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ABSTRACT 

 

In 2010 a statewide survey of ticks and tick-borne pathogens was conducted in 

North Dakota. Ticks were collected from the four eco-regions in the state by flagging for 

questing adults and by collecting feeding immature ticks from trapped small mammals. I 

collected 1762 individual ticks representing five species: Dermacentor variabilis (1449), 

Ixodes scapularis (307), Ixodes woodi (3), Ixodes angustus (2), and Amblyomma 

americanum (1). Dermacentor variabilis were collected in all areas of the state while I. 

scapularis were restricted to the northeast portion of the state. This provided sufficient 

evidence that I. scapularis have established populations within the state. Ixodes 

scapularis were tested for Borrelia burgdorferi (the agent of Lyme disease), Anaplasma 

phagocytophilum (agent of human granulocytic anaplasmosis), and Babesia microti 

(agent of human babesiosis). Of those tested, A. phagocytophilum was detected in 8.5%, 

B. burgdorferi was detected in 3.3%, and B. microti was not detected. These are the first 

reports of A. phagocytophilum and B. burgdorferi detected in the wild in North Dakota 

and provide evidence of westward range expansion of these organisms. 

To determine the areas that the ticks were moving into, a study was conducted 

in Grand Forks County, ND in 2012 to determine the effects of forest patch size on the 

abundance of adult questing and immature host-feeding I. scapularis and the 
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prevalence of A. phagocytophilum, B. burgdorferi, and B. microti in those ticks. 

Increased forest patch size was significantly correlated with increased abundance of 

adult questing ticks and larval ticks collected from small mammals. Few I. scapularis 

were collected from the four smallest sites limiting the ability of pathogens to become 

established. Among the two largest sites there was not a significant difference in the 

prevalence of B. burgdorferi or A. phagocytophilum detected in questing adults or xeno-

positive small mammals. 
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CHAPTER I 

INTRODUCTION 

 

Vector-borne pathogens are responsible for some of the most common and 

most debilitating diseases worldwide. From malaria in the tropics to West Nile Virus in 

the United States, humans across the globe are at risk of contracting vector-borne 

diseases (Gubler, 1991). These diseases range from acute infections caused by viruses 

and bacteria to chronic conditions caused by nematodes and protozoans (Gubler, 1991). 

In order to manage these pathogens, reduce the risk of human infection, and properly 

diagnose and treat patients that have acquired these pathogens we must fully 

understand their sometimes very complex lifecycles. 

 A vector is an organism, often an arthropod, which actively seeks out vertebrate 

hosts to feed on and may transmit an infectious agent from an infected vertebrate to an 

uninfected individual. Ticks are hematophagous ectoparasites that due to their unique 

extracellular digestion are able to serve as vector for a wide variety of pathogens 

including bacteria, viruses, protozoa, and nematodes (Jongejan & Uilenberg, 2004). This 

makes them especially important medical arthropods. Ticks, along with mites, make up 

the subclass Acari in the class Arachnida. Three families of ticks, including almost 900 

species, comprise the order Ixodida: Ixodidae, the hard ticks; Argasidae, the soft ticks; 
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and Nuttalliellidae, which is comprised of a single species that has characteristics of 

both the hard and soft ticks (Nava et al., 2009). In this study, I focused on hard ticks 

because they are the primary carrier of human pathogens and are most prevalent in the 

study area. Certain aspects of the lifecycle of the hard tick make it an ideal vector. 

The hard tick’s lifecycle contains three stages: the larva, nymph, and adult. As a 

larva and nymph, the tick will take one bloodmeal then molt and emerge in the next 

lifestage (Sonenshine, 1991). As an adult, the tick will mate, take a bloodmeal, lay eggs 

(if female), then die. Most commonly the tick will feed on a different individual for each 

bloodmeal; however, some species remain on the host for two or all three bloodmeals. 

While many species of ticks are specialists on single or few species of hosts, those 

responsible for pathogens in humans are less specific in their host preference. In fact, 

they will often feed on different hosts specific to their lifestages, feeding on smaller 

hosts as larva and nymphs and larger hosts as adults (Sonenshine, 1991). This means 

that a tick feeding on a human has likely already fed on another animal and enhances 

the risk to humans of contracting zoonotic pathogens, or pathogens that originate in 

animals. 

In the United States, hard ticks are vectors for the most common vector-borne 

disease, Lyme disease, as well as the notifiable diseases Ehrlichiosis, Anaplasmosis, 

spotted fever rickettsiosis, and Tularemia (Centers for Disease Control and Prevention, 

2012). While vector-borne diseases are the greatest risk associated with ticks, they pose 

other threats as well. Large infestations on wildlife or livestock can lead to anemia, loss 

of fur through self-pruning, and malnutrition (Samuel & Welch, 1991). Tick paralysis is a 
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condition in which a tick releases a neurotoxin into it host. Although this rare condition 

is usually cured shortly after removal of the tick, it can lead to death if undiagnosed 

(Greenstein, 2002). 

 In order to assess the risk of tick-borne diseases to humans and livestock, it is 

necessary to have an understanding of: which tick species are present in the area under 

question, and pathogens present within the ticks. Tick-borne pathogens are often 

undiagnosed or misdiagnosed and reports of confirmed cases can be low (Parola & 

Raoult, 2001). Therefore, it is important to be aware of the presence of tick species that 

act as vectors of disease. The goal of this project was to develop a better understanding 

of the tick fauna in an area with little information and determine the presence of 

pathogens associated with those ticks. 
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CHAPTER II 

A SURVEY OF TICKS AND TICK-BORNE PATHOGENS IN NORTH DAKOTA 

 

INTRODUCTION 

 While ticks have been heavily studied throughout much of the United States, 

there is little concrete evidence of the tick fauna residing within North Dakota. A survey 

of ectoparasites of small mammals in Grand Forks County conducted in the mid 70’s 

discovered only Dermacentor variabilis (Fellows, 1978). In fact, it has been generally 

accepted that Ixodes scapularis does not reside in the state. The state extension service 

published an AgAlert in 2010 stating this (Swenson, 2010). However, Ixodes scapularis, 

the vector of Lyme disease, is endemic to neighboring Minnesota (Drew et al., 1988; 

Sanders & Guilfoile, 2000) and evidence has suggested that the range of the black-

legged tick has increased in other parts of the United States in recent years (Hamer et 

al., 2010). Starting around 2007, Grand Forks veterinarians began to collect Ixodes 

scapularis from dogs reported to not have left the state (Jefferson Vaughan, personal 

communication). The combination of these factors indicated that it was time to conduct 

a survey of ticks and tick-borne pathogens in the state.  

Two objectives were outlined for this study. First, to determine the geographic 

range of tick species residing within the state of North Dakota with special emphasis on 
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I. scapularis and D. variabilis, the main vectors of zoonotic pathogens. The tick, serving 

as a vector, is a crucial component of pathogen lifecycles and presence of certain tick 

species will allow to us determine the potential of an area to sustain circulating 

pathogen populations. And secondly, to determine the prevalence of B. burgdorferi, 

Anaplasma phagocytophilum, and Babesia microti within any I. scapularis captured. This 

information will give us an accurate understanding of which tick species and which 

pathogens reside in the state and can be used to better diagnose diseases for persons 

that have not traveled outside of the state. 
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METHODS 

Tick Collection 

 Three methods of collecting ticks were utilized: flagging, collection of feeding 

ticks from small mammals, and passive surveillance. Flagging, also termed dragging, 

consists of pulling a white cloth through the vegetation and is a widely used sampling 

method in the literature (Ginsberg & Ewing, 1989). Questing ticks, those that are 

seeking a host, attach to the cloth as it passes by and are collected and placed in a vial 

with ethanol. Specifically, I used a 27” x 36” crib sheet composed of a durable vinyl 

lining covered with polyester providing a surface the ticks can easily cling to. The flag 

was inspected every 10-20 meters and any ticks on the cloth, as well as any found on 

the individual sampling, were placed in vials containing 70% ethanol using forceps. Date 

and location of sample were recorded.  

 The second method targeted larval and nymphal feeding ticks attached to host 

animals. Manpower constraints limited host collection to small mammals. Small 

mammals serve as hosts for immature lifestages that are not easily collected by flagging 

(Ginsberg & Ewing, 1989). Preliminary trapping was conducted using both Sherman live-

traps and lethal snap-traps. Use of snap-traps was discontinued after discovering that 

larval and nymphal ticks detached themselves from deceased rodents. Traps were 



7 
 

arrayed in a grid with 25 meter intervals between traps. When possible, trapping areas 

covered both forested and non-agricultural field-type habitats in an effort to increase 

the host species diversity. Traps were set in the evening and baited with rolled oats and 

supplied with cotton for bedding. Traps were recovered in the morning and animals 

were collected and anesthetized by placing them in a bag containing a cottonball 

treated with isoflurane (IsothesiaTM, Butler Schein, Dublin, OH) as approved by the 

American Veterinary Medical Association and the UND Institutional Animal Care and Use 

Committee (#1005-1). Ticks were then collected from the animal and placed in a vial 

containing 70% ethanol. Vials were labeled with date, location, and species of mammal. 

Once fully recovered, animals were released into the area in which they were captured. 

 Lastly, a number of ticks were also supplied by passive surveillance, in which 

individuals other than the investigators collected ticks while conducting other activities 

and delivered them to the lab. These ticks were collected by other individuals in the 

Biology Department at the University of North Dakota who were aware of the study. 

Figure 1. Locations of sample sites in North Dakota in 2010. Blue stars indicate areas 
that were sampled by flagging only while red stars indicated sites that were sampled 
by flagging and small mammal trapping. 
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Study Sites and Sampling Intervals 

 North Dakota can be divided into four Level III ecoregions (Bryce et al., 1996). 

Several study sites were identified in each of these ecoregions and one Level IV 

ecoregion (five total ecoregions) resulting in ten study sites that were actively sampled.  

1. The Lake Agassiz Plain (i.e., Red River Valley) is a flat, ancient lakebed that runs along 

the eastern border of North Dakota. The historical tallgrass prairie has been largely 

replaced by intensive agriculture. Four sites were sampled in the northern portion of the 

Lake Agassiz Plain: The University of North Dakota’s Forest River Biological Station 

located in the northwest corner of Grand Forks County, Turtle River State Park, a site in 

Steele County along the Goose River, and Jay V. Wessels Wildlife Management Area 

(WMA) situated 10 miles southeast of Walhalla in Pembina County.  

2. The Northern Glaciated Plains lie west of the Lake Agassiz Plain and are characterized 

by rolling hills with countless wetland depressions. This study included one site on Lake 

Washington WMA in Eddy County and on Graham’s Island State Park.  

3. The Turtle Mountains is a Level IV ecoregion within the Northern Glaciated Plains and 

is a small but unique region in the north central part of the state that is characterized by 

an undulating landscape, abundant wetlands, and a forest cover of aspen, birch, elm, 

oak, and ash. One site on Willow Lake in Rolette County was sampled for this study. 

4. The Northwestern Glaciated Plains occupies the area to the Northeast of the Missouri 

River and marks a transition from intensive agricultural land-use to the east to a 

predominance of ranching to the west. Two sites on the edge of the Northwest 

Glaciated Plains and the Northwestern Great Plains were sampled: one south of 
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Williston in the Lewis and Clark Wildlife Management Area in McKenzie County and one 

south of Bismarck in the Oahe Wildlife Management Area of Morton County. 

5. The Northwestern Great Plains, and more specifically, the Little Missouri Badlands in 

western North Dakota lie along the Little Missouri River and are characterized by 

sparsely wooded ridges, bluffs, buttes, and pinnacles. One site on the North Dakota 

State Land Department’s property near the southern unit of Theodore Roosevelt 

National Park in Billings County was sampled. 

 Most of these sites were sampled twice during the summer of 2010, once in June 

and once in July. Travel funds limited additional sampling; however sites nearer to 

Grand Forks were sampled more frequently. North Dakota’s Department of Game and 

Fish’s wildlife management areas or other public lands were selected in each of these 

ecoregions as our specific sampling sites (Figure 1). 

Table 1. Sampling effort at each study site in a 2010 statewide survey of ticks in North 
Dakota. 

Site Flagging Effort (Min) Trapping Periods Trap Nights 

Camp Grafton South Passive Surveillance 0 0 
Forest River 429 2 71 
Graham’s Island State Park 317 0 0 
Icelandic State Park Passive Surveillance 0 0 
Jay V. Wessels WMA 160 2 61 
Kelly’s Slough Passive Surveillance 0 0 
Lake Tobiason Passive Surveillance 0 0 
Lake Washington WMA 170 2 61 
Lewis and Clark WMA 242 1 36 
Magpie Campground 262 2 81 
Oahe WMA 330 2 81 
Steele County 58 0 0 
Turtle River State Park 382 0 0 
Upham Passive Surveillance 0 0 
UND Campus Passive Surveillance 0 0 
Willow Lake WMA 340 2 82 
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Sample Processing 

 All ticks were returned to the lab in 70% ethanol where they were identified to 

species, sex, and lifestage (Clifford et al., 1961; Durden & Keirans, 1996;(Keirans & 

Litwak, 1989; Keirans & Clifford, 1978). Adults, nymphs, and engorged larvae were 

bisected sagitally and DNA was extracted using guanidine thiocyanate (Tkach & 

Pawlowski, 1999). The PCR for Borrelia burgdorferi and Anaplasma phagocytophilum 

was performed in 50 µl of solution containing 5µl of DNA extraction solution, 37µl 

ultrapure water, 0.8 µl of 10µmol/L forward and reverse pathogen-specific primers 

(Table 1), 0.8 µl of 10mM dNTP, 5µl 10x reaction buffer (BIOER), and 0.25µl of 5u/µl 

BioReady rTaq polymerase (BIOER). The PCR program for A. phagocytophilum consisted 

of initial denaturation for 4-min at 94ᵒC followed by 40 cycles of 94ᵒC for 30s, 55ᵒC for 

30s, and 72ᵒC for 1-min. For B. burgdorferi, 30 cycles of 94ᵒC for 1-min, 37ᵒC for 2-min, 

and 72ᵒC for 3-min was followed by a final 7-min elongation at 72ᵒC. Products were 

visualized on a 1.5% agarose gel stained with ethidium bromide in a 0.5X Tris-borate-

EDTA buffer.  

 Real-time PCR was used to detect Babesia microti. 2.5µl of DNA extraction 

solution was combined with 7.5µl iTaq Universal SYBR Green Supermix (Bio-Rad), 1µl of 

10µmol/L primers, and 3µl ultrapure water. After an initial denaturation step for 30s at 

95ᵒC, the sample was subjected to 40 cycles of denaturation at 95ᵒC for 5s, and 

annealing/extension at 68ᵒC for 25s. A melting curve analysis was conducted from 72ᵒC 

to 90ᵒC increasing the temperature 0.5ᵒC every 3s. Melting points for positives were 

81.5ᵒC.  
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The DNA from PCR-positive samples were purified by combining 2µl of the PCR 

product with 5µl of ExoSap and heated to 80ᵒC for 15-min then 37ᵒC for 15-min. 

Sequencing reactions were performed using 2µl of the purified PCR product in a 10µl 

solution containing 1µl of BigDye Terminator ® v3.1, 2µl 5x buffer, 2µl of the forward 

primer, and 3µl ultrapure water in an Eppendorf Mastercycler®. Sequencing was 

conducted using an ABI PRISM® 3100 Genetic Analyzer. Sequences were edited using 

BioEdit Sequence Alignment Editor and compared to those in GenBank for the 

pathogens the primers specified. 

 

Table 2. PCR primers used for pathogen detection. 

Target 
Pathogen 

Target 
Gene 

Primer 
Names 

Primer Sequences Citation 

Borrelia flagellin FL6 5’-TTCAGGGTCTCAAGCGTCTTGGACT-3’ 
Picken, 1992 

  FL7 5’-GCATTTTCAATTTTAGCAAGTGAT-3’ 

Anaplasma p44 MSP3F 5’-CCAGCGTTTAGCAAGATAAGAG-3’ Zeidner et al., 
2000   MSP3R 5’-GCCCAGTAACAACATCATAAGC-3’ 

Babesia 18S rDNA smbaJF 5′-GCGTTCATAAAACGCAAGGAAGTGT-3’ 
Hersh et al., 2012 

  smbaKR 5′-TGTAAGATTACCCGGACCCGACG-3’ 
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RESULTS 

Flagging 

 A total of 1234 ticks were collected by flagging (87%) and passive surveillance 

(13%). A total of 42.3 hours was spent flagging resulting in the collection three tick 

species (Table 2). For D. variabilis, 885 (85%) were collected by flagging and the rest 

(157, 15%) were collected by passive surveillance. For I. scapularis, 185 (97%) were 

collected by flagging and the rest (6, 3%) were collected by passive surveillance. 

The majority of the ticks collected by flagging were Dermacentor variabilis (84%). 

Only adult D. variabilis were collected by flagging. The remaining ticks consisted almost 

exclusively of Ixodes scapularis (15%). All three lifestages of I. scapularis were collected 

by flagging. All larval I. scapularis were collected during two sampling incidences at 

Graham’s Island State Park in which the surveyor apparently encountered newly 

hatched egg masses. A single Amblyomma americanum adult was collected on a 

surveyor but the location of collection could not be determined. 
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Table 3. Species and lifestages of ticks collected by flagging and passive surveillance in 
North Dakota, 2010. 

Species Dermacentor 
variabilis 

Ixodes 
scapularis 

Amblyomma 
americanum 

Total 

Adult Male 456 22 0 478 
Adult Female 586 16 1 603 
Nymph 0 29 0 29 
Larvae 0 124 0 124 

TOTAL 1042 191 1 1234 

 

 Adult D. variabilis were collected from sample sites across the state except the 

Little Missouri Badlands. However, personal communication with park service 

employees indicated ticks were present in the area of our southwestern sample sites 

prior to our sampling. Abundances in the remainder of the state were greater in eastern 

sites and in the Turtle Mountains (Table 3). Ixodes scapularis were collected from three 

sites in the north-central Red River Valley (Turtle River, Forest River, and Steele County) 

and from Graham’s Island State Park. 
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Table 4. Total number and species of ticks collected by flagging at each of 10 sample 
sites in North Dakota during 2010. 

Site County Eco-Region D. variabilis I. scapularis 

Forest River Grand Forks 
Lake Agassiz 

Plain 
365 32 

Turtle River SP Grand Forks 
Lake Agassiz 

Plain 
217 8 

Steele County Steele 
Lake Agassiz 

Plain 
32 3 

Jay V. Wessels WMA Pembina 
Lake Agassiz 

Plain 
44 0 

Lake Washington WMA Eddy 
Northern 

Glaciated Plains 
89 0 

Graham's Island SP Ramsey 
Northern 

Glaciated Plains 
20 146 

Willow Lake WMA Rolette Turtle Mountains 174 0 

Oahe WMA Morton 
Northwestern 

Glaciated Plains 
18 0 

Lewis and Clark WMA McKenzie 
Northwestern 

Glaciated Plains 
2 0 

Little Missouri Grassland Billings 
Northwestern 
Great Plains 

0 0 

TOTAL   961 189 

 

 

Small Mammal Trapping 

 Seventy-one small mammals representing nine species were caught over the 

course of 473 trap nights for a 15.01% trap success rate (Table 4). Sherman live-traps 

were used for 407 of the trap-nights; snap traps were used for 66 trap-nights. Because 

of difficulty in accurate species identification, Peromyscus were identified only to genus. 
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Table 5. Species and numbers of mammals captured by site in North Dakota, 2010. 
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Forest River 71 15.5 1 2 1 0 0 0 6 0 1 11 
Jay V. Wessels WMA 61 16.4 0 9 0 0 0 1 0 0 0 10 
Lake Washington WMA 61 18.0 0 4 0 0 0 2 3 0 2 11 
Lewis and Clark WMA 36 5.6 1 0 0 0 0 0 1 0 0 2 
Little Missouri Grassland 81 9.9 0 0 0 1 0 0 7 0 0 8 
Oahe WMA 81 21.0 2 0 0 0 2 2 11 0 0 17 
Willow Lake WMA 82 14.6 1 8 0 0 1 0 1 1 0 12 

TOTAL 473 15.0 5 23 1 1 3 5 29 1 3 71 

 

The majority (73%) of small mammals trapped were either Peromyscus (41%) or 

M. gapperi (32%) (Table 4). There was a significant correlation between the number of 

trap-nights and the total number of mammals trapped at each site (Pearson’s 

correlation, p=0.002), however there was no correlation between the number of trap-

nights and the number of species trapped at each site (Pearson’s correlation, p=0.30), 

nor was there a significant correlation between the total number of mammals trapped 

and the number of species trapped (Pearson’s correlation, p=0.14). This suggests that 

species diversity may have been greater at some sites than at others. The greatest 

number of species trapped was at Forest River and Willow Lake (n=5). Peromyscus was 

the most widely distributed species and was collected at all sites except the Jay V. 

Wessels site. Blarina brevicauda and M. gapperi were the second most widely-



16 
 

distributed species and were trapped in four of the seven sites, although only two sites 

in common. 

We collected 528 ticks from small mammals comprising four species (Table 5). 

Ixodes scapularis and D. variabilis accounted for all but five of the ticks collected. All 

ticks collected from small mammals were immature lifestages with the exception of I. 

woodi, in which only adults were collected. All I. angustus and I. woodi were collected in 

the Turtle Mountains region of the state. Dermacentor variabilis was found on small 

mammals at all trapping locations except the northwestern most study site and average 

tick burden was greater in northeastern study sites. Ixodes scapularis was found only in 

the northeast portion of the state. 

Table 6. Total ticks collected from small mammal hosts at each sample site in North 
Dakota, 2010. Numbers in parentheses indicated number of small mammals collected. 

 D. variabilis I. scapularis I. woodi I. angustus 
Study Site Larvae Nymphs Larvae Nymphs Adults Nymphs 

Forest River (11) 161 2 74 11 0 0 
Jay V. Wessels WMA (10) 63 41 11 0 0 0 
Willow Lake WMA (12) 48 50 0 4 3 2 
Oahe WMA (17) 14 15 0 0 0 0 
Lake Washington WMA (11) 8 1 14 2 0 0 
Little Missouri NG (8) 2 2 0 0 0 0 
Lewis and Clark WMA (2) 0 0 0 0 0 0 

TOTAL 296 111 99 17 3 2 

 

Only one trapping session was conducted at Lewis and Clark WMA. Trap success 

was low resulting in only two mammals collected at this site, limiting tick collection. 

Average tick burden differed among sites, but with low number of hosts examined and 

different host species composition at each site, there is not enough evidence to 

attribute the difference to ecoregion. 
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Dermacentor variabilis was collected from six mammal species and I. scapularis 

was collected from five host species (Table 7). All I. angustus and I. woodi were collected 

from M. gapperi. Both I. angustus were collected from a single rodent while each I. 

woodi were collected from separate rodents. M. gapperi harbored more larval D. 

variabilis (Q1=1, MED=2, Q3=4.5) than Peromyscus (Q1=0, MED=0, Q3=1) (W=511, 

p=0.0006) and more nymphal D. variabilis (Q1=0, MED=2, Q3=4) than Peromyscus (Q1=0, 

MED=0, Q3=0) (W=522, p=4.42e-5). There was no difference in the I. scapularis burdens 

for larva or nymphs. No ticks were collected from Blarina brevicauda, Microtus 

montanus, or Tamias striatus. 

Table 7. Species and lifestages of ticks collected from small mammal species in North 
Dakota, 2010. 

 D. variabilis I. scapularis I. angustus I. woodi 
Host Species (n) Larvae Nymphs Larvae Nymphs Nymphs Adult 

Peromyscus sp. (29) 37 17 51 6 0 0 
Myodes gapperi (23) 236 80 23 6 2 3 
Mus musculus (5) 3 12 3 1 0 0 
Zapus hudsonius (3) 19 0 20 3 0 0 
Microtus pennslyvanicus (3) 0 2 0 0 0 0 
Glaucomys sabrinus (1) 1 0 2 1 0 0 
Blarina brevicauda (5) 0 0 0 0 0 0 
Microtus montanus (1) 0 0 0 0 0 0 
Tamias striatus (1) 0 0 0 0 0 0 

TOTAL 296 111 99 17 2 3 

 

Pathogen Detection 

 All Ixodes scapularis collected by flagging and engorged individuals from small 

mammals were tested for pathogens. Testing only larvae from small mammals allowed 

us to xeno-diagnose the host for the pathogen. In total, 94 I. scapularis were tested for 
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Anaplasma phagocytophilum and 92 were tested for Borrelia burgdorferi. Due to 

repeated PCR tests, extracted DNA in 71 of the samples was expended and therefore, 

the DNA from only 23 ticks was available to test for Babesia microti. Anaplasma 

phagocytophilum was detected in eight ticks (8.5%) from two locations; Forest River 

(n=6) and Turtle River (n=2). Six of those testing positive were adult questing ticks. Of 

the remaining two, both were nymphs attached to rodents; one on Zapus hudsonius and 

one on Myodes gapperi, both from the Forest River study site. Borrelia burgdorferi was 

detected in three ticks (3.3%); two questing adults from the Turtle River study site and a 

nymph collected from a Z. hudsonius. One nymph was positive for both A. 

phagocytophilum and B. burgdorferi. None of the samples were positive for B. microti.
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DISCUSSION 

 Although it is common knowledge among sportsmen and outdoor enthusiasts 

that ticks are abundant in North Dakota, this research represents the first systematic 

survey for ticks in North Dakota. Indeed, I present here the first documented cases of 

several tick species and pathogens. 

Ixodes angustus has been shown to be a competent B. burgdorferi vector in a 

laboratory setting (Peavey et al., 2000) and feeds mainly on small rodents and 

sometimes humans (Easton & Goulding, 1974). Ixodes woodi is primarily a parasite of 

wood rats (Neotoma spp.) but have been collected from other rodents (Keirans & 

Clifford, 1978). This is the first known collection of both of these species in North Dakota 

and the first collection of I. woodi on M. gapperi. These species rarely parasitize man 

and are of little medical importance. 

The collection of a single Amblyomma americanum was unexpected. This tick 

species is an established tick in the southern United States. It has been reported on the 

east coast north to Maine (Keirans & Lacombe, 1998), west to Iowa and central Texas 

(Centers for Disease Control and Prevention, 2011). A single specimen is not sufficient to 

determine establishment of the species in North Dakota. Amblyomma americanum are 

generalists whose hosts include birds (Allan et al., 2010). In the case of migratory birds, 

it is possible for a tick to attach in an A. americanum endemic area and detach a long 
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distance away in unsuitable habitat. Anthropogenic movement may also introduce ticks 

into new areas where they may or may not establish populations. 

 Of greatest significance was the discovery of I. scapularis as well as the 

associated pathogens B. burgdorferi and A. phagocytophilum. This is the first 

documented report of these species naturally occurring in North Dakota and is 

supporting evidence that the range of I. scapularis is expanding (Hamer et al., 2010). The 

collection of all lifestages of I. scapularis from multiple study areas spanning a large 

geographic area provides sufficient evidence that the tick has become established in 

North Dakota. In order for a vector-borne pathogen to sustain itself in an environment, 

it is necessary to have both the vector and a reservoir host. Peromyscus maniculatis and 

P. leucopus, both known reservoirs of B. burgdorferi (Peavey & Lane, 1995; Anderson, 

1989) are both present in North Dakota and were among the most commonly collected 

small mammal species in this study. These host species are also competent reservoirs of 

A. phagocytophilum (Walls et al., 1997; Rejmanek et al., 2011). The presence of the 

vector along with competent reservoirs provides the elements necessary to sustain 

these pathogens in North Dakota. Detection of both of these pathogens in multiple 

lifestages of field-collected I. scapularis indicates that B. burgdorferi and A. 

phagocytophilum have become established in certain areas of the state. Although 

Babesia microti was not detected in the small sample of ticks sampled in 2010, there is 

not sufficient evidence to declare its absence from the state. Peromyscus is also a 

reservoir for B. microti (Speilman et al., 1981) and with the presence of both a suitable 
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host and vector it may already occur in areas of North Dakota but escaped detection or 

may populate the area in the future. 

 Although the range of I. scapularis is currently expanding, I believe it is unlikely 

that it will continue to move west. I. scapularis presence is associated with forested 

areas (Guerra et al., 2002). As one moves west from Minnesota into North Dakota the 

landscape transitions from a densely forested area to the Great Plains. As such, forested 

areas dwindle, hanging on along river bottoms, then altogether disappear. There is very 

little suitable habitat in which I. scapularis could survive and western invasion of the tick 

will be halted. Nonetheless, medical practitioners must be made aware of the presence 

of I. scapularis, B. burgdorferi, and A. phagocytophilum in North Dakota and be familiar 

with their symptoms. With this knowledge, they will include these diseases in routine 

tests resulting in properly diagnosed patients and healthier North Dakotans.  
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CHAPTER III 

EFFECT OF FOREST PATCH SIZE ON ABUNDANCE OF TICKS IN GRAND FORKS COUNTY, ND 

 

INTRODUCTION 

 Results of my 2010 statewide survey demonstrated that Ixodes scapularis had 

expanded its range into eastern North Dakota (see Chapter II). Because of the medical 

importance of this tick species, I wanted to examine what areas of North Dakota were 

being colonized and develop some hypotheses as to why this was. To do this, I can 

compare the distribution of I. scapularis (i.e., a species first colonizing North Dakota) 

with that of Dermacentor variabilis (i.e., a species endemic to North Dakota) across 

Grand Forks County in forested patch areas of varying sizes. 

 Forested patches were examined because I. scapularis displays an affinity for 

forested areas (Ginsberg & Ewing, 1989). Immature Dermacentor variabilis also are 

found in greater abundances in forested areas, presumable because of higher moisture 

content in these areas (Sonenshine & Stout, 1968). The agricultural land surrounding the 

forest patches has the additional hazard of plowing that may expose ticks to the 

elements.  

 Examining forested areas of varying sizes may provide insight into what areas are 

first being colonized by I. scapularis. The forested patches examined in this study may 



23 
 

act as islands in a sea of unsuitable agricultural habitat. It has been widely discussed in 

the literature that colonization rates of species increase with increased island size (e.g., 

Lomolino, 1990; Connor & McCoy, 1979). This target area hypothesis, as it is called, 

theorizes that there is a greater chance of transient individuals encountering a large 

area as opposed to a small one. Once encountered, large areas are more likely to have 

sufficient resources to sustain a population of the colonizing species. The propensity of 

large islands to have additional resources also makes them more resistant to extinction 

(MacArthur & Wilson, 1967). In the case of I. scapularis invading North Dakota, we 

would expect to see large islands more frequently colonized by and sustaining 

populations of the tick. 

 I can further explore the effects of forest patch size on the abundance of ticks. 

Allan et al. (2003) found questing I. scapularis nymph density increased with decreasing 

forested patch size. This result was attributed to a greater density of Peromyscus 

leucopus in smaller patches (Nupp & Swihart, 1996). Because of the importance and 

efficiency of P. leucopus as a reservoir of Borrelia burgdorferi (Mather et al., 1989), an 

increased density of P. leucopus relative to other host species can lead to higher 

infection prevalences in ticks in what Ostfeld and Keesing (2000) call the dilution effect. 

My objective for this study was to determine if the distribution of I. scapularis 

and D. variabilis was driven by the size of forest patches in eastern North Dakota. Tick 

abundance may also be influenced by abundance of small mammals (Schmidt et al., 

1999; Ostfeld et al., 2001). Therefore, to attribute differences in tick abundance to patch 

size, it was also necessary to determine differences in host abundance. 
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METHODS 

 

Study Sites and Sampling Intervals 

Six forested study sites of varying sizes were identified in Grand Forks County 

ranging from 7 to 349 hectares (Table 1, Figure 1). Area for study sites was determined 

using aerial imagery on ACME labs Google Planimeter (Poskanzer, 2000). These study 

sites were surrounded by farmland, effectively creating the islands necessary to explore 

the objectives. Each site was sampled once a week from late May through mid August 

2012. Flagging and small mammal trapping techniques were used as described in 

Chapter I with some exceptions. Traps were located only in forested areas to target 

suitable I. scapularis habitat. Traps were spaced at 10 meter intervals instead of 25 

meters for ease of sampling. Each sampling session consisted of approximately 25 traps. 

Traps were arrayed in a grid starting near the forest edge. 

Flagging was conducted for one hour at each site. At sites that consistently 

produced few to no ticks, flagging time was reduced to one half hour. This was done so 

that more effort could be directed towards sites that were producing a large number of 

ticks, increasing the number of samples for pathogen detection. Time was used as a 

measure of sampling effort to determine relative abundance of ticks because of the 
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difficulty in sampling a fixed-size area in forested habitats and difficulty in measuring 

long transects in the large areas sampled. 

Table 8. Size of six study sites that were surveyed to determine effects of forest patch 
size on tick abundance and on the prevalence of Borrelia burgdorferi, Anaplasma 
phagocytophilum, and Babesia microti pathogens within I. scapularis ticks in Grand 
Forks Co., ND, 2012. 

Site Size (Hectares) 

Oslo 7 
Manvel 31 
Northwood 103 
Janice 204 
Turtle River 254 
Forest River 349 

 

 
Figure 2. Location of the six study sites that were surveyed to determine effects of 
forest patch size on tick abundance and on the prevalence of Borrelia burgdorferi, 
Anaplasma phagocytophilum, and Babesia microti pathogens within I. scapularis ticks 
in Grand Forks County, ND, 2012. 
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Data Analysis 

 Count data were tested for normality by plotting histograms and found not 

normally distributed. Logarithmic transformation did not normalize count data. 

Therefore non-parametric Mann-Whitney tests were used to compare count data 

among sites. Proportional data were analyzed by Chi square or Fisher’s exact tests when 

expected frequencies were less than five. Linear regressions were used to analyze 

relationships between patch size (independent variable) and tick abundance (dependent 

variable). Statistical analyses were performed using the software, R (R Core Team, 

2012). 

Questing Ticks. To determine the effect of patch size on the abundance of 

questing ticks, data points were plotted using patch size as the explanatory variable and 

ticks collected per hour for each sampling period as the response variable. A linear 

regression was fitted to the data. Beginning with a first-order model, higher order terms 

were added until the model reached significance.  

Small Mammals. Differences among sites were compared for overall small 

mammal abundance (the number of mammals collected per trap-night) and 

composition of Peromyscus and Myodes gapperi using Pearson’s chi-squared test of 

independence. Within sites, binomial tests were used to determine if abundance of 

Peromyscus and M. gapperi differed.  

Tick Infestation on Small Mammals. Two measures of tick burden were used to 

determine differences in host tick burden and effects of increasing patch size on tick 

abundance: infestation prevalence, and infestation intensity. Infestation prevalence is 
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the proportion of hosts harboring ticks. Infestation intensity calculates the average 

number of ticks per infested host. Measures of infestation prevalence included hosts 

that were infested with either larval or nymphal ticks. The overall number of nymphs 

collected during this study was much lower than that of larvae (i.e., less than 1/10), so 

only larval ticks were included in infestation intensity calculations. Infestation intensity 

data was not normally distributed so data were transformed (log10 +1) prior to statistical 

analysis. A linear regression model was developed to examine the effects of increasing 

patch size on infestation intensity.  

Host Utilization by Immature Ticks. For comparison of host utilization by each 

tick species, only data from the Forest River study site was used. This site had the 

highest abundance of both tick species allowing for more robust results. However, this 

limits any conclusions drawn to this one site as well. Infestation prevalence and intensity 

were examined for Peromyscus and M. gapperi. Infestation prevalence was examined 

using Pearson’s Chi-squared test. Infestation prevalence was examined using Mann-

Whitney tests. 

Temporal Dynamics. All figures of temporal abundance were created using data 

from only the Forest River study site. Ticks collected by flagging and from small 

mammals were grouped by lifestage and the week they were collected. All flagging 

events during each one week period were averaged to determine a relative abundance 

for each week. The number of larvae and nymphs collected from all small mammals 

during a given week were divided by the number of hosts examined that week to 

determine average ticks per host. To visualize temporal trends more easily, data for 
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each lifestage were normalized. This was accomplished by multiplying the greatest 

abundance observation for each lifestage by a constant so that it would equal 100. The 

rest of the data points were then multiplied by their lifestage specific constant and 

plotted by week. 
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RESULTS 

 

Abundance of Immature Ticks on Small Mammals 

 A total of 749 immature I. scapularis were collected from small mammals (Table 

9). Over 97% of the ticks were collected from the Turtle River (55% of total) and Forest 

River study sites (42% of total); the two largest study areas. Similar numbers of 

mammals were trapped at the four smallest sites (Table 9) but tick infestations on small 

mammals at these sites were sparse. No I. scapularis were collected from small 

mammals at the smallest site (Oslo) and less than 10 ticks each were collected off small 

mammals at the Manvel, Northwood and Janice sites.  

A total of 999 immature D. variabilis were collected off of hosts (Table 9). Larvae 

made up 79% of D. variabilis collected while nymphs accounted for the rest of the ticks 

collected from hosts. The majority of this species were collected at the Forest River 

study site (56.3%), however D. variabilis had a greater distribution over the sites than I. 

scapularis: Oslo (3.2%), Manvel (5.9%), Northwood (17.1%), Janice (3.8%), and Turtle 

River (13.7%). 
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Table 9. Total (average) immature ticks collected from small mammals in forest 
patches of varying sizes in Grand Forks County, ND, 2012. 

 Size 
(Hectares) 

Mammals 
Trapped 

Dermacentor variabilis Ixodes 
scapularis 

Larvae Nymphs Larvae Nymphs 

Oslo 7 57 24 (0.42) 8 (0.14) 0 (0.00) 0 (0.00) 
Manvel 31 60 55 (0.92) 4 (0.07) 2 (0.03) 6 (0.10) 
Northwood 103 48 154 (3.21) 17 (0.35) 2 (0.04) 0 (0.00) 
Janice 204 37 34 (0.92) 4 (0.11) 9 (0.24) 0 (0.00) 
Turtle River 254 81 107 (1.32) 30 (0.37) 397 (4.90) 19 (0.23) 
Forest River 349 69 419 (6.07) 143 (2.07) 285 (4.13) 29 (0.42) 

TOTAL  352 793 (2.25) 206 (0.59) 695 (1.97) 54 (0.15) 

 

There was a significant positive correlation between the transformed larval 

Ixodes scapularis tick infestation on hosts and increasing forested patch size (adjusted 

R2=0.3522, p<0.0001, F1, 350 =191.8, Figure 3). There was also a significant positive 

correlation between larval Dermacentor variabilis tick infestation on hosts and 

increasing forested patch size (adjusted R2=0.0973, p<0.0001, F1, 350 =38.84, Figure 3). 
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Figure 3. Infestation intensity of both Ixodes scapularis (top) and Dermacentor 
variabilis (bottom) increased with increasing forested patch size in Grand Forks Co., 
ND. 2012. Each point represents larval tick infestation intensity of an individual 
mammal. Each spoke indicates a mammal with identical infestation. Solid lines 
represents the fitted linear regression and dotted lines are 95% confidence envelope. 
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Abundance of Questing Ticks 

 Overall, 287 questing I. scapularis ticks were collected (Table 10). The Turtle 

River and Forest River study sites, the two largest study sites, contained all but two of 

the I. scapularis collected. The Oslo, Manvel, and Janice study sites did not produce any 

ticks I. scapularis. The majority of I. scapularis collected (98%) were adults. There was a 

significant relationship between forested patch size and I. scapularis collected per hour 

using a second order linear regression model (Adjusted R2=0.4754, F2, 80=38.15, 

p<0.0001, Figure 4). 

Dermacentor variabilis were collected at all study sites by flagging (Table 10). 

Only the adult lifestage was collected. The largest two study sites, Turtle River and 

Forest River, contained 98% of the D. variabilis collected. A second order linear 

regression model plotting patch size against ticks collected per hour flagging found a 

significant positive correlation (adjusted R2=0.544 F2,80=49.91, p<0.0001; Figure 4). 

 

 

Table 10. Questing ticks collected by flagging (ticks per hour) within forest islands of 
varying sizes. Grand Forks Co., ND. 2012. 

 Size 
(Hectares) 

Sampling 
Periods 

Effort 
(minutes) 

Dermacentor 
variabilis 

Ixodes 
scapularis 

Oslo 7 12 490 1 (0.1) 0 (0.0) 

Manvel 31 12 490 2 (0.2) 0 (0.0) 

Northwood 103 12 495 7 (0.8) 2 (0.2) 

Janice 204 12 480 4 (0.5) 0 (0.0) 

Turtle River 254 18 1150 191 (10.0) 49 (2.6) 

Forest River 349 17 1105 603 (32.7) 236 (12.8) 

TOTAL  83 4210 808 (11.5) 285 (4.1) 
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Figure 4. Ixodes scapularis (top) and Dermacentor variabilis (bottom) collected per 
hour increased with forest patch size in Grand Forks County, ND, 2012. Each point 
represents one flagging event. Spokes indicate flagging events with identical number 
of ticks collected per hour. Solid lines represents the fitted linear regression and 
dotted lines are 95% confidence envelope. 
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Host Utilization by Immature Ticks 

I collected 352 small mammals over 1425 trap-nights. Of eight species captured, 

over 95% consisted of Peromyscus spp. (63.1%) and Myodes gapperi (32.4%; Table 11). 

No trend was observed that would indicate forested patch size had an effect on species 

richness or diversity. However, M. gapperi and Peromyscus were not distributed evenly 

across study sites (Pearson’s Chi-squared = 73.7, DF=5, p<0.0001). Myodes gapperi and 

Peromyscus were collected evenly at the Oslo (Binomial Test p = 1), Manvel (p=1), and 

Forest River (p = 0.11) study sites. However, Peromyscus was the dominant mammal 

species captured at the Northwood (p<0.0001), Janice (p<0.0001), and Turtle River sites 

(p<0.0001; Figure 5). 

 

Table 11. Numbers and species of small mammals trapped within forest islands of 
varying sizes. Grand Forks Co., ND, 2012. 
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Forest Size (hectares) 7 31 103 204 254 349  

Trap Nights 201 199 203 205 310 307 1425 

Mammal Species        

   Mus musculus 0 0 0 1 0 0 1 

   Sciurus niger 0 1 0 0 0 0 1 

   Tamias striatus 0 0 0 3 0 0 3 

   Tamiasciurus hudsonicus 0 2 0 0 1 0 3 

   Blarina brevicauda 0 1 0 0 1 2 4 

   Zapus hudsonias 0 0 0 2 1 1 4 

   Myodes gapperi 29 28 4 1 12 40 114 

   Peromyscus spp. 28 28 44 30 66 26 222 

TOTAL 57 60 48 37 81 69 352 

Total per trap-night 0.28 0.30 0.24 0.18 0.26 0.22 0.25 
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Figure 5. Percent of Myodes gapperi and Peromyscus of total capture collected at each 
study in Grand Forks County, ND, 2012. Numbers on bars represent number collected 
at each site. These two species were not evenly distributed across study sites. 

 

Most of the immature I. scapularis ticks (97.9%) were collected from either 

Peromyscus (76.0%) or M. gapperi (21.9%), with smaller percentages of ticks collected 

from Zapus hudsonias (0.9%), Sciurus niger (0.8%), Blarina brevicauda (0.3%), and 

Tamiasciurus hudsonicus (0.1%). Most immature D. variabilis were collected from M. 

gapperi (58.0%) and Peromyscus (41.5%), with the remainder collected from Mus 

musculus (0.4%) and Tamias striatus (0.1%). Infestation prevalence of I. scapularis 

significantly differed between M. gapperi and Peromyscus at the Forest River study site 

(Table 12). Infestation prevalence of D. variabilis did not differ between M. gapperi and 

Peromyscus at the Forest River study site (Table 12). Larval infestation intensity did not 

differ among Peromyscus or M. gapperi (Table 13). The nymphal infestation intensity 

was not different for Peromyscus, however the greater infestation intensity of M. 

gapperi by D. variabilis than I. scapularis approached significance (Table 13). 
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Table 12. Infestation prevalence of the dominant small mammal species with 
immature ticks at the Forest River study site in Grand Forks Co., ND. 2012. Pearson’s 
chi-squared test was used. Numbers in parentheses indicate number of hosts 
examined. 

 Peromyscus Myodes gapperi X2 p-value 

Ixodes scapularis 88.5%(26) 60.0%(40) 6.2265 0.0126 
Dermacentor variabilis 80.8%(26) 82.5%(40) 0.0317 0.86 

 

Table 13. Infestation intensity of immature Ixodes scapularis and Dermacentor 
variabilis on small mammals at the Forest River study site, Grand Forks Co., ND. 2012. 
Intensity values are given as the median values and interquartile range.  

 Ixodes 
scapularis 

Dermacentor 
variabilis 

Mann- Whitney 
U p-value 

Larvae     
  Peromyscus 2.5 (1.0, 6.25) 3 (1.0, 3.75) 132 0.69 
  Myodes gapperi 2 (2.0, 6.0) 4 (1.5, 6.5) 203.5 0.66 
Nymphs     
  Peromyscus 1.0 (1.0, 1.0) 1.0 (1.0, 1.25) 30 0.80 
  Myodes gapperi 1.0 (1.0, 3.0) 4.0 (2.0, 6.0) 118.5 0.06 

 

Temporal Dynamics 

 The abundance of adult I. scapularis was greatest during the initial sampling 

period of 2012 (Figure 6). It remained relatively high until mid-June, and then decreased 

through mid-July, after which no additional adults were collected. Nymphal abundance 

was high from the initial sampling period and peaked in early June. Once peaked, the 

abundance quickly dropped and remained low through our last nymphal detections in 

late July. Larval I. scapularis peaked in late May and at lower abundances through the 

last sampling period in mid August. 

Adult and larval D. variabilis peaked in mid May (Figure 7). Adult abundance 

increased to this point but this was the first small mammal trapping period. Both adults 
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and larvae decreased throughout the season. Nymphs were detected at low levels until 

early July, peaking in Mid July. 

 
Figure 6. Temporal dynamics of Ixodes scapularis. Lifestage abundances were 
standardized for ease of comparison. Adults were collected by flagging the weeks of 
May 7 through August 6. Small mammals were examined for larvae and nymphs from 
May 21 through August 13. No sampling occurred the week of July 2. 
 

 
Figure 7. Temporal dynamics of Dermacentor variabilis. Lifestage abundances were 
standardized for ease of comparison. Adults were collected by flagging the weeks of 
May 7 through August 6. Small mammals were examined for larvae and nymphs from 
May 21 through August 13. No sampling occurred the week of July 2. 
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DISCUSSION 

 

Abundance of Ticks 

The abundance of adult questing ticks and immature ticks feeding on hosts 

increased with increasing forest patch size for both tick species. This can indicate that 

either larger forest patches can sustain a greater density of ticks or that the ticks have 

inhabited these large patches for a longer time and have been able to maximize their 

population densities towards their carrying capacity. The abundance of small mammal 

hosts was not influenced by forested patch size in North Dakota. Because I. scapularis 

populations are well-established at two of the study sites I can infer that small mammal 

hosts are sufficiently abundant at each study site to sustain the immature tick lifestages. 

Deer are also abundantly present at each site (personal observation) to sustain the adult 

lifestage. Therefore, in the absence of some unknown factor unrelated to patch size, all 

study sites examined in this project have the theoretical ability to sustain I. scapularis 

populations. Mobility of ticks themselves is limited to areas less than 10 meters (Carrol 

& Schmidtmann, 1996) so the movement of ticks from one area to another over large 

distances is dependent on host movement. Immature ticks regularly parasitize birds 

(Smith Jr. et al., 1996; Klich et al., 1996; Scott et al., 2012). I believe that the large 
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patches were found to have greater densities of ticks because they are more frequently 

encountered by birds carrying ticks.  

 

Host Utilization 

Ixodes scapularis had a higher infestation prevalence on Peromyscus than M. 

gapperi. Dermacentor variabilis, on the other hand, infested both mammal species 

equally. This indicates that I. scapularis may be showing some kind of preferential 

feeding patterns. Larval intensity did not differ between tick species for either host 

meaning those individuals that are infested are infested by larvae equally. Finally, M. 

gapperi had higher infestation intensity by nymphal D. variabilis than I. scapularis while 

Peromyscus infestation intensity with both tick species was the same. Myodes gapperi 

were more heavily infested by D. variabilis than by I. scapularis.  

There are competing hypotheses to explain these phenomena. First, the ticks 

may be utilizing hosts not collected using Sherman traps. For example, Ixodes scapularis 

nymphs or D. variabilis larvae may be feeding on host species not collected. Alternately, 

survival rates may differ between species. More D. variabilis larvae surviving to become 

nymphs than I. scapularis would account for the increased abundance of D. variabilis 

observed in the study. I am inclined to believe that there is a greater abundance of D. 

variabilis larvae as well that were not detected in this study because both adult and 

nymphal abundance of I. scapularis were less than D. variabilis. Collection of additional 

host types (i.e., birds or medium-sized mammals) would provide insight into this theory. 
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On the topic of host utilization, the association of tick species and host species 

turned out to be rather interesting. I propose two hypotheses to explain why larval tick 

species would not be evenly distributed between the two most common hosts: (1) 

differential encounter rates, and (2) host preference. In order for the differential 

encounter scenario to hold true, the tick and host species must utilize different 

microhabitats. In our case, I. scapularis would more closely share a microhabitat with 

Peromyscus than M. gapperi. Dermacentor variabilis may inhabit multiple microhabitats 

thus allowing it to encounter both mammal species equally. In this scenario, we 

postulate that there is no difference in tick or host species after-encounter attachment 

rate. The second hypothesis, host preference, postulates that encounter rates are 

equivalent for all host and tick species but the after-encounter attachment rate differs. 

In this study, I. scapularis would pass over a possible M. gapperi host for the 

opportunity to feed on Peromyscus. In 2010 I observed I. scapularis readily cling to a flag 

made of synthetic material in Graham’s Island State Park. This observation only exhibits 

the tendency of I. scapularis to cling to non-specific hosts (as opposed to actually 

attaching and feeding). However, in this study I. scapularis were found on six of eight 

mammal species. They were not collected on Mus musculus and Tamias striatus, caught 

only one and three times and all at the Janice study site where few I. scapularis were 

collected. This leads me to believe that I. scapularis at least, does not exhibit host 

preference. Thus, the differential encounter rate hypothesis seems to be the more likely 

scenario. 
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Temporal Dynamics 

Adult D. variabilis abundance peak coincided with larval peak. Adult abundance 

increased from the first sampling period to the peak then declined throughout the 

season. Unfortunately, this was the first sampling period for immature ticks and I was 

not able to get a good representation of the rate of emergence. Nymphs peaked later in 

the summer. The trends observed for each lifestage indicated a two-year lifecycle. Adult 

ticks emerge in the spring to seek a host and obtain a bloodmeal. Eggs are laid and 

larvae hatch but do not seek hosts until the following spring. Larvae seek hosts and feed 

in the spring then molt into nymphs. Nymphs feed later that same year molt into adults 

to overwinter. This lifecycle is in agreement with other studies (Burachynsky & 

Galloway, 1985; Garvie et al., 1978). A unimodal peak of larval abundance was 

observed, in agreement with patterns in other D. variabilis populations in northern 

latitude (Campbell, 1979; McEnroe, 1979). 

The greatest abundance of adult I. scapularis was observed during the first 

sampling period of the season and thus, the date at which they first emerge and rate at 

which the emergence increases is not evident. Nymphal abundance was also near its 

peak during the first sampling period for immature ticks and has the same limitations 

that applied to adults. Larvae peaked during the second collection period and declined 

throughout the season. The observed peak abundance of all three life stages early in the 

season suggests a three-year lifecycle in which ticks of each lifestage emerge in the 

spring to take a bloodmeal then molt or lay eggs. Although the two-year lifecycle is 
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generally accepted as a standard, annual variation may contribute to longer lifecycles 

(Yuval & Spielman, 1990). 

Seasonal dynamics in the northeast United States typically have a peak nymphal 

abundance prior to larvae (Ostfeld et al., 1996; Main et al., 1982). It is this delayed larval 

abundance that allows for pathogen infection prevalence to compound and flourish 

over a relatively few transmission seasons (Wilson & Spielman, 1985). In this pattern, 

infected nymphs can infect small mammals which then serve to infect the subsequent 

generation of larvae. With larval peak occurring before or simultaneously to nymphal 

peak, as observed in Grand Forks County, the rate at which pathogen infection 

prevalence can amplify in both tick and small mammal populations is severely 

decreased. 
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CHAPTER IV 

MOLECULAR DETECTION OF PATHOGENS IN IXODES SCAPULARIS IN GRAND FORKS 
COUNTY 

 

INTRODUCTION 

The black-legged tick, Ixodes scapularis, is the most important tick vector of 

human disease in the United States (Centers for Disease Control and Prevention, 2012). 

This tick is known to transmit Borrelia burgdorferi, Anaplasma phagocytophilum, 

Babesia microti, and Powassan virus (Jongejan & Uilenberg, 2004). Over the last decade, 

this tick has been expanding its range (Hamer et al., 2010). In the previous two chapters 

I provided evidence of breeding populations of I. scapularis in Grand Forks County, ND. 

Examination of archived material in the UND Biology collection has revealed two adult 

female I. scapularis collected in Grand Forks County in 1988. However, this is not 

conclusive evidence that an established population was present in the area at that time. 

In my study, I found all lifestages of the tick and in sufficient numbers to determine that 

indeed, I. scapularis has become established in Grand Forks County. Because of its 

importance as a vector of various diseases, I tested all I. scapularis adults as well as 

pools of larvae collected in Grand Forks County in 2012 for B. burgdorferi, A. 

phagocytophilum, and B. microti.
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METHODS 

All I. scapularis collected by flagging were assayed for Borrelia burgdorferi, 

Anaplasma phagocytophilum, and Babesia microti using methods described in Chapter I. 

As a type of xenodiagnosis, engorged larval ticks collected from individual hosts were 

assayed to determine presence of pathogens in the host. Pathogen detection in 

engorged, attached larvae would indicate that the host mammal was the source of the 

pathogen. None of these pathogens are transovarially transmitted, meaning they must 

be acquired from a host. Engorged nymphal ticks were not included in xenodiagnoses 

because of the possibility that infected nymphs may have acquired their pathogens from 

their larval bloodmeal and not necessarily from the nymphal bloodmeal. Therefore, only 

in larval ticks is a direct route of infection source present. 

Pathogen prevalence was analyzed for differences between host species. Fisher’s 

exact test was used because of low expected values. Fisher’s exact test was used to 

determine difference in infected hosts between the two largest sites. 
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RESULTS 

 Three different tick-borne pathogens were detected in questing I. scapularis ticks 

at the Forest River and Turtle River study sites; Borrelia burgdorferi (spirochetal agent of 

Lyme disease), Anaplasma phagocytophilum (rickettsial-like agent of human 

anaplasmosis), and Babesia microti (protozoal agent of human babesiosis) (Table 14). 

Few ticks were collected at the four smallest study sites for pathogen testing (Manvel 

n=1, Janice n=3, Northwood n=1, Oslo n=0) so pathogen prevalence was compared only 

amongst the largest two sites (Turtle River [TR] and Forest River [FR]). The infection 

prevalence for questing ticks did not differ significantly between these two sites for B. 

burgdorferi (TR=6.1%, FR=6.0%; Fisher’s Exact test p=0.73), A. phagocytophilum (TR=0%, 

FR=5.5%; p=0.13), or B. microti (TR=2%, FR=0.4%; p=0.30). In questing ticks, Borrelia 

burgdorferi (5.9%) and A. phagocytophilum (4.5%) were more prevalent than B. microti 

(0.7%) (Fisher’s Exact test p = 0.001). 

Two of the three tick-borne pathogens found in questing ticks (i.e., B. burgdorferi 

and A. phagocytophilum) were also detected in engorged larval ticks attached to small 

mammals. For B. burgdorferi, the prevalence of xeno-positive mammals did not differ 

between Peromyscus and M. gapperi (Fisher’s Exact Test, p=1.0), with both species 

combined having a xeno-positive prevalence of 5.7% (Table 15). For A. 

phagocytophilum, the prevalence of xeno-positive Myodes gapperi (15%) was five times 
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higher than that of Peromyscus (3%). This difference was statistically significant at the 

90% confidence level but not the 95% confidence level (Fishers exact test, p=0.08). The 

overall prevalence for xeno-positive small mammals did not differ significantly between 

the Forest River and Turtle River sites for either B. burgdorferi (TR=10.4%, FR=2.7%; 

Fisher’s Exact Test p=0.23) or A. phagocytophilum (TR=4.2%, FR=8.1%; Fisher’s exact test 

p=0.65). The prevalence of B. burgdorferi in questing ticks (5.9%) did not differ from 

xeno-positive mammals (5.7%) (Pearson’s Chi-squared test p=0.93). The prevalence of A. 

phagocytophilum in questing ticks (4.5%) did not differ from xeno-positive mammals 

(5.7%) (Pearson’s Chi-squared test p=0.66). 

  
Table 14. Molecular detection of pathogens in questing Ixodes scapularis ticks 
collected in Grand Forks Co., ND. 2012. 

Site  
Tick 

Lifestage 
No. Ticks 
Collected 

Ticks 
tested 

Borrelia 
burgdorferi  

Anaplasma 
phagocytophilum  

Babesia 
microti  

Northwood  Adult 2 2 0 (0.0%) 0 (0.0%) 0 (0.0%) 

Turtle River  
 Nymph 3 3 0 (0.0%) 0 (0.0%) 1 (33.3%) 

Adult 46 46 3 (6.5%) 0 (0.0%) 0 (0.0%) 

Forest River  
Nymph 4 4 0 (0.0%) 0 (0.0%) 0 (0.0%) 

Adult 234 231 14 (6.1%) 13 (5.6%) 1 (0.4%) 

TOTAL  289 286 17 (5.9%) 13 (4.5%) 2 (0.7%) 

   
 
 
Table 15. Number of small mammals (%) xeno-positive for tick-borne pathogens as 
determined by testing engorged larvae collected from the hosts. Grand Forks Co., ND. 
2012. 

 Number sampled Borrelia burgdorferi  Anaplasma phagocytophilum 

Peromyscus 66 4 (6.1%) 2 (3.0%) 
M. gapperi 20 1 (5.0%) 3 (15.0%) 

TOTAL 88 5 (5.7%) 5 (5.7%) 
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DISCUSSION 

This brings us to the effect of forested patch size on the prevalence of 

pathogens. I tested for pathogens only in the ticks and therefore am limited in my 

analysis of current pathogen prevalence to the sites in which ticks were collected. 

However, I have data for I. scapularis populations and small mammal communities for 

all of the study sites and, naturally, the presence of the pathogen relies greatly upon the 

presence of the primary vector and reservoir hosts. Just as I proposed future I. 

scapularis distribution, I can do the same for the pathogens based on small mammal 

(reservoir) communities and abundance of adult questing ticks. I will address each 

pathogen individually starting with Borrelia burgdorferi. 

Allan et al. (2003) found a higher prevalence of B. burgdorferi in questing 

nymphs from smaller forest patches due to the higher density of P. leucopus, a highly 

competent reservoir. In this study the small mammal community consisted primarily of 

Peromyscus (maniculatis and/or leucopus) and M. gapperi. While the high reservoir 

competency of Peromyscus has been widely established, little is known of the ability of 

M. gapperi to transmit B. burgdorferi to ticks. Bey et al. (1995) experimentally infected 

M. gapperi (then Clethrionomys gapperi) with B. burgdorferi and were able to detect the 

spirochete in tissue samples from the rodent. This demonstrated the ability of B. 

burgdorferi to persist in the vole, yet did not demonstrate the ability to acquire the 
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pathogen from, or transmit it to the tick. The detection of B. burgdorferi from I. 

scapularis larvae feeding from M. gapperi in the current study proves without a doubt 

that indeed, M. gapperi is a competent reservoir. Infection prevalence of B. burgdorferi 

was similar in Peromyscus and M. gapperi indicating that the competency of M. gapperi 

may be similar to that of Peromyscus. To strengthen this assertion, I looked at the 

prevalence of questing adults. Although patch size had no effect on the relative 

abundance of the two mammal species, the two sites in this study in which I found 

pathogens had significantly different compositions of these reservoirs. The fact that 

infection prevalence of adult ticks did not differ among the two sites is another indicator 

that M. gapperi is of similar reservoir competency as Peromyscus.  

With patch size and reservoir abundance ruled out, abundance of the vector, I. 

scapularis, is left as the limiting factor affecting B. burgdorferi prevalence. I predict that 

as the pathogen and vector become better established in North Dakota, Borrelia 

burgdorferi will occur in roughly equal prevalences among tick populations in different 

size patches. 

For Anaplasma phagocytophilum, the difference in infection prevalence 

approached significance with greater prevalence of M. gapperi than Peromyscus 

harboring the pathogen. This is in contrast to a 1997 study (Walls et al., 1997) that 

found no difference in infection prevalence of M. gapperi and P. leucopus in Minnesota 

(Fisher’s p=0.5281). Just as was the case with B. burgdorferi, both sites had equal 

prevalence among questing adults indicating that both mammal species act as 

competent reservoirs. Because of the difference in prevalence between the two primary 
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reservoirs, it is difficult to determine relative competency. Therefore, A. 

phagocytophilum will be found in ticks inhabiting different patch sizes but prevalence 

may slightly differ depending on composition of reservoir host communities.  

 Lastly, Babesia microti was discovered in two questing ticks in this study. My 

ability to draw any conclusions on the effect of the size of forested patches on the 

prevalence of B. microti is once again limited due to the low number of ticks collected 

from the smallest study sites. Even among the largest two study sites, prevalence of 

infected questing ticks was too low to determine an effect of reservoir abundances. 

Babesia microti has been detected in both of our most abundant small mammals in 

wild-caught individuals in Maine (Goethert et al., 2003). That being said, the necessary 

reservoir hosts and vectors are present in North Dakota to sustain the pathogen. More 

importantly, the pathogen was detected in the state, meaning the acquisition of this 

pathogen by humans is possible in North Dakota. 
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CHAPTER V 

SUMMARY 

 

 In 2010 two statewide surveys were conducted for ticks in North Dakota. 

Dermacentor variabilis were found throughout the state and Ixodes scapularis were 

restricted to the Northwest region of the state. Using PCR to assay I. scapularis, I 

detected the agents of Lyme disease and human granulocytic anaplasmosis. Ixodes 

scapularis was collected in sufficient numbers, in all three lifestages, and across a large 

geographic area to confidently conclude that they have become established within the 

state of North Dakota. This was the first records of Anaplasma phagocytophilum and 

Borrelia burgdorferi naturally circulating in the state.  

Borrelia burgdorferi is the most common vector-borne disease in the United 

States (Centers for Disease Control and Prevention, 2012). In the midwest and northeast 

U.S., Ixodes scapularis is the responsible vector for this pathogen as well as A. 

phagocytophilum and Babesia microti (Sonenshine, 1991). In order to better understand 

the distribution of the organisms across the North Dakota landscape I tested the 

hypothesis that newly invading I. scapularis would adhere to the concepts of island 

biogeography as they colonized North Dakota woodlands. To test this hypothesis, my 

second field season was conducted in 2012 and was restricted to forested areas of 
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varying sizes in Grand Forks County. The hypothesis was confirmed; larger numbers of 

both adult and subadult I. scapularis were present in forested patches of increasing size. 

This trend was found to be true for D. variabilis as well, indicating that indeed, the 

forested patches are acting as islands in a matrix of inhospitable land under agricultural 

production. In this study, the abundance of ticks dropped off sharply from our 254 

hectare study site to the 204 hectare site. This suggests that there is a minimum size 

threshold in which ticks will establish abundant, stable populations. 

 More important than the discovery of I. scapularis in North Dakota is the 

discovery of the causative agents of Lyme disease, human granulocytic anaplasmosis, 

and human babesiosis. Even though tick density in our largest site was relatively low 

compared to levels in Minnesota, Wisconsin, or in the Northeastern United States, the 

risk of contracting these tick-borne pathogens is possible in North Dakota.  

Myodes gapperi was the second most abundant mammal collected in this study 

and was host for a large portion of the immature ticks collected. By detecting B. 

burgdorferi in engorged larval ticks collected from M. gapperi, we determined this 

mammal to be a competent reservoir host for the pathogen. Myodes gapperi was a 

prominent host in forested areas of North Dakota, and thus may play a substantial role 

in the transmission cycle of B. burgdorferi in the state. Further study is required to 

determine the efficiency of this reservoir and its impact on pathogen prevalence. 

Finally, although the temporal dynamics portion of this study was limited to one 

field season, we observed a co-emergence of larval and nymphal I. scapularis in spring. 
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If this lifecycle is in fact true, it would severely limit the ability of pathogens to flourish. 

North Dakota would continue to see a low prevalence of pathogens within its ticks. 
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