent control eyespots and those above represent the temperature shock treatment. Wing area was used as a covariate. Partial correlations are used to measure the association (or integration) between pairs of traits, independent of associations with all other measured traits (Magwene, 2001, Allen 2008).

Size	ES1	ES2	ES3	ES4
ES1	$*$	14.7	1.88	11.48
ES2	44.988	$*$	18.4	6.7
ES3	19.17	38.94	$*$	10.05
ES4	10.34	8.33	4.7	$*$

Border	ES1	ES2	ES3	ES4
ES1	$*$	5.88	3.95	17.68
ES2	0.004	$*$	1.167	3.67
ES3	1.1	7.3	$*$	4.86
ES4	0.7	3.95	25	$*$

Yellow	ES1	ES2	ES3	ES4
ES1	$*$	0.32	2.12	13.23
ES2	7.3	$*$	4.27	1.05
ES3	8.55	17.45	$*$	0.46
ES4	5.53	1.04	9.98	$*$

Orange	ES1	ES2	ES3	ES4
ES1	$*$	0.006	0.67	1.88
ES2	1.02	$*$	14.5	0.03
ES3	0.268	1.32	$*$	1.51
ES4	5.53	7.85	0.03	$*$

Blue	ES1	ES2	ES3	ES4
ES1	1	1.167	1.84	$*$
ES2	1.48	1	17.68	$*$
ES3	1.152	27.48	1	$*$
ES4	$*$	$*$	$*$	$*$

Black focus	ES1	ES2	ES3	ES4
ES1	$*$	8.833	4.93	0.578
ES2	6.98	$*$	24.8	0.119
ES3	28.3	16.14	$*$	1.55
ES4	11.23	0	7.72	$*$

Appendix figure 3.12 Edge exclusion deviance matrices based on partial correlations and calculated using the EED formula described in the methods. EED uses partial correlations to test for conditional independence. Values highlighted in bold (<3.82) suggest conditional independence and values >3.82 indicate eyespots are integrated. Values below the diagonal represent control eyespots and those above represent the temperature shock treatment.

Appendix Table 4.2. List of primer pairs used for quantitative real time PCR.

Gene	Primer sequences
B-Actin	Forward -TGGTATCGTCGCCATATTCG
	Reverse - GGAGAATATCAGCGCACCGA
Ash1	Forward -AAACAGAATTCCCACCGGGT
	Reverse - AAATATTGTGGTGTACGGCGC
Glutamate receptor	Forward -TGGTATCGTCGCCATATTCG
	Reverse - GGAGAATATCAGCGCACCGA
Spalt (sal)	Forward - GAAAACGATGGAGGGCAAGA
	Reverse - AGTCCATGCTGCAGTCGTCA
Engrailed (En)	Forward - GTACACCTGCACCACCATCG
	Reverse - CGGTGAGTTCGGTTGGACTTT
Distal-less (D11)	Forward - GGCTTGGGATGTAAAGGTTGG
	Reverse - TGGTGGCTTCACGTCACAA
Ultrabithorax (Ubx)	Forward - AGGCCTCAGGACTCCCCATA
	Reverse - TTGCGTATTGCTGCTCTCCC
Dopa decarboxylase (DDC)	Forward - ACGACATCGAGCGCGTTATA
	Reverse - GCTGTCGGGAAATAGGCGT
Tan	Forward - ATCCCCACGCAAGAAGACAG
	Reverse - GCAAGTGACCCGCATAGCA
Tyrosine hydroxylase (TH)	Forward - CTCGTAGATGACGCCCGCT
	Reverse - GTGCACGAGCCTCTTCAAGC
Ebony	Forward - CATCCTGACTTTGGCCGTCT
	Reverse - TGCCAGCGAACAAGATGAGA

Appendix Table 4.2. cont.

Gene	Primer sequences
Polycomb (Pc)	Forward -ACCGAAACACAACACCTGGG
	Reverse - TTCGCCTCGTTCGTAGCTCT
Enhancer of zeste (Ez)	Forward - AGCTGAAGAAGGACTCCGCC
	Reverse - TTGTCGCAGGGCTGGTTAG

Control

Temperature shock

Heparin

Control
Temp. shock
Heparin

Appendix Figure 4.1. Representative images of pupal hindwings at 6 days post-pupation prior to eyespot dissections. Bottom panel shows black and red pigmentation visible on the pupal cuticle used as an aid for timing of wing dissection.

Appendix Figure 4.4 Gene expression patterns across all three hindwing eyespots (Control only) for the patterning genes and melanin genes. Data represent the least square means square root transformed and errors bars are $1 \pm$ SE from the mean.

Appendix Table 5.1A. Taxon list for Enhancer of zeste (Ez) with accession numbers for NCBI and Uniprot. NF indicates no record was found in that database. Sequences for taxa in bold were obtained from WormBase (Nematoda), Mnemiopsis Genome Project (Ctenophora) or The Broad Institute (Choanoflagellate). Asterisks indicate sequences that were listed as partial in both NCBI and Uniprot. Amino acid length $=a \mathrm{a}$.

Taxa	Common name	Phylum	NCBI reference	Uniprot reference	aa
Acromyrmex echinatior	Panamanian leafcutter ant	Arthopoda	EGI68054.1	NF	761
Acyrthosiphon pisum	Pea aphid	Arthopoda	XP_003240462.1	J9K871	745
Aedes aegypti	Yellow fever mosquito	Arthopoda	XP_001663394.1	Q16JU6	752
Amblyomma maculatum	Gulf coast tick	Arthopoda	NF	G3MM78	715
Amphimedon queenslandica	Demosponge	Porifera	XP_003390508.1	I1EWD7	345
Ancylostoma ceylanicum	Hookworm	Nematoda	NF	NF	944
Anopheles gambiae	African malaria mosquito	Arthopoda	XP_307419.2	Q7PTY9	742
Apis florea	Common Eastern Bumble Bee	Arthopoda	XP_003690343.1	NF	746
Apis mellifera	Dwarf honey bee	Arthopoda	XP_003249917.1	H9KEQ7	746
Aplysia californica	California sea hare	Arthopoda	XP_005096266.1	NF	788
Ascaris suum	Pig roundworm	Arthopoda	NF	F1KYX6	676
Atta cephalotes	Leaf cutter ant	Arthopoda	NF	H9HT54	757
Bombus impatiens	Common Eastern Bumble Bee	Arthopoda	XM_003485728.1	NF	754
Bombus terrestris	Buff-tailed Bumblebee	Arthopoda	XM_003397352.1	NF	762
Bombyx mori	Silkworm	Arthopoda	XP_003397400.1	H9JY58	442
Botryllus primigenius*	Sea squirt	Urochordata	AB852574.1	T2HSG9	555
Branchiostoma floridae	Florida lancelet	Cephalochordata	XM_002605849.1	C3YCV4	625
Brugia malayi	Roundworm	Nematoda	XM_001902435.1	A8QGD6	652
Bursephelenchus xylophilus	Roundworm	Nematoda	NF	NF	745
Caenorhabditis angaria	Roundworm	Nematoda	NF	NF	324
Caenorhabditis brenneri	Roundworm	Nematoda	EGT54479	G0N6Y4	764
Caenorhabditis elegans	Roundworm	Nematoda	NP_496992.3	O17514	773

Appendix Table 5.1A continued

Taxa	Common name	Phylum	NCBI reference	Uniprot reference	aa
Caenorhabditis japonica	Roundworm	Nematoda	NF	K7GZH2	288
Caenorhabditis remanei	Roundworm	Nematoda	XP_003104313	E3M100	841
Caenorhabiditis briggsiae	Roundworm	Nematoda	CAP29342.2	A8X9M7	516
Camponotus floridanus*	Florida carpenter ant	Arthopoda	EFN68978.1	E2AC62	755
Capitella teleta	Polychaete worm	Annelida	ELT87938.1	R7T4Q6	527
Clonorchis sinensis*	Chinese liver fluke	Platyhelminthes	GAA55462.1	G7YR82	940
Ciona intestinalis	Transparent sea squirt	Urochordata	XP_002126205.2	H2YDH7	692
Ciona savignyi	Transparent sea squirt	Urochordata	NF	H2YDH6	734
Crassostrea gigas	Pacific oyster	Mollusca	EKC36964.1	K1R0K5	807
Cryptococcus gattii	Fungi		XM_003196759.1	XM_003196759.1	731
Cryptococcus neoformans	Fungi		XP_567801.1	XP_567801.1	718
Culex quinquefasciatus	Southern house mosquito	Arthopoda	XP_001848357	B0WI23	763
Danaus plexippus	Monarch butterfly	Arthopoda	EHJ78862	G6CIT8	733
Daphnia pulex	Common water flea	Arthopoda	EFX90346	E9FSB6	790
Dendroctonus ponderosae*	Mountain pine beetle	Arthopoda	ENN78407	N6UID1	742
Dirofilaria immitis	Heart worm	Arthopoda	NF	NF	721
Drosophila ananassae	Fruit fly	Arthopoda	XP_001957822	B3M5C3	751
Drosophila erecta	Fruit fly	Arthopoda	XM_001972254.1	B3NCL9	761
Drosophila grimshawi	Arthopoda	XM_001984539.1	B4J1K3	762	
Drosophila melanogaster	Fruit fly	Arthopoda	NM_079297.3	P42124	760
Drosophila mojavensis	Fruit fly	Arthopoda	XM_002009014	B4KVX5	741
Drosophila persimilis	Fruit fly	Arthopoda	XM_002026486.1	B4H6P3	749
Drosophila pseudoobscura	Fruit fly	Arthopoda	XM_001353744.2	Q2LZJ3	749
Drosophila sechellia	Fruit fly	Arthopoda	XM_002029970.1	B4HLW0	753

Appendix Table 5.1A continued

Taxa	Common name	Phylum	NCBI reference	Uniprot reference	aa
Drosophila simulans	Fruit fly	Arthopoda	XP_002084393	B4QP80	675
Drosophila virilis	Fruit fly	Arthopoda	XM_002047818.1	B4LET9	741
Drosophila willistoni	Fruit fly	Arthopoda	XM_002069020.1	B4N6Q3	768
Drosophila yakuba	Fruit fly	Arthopoda	XM_002094276.1	B4PEF8	760
Echinococcus multilocularius	Tapeworm	Nematoda	CDI99875.1	A0A068XY53	930
Fusarium oxysporum cubense	Fungi		EMT61537.1	N1RBD1	1026
Haemonchus contortus	Barbers pole worm	Nematoda	CDJ88240.1	U6P2S3	999
Helobdella robusta	Californian leech	Mollusca	ESO04666	T1G9T5	624
Hydra vulgaris	Fresh water polyp	Cnidarian	XP_004207451.1	T2MD94	724
Ixodes scapularis*	Black legged tick	Arthopoda	XM_002408909.1	B7Q167	737
Loa loa	Eye worm	Nematoda	EFO28287	E1FH06	732
Lottia gigantea	Owl limpet	Mollusca	ESP00855	V4CFQ6	783
Marssonina brunnea	Fungi		XM_007292563.1	K1XWQ2	1073
Megachile rotundata	Alfalfa leafcutter bee	Arthopoda	XM_003707504.1	Not found	758
Metarhizium acridum	Fungi		XM_007815540.1	E9EbZ3	1139
Metarhizium anisopliae	Fungi		XM_007818675.1	E9EMH0	1148
Mnemiopsis leidyi	Sea walnut	Ctenophora	NF	NF	304
Monosiga brevicollis	Choanoflagellate		XP_001742056	A9UNS2	2169
Nasonia vitripennis	Jewel wasp	Arthopoda	XM_001599009.2	K7JBX9	781
Nematostella vectensis	Starlet sea anenome	Cnidarian	XM_001622372.1	A7T142	688
Oikopleura dioica	Sea squirt	Urochordata	CBY12204	E4XQW8	692
Onchocerca volvulus	River blindness nematode	Nematoda	NF	NF	696
Pediculus humanus corporis	Human body louse	Arthopoda	XM_002427044.1	E0VLU5	729
Polyandrocarpa misakiensis*	Sea squirt	Urochordata	AB671227.1	G1UK06	566
Rhipicephalus pulchellus	Ivory ornamented tick	Arthopoda	NF	L7LTF5	715

Appendix Table 5.1A continued

Taxa	Common name	Phylum	NCBI reference	Uniprot reference	aa
Rhodnius prolixus*	Assassin bug	Arthopoda	NF	T1HYG5	747
Salpingoeca rosetta	Choanoflagellate			XP_004992157	F2UEQ4
Schistosoma mansoni	Blood fluke	Platyhelminthes	XM_002578972.1	C4QIH3	508
Solenopsis invicta*	Red fire ant	Arthopoda	EFZ16931	E9IR73	639
Strigamia maritima	Coastal centipede	Arthopoda	NF	T1IUN1	345
Strongylocentrotus purpuratus	Purple sea urchin	Echinodermata	XP_790741	H3JA00	794
Tribolium castaneum	Red flour beetle	Arthopoda	XP_001811652.1	D6WFD9	721
Trichinella spiralis	Trichina worm	Nematoda	XP_003377384.1	E5SCV7	633
Trichoplax adhaerens	Flat animal	Placazoa	XM_002110946.1	B3RS40	682

Appendix Table 5.1B. Taxon list for Suppressor of zeste (Suz12) with accession numbers for NCBI and Uniprot. NF indicates no record found in that database. Sequences for taxa in bold were obtained from WormBase (Nematoda), Mnemiopsis Genome Project (Ctenophora) or The Broad Institute (Choanoflagellate). Asterisks indicate sequences that were listed as partial in both NCBI and Uniprot. Amino acid length $=$ aa .

Taxa	Common name	Phylum	NCBI reference	Uniprot	aa
Acromyrmex echinatior	Panamanian leafcutter ant	Arthropoda	EGI70249.1	F4W6B4	735
Acyrthosiphon pisum	Pea aphid	Arthropoda	XR_045851.2	NF	747
Aedes aegypti	Yellow fever mosquito	Arthropoda	XP_001653313.1	Q16YD4	835
Amphimedon queenslandica	Demosponge	Porifera	Not found	I1FL37	670
Apis florea	Dwarf honey bee	Arthropoda	XM_003692795.1	NF	690
Apis mellifera	European honey bee	Arthropoda	XM_006569644.1	H9KLG2	651
Aplysia californica	California Sea Hare	Mollusca	XM_005102037.1	NF	634
Ascaris suum	Pig roundworm	Nematoda	ERG85993.1	U1MP83	1122
Bombus impatiens	Common Eastern Bumble Bee	Arthropoda	XM_003484368.1	NF	747
Bombus terrestris	Buff-tailed Bumblebee	Arthropoda	XM_003403279.1	NF	745
Bombyx mori	Silk Moth	Arthropoda	XM_004931509.1	H9JQN6	747
Branchiostoma floridae	Florida lancelet	Cephalochordata	XM_002613537.1	C3XQZ7	581
Brugia malayi	Roundworm	Nematoda	XP_001899529.1	A8Q0U5	1208
Bursephelenchus xylophilus	Roundworm	Nematoda	NF	NF	710
Camponotus floridanus	Florida carpenter ant	Arthropoda	EFN60214.1	E2B288	848
Capitella teleta	Polychaete worm	Annelida	ELU03450.1	R7UAU1	717
Ciona intestinalis	Transparent sea squirt	Urochordata	XM_002129088.2	F6UZQ2	741
Ciona savignyi	Transparent sea squirt	Urochordata	NF	H2YZ91	600
Clonorchis sinensis	Chinese liver fluke	Platyhelminthes	GAA50274.1	G7YBE0	1086
Crassostrea gigas	Pacific oyster	Mollusca	EKC34399.1	K1QT27	607
Culex quinquefasciatus	Southern house mosquito	Arthropoda	XP_002613583.1	B0X2T6	294
Danaus plexippus	Monarch butterfly	Arthropoda	XP_001653313.1	G6DEL2	747
Daphnia pulex	Common water flea	Arthropoda	EFX88992.1	E9FW32	662

Appendix Table 5.1B continued

Taxa	Common name	Phylum	NCBI reference	Uniprot	aa
Dendroctonus ponderosae	Mountain pine beetle	Arthropoda	ENN76057.1	N6UBL7	689
Dirofilaria immitis	Heartworm	Nematoda	NF	NF	1203
Drosophila ananassae	Fruit fly	Arthropoda	XM_001958239.1	B3M8T0	936
Drosophila erecta	Fruit fly	Arthropoda	XP_001973404.1	B3NE06	940
Drosophila grimshawi	Fruit fly	Arthropoda	XP_001984226.1	B4IYC4	913
Drosophila melanogaster	Fruit fly	Arthropoda	NP_730465.1	Q9NJG9	900
Drosophila persimilis	Fruit fly	Arthropoda	XP_002024211.1	B4H032	911
Drosophila pseudoobscura	Fruit fly	Arthropoda	XP_001354015.2	Q2LYV8	958
Drosophila simulans	Fruit fly	Arthropoda	XP_002043635.1	B4IIS5	942
Drosophila virilis	Fruit fly	Arthropoda	XP_002085559.1	B4QRD1	783
Drosophila willistoni	Fruit fly	Arthropoda	XP_002061847.1	B4MLH7	1043
Drosophila yakuba	Fruit fly	Arthropoda	XP_002095547.1	B4PFW2	894
Echinococcus granulosus	Dog tapeworm	Platyhelminthes	CDJ24181.1	U6JHB6	877
Echinococcus multilocularis	Tape worm	Platyhelminthes	NF	U6HQR2	896
Fusarium oxysporum	Fungi		EMT62392.1	N1RDD5	791
Harpegnathos saltator	Jerdon's jumping ant	Arthropoda	EFN85407.1	E2BG05	882
Hydra vulgaris*	Fresh-water polyp	Cnidaria	XP_002153958.2	T2MCM8	539
Hymenolepis microstoma	Rodent tapeworm	Platyhelminthes	CDJ15069.1	U6IY71	823
Ixodes scapularis*	Black-legged tick	Arthropoda	XP_002416184.1	B7QLX9	635
Loa loa	African eye worm	Nematoda	EJD75529.1	J0DP84	1212
Lottia gigantea	Owl limpet	Mollusca	ESP03845.1	V4CNA0	605
Marssonina brunnea	Fungi		XP_007293392.1	K1XU93	1852
Megachile rotundata	Alfalfa leafcutter bee	Arthropoda	XP_003706889.1	NF	857
Metarhizium acridum	Fungi		EFY85899.1	E9EDU0	743
Metarhizium anisopliae	Fungi		EFY99265.1	E9EZ74	741
Mnemiopsis leidyi	Sea walnut	Ctenophora	MLRB05513 MGP	NF	457
Nasonia vitripennis	Jewel Wasp	Arthropoda	XP_001605309.1	K7IM36	770

Appendix Table 5.1B continued

Taxa	Common name	Phylum	NCBI reference	Uniprot	aa
Nematostella vectensis*	Starlet sea anemone	Cnidaria	XP_001634713.1	A7S0W2	618
Neurospora crassa	Fungi		CAD11320.1	Q96U06	898
Onchocerca volvulus	River blindness nematode	Nematoda	NF	NF	1213
Pediculus humanus corporis	Human body louse	Arthropoda	XP_002425246.1	E0VGK2	695
Rhipicephalus pulchellus	Ivory-ornamented tick	Arthropoda	NF	L7MHD0	663
Salpingoeca punctatus	Choanoflagellate		NF	NF	380
Salpingoeca rosetta	Choanoflagellate		XP_004994745.1	F2U818	605
Schistosoma mansoni	Blood fluke	Platyhelminthes	XP_002576086.1	G4LWA0	1140
Schmidtea mediterranea	Planarian	Platyhelminthes	AFD29606.1	H9CXT5	673
Strigamia maritima	Coastal centipede	Arthropoda	NF	T1JJ78	770
Strongylocentrotus purpuratus	Purple Sea Urchin	Echinodermata	XP_788076.2	H3IGD6	780
Tribolium castaneum	Red flour beetle	Arthropoda	XM_970065.1	D6WHD3	673
Trichoplax adhaerens	Flat animal	Placozoa	XP_002109732.1	B3RMS3	444
Wuchereria bancrofti	Parasitic roundworm	Nematoda	EJW87074.1	J9FID3	1194

Appendix Table 5.1C. Taxon list for Embryonic Sex Combs (ESC) with accession numbers for NCBI and Uniprot. NF indicates no record was found in that database. Sequences for taxa in bold were obtained from WormBase (Nematoda), Mnemiopsis Genome Project (Ctenophora) or The Broad Institute (Choanoflagellate). Asterisks indicate sequences that were listed as partial in both NCBI and Uniprot. Amino acid length $=$ aa.

B	Taxa	Common name	Phylum	NCBI reference	Uniprot	aa
	Acromyrmex echinatior	Panamanian leafcutter ant	Arthropoda	EGI64071.1	F4WP90	425
	Acyrthosiphon pisum	Pea aphid	Arthropoda	XM_001949733.2	J9K6S7	409
	Aedes aegypti	Yellow fever mosquito	Arthropoda	XM_001648915.1	Q16G31	425
	Amblyomma maculatum	Gulf coast tick	Arthropoda	NF	G3MT61	318
	Ancylostoma ceylanicum	Hookworm	Nematoda	EYB97523.1	U6NPK7	466
	Anopheles gambiae*	African malaria mosquito	Arthropoda	XM_557691.3	Q5TSA2	322
	Apis florea	Dwarf honey bee	Arthropoda	XM_003691321.1	No record	427
	Apis mellifera	European honey bee	Arthropoda	XM_623805.3	H9KFU0	427
	Aplysia californica	California Sea Hare	Mollusca	XM_005111287.1	NF	310
	Ascaris suum	Pig roundworm	Nematoda	NF	F1LG42	187
	Bombus impatiens	Common Eastern Bumble Bee	Arthropoda	XM_003490736.1	NF	427
	Bombus terrestris	Buff-tailed Bumblebee	Arthropoda	XM_003393707.1	NF	427
	Bombyx mori	Silk Moth	Arthropoda	NM_001201437.1	E5RWX8	412
	Botryllus primigenius*	Sea squirt	Urochordata	AB852575.1	T2HUX0	292
	Branchiostoma floridae	Florida lancelet	Cephalochordata	XM_002599094.1	C3YXD4	439
	Brugia malayi	Roundworm	Nematoda	XM_001894369.1	A8P2A2	374
	Bursephelenchus xylophilus	Roundworm	Nematoda	NF	NF	393
	Caenorhabditis angaria	Roundworm	Nematoda	NF	NF	480
	Caenorhabditis brenneri	Roundworm	Nematoda	EGT34195.1	G0NMP5	429
	Caenorhabditis briggsae	Roundworm	Nematoda	CAP33746.2	A8XM71	484
	Caenorhabditis elegans	Roundworm	Nematoda	NP_001021320.1	Q9GYS1	459
	Caenorhabditis japonica	Roundworm	Nematoda	NF	H2VY07	465
	Caenorhabditis remanei	Roundworm	Nematoda	XP_003093535.1	E3NDJ1	470

Appendix Table 5.1C continued

Taxa	Common name	Phylum	NCBI reference	Uniprot	aa
Camponotus floridanus	Florida carpenter ant	Arthropoda	EFN68408.1	E2ADP6	425
Capitella teleta	Polychaete worm	Annelida	ELU03609.1	R7UC89	376
Ciona intestinalis	Transparent sea squirt	Urochordata	XM_002128576.2	F6UZU2	424
Ciona savignyi	Transparent sea squirt	Urochordata	NF	H2YT04	388
Clonorchis sinensis	Chinese liver fluke	Platyhelminthes	GAA50728.1	G7YCP4	1170
Colletotrichum gloeosporioides	Fungi		XP_007286258.1	L2FE45	484
Cryptococcus gattii	Fungi		XP_003194233.1	E6R6V5	572
Cryptococcus neoformans	Fungi		AFR95484.1	J9VSB1	571
Culex quinquefasciatus	Southern house mosquito	Arthropoda	XM_001842037.1	B0W055	422
Danaus plexippus	Monarch butterfly	Arthropoda	EHJ72379.1	G6D2A5	412
Daphnia pulex	Common water flea	Arthropoda	EFX73235.1	E9H4Z8	426
Dendroctonus ponderosae	Mountain pine beetle	Arthropoda	AEE62083.1	J3JV55	427
Dirofilaria immitis	Heartworm	Nematoda	NF	NF	405
Drosophila ananassae	Fruit fly	Arthropoda	XP_001965085.1	B3MMX9	466
Drosophila erecta	Fruit fly	Arthropoda	XM_001969774.1	B3N4F7	688
Drosophila grimshawi	Fruit fly	Arthropoda	XM_001993400.1	B4JR31	425
Drosophila melanogaster	Fruit fly	Arthropoda	NM_058083.4	Q9VKD5	425
Drosophila mojavensis	Fruit fly	Arthropoda	XM_002002983.1	B4KIV5	426
Drosophila pseudoobscura	Fruit fly	Arthropoda	XM_001356924.2	Q29LL9	424
Drosophila sechellia	Fruit fly	Arthropoda	XM_002041944.1	B4IE20	425
Drosophila simulans	Fruit fly	Arthropoda	XM_002079110.1	B4Q3A0	425
Drosophila willistoni	Fruit fly	Arthropoda	XM_002064837.1	B4MVY9	418
Drosophila yakuba	Fruit fly	Arthropoda	XM_002088360.1	B4P1K1	675
Echinococcus granulosus	Fox tapeworm	Platyhelminthes	CDS18218	A0A068WDP7	467
Echinococcus multilocularis	Fox tapeworm	Platyhelminthes	CDJ01264.1	A0A068Y217	467
Fusarium oxysporum	Fungi		EMT66423.1	N1RIL3	527
Grosmannia clavigera	Fungi		EFW98560.1	F0XUH9	513

Appendix Table 5.1C continued

Taxa	Common name	Phylum	NCBI reference	Uniprot	aa
Haemonchus contortus	Barbers pole worm	Nematoda	CDJ82446.1	U6NPK7	446
Harpegnathos saltator	Jerdon's jumping ant	Arthropoda	EFN80548.1	E2BUS5	428
Helicoverpa armigera	Corn earworm	Arthropoda	JQ744271.1	R4IT83	413
Helobdella robusta	Californian leech	Mollusca	ESO12851.1	T1EDW3	427
Hydra vulgaris	Fresh-water polyp	Cnidarian	AAR06604.1	Q69DT2	421
Hymenolepis microstoma	Rodent tapeworm	Nematoda	CDJ14311.1	U6IP89	467
Ixodes scapularis	Black legged tick	Arthropoda	XM_002413658.1	B7QDT9	444
Junonia coenia	Buckeye	Arthropoda	AAC05331.1	016021	412
Lepeophtheirus salmonis	Salmon louse	Arthropoda	BT078622.1	C1BVJ3	428
Loa loa	Eye worm	Nematoda	EFO21763.2	E1G0P4	405
Lottia gigantea	Owl limpet	Mollusca	ESO89106.1	V4A747	429
Macrobrachium nipponense	Freshwater shrimp	Arthropoda	AGI50961.1	NF	355
Megachile rotundata	Alfalfa leafcutter bee	Arthropoda	XM_003700925.1	NF	427
Meloidogyne hapla	Root knot nematode	Nematoda	NF	NF	385
Mnemiopsis leidyi	Sea walnut	Ctenophora	NF	NF	527
Monosiga brevicollis	Choanoflagellate		XP_001746355.1	A9V144	304
Nasonia vitripennis	Jewel wasp	Arthropoda	XM_003424048.1	K7IRS7	427
Nematostella vectensis*	Starlet sea anemone	Cnidarian	XM_001634033.1	A7S2L1	299
Oikopleura dioica	Sea squirt	Urochordata	CBY32762.1	E4YB25	537
Onchocerca volvulus	African river blindness nematode	Nematoda	NF	NF	358
Pediculus humanus corporis	Human body louse	Arthropoda	XM_002427528.1	E0VN79	437
Polyandrocarpa misakiensis*	Sea squirt	Urochordata	AB617630.1	BAJ78350	276
Rhipicephalus pulchellus	Ivory ornamented tick	Arthropoda	NF	L7LZK8	431
Rhodnius prolixus	Assassin bug	Arthropoda	NF	T1HXR8	422
Saccoglossus kowalevskii	Acorn worm	Hemichordata	XM_006824055.1	NF	451
Salpingoeca punctatus	Choanoflagellate		NF	NF	914
Salpingoeca rosetta	Choanoflagellate		XP_004996458.1	F2U3T1	253

Appendix Table 5.1C continued

Taxa	Common name	Phylum	NCBI reference	Uniprot	aa
Schistocerca americana	American grasshopper	Arthropoda	AF003604.1	O16022	437
Schistosoma mansoni	Trematode flatworm	Platyhelminthes	XM_002579057.1	G4VT41	
Schmidtea mediterranea	Freshwater planarian	Platyhelminthes	JQ425136.1	H07	
Solenopsis invicta*	Red fire ant	Arthropoda	EFZ16293.1	E9ISN8	466
Strigamia maritima	Coastal centipede	Arthropoda	NF	425	
Strongylocentrotus purpuratus	Purple sea urchin	Echinodermata	XM_781252.3	T1J4Y1	H3JHM5
Suberites domuncula*	Sponge	Porifera	AM084418.1	434	
Tribolium castaneum	Red flour beetle	Arthropoda	XM_968687.2	D6WCC2	423
Trichoplax adhaerens*	Flat animal	Placazoa	XM_002116910.1	B3S9R9	353

**All hymenopteran sequences were identified in BLAST as ESC-L, which is functionally similar to ESC but exhibits temporal differences in expression (Rai et al., 2013).

Appendix Table 5.2A. Domain sequence divergence for Enhancer of zeste. Taxa recovered with E-value $>1 \mathrm{E}-4$ in BLAST pairwise alignments with SANT1 and SANT2 domains of Drosophila melanogaster. NS indicates that no sequence similarity was found.

SANT1	Description	Identity	Query cover	E value	Phylum
	Oikopleura dioica	39%	34%	$7.00 \mathrm{E}-04$	Urochordate
	Trichinella spiralis	36%	42%	0.004	Nematoda
	Loa loa	37%	76%	0.006	Nematoda
	Onchocerca volvulus	37%	89%	0.007	Nematoda
	Dirofilaria immitis	37%	68%	0.007	Nematoda
	Brugia malayi	37%	63%	0.009	Nematoda
	Cryptococcus gattii	45%	14%	0.019	Fungi
	Cryptococcus neoformans	45%	39%	0.024	Fungi
	Nematostella vectensis	30%	75%	0.038	Cnidarian
	Ascaris suum	21%	59%	0.1	Nematoda
	Trichoplax adhaerens	42%	13%	0.11	Nematoda
	Ancylostoma ceylanicum	35%	72%	0.16	Nematoda
	Clonorchis sinensis	31%	95%	0.25	Nematoda
	Haemonchus contortus	45%	51%	0.26	Nematoda
	Monosiga brevicollis	37%	0.3	Choanoflagellate	
	Echinococcus multilocularis	28%	22%	0.33	Platyhelminthes
	Caenorhabditis remanei	26%	65%	0.49	Nematoda
	Salpingoeca rosetta	28%	42%	0.57	Choanoflagellate
	Helobdella robusta	21%	56%	0.92	Mollusca
Caenorhabditis briggsae	86%	21%	0.93	Nematoda	
Caenorhabditis angaria	30%	16%	0.97	Nematoda	
	Caenorhabditis japonica	19%	1.1	Nematoda	

Appendix Table 5.2A continued

SANT1	Description	Identity	Query cover	E value	Phylum
SANT2	Schistosoma mansoni	55\%	18\%	1.8	Platyhelminthe
	Caenorhabditis elegans	42\%	14\%	2.4	Nematoda
	Metarhizium anisopliae	38\%	39\%	2.8	Fungi
	Metarhizium acridum	38\%	20\%	2.8	Fungi
	Fusarium oxysporum	26\%	27\%	4.5	Fungi
	Marssonina brunnea	27\%	18\%	5.9	Fungi
	Amphimedon queenslandica	NS			Porifera
	Bombyx mori	NS			Arthropoda
	Bursephelenchus xylophilus	NS			Nematoda
	Caenorhabditis brenneri	NS			Nematoda
	Mnemiopsis leidyi	NS			Ctenophora
	Caenorhabditis angaria	32\%	42\%	0.002	Nematoda
	Ancylostoma ceylanicum	33\%	71\%	0.097	Nematoda
	Metarhizium anisopliae	29\%	73\%	0.21	Nematoda
	Caenorhabditis remanei	29\%	38\%	0.23	Nematoda
	Caenorhabditis briggsae	25\%	48\%	0.41	Nematoda
	Cryptococcus gattii	60\%	10\%	0.64	Fungi
	Cryptococcus neoformans	60\%	10\%	0.65	Fungi
	Metarhizium acridum	26\%	63\%	0.99	Fungi
	Fusarium oxysporum	38\%	42\%	1.1	Fungi
	Caenorhabditis brenneri	44\%	32\%	1.3	Nematoda
	Caenorhabditis japonica	29\%	42\%	1.6	Nematoda
	Amphimedon queenslandica	NS			Porifera

Appendix Table 5A continued

SANT2	Description	Identity	Query cover	E value
	Caenorhabditis elegans	NS		Nematoda
	Haemonchus contortus	NS		Nematoda
	Marssonina brunnea	NS		Nematoda
	Salpingoeca rosetta	NS		Choanoflagellate
	Strigamia maritima	NS	Arthropoda	

* CXC and SET domain were highly conserved (E-value $>2 \mathrm{E}-5$ and 2E-15 respectively) with only Strigamia maritima recovered as having no sequence similarity with Drosophila melanogaster due to a partial sequence.

Appendix Table 5.2B. Domain sequence divergence for Suz12. Taxa recovered with Evalue $>1 \mathrm{E}-4$ in BLAST pairwise alignments with the Zinc finger domain of Drosophila melanogaster. NS indicates that no sequence similarity was found.

Taxon list	Identity	Query cover	E value	Taxonomic ID
Schmidtea mediterranea	43%	87%	$3 \mathrm{E}-04$	Platyhelminthe
Marssonina brunnea**	44%	87%	0.009	Fungi
Ascaris suum	63%	41%	0.029	Nematoda
Neurospora crassa	100%	16%	0.16	Fungi
Culex quinquefasciatus	83%	25%	0.19	Arthropoda
Salpingoeca punctatus	100%	16%	0.25	Choanoflagellate
Fusarium oxysporum**	50%	41%	0.71	Fungi
Meloidogyne hapla	100%	16%	5.7	Nematoda
Metarhizium acridum**	67%	20%	12	Fungi
Bursephelenchus xylophilus	100%	12%	16	Nematoda
Metarhizium anisopliae**	100%	8%	16	Fungi
Brugia malayi	57%	37%	19	Nematoda
Dirofilaria immitis	50%	33%	19	Nematoda
Loa loa	50%	37%	19	Nematoda
Onchocerca volvulus	50%	33%	19	Nematoda
Wuchereria bancrofti	50%	37%	19	Nematoda
Drosophila simulans	NS			Arthropoda
Trichoplax adhaerens	NS			Placozoa

* No Suz12 homolog was found in the genus Caenorhabiditis. Homologs for the VEFS box were identified in SMART and pairwise alignments with D. melanogaster for all 65 taxa. ${ }^{* *}$ Taxa identified with a Zinc finger in SMART.

Appendix Table 5.2C. Domain sequence divergence for ESC. Taxa recovered with E-value $>1 \mathrm{E}-4$ in BLAST pairwise alignments with the Zinc finger domain of Drosophila melanogaster. NS indicates that no sequence similarity was found. *Potential partial sequences in these repeat regions.

Repeat	Taxa	Identity	Query cover	E value	Taxonomic ID
WD1	Cryptococcus gattii	33%	84%	$7.00 \mathrm{E}-04$	Fungi
	Cryptococcus neoformans	33%	84%	0.001	Fungi
	Caenorhabditis briggsae	31%	71%	0.007	Nematoda
	Grosmannia clavigera	31%	82%	0.014	Fungi
	Fusarium oxysporum	22%	82%	0.32	Fungi
	Colletotrichum gloeosporioides	33%	61%	0.79	Fungi
	Nematostella vectensis*	40%	25%	6.8	Cnidarian
	Amblyomma maculatum*	NS			Mollusca
	Ascaris suum*	NS			Nematoda
	Botryllus primigenius*	NS			Urochordata
	Caenorhabditis remanei	NS			Nematoda
	Monosiga brevicollis*	NS			Choanoflagellate
	Polyandrocarpa misakiensis*	NS			Urochordata
	Salpingoeca punctatus	NS			Choanoflagellate
	Suberites domuncula*	NS			
	Grosmannia clavigera	26%	91%	$4.00 \mathrm{E}-04$	Fungi
	Fusarium oxysporum	25%	95%	$6.00 \mathrm{E}-04$	Fungi
	Caenorhabditis briggsae	37%	82%	0.001	Nematoda
	Polyandrocarpa misakiensis*	70%	34%	0.012	Urochordata
	Caenorhabditis japonica*	43%	30%	0.69	Nematoda
	Ascaris suum*	NS		Nematoda	

Appendix Table 5.2C continued

Repeat	Taxa	Identity	Query cover	E value	Taxonomic ID
WD2	Botryllus primigenius*	NS			Urochordata
	Caenorhabditis angaria	NS			Nematoda
	Caenorhabditis brenneri	NS			Nematoda
	Caenorhabditis elegans	NS			Nematoda
	Caenorhabditis remanei	NS			Nematoda
	Monosiga brevicollis*	NS			Choanoflagellate
	Nematostella vectensis*	NS			Cnidaria
	Suberites domuncula*	NS			Porifera
WD3	Caenorhabditis elegans	32%	68%	$4.00 \mathrm{E}-04$	Nematoda
	Caenorhabditis briggsae	31%	75%	$4.00 \mathrm{E}-04$	Nematoda
	Monosiga brevicollis*	75%	21%	0.002	Choanoflagellate
	Ascaris suum*	57%	17%	0.008	Nematoda
	Botryllus primigenius*	31%	31%	0.008	Urochordata
	Caenorhabditis brenneri	26%	82%	0.022	Nematoda
	Salpingoeca rosetta	31%	39%	0.069	Choanoflagellate
	Suberites domuncula*	39%	43%	0.1	Porifera
	Caenorhabditis remanei	28%	60%	0.22	Nematoda
	Colletotrichum gloeosporioides	NS			Fungi
WD4	Salpingoeca punctatus	24%	95%	$7.00 \mathrm{E}-04$	Choanoflagellate
	Ascaris suum*	75%	90%	0.002	Nematoda
	Salpingoeca rosetta	31%	30%	0.46	Choanoflagellate
	Suberites domuncula*	NS			Porifera
WD5	Caenorhabditis briggsae	35\%	92\%	$8.00 \mathrm{E}-04$	Nematoda

Appendix Table 5.2C continued

Repeat	Taxa	Identity	Query cover	E value	Taxonomic ID
WD5	Salpingoeca rosetta	NS			Choanoflagellate
WD6	Caenorhabditis elegans	26%	65%	$3.00 \mathrm{E}-04$	Nematoda
	Colletotrichum gloeosporioides	36%	97%	$5.00 \mathrm{E}-04$	Fungi
	Grosmannia clavigera	33%	100%	0.005	Fungi
	Cryptococcus neoformans	28%	92%	0.01	Fungi
	Cryptococcus gattii	28%	78%	0.01	Fungi
	Fusarium oxysporum	29%	95%	0.43	Fungi
	Aplysia californica*	38%	48%	0.64	Mollusca
	Anopheles gambiae*	NS			Arthropoda
	Caenorhabditis briggsae	NS			Nematoda
	Caenorhabditis remanei	NS			Nematoda
WD7	Haemonchus contortus	46%	61%	$1.00 \mathrm{E}-04$	Nematoda
	Caenorhabditis elegans	44%	64%	$1.00 \mathrm{E}-04$	Nematoda
	Meloidogyne hapla	42%	61%	$1.00 \mathrm{E}-04$	Nematoda
	Ascaris suum	41%	64%	$3.00 \mathrm{E}-04$	Nematoda
	Caenorhabditis remanei	36%	59%	0.005	Nematoda
	Caenorhabditis japonica	31%	61%	0.057	Nematoda
	Grosmannia clavigera	34%	66%	0.12	Fungi
	Cryptococcus gattii	29%	50%	0.27	Fungi
	Colletotrichum gloeosporioides	32%	52%	0.68	Fungi
	Monosiga brevicollis	38%	38%	0.76	Choanoflagellate
	Hymenolepis microstoma	50%	35%	0.83	Nematoda
	Caenorhabditis briggsae	19%	61%	1.3	Nematoda

Appendix Table 5.2C cont.

Repeat	Taxa	Identity	Query cover	E value
	Anopheles gambiae*	Taxonomic ID		
	Aplysia californica*	NS		Arthropoda
	Caenorhabditis angaria	NS		Mollusca
	Caenorhabditis brenneri	NS		Nematoda
	Clonorchis sinensis	NS		Nematoda
	Cryptococcus neoformans	NS	Nematoda	
	Fusarium oxysporum	NS	Fungi	
	Macrobrachium nipponense*	NS	Fungi	
	Schistosoma mansoni	NS	Arthropoda	
		NS	Platyhelminthe	

Appendix Figure 5.2 Reconstruction of the animal phylogeny based on the Tree of Life website. Major animal groups are color coded from top to bottom: Outgroups, Porifera, Placozoa, Ctenophora, Cnidaria, Deuterostomes (Echinodermata, Hemichordata, Urochordata, Cephalochordata,), Lophotrochozoans and Ecydsozoans.

Appendix Figure 5.7 Amino acid alignment of the CXC domain from enhancer of zeste. Sequences were aligned in Seaview using Muscle and manually edited in Jalview. Percentage identity to the consensus sequence is color coded from dark blue ($>80 \%$) to light blue $(>40 \%)$ and white $(<40 \%)$. Taxa are sorted by pairwise comparisons to each other.

Drosophila_melanogaster Aedes_aegypti
Culex_quinquefasciatus Anopheles gambiae ediculus humanus Rhodnius_prolixus Tribolium_castaneum Dendroctonus_ponderosae Apis_florea
Danaus_plexippus Acyrthosiphon_pisum Rhipicephalus pulchellus Amblyomma_maculatum Lottia_gigantea Helobdella_robusta Daphnia_pulex
Crassostrea_gigas Schistosoma_mansoni Capitella tēleta
Mnemiopsis_leidy
Aplysia_californica Nematostella_vectensis Echinococcus_multilocularis Ciona intestinalis Amphimedon queenslandica iona_savignyi
Trichoplax_adhaerens Hydra_vulgaris
trongylocentrotus_purpuratus salpingoeca_rosetta
xodes scapularis
Oikopleura dioica

Appendix Figure 5.8 Amino acid alignment of the SET domain from EZ. Sequences were aligned in Seaview using Muscle and manually edited in Jalview. Percentage identity to the consensus sequence is color coded from dark blue ($>80 \%$) to light blue ($>40 \%$) and white ($<40 \%$). Taxa are sorted by pairwise comparisons to each other.

Brugia malayi
Dirofilaria immitis Onchocerca_volvulus Loa_loa
Ascaris_suum
Clonorchis_sinensis Bursephelenchus_xylophilus Monosiga_brevicollis Caenorhabditis_japonica Botryllus_primigenus Polyandrocarpa_misakiensis Bombyx_mori
Caenorhabditis elegans Ancylostoma_ceylanicum Haemonchus_contortus Caenorhabditis_brenneri Caenorhabditis remanei Marssonina brunnea Solenopsis invicta

419 KKLV IAP SQVAGWGCFAEED IEKNDFISEYCGESHDESERRGK IYDKLKCSYLFGLNDEMVVDATRKGN 487
488 KK LV IAP SQVAGWGCFAEED IEKND FISEYCGESHDESERRGK IYDKLKC SY LFGLNDEMVVDATRKGN 556 488 KKLV IAP SQVAGWGCFAEED IEKNDFISEYCGESHDESERRGK IYDKLKCSYLFGLNDEMVVDATRKGN 556
$464 K K L V I A P S Q V A G W G C F A E E D I E K N D F I S E Y C G E S H D E S E R R G K I Y D K L K C S Y L F G L N D E M V V D A T R K G N 532$ 464 KKLV IA P SQVAGWGCFAEED IEKNDFISEYCGESHDESERRGKIYDKLKCSYLFGLNDEMVVDATRKGN 532
$499 K K L V I A P S Q V A G W G C F A E E D I E K N D F I S E Y C G E S H D E S E R R G K I Y D K L K C S Y L F G L N D E M V V D A T R K G N ~$ 430 KKLFIAPSQVAGWGCFTEEDIAKNDFISEYCGESHDESERRGKIYDKKKCSYLFGLNEEYLVDATRKGN 498 $695 \mathrm{KHLLMAPSDVAGWGIFIKDGAEKNDFIYEYCGESQDEADRRGKIYDKTMSSFLFNLNRDFVVDATRKGN763}$ 473 KKLSVRPSQVAGWGCFADEPMNRHDFISEYCGESVAESERRGKIYDKTKCSYLFELNQDFQVDATRKGN 541 (
$410-----R L L G W G V F A K N S I A K G G F I S E Y R G E S Q E E A D R R G K V Y D Q L K C S F L F N L N Q E Y V V D A T R K G N ~$ 114 KRMLCAPSRIAGNGLFLLEGAEKDEFITEYVGESDDEAERRGAIYDRYHCSYIFNLETGGAIDSYRVGN182 348 KHLLLAP SDVAGWG IY IKDDVAKNEFISEYCGESQDEADRRGKVYDKYMCSFLFNLNNDFVVDATRKGN 416 369 KHLLLAPSDVAGWG IY IK EDVTKNEFISEYCGESQDEADRRGKVYDKYMCSFLFNLNNDFVVDATRKGN437
 492 KRTYCGPSKIAGNGLFLLEPAEKDEFITEYTGESDDEAERRGAIYDRYQCSYIFNIETGGAIDSYKIGNS60
 2 KLLKVG ISGIAGWGCFIQETADKGDLIAEYTGESKWESERRGLIYDKFCTSYIFGMNNDQFIDATRVGN270 1 KRLTVAPSKIAGNGLFILDSAEKDEFITEYVGESEDEVERRGIIYDSTHCSYIFNLSSGGAIDSHSLGN559 KRMYVAPSKISGNGLFLSEDVEKDEFITEYVGESDEEAERRGAIYDRFKCSYIFNLETGGAIDSYKVGN 590 KATVMGESQLVGFGLYLAETIKKGDFISEYTGESSEEADRRGIVYDRKLLSFLFDLNRDRVIDAARLGN 260 KHLLMAPSDVAGWGIFLKESAAKNEFISEYCGESQDEADRRGKVYDKYMCSFLFNLNN-.-....... 516 397 RRLYVCESNVHGLGLFTTED IAAGDFICEYRGETKAEAQRRGKIYDSRGMSFLFM LNTDFDLDATRFGS 465 K SLLLGRSQLVGYGLFTAED IAQDEFIIEYVGETHDEGARRGDVFDESNVSYVFTLNEGIWVDAAIYGN 199 K LLLLGQ SQLVGYGLFTAEDIAQDEFIIEYVGETHDEGARRGDVFDESNVSYVFTLNEGIWVDAAIYGN190
 KSLALGESQLVGYGLFTIED IAQDDFIIEYVGETHDEGARRGDVFDESN ISYVFTLNEG IWVDAATYGN 205
 458 PKLRVGISKVAGYGLFADEDIGQHVPVGEYVGESEWEGDNRNFAESINKRRYQFTINPQFIIDAGFFGNS26 493 PKLRVGISKVAGYGLFADED IGHHVPVGEYVGESEWEGDNRNFAESINKRRYQFTINPQFITDAGFFGN 561

Conservation

Consensus

Appendix Figure 5.8 continued. Amino acid alignment of the SET domain from EZ. Sequences were aligned in Seaview using Muscle and manually edited in Jalview. Percentage identity to the consensus sequence is color coded from dark blue ($>80 \%$) to light blue ($>40 \%$) and white ($<40 \%$). Taxa are sorted by pairwise comparisons to each other.

Drosophila_melanogaster Aedes_aegypti
Culex_quinquefasciatus Anopheles_gambiae Pediculus_humanus Rhodnius prolixus Tibolium castaneum Dendroctonus_ponderosae Apis_florea
Danaus_plexippus
Acyrthosiphon_pisum
Rhipicephalus_pulchellus Amblyomma_maculatum Lottia gigantea Helobdella_robusta Daphnia_pulex
Crassostrea_gigas Schistosoma_mansoni Capitella_teleta
Mnemiopsis_leidyi
plysia californica Nematostella_vectensis chinococcus multilocularis ciona_intestinalis Amphimedon_queenslandica Ciona_savignyi
Trichoplax_adhaerens
Hydra_vulgaris
Strongylocentrotus purpuratus Salpingoeca rosetta
Ixodes scapularis
oikoplēura_dioica

	RRKGNKIRFANHSINPNCYAKVMMVTGDHR IG IFAKRA IQ PGEELFFDYRYGPTEQ	624
56	RKGNK IRFANHS INPNCYAKVMMVNGDHR IG IFAKRA IQ PGEELFFDYRYGPTEQ	617
57	TRKGNKIRFANHSINPNCYAKVMMVNGDHR IG IFAKRA IQ PGEELFFDYRYGPTEQ	628
55	CRKGNKIRFANHSINPNCYAKVMMVNGDHR IG IFAKRA	607
53	TRKGNKIRFANHSINPNCYAKVMMVNGDHR IG IFAKRA IQ PGEELFFDYRYGPTEQ	593
55	TRKGNKIRFANHSINPNCYAKVMMVNGDHR IG IFAKRA IQ PGEELFFDYRYGPTEQ	610
3	K IRFANHSINPNCYAKVMMVNGDHR IG IFAKRA IQ PGEELFFDYRYGPTEQ	585
55	TRKGNKIRFANHSINPNCYAKVMMVNGDHR IG IFAKRA IQ PGEELFFDYRYGPTEQ	606
55	RKGNK IRFANHSINPNCYAKVMMVNGDHR IG IFAKRA IQ PGEELFFDYRYGPTEQ	610
53	GNK IRFANHSINPNCYAKVMMVNGDHR IG IFAKRA	593
55	TRKGNKIRFANHSINPNCYAKVMMVNGDHR IG IFAKRPIQPGEELFFDYRYGPTEQ	607
52	K IRFANHS INPNCYAKVMMVNGDHR IG IFAKRHIQ SGEELFFDYRYGPTEQ	579
52	TRKGNKIRFANHSINPNCYAKVMMVNGDHR IG IFAKRHIQ SGEELFFDYRYGPTEQ	579
59	TRKGNKIRFANHSINPNCYAKVMMVNGDHR IG IFAKRS IQ SGEELFFDYRYGPTEQ	647
43	NK IRFANHSINPNCYAKVMMVNGDHR IG IFAKRA IQ AGEELFFDYRYGPTEQ	488
45	TRKGNKIRFANHSINPNCYAKVMMVNGDHR IG IFAKRFIHSGEELFFDYRYGPTEQ	512
615	TRKGNKIRFANHSVNPNCYAKVMMVNGDHR IG IFAKRPIQAGEELFFDYRYGPTEQ	670
76	TRKGNKIRFANHSVNPNCHAKV IMVNGDHR IG IFAKRAILPGEELFFDYRYGPTEQ	821
33	K IRFANHSVAPNCYAKVMMVNGDHR IG IFAKRPIQAGEELFFDYRYGPTEQ	390
25	TRKGNKIRFANHSVSPNCFARVMMVNGDHR IG IFAKRNIEAGEELFFDYRYGPTEA	309
5	TRKGNKIRFANHSINPNCYAKVMMVNGDHR IG IFAKRP IQ AGEELFFDYRSGLLES	612
	K IRFANHSISPNCYAKVMMVNGDHR IG IFAKRDIEAGEELFFDYRYSATDA	550
	MRKGNKIRFANHSINPNCYAKV LMVNGDHR IG IFAKRAVQPGEELFFDYRYGPTHQ	765
49	TRKGNKIRFANHSVNPNCYAKVMMVNGDHR IG IFANRP IQAGEELFFDYRYSQSdA	553
21	TRKGNKIRFANHSVDPNCYAKVM IVGGDHRIGIFAKHNIELEEELFFDYR	259
54	TRKGNKIRFANHSVNPNCYAKVMMVNGDHR IG IFASRPIQAGEELFFDYRYSQ SDA	595
48	TRKGNKIRFANHSTNPNCYAKVMMVNGDHR IG IYAKRD IQAGEELFFDYRYGPTDA	543
51	TRKGNKIRFANHSINPNCYAKVMMVNGDHR IG IFAKRN IV TGEELFFDYRYGPTDS	574
60	TRKGNKIRFANHSNMPNCYAKVMMVNGDHR IG IFAKRNIQTGEELFFDYS-AQVDN	657
32	TRKGNKIRFANHANDPNCNARVMLVNGEHRIGIYAKRNIPAGKELFFDYRYGPTDA	383
54	TRKGNKIRFANHSINPNCYAKVMMVNGDHR IG IFAKRHIQSGEELFFDYR---Q VQ	601
49	TRKGNKIRFANHSMNPNAATKIIRVNGDHR IG IFAKTDIRKGEELFFDYRYSTSDA	553

24

62
.
610

10

47

383
601
553

Appendix Figure 5.8 continued Amino acid alignment of the SET domain from EZ. Sequences were aligned in Seaview using Muscle and manually edited in Jalview. Percentage identity to the consensus sequence is color coded from dark blue ($>80 \%$) to light blue ($>40 \%$) and white ($<40 \%$). Taxa are sorted by pairwise comparisons to each other.

Brugia_malayi
Dirofilaria immitis Onchocerca_-volvulus Loa_loa
Ascaris_suum
Clonorchis_sinensis Bursephelenchus_xylophilus Monosiga_brevicollis Caenorhabditis_japonica Botryllus_primigenus Polyandrocarpa_misakiensis Bombyx_mori
Caenorhabditis_elegans Ancylostoma_ceylanicum Haemonchus_contortus Caenorhabditis_brenneri Caenorhabditis_remanei Marssonina brunnea Solenopsis invicta Trichinella_spiralis Metarhizium_anisopliae Metarhizium_acridum Caenorhabditis_briggsae Fusarium_oxysporum Caenorhabditis_angaria Cryptococcus_neoformans Cryptococcus_gattii
488 V IRFANHSKDPNCMAKVFMVNGDHR IG IFARRP IVAGEELFFDYSYNSYQQ 538
557 V IR FANHSKDPNCMAKVFMVNGDHR IG IFARRP IVAGEELFFDYSYNSYOQ 607
533 V IRFANHSKDPNCMAKVFMVNGDHR IG IFARRP IVAGEELFFDYSYNSYQQ 583
568 V IRFANHSKDPNCMAKVFMVNGDHR IG IFARRP IVAGEELFFDYSYNSYQQ 618
499 V IRFANHSKDPNCKGRVFMVNGDHRIGIFARRNIAAGEELFFDYSYNSTQQ 549
764 K IR FANHSVNPNCHAKV------ - - -780
542 LIRFANHSSNPNCYAKVVVVNTDHR IG IFASRFIEKGEELFFDYAYSKNHQ 592
471 K IR FANHANDPNCCARVMMVAGEHR IG IFAERDIPAGRELFFNYRYGPTDA 521
183 LARFANHDKNPSLYARTMVVAGEHR IGFYAKRRLEPNDELTFDYSYGEHQE 233
417 K IR FA 421
438 K IR -440
248 K IRFANHSINPNCYAKVMMVNGDHRIGIFAKRA IOPGEELFFDYRYGPTEQ 298
561 LARFANHSKNPTCYARTMVVAGEHR IGFYAKRRLEISEELTFDYSYSGEHQ 611
227 LIRFANHNNNANCSSEIK IVNGEHRIGVYASRHILCGEELLFDYNYGQTWN 277
271 LIRFANHNNNANCSSEIK IVNGEHR IGVYASRHILFGEELLFDYNYGQTWN 321
560 ISRFANHKKHPTVYAKT IVVAGELR IGFFAKRQLSPGDELLFDYSYNAIRQ610
591 LSRFANHEINPTVNAKTMVVNGEHRIGFYARRELKANTELTFDYGYEKEH 64
261 KTRFTNHSSATNGATMLVNGHRTKFFALDIDAGEELFNYGEGLNKT
514
466 VARFINHSK IPNCVPQVKMVLGSHRIAFYATRNIEANEELFFNY--GVLPE
200 LSRYINHASEHGCNPRILYVNGEYRIKFTAMRDIEAGEELFFNYGENLTKK241
191 LSRY INHASEHGCNPR ILYVNGEYR IKFTAMRD IEAGEELFINGENLTKK 347
297 VLRFLNNSDEPNCYIKYKYVKGDLRIGFYTLKAMKTGQELFINYRYRPEAA 256
 197
527 HTRFINSQGNNNCVAHQRAVGHELRILFLTTRPIRRHEEIHFNYGD----607

Conservation

Consensus

Appendix Figure 5.10 Amino acid alignment of the SANT1 domain from EZ. Sequences were aligned in Seaview using Muscle and manually edited in Jalview. Percentage identity to the consensus sequence is color coded from dark blue ($>80 \%$) to light blue ($>40 \%$) and white ($<40 \%$). Taxa are sorted by pairwise comparisons to each other.

Acromyrmex_echinatior
tta_cephalotes
Mnemiopsis_leidyi
Caenorhabditis_angaria
solenopsis_invicta
Camponotus_floridanus
Caenorhabditis_japonica
Bombus_terrestris
Apis_florea
Bombus_impatiens
Apis_mellifera
Megachile rotundat
Capitella_teleta
Amphimedon_queenslandica mphimedon_queensla ribolium castan -astaneu asonia_vitripennis mblyomma_maculatu humanus_corporis richinella_spiralis hipicephalus_pulchellus Ascaris_suum
hodnius_prolixus ikopleura_dioica Acyrthosiphon_pisum Dendroctonus_ponderosae ciona_savignyi
Aplysia_californica
trigamia_maritima Crassostrea_gigas
Bursephelenchus_xylophilus
Ancylostoma_ceylanicum
Daphnia_pulex
Danaus_plexippus
Dirofilaria_immiti
Caenorhabditis_briggsae

CDLKPSLINSECFIKLAD

3 GDRESGFMDDSIFVDLVHA LMTYDKEDKEKESSAKK K KDLK EKDKEKEKEKDKEKDKDKDRDKKDKEKDKE 103
GDRESGFMDDSIFVDLVHALMTYDKEDKEKESSAKKQKDLKEKDKEKEKEKDKEKDKDKDRDKKDKEKDKE 103
GDRDAGSVNDELFLELVA LMSYDDEPGSSSQ--
GDRETGFIDDQ 1 FLELVNLIQYQ

GDREGDFINDELFLELVTS

Appendix Figure 5.10 continued Amino acid alignment of the SANT1 domain from EZ. Sequences were aligned in Seaview using Muscle and manually edited in Jalview. Percentage identity to the consensus sequence is color coded from dark blue ($>80 \%$) to light blue ($>40 \%$) and white ($<40 \%$). Taxa are sorted by pairwise comparisons to each other.

Acromyrmex_echinatior Atta_cephalotes Mnemiopsis_leidyi Caenorhabditis_angaria Solenopsis_invicta Camponotus floridanus Caenorhabditis japonica Bombus terrestris Apis florea
Bombus_impatien Apis_mellifera Megachile_rotundata Capitella_teleta Amphimedon_queenslandica Drosophila_simulans Tribolium_castaneum Nasonia vitripennis Amblyomma maculatum Pediculus_humanus_corporis Trichinella spiralis Rhipicephalus_pulchellus Ascaris_suum
Rhodnius_prolixus
ikopleura_dioica
acyrthosiphon_pisum Dendroctonus_ponderosae
Ciona_savignyi
Aplysia_californica
Strigamia_maritima
Crassostrea gigas Bursephelenchus xylophilus Ancylostoma ceylanicum
Daphnia pulex
Danaus plexippu
irofilaria_immitis
Caenorhabditis_briggsae

Appendix Figure 5.10 continued Amino acid alignment of the SANT1 domain from EZ. Sequences were aligned in Seaview using Muscle and manually edited in Jalview. Percentage identity to the consensus sequence is color coded from dark blue ($>80 \%$) to light blue ($>40 \%$) and white ($<40 \%$). Taxa are sorted by pairwise comparisons to each other.

Onchocerca_volvulus Monosiga_brevicollis Loa_loa
Brugia_malayi
Aedes_aegypti
Caenorhabditis brenneri
Caenorhabditis_b
Lottia_gigantea
Branchiostoma_floridae
Salpingoeca_rosetta
Ixodes_scapularis
Culex_quinquefasciatus
Caenorhabditis_remane
Botryllus_primigenus
Cryptococcus gatti
Polyandrocarpa_misakiens Drosophila_sechellia
Strongylocentrotus_purpuratus
Drosophila_willistoni
Drosophila_ananassae
Drosophila_yakuba
Marssonina_brunnea
Criona_intestinalis
Hydra_vulgaris
Hydra_vulgaris
Helobdella robusta
Drosophila_melanogaster
Drosophila_erecta
Anopheles_gambiae
Drosophila_pseudoobscura
Drosophila_persimilis
Nematostella_vectensis
Drosophila_virilis
Drosophila_grimshawi
Metarhizium_anisopliae
Metarhizium acridum
Fusarium_oxysporum
Schistosoma_mansoni
Echinococcus_multilocularis
Clonorchis_sinensis

Conservation
Consensus

Appendix Figure 5.10 continued Amino acid alignment of the SANT1 domain from EZ. Sequences were aligned in Seaview using Muscle and manually edited in Jalview. Percentage identity to the consensus sequence is color coded from dark blue ($>80 \%$) to light blue ($>40 \%$) and white ($<40 \%$). Taxa are sorted by pairwise comparisons to each other.

[^0]KTAOPAKO IELRRVLMMDV HOGQPPKQIELRDVLILDV GSSDDSSKLQLRYMELKER GSMEDSNKLQVHYCEMKNN

 $69-----------T E A N Y Y D I C A R R P L R N L F P E K A P S P S D F I F A A I C S V F P D K R T P E E L K E R Y R E L M E K ~$
 55----------ASTAETNSVISGDNNE--ELKKTFPADEIFDAIADYFPDKGSGEDLKDKYRELTEL

 $69--------\quad-\quad$ SSSDDADSDLDPDSVKITPKPTFPADEIFEAIADYFPDKGSGEDLKDKYRELTDL 107 VDLTVVEKKENDEPEETEDADIKPAVEEVEDKLPFPAPIIFQA ISANFPDKGTAQELKEKY 126 LKTP-------ELKTPELKEQELKEPELEMVPSDFPKDIIFKA IVSFFPERGSIEELKERYRELTEK G9AESVEVEKKAKEESEKDDGADVKPAAEEVKNKLPFPAPIIFQAISANFPDGTAQELKEKYIELTEH 99 AESVEVEKKAKEESEKDDGADVKPAAEEVKNKLPFPAPIIFQAISANFPDKGTAQELKEKY IELTEH 112-----------------LLRDVGLDPRNQKLLKPFNEPTKTAAKRFCEAFDNCGAFESLQHI-
 87---------------VEKEDIDPKECLYVESLDLPPFPPQNIDSVTGRKLPDGLNHVGAKRKWEEPLE-
 85-----GGNKKKNDDDDDDDNSPKSLDNMSKNSIOHKETIINFISLTFPTKGSKSVLERRFILFKEN
 107 VDPTVVEKKEKEEPEETEDADVKPAVEDVKDKLPFPAPIIFQA ISANFPDKGTAQELKEKYIELTEH 95-----------ENLTCNDLNRLLQPNAMKKNVKAFPAPIIFQA ISSLFPENGTGEELRDKYIELTER

 99----------DDKEEANADTKGKVEKVKEKLPFPAPIIFQAISANFPDKGTAQELKEKYIELTEH IADDNDVEDKDVEDKKDVDVSETQPKVEETKEKLPFPAPIIFQAISANFPDKGTAQELKEKYIELTEH FKNTOPAKO IELRRVLMMDV

Appendix Figure 5.10 continued Amino acid alignment of the SANT1 domain from EZ. Sequences were aligned in Seaview using Muscle and manually edited in Jalview. Percentage identity to the consensus sequence is color coded from dark blue ($>80 \%$) to light blue ($>40 \%$) and white ($<40 \%$). Taxa are sorted by pairwise comparisons to each other.

Appendix Figure 5.11 Amino acid alignment of the SANT2 domain from enhancer of zeste. Sequences were aligned in Seaview using Muscle and manually edited in Jalview. Percentage identity to the consensus sequence is color coded from dark blue ($>80 \%$) to light blue $(>40 \%)$ and white ($<40 \%$). Taxa are sorted by pairwise comparisons to each other.

Appendix Figure 5.12 ESC-EZ binding site identified in Drosophila melanogaster is poorly conserved across all taxa. Only arginine (N) is highly conserved across all taxa excluding Hydra vulgaris, nematodes and fungi. Percentage identity to the consensus sequence is color coded from dark blue ($>80 \%$) to light blue ($>40 \%$) and white ($<40 \%$). Taxa are arranged alphabetically.

Marssonina_brunnea Amphimedon_queenslandica culex_quinquefasciatu Meloidogyne_hapla Trichoplax_adhaerens Salpingoeca punctatus Srosophila simulans schisto - mansoni Branchiostoma floridae Ciona_savignyi
Ixodes_scapularis Clonorchis_sinensis Nematostella_vectensis Capitella_teleta $\begin{array}{lr}\text { Capitella_teleta } & 2 \text { YLMENEA-PPGQNLVQGHNRI } \\ \text { Strongylocentrotus_purpuratus2 } 2 \text { EGEKADYLTQRPYISGHNRT }\end{array}$ Echinococcus multilocularis 63AAMAVAV-AAAGPLEVGHKRV Echinococcus_granulosus Ascaris_suum Hydra_vulgaris
Daphnia_pulex
ciona_intestinali trigamia_maritim Rhipicephalus_pulchellus Lottia_gigantea Aedes_aegypti Crassostrea_gigas Drosophila_willistoni Pediculus_humanus Nasonia vitripennis Wuchereria bancrof Drosophila grimshawi Drosophila ananassae Schmidtea_mediterranea

2 LEPDDA--DENRPYHSGYTRTY 44 AAMAVAV-AAAGPLEVGHKRV 61 FNQS--- DREKRALKGNNA 5 TELD--- QLENASQMNHDRS 2 QAEGDDGYETQRPFITGHNRLY 14 LEKEENETSPAAHYAAGHHR 14 LEKEENETSPAAHYAAGHHR 2 MEQDEPDIEQPRPYISGHNRLY 22 IEPENDS-QCNRQFVQGHNRL 2 IECDENEFDSQRPFITGHSRMY 2 MEAENDI-Q INRQFMQGHNRLY 3 LELDEDDISNQRSYITGHNR 2 LELEENDFDGQRPYITGHNR 2 LELDENELENSRPYITGHNR

80 FMQA----DRERRATKGNNAA
3 LELDEDDISNQRSYITGHNR
3 LELDEDDISNQRSYITGHNR

90 YDVKPVSEQKKRPLESGAGQSEKRSSTSQNHHPRKIDEDAERTDKPRPLPGRLGPLPEDLTELVNPKKPALA16

 2------ QVDRVGRAQSARQYFHSSTNVA IQPEEDEYDSDDCVDMSFLEAELGKHLEDMANLTRSECALLK65
 90 LDPTLSV-_--RPMVTGHNRIY 30 LEGEDLELDWTRPFTSGHNRLY 7 LGKRRERGLSGRPYASGHHRLY 5 M EQ DEVD ID LPRPYISGHNRLY

FH h HTetclpy hekeldid YHTRTSQPVRACEFDVD FHSETVVPVRPCEIDND
yHTETCLPIRPOEIDR
YHTRSVQPLRACEFDHD FHSSTCVPISQSELGSD
 SEGESDPLWLRQKTIQM IDEFSDVNEGEKELMK59 SEAEDAPVWLRQHYQRKVEEFTDVNPGEKQ IMQ157 SEeEtDP IW LKRATRTHM IDEFTDVNEGEKELMK101 SEEETDPEWLRAHTTKMLDEFTDVNDGEKP IMK78 SESEDDPDWLRIKTQ LM IDEFTDVNEGEKELMK76

FRTHSLQP IRPQEMDED FHTTTLQPIEPTAFDCD FHTTTLQPIEPTAFDC
FHTTTLQP IEPTAFDCDS
FGFRSRHPLMSSSQ-VSA H-TSRHLMSSSQ-VSA-KQMDQE YH-TLNNQLLPSLAHIKAEDDIAPEW HHTSTCLP IQAKELDVDSENETDPEW
FHSETVVPIRPCEFDVDSEEETDPEW

HTLTCLPVRPQEIDVD

YHTETCLPIRPQEIDRD

 FYQIINQPVRPHEIDFD HHTMTCLPVHPKELDID YHTLTSEVIRPQEIDVD HHTETCLPVHPKELDID HHTETCLPVHPKELD 1 CHHTTCLPVYPKEMD HHTT
HHTV HHTVTCLPIYPKELDADS FGFRSRHPLMKCTO-IST-KQ HHTETCLPVHPKELD

\section*{EGENDPN}
 SESEDDPEW

H H T
SH
S SEAEDAPEWLRQHYQRKVEEFTDVNQGEKQLMQ16 SEGEENPLWMRMRTIQM IDDFTDVNDGEKELMK71 LRQKTMNM IDEFTDVNEGEKEVMK72 IK ERTRMM IDEFTDVNEGEKELMK73 LRDHYQRKVEEFTDVNKGEKEFMQ 133 LRDHYQRKVEEFTDVNKGEKEFMQ 133
LRDHYQRKVEEFTDVNKGEKEFMQ 114 CRQLIIRQIEDFVDISRPEKEFIK126 RQ LIIRQ IEDFVDISRPEKEFIK 126 KEKTLEM IEEFTDLNAGEKQLMK71 RAKTCMM IDEFTDVNEGEKELMK73 RTKTKKMLDEFTDVNDGEKPIMK85 RIK K LM IDEFTDVNEGEKELMK 180 RIKTQMM IDEFTDVNEGEKELMK73 LRQKTVNM IDEFTDVNEGEKELMK 92 LQ HKTMQM IDEFTDVNEGEKELMK73 RQKTVNM IDEFTDVNEGEKELMK72 LRQKT IQM IDEFSDVNEGEKELMK74 QQKTIMM IDDFTDVNEGEKELMK73 LOQKTMM IDDFTDVNEGEKELMK73 40------AVKTFRKYHNRLYSHTW SAMSLKDDEFDIDSESEENKOWLFDOYYRKVEEFSDLNE

Conservation

Consensus

Appendix Figure 5.14 Amino acid alignment of the VEFS domain from Suz12. Sequences were aligned in Seaview using Muscle and manually edited in Jalview. Percentage identity to the consensus sequence is color coded from dark blue ($>80 \%$) to light blue ($>40 \%$) and white ($<40 \%$). Taxa are sorted by pairwise comparisons to each other.

Mnemiopsis_leidyi Drosophila_erecta Drosophila_yakuba Drosophila_melanogaster brosophila_virilis Megachile rotundata Drosophila persimilis Loa loa
Aplysia californica Dirofilaria immitis Acromyrmex_echinatior rosophila_pseudoobscura Brugia_malayi onchocerca_volvulus
Apis_florea
Apis_mellifera
Acyrthosiphon_pisum Camponotus floridanus Bombyx_mori
Bombus terrestris
Harpegnathos_saltator
Danaus_plexippus ombus_impatiens Dendroctonus_ponderosae Tribolium_castaneum Hymenolepis_microstoma salpingoeca_rosetta Neurospora_crassa Bursephelenchus_xylophilus Metarhizium acridum Metarhizium anisoplia Fusarium oxysporum

10 MVIDIAP- - - - YKAPHSRLYFHSKTYEPILPHEFEYDSEQEESMSWMEERTKQMIQDFTDVNEAEKAIM 74 3 LELDEDEISNQRSYITGHNRLYHHTETCLPVHPKELDIDSEGESDPLWLRQKTIQM IDEFSDVNEGEKELM 73 3 LELDEDEISNQRSYITGHNRLYHHTETCLPVHPKELDIDSEGESDPLWLRQKTIQM IDEFSDVNEGEKELM 73 3 LELDEDEISNQRSYITGHNRLYHHTETCLPVHPKELDIDSEGESDPLWLRQKTIQM IDEFSDVNEGEKELM 73 3 LELDEDD ISNQRSYITGHNRLYHHTETCLPVHPKELDIDSEGESDPLWLRQKTIQM IDEFSDVNEGEKELM 73 2 LELDENEYESORPYITGHNRLYHHTVTCLP IYPKEMD IDSEGENDPKWLQTKTMMM IDDFTDVNEGEKELM 72 3 LELDEDDISNORSYITGHNRLYHHTETCLPVHPKELDIDSEGESDPLW LRQKTIQM IDEFSDVNEGEKELM 98 FMQA----DRERRATKGNNAAYFGFRSRHPLMKCTQ-IST-KQTDQEWLREFITRQ 98 FMQA----DRERRATKGNNAAYFGFRSRHPLMKCTQ-IST-KQTDQEWLREFIIRQIEDFLDLSRVEKDF 2 QEVESDA-GLMRQLIQGHNRLYFHTVTCQPVRPQELDNEGQEESHPGWLKEKTVMM IDEFTDVNEGEKELM
87 FMQA----DRERRATKGNNAAYFGFRSRHPLMKCTQ-IST-KQTDQEWLREFIIRQIEDFLDLSRVEKDFM 151
2 LELDENEFESQRPYITGHNRLYHHTVTCLP IYPKEMD IDSEGENDPKWLQTKTMMM IDDFTDVNEGEKELM 72 3 LELDEDDISNQRSYITGHNRLYHHTETCLPVHPKELDIDSEGESDPLWLRQKTIQMIDEFSDVNEGEKELM 73 80 FMQA--- DRERRATKGNNAAYFGFRSRHPLMKCTQ-IST-KQTDQEWLREFIIRAIEDFLDLSRVEKDFM 144 85 FMQA---DRERRATKGNNAAYFGFRSRHPLMKCTQ-IST-KQTDQEWLREFIIRQIEDFLDLSRVEKDFM 149 15 LELDENEYESQRPYITGHNRLYHHTVTCLPIYPKEMDIDSEGENDPKWLQTKTRMMIDDFTDVNEGEKELM 85 2 LELDENEYESQRPYITGHNRLYHHTVTCLPIYPKEMDIDSEGENDPKWLQTKTRMMIDDFTDVNEGEKELM 72 2 LELDENEFESORPYITGHNRLYHHTVTCLPIYPKEMDIDSEGENDPKW LOTKTMMM IDDFTDVNEGEKELM 72 2 LELDDADLDAQRPYVTGHNRLYHHTITCLPVYPNELDIDSESETDPLW LQQKTMMM IDEFTDVNEGEKELM 72 2 LELDENEYESQRPYITGHNRLYHHTVTCLPIYPKEMDIDSEGENDPKWLQTKTMMM IDDFTDVNEGEKELM 72 2 LeLEENEFESQRPYITGHNRLYHHTVTCLPIYPKEMDIDSEGENDPKWLQTKTMMMIDDFTDVNEGEKELM 72 2 LELDDNDVDAQRPYLTGHNRLYHHT ITCLPVYPNELDIDSESETDPLWLQQKTMMM IDEFTDVNEGEKELM 72 2 LELDENEYESQRPYITGHNRLYHHTVTCLPIYPKEMD IDSEGENDPKWLQTKTMMM IDDFTDVNEGEKELM 72 2 LELDDCEYDGQRPFITGHNRLYHHTTTCLP IYPKEMDIDSEGENDPEWLQSKTMMM IDEFTDVNEGEKELM 72 2 LELDDCEYDGQRPFITGHNRLYHHTTTCLPIYPKEMDVDSEGENDPEWLRNKTMMMIDEFTDVNEGEKELM 72 7 LAKETISAKEDATKMVKHRRKFYHSSTLQQITAGDN-YDSEEEESAKWLRDQYQRRVQEITDVNKGEKELM 76 21 ASTSARGELKARLNVQQQRR-YYSSPFCVEQPGIGDDDDDDDDVDESWLTHSSNALLDEFNDVNSGEKAFM 90 23 R SRAAAAAPQKKPYIPN INRP IYDPLSKVELAPGSE-V--RPPLDEGWLITKHADALGEFSDVEPQEKEYM 90 2 LHGADVV-SWRGTLTRGASPFALNSKFNDVVFLCELSTSQKSNNGKKTAREKRMTYFEQYDHENEVPNTNV 71 15 PLRRPVKASVSKVLVPN IPQPLFHPISKAKLKPGQE-VPQ-NTPDNTWLIQKHRESIADFSDVTAAEKEYI 83 15 PLRRPVKASASKVLVPN IPQPLFHP ISKAKLKPGQD-VPQ-NTPDITWLIQKHRESIADFSDVTAAEKEYI 83 20 PAAVQAVIEKKKVIIPESCQPLFDPVSKARLKPGEE-LPK-PVVDNAWLLQKHREDIGEFSDVSKEEKEYI 88

Appendix Figure 5.14 continued Amino acid alignment of the VEFS domain from Suz12. Sequences were aligned in Seaview using Muscle and manually edited in Jalview. Percentage identity to the consensus sequence is color coded from dark blue ($>80 \%$) to light blue ($>40 \%$) and white ($<40 \%$). Taxa are sorted by pairwise comparisons to each other.

Marssonina_brunnea Amphimedon_queenslandica Culex_quinquefasciatus Meloidogyne_hapla Trichoplax_adhaerens Salpingoeca punctatus brosophila_simulan Schistosoma_mansoni Branchiostoma_floridae Ciona_savignyi
Ixodes_scapularis Clonorchis_sinensis Nematostella_vectensis Capitella_teleta Strongylocentrotus purpuratuz Echinococcus_multilocularis134 Echinococcus_granulosus Ascaris_suum
Hydra_vulgaris
Daphnia_pulex
Ciona_intestinalis Strigamia maritima Rhipicephalus pulchellus Cottia gigantea Aedes_-aegypti Crassostrea_gigas Drosophila_willistoni Pediculus_humanus Nasonia_vitripennis Wuchereria_bancrofti Drosophila_grimshawi Drosophila_ananassae Schmidtea_mediterranea

162KY $\operatorname{NGQMVKHGSQASKLPSPLKPLLSPTLPDVVERELER--IQAKKTAKEKEAPPGASRDTVGARY}$
 V SYHV VSYHWHQ IEQLKLRTHFLLLLSTLLNISVIDEEERYDLLMRL AQEYATVM IKKGLQRNFLQHLVNLYDYTLISASC IE ISMATL
ISKR----- DTVDHD IMTLLFMLRENGLLMADEVFEVARRS ISKR-----DTVDHD IMTLLFMLRENGLLMADEVFEVARRS
LDAKGTEIVRKNLYRNFILHMCSLFDYGLIAAETVYKTVQKL IHQ H SRW IHRRRLRTNLLLHLVNLVDYGLLSSSH LRQLM LIY VEEKGVW IVQRNLVRNMLLHLVNLYDFSLISSSVVQQTISRL LDVHAALIVKHNLRRNLLLHFVT LVDFGVLKASVLCSLMDHF VEQQGEVLMQRNLYRNFVLHMCNLLDFGLVSTSVVYTTVRRL VQRYASS IHRRHLRNNLILHFANLVDYGLLSPGQLRHLVTMY IDVNAKK IM SONLKRNFLIHLVSLHDFNLNGGQ TFQ LMOK IDVNAKK IM SQ NLKRNFLIHLVSLHDFNLLNGGQ IFQ LMQKL EEYGPKIIQKGLFQNFVLHLTNLYDFGLIRPDLIQRTIAEF LEVHGEDILRENLTSNFLLHLINLYDFSLLHPQLIPRFMHQL
VQRYGDRLHRRRLRNNFILHLAN LYDYGLVAPSFMRKVTCAF VQRYGDRLHRRRLRNNFILHLANLYDYGLVAPSFMRKVTCAF
VQRYSDRLHRRRLRNNFILHLAN LYDYGLVAPSLMRKVTCAF VQRYSDRLHRRRLRNNFILHLANLYDYGLVAPSLMRKVTCAF AEEYGKEIIQNNLIKNFMLHLNNLIDFHIIPQSVLVKSMAII LDNHGQELLKRNLYRNFILHLSNLYDFGIIAPATVLRTINSL LNQYTTLIVKHSLRRNLLLHFVTIVDFGVLKASALCSLMDHF VO NHGREV IERNLYKNFILHMSSLYDFGLITGVVIYOT IRET Q Q NGREV IERNLYKNFILHMSSLYDFGLITGVVIYQTIREL EQKGHELIQRNLYRNFVLHMCNLLDYGLVSASVVYTTVRRI VQKHGPEILEKNLLRNFTIHLVNLFDFSLIRPDVVQRCTSQL
IDCRGRDLLRKNLYRNFILHVCSMFDFGLVSPEVMQNA IRKL VNEHGEAMVKKNLAKNFLIHMVNLFDFSLIRPDVVHKTMRML LDAKGHEIVRKNLYRNFILHMCSLFDYGLIAAETVYKTVQKL LKAKGDELLKKNLYRNFVLHVCNLFDFGLISSQTVYMIIRQV LEKKGKELLMKNLYRNFVLHVSSLFDFGLISPVILYQTIQKL LQKHRQDILQNNFQNAWVFHLTALHEKEALDTDEVYDLTMRL LDAKGHEIVRKNLYRNFILHMCSLFDYGLIAAETVYKTVQKL LDAKGHEIVRKNLYRNFILHMCSLFDYGLIAAETVYKTVQKL
35 MWNAFLPVH IM LARKMTYKAARV
38 LW NGH IM SNNY IADGQVANACET
66 AWNKHVI-RDPLGRCQYKDSLMR
60 LW NLHVMRHGFVGDCOLPIACEM
158 LW NALLLPSGVVCDGQVLTLVCQ
102 MW NLH IM - RNH IADCOVPTACST
79 LW NLYVMKHNC IADAQLATTCRE
77 MWNLH IMKHGFVGDCQ IALACN L
68 LW NALLLPSEVVCD SOLANLAAC
72 LW NLHLM - EKYVADAQVYSACLT
73 MWNIHTM-HHYVGDYQLPIACHT
MWN IHTM-HHYVGDYOLPIACHT
IW NAFLLPSEEVVA
15 IW NAFLLPSEVVSDSQ
MGHLLLA
MGHLLLA
27 LW NLFLLPNNPFGRCHMYRTCRL
72 LW N IHVL-EKYIADFTCARGCIS
74 LWNLHVLKHNYVGDCQMGVALQM
86 LW N LY IM KHSC IADAQM LSTCRE
181 IW NLHVMKQGFVGDCQISLACSM
74 IW NLHVMKQGFVGDCO IS LACSM
74 MWNLHVMRYGFVGDCOIALACNT
93 MWNLH IM - TNYISDCQ IPQACYT
74 MWNLHVMKYGYVGDCQ IPVALDMF
73 LW NLHVMKYNFIADCQIPEACYTF
75 LW NLHVMRHGFVGDCQLPLACEM
74 LW NLHVMKHGYVGDCQIPLACLM
$74 \mathrm{MW} \mathrm{N} L H V M K H G Y V G D C Q I P L A C Q M$
44 LW S IFLLNHKPLGRCHTYRTCRL
75 LW NLHVMRHGFVGDCOLPLACEM
75 LW NLHVMRHGFVGDCQLPLACEM
75 LW NLHVMRHGFVGDCOLPLACEMFLDAKGHEIVRKNLYRNFILHMCSLFDYGLIAAETVYKTVQKL

Conservation

Consensus

Appendix Figure 5.14 continued Amino acid alignment of the VEFS domain from Suz12. Sequences were aligned in Seaview using Muscle and manually edited in Jalview. Percentage identity to the consensus sequence is color coded from dark blue ($>80 \%$) to light blue ($>40 \%$) and white ($<40 \%$). Taxa are sorted by pairwise comparisons to each other.

Mnemiopsis_leidyi Drosophila_erecta Drosophila_yakuba Drosophila_melanogaster Drosophila_virilis Megachile rotundata Drosophila_persimilis oa loa
plysia californica Dirofilaria immitis Acromyrmex_echinatior rosophila_pseudoobscura Brugia_malayi onchocerca_volvulus Apis_florea
Apis_mellifera
Acyrthosiphon_pisum Camponotus_floridanus Bombyx_mori
Bombus terrestris Harpegnathos_saltator Danaus_plexippus ombus_impatiens Dendroctonus_ponderosae ribolium_castaneum ymenolepis_microstoma Salpingoeca_rosetta Neurospora crassa Bursephelenchus xylophilus Metarhizium acridum Metarhizium anisopliae Fusarium_oxysporum

Appendix Figure 5.14 continued Amino acid alignment of the VEFS domain from Suz12. Sequences were aligned in Seaview using Muscle and manually edited in Jalview. Percentage identity to the consensus sequence is color coded from dark blue ($>80 \%$) to light blue ($>40 \%$) and white ($<40 \%$). Taxa are sorted by pairwise comparisons to each other.

Appendix Figure 5.15 Amino acid alignment of the Zinc finger domain from Suz12. Sequences were aligned in Seaview using Muscle and manually edited in Jalview. Percentage identity to the consensus sequence is color coded from dark blue ($>80 \%$) to light blue ($>40 \%$) and white ($<40 \%$). Taxa are sorted by pairwise identity in Jalview.

Appendix Figure 5.17 Amino acid alignment of the WD40-1 repeat from Esc. Sequences were aligned in Seaview using Muscle and manually edited in Jalview. Percentage identity to the consensus sequence is color coded from dark blue ($>80 \%$) to light blue ($>40 \%$) and white ($<40 \%$). Taxa are sorted by pairwise identity in Jalview.

Appendix Figure 5.17 continued Amino acid alignment of the WD40-2 repeat from Esc. Sequences were aligned in Seaview using Muscle and manually edited in Jalview. Percentage identity to the consensus sequence is color coded from dark blue ($>80 \%$) to light blue ($>40 \%$) and white ($<40 \%$). Taxa are sorted by pairwise identity in Jalview.

Appendix Figure 5.17 continued Amino acid alignment of the WD40-3 repeat from Esc. Sequences were aligned in Seaview using Muscle and manually edited in Jalview. Percentage identity to the consensus sequence is color coded from dark blue ($>80 \%$) to light blue ($>40 \%$) and white ($<40 \%$). Taxa are sorted by pairwise identity in Jalview.

Appendix Fig. 5.17 continued Amino acid alignment of the WD40-4 repeat from Esc. Sequences were aligned in Seaview using Muscle and manually edited in Jalview. Percentage identity to the consensus sequence is color coded from dark blue ($>80 \%$) to light blue ($>40 \%$) and white ($<40 \%$). Taxa are sorted by pairwise identity in Jalview.

Appendix Figure 5.17 continued Amino acid alignment of the WD40-5 repeat from Esc. Sequences were aligned in Seaview using Muscle and manually edited in Jalview. Percentage identity to the consensus sequence is color coded from dark blue ($>80 \%$) to light blue ($>40 \%$) and white ($<40 \%$). Taxa are sorted by pairwise identity in Jalview.

Appendix Figure 5.17 continued Amino acid alignment of the WD40-6 repeat from Esc. Sequences were aligned in Seaview using Muscle and manually edited in Jalview. Percentage identity to the consensus sequence is color coded from dark blue ($>80 \%$) to light blue ($>40 \%$) and white ($<40 \%$). Taxa are sorted by pairwise identity in Jalview.

Appendix Figure 5.17 continued Amino acid alignment of the WD40-7 repeat from Esc. Sequences were aligned in Seaview using Muscle and manually edited in Jalview. Percentage identity to the consensus sequence is color coded from dark blue ($>80 \%$) to light blue ($>40 \%$) and white ($<40 \%$). Taxa are sorted by pairwise identity in Jalview.

REFERENCES

Aboobacker, A., \& Blaxter, M. (2003). Hox gene evolution in nematodes : novelty conserved. Current Opinion in Genetics \& Development, 13(6), 593-8.

Aboobaker, A., \& Blaxter, M. L. (2003). Hox gene loss during dynamic evolution of the nematode cluster. Current Biology, 13(02), 37-40.

Abouheif, E., \& Wray, G. A. (2002). Evolution of the gene network underlying wing polyphenism in ants. Science, 297(5579), 249-52.

Alpert, P. (1999). Effects of clonal integration on plant plasticity in Fragaria chiloensis. Plant Ecology, 141(1), 99-106.

Aspland, S. E., \& White, R. A. (1997). Nucleocytoplasmic localisation of extradenticle protein is spatially regulated throughout development in Drosophila. Development, 124(3), 741-7.

Beldade, P., \& Brakefield, P. M. (2002). The genetics and evo-devo of butterfly wing patterns. Nature Reviews. Genetics, 3(6), 442-52.

Beldade, P., \& Brakefield, P. M. (2003). Concerted evolution and developmental integration in modular butterfly wing patterns, 179, 169-179.

Beldade, P., Brakefield, P. M., \& Long, A. D. (2002). Contribution of Distal-less to quantitative variation in butterfly eyespots. Nature, 415, 315-318.

Beldade, P., Koops, K., \& Brakefield, P. M. (2002). Modularity, individuality, and evodevo in butterfly wings. Proceedings of the National Academy of Sciences, 99(22), 14262-14267.

Beldade, P., Rudd, S., Gruber, J. D., \& Long, A. D. (2006). A wing expressed sequence tag resource for Bicyclus anynana butterflies, an evo-devo model. BMC Genomics, 7, 130.

Bennett, D. C., \& Lamoreux, M. L. (2003). Review - Pigment Gene Focus The Color Loci of Mice - A Genetic Century. Pigment Cell Research / Sponsored by the European Society for Pigment Cell Research and the International Pigment Cell Society, 16, 333-344.

Betts, M. J., \& Russell, R. B. (2007). Amino-Acid Properties and Consequences of Substitutions. Bioinformatics for Geneticists: A Bioinformatics Primer for the Analysis of Genetic Data: Second Edition, 4, 311-342.

Birve, A, Sengupta, A. K., Beuchle, D., Larsson, J., Kennison, J. A, Rasmuson-Lestander A, \& Müller, J. (2001). $\mathrm{Su}(\mathrm{z}) 12$, a novel Drosophila Polycomb group gene that is conserved in vertebrates and plants. Development, 128, 3371-3379.

Blair, S. S., \& Ralston, A. (1997). Smoothened-mediated Hedgehog signalling is required for the maintenance of the anterior-posterior lineage restriction in the developing wing of Drosophila. Development, 124, 4053-4063.

Boerjan, B., Sas, F., Ernst, U. R., Tobback, J., Lemière, F., Vandegehuchte, M. B., ... De Loof, A. (2011). Locust phase polyphenism: Does epigenetic precede endocrine regulation? General and Comparative Endocrinology, 173(1), 120-8.

Bowers, M. D. (1998). Effects of hostplant species and artificial diet. Journal of the Lepidopterists Society, 52(1), 73-83.

Bracken, A. P., Dietrich, N., Pasini, D., Hansen, K. H., \& Helin, K. (2006). Genomewide mapping of Polycomb target genes unravels their roles in cell fate transitions. Genes \& Development, 20, 1123-1136.

Braendle, C., \& Flatt, T. (2006). A role for genetic accommodation in evolution? BioEssays, 28, 868-873.

Brakefield, P., Gates, J., Keys, D., Kesbeke, F., Wijngaarden, P., Monteiro, A., ... Carroll, S. (1996). Development, plasticity and evolution of butterfly eyespot patterns. Nature, 384(6606), 236-242.

Brakefield, P. M. (1996). Seasonal polyphenism in butterflies and natural selection. Trends in Ecology \& Evolution, 11(7), 275-277.

Brakefield, P. M. (2001). Structure of a Character and the Evolution of Butterfly Eyespot Patterns. Journal of Experimental Zoology. Part B, Molecular and Developmental Evolution, 104, 93-104.

Brakefield, P. M. (2006). The power of evo-devo to explore evolutionary constraints : experiments with butterfly eyespots . Zoology, 106(2003), 283-290.

Brakefield, P. M., \& French, V. (1999). Butterfly wings: the evolution of development of colour patterns. BioEssays, 21(5), 391-401.

Brakefield, P. M., Kesbeke, F., \& Koch, P. B. (1998). The regulation of phenotypic plasticity of eyespots in the butterfly Bicyclus anynana. The American Naturalist, 152(6), 853-60.

Brattström, O., Kjellén, N., Alerstam, T., \& Åkesson, S. (2008). Effects of wind and weather on red admiral, Vanessa atalanta, migration at a coastal site in southern Sweden. Animal Behaviour, 76(2), 335-344.

Bray, S. (1999). Drosophila development: Scalloped and Vestigial take wing. Current Biology : CB, 9(7), R245-7.

Breiling, A., Sessa, L., \& Orlando, V. (2007). Biology of polycomb and trithorax group proteins. International Review of Cytology, 258(07), 83-136.

Breuker, C. J., Gibbs, M., Dyck, H. V. A. N., Brakefield, P. M., \& Klingenberg, C. P. (2007). Integration of Wings and Their Eyespots in the Speckled Wood Butterfly Pararge aegeria. Journal of Experimental Zoology. Part B, Molecular and Developmental Evolution, 463, 454-463.

Brewster, R., Hardiman, K., Deo, M., Khan, S., \& Bodmer, R. (2001). The selector gene cut represses a neural cell fate that is specified independently of the Achaete-ScuteComplex and atonal. Mechanisms of Development, 105, 57-68.

Brisson, J. A, Ishikawa, A, \& Miura, T. (2010). Wing development genes of the pea aphid and differential gene expression between winged and unwinged morphs. Insect Molecular Biology, 19 Suppl 2, 63-73.

Brock, Jim, P., \& Kaufman, K. (2006). Kaufman Field Guide to Butterflies of North America. Houghton Mifflin Harcourt.

Brunetti, C. R., Selegue, J. E., Monteiro, a, French, V., Brakefield, P. M., \& Carroll, S. B. (2001). The generation and diversification of butterfly eyespot color patterns. Current Biology : CB, 11(20), 1578-85.

Cao, R., Wang, L., Wang, H., Xia, L., Erdjument-Bromage, H., Tempst, P., ... Zhang, Y. (2002). Role of histone H3 lysine 27 methylation in Polycomb-group silencing. Science, 298(5595), 1039-43.

Cao, R., \& Zhang, Y. (2004a). SUZ12 is required for both the histone methyltransferase activity and the silencing function of the EED-EZH2 complex. Molecular Cell, 15(1), 57-67.

Cao, R., \& Zhang, Y. (2004b). The functions of E(Z)/EZH2-mediated methylation of lysine 27 in histone H3. Current Opinion in Genetics \& Development, 14(2), 15564.

Carroll, S. B., Gates, J., Keys, D. N., Paddock, S. W., Panganiban, G. E., Selegue, J. E., \& Williams, J. a. (1994). Pattern formation and eyespot determination in butterfly wings. Science (New York, N.Y.), 265(5168), 109-14.

Carroll, S., Grenier, J., \& Weatherbee, S. (2001). Wiley: From DNA to Diversity: Molecular Genetics and the Evolution of Animal Design, 2nd Edition - Sean B. Carroll, Jennifer K. Grenier, Scott D. Weatherbee. Blackwell Science.

Cedar, H., \& Bergman, Y. (2009). Linking DNA methylation and histone modification: patterns and paradigms. Nature Reviews. Genetics, 10(5), 295-304.

Cerisse E Allen. (2008). The "Eyespot Module" and Eyespots as Modules: Development , Evolution, and Integration of a Complex Phenotype. Journal of Experimental Biology, 190, 179-190.

Chai, J., \& Tarnawski, A. S. (2002). Serum response factor: Discovery, biochemistry, biological roles and implications for tissue injury healing. Journal of Physiology and Pharmacology, 53, 147-157.

Champagne, F. A. (2013). Epigenetics and developmental plasticity across species. Developmental Psychobiology, 55(1), 33-41.

Cho, E. H., \& Nijhout, H. F. (2013). Development of polyploidy of scale-building cells in the wings of Manduca sexta. Arthropod Structure \& Development, 42(1), 37-46.

Ciferri, C., Lander, G. C., Maiolica, A., Herzog, F., Aebersold, R., \& Nogales, E. (2012). Molecular architecture of human polycomb repressive complex 2. eLife, 1, e00005.

Coghlan, A., \& Wolfe, K. H. (2002). Fourfold faster rate of genome rearrangement in nematodes than in Drosophila. Genome Research, 12, 857-867.

Crews, D., \& Gore, A. C. (2012). Epigenetic synthesis: a need for a new paradigm for evolution in a contaminated world. F1000 Biology Reports, 4(18), 1-6.

Crispo, E. (2008). Modifying effects of phenotypic plasticity on interactions among natural selection, adaptation and gene flow. Journal of Evolutionary Biology, 21, 1460-1469.

Croucher, P. J. P., Brewer, M. S., Winchell, C. J., Oxford, G. S., \& Gillespie, R. G. (2013). De novo characterization of the gene-rich transcriptomes of two colorpolymorphic spiders, Theridion grallator and T. californicum (Araneae: Theridiidae), with special reference to pigment genes. BMC Genomics, 14, 862.

De Celis, J. F., \& Barrio, R. (2000). Function of the spalt/spalt-related gene complex in positioning the veins in the Drosophila wing. Mechanisms of Development, 91(1-2), 31-41.

Degnan, J. H., \& Rosenberg, N. A. (2009). Gene tree discordance, phylogenetic inference and the multispecies coalescent. Trends in Ecology and Evolution, 24(March), 332340.

Dellino, G. I., Schwartz, Y. B., Farkas, G., McCabe, D., Elgin, S. C. R., \& Pirrotta, V. (2004). Polycomb silencing blocks transcription initiation. Molecular Cell, 13, 887893.

Derkacheva, M., \& Hennig, L. (2013). Variations on a theme: Polycomb group proteins in plants. Journal of Experimental Botany.

Dilão, R., \& Sainhas, J. (2004). Modelling butterfly wing eyespot patterns. Proceedings. Biological Sciences / The Royal Society, 271(1548), 1565-9.

Dillon, S. C., Zhang, X., Trievel, R. C., \& Cheng, X. (2005). The SET-domain protein superfamily: protein lysine methyltransferases. Genome Biology, 6, 227.

Dolinoy, D. C. (2008). The agouti mouse model: an epigenetic biosensor for nutritional and environmental alterations on the fetal epigenome. Nutrition Reviews, 66 Suppl 1, S7-11.

Ekblom, R., \& Galindo, J. (2011). Applications of next generation sequencing in molecular ecology of non-model organisms. Heredity, 107(1), 1-15.

Feil, R., \& Fraga, M. F. (2011). Epigenetics and the environment: emerging patterns and implications. Nature Reviews. Genetics, 13(2), 97-109.

Feliciello, I., Parazajder, J., Akrap, I., \& Ugarković, D. (2013). First evidence of DNA methylation in insect Tribolium castaneum: environmental regulation of DNA methylation within heterochromatin. Epigenetics : Official Journal of the DNA Methylation Society, 8(5), 534-41.

Ferguson, L. C., Green, J., Surridge, A., \& Jiggins, C. D. (2011). Evolution of the insect yellow gene family. Molecular Biology and Evolution, 28(1), 257-72.

Ferguson, L. C., \& Jiggins, C. D. (2009). Shared and divergent expression domains on mimetic Heliconius wings. Evolution \& Development, 11(5), 498-512.

Ferguson, L. C., Maroja, L., \& Jiggins, C. D. (2011). Convergent, modular expression of ebony and tan in the mimetic wing patterns of Heliconius butterflies. Development Genes and Evolution, 221(5-6), 297-308.

Ferguson, L., Lee, S. F., Chamberlain, N., Nadeau, N., Joron, M., Baxter, S., ... Jiggins, C. (2010). Characterization of a hotspot for mimicry: assembly of a butterfly wing transcriptome to genomic sequence at the $\mathrm{HmYb} / \mathrm{Sb}$ locus. Molecular Ecology, 19 Suppl 1, 240-54.
ffrench-Constant, R. H. (2012). Butterfly wing colours are driven by the evolution of developmental heterochrony. Butterfly wing colours and patterning by numbers. Heredity, 108(6), 592-3.

Fitzpatrick, B. M. (2012). Underappreciated Consequences of Phenotypic Plasticity for Ecological Speciation. International Journal of Ecology, 2012, 1-12.

Forsman, A. (2014). Rethinking phenotypic plasticity and its consequences for individuals, populations and species. Heredity, (August), 1-9.

French, V., \& Brakefield, P. M. (1995). Eyespot development on butterfly wing- the focal signal.pdf. Developmental Biology, 168, 112-123.

Galant, R., Walsh, C. M., \& Carroll, S. B. (2002). Hox repression of a target gene: extradenticle-independent, additive action through multiple monomer binding sites. Development, 129(13), 3115-26.

García-Bellido, A., \& De Celis, J. F. (2009). The complex tale of the achaete-scute complex: A paradigmatic case in the analysis of gene organization and function during development. Genetics, 182, 631-639.

Gebelein, B., Culi, J., Ryoo, H. D., Zhang, W., \& Mann, R. S. (2002). Specificity of Distalless repression and limb primordia development by abdominal Hox proteins. Developmental Cell, 3, 487-498.

Gellon, G., \& McGinnis, W. (1998). Shaping animal body plans in development and evolution by modulation of Hox expression patterns. BioEssays : News and Reviews in Molecular, Cellular and Developmental Biology, 20(2), 116-25.

Geng, Y., Gao, L., \& Yang, J. (2013). Epigenetic flexibility underlying phenotypic plasticity. Progress in Botany, 74, 153-163.

Ghalambor, C. K., McKay, J. K., Carroll, S. P., \& Reznick, D. N. (2007). Adaptive versus non-adaptive phenotypic plasticity and the potential for contemporary adaptation in new environments. Functional Ecology, 21, 394-407.

Gibbs, M., \& Breuker, C. J. (2006). Effect of larval-rearing density on adult life-history traits and developmental stability of the dorsal eyespot pattern in the speckled wood butterfly , Pararge aegeria. Entomologia Experimentalis et Applicata, 118, 41-47.

Gibert, J.-M., Peronnet, F., \& Schlötterer, C. (2007). Phenotypic plasticity in Drosophila pigmentation caused by temperature sensitivity of a chromatin regulator network. PLoS Genetics, 3(2), e30.

Gouy, M., Guindon, S., \& Gascuel, O. (2010). SeaView version 4: A multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Molecular Biology and Evolution, 27(2), 221-224.

Gunster, M. J., Raaphorst, F. M., Hamer, K. M., den Blaauwen, J. L., Fieret, E., Meijer, C. J. L. M., \& Otte, A. P. (2001). Differential expression of human Polycomb group proteins in various tissues and cell types. Journal of Cellular Biochemistry, 81(S36), 129-143.

Halder, G., \& Carroll, S. B. (2001). Binding of the Vestigial co-factor switches the DNAtarget selectivity of the Scalloped selector protein. Development, 128(17), 3295305.

Hamamoto, R., Saloura, V., \& Nakamura, Y. (2015). Critical roles of non-histone protein lysine methylation in human tumorigenesis. Nature Reviews Cancer, 15(2), 110124.

Han, Q., Fang, J., Ding, H., Johnson, J., Bruce, C., \& Li, J. (2002). Identification of Drosophila melanogaster yellow-f and yellow-f2 proteins as dopachrome-conversion enzymes. Biochem. J, 340, 333-340.

Han, Z., Xing, X., Hu, M., Zhang, Y., Liu, P., \& Chai, J. (2007). Structural basis of EZH2 recognition by EED. Structure (London, England: 1993), 15(10), 1306-15.

Hansen, K. H., \& Helin, K. (2009). Epigenetic inheritance through self-recruitment of the polycomb repressive complex 2. Epigenetics : Official Journal of the DNA Methylation Society, 4(3), 133-8.

Held, L. I. (2012). Rethinking Butterfly Eyespots. Evolutionary Biology, 40(1), 158-168.
Henikoff, S., \& Henikoff, J. G. (1992). Amino acid substitution matrices from protein blocks. Proceedings of the National Academy of Sciences of the United States of America, 89(22), 10915-9.

Hennig, L., \& Derkacheva, M. (2009). Diversity of Polycomb group complexes in plants: same rules, different players? Trends in Genetics, 25, 414-423.

Herz, H.-M., Garruss, A., \& Shilatifard, A. (2013). SET for life: biochemical activities and biological functions of SET domain-containing proteins. Trends in Biochemical Sciences, 38(12), 621-39.

Hines, H. M., Papa, R., Ruiz, M., Papanicolaou, A., Wang, C., Nijhout, H. F., ... Reed, R. D. (2012). Transcriptome analysis reveals novel patterning and pigmentation genes underlying Heliconius butterfly wing pattern variation. BMC Genomics, 13(1), 288.

Hiyama, A., Taira, W., \& Otaki, J. M. (2012). Color-pattern evolution in response to environmental stress in butterflies. Frontiers in Genetics, 3(February), 15.

Hunt, B. G., Brisson, J. A, Yi, S. V, \& Goodisman, M. A. D. (2010). Functional conservation of DNA methylation in the pea aphid and the honeybee. Genome Biology and Evolution, 2, 719-28.

Ingham, P. W., \& Mcmahon, A. P. (2001). Hedgehog signaling in animal development : paradigms and principles Hedgehog signaling in animal development : paradigms and principles. Genes and Development, 15, 3059-3087.

Iwata, M., Ohno, Y., \& Otaki, J. M. (2014). Real-time in vivo imaging of butterfly wing development: revealing the cellular dynamics of the pupal wing tissue. PloS One, $9(2)$, e89500.

Jablonka, E., \& Lamb, M. J. (2002). The changing concept of epigenetics. Annals of the New York Academy of Sciences, 981, 82-96.

Janssen, J. M., Monteiro, A., \& Brakefield, P. M. (2001). Correlations between scale structure and pigmentation in butterfly wings. Evolution and Development, 3(6), 415-423.

Jeong, S., Rokas, A., \& Carroll, S. B. (2006). Regulation of body pigmentation by the Abdominal-B Hox protein and its gain and loss in Drosophila evolution. Cell, 125(7), 1387-99.

Jones, C. A., Ng, J., Peterson, A. J., Morgan, K., Simon, J., \& Jones, R. S. (1998). The Drosophila esc and E (z) Proteins Are Direct Partners in Polycomb GroupMediated Repression The Drosophila esc and E (z) Proteins Are Direct Partners in Polycomb Group-Mediated Repression. Molecular and Cellular Biology.

Joron, M., Jiggins, C. D., Papanicolaou, a, \& McMillan, W. O. (2006). Heliconius wing patterns: an evo-devo model for understanding phenotypic diversity. Heredity, 97(3), 157-67.

Joshi, P., Carrington, E. A., Wang, L., Ketel, C. S., Miller, E. L., Jones, R. S., \& Simon, J. a. (2008). Dominant alleles identify SET domain residues required for histone methyltransferase of polycomb repressive complex 2. Journal of Biological Chemistry, 283(41), 27757-27766.

Jürgens, G. (1985). A group of genes controlling the spatial expression of the bithorax complex in Drosophila. Nature, 316(6024), 153-155.

Kerppola, T. K. (2009). Polycomb group complexes--many combinations, many functions. Trends in Cell Biology, 19(12), 692-704. d

Ketel, C. S., Andersen, E. F., Vargas, M. L., Suh, J., Strome, S., \& Simon, J. A. (2005). Subunit Contributions to Histone Methyltransferase Activities of Fly and Worm Polycomb Group Complexes, 25(16), 6857-6868.

Keys, D. N., Lewis, D. L., Selegue, J. E., Pearson, B. J., Goodrich, L. V, Johnson, R. L., ... Carroll, S. B. (1999). Recruitment of a hedgehog regulatory circuit in butterfly eyespot evolution. Science (New York, N.Y.), 283(5401), 532-4.

Kim, D.-H., \& Sung, S. (2014). Genetic and epigenetic mechanisms underlying vernalization. The Arabidopsis Book / American Society of Plant Biologists, 12, e0171.

Klingenberg, C. P. (2008). Morphological Integration and Developmental Modularity. Annual Review of Ecology, Evolution and Systematics, 39, 115-132.

Klose, R. J., Cooper, S., Farcas, A. M., Blackledge, N. P., \& Brockdorff, N. (2013). Chromatin sampling--an emerging perspective on targeting polycomb repressor proteins. PLoS Genetics, 9(8), e1003717.

Knüttel, H., \& Fiedler, K. (2001). Host-plant-derived variation in ultraviolet wing patterns influences mate selection by male butterflies. The Journal of Experimental Biology, 204(Pt 14), 2447-59.

Kobayashi, M. (2003). Engrailed cooperates with extradenticle and homothorax to repress target genes in Drosophila. Development, 130(4), 741-751.

Koch, P. B., Lorenz, U., Brakefield, P. M., \& ffrench-Constant, R. H. (2000). Butterfly wing pattern mutants: developmental heterochrony and co-ordinately regulated phenotypes. Development Genes and Evolution, 210(11), 536-44.

Koch, P. B., Merk, R., Reinhardt, R., \& Weber, P. (2003). Localization of ecdysone receptor protein during colour pattern formation in wings of the butterfly Precis coenia (Lepidoptera: Nymphalidae) and co-expression with Distal-less protein. Development Genes and Evolution, 212(12), 571-84.

Kortschak, R. D., Samuel, G., Saint, R., \& Miller, D. J. (2003). EST Analysis of the Cnidarian Acropora millepora Reveals Extensive Gene Loss and Rapid Sequence Divergence in the Model Invertebrates. Current Biology, 13, 2190-2195.

Krauss, V., Eisenhardt, C., \& Unger, T. (2009). The genome of the stick insect Medauroidea extradentata is strongly methylated within genes and repetitive DNA. PloS One, 4(9), e7223. d

Kremen, C., \& Nijhout, H. F. (1998). Control of pupal commitment in the imaginal disks of Precis coenia (Lepidoptera: Nymphalidae). Journal of Insect Physiology.

Krupp, J. J., Yaich, L. E., Wessells, R. J., \& Bodmer, R. (2005). Identification of genetic loci that interact with cut during Drosophila wing-margin development. Genetics, 170(4), 1775-95.

Kucharski, R., Maleszka, J., Foret, S., \& Maleszka, R. (2008). Nutritional control of reproductive Status in honeybees via DNA methylation. Science, 319(March), 18271830.

Letunic, I., Doerks, T., \& Bork, P. (2014). SMART: recent updates, new developments and status in 2015. Nucleic Acids Research, 43(6), D257-D260.

Levine, M. (2008). A systems view of Drosophila segmentation. Genome Biology, 9, 207.
Lewis, E. B. (1978). A gene complex controlling segmentation in Drosophila. Nature, 276(5688), 565-570.

Li, Z., Tatsuke, T., Sakashita, K., Zhu, L., Xu, J., Mon, H., ... Kusakabe, T. (2012). Identification and characterization of Polycomb group genes in the silkworm, Bombyx mori. Molecular Biology Reports, 39(5), 5575-88.

Li, Z.-Q., Zhang, S., Ma, Y., Luo, J.-Y., Wang, C.-Y., Lv, L.-M., ... Cui, J.-J. (2013). First Transcriptome and Digital Gene Expression Analysis in Neuroptera with an Emphasis on Chemoreception Genes in Chrysopa pallens (Rambur). PloS One, 8(6), e67151.

Luo, M., Platten, D., Chaudhury, A., Peacock, W. J., \& Dennis, E. S. (2009). Expression, imprinting, and evolution of rice homologs of the polycomb group genes. Molecular Plant, 2(4), 711-723.

Lyko, F., Foret, S., Kucharski, R., Wolf, S., Falckenhayn, C., \& Maleszka, R. (2010). The honey bee epigenomes: differential methylation of brain DNA in queens and workers. PLoS Biology, 8(11), e1000506.

Lyytinen, A., Brakefield, P. M., Lindström, L., \& Mappes, J. (2004). Does predation maintain eyespot plasticity in Bicyclus anynana? Proceedings. Biological Sciences / The Royal Society, 271(1536), 279-83.

Maan, M. E., \& Cummings, M. E. (2009). Sexual dimorphism and directional sexual selection on aposematic signals in a poison frog. Proceedings of the National Academy of Sciences of the United States of America, 106(45), 19072-7.

Macdonald, W. P., Martin, A., \& Reed, R. D. (2010). Butterfly wings shaped by a molecular cookie cutter: evolutionary radiation of lepidopteran wing shapes associated with a derived Cut/wingless wing margin boundary system. Evolution \& Development, 12(3), 296-304.

Macneil, L. T., \& Walhout, A. J. M. (2011). Gene regulatory networks and the role of robustness and stochasticity in the control of gene expression. Genome Research, $21(5), 645-57$.

Maddison, D., \& Maddison, W. (2000). MacClade 4. Manual, 1-492.
Maddison, W. P. (2008). Gene Trees in Species Trees. Systematic Biology, 46(3), 523536.

Magwene, Paul, M. (2001). New tools for studying integration and modularity. Evolution, 55(9), 1734-1745.

Mahdi, S. H. A., Yamasaki, H., \& Otaki, J. M. (2011). Heat-shock-induced color-pattern changes of the blue pansy butterfly Junonia orithya: Physiological and evolutionary implications. Journal of Thermal Biology, 36(6), 312-321.

Mandrioli, M., \& Volpi, N. (2003). The genome of the lepidopteran Mamestra brassicae has a vertebrate-like content of methyl-cytosine. Genetica, 119(2), 187-91.

Mann, R. S., \& Carroll, S. B. (2002). Molecular mechanisms of selector gene function and evolution. Current Opinion in Genetics \& Development, 12(5), 592-600.

Mann, R. S., \& Hogness, D. S. (1990). Functional Dissection in D . melanogaster of Ultrabithorax Proteins. Cell, 60, 597-610.

Margueron, R., \& Reinberg, D. (2011). The Polycomb complex PRC2 and its mark in life. Nature, 469(7330), 343-9.

Martin, A., Papa, R., Nadeau, N. J., Hill, R. I., Counterman, B. A., \& Halder, G. (2012). Diversification of complex butterfly wing patterns by repeated regulatory evolution of a Wnt ligand. Proceedings of the National Academy of Sciences, 109(31), 1263212637.

Martin, A., Papa, R., Nadeau, N. J., Hill, R. I., Counterman, B. A., Halder, G., ... Reed, R. D. (2012). Diversification of complex butterfly wing patterns by repeated regulatory evolution of a Wnt ligand. Proceedings of the National Academy of Sciences of the United States of America, 109(31), 12632-7.

Martin, A., \& Reed, R. D. (2010). Wingless and aristaless2 define a developmental ground plan for moth and butterfly wing pattern evolution. Molecular Biology and Evolution, 27(12), 2864-78.

Mateus, A. R. A., Marques-pita, M., Oostra, V., Lafuente, E., Brakefield, P. M., \& Zwaan, B. J. (2014). Adaptive developmental plasticity : Compartmentalized responses to environmental cues and to corresponding internal signals provide phenotypic flexibility. BMC Biology, 12(97), 1-15.

Mcmillan, W. O., Monteiro, A., \& Kapan, D. D. (2002). Development and evolution on the wing. Trends in Ecology and Evolution, 17(02), 125-133.

Milán, M., \& Cohen, S. M. (2000). Temporal regulation of apterous activity during development of the Drosophila wing. Development, 127(14), 3069-78.

Minelli, A., \& Fusco, G. (2012). On the rvolutionary developmental biology of Speciation. Evolutionary Biology, 39, 242-254.

Miyazawa, S., Okamoto, M., \& Kondo, S. (2010). Blending of animal colour patterns by hybridization. Nature Communications, 1, 66.

Moczek, A. P. (2010). Phenotypic plasticity and diversity in insects. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 365(1540), 593-603.

Montagne, J., Groppe, J., Guillemin, K., Krasnow, M. A, Gehring, W. J., \& Affolter, M. (1996). The Drosophila Serum Response Factor gene is required for the formation of intervein tissue of the wing and is allelic to blistered. Development, 122(9), 258997.

Montague, M. J., Danek-gontard, M., \& Kunc, H. P. (2012). Phenotypic plasticity affects the response of a sexually selected trait to anthropogenic noise. Behavioral Ecology, 342-348.

Monteiro, A. (2012). Gene regulatory networks reused to build novel traits: co-option of an eye-related gene regulatory network in eye-like organs and red wing patches on insect wings is suggested by optix expression. BioEssays: News and Reviews in Molecular, Cellular and Developmental Biology, 34(3), 181-6.

Monteiro, A. (2014). Origin, Development, and Evolution of Butterfly Eyespots. Annual Review of Entomology, 60, 253-71.

Monteiro, A., Brakefield, P. M., \& French, V. (1994). The evolutionary genetics and developmental basis of wing pattern variation in Bicyclus anynana. Evolution, 48(4), 1147-1157.

Monteiro, A., Brakefield, P. M., \& French, V. (1997). Butterfly Eyespots : The Genetics and Development of the Color Rings. Evolution, 51(4), 1207-1216.

Monteiro, A., Brakefield, P. M., \& French, V. (1997). The relationship between eyespot shape and wing shape in the butterfly Bicyclus anynana: A genetic and morphometrical approach. Journal of Evolutionary Biology, 10, 787-802.

Monteiro, A., Chen, B., Ramos, D. M., Oliver, J. C., Tong, X., Guo, M., ... Kamal, F. (2013). Distal-less regulates eyespot patterns and melanization in Bicyclus
butterflies. Journal of Experimental Zoology. Part B, Molecular and Developmental Evolution, 320(5), 321-31.

Monteiro, A., Glaser, G., Stockslager, S., Glansdorp, N., \& Ramos, D. (2006).
Comparative insights into questions of lepidopteran wing pattern homology, 13, 113.

Monteiro, A., \& Podlaha, O. (2009). Wings, horns, and butterfly eyespots: how do complex traits evolve? PLoS Biology, 7(2), e37.

Monteiro, A., Prijs, J., Bax, M., Hakkaart, T., \& Brakefield, P. M. (2003). Mutants highlight the modular control of butterfly eyespot patterns. Evolution \& Development, 5(2), 180-7.

Morange, M. (2009). How phenotypic plasticity made its way into molecular biology. Journal of Biosciences, 34(4), 495-501.

Müller, J., Hart, C. M., Francis, N. J., Vargas, M. L., Sengupta, A., Wild, B., ... Simon, J. a. (2002). Histone methyltransferase activity of a Drosophila Polycomb group repressor complex. Cell, 111(2), 197-208.

Murren, C. J., Pendleton, N., \& Pigliucci, M. (2002). Evolution of phenotypic integration in Brassica (Brassicaceae). American Journal of Botany, 89(4), 655-663.

Mushegian, A. R., Garey, J. R., Martin, J., \& Liu, L. X. (1998). Large-scale taxonomic profiling of eukaryotic model organisms: A comparison of orthologous proteins encoded by the human, fly, nematode, and yeast genomes. Genome Research, 8, 590-598.

Neumann, C. J., \& Cohen, S. M. (1996). A hierarchy of cross-regulation involving Notch, wingless, vestigial and cut organizes the dorsal/ventral axis of the Drosophila wing. Development, 122(11), 3477-85.

Ng, J., Hart, C. M., Morgan, K., \& Simon, J. a. (2000). A Drosophila ESC-E(Z) protein complex is distinct from other polycomb group complexes and contains covalently modified ESC. Molecular and Cellular Biology, 20(9), 3069-3078.

Ng, J., Li, R., Morgan, K., \& Simon, J. (1997). Evolutionary conservation and predicted structure of the Drosophila extra sex combs repressor protein. Molecular and Cellular Biology, 17(11), 6663-6672.

Nichols, R. (2001). Gene trees and species trees are not the same. Trends in Ecology \& Evolution, 16(01), 358-364.

Nijhout, H. F. (1980). Pattern formation on lepidopteran wings: Determination of an eyespot. Developmental Biology, 80(2), 267-274.

Nijhout, H. F. (1984). Colour pattern modification by coldshock in Lepidoptera. Journal of Embryology and Experimental Morphology, 81, 287-305.

Nijhout, H. F. (1996). Focus on butterfly eyespot development. Nature, 384, 209-210.
Nijhout, H. F. (2001). Elements of butterfly wing patterns. The Journal of Experimental Zoology, 291(3), 213-25.

Nijhout, H. F. (2003). Development and evolution of adaptive polyphenisms. Evolution \& Development, 5(1), 9-18.

Nijhout, H. F., Smith, W. A., Schachar, I., Subramanian, S., Tobler, A., \& Grunert, L. W. (2007). The control of growth and differentiation of the wing imaginal disks of Manduca sexta. Developmental Biology.

O'Keefe, D. D., \& Thomas, J. B. (2001). Drosophila wing development in the absence of dorsal identity. Development, 128(5), 703-10.

O'Meara, M. M., \& Simon, J. A. (2012). Inner workings and regulatory inputs that control Polycomb repressive complex 2. Chromosoma, 121(3), 221-34.

O’Neill, B. F., Zangerl, A. R., Delucia, E. H., \& Berenbaum, M. R. (2010). Olfactory preferences of Popillia japonica, Vanessa cardui, and Aphis glycines for Glycine max grown under elevated CO2. Environmental Entomology, 39(4), 1291-301.

Ohno, Y., \& Otaki, J. M. (2012). Eyespot colour pattern determination by serial induction in fish: Mechanistic convergence with butterfly eyespots. Scientific Reports, 2, 290.

Oliver, J. C., Beaulieu, J. M., Gall, L. F., Piel, W. H., Monteiro, A., \& B, P. R. S. (2014). Nymphalid eyespot serial homologues originate as a few individualized modules. Proceedings of the Royal Society. B, 281, 20133262.

Oliver, J. C., Ramos, D., Prudic, K. L., \& Monteiro, A. (2013). Temporal gene expression variation associated with eyespot size plasticity in Bicyclus anynana. PloS One, 8(6), e65830.

Oliver, J. C., Tong, X.-L., Gall, L. F., Piel, W. H., \& Monteiro, A. (2012). A single origin for nymphalid butterfly eyespots followed by widespread loss of associated gene expression. PLoS Genetics, 8(8), e1002893.

Oostra, V., Brakefield, P. M., Hiltemann, Y., Zwaan, B. J., \& Brattström, O. (2014). On the fate of seasonally plastic traits in a rainforest butterfly under relaxed selection. Ecology and Evolution, 4(13), 2654-67.

Organista, M. F., \& De Celis, J. F. (2013). The Spalt transcription factors regulate cell proliferation, survival and epithelial integrity downstream of the Decapentaplegic signalling pathway. Biology Open, 2, 37-48.

Otaki, J. M. (2007). Stress-Induced Color-Pattern Modifications and Evolution of the Painted Lady Butterflies Vanessa cardui and Vanessa kershawi. Zoological Science, 24(8), 811-819.

Otaki, J. M. (2008a). Phenotypic plasticity of wing color patterns revealed by temperature and chemical applications in a nymphalid butterfly Vanessa indica. Journal of Thermal Biology, 33(2), 128-139.

Otaki, J. M. (2008b). Physiological side-effect model for diversification of non-functional or neutral traits:a possible evolutionary history of Vanessa butterfiies (Lepidoptera, Nymphalidae). Trans. Lepid. Soc. Japan, 59(2), 87-102.

Otaki, J. M. (2008c). Physiologically induced color-pattern changes in butterfly wings: mechanistic and evolutionary implications. Journal of Insect Physiology, 54(7), 1099-112.

Otaki, J. M. (2011). Color-pattern analysis of eyespots in butterfly wings: a critical examination of morphogen gradient models. Zoological Science, 28(6), 403-13.

Otaki, J. M., Ogasawara, T., \& Yamamoto, H. (2005a). Morphological comparison of pupal wing cuticle patterns in butterflies. Zoological Science, 22(1), 21-34.

Otaki, J. M., Ogasawara, T., \& Yamamoto, H. (2005b). Tungstate-induced color-pattern modifications of butterfly wings are independent of stress response and ecdysteroid effect. Zoological Science, 22(6), 635-44.

Otaki, J. M., \& Yamamoto, H. (2004). Color-pattern Modifications and Speciation in Butterflies of the Genus Vanessa and its Related Genera Cynthia and Bassaris Color-pattern Modifications and Speciation in Butterflies of the Genus Vanessa and its Related Genera Cynthia and Bassaris. Zoological Science, 21(9), 967-976.

Beldade, P., French, V., \& Brakefield, P. M. (2008). Developmental and Genetic Mechanisms for Evolutionary Diversification of Serial Repeats: Eyespot Size in Bicyclus anynana Butterflies. Journal of Experimental Zoology. Part B, Molecular and Developmental Evolution, 201(April 2007), 191-201.

Panning, B. (2010). Fine-tuning silencing. Cell Stem Cell, 6(1), 3-4.
Pfennig, D. W., \& Ehrenreich, Ian, M. (2014). Towards a gene regulatory network perspective on phenotypic plasticity, genetic accommodation and genetic assimilation. Molecular Ecology, 23(August), 4438-4440.

Pfennig, D. W., Wund, M. A, Snell-Rood, E. C., Cruickshank, T., Schlichting, C. D., \& Moczek, A. P. (2010). Phenotypic plasticity's impacts on diversification and speciation. Trends in Ecology \& Evolution, 25(8), 459-67.

Pigliucci, M. (2001). Phenotypic Plasticity: Beyond Nature and Nurture. JHU Press.
Pigliucci, M. (2005). Evolution of phenotypic plasticity : where are we going now? Trends in Ecology \& Evolution, 20(9), 481-6.

Pigliucci, M., Murren, C. J., \& Schlichting, C. D. (2006). Phenotypic plasticity and evolution by genetic assimilation. The Journal of Experimental Biology, 209(Pt 12), 2362-7.

Pirrotta, V. (2011). Polycomb Mechanisms and Epigenetic Control of Gene Activity. In T. Tollefsbol (Ed.), Handbook of Epigenetics. The New Molecular and Medical Genetics.

Plaistow, S. J., \& Collin, H. (2004). Phenotypic integration plasticity in Daphnia magna : an integral facet of G x E interactions. Journal of Evolutionary Biology, 27, 19131920.

Posakony, L. G., Raftery, L. A, \& Gelbart, W. M. (1990). Wing formation in Drosophila melanogaster requires decapentaplegic gene function along the anterior-posterior compartment boundary. Mechanisms of Development, 33(1), 69-82.

Prezioso, C., \& Orlando, V. (2011). Polycomb proteins in mammalian cell differentiation and plasticity. FEBS Letters, 585(13), 2067-77.

Price, T. D., Qvarnström, A., \& Irwin, D. E. (2003). The role of phenotypic plasticity in driving genetic evolution. Proceedings. Biological Sciences / The Royal Society, 270(1523), 1433-40.

Protas, M. E., \& Patel, N. H. (2008). Evolution of coloration patterns. Annual Review of Cell and Developmental Biology, 24, 425-46.

Prudic, K. L., Jeon, C., Cao, H., \& Monteiro, A. (2011). Developmental plasticity in sexual roles of butterfly species drives mutual sexual ornamentation. Science (New York, N.Y.), 331(6013), 73-5.

Prudic, K. L., Skemp, A. K., \& Papaj, D. R. (2006). Aposematic coloration, luminance contrast, and the benefits of conspicuousness. Behavioral Ecology, 18(1), 41-46.

Quigley, I. K., Turner, J. M., Nuckels, R. J., Manuel, J. L., Budi, E. H., MacDonald, E. L., \& Parichy, D. M. (2004). Pigment pattern evolution by differential deployment of neural crest and post-embryonic melanophore lineages in Danio fishes. Development, 131(24), 6053-69.

Rai, A. N., Vargas, M. L., Wang, L., Andersen, E. F., Miller, E. L., \& Simon, J. A. (2013). Elements of the polycomb repressor $\mathrm{SU}(\mathrm{Z}) 12$ needed for histone H3-K27 methylation, the interface with $\mathrm{E}(\mathrm{Z})$, and in vivo function. Molecular and Cellular Biology, 33(24), 4844-56.

Rauskolb, C., Peifer, M., \& Wieschaus, E. (1993). extradenticle, a regulator of homeotic gene activity, is a homolog of the homeobox-containing human proto-oncogene pbx1. Cell, 74(6), 1101-1112.

Rauskolb, C., Smith, K. M., Peifer, M., \& Wieschaus, E. (1995). Extradenticle determines segmental identities throughout Drosophila development. Development, 121(11), 3663-73.

Reed, R. D., Chen, P.-H., \& Frederik Nijhout, H. (2007). Cryptic variation in butterfly eyespot development: the importance of sample size in gene expression studies. Evolution \& Development, 9(1), 2-9.

Reed, R. D., McMillan, W. O., \& Nagy, L. M. (2008). Gene expression underlying adaptive variation in Heliconius wing patterns: non-modular regulation of overlapping cinnabar and vermilion prepatterns. Proceedings. Biological Sciences / The Royal Society, 275(1630), 37-45.

Reed, R. D., \& Nagy, L. M. (2005). Evolutionary redeployment of a biosynthetic module: expression of eye pigment genes vermilion, cinnabar, and white in butterfly wing development. Evolution \& Development, 7(4), 301-11.

Reed, R. D., Papa, R., Martin, A., Hines, H. M., Counterman, B. A., Pardo-Diaz, C., ... McMillan, W. O. (2011). Optix Drives the Repeated Convergent Evolution of Butterfly Wing Pattern Mimicry. Science, 333(6046), 1137-41.

Ringrose, L., \& Paro, R. (2007). Polycomb/Trithorax response elements and epigenetic memory of cell identity. Development, 134(2), 223-32.

Roskam, J. C., \& Brakefield, P. M. (1999). Seasonal polyphenism in Bicyclus (Lepidoptera : Satyridae) butterflies different climates need different cues. Biological Journal Of the Linnean Society, 66, 345-356.

Rountree, D. B., \& Nijhout, H. F. (1995). Hormonal control of a seasonal polyphenism in Precis coenia (Lepidoptera: Nymphalidae). Journal of Insect Physiology, 41(11), 987-992.

Ryall, R. L., \& Howells, A. J. (1974). Ommochrome biosynthetic pathway of Drosophila melanogaster: Variations in levels of enzyme activities and intermediates during adult development. Insect Biochemistry, 4(1), 47-61.

Saenko, S. V, French, V., Brakefield, P. M., \& Beldade, P. (2008). Conserved developmental processes and the formation of evolutionary novelties: examples from butterfly wings. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 363(1496), 1549-55.

Saenko, S. V, Marialva, M. S., \& Beldade, P. (2011). Involvement of the conserved Hox gene Antennapedia in the development and evolution of a novel trait. EvoDevo, 2(1), 9 .

Schlichting, C. D. (1986). The Evolution of Phenotypic Plasticity in Plants. Annual Review of Ecology and Systematics, 17(1), 667-693.

Schlichting, C. D. (1989). Phenotypic plasticity in Phlox II . Plasticity of character correlations. Oecologia, 78, 496-501.

Schlichting, C. D., \& Smith, H. (2002). Phenotypic plasticity : linking molecular mechanisms with evolutionary outcomes. Evolutionary Ecology, 16, 189-211.

Schmitges, F. W., Prusty, A. B., Faty, M., Stützer, A., Lingaraju, G. M., Aiwazian, J., ... Thomä, N. H. (2011). Histone methylation by PRC2 is inhibited by active chromatin marks. Molecular Cell, 42(3), 330-41.

Schroeder, M. D., Pearce, M., Fak, J., Fan, H., Unnerstall, U., Emberly, E., ... Gaul, U. (2004). Transcriptional control in the segmentation gene network of Drosophila. PLoS Biology, 2(9).

Schwartz, Y. B., \& Pirrotta, V. (2007). Polycomb silencing mechanisms and the management of genomic programmes. Nature Reviews. Genetics, 8(1), 9-22.

Senthilkumar, R., \& Mishra, R. K. (2009). Novel motifs distinguish multiple homologues of Polycomb in vertebrates: expansion and diversification of the epigenetic toolkit. BMC Genomics, 10, 549.

Serfas, M. S., \& Carroll, S. B. (2005). Pharmacologic approaches to butterfly wing patterning: sulfated polysaccharides mimic or antagonize cold shock and alter the interpretation of gradients of positional information. Developmental Biology, 287(2), 416-24.

Shaver, S., Casas-Mollano, J. A., Cerny, R. L., \& Cerutti, H. (2010). Origin of the polycomb repressive complex 2 and gene silencing by an $\mathrm{E}(\mathrm{z})$ homolog in the unicellular alga Chlamydomonas. Epigenetics : Official Journal of the DNA Methylation Society, 5(4), 301-12.

Shaw, J. R., Hampton, T. H., King, B. L., Whitehead, A., Galvez, F., Gross, R. H., ... Stanton, B. A. (2014). Natural selection canalizes expression variation of
environmentally induced plasticity-enabling genes. Molecular Biology and Evolution, 31(11), 3002-3015.

Shen, J., \& Dahmann, C. (2005). The role of Dpp signaling in maintaining the Drosophila anteroposterior compartment boundary. Developmental Biology, 279, 31-43.

Simon, J. A, \& Kingston, R. E. (2013). Occupying chromatin: Polycomb mechanisms for getting to genomic targets, stopping transcriptional traffic, and staying put. Molecular Cell, 49(5), 808-24.

Simon, J., Bornemann, D., Lunde, K., \& Schwartz, C. (1995). The extra sex combs product contains WD40 repeats and its time of action implies a role distinct from other Polycomb group products. Mechanisms of Development, 53, 197-208.

Simpson, S. J., Sword, G. A, \& Lo, N. (2011). Polyphenism in insects. Current Biology : CB, 21(18), R738-49.

Snell-rood, E. C., Dyken, J. D. Van, Cruickshank, T., Wade, M. J., \& Moczek, A. P. (2010). Toward a population genetic framework of developmental evolution: the costs, limits, and consequences of phenotypic plasticity. BioEssays, 32(1), 71-81.

Sparmann, A., \& van Lohuizen, M. (2006). Polycomb silencers control cell fate, development and cancer. Nature Reviews. Cancer, 6(11), 846-56.

Srinivasan, D. G., \& Brisson, J. A. (2012). Aphids: a model for polyphenism and epigenetics. Genetics Research International, 2012, 431531.

Stefanescu, C., Alarcón, M., \& Avila, A. (2007). Migration of the painted lady butterfly, Vanessa cardui, to north-eastern Spain is aided by African wind currents. The Journal of Animal Ecology, 76(5), 888-98.

Stern, S., Fridmann-Sirkis, Y., Braun, E., \& Soen, Y. (2012). Epigenetically heritable alteration of fly development in response to toxic challenge. Cell Reports, 1(5), 52842.

Stevens, M., Hardman, C. J., \& Stubbins, C. L. (2008). Conspicuousness, not eye mimicry , makes "" eyespots "" effective antipredator signals. Behavioral Ecology, 525-531.

Stoehr, A. M., Walker, J. F., \& Monteiro, A. (2013). Spalt expression and the development of melanic color patterns in pierid butterflies. EvoDevo, 4(1), 6.

Struhl, G., \& Akam, M. (1985). Altered distributions of Ultrabithorax transcripts in extra sex combs mutant embryos of Drosophila. The EMBO Journal, 4(12), 3259-64.

Surridge, A. K., Lopez-Gomollon, S., Moxon, S., Maroja, L. S., Rathjen, T., Nadeau, N. J., ... Jiggins, C. D. (2011). Characterisation and expression of microRNAs in developing wings of the neotropical butterfly Heliconius melpomene. $B M C$ Genomics, 12(1), 62.

Swofford, D. L. (1993). PAUP*: Phylogenetic Analysis Using Parsimony.
Takayama, E., \& Yoshida, A. (1997). Color pattern formation on the wing of a butterfly, Pieris rapae. 1. Cautery induced alteration and scale color and delay of arrangment formation. Development, Growth, Differentiation, 39, 23-31.

Talavera, G., \& Castresana, J. (2007). Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Systematic Biology, 56(4), 564-77.

Tie, F., Furuyama, T., \& Harte, P. J. (1998). The Drosophila Polycomb Group proteins ESC and $\mathrm{E}(\mathrm{Z})$ bind directly to each other and co-localize at multiple chromosomal sites. Development, 125, 3483-3496.

Tong, X., Hrycaj, S., Podlaha, O., Popadic, A., \& Monteiro, A. (2014). Over-expression of Ultrabithorax alters embryonic body plan and wing patterns in the butterfly Bicyclus anynana. Developmental Biology, 394(2), 357-66.

Tong, X., Lindemann, A., \& Monteiro, A. (2012). Differential Involvement of Hedgehog Signaling in Butterfly Wing and Eyespot Development. PLoS ONE, 7(12), e51087.

Umemori, M., Takemura, M., Maeda, K., Ohba, K., \& Adachi-Yamada, T. (2007). Drosophila T-box transcription factor Optomotor-blind prevents pathological folding and local overgrowth in wing epithelium through confining Hh signal. Developmental Biology.

Vallin, A., Jakobsson, S., Lind, J., \& Wiklund, C. (2006). Crypsis versus intimidation -Anti-predation defence in three closely related butterflies. Behavioral Ecology and Sociobiology, 59, 455-459.

Van Belleghem, S. M., Roelofs, D., Van Houdt, J., \& Hendrickx, F. (2012). De novo transcriptome assembly and SNP discovery in the wing polymorphic salt marsh beetle Pogonus chalceus (Coleoptera, Carabidae). PloS One, 7(8), e42605.

Van der Velden, Y. U., Wang, L., van Lohuizen, M., \& Haramis, A.-P. G. (2012). The Polycomb group protein Ring1b is essential for pectoral fin development. Development, 139(12), 2210-20.

Waddington, C. H. (1942). Canalization of Development and the Inheritance of Acquired Characters. Nature, 150, 563-565.

Wahlberg, N., \& Rubinoff, D. (2011). Vagility across Vanessa (Lepidoptera: Nymphalidae): Mobility in butterfly species does not inhibit the formation and persistence of isolated sister taxa. Systematic Entomology, 36, 362-370.

Walters, J. W., Muñoz, C., Paaby, A. B., \& DiNardo, S. (2005). Serrate-Notch signaling defines the scope of the initial denticle field by modulating EGFR activation. Developmental Biology, 286, 415-426.

Warren, William, D., Palmer, S., \& Howells, Anthony, J. (1996). Molecular characterization of the cinnabar region of Drosophila melanogaster : Identification of the cinnabar transcription unit. Genetica, 98, 249-262.

Waterland, R. A., \& Jirtle, R. L. (2003). Transposable Elements : Targets for Early Nutritional Effects on Epigenetic Gene Regulation Transposable Elements : Targets for Early Nutritional Effects on Epigenetic Gene Regulation. Molecular and Cellular Biology, 23(15), 5293-5300.

Weatherbee, S. D., Nijhout, H. F., Grunert, L. W., Halder, G., Galant, R., Selegue, J., \& Carroll, S. (1999). Ultrabithorax function in butterfly wings and the evolution of insect wing patterns. Current Biology : CB, 9(3), 109-115.

Weiner, S. A, \& Toth, A. L. (2012). Epigenetics in social insects: a new direction for understanding the evolution of castes. Genetics Research International, 2012, 609810.

Werner, T., Koshikawa, S., Williams, T. M., \& Carroll, S. B. (2010). Generation of a novel wing colour pattern by the Wingless morphogen. Nature, 464(7292), 1143-8.

West-Eberhard, M. J. (1989). Phenotypic plasticity and the origins of diversity. Annual Review of Ecology and Systematics, 20, 249-78.

West-Eberhard, M. J. (2005). Developmental plasticity and the origin of species differences. Proceedings of the National Academy of Sciences of the United States of America, 102 Suppl (2), 6543-6549.

West-eberhard, M. J. (2005). Phenotypic accomodation: adaptive innovation due to developmental plasticity. Journal of Experimental Zoology, 304B(September), 610618.

Whitcomb, S. J., Basu, A., Allis, C. D., \& Bernstein, E. (2007). Polycomb Group proteins: an evolutionary perspective. Trends in Genetics : TIG, 23(10), 494-502.

Willert, K., \& Nusse, R. (2012). Wnt proteins. Cold Spring Harbor Perspectives in Biology, 4(9), a007864.

Williams, J. A., Paddock, S. W., \& Carroll, S. B. (1993). Pattern formation in a secondary field : a hierarchy of regulatory genes subdivides the developing Drosophila wing disc into discrete subregions, 584, 571-584.

Wilson, B. G., Wang, X., Shen, X., McKenna, E. S., Lemieux, M. E., Cho, Y. J., ... Roberts, C. W. M. (2010). Epigenetic antagonism between polycomb and SWI/SNF complexes during oncogenic transformation. Cancer Cell, 18(4), 316-328.

Wittkopp, P. J., \& Beldade, P. (2009). Development and evolution of insect pigmentation: genetic mechanisms and the potential consequences of pleiotropy. Seminars in Cell \& Developmental Biology, 20(1), 65-71.

Wittkopp, P. J., Carroll, S. B., \& Kopp, A. (2003). Evolution in black and white: genetic control of pigment patterns in Drosophila. Trends in Genetics : TIG, 19(9), 495-504.

Wittkopp, P. J., True, J. R., \& Carroll, S. B. (2002). Reciprocal functions of the Drosophila yellow and ebony proteins in the development and evolution of pigment patterns. Development, 129(8), 1849-58.

Wittkopp, P. J., Vaccaro, K., \& Carroll, S. B. (2002). Evolution of yellow gene regulation and pigmentation in Drosophila. Current Biology : CB, 12(18), 1547-56.

Wolpert, L. (2003). Cell boundaries: knowing who to mix with and what to shout or whisper. Development (Cambridge, England), 130(19), 4497-500.

Wray, G. A, Hahn, M. W., Abouheif, E., Balhoff, J. P., Pizer, M., Rockman, M. V, \& Romano, L. a. (2003). The evolution of transcriptional regulation in eukaryotes. Molecular Biology and Evolution, 20(9), 1377-419.

Wund, M. A. (2012). Assessing the impacts of phenotypic plasticity on evolution. Integrative and Comparative Biology, 52(1), 5-15.

Xia, A.-H., Zhou, Q.-X., Yu, L.-L., Li, W.-G., Yi, Y.-Z., Zhang, Y.-Z., \& Zhang, Z.-F. (2006). Identification and analysis of YELLOW protein family genes in the silkworm, Bombyx mori. BMC Genomics, 7, 195.

Xiang, H., Zhu, J., Chen, Q., Dai, F., Li, X., Li, M., ... Wang, J. (2010). Single baseresolution methylome of the silkworm reveals a sparse epigenomic map. Nature Biotechnology, 28(5), 516-20.

Yamamoto, K., Sonoda, M., Inokuchi, J., Shirasawa, S., \& Sasazuki, T. (2004). Polycomb Group Suppressor of Zeste 12 Links Heterochromatin Protein 1α and Enhancer of Zeste 2. Journal of Biological Chemistry, 279(1), 401-406.

Yan, D., \& Lin, X. (2009). Shaping morphogen gradients by proteoglycans. Cold Spring Harbor Perspectives in Biology, 1(3), a002493.

Zecca, M., Basler, K., \& Struhl, G. (1995). Sequential organizing activities of engrailed, hedgehog and decapentaplegic in the Drosophila wing. Development, 121, 22652278.

Zeng, J., Kirk, B. D., Gou, Y., Wang, Q., \& Ma, J. (2012). Genome-wide polycomb target gene prediction in Drosophila melanogaster. Nucleic Acids Research, 40(13), 5848-63.

[^0]: nchocerca_volvulus Monosiga_brevicollis oa_loa
 Brugia_malayi
 Aedes_aegypti
 Haemonchus_contortus
 Caenorhabditis_brenneri ottia_gigantea
 Granchiostoma_flegan alpingoeca_rosetta xodes_scapularis Culex_quinquefasciatus Caenorhabditis_remanei Botryllus_primigenus Trichoplax_adhaerens Cryptococcus_gattii olyandrocarpa_misakiensi prosophila_sechellia trongylocentrotus_purpuratu rosophia_willistoni Drosophila_yakuba Marssonina_brunnea Ciona_intestinalis Cryptococcus_neoformans Hydra_vulgaris Helobdella_robusta prosophila_melanogaster Drosophila_erecta Anopheles_gambiae rosophila_pseudoobscur Nematostella vectensis brosophila virilis rosophila mojavens Drosophila_grimshawi Metarhizium_anisopliae Metarhizium_acridum usarium_oxysporum
 chistosoma_mansoni
 Echinococcus_multilocularis
 Clonorchis_sinensis

