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ABSTRACT 

 Worldwide reports of population declines and extinctions of amphibians have 

continued for at least two decades. Factors frequently reported in association with these 

declines include habitat loss, infectious diseases, and environmental degradation. Three 

sources of disease have been a concern for amphibians: chytrid fungus, Ranavirus, and 

some helminth parasites. Much of the existing reporting on disease results from anecdotal 

accounts associated with localized outbreaks, but understanding the scope and dynamics 

of infectious agents in host populations requires a regional perspective. My objectives 

were to estimate geographic distribution and prevalence of Ranavirus, chytrid fungus, 

and helminths in amphibians across the state of North Dakota. I also tested for 

associations between disease and helminth occurrence and general ecological factors. I 

sampled broadly across the state, including all major ecoregions and land use categories 

and obtained a total of 705 amphibians of six different species. I used real time PCR to 

detect Ranavirus and chytrid fungus infections. I also identified parasites as precisely as 

possible by morphological and molecular techniques. I found Ranavirus in 238 of 668 

(35.6%) assayed amphibians. Ranavirus prevalence varied significantly by species, 

ecoregion, and land use. Infections were found broadly across North Dakota (55.9%), but 

exhibited a spatially structured distribution at a finer scale. Ranavirus was more 

frequently encountered in the Missouri Coteau ecoregion than other ecoregions. I found 

few occurrence of chytrid fungus (0.007%) and all infections were found in central North 

Dakota. In contrast, helminths were commonly found.  The majority of amphibians were



 

 

xiii 

 infected with digeneans (60.3%), followed by nematodes (17.4%), but cestodes were 

much less frequent (2.8%). Parasite species varied intheir distribution across the state, 

with some showing a fine scale spatial dependency, indicating a patchy distribution. 

More complete surveys need to be designed to provide a more comprehensive 

understanding of parasite distributions and ecological associations. 
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CHAPTER I 

 

AMPHIBIAN PATHOGENS AND PARASITES 

 

INTRODUCTION 

 

Amphibian extinctions and population declines have occurred worldwide and been 

attributed to a range of factors, including infectious diseases, habitat loss, ultraviolet radiation, 

overharvesting, invasive species and environmental degradation (Cushman 2006; Gray et al. 

2009; Patz et al. 2000; Rachowicz et al. 2006; Rohr et al. 2011; Szuroczki et al. 2009). Among 

these, the most frequently implicated factors are habitat loss (Cushman 2006) and infectious 

diseases (Gray et al. 2009; Patz et al. 2000; Rachowicz et al. 2006). Amphibian diseases of 

concern include Ranavirus, chytrid fungus, and some helminth parasites. Moreover, none of 

these factors, including disease, are likely to act independently. For example, the probability of 

mortality of infected amphibians increases when the host is impaired from other causes such as 

habitat loss, unfavorable temperature, or agricultural runoff (Rohr et al. 2008; Szuroczki et al. 

2009). Consequently, understanding the role of infectious agents in host population dynamics 

requires both estimate of the occurrence of those agents and of the ecological context in which 

they are found. 

Amphibians require both aquatic and terrestrial habitats to complete their lifecycle 

exposing them to a wide range of environmental stressors. Amphibians are vulnerable to stress 

because of their small body size, limited mobility and hence limited ability to avoid or move 

away from unfavorable conditions, and permeable skin (Cushman 2006). Stressed amphibians
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have a compromised immune system, increasing their susceptibility to disease and helminth 

infections (Davidson et al. 2002; Davidson and Knapp 2007; Green et al. 2002; Gray et al. 2009). 

Several studies provide evidence that the incidence of disease and helminth infection in 

amphibians is correlated with environmental stressors such as agricultural chemicals (Rohr et al. 

2008), climate change (Paull et al. 2012), habitat loss and degradation, and altered landscape 

patterns (Greer and Collins 2008). Habitat loss can result in clustering of individuals and 

increased risk of disease and helminth transmission locally (Gray 2004; Greer and Collins 2008; 

Knutson et al. 1999; Kolozsvary and Swihart 1999). Fewer wetland sites across a landscape may 

also concentrate terrestrial life stages and increase the risk of disease and helminth transmission 

regionally (Johnson and Paull 2011).  

In North Dakota, the predominance of agricultural land use and livestock ponds creates 

circumstances that may impose greater stress to amphibians inhabiting these landscapes. North 

Dakota also contains many prarie pothole wetlands that provide habitat to amphibians and other 

animal reservoirs for disease and helminths. The Missouri Coteau and Northern Glaciated Plains 

ecoregions have the highest densiy of wetlands (Figure 1) so I would expect disease and 

helminth occupancy to be highest in these ecoregions. Ecoregions with higher wetland density 

should increase opportunities for transmission because of habitat connectivity and increased 

amphibian movement and occupancy. In addition, two previous Ranavirus outbreaks have been 

reported in Nelson and Stutsman County, North Dakota resulting in mass mortality in larval 

wood frogs (Lithobates sylvaticus) and tiger salamanders (Ambystoma tigrinum) (Green et al. 

2002). However, a systematic survey for amphibian disease has never been done in North Dakota 

and the available information on parasite distributions is limited to Nelson County and the 

Sheyenne National Grassland (Gustafson et al. 2013; Pulis et al. 2011). For these reasons, I will 
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survey North Dakota amphibians to provide information on disease and helminth prevalence and 

geographical distribution.  

 
Figure 1. The geographic distribution of wetlands across North Dakota. The purple lines on the 

map demarcate ecoregions. The ecoregions going from east to west are the Northwestern Great 

Plains, Missouri Coteau, Northern Glaciated Plains and Red River Valley. The circles are color 

coded by amphibian species: Green: Northern leopard frog, Brown= Wood frog, Pink = Chorus 

frog, Blue = Great Plains Toad, Yellow = Canadian Toad, and Red= Tiger salamander.   

 

The following sections discuss each of the major agents, beginning with microbial 

diseases and then helminths. For each major agent (Ranavirus, chytrid fungus, and helminths), I 

will discuss the taxonomy, geographic distribution, disease symptoms, transmission routes, and 

ecological factors that influence their occurrence and transmission. 

Ranavirus   

Ranavirus is in the family Iridoviridae, which are large double stranded DNA viruses 

consisting of an icosahedral shape (Chinchar 2002). Ranavirus infects amphibians, reptiles, and 
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osteichthyan fish (Gray et al. 2009). Currently six species of Ranavirus are recognized but only 

three infect amphibians: frog virus 3 (FV3), bohle iridovirus (BIV), and Ambystoma tigrinum 

virus (ATV) (Chinchar 2002). These strains differ in which amphibian species they infect and 

their geographic distribution. Researchers discovered FV3 can infect a variety of ectothermic 

hosts (Lesbarreres 2012), and can be found on every continent inhabited by amphibians (Duffus 

et al. 2015; Lesbarreres 2012). In contrast, BIV is found primarily in Australian anurans but a 

BIV-like virus was recently detected from boreal toads (Anazyrus boreas) at an aquarium in 

Iowa (Cheng et al. 2014). ATV causes infections in salamander populations and found primarily 

in western North America (Jancovich et al. 2005; Lesbarreres 2012).  

Ranavirus strains replicate at a range of temperatures and synthesize proteins rapidly. 

FV3 replication occurs between 12°C and 32°C and protein synthesis occurs within hours of cell 

infection (Chinchar 2002). Cell death can occur in a matter of two hours following infection, by 

either necrosis or apoptosis (Gray et al. 2009).  These symptoms usually occur in mid-to-late 

summer and involve late stage tadpoles and recent metamorphs (Green et al. 2002). Mortality is 

often sudden, resulting in more than 90% of larvae dead within several days (Green et al. 2002). 

These rapid mid-to late summer mortality events have been observed in wild amphibians located 

in Europe (Ariel et al. 2009, Kik et al. 2011), South and Central America (Fox et al. 2006; Stark 

et al. 2014), and Asia (Une et al. 2009). In contrast, bullfrogs (Lithobates catesbeinanus) in 

Japan and the American southeast do not show the same seasonality trend and have reported 

rapid declines in October (Hoverman et al. 2012; Une et al. 2009).  

Researchers have suggested four hypotheses for the seasonality trend in Ranavirus 

infections during mid-to-late summer. One hypothesis is the pattern might be caused by detection 

bias because amphibian metamorphs are easier to observe when they move to shallow water to 
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complete metamorphosis (Green et al. 2002). Mortality events are often difficult to detect in 

remote locations especially in cryptic species and at times when humans are not usually active 

(Brunner et al. 2015).  Secondly, the die-offs may reflect the disease dynamics following the 

introduction of Ranavirus earlier in the year. For example, sub-lethally exposed adults’ return to 

wetlands to breed and transmit infections directly to larvae (Brunner et al. 2004). Third, hosts 

may become more susceptible to Ranavirus infections at certain development stages that 

coincide with summer months. Researchers discovered amphibians are more susceptible to 

Ranavirus during metamorphosis or close to metamorphosis (Green and Converse 2002; Greer et 

al. 2005; Speare and Smith 1992). Lastly, many researchers provide evidence that Ranavirus 

replication is temperature dependent (Altizer et al. 2013; Ariel et al. 2009; Echaubard et al. 2014; 

Rojas et al. 2005; Speare and Smith 1992).  

Ranavirus infections do not always result in mortality. Duffus et al. (2015) discovered no 

notable disease symptoms or mortality in larval and post metamorphic amphibians exposed to 

Ranavirus (Duffus et al. 2015). One explanation for these results is insufficient sampling 

spanning multiple years to detect mortality events (Gray et al. 2015). Even so, sub-lethal 

Ranavirus infections can still impact fitness-related traits (Echaubard et al. 2010). Examples of 

symptoms in both tadpoles and adults include lordosis, erratic swimming, lethargy, skin 

hemorrhages and ulcerations (Gray et al. 2009). Juveniles and adults can also experience red 

swollen legs and irregular areas of erythema (red) on the outside of internal organs (Gray et al. 

2009). In fatal cases, adults and larvae contain hemorrhages in internal organs especially the 

kidneys, reproductive organs, and the liver (Gray et al. 2009). These skin hemorrhages are a 

significant source of Ranavirus that can be transmitted to susceptible hosts (Cunningham et al. 
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2007; Pearman et al. 2004). Ranavirus infections may also cause anorexia and symptoms include 

an empty gastrointestinal tract and an enlarged gallbladder (Gray et al. 2009).  

Ranavirus transmission and host reservoirs 

Amphibians contract this disease through multiple transmission routes including direct 

contact with an infected individual or water and sediment (Gray et al. 2009). Researchers 

speculate cannibalism is the most common transmission pathway in amphibians and reptiles 

(Crump 1983; Gray et al. 2009; Harp and Petranka 2006; Polis and Myers 1985). Currently, there 

are no published studies on Ranavirus transmission rates or dynamics in wild populations. The 

majority of research focuses on transmission routes but ignore host behavior, host density and 

contact rates in transmission dynamics (Brunner et al. 2015).  

Amphibians are the primary reservoir for Ranavirus because individuals can be sub-

lethally exposed and be a source of infection to other individuals through intraspecific 

interactions (Brunner et al. 2004; Gray et al. 2007; Miller et al. 2009; Pearman et al. 2004). Other 

non-amphibian reservoirs are abundant and widespread because Ranavirus infects a diverse suite 

of ectothermic vertebrates (Duffus et al. 2015). Researchers have isolated FV3-like viruses from 

many species of fishes with little to no mortality observed (Bang-Jensen et al. 2009; Brenes et al. 

2014; Chinchar and Waltzek 2014; Gobbo et al. 2010; Gray et al. 2009; Mao et al. 1999; Moody 

and Owens 1994; Prasankok et al. 2005; Waltzek et al. 2014). In addition, Iridioviruses sharing 

more than 96% of the major capsid protein (MCP) gene for Ranavirus have been detected in 

many species of reptiles and reports continue to increase in the USA (Allender et al. 2006, 2012; 

De Voe et al. 2004; Johnson et al. 2008; Marschang et al. 1999; Marschang et al. 2005; Zhao et 

al. 2007). In Europe and Asia, both FV3 and BIV are found in reptiles (Duffus et al. 2015; 
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Huang et al. 2009). These animal reservoirs are a continued source of infections in amphibian 

populations (Gray et al. 2009).  

Several experimental studies demonstrated Ranavirus transmission among various 

ectothermic classes (Bayley 2013; Mao et al. 1999; Picco et al. 2010; Schock et al. 2008).  

Brenes (2014) discovered infected gray tree frog larvae could transmit Ranavirus to unexposed 

red- eared sliders (Trachemys scripta) with a 30% infection rate. The infected turtles and 

mosquito fish (Gambusia affinis) could transmit Ranavirus to unexposed gray tree frog larvae 

with 50% and 10% infection rates respectively (Brenes 2014). This study resulted in nearly all 

amphibians dying, but infected turtles and fish persisted without mortality (Brenes 2014). Other 

studies have shown unsuccessful interclass transmission including brown tree snakes (Boiga 

irregularis), common green tree snakes (Dendrelaphis punctualatus) and keelback snakes 

(Tropidonophis mairii) (Ariel 1997). However, BIV was re-isolated from one of the brown tree 

snakes four weeks after inoculation (Ariel 1997). Researchers are just beginning to understand 

the host range of Ranavirus and continued surveillance is critical to evaluate the extent of 

transmission between ectothermic vertebrates.  

Little information is known about the persistence of Ranavirus in the natural 

environment, but persistence is directly affected by temperature and precipitation (Adams et al. 

2010; Collins et al. 2004; Jancovich et al. 1997). Brunner (2007) found moist soil inoculated 

with ATV causes 87% mortality in larval salamanders, but didn’t cause any infections when 

allowed to dry for four days and rehydrated. Other researchers found Ranavirus could persist in 

the soil for 30-48 days (Nazir et al. 2012), and withstand freezing temperatures for long periods 

of time in frozen carcasses providing a source for infections after thawing (Bollinger et al. 1999; 

Langdon 1989).  
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Variation in Ranavirus susceptibility and life expectancy 

Amphibians vary in susceptibility and life expectancy after infection because of 

differences between life stage (Brunner et al. 2015), species (Echaubard et al. 2014; Hoverman et 

al. 2011), individual genetic factors (Brunner and Collins, 2009) and dosage at exposure (Gray et 

al. 2009). Amphibians are most susceptible to FV3 infections during larval or early metamorph 

stages of development and mortality usually occurs (Brunner et al. 2015). Adults can survive 

with sub-lethal infections because they have a more competent immune system (Cunningham et 

al. 2007; Echaubard et al. 2014; Gray et al. 2009). However, Brunner (2004) found that 

metamorph tiger salamanders were more likely to die than larvae, but only a single clutch was 

used for this experiment.  

Amphibians differ in susceptibility to Ranavirus even for the same viral strain 

(Echaubard et al. 2014; Hoverman et al. 2011). Certain taxonomic families are more susceptible 

on average than others, perhaps because of phylogenetic relatedness, life history, and their 

ecology (Brunner et al. 2015; Hoverman et al. 2011). Each Ranavirus strain tends to be superior 

at infecting animals within the taxonomic class from which they were isolated. Therefore, fish 

and reptiles are less susceptible to ATV and FV3-like Ranavirus than amphibians (Allender et al. 

2013; Brenes et al. 2014; Jancovich et al. 2001; Picco et al. 2010).  

Because of species’ differences in susceptibility to infection, community composition has 

variable impacts on disease dynamics. Certain amphibian species can amplify pathogen 

transmission; consequently the order in which species are exposed can alter outcomes of disease 

outbreaks (Paul et al. 2012). Researchers observed greater community-level mortality when 

wood frog tadpoles were first exposed to Ranavirus, compared to exposing larvae of upland 

chorus frog (Pseudacris feriarum) or spotted salamander (Ambystoma maculatum) first (Brenes 
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2013). Not surprisingly, greater mortality was observed in communities composed of highly 

susceptible species (Brenes 2013).  

At the individual level, genetic differences can also affect Ranavirus susceptibility 

(Brunner et al. 2005; Brunner and Collins 2009; Echaubard et al. 2014; Pearman et al. 2004; 

Pearman and Garner 2005; Schock et al. 2008). The host’s genotype influences the rate of 

infection, timing of symptoms, and mortality (Brunner et al. 2004; Brunner et al. 2005). Brunner 

et al. (2005) observed different clutches of tiger salamanders and found variable outcomes in the 

early stages of infection because of individual genetic differences.   

The route of transmission can result in high or low dosage of virions and consequently 

impact how long individuals survive after infection (Gray et al. 2009). Ingestion of Ranavirus 

infected tissue results in a higher dosage and rapid mortality (Gray et al. 2009; Harp and 

Petranka et al. 2006; Pearman et al. 2004). Indirect transmission including the exposure to 

Ranavirus contaminated water results in a low dosage and has variable effects on life expectancy 

(Harp and Petranka et al. 2006; Pearman et al. 2004).  

Abiotic and biotic impacts on Ranavirus occurrence  

Amphibians routinely endure many abiotic and biotic stressors that can increase 

susceptibility and transmission of Ranavirus including metamorphosis, cold-water temperatures, 

exposure to predators, and resource limitation (Garner 2009; Gray et al. 2009). The immune 

response at metamorphosis is weaker than all other developmental stages to facilitate the 

development of organs. This results in a period of high pathogen susceptibility and increased 

transmission rates (Gray et al. 2009). After the tail is reabsorbed, juvenile immunity increases 

until adulthood (Gantress et al. 2003; Rollins-Smith 1998).  
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Temperature can affect an amphibian’s ability to mount an effective immune response. In 

general, higher temperatures induce a better antibody response and lower temperatures lead to 

immunosuppression (Gray et al. 2009). A field study in Tennessee found American bullfrog 

(Lithobates catesbeianus) tadpoles collected in winter were 7.7-fold more likely to be infected 

than in summer (Gray et al. 2007). Colder water temperatures do not always increase 

susceptibility. A study compared the symptoms of infected northern leopard frog (Lithobates 

pipiens) and wood frog (Lithobates sylvaticus) tadpoles while exposed to colder water 

temperatures. Wood frogs showed no change in symptoms after exposure to cold temperatures 

but devastating effects were observed in northern leopard frog tadpoles (Echaubard et al. 2014). 

Wood frogs are particularly adapted to colder climates, which may explain these results 

(Echaubard et al. 2014). In summary, temperature can influence Ranavirus epidemics, but this 

likely depends on the host species (Echaubard et al. 2014).  

Several studies demonstrate frequent or prolonged exposure to predators can increase 

susceptibility to infection (Glennemeier and Rot-Nikcevic et al. 2005). The threat of predation 

can alter the production of the stress hormone corticosterone in tadpoles lowering their 

immunocompetence (Fraker et al. 2009). Kerby et al. (2011) observed Ranavirus prevalence and 

mortality to increase after larval tiger salamanders were exposed to chemical cues from 

predators. In contrast, Haislip et al. (2012) found no effect of predator cues on mortality or 

infection in a similar set of experiments with four species of larval anurans (Lithobates 

clamitans, Lithobates sylvaticus, Pseudacris ferrirum, and Hyla chrysoscelis) and two predator 

species (Anax sp and Belostoma flumineum). These results suggest the effects of predator 

exposure on immunocompetence varies between individuals and species likely depending on 

dosage and individual fitness at time of infection.   
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Human encroachment has also lead to higher occurrences of Ranavirus worldwide (Gray 

et al. 2009; Rohr et al. 2008). Several studies provide evidence that Ranavirus occurrence is 

associated with agricultural chemicals (Davidson et al. 2002; Davidson and Knapp 2007; Gray et 

al. 2009; Green et al. 2002; Kerby and Storfer 2009; Rohr et al. 2008). Aquatic systems can 

receive agricultural chemicals by direct application, terrestrial runoff, or windborne drift 

(Davidson et al. 2002). Numerous studies provide evidence that pesticides promote Ranavirus 

emergence by suppressing the immunological response in amphibians (Davidson et al. 2002; 

Davidson and Knapp 2007; Gray et al. 2009; Green et al. 2002; Kerby and Storfer 2009; Kerby 

et al. 2011). Researchers discovered larval tiger salamanders had reduced peripheral leukocyte 

counts and increased susceptibility to ATV infection when exposed to atrazine (Forson and 

Storfer 2006).  

Humans can also potentially spread Ranavirus to other locations by transporting 

contaminated objects including boots, fishing, camping and research gear, farm equipment, and 

boats to uninfected wetlands (Gray et al. 2009). North Dakota has abundant shallow water bodies 

providing excellent habitat for waterfowl hunting, fishing, trapping and camping. These 

recreational activities provide opportunities for translocation of contaminated objects to 

unexposed wetlands. With the ease of human travel, it is difficult to prevent contacts to 

unexposed wetlands even across long distances (Martel et al. 2014).  

Another human activity, international trade and transport in livestock, wildlife and animal 

products also promotes the spread and transmission of disease (Fevre et al. 2006). A study found 

8.5% of amphibians collected from food marketers were infected with chytrid fungus and 

Ranavirus (Schloegel et al. 2009). These infections could be transmitted to wild populations by 

the release of contaminated water into drains, the release of live bullfrogs, or inappropriate 
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disposal of amphibian skin (Fevre et al. 2006; Schloegel et al. 2009). Despite the worldwide 

recognition of risks associated with wildlife translocation, new diseases continue to emerge as a 

result of wildlife trading (Fevre et al. 2006).  

Treatment options for Ranavirus 

Ranavirus treatment options include antiviral drugs (Allender et al. 2012), heat therapy 

(Allender et al. 2013; Ariel et al. 2009; Bayley et al. 2013), vaccines (Caipang et al. 2006; Zhang 

et al. 2012) and the application of aquatic microbes to wetlands. These treatments are mostly 

applicable to captive populations. Guanine analogue antiviral drugs have successfully treated 

chelonian infections in captive populations (Allender et al. 2012). Heat therapy treatments vary 

in effectiveness between host species and viral strains and continued research is needed 

(Allender et al. 2013; Ariel et al. 2009; Bayley et al. 2013). DNA vaccine treatments have 

primarily focused on fish species within the aquaculture industry (Caipang et al. 2006; Zhang et 

al. 2012). These vaccine treatments have been successful in fish populations and some even 

reported immunity against infections (Zhang et al. 2012). Aquatic microbes can also reduce 

Ranavirus persistence in wetlands by consuming Ranavirus particles (Johnson and Brunner 

2014). Aquatic microbes have shown to reduce viral counts in water within one day (Johnson 

and Brunner 2014).  

Chytrid Fungus 

Batrachochytrium dendrobatidis (Bd) is a chytrid fungus of the phylum Chytridiomycota 

and order Rhizophydiales. Within true fungi, this is the only phylum to reproduce with motile 

spores called zoospores (James et al. 2006) and the only order to parasitize vertebrates (James et 

al. 2006). There is a substantial amount of Bd evolutionary complexity with dramatic differences 
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among isolates and among genomic regions in chromosomal copy number and patterns of 

heterozygosity (Rosenblum et al. 2013).  

The evolutionary diversity of Bd has led to many strategies for evading the host’s 

immune system (Fites et al. 2013). A common strategy is to cause inhibition of host immunity, 

impair lymphocyte proliferation and induce apoptosis (Fites et al. 2013). After Bd has 

successfully invaded a host, mortality can occur especially in post metamorphic individuals and 

tadpoles (Kilpatrick et al. 2010; Stuart et al. 2004). Tadpoles also tend to develop slower to 

metamorphosis and lose sections of keratinized mouthparts, reducing grazing efficiency and food 

intake (Kilpatrick et al. 2010; Parris and Baud 2004; Parris and Cornelium 2004). Metamorph 

and adult symptoms include increased keratinized cells, fusing of keratin layers and reduced 

body size (Garner et al. 2009; Kilpatrick et al. 2010). The increased fusing of keratin layers and 

cells cause the permeable layers to thicken interfering with osmoregulation across the skin 

(Kilpatrick et al. 2010).  

Infection also alters the consistency of some amphibian species calling probability with 

the lowest occurring in winter and highest in summer (Roznik et al. 2015a). Uninfected frogs 

were relatively consistent in calling across seasons (Roznik et al. 2015a). Infected frogs in poor 

condition were up to 40% less likely to call than uninfected frogs, whereas infected frogs in good 

condition were up to 30% more likely to call than uninfected frogs (Roznik et al. 2015a). These 

results suggest infected male reproductive success is related to body condition as well as 

infection status.  

Linking Bd to population declines is difficult (Rohr et al. 2008) because of its variable 

effects on amphibian mortality (Briggs et al. 2005; Kilpatrick et al. 2010; Retallick et al. 2004) 

and the overall lack of long-term studies done to monitor impacts on amphibian populations. 
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However, one study observed two populations of infected boreal toads (Anayrus boreas) for 6 

years to estimate survival probability and population growth rate in the Rocky Mountains 

(Pilliod et al. 2010). Toads infected with Bd had lower average annual survival than uninfected 

individuals (Pilliod et al. 2010) and diseased populations declined by 5-7% (Pilliod et al. 2010).  

Chytrid fungus transmission and host reservoirs 

The Bd transmission pathway is complex and involves both free-living and parasitic life 

stages. In the free-living stage, the zoospores are motile and feed on dead decaying matter 

(Rosenblum et al. 2008). In the infective stage, zoospores must infect a host to encyst and 

develop a reproductive thallus (Rosenblum et al. 2008). The thallus contains a sporangium that 

produces and releases zoospores (Rosenblum et al. 2008). Amphibians can contract Bd by direct 

contact with the motile zoospore during territorial and breeding encounters or by exposure to 

infected water or sediment (Kilpatrick et al. 2010). It takes approximately four days for one Bd 

replication cycle (Longcore et al. 1999). Infected animals can shed zoospores between 24-220 

days before dying (Berger et al. 2005). Zoospores can also swim for up to 24 hours covering 2cm 

distances in still media (Berger et al. 2005; Longcore et al. 1999; Piotrowski et al. 2004). 

Zoospores can also grow and reproduce in a broad range of temperatures (4-25°C) and pH (4-8) 

and even withstand freezing to some degree (Gleason et al. 2008). Optimal zoospore growth 

occurs between 17-25°C and 6-7 pH (Woodhams et al. 2008).  

Chytrid fungus infects ectothermic vertebrates and has a broad host range infecting 

hundreds of species (Kilpatrick et al. 2010; Olson et al. 2013; Valencia-Aguillar et al. 2015). In 

waterfowl, zoospores can adhere, survive and even proliferation on toe scales (Garmyn et al. 

2012). Field surveys in Louisiana and Colorado also revealed 29% prevalence of zoosporangia in 

crayfish gastrointestinal tracts (McMahon et al. 2013). Crayfish maintained infection for at least 
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12 weeks and could transmit Bd to amphibians (McMahon et al. 2013). Crayfish also showed a 

seasonal infection intensity and prevalence pattern that closely resembled local amphibians, 

further indicating their importance as animal reservoirs (Brannelly et al. 2015).  

Variation in chytrid fungus susceptibility and life expectancy 

Amphibians vary in susceptibility and life expectancy after Bd infections (Rosenblum et 

al. 2010) depending on the strain of Bd (Berger et al. 2005), life stage of amphibian (Ardipradja 

2001; Berger et al. 1999; Berger et al. 2005; Lamirande and Nicols 2002; Voordouw et al. 2010; 

Woodhams et al. 2003), amphibian species (Ardipradja 2001; Berger et al. 1999; Lamirande and 

Nicols 2002; Woodhams et al. 2003), and variation in skin maintenance (Ohmer et al. 2015). 

Researchers compared three different isolates of Bd infecting juvenile Litoria caerulea and 

discovered time until death was significantly different among the infected groups (  = 30.5, df = 

2, p < 0.001) because of differences in virulence between strains (Berger et al. 2005). All Litoria 

caerulea frogs died after infection from Bd isolates of all three strains (Berger et al. 2005). The 

sporangia size and expressed proteins also differed between strains, which may affect host 

survival and account for differences in virulence (Fisher et al. 2009).  

 Immunological differences between amphibian life stages (tadpole, metamorph, juvenile, 

and adult) also result in variable susceptibility (Ardipradja 2001; Berger et al. 1999; Berger et al. 

2005; Lamirande and Nicols 2002; Voordouw et al. 2010; Woodhams et al. 2003). In general, 

tadpoles are more resistant to infection than post metamorphic individuals because they have 

reduced amounts of keratin (only in their mouthparts), requiring a higher dosage for mortality 

(Berger et al. 1999; Bradley et al. 2002; Kilpatrick et al. 2010). Larvae do show variable 

sensitivities to Bd (Blaustein et al. 2005) and infected larvae have not been observed in mass 

mortality events even though Bd causes the loss of tooth rows and jaw sheaths (Berger et al. 
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1999). Researchers found Bd to accrue in a dose dependent manner during the larval stage and 

expressed at or soon after metamorphosis (Garner et al. 2009). Metamorph and adult amphibians 

contain greater amounts of keratin resulting in increased susceptibility to Bd infections 

(Blaustein et al. 2005; Hanlon and Parris 2013; Kilpatric et al. 2010). Several studies 

demonstrated frequent metamorph and adult mortality when infected with Bd, while tadpoles 

appeared to remain healthy (Berger et al. 1999; Bradley et al. 2002; Kilpatrick et al. 2010; 

Scheele et al. 2010).  

The innate immune defenses, antimicrobial skin peptides and anti-fungal bacteria vary 

among different species of amphibians resulting in differential risks to infections (Becker et al. 

2015; Gervasi et al. 2014; Harris et al. 2006; Woodhams et al. 2007) and mortality rates 

(Ardipradja 2001; Berger et al. 1999; Lamirande and Nicols 2002; Woodhams et al. 2003). For 

example, in Pseudacris regilla infection load increased over time and 16% of the population 

tended to display weaker bacteria killing responses than unexposed control animals (Gervasi et 

al. 2014). In contrast, Bd-exposed Lithobates cascadae experienced a decrease in infection load 

over time and no mortality was observed (Gervasi et al. 2014). Lithobats cascadae also showed 

stronger bacterial killing responses including an elevated number of neutrophils in the blood 

when compared to control animals (Gervasi et al. 2014). These results suggest variation in 

immunological responses may contribute to different patterns in survival and infection load 

between amphibian species (Gervasi et al. 2014). Skin peptides and anti-fungal bacteria can also 

increase survival or decrease weight loss in infected amphibians (Harris et al. 2009). 

Antimicrobial peptides are not present until approximately 12 weeks post metamorphosis and 

geographically distinct populations produce different types of peptides (Holden et al. 2015).  
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The variation in skin turnover via routine sloughing between individuals could also 

account for differences in susceptibility to Bd (Ohmer et al. 2014). Sloughing is thought to play a 

role in immune defense by removing Bd skin-associated microbes. Researchers discovered 

sloughing does not affect Bd load on the ventral skin surface and does not alter the progression 

of Bd (Ohmer et al. 2014).  

Abiotic and biotic impacts on Chytrid Fungus occurrence  

Many abiotic factors influence Bd infection in amphibians, including elevation and 

temperature. Higher elevations are often associated with Bd occurrence because temperatures are 

favorable for Bd growth and survival (Roznik and Alford 2015b; Sapsford et al. 2013). 

Amphibian body temperatures are also within favorable temperatures for Bd growth year round 

at high elevation sites but only in winter at low elevation sites (Roznik and Alford 2015b). A 

different study found similar results, researchers sampled adult common mist frogs (Litoria 

rheocola) at six sites: two at high (>400m) elevations, two sites at low elevations connected to 

high elevation streams, and two sites at low elevations not connected with streams (Sapsford et 

al. 2013). The prevalence of Bd was highest in winter at high elevation sites and declined to 

lower levels at low elevation sites connected to high elevation streams and reached near zero at 

low elevation sites not connected to any streams (Sapsford et al. 2013).  

Temperature plays a major role in determining Bd infection dynamics because of the 

ectothermic nature of amphibians and temperature dependency of Bd growth and reproduction 

(Olson et al. 2013; Piotrowski et al. 2004; Rohr et al. 2011; Woodhams et al. 2008). 

Temperatures between 17-25°C are optimal for Bd growth, and temperatures higher than 29°C or 

below 0°C are lethal (Piotrowski et al. 2004). Higher temperatures increase the maturation rate of 

the zoosporangium but decrease the number of zoospores produced per zoosporangium 
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(Woodhams et al. 2008). Several studies have demonstrated Bd prevalence to drop dramatically 

in warm-water temperatures and increase in cold-water temperatures (Fernandez-Beaskoetxea et 

al. 2015; Forrest and Schlaepfer 2011; Kilpatrick et al. 2010; Whitfield et al. 2012). Researchers 

found with each increase in degree of temperature, Bd detection decreased by 8.8% (Olson et al. 

2013). A different study found no effect of temperature on survival times of Anaxyrus boreas 

toads held at 12° C and 23° C (Carey et al. 2006). These results may reflect the interaction 

between temperature dependent growth of Bd and the host immune response, which may also be 

temperature dependent (Kilpatrick et al. 2010).  

Biotic factors including amphibian behavior (Roznik and Alford 2015b), surrounding 

land use (Saenz et al. 2015), agricultural runoff (Gahl et al. 2011; Gaietto et al. 2014; Hanlon and 

Parris 2013; Paetow et al. 2012), animal and human dispersal (Johnson and Speare 2005; 

Kilpatrick et al. 2010; Kolby et al. 2015b) and the pet trade (Winters et al. 2014) can increase 

transmission and spread of infections. The behavior and ecology of amphibian species provides 

information for predicting and managing the impacts of Bd (Roznik and Alford 2015b). During 

winter, frogs move shorter distances than summer, and spent less time in vegetation and more 

time in water, which increases zoospore exposure (Roznik and Alford 2015b). The combination 

of reduced movement, prolonged zoospore exposure, and ideal water temperature for Bd survival 

increases the probability for infection in winter.  

The land use around a wetland contributes to significant differences in Bd infection rates 

(Saenz et al. 2015). Saenz et al. (2015) compared Bd occurrence rates in Pseudacris crucifer at 

both urban and forested breeding sites. They found the occurrence of Bd was dramatically lower 

at urban sites (19.5%) compared to forested sites (62.9%) even with the same latitude, altitude, 

and season of sites sampled. Urban locations likely had lower Bd occurrence because of warmer 
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temperatures, lower population densities and species richness than forested locations (Saenz et 

al. 2015). Another study found similar results in yellow bellied toads (Bombina variegate) with 

higher Bd occurrence in ponds surrounded by forest cover because of cool and wet conditions 

favorable for Bd growth and survival (Scheele et al. 2015).  

Wetlands surrounded by agriculture can also receive chemical runoff that affects Bd 

infection intensity and prevalence (Gahl et al. 2011; Gaietto et al. 2014; Hanlon and Parris 2013; 

Paetow et al. 2012). The effects of pesticide exposure on Bd infection intensity depend on the 

infected species, timing of pesticide exposure (tadpole or metamorph), and the particular 

pesticide treatment applied (Buck et al. 2015; Gaietto et al. 2014). In wood frog populations, 

exposure to sub-lethal amounts of glyphosate-based herbicide and two strains of Bd did not 

significantly alter growth or time to metamorphosis (Gahl et al. 2011). Other studies found 

pesticides combined with Bd exposure affected overall amphibian body size at metamorphosis 

and survival (Gaietto et al. 2014; Hanlon and Parris 2013; Paetow et al. 2012).  

The downstream flow of water and sand and possibly bird, human, amphibian or other 

animal movement increases Bd transmission and dispersal (Kilpatrick et al. 2010). Bd can 

survive up to three months in sterile moist river sand and grow on sterile bird feathers (Johnson 

and Speare, 2005). Strong wind and rainfall also assists in Bd dispersal confirmed by quantitative 

PCR (Kolby et al. 2015a). Researchers found homozygous boreal toads (Anaxyrus boreas) had 

lower probabilities of infection than heterozygous toads, which is usually indicative of dispersal 

and gene flow (Addis et al. 2015). In a different study, researchers tested both amphibians and 

their leaf perches for Bd presence and the pathogen was detected on 76.1% of leaves where a Bd 

positive frog had rested (Kolby et al. 2015b). High prevalence of infection (88.5%) in 
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metamorphs and frequent shedding of Bd residue on foliage demonstrates a pathway for Bd 

dispersal between aquatic and terrestrial habitats (Kolby et al. 2015b).  

Humans also play an important role in the dispersal of Bd. Fungal characteristics such as 

habitat flexibility, environmental persistence, and multiple reproductive modes promotes Bd 

dispersal by humans (Fisher et al. 2012). Humans can transport Bd to other locations by fomites 

and intercontinental trade of Lithobates catesbeianus (Fisher et al. 2012). The introduction of 

pre-exposed L. catesbeianus populations to other native amphibian populations is a common 

route of transmission (Rachowicz et al. 2006). For example in Brazil, L. catesbeianus is regularly 

farmed for human consumption since the 1930’s and five farms in Sao Paulo and Para confirmed 

78.5% Bd prevalence (Schloegel et al. 2009). Zoos and pet stores may also facilitate the 

transmission of Bd into the local amphibian community (Winters et al. 2014) by disposing of 

dead or alive amphibians into wild habitats (Goka et al. 2009).  

Treatment options for chytrid fungus 

There are several treatment options for Bd including antifungal drugs and heat therapy 

(Woodhams et al. 2012). When considering applying antifungal products to wetlands, it is 

important to consider the toxicity and effects to non-target animals (Heard et al. 2014; Stockwell 

et al. 2015a; Woodhams et al. 2012). Some commercial antifungal products include, 

Itraconazole, Mandipropamid, SteriplantN, and PIP Pond Plus. Itraconazole fungicide has shown 

to be extremely toxic in metamorphic and adult frogs, even at low concentrations (Woodhams et 

al. 2012). Sodium chloride is a natural fungicide used to decrease Bd prevalence and increase 

survival in field conditions (Stockwell et al. 2015b). Heat therapy is another treatment option that 

exposes amphibians at 35°C for 24 hours to reduce Bd growth (Woodhams et al. 2012). The 

common midwife toad (Alytes obstetricans) cleared infection when exposed to temperatures 
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higher than 2°C for 5 days (Geiger et al. 2011). Antifungal drugs and heat therapy are not always 

effective treatments therefore, a single cure all treatment is not realistic for infected amphibians 

(Woodhams et al. 2012).  

Researchers’ also found increasing the Daphnia population in wetlands to consume 

zoospores is a promising treatment option (Buck et al. 2015; Searle et al. 2013). Researchers 

found high densities of D. magna decreased the amount of Bd detected in water, leading to a 

reduction in the proportion of tadpoles that became infected (Searle et al. 2013). D. dentifera, 

also reduced the amount of Bd in water, but did not effect tadpole infection (Searle et al. 2013). 

The effect of Daphnia predation also varies within species, algal concentration, and Daphnia 

density (Searle et al. 2013).    

Helminths  

Helminths are parasitic worms that require nourishment from a host to survive (Roberts, 

Janovy, and Nadler 2013). Helminths can be divided into 3 groups: 1) platyhelminths 

(flatworms) that consist of trematoda (flukes) and cestoda (tapeworms), 2) acanthocephala 

(thorny-headed worms), and 3) nematoda (roundworms) (Roberts, Janovy, and Nadler 2013). 

Digeneans and nematodes are discussed in detail here because they are commonly found in 

North Dakota amphibians.  

 Digenea 

Digenea is a subclass of the class Trematoda and parasitizes all classes of vertebrates, 

especially marine fishes, and can inhabit nearly every organ. Most Digenea are dorso-ventrally 

flattened and appear oval in shape and contain an oral and ventral sucker to maintain position 

within the host. Most digeneans except schistosomes are hermaphroditic, and some are capable 

of self-fertilization (Roberts, Janovy, and Nadler 2013). 
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Digenea need at least two hosts to complete development. The typical life cycle (Figure 

2) begins when an infective host defecates eggs into a wetland. These eggs develop into ciliated, 

free-swimming larvae called miracidium. The miracidium penetrates the first intermediate host, 

usually a snail.  At the time of penetration or soon after, the larvae metamorphose into a mother 

sporocyst or a simple saclike structure. Within the mother sporocyst, a number of embryos 

develop asexually into rediae possessing a pharynx and a gut (alternatively, daughter sporocysts 

develop in some digeneans). Additional embryos develop within rediae and become cercariae. 

The cercariae are shed from the snail and penetrate the skin of the second intermediate host, 

often an amphibian and develop into metacercariae. These metacercariae require consumption by 

a definitive host to reproduce and restart the lifecycle (Roberts, Janovy, and Nadler 2013). The 

specific life cycles of digenean taxa found in North Dakota amphibians are shown in Table 35.  

 

Figure 2. A generalized lifecycle of digeneans. Many variations do occur. Drawing by William 

Ober and Claire Garrison (Roberts, Janovy, Nadler 2013)  
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Some digeneans including Ribeiroia ondatrae and Echinostoma trivolvis can reduce the 

fitness and cause severe health problems to amphibians. Ribeiroia ondatrae can cause 

deformities such as extra or missing limbs, misshaped eyes and tails, skin lesions, and whole 

body deformities (Blaustein and Johnson 2003). These deformities compromise the ability of 

amphibians to find mates, forage, and call (Blaustein and Johnson 2003). Echinostoma trivolvis 

can cause edema, growth inhibition, compromised renal function, and mortality especially in 

tadpoles, which ultimately decrease amphibian recruitment rates (Beasley et al. 2005; Holland et 

al. 2007; Scotthoefer et al. 2003; Szuroczki et al. 2009; Toledo et al. 2007). In addition, 

researchers observed high frequencies of Echinostoma cercariae shedding at the most vulnerable 

stage of tadpole development increasing probability of transmission (Holland et al. 2007).  

Cestoda 

Tapeworms or cestodes are not commonly found in North Dakota amphibians. Cestodes 

contain a strobilia with a linear series of proglottids storing reproductive organs. Usually each 

proglottid has a complete set of both male and female reproductive organs but a few species are 

dioecious. Tapeworms have a head or scolex equipped with a variety of holdfast organs that 

maintain their position in the gut. Scolices may bear suckers, grooves, hooks, spines, glands, 

tentacles, or a combination. Cestodes lack a digestive system and must absorb all required 

substances through their external covering (Roberts, Janovy, and Nadler 2013).  

Tapeworms also exhibit indirect life cycles that begin when a gravid proglottid releases 

eggs into the intestine. The eggs exit the host with the feces and develop into an oncosphere that 

enters the same or different host by ingestion. The oncosphere develops into a metacestode 

usually with a scolex. The metacestode can inhabit anywhere but the intestine within a host but 

must travel to the intestine to develop into an adult tapeworm. An amphibian can become 
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infected with cestodes by ingesting eggs or metacestodes from the environment or from 

intermediate host (Roberts, Janovy, and Nadler 2013). The specific life cycles of cestode taxa 

found in North Dakota amphibians are shown in Table 35.  

Nematoda   

A typical nematode is bilaterally symmetrical, elongated, and tapered at both ends. 

Nematodes have non-segmented integument and a body cavity called a pseudocoel. The 

digestive system is usually complete, with a mouth at the anterior end and an anus at the 

posterior end. Most nematodes are dioecious and show sexual dimorphism. However, some 

species are hermaphroditic, and others parthenogenetic. Nematodes constitute the most abundant 

multicellular animal on earth (Roberts, Janovy, and Nadler 2013). In such a large and diverse 

phylum details of development and life history differ greatly among various groups of 

nematodes. For these reasons, I will discuss Rhabdias, a common genus of nematodes in 

amphibians that parasitize their lungs.  

Rhabdias has a direct life cycle that infects amphibians and squamate reptiles. Their 

lifecycle begins when free-living adults in the soil lay eggs that can give rise to either free-living 

or parasitic forms. The mechanism that determines if an embryo is free- living or parasitic is 

unclear. The eggs develop and undergo three molts represented as (L1,L2,L3) into a rhabditiform 

juvenile.  The non-parasitic juveniles (L1 and L2) feed on bacteria and other inhabitants in the 

soil. The filariform or parasitic (L3) juveniles undergo developmental arrest until they can find a 

suitable host. When a suitable host is found, the filariform juvenile enters a host by ingestion or 

by penetrating the skin. Blood transports the juveniles to the lungs where they molt into (L4) 

adult protandrous hermaphrodites that ultimately develop as females. The resulting shelled 

zygotes pass up the trachea of the host and are then swallowed, differentiating into an embryo 
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along the way. The eggs hatch in the intestines and the rhabditiform juveniles exit with the feces 

and molt into adults where they mate and lay more eggs (Langford et al. 2009; Roberts and 

Janovy 1998; Roberts, Janovy, and Nadler 2013). The specific life cycle characteristics of 

nematode taxa found in North Dakota amphibians are shown in Table 35.  

Rhabdias can cause several health problems in amphibians including decreased growth 

rates (Goater et al.1993; Kelehear et al. 2011), compromised lung function (Goater et al. 1993; 

Goater and Vandenbos 1997) and burst performance (Goater et al.1993). Rhabdias 

pseudosphaerocephala and Rhabdias bufonis can decrease growth rates in toads (Goater et al. 

1993), which maybe the result from decreased appetite, increased investment in the immune 

system, consumption of resources by parasites, or a combination along with additional factors 

(Kelehear et al. 2011). Amphibian body size is directly related to performance, therefore 

Rhabdias infections can impact fitness related traits (Goater et al. 1993). In general, Rhabdias 

occupies a significant portion of the lung cavity, which may impair the mechanical functioning 

of the lung, damage the lung lining and cause blockages of blood vessels (Goater et al. 1993). 

These symptoms can impede the chorusing ability of amphibians, which has important 

implications on reproductive success (Goater and Vandenbos 1997). Rhabdias infections can 

also affect burst performance by inferring with oxygen consumption or other aspects of lung 

function (Goater et al. 1993).  

Ecological factors influencing helminth occurrence 

There are many factors affecting parasite transmission and occurrence in amphibian 

hosts. Several studies demonstrate amphibian exposure to pesticide runoff can result in 

immunosuppression (Carey and Bryant 1995; Carey et al. 2003; Christin et al. 2003, 2004; 

Gendron et al. 2003; Kiesecker 2002; Rohr et al. 2008). High concentrations of pesticides have 
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also shown to accelerate the migration of Rhabdias ranae leading to the establishment of twice 

as many worms in the lungs of juvenile northern leopard frogs (Lithobates pipiens) (Gendron et 

al. 2003). Atrazine runoff and eutrophication increase algae production in wetlands and therefore 

increase the biomass of the first intermediate host, a snail (Johnson et al. 2007; Rohr et al. 2008). 

A larger snail can harbor more parasites, potentially increasing parasitic load and the likelihood 

of infection in the second intermediate host, amphibians (Johnson et al. 2007; Rohr et al. 2008; 

Szuroczki et al. 2009).  

Atrazine exposure also negatively impacts parasites by reducing survival and infectivity 

(Koprivnikar et al. 2006; Pietrock and Marcogliese 2003). Atrazine causes significant reduction 

in E. trivolvis cercaria survival but only at concentrations greater than commonly found in 

aquatic ecosystems (Rohr et al. 2008). None of the pesticides including atrazine, glyphosate, 

carbaryl, and malathion significantly enhanced E. trivolvis virulence, decreased tadpole survival, 

or reduced snail survival, growth or fecundity (Rohr et al. 2008).  

Human altered landscapes in general can affect the abundance and species richness of 

amphibian parasites (Beasley et al. 2005; McKenzie 2007; Skelly et al. 2005). Researchers found 

parasite abundance and species richness in the host Lithobates vaillanti to be significantly higher 

in pasture habitat (McKenzie 2007). Other researchers found the infra-community parasite 

richness to increase throughout the season, and be more pronounced in agricultural wetlands 

(King et al. 2008). A different study found mean infra-community parasite species richness to be 

negatively correlated with urban and agricultural areas (King et al. 2007). These variable results 

suggest multiple factors promoting parasite species richness such as habitat quality and habitat 

accessibility for hosts (King et al. 2007).  
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Habitat fragmentation and isolation can also impair amphibians’ access to wetlands and 

decrease overall wetland use (Green 2005; Semlitsch and Bodie 2003). Decreased forest cover, 

intensely farmed areas and increased road density also restricts amphibian movement between 

wetlands (Houlahan and Findlay 2003; Lomen and Lardner 2006). Therefore, human 

disturbances can contribute to reduced amphibian species diversity and abundance in wetlands, 

which significantly limits opportunities for parasite transmission (King et al. 2007).  

The conductivity and amount of dissolved organic carbon in a wetland can also 

significantly affect parasite community composition (King et al. 2007). Dissolved organic carbon 

is positively associated with community species richness and abundance of most parasite species 

(King et al. 2007). High concentrations of dissolved organic carbon can cause shifts in 

invertebrate community structure (Wissel et al. 2003) affecting the transmission of parasite 

species that use invertebrates as second intermediate hosts (King et al. 2007).  

Host characteristics such as body size, habitat preference, feeding behavior, sex, species, 

and life stage can also influence parasite occurrence. A larger body size can support more 

parasite species than smaller individuals (Grutter 1998; Holmes and Price 1986). However, 

comparing the relationship of helminth diversity and body size is difficult because host diet and 

habitat are confounded with body size (McAlpine 1997). Host habitat preference is another 

important factor contributing to helminth composition in hosts. Amphibians that prefer a 

terrestrial habitat usually have a helminth fauna dominated by nematodes (Fransdsen 1974; Kuc 

and Sulgostowska 1988). Parasite occurrence is also often skewed between sexes because there 

are physiological, morphological, and behavioral differences (Alexander and Stimson 1988; 

Bundy 1988; Zuk 1990). Several studies found high testosterone levels can cause 

immunosuppression in males (Folstad and Karter 1992; Grossman 1985). Other surveys found 
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inconsistent differences between sexes (Alexander and Stimson 1988; Poulin et al. 1996; Zuk 

1990). Parasite infection rates also vary by amphibian species and life stage with early 

developmental stages experiencing higher observed mortality (Holland 2010).  

Alternative hosts can alter amphibian and parasite interactions. In particular, a study 

demonstrated that alternative hosts and predators help mediate Ribeiroia ondatrae infections in 

the host Pseudacris regilla (Orlofske et al. 2012). Mollusks, zooplankton, fish, larval insects, and 

newts removed 62-93% of infectious stages in Pseudacris regilla (Orlofske et al. 2012). In 

addition, damselfly nymphs and newt larvae reduced infections in P. regilla tadpoles by 

approximately 50% (Orlofske et al. 2012). These results suggest communities with multiple 

species can reduce infection load and pathology in sensitive hosts (Johnson et al. 2008).  

Global temperature patterns are changing and play an important role in the development 

and persistence of both parasites and amphibians (Paull et al. 2012). Researchers’ discovered 

higher temperatures enhanced R. ondatrae penetration but reduced establishment and survival 

outside of the host (Paull et al. 2012). Researchers also observed a peak in R. ondatrae induced 

limb deformities at 20°C with 63% prevalence and a decrease at 26°C with 12% prevalence 

(Paull et al. 2012). Warmer temperatures also accelerated metamorphosis but decrease the length 

and mass of amphibians at metamorphosis (Paull et al. 2012).  

OBJECTIVES 

In the following chapters (2-4), I will discuss the prevalence and geographic distribution 

of Ranavirus (Ch.2), chytrid fungus (Ch. 3), and helminth parasites (Ch.4) in North Dakota 

amphibians.  
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CHAPTER II 

 

PREVALENCE AND GEOGRAPHIC DISTRIBUTION OF RANAVIRUS IN NORTH 

DAKOTA AMPHIBIANS 

 

ABSTRACT 

 

 Amphibian population declines and species extinctions have occurred worldwide, 

including some attributed to Ranavirus infections. Two known Ranavirus outbreaks have 

occurred in Nelson and Stutsman County, North Dakota resulting in mass mortality in larval 

wood frogs and tiger salamanders, but no statewide survey has ever been done. In this study, I 

estimated the geographic distribution and prevalence of Ranavirus-infected amphibians across 

North Dakota. I collected amphibians broadly across the state, sampling all major ecoregions and 

land use categories. Six species of amphibians were represented, including northern leopard 

frogs (Lithobates pipiens), wood frogs (Lithobates sylvaticus), boreal chorus frogs (Pseudacris 

maculata), Canadian toads (Anaxyrus hemiophrys), Great Plains toad (Anaxyrus cognatus), and 

tiger salamanders (Ambystoma mavortium). I used real time PCR to detect Ranavirus infections 

and found Ranavirus in 238 of 668 (35.6%) assayed amphibians. Ranavirus prevalence varied 

significantly by species, ecoregion, and land use. Infections were found broadly across North 

Dakota but exhibited a spatially structured distribution at a finer scale. Ranavirus was more 

frequently encountered in the Missouri Coteau ecoregion than other ecoregions. Ranavirus was 

sufficiently common to indicate a need for routine surveillance across the state to detect disease 

outbreaks and mortality events.
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INTRODUCTION 

Infectious diseases have contributed to mass mortality and species extinction events in 

amphibians for at least two decades (Cushman 2006; Gray et al. 2009; Rachowicz 2005; Rohr et 

al. 2011; Szuroczki and Richardson 2009). Ranavirus, one of two particularly important 

amphibian diseases, has been associated with amphibian mortality in 25 countries and at least 

105 species across 18 families (Duffus et al. 2015). The number of reported mortality events are 

still likely to be underestimated because many species are cryptic, and mortality events are not 

easily observed because of rapid removal by predators and fast decomposition (Brunner et al. 

2015).  Disease outbreaks reduce population size, alter population structure and increase risk of 

local extinction in both common and rare species (Brunner et al. 2004; Collins et al. 1988; 

Cunningham et al. 1996; Cunningham et al. 2007; Daszak et al. 1999; Green et al. 2002; Greer et 

al. 2005; Schock and Bollinger 2005). Ranavirus has previously been detected in North Dakota 

in Nelson and Stutsman County, both resulting in mass mortality in larval wood frogs and tiger 

salamanders (Green et al. 2002). Given the importance of disease surveillance in amphibian 

populations, I estimated the prevalence and geographic distribution of Ranavirus in North 

Dakota. I also tested for associations between Ranavirus occurrence and ecological features.  

North Dakota is an ideal location for disease occurrence because of its combination of 

ecological circumstances that interact with disease transmission and host susceptibility. Several 

landscape characteristics increase the probability of Ranavirus occurrence, including livestock 

accessible ponds (Gray et al. 2007; Greer and Collins 2008; Hoverman et al. 2012), pesticide 

runoff into wetlands (Davidson et al. 2002; Davidson and Knapp 2007; Gray et al. 2009; Green 

et al. 2002), and extensive agricultural land use, which combine to reduce habitat availability and 

increase exposure to environmental stressors (Gray 2015; Greer and Collins 2008; Knutson et al. 
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1999; Kolozsvary and Swihart 1999). North Dakota’s climate extreme can also affect the host’s 

ability to mount an effective immune response (Gray et al. 2009; Echaubard et al. 2014). In 

general, temperature can influence Ranavirus epidemics but this effect likely depends on the host 

and strain of Ranavirus (Echaubard et al. 2014).  

Currently six strains of Ranavirus are recognized but only three infect amphibians: frog 

virus 3 (FV3), bohle iridovirus (BIV), and Ambystoma tigrinum virus (ATV) (Chinchar 2002). 

Researchers discovered FV3 infects a variety of ectothermic hosts (Lesbarreres 2012) and can be 

found on every continent that amphibians inhabit (Duffus et al. 2015; Lesbarreres 2012). In 

contrast, BIV is found primarily in Australian anurans but a BIV-like virus was recently detected 

from boreal toads (Anazyrus boreas) at an aquarium in Iowa (Cheng et al. 2014). ATV causes 

infections in salamander populations and found primarily in western North America (Jancovich 

et al. 2005; Lesbarreres 2012). Because the diagnostic assay I used is not strain-specific, I will 

not attempt to distinguish stains, but assume that FV3 is most likely the strain encountered in the 

present study.  

OBJECTIVES AND HYPOTHESES 

Based on Ranavirus outbreaks reported in the literature, I tested for associations between 

Ranavirus occurrence in North Dakota and several ecological factors. It should be noted that 

these factors, if they affect Ranavirus occurrence at all, most likely do not act independently and 

may even be confounded with each other. Consequently, estimating the independent 

contributions of each may be challenging or even not feasible in this study.  

Objectives 

(1). Estimate the geographic distribution of Ranavirus in North Dakota. 



 

58 

 

Hypothesis 1: Ranavirus occurrence will vary across the state because of different 

ecological conditions. For example, Ranavirus might be more common in ecoregions 

with lower temperatures and higher percentage of wetlands because these are favorable 

conditions for Ranavirus environmental persistence and transmission. Several studies 

have shown colder temperatures increase disease susceptibility and severity (Echaubard 

et al. 2014; Gray et al. 2007). However, decreased precipitation can result in droughts 

that reduce the overall habitat area and volume available to amphibians, resulting in 

clustering of individuals and increased contact rates (Greer and Collins 2008). The 

ecoregions in North Dakota differ in climate, wetland distribution and biotic communities 

and provide a starting point for analysis of geographic distribution and its causes. 

(2). Estimate the prevalence of Ranavirus in North Dakota amphibians. 

Hypothesis 2A: Ranavirus prevalence will vary among host species because certain 

amphibian taxonomic families are more susceptible on average than others. Researchers 

suggest amphibian taxa differ in susceptibility to Ranavirus because of phylogenetic 

relatedness, life history, and their ecology (Brunner et al. 2015; Hoverman et al. 2011).   

Hypothesis 2B: Land use will influence the frequency of Ranavirus infections. 

The prevalence of infections will increase in wetlands surrounded by cropland. Several 

studies provide evidence that Ranavirus occurrence is correlated with agricultural 

chemicals (Davidson et al. 2002; Davidson and Knapp 2007; Gray et al. 2009; Green et 

al. 2002; Kerby and Storfer 2009; Rohr et al. 2008). Pesticide exposure in amphibians 

promotes Ranavirus emergence by suppressing the immunological response in 

amphibians (Davidson et al. 2002; Davidson and Knapp 2007; Gray et al. 2009; Green et 

al. 2002; Kerby and Storfer 2009; Kerby et al. 2011). 
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Hypothesis 2C: Wetlands at close proximity to each other are more likely to contain 

infected hosts because of increased habitat connectivity and amphibian movement 

leading to increased contact rates. Ranavirus is transmitted by direct contact with infected 

hosts or water and sediment (Gray et al. 2009) therefore increased proximity to other 

wetlands is likely to result in increased transmission. 

Hypothesis 2D: Wetlands with smaller length and area should also have higher Ranavirus 

occurrence because amphibians have less available space to breed and find resources, 

thereby increasing the probability of contacting infected environment or other 

amphibians. However, larger ponds have the potential to support larger populations of 

amphibians, which also result in increased contact rates. 

Hypothesis 2E: Ranavirus prevalence should be higher in the Missouri Coteau and 

Northern Glaciated Plains ecoregions because they contain many prairie pothole wetlands 

that provide habitats for amphibians and other animal reservoirs (Fig. 1). These wetlands 

are located fairly close to one another allowing for amphibian movement between 

wetlands. Increased amphibian movement should also increase opportunities for 

Ranavirus transmission in the surrounding area. In contrast, a lower percentage of 

wetlands might restrict and concentrate hosts to fewer wetlands increasing the chances of 

transmission, if an infected host is nearby (Greer and Collins 2008). 

METHODS 

Study Design  

The main objective was to estimate the geographic extent of infections across a portion of 

the northern plains in a wide variety of habitats. To achieve this, I sampled amphibians broadly 

across the state of North Dakota using a stratified sampling design. The four level III ecoregions 
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(Omernik 1987) were the primary sampling strata, with the four general categories of land use 

within ecoregion as secondary strata. The routes for collecting trips were selected to cover as 

much of the state as possible, but were constrained by accessibility of wetlands, and incorporating 

as much of the active season as possible. Routes were generally driven east to west and collection 

trips focused on the southern, central, or northern tiers of the state. Wetlands were selected based 

on availability (sites with water apparent) and accessibility (proximity to roads that were passable 

under prevailing conditions) and to include a gradient of land uses. I specifically sought out 

wetlands that were in or adjacent to croplands, pasture, grasslands (including hayland, CRP-type 

land, or anything that resembled currently untilled, ungrazed land), and woodland. Sample 

locations (N=171) are indicated in Figure 3. Each symbol on the map represents a location where 

I collected amphibians. 

  
Figure 3. Sampling locations from which amphibians were collected in 2013 and 2014 (combined). 

Symbols are color-coded by amphibian species and differ in size only to permit visibility of overlapping 

symbols. Only sites where I collected at least one species are included. Lines on the map demarcate 

county boundaries or ecoregions, with ecoregions labeled along the lower margin of the map. Ecoregion 

abbreviations: NWGP = Northwestern Great Plains, MC = Missouri Coteau, NGP = northern glaciated 

plains, RRV = Red River Valley.  
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Amphibian collection efforts spanned two field seasons, 2013 and 2014. The start of each 

field season depended on the weather and phenology of each amphibian species. In the early 

field season (April-May), collection focused on adult breeding amphibians. In the mid field 

season (June-July), I searched for tadpoles and adults and in the late season (August-September), 

meta-morphs and juveniles were primarily collected along with any additional adults found. The 

2013 field season did not begin until late May because of extended snowfall leading to late 

thawing of wetlands resulting in limited time for collection of early breeders including the boreal 

chorus frog and the wood frog. I attempted to include all amphibian species and life stages in 

collection but did not encounter the gray tree frog (Hyla versicolor), American toad (Anaxyrus 

americanus), spadefoot toad (Spea bombifrons), and the woodhouse’s toad (Anaxyrus 

woodhousei) and collected very few tadpoles. 

Field Protocol 

I relied on chance encounters to collect amphibians while I walked around the perimeter 

and waded through wetlands. This was the most efficient method because it limited the time 

needed at individual wetlands and allowed inclusion of more sites. This method of sampling is 

subject to substantial bias in terms of which amphibian species were found. Some amphibian 

species have limited geographic ranges and specific habitat preferences that reduce the likelihood 

for encounters. For example, the plains spadefoot toad spends most of its time buried 

underground, limiting our ability to detect them. In addition, the gray tree frog is only found in 

the eastern margin of the state and is highly arboreal except during larval stages of development. 

Another species, the tiger salamander Ambystoma mavortium, is unlikely to be encountered by 

this method and is best sampled using traps or seines. Hence, any inference related to this host 

species will be limited.  
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The field protocol from James Cook University was followed to avoid cross 

contamination in the field and maintain field hygiene when handling amphibians (Speare et al. 

2004). After amphibians were collected, each individual was assigned a numerical ID for future 

reference along with a photograph to confirm species identification and placed in a numbered 

container. In each container, I placed a wet paper towel in with the adults, juveniles and 

metamorphs to avoid desiccation. Tadpoles were kept in sufficient water so they remained 

submerged during transport. The containers with each individual amphibian were then stored in a 

cooler with ice to avoid over-heating. I recorded the snout-vent length of each amphibian, GPS 

coordinate of the location, and environmental characteristics such as wind speed, humidity, 

temperature, vegetation structure, and land use, and also took a picture of the location for future 

reference.  

Necropsy Protocol 

 Amphibians collected for necropsy focused on males and abundant species to avoid 

demographic and population impacts. Five of each species at each location were collected for 

necropsy and euthanized following an IACUC approved protocol (#1305-2). The blood, liver, 

spleen and skin swab were also collected from each amphibian for DNA extraction and stored in 

95% ethanol at -20°C. The spleen and sometimes liver tissue where later used for Ranavirus 

detection. During dissection, the mouth, urinary bladder, body cavity, lungs, kidneys, liver, 

intestines, and leg muscles were examined for helminths using a dissecting scope (Ch. 4). I also 

made blood smears of each necropsied amphibian to later search for blood parasites.  

DNA extraction 

I extracted DNA from spleen tissue following a modification of Tkach and Pawlowski 

(1999) protocol. The first step was to place a small piece of ethanol-fixed spleen into a 1.5ml 
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micro-centrifuge tube and add enough ultrapure water to cover the tissue. Next, the spleen and 

ultrapure water mixture were placed on a rocker platform for 20 minutes. I repeated this 

procedure twice making sure to discard and replace the ultrapure water between washes. After 

discarding the second wash, 60µl of ultrapure water was added to the micro-centrifuge tube for 

sonication. The spleen was then broken apart by sonication using a UP100H compact ultrasonic 

processor (Hielscher USA, Inc., Ringwood, NJ) at 80-100% for 20 seconds. After sonication, the 

spleen and ultrapure water should be a homogenous mixture. Next, 250µl of extraction buffer 

containing guanidine thiocyanate is added to each spleen mixture and the remaining steps follow 

Tkach and Pawlowski’s (1999) protocol. 

Real-time PCR  

A modified version of the real-time PCR protocol (Forson and Storfer, 2006) was used to 

identify Ranavirus infections. A 70 base-pair region of the major capsid protein (MCP) of 

Ambystoma tigrinum virus (ATV) was amplified using the primers (5’ ACA CCA CCG CCC 

AAA AGT AC 3’) and (5’ CCG TTC ATG ATG CGG ATA ATG 3’) (Brunner et al, 2004). 

Each PCR reaction included approximately 100ng/µl of DNA template, 7.5µl SYBR green 

master mix, 900ng/µl of each forward and reverse primers and enough ultrapure water for the 

reaction total to be 15µl. I ran the PCR reactions on CFX96 Real Time system for 40 cycles: 

95°C denaturing (5sec), 60°C annealing (30sec), and melt curve 72°C to 88.5°C at increments of 

5 sec. A synthetic gene block of the major capsid protein (5’- 

TACGGTAGACTGACCAACGCCAGCCTTAACGTCACCCTGTCCGCTGAGGCCACCACG

GCCGCCGCAGGAGGTGGAGGTAACAACTCTGGGTACACCACCGCCCAAAAGTACGC

CCTCATCGTTCTGGCCATCAACCACAACATTATCCGCATCATGAACGGCTCGATGGG

ATTCCCAATCTTGTAAAGAGTATTTTTCAGCGCAAAGTCTTTTCCGTCATGGGTCCTC
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CATGATGGAAATAAA-3’) was used as the positive control. I included the positive and 

negative controls during each run with the amphibian samples to make comparisons and detect 

any contamination. If the Ranavirus assay was positive, I confirmed the result with the 250nmol 

fluorescent taqman probe (5’ FAM-CCT CAT CGT TCT GGC CAT CAA CCA C-31ABkFQ 

3’) (Forson and Storfer, 2006). In these reactions, I used 100ng of DNA, 900ng/µl of the forward 

and reverse primers, 7.5µl of SsoAdvanced™ Universal Probes Supermix (works optimal for our 

CFX96 Real Time system), and enough ultrapure water for the reaction total to be 15µl. For 

these reactions, I set the Bio Rad CFX96 Real time system for 40 cycles: 95°C initial step (2min 

30sec), 95°C denaturing (10sec) and 54°C annealing (30sec).   

After verifying all positive infections with the suggested fluorescent probe, I randomly 

chose positive samples from each real-time PCR plate to verify by sequencing. I selected a 

228bp gene fragment of the major capsid protein using the forward primer (5’- GTC GGC TCC 

AAT TAC ACC -3’) and reverse primer (5’ CAG GCT GAG GGC ATA AGA GT -3’). In each 

sequencing reaction, I included 2µl of BigDye sequencing buffer, 1.5µl of each primer, 1-2µl of 

PCR template (depending on the strength of the PCR product), and 1µl of BigDye. I ran all 

sequences on a Bio rad T100 thermal cycler for 25 cycles: 96°C for 15 seconds, 50°C for 5 

seconds, 60°C for 4 minutes. All samples were run on an ABI Prism 3100 automated capillary 

sequencer. 

Data analysis 

To summarize the occurrence of Ranavirus in amphibians across the state, I calculated 

the prevalence (percent of infected individuals within a sample) and occupancy (percent of 

locations containing infected individuals) for each ecoregion and land use. I also tested for 
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statistical differences in Ranavirus prevalence among amphibian species, ecoregions, and land 

use categories using exact 
2
 tests (StatXact version 9.0, Cytel, Inc. 2010).  

I used ArcGIS version 10.2 (ESRI 2014) to visualize the geographic distribution of 

Ranavirus and to estimate the wetland neighborhood around sample locations. I created buffers 

of 250 m and 500 m around each sample location to estimate wetland density, the percent cover 

of wetlands identified in the National Wetlands Inventory database within buffers. Because 

wetland densities at these scales were highly correlated, I retained only one for further analysis. I 

also estimated wetland density as the number of wetlands within each buffer.  

To determine if locations with Ranavirus infected amphibians were spatially dependent, I 

estimated spatial autocorrelation in relation to distance separating sample locations. Distances 

were estimated from GPS coordinates using the software Passage 2.1 (Rosenburg et al. 2011). 

Significance of autocorrelations was determined using a permutation test with1000 permutations.  

Spatial autocorrelation analysis suggested that the occurrence of Ranavirus exhibited 

some spatial structure. Specifically, infections exhibited a positive autocorrelation at distances 

less than 40km, suggesting a patchy spatial structure. I used Moran’s eigenvector-based maps 

(Legendre and Legendre 2012) to generate a series of factors reflecting different components of 

the underlying spatial structure to incorporate into regression models. Spatial factors in this 

approach are derived based purely on the geographic arrangement of sampling locations. This 

method allows for more complex aspects of spatial structure to be represented, rather than simply 

distance along linear axes (UTM coordinates or latitude and longitude) for each location. For 

example, some components might appear as simple gradients, whereas more complex aspects of 

spatial structure would appear as different patterns of patchiness, perhaps differing in scale or 

spatial arrangement. These spatial factors can then be used as predictor variables in regression 
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models to test for similarities between response variables (e.g., disease occurrence) and spatial 

patterns. During the initial spatial factor selection process, I looked at each factor individually and 

selected those that appeared to have at least some correlation with Ranavirus occurrence. I used 

program SAM (Spatial Analysis in Macroecology version 4, Rangel et al. 2010) to estimate and 

conduct initial screening of spatial factors using a minimum separation threshold of 10 km 

between sites.  

To test for associations between Ranavirus occurrence and the combined influence of all 

ecological and spatial predictor variables (Table 1), I constructed generalized linear models with 

various combinations of predictors. Because presence-absence is a binary response variable, I fit 

logistic regression models in R version 3.1.2 (R Core 2013). Model selection was based on a best 

subsets approach (Hosmer and Lemeshow 2000), with AICc as the criterion for comparing 

models (Burnham and Anderson 2002). The model selection process allowed us to identify 

factors that have the strongest association with Ranavirus occurrence. Because multiple models 

had a AICc < 2, I used multi-model inference to generate a model averaged estimate compiled 

from all the component models for each predictor variable for Ranavirus occurrence.  I specified 

AIC of less than two (Burnham and Anderson, 2002) for model averaging, and estimated the 

contribution of all variables included in these models to the prediction of Ranavirus occurrence.  

 

 

 

 

 

 

 

 

 

 

 



 

67 

 

Table 1. The name and definition of predictor variables used in statistical models.  

Predictor variables Definition 

Ecoregion Level 3 ecoregion classification Bailey (1980) including 

Northwestern Great Plains (43-NWGP), Northwestern 

Glaciated Plains including the Missouri Coteau (42-NGP), 

Northern Glaciated Plain (46-NGP), and Lake Agassiz Plain, 

primarily the Red River Valley (48-RRV). 

Land use The four major types of land use include, from most to least 

disrupted by human activity, cropland, pasture, grassland, and 

woodland.  

Length Longest linear dimension of wetland.  

Area Wetland area. 

Spatial factors see text.  

PcWet500 The percentage of wetlands within a 500 meter buffer 

extending from the center of each wetlands. 

Nwetlands500 The number of wetlands within the 500 meter buffer.  

 

RESULTS 

 I collected a total of 705 amphibians from the 2013 and 2014 field seasons combined. 

The sample size of each species is broken down by life stage during both collecting years in 

Tables 2 and 3. The northern leopard frog was the most abundant species collected during both 

years. Tiger salamanders had the smallest overall sample size because I did not use collecting 

methods suitable for that species. 

Table 2. Amphibians collected during the 2013 field season from 68 different sites.  

Amphibian species Adult Juvenile Total 

Barred tiger salamander (Ambystoma mavortium)  6 2 8 

Canadian toad (Anaxyrus hemiophrys) 1 8 9 

Great Plains toad (Anaxyrus cognatus) 1 6 7 

Boreal chorus frog (Pseudacris maculata) 11 5 16 

Northern leopard frog (Lithobates pipiens) 54 120 174 

Wood frog (Lithobates sylvaticus) 14 35 49 

Total   263 
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Table 3. Amphibians collected during the 2014 field season from 103 different sites.  

Amphibian species Adult Juvenile Tadpole Total 

Barred tiger salamander (Ambystoma 

mavortium) 

4 2 NA 6 

Canadian toad (Anaxyrus hemiophrys) 11 25 0 36 

Great Plains toad (Anaxyrus cognatus) 13 8 1 22 

Boreal chorus frog (Pseudacris maculata) 81 8 0 89 

Northern leopard frog (Lithobates pipiens) 171 54 4 229 

Wood frog (Lithobates sylvaticus) 44 16 0 60 

Total    442 

 

Objective 1: Estimate the geographic distribution of Ranavirus in North Dakota 

Ranavirus infections were common and found broadly across the state (Figure 4). 

Ranavirus was detected in at least one amphibian specimen at 55.9% of sample locations (Table 

4) and found at significantly more sites in the Missouri Coteau ecoregion (76.7%) than other 

areas when pooled across all amphibian species. Land use was not significantly associated with 

Ranavirus occupancy (Table 5).  
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Figure 4. Geographic occurrence of Ranavirus infections across all amphibian species. Green 

circles represent infected amphibians, open circled “X”s indicate amphibian specimens testing 
negative. Lines illustrate county boundaries and ecoregions as in Figure 3 (from west to east: 

NWGP, MC, NGP, RRV).  

 

Table 4. Number (N) and percentage of sites where Ranavirus was found in at least one 

amphibian specimen of any species in each ecoregion.  

Ecoregion (N sites) N amphibian 

specimens 

N sites with Ranavirus 

detection 

Percent of sites with 

Ranavirus detection 

(occupancy) 

NWGP (19) 87 7 36.8 

NGP (79) 317 37 46.8 

MC (43) 140 33 76.7 

RRV (29) 160 18 62.1 

Total (170) 704 95 55.9 

Chi
2
 (3 df)  13.46  

P (exact, 2-sided)  0.0037  
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Table 5. Number (N) and percentage of sites where Ranavirus was found in at least one 

amphibian specimen of any species in each land use category.  

Land use (N sites) N amphibian 

specimens 

N sites with Ranavirus 

detection 

Percent of sites with 

Ranavirus detection 

(occupancy) 

Cropland (104) 428 60 57.7 

Pasture (12) 162 7 58.3 

Grassland (43) 66 21 48.8 

Woodland (11) 51 7 63.6 

Total (170) 707 95 55.9 

Chi
2
 (3 df)  1.53  

P (exact, sided)  0.689  

 

Objective 2: Estimate the prevalence of Ranavirus in North Dakota amphibians 

I detected Ranavirus in 238 out of 668 assayed amphibians, resulting in an overall 

prevalence of 35.6%. Ranavirus prevalence varied significantly among amphibian species (Table 

6, 
2  

= 47.69, df  = 5, p < 0.0001).  In particular, Anaxyrus cognatus, Anaxyrus hemiophrys, and 

Pseudacris maculata had higher prevalence than other species. 

Table 6. Ranavirus infections by amphibian species.  

Amphibian species Sample size Prevalence 

(%) 

 Barred tiger salamander (Ambystoma mavortium)  14 21.4 

Great Plains toad (Anaxyrus cognatus) 29 58.6 

Canadian toad (Anaxyrus hemiophrys) 45 57.8 

Northern leopard frog (Lithobates pipiens) 367 26.1 

Wood frog (Lithobates sylvaticus) 109 36.6 

Boreal chorus frog (Pseudacris maculata) 103 54.3 

 

 Pooling all amphibian species, Ranavirus prevalence varied significantly across 

ecoregions (Figure 5). The overall prevalence combined across all amphibian species for the 

NWGP was 17.6%, MC 52.6%, NGP 29.2%, and RRV 44.6%. Ranavirus prevalence was higher 

in the MC and RRV than in the NGP or NWGP ecoregions. Because species were not equally 
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represented across ecoregions and there is a possibility of unequal susceptibility to infection, I 

also tested geographic patterns separately for the two species with largest sample size and 

broadest geographic sampling distribution. Infection prevalence still varied significantly across 

ecoregions for leopard frogs (
2  

= 44.9, p < 0.0001) and chorus frogs (
2 

= 9.1, p < 0.028).  

 
Figure 5. Ranavirus prevalence by amphibian species and ecoregion. The numbers above the 

bars represent sample size.  

  

Ranavirus prevalence also varied significantly among locations in relation to 

predominant land use (Figure 6) pooled across all amphibian species. The prevalence across all 

amphibian species for cropland was 39.2%, pasture 30.6%, grassland 26.2%, and woodland 

39.2%. In contrast to the overall pattern, for the species with the largest sample size, the northern 

leopard frog and boreal chorus frog infection rates did not differ significantly among land use 

categories (
2
 = 3.33, df = 2, p = 0.189 and 

2
  = 4.36, df = 2, p = 0.113 respectively). Therefore, 

across all amphibian species, land use was significant but the effect varied among species. 

Woodland sites were excluded from analyses because of low sample size for these species.  
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Figure 6. Ranavirus prevalence by amphibian species and predominant land use. The numbers 

above the bars represent sample size.  

 

In addition to broad-scale patterns across the state, I tested for purely spatial effects that 

might be caused by underlying environmental influences or demographic linkages among sites 

affecting disease transmission rates. These linkages could be caused by amphibian dispersal or 

movement among sites by organisms serving as vectors of disease. The environment could also 

be similar among wetlands located closer together resulting in similar values for infection. In an 

analysis based on combined detections across all amphibian host species, I found evidence for 

spatial autocorrelation (non-independence in disease occurrence) among wetlands closer than 

about 40 km, but not at greater distances, indicating a moderately patchy distribution of 

Ranavirus infections on this scale (Fig. 7). In contrast, in an analysis based only on Ranavirus 

detections in northern leopard frogs, I found no evidence for significant spatial autocorrelation 

even at a fine scale (Fig. 8).  
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Figure 7. Spatial autocorrelation among sites separated by indicated distance (lag) classes, for 

Ranavirus presence/absence pooled across all amphibian species from 171 sites. Moran’s I (blue) 
was used as the measure of autocorrelation; 95% confidence envelope is illustrated in red 

(dashed lines). The number of pairs of points for each distance class ranged from 55-72 at 5-

15km to over 1000 at distances beyond that.  

 

 
Figure 8. Spatial autocorrelation among sites separated by indicated distance (lag) classes, for 

Ranavirus presence/absence for northern leopard frogs tested from 105 sites. Moran’s I (blue) 
was used as the measure of autocorrelation; 95% confidence envelope is illustrated in red 

(dashed lines). The number of pairs of points for each distance class ranged from 55-72 at 5-

15km to over 1000 at distances beyond that. 
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Combined effects of geographic and ecological factors on Ranavirus occurrence  

After discovering Ranavirus was positively autocorrelated at distances within 40km, I 

used Moran’s I eigenvector maps and retained eight spatial factors for further analysis. Although 

included in the top models based on AICc < 2, suggesting that the spatial structure exists on 

multiple scales, only spatial factor 18 was a significant individual variable in relation to 

Ranavirus occurrence (Table 8).  Spatial factor 18 corresponds to a broad scale pattern 

contrasting the central portion of the sampled area with the eastern and western portions (Fig. 9). 

To clarify the interpretation of this spatial factor, if a response variable of interest, such as 

Ranavirus occurrence, corresponds to a purely spatial factor, which are derived solely from map 

coordinates of sample sites and hence their spatial arrangement, then that response variable must 

exhibit some degree of parallelism in its spatial pattern. In other words, if Ranavirus occupancy 

is correlated with spatial factor 18, then occupancy must be higher in the central portion of the 

region and lower in the eastern and western portions. Testing for associations with spatial factors 

derived by this method provides the potential for discovery of spatial patterns more complex than 

simple east-west or north-south trends, as would be the case if latitude and longitude were used 

as predictor variables (Lengendre and Legendre 2012).  
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Figure 9.  Contour plot of spatial factor 18 derived from coordinates of sample locations. The 

circles correspond to sampled locations. See text for explanation.  

 

I used logistic regression models of Ranavirus presence/absence across all amphibian 

species and sites (n = 171 with complete information available). For model selection I included 

ecoregion, land use, wetland area, wetland length, the eight spatial factors, the number of 

wetlands within 500m (Nwetlands500) and the percent wetland coverage within 500m 

(Pcwet500). The top models with AICc < 2 included ecoregion, Nwetlands500, and the eight 

spatial variables (Table 7). The top models are nearly indistinguishable from each other, in terms 

of the similar but small portion of the variation in Ranavirus occurrence they explain (based on 

residual deviance versus null deviance). They also identify similar sets of predictor variables. To 

synthesize the information content of the top models, I used multi-model inference to obtain a 

model-averaged estimate generated from the top component models for each predictor variable 

(Table 8).  Among individual predictor variables, only ecoregion and specifically the Missouri 
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Coteau and SF18 were statistically significant (but bear in mind that model selection results are 

interpreted only with respect to the ensemble of included variables). Ecoregion and spatial 

effects are consistent with those identified above in the direct comparisons of prevalence (Fig. 5).  

Table 7. Top models (AICc < 2) for Ranavirus occurrence pooled across all amphibians. The 

term codes for the variable are a=Ecoregion, b=Nwetlands500, c=SF12, d=SF14, e=SF15, 

f=SF18, g=SF22, h=SF27, i=SF31, j=SF5. Null deviance = 218.8. 

Model Variable Residual 

Deviance 

df AICc delta weight 

1 cdefghij 194.66 9 213.78 0 0.18 

2 a   defghi 193.10 10 214.47 0.70 0.12 

3 cdefghi 197.78 8 214.67 0.89 0.11 

4 a     efghi 195.66 9 214.78 1.00 0.11 

5 cdefgh j 198.17 8 215.06 1.28 0.09 

6 a cdefghi 191.60 11 215.26 1.48 0.08 

7 defghij 198.42 8 215.31 1.53 0.08 

8 bcdefghij 194.02 10 215.40 1.62 0.08 

9 a   defghij 191.77 11 215.43 1.66 0.08 

10 c  efghij 198.78 8 215.66 1.89 0.07 

 

Table 8. Model averaged coefficients of Ranavirus occurrence across all amphibian specimens 

using an AIC < 2 criterion. The variable codes are given in Table 7. 

Variable Estimate Standard Error P 

Intercept 0.06897 0.28540 0.810 

c = SF12 -4.16275 2.59076 0.111 

d = SF14 -5.67437 3.38158 0.096 

e = SF15 -11.57740 8.51360 0.177 

f = SF18 9.74179 3.46306 0.005 

g = SF22 7.74945 4.70948 0.102 

h = SF27 8.32305 5.02936 0.100 

i = SF31 9.19136 6.48496 0.159 

j = SF5 3.92459 2.68412 0.147 

Ecoregion [MC] 1.00037 0.47787 0.038 

Ecoregion [RRV] 0.71574 0.50224 0.157 

Ecoregion[NWGP] -0.36845 0.58777 0.534 

Nwetlands500 0.01283 0.01626 0.433 
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Northern leopard frogs comprised the majority of collected amphibians; consequently I 

also ran a logistic regression with the same ecological variables using just the Ranavirus results 

for northern leopard frogs. The top models with AICc < 2 included the same variables in 

models with all amphibians. Again, the top models explained a small portion of the variation in 

Ranavirus occurrence (Table 9) and included similar sets of predictor variables. I used multi-

model inference to generate a model- averaged estimate of each predictor variable (Table 10). 

The Missouri Coteau ecoregion was the only significant predictor for Ranavirus occurrence in 

northern leopard frogs. 

Table 9. Top models (AICc < 2) for Ranavirus occurrence in northern leopard frogs. The term 

codes for the variables are a= Ecoregion, b= Nwetlands500, c=SF13, d= SF18, e=SF19, f= SF2, 

g= SF21, h=SF4, i= SF6, j= SF8. Null deviance = 139.2. 

Model Variable Residual 

Deviance 

df AICc Delta Weight 

1 cde g  i 114.09 6 126.94 0 0.10 

2 cdefg  i 111.96 7 127.12 0.17 0.09 

3 cde ghi 112.04 7 127.19 0.25 0.08 

4 cdefghi 109.90 8 127.40 0.46 0.08 

5 cde g  ij 112.37 7 127.53 0.58 0.07 

6 cdefg  ij 110.22 8 127.72 0.78 0.07 

7 cde ghij 110.24 8 127.74 0.79 0.06 

8 cdefghij 108.07 9 127.97 1.02 0.06 

9 cde g 117.42 5 128.03 1.08 0.06 

10 cdefg 115.30 6 128.16 1.22 0.05 

11 cde gh 115.36 6 128.21 1.27 0.05 

12 cdefgh 113.23 7 128.38 1.44 0.05 

13 bcdefg i 111.0 8 128.60 1.66 0.05 

14 bcde g i 113.57 7 128.72 1.78 0.04 

15 a cde g 111.43 8 128.93 1.98 0.04 
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Table 10. Model averaged coefficients for Ranavirus occurrence in northern leopard frogs using 

an AIC < 2 criterion. The term codes are given in Table 10. 

Variable Estimate Standard Error P 

Intercept -5.379e-01 3.525e-01 0.1308 

c = SF13 8.696e+00 6.196e+00 0.1657 

d = SF18 -1.662e+01 9.312e+00 0.0779 

e = SF19 -3.969e+01 2.149e+01 0.0679 

g = SF21 -1.016e+03 1.994e+03 0.6147 

i = SF6 -5.041e+00 3.384e+00 0.1410 

f = SF2 3.329e+00 2.443e+00 0.1784 

h = SF4 -3.474e+00 2.711e+00 0.2057 

j = SF8 4.453e+00 4.044e+00 0.2768 

Nwetlands500 -2.053e-02 2.522e-02 0.4213 

Ecoregion [MC] 1.301e+00 6.263e-01 0.0403 

Ecoregion [RRV] 1.230e+00 6.802e-01 0.0742 

Ecoregion [NWGP] 6.160e-01 6.648e-01 0.3601 

 

DISCUSSION 

I detected a high prevalence (35.6%) of Ranavirus in internal organ tissues, 

demonstrating that Ranavirus infection is common across amphibians of North Dakota. 

Previously researchers reported Ranavirus die-offs in three Canadian provinces and over 20 

states in the USA (Bollinger et al. 1999; Green et al. 2002, Carey et al. 2003, Greer et al. 2005, 

Jancovich et al. 2005). Ranavirus-infected amphibians did not show any symptoms of disease 

upon collection. Diseased animals probably suffered high mortality rates and disappeared 

quickly, challenging our ability to detect disease occurrence. In general, reported mortality rates 

have been much higher during the larval stages, resulting in recruitment failure (Brunner et al. 

2015; Cunningham et al. 2007; Echaubard et al. 2014; Gray et al. 2009). However, adults are 

known to be reservoirs and likely sources of transmission among sites, sometimes with little 

apparent impact on their health (Gray et al. 2009).  
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Infections were also geographically widespread, likely because Ranavirus infects a 

variety of ectothermic hosts, including all tested amphibian species in our study and at least some 

fishes and reptiles that can spread infections. Several experimental studies demonstrated 

Ranavirus transmission among various ectothermic classes (Bayley 2013; Mao et al. 1999; Picco 

et al. 2010; Schock et al. 2008). These studies often result in nearly all amphibians dying, but 

infected turtles and fish persisting without mortality. If infected fishes or reptiles are nearby, 

amphibians can become infected by direct contact with infected individuals or surrounding 

environment (Gray et al. 2009).  

I found Ranavirus prevalence varied significantly among amphibian species, ecoregion 

and land use when pooled across all amphibian species. There are many studies confirming 

amphibian species vary in susceptibility to Ranavirus because of phylogeny, life history, and 

their ecology (Brunner et al. 2015; Hoverman et al. 2011).  Ranavirus prevalence was also 

somewhat more common in the Missouri Coteau than other areas, followed by sites in the Red 

River Valley. Pasture and grassland sites had lower Ranavirus prevalence than cropland when 

pooled across all amphibian species. The cause of differences in infection risk is not known; 

there are a variety of factors that might differ geographically across the state, and our study was 

not designed to reveal underlying causation.  

From the logistic regression results, the Missouri Coteau ecoregion was more likely to 

have Ranavirus infected amphibians. The Missouri Coteau contains a large number of prairie 

pothole wetlands located in close proximity, possibly increasing opportunities for transmission 

(Fig 1). However, the Northern Glaciated Plain ecoregion is contained within the Prairie Pothole 

Region and also contains a high density of wetlands. From the spatial autocorrelation analysis, I 

detected a clear pattern that wetlands in close proximity are more likely to be similar in the 
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presence or absence of infected frogs. However, this is not simply an effect of local proximity, 

given that the spatial dependency extended to 40km. The spatial autocorrelation pattern may 

simply reflect the broader geographic differences in prevalence: it is reasonable to infer that if an 

infection becomes established at a site in the Missouri Coteau, additional transmission is more 

likely at nearby sites than more distant sites, many of which will be located in other ecoregions. 

In other words, some portion of the autocorrelation pattern may be confounded with broad scale 

geographic variation that also underlies the ecoregion effect. Spatial factor 18 was probably 

included in the best model for the same reason: it corresponds to some extent with ecoregion. 

Land use, wetland length and area, and percent and number of wetlands were not 

significant predictors for Ranavirus occurrence. The latter landscape factors correspond to the 

finest scale of spatial structure, but were not represented either in the spatial autocorrelation 

analysis or the construction of spatial factors. This result also supports the inference that spatial 

effects were largely driven by ecoregion differences and not local wetland connectivity. The 

underlying cause for an ecoregion effect is not clear. Possibly the density of wetlands, which 

varies from moderate in the Missouri Coteau to very high in the Northern Glaciated Plains, to 

low in the Red River Valley, does impact wetland-to-wetland transmission, but in a complex, 

nonlinear manner. 

There are many caveats in this study for any inference I can make about the ecology of 

amphibian-Ranavirus interactions. These include lack of repeated sampling at each site at 

different times of seasons to increase detectability, uneven sample sizes at different life stages, 

species, land use categories and ecoregions. Future studies should incorporate other variables 

hypothesized to affect Ranavirus occurrence such as amphibian abundance, fish and reptile 

presence, and more detailed measurements of wetland and landscape characteristics, such as 
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aquatic vegetation, water chemistry, and surrounding land use. These results were also only 

compiled from two years of field data and likely capture only a snapshot in time of Ranavirus 

occurrence throughout North Dakota, and certainly do not capture temporal dynamics. 

Continued disease surveillance is needed, coupled with routine amphibian monitoring 

because Ranavirus is a well-established cause of mass mortality and recruitment failure in 

amphibian populations (Miller et al. 2009, Price et al. 2014). As far as we know, North Dakota 

does not have a routine, standardized amphibian monitoring program at this time, but even a 

modest monitoring program at select sites would be useful and provide a starting point for 

surveillance. This becomes particularly important in the face of climate change and other 

environmental perturbations that might alter local habitats in such a way that exposes animals to 

localized stressors, or alters demographic connectivity among amphibian populations or 

movement patterns of potential disease carriers. Furthermore, other ectotherms (reptiles and 

fishes) are also susceptible to Ranaviruses (Gray and Chinchar 2015) and monitoring programs 

for amphibians would also provide useful information for those taxa.  
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CHAPTER III 

 

PREVALENCE AND GEOGRAPHIC DISTRIBUTION OF CHYTRID FUNGUS IN 

NORTH DAKOTA AMPHIBIANS 

 

ABSTRACT 

 

 Chytrid fungus has been implicated in amphibian species extinctions and nearly half of 

all amphibian species declining worldwide. To our knowledge, no amphibian survey has ever 

been done for chytrid fungus in North Dakota. In this study, I estimated chytrid fungus 

geographic distribution and prevalence in North Dakota amphibians. I sampled broadly across 

the state, including all major ecoregions, and land use categories. Six species of amphibians were 

represented in the total sample including northern leopard frogs (Lithobates pipiens), wood frogs 

(Lithobates sylvaticus), boreal chorus frogs (Pseudacris maculata), Canadian toads (Anaxyrus 

hemiophrys), Great Plains toad (Anaxyrus cognatus), and tiger salamanders (Ambystoma 

mavortium). I used real time PCR to detect chytrid fungus infections and found five infected 

northern leopard frogs, resulting in 0.007% prevalence pooled across all amphibian species. All 

infections were found in central North Dakota. I could not estimate ecological predictors for 

chytrid fungus occurrence because of the low detection of infections among amphibians. Some 

explanations for low detection are chytrid fungus is rare and localized at a few locations in North 

Dakota, rapid die-offs of infected amphibians limited our detection ability, and/or our diagnostic 

and swabbing techniques were inadequate for detection. I recommend continued disease 

surveillance to confirm low prevalence and monitor the spread of chytrid fungus to uninfected 

areas.
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INTRODUCTION 

 

Batrachochytrium dendrobatidis (Bd) was first discovered in 1997 (Berger et al. 1998) 

and since then over 500 species of amphibians in 54 countries has been infected (Fisher et al. 

2009; Olson et al. 2013). Bd is highly pathogenic and causes the disease chytridiomycosis. This 

disease is a huge threat to biodiversity (Kilpatrick et al. 2010) and the causative agent for 

amphibian declines worldwide (Lips et al. 2006; Lips et al. 2008; Muths et al. 2003; Rachowicz 

et al. 2006). The Global Amphibian Assessment (GAA) proposed 32.5% of all amphibian 

species are threatened and 92.5% are critically endangered and undergoing declines that are 

correlated to Bd (Bielby et al. 2008; Stuart et al. 2004).  Because chytrid fungus is a threat to 

amphibian population sizes and biodiversity, I conducted the first statewide survey to estimate 

the prevalence and geographic distribution of chytrid fungus in North Dakota amphibians.  

Bd has a broad geographic distribution, and has been found widely in the Americas, and 

patchily in Africa, Asia, Australia and Europe (James et al. 2006). Detection biases and gaps in 

sampling effort still exist across the globe, contributing to the clustering of locations where Bd 

has been found (James et al. 2006). The geographic distribution of chytrid fungus is likely 

underestimated because of rapid removal of dead hosts by predation, fast decomposition, 

sporadic disease outbreaks, and limited number of large-scale and long-term surveillance efforts 

(Gray et al. 2009; Kilpatrick et al. 2010).  

North Dakota is a likely location to suspect disease occurrence because it contains many 

factors promoting Bd infection, including cool temperatures (Forrest et al. 2011; Holmes et al. 

2014; Kilpatrick et al. 2010; Lips et al. 2008; Olson et al. 2013; Raffel et al. 2015; Rohr et al. 

2011; Woodhams et al. 2008), pesticide runoff into wetlands and extensive agricultural land use, 

which combine to reduce habitat availability and increase exposure to environmental stressors 
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(Gahl et al. 2011; Gaietto et al. 2014; Hanlon and Parris 2013; Paetow et al. 2012). North Dakota 

also contains many prairie pothole wetlands that are used for multiple recreational activities such 

as hunting, fishing, and boating that can facilitate the movement of contaminated objects and 

amphibians to uninfected areas (Addis et al. 2015; Fisher et al. 2012).  

OBJECTIVES AND HYPOTHESES 

The main goal of this portion of my amphibian disease study was to estimate the 

geographic distribution and prevalence of Bd in the portion of the northern Great Plains within 

North Dakota. I tested the following hypotheses regarding Bd occurrence based on previous 

information known about Bd environmental persistence, transmission and amphibian 

susceptibility.  

Objectives 

(1). Estimate the geographic distribution of chytrid fungus in North Dakota.  

Hypothesis 1: I predict the geographic distribution of Bd is widespread across North 

Dakota because Bd has many host reservoirs and long environmental persistence. Bd 

infects a variety of ectothermic vertebrates (Kilpatrick et al. 2010; Olson et al. 2013; 

Valencia-Aguillar et al. 2015) increasing the probability of transmission to amphibians. 

Researchers also found zoospores can adhere, survive, and even proliferate on the toe 

scales and feathers of waterfowl (Garmyn et al. 2012; Johnson and Speare 2005). North 

Dakota contains many prairie pothole wetlands that are inhabited by waterfowl 

potentially spreading infections to uninfected wetlands. Bd can also survive in the 

environment for long periods of time by the presence of another reservoir species 

shedding zoospores, persistence in another life stage of the host, and surviving in a 
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saprophytic stage by eating dead decaying matter (Kilpatrick et al. 2010) increasing 

opportunities for amphibian exposure.   

(2). Estimate the prevalence of chytrid fungus in North Dakota amphibians.  

Hypothesis 2A: I hypothesize Bd prevalence will increase at locations with cool 

temperatures and increased precipitation (Forrest et al. 2011; Holmes et al. 2014; 

Kilpatrick et al. 2010; Lips et al. 2008; Olson et al. 2013; Rohr et al. 2011; Raffel et al. 

2015; Woodhams et al. 2008). Temperatures between 17-25°C are optimal for Bd 

growth, but temperatures higher than 29°C or below 0°C are considered lethal 

(Piotrowski et al. 2004). Several studies have shown Bd prevalence to drop dramatically 

in warm water and increase in cold water temperatures (Forrest and Schlaepfer 2011; 

Whitfield et al. 2012).  

Hypothesis 2B: The prevalence of Bd will increase at locations with high human 

disturbance because contaminants in the water can affect Bd infection intensity and 

prevalence (Gahl et al. 2011; Gaietto et al. 2014; Hanlon and Parris 2013; Paetow et al. 

2012). In addition, fungal characteristics such as habitat flexibility, long environmental 

persistence, and multiple reproductive modes allow humans to spread Bd by transporting 

contaminated objects such as boots, fishing equipment, research gear and boats to 

uninfected wetlands (Fisher et al. 2012).  

METHODS  

Study Design 

The main objective was to estimate the geographic extent of infections across a portion of 

the northern plains in a wide variety of habitats. To achieve this, I sampled amphibians broadly 

across the state of North Dakota using a stratified sampling design. The four level III ecoregions 

(Omernik 1987) were the primary sampling strata, with the four general categories of land use 
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within ecoregion as secondary strata. The routes for collecting trips were selected to cover as 

much of the state as possible, but were constrained by accessibility of wetlands, and incorporating 

as much of the active season as possible. Routes were generally driven east to west and collection 

trips focused on the southern, central, or northern tiers of the state. Wetlands were selected based 

on availability (sites with water apparent) and accessibility (proximity to roads that were passable 

under prevailing conditions) and to include a gradient of land uses. I specifically sought out 

wetlands that were in or adjacent to croplands, pasture, grasslands (including hayland, CRP-type 

land, or anything that resembled currently untilled, ungrazed land), and woodland. Sample 

locations (N=171) are indicated in Figure 3. Each symbol on the map represents a location where 

I collected amphibians. 

Amphibian collection efforts spanned two field seasons, 2013 and 2014. The start of each 

field season depended on the weather and phenology of each amphibian species. In the early 

field season (April-May), collection focused on adult breeding amphibians. In the mid field 

season (June-July), I searched for tadpoles and adults and in the late season (August-September), 

meta-morphs and juveniles were primarily collected along with any additional adults found. The 

2013 field season did not begin until late May because of extended snowfall leading to late 

thawing of wetlands resulting in limited time for collection of early breeders including the boreal 

chorus frog and the wood frog. I attempted to include all amphibian species and life stages in 

collection but did not encounter the gray tree frog (Hyla versicolor), American toad (Anaxyrus 

americanus), spadefoot toad (Spea bombifrons), and the woodhouse’s toad (Anaxyrus 

woodhousei) and collected very few tadpoles. 
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Field Protocol 

I relied on chance encounters to collect amphibians while I walked around the perimeter 

and waded through wetlands. This was the most efficient method because it limited the time 

needed at individual wetlands and allowed inclusion of more sites. This method of sampling is 

subject to substantial bias in terms of which amphibian species were found. Some amphibian 

species have limited geographic ranges and specific habitat preferences that reduce the likelihood 

for encounters. For example, the plains spadefoot toad spends most of its time buried 

underground, limiting our ability to detect them. In addition, the gray tree frog is only found in 

the eastern margin of the state and is highly arboreal except duing larval stages.  

The field protocol from James Cook University was followed to avoid cross 

contamination in the field and maintain field hygiene when handling amphibians (Speare et al. 

2004). I swabbed the skin of each amphibian for Bd detection following Berger and Speare 

(1998). The swabs were then stored in ethanol-filled vials labeled with the corresponding 

amphibian ID. Then amphibians were placed in a numbered container corresponding to the 

amphibian ID to keep track of individuals. In each container, I placed a wet paper towel in with 

the adults, juveniles and meta-morphs to avoid desiccation. Tadpoles were kept in sufficient 

water so they remain submerged while being transported. The containers with each individual 

amphibian were stored in a cooler with ice to avoid over heating. I recorded the snout-vent 

length of each amphibian and landscape characteristics such as wind speed, humidity, 

temperature, vegetation structure, GPS coordinates, and land use at each site. I also took a 

picture of each location for future reference.  
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Necropsy Protocol 

 Amphibians collected for necropsy focused on males and abundant species to avoid 

demographic and population impacts. Five of each species at each location were collected for 

necropsy and euthanized following an IACUC approved protocol (#1305-2). The blood, liver, 

spleen and skin swab were also collected from each amphibian for DNA extraction and stored in 

95% ethanol at -20°C. The skin swabs were later used for Bd detection. During dissection, the 

mouth, urinary bladder, lungs, kidneys, liver, intestines, and leg muscles were examined for 

helminths using a dissecting scope (Ch. 4). I also made blood smears of each necropsied 

amphibian to later search for blood parasites (Ch.4).  

DNA extraction 

I extracted DNA from skin swabs following a modification of Retallick et al. (2006) and 

Richards-Hrdlicka et al. (2013). The first step was to centrifuge each micro-centrifuge tube 

containing a swab at 13000 rpm for ten minutes. Next, the ethanol was removed from each 

micro-centrifuge tube using a clean pipette, while not dislodging or removing the pellet. Then I 

added 150µl of Prepman Ultra (Applied Biosystem
TM

) and vortexed each tube. After the tubes 

have been vortexed, I centrifuged the tubes containing Prepman Ultra for two minutes at 

13000rpm. The tubes were then boiled at 100°C at 700rpm for ten minutes and later cooled at 

room temp for two minutes. After the tubes have been cooled, I centrifuged them at 13000 rpm 

for three minutes and added 20µl of the supernatant to a new tube and stored at -20°C. Before 

each real-time PCR run, I made a 1:10 dilution of each DNA extract with ultrapure water.  

Real-time PCR  

I tested for Bd DNA following Boyle et al. (2004) and Richards-Hrdlicka et al. (2013) 

real time PCR protocols. Each reaction consisted of 5µl of DNA that was diluted 1:10 with 
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ultrapure water, 10µl SsoAdvanced Universal probes Supermix (works best for CFX384 Touch 

Real time PCR Detection System), 1µl of each primer (900nm of each forward and reverse), 2µl 

of the probe (250nm), and 1µl of ultrapure water (Boyle et al. 2004; Richards-Hrdlicka et al. 

2013). The qPCR protocol was: initial step at 95°C for 2 minutes 30 seconds, denaturing step at 

95°C for 10 seconds, and annealing step at 54°C for 30 seconds for 40 total cycles (Boyle et al. 

2004). Each qPCR assay included a positive and negative control. The positive control is a 

synthetic gene block of Chytrid MGB2 gene 5’-ACG-TTT-TGA-TGC-GAA-ACT-CTC-GTC-

CTT-GAT-ATA-ATA-CAG-TGT-GCC-ATA-TGT-CAC-GAG-TCG-AAC-AAA-ATT-TAT-

TTA-TTT-TTT-CGA-CAA-ATT-AAT-TGG-AAA-TTG-AAT-AAT-TTA-ATT-GAA-AAA-

AAT-TGA-AAA-TAA-ATA-TTA-AAA-ACA-ACT-TTT-GAC-AAC-GGA-TCT-CTT-GGC-

TCT-CGC-AAC-GAT-GAA-GAA-CGC-AG-3’ (Boyle et al. 2004). The negative control is ultra 

pure water to verify there was no contamination during each assay. The primers and probe used 

for real time PCR are shown in Table 11 (Boyle et al. 2004).  

Table 11. Primers and probe used for real time PCR 

Name Nucleotide sequence (5’-3’) 
ITS1-3 Chytr (forward primer) CCTTGATATAATACAGTGTGCCATATGTC 

5.8S Chytr (reverse primer) AGCCAAGAGATCCGTTGTCAAA 

Chytr MGB2 (probe) 6FAM CGAGTCGAACAAAAT 31ABkFQ 

External 5.8S (reverse primer) GTGGTTGTGACGTTGTATTAC 

 

 I verified all positive Bd samples by sequencing. I selected a 401bp gene fragment of 

MGB2 gene using the forward primer ITS1-3 and reverse primer external 5.8S (Table 11). In 

each sequencing reaction, I included 2µl of BigDye sequencing buffer, 1.5µl of each primer, 1-

2µl of PCR template (depending on the strength of the PCR product), and 1µl of BigDye. I ran 

all sequences on a Bio rad T100 thermal cycler for 25 cycles: 96°C for 15 seconds, 50°C for 5 

seconds, 60°C for 4 minutes. Then all samples were run on an ABI Prism 3100 automated 

capillary sequencer. 
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RESULTS 

 I collected a total of 705 amphibians from both 2013 and 2014 field seasons combined.  

The sample size of each species is broken down by life stage during both collecting years in 

Tables 2 and 3. The northern leopard frog was the most abundant species collected during both 

years. Tiger salamanders had the smallest overall sample size because I did not use collecting 

methods suitable for that species.  

Objective 1: Estimate the geographic distribution of chytrid fungus in North Dakota  

 

 Infections were found near central North Dakota and located at relatively close proximity 

to each other (Figure 10). In particular, one infected northern leopard frog was found southwest 

of Carrington, North Dakota (N47.165 and W-99.228), two others were found towards the west 

side of central North Dakota south of Lake Sakakawea (N47.383 W101.654), the fourth was 

towards the central east side of North Dakota north of Cleveland, North Dakota (N46.96 W-

99.11) and the last was north of Woodworth, North Dakota (N47.175 E-99.27).  

 
Figure 10. Geographic occurrence of Bd infections across all amphibian species. Green circles represent 

infected amphibians, open circles “X”s indicate amphibian specimens testing negative. Lines illustrate 
county boundaries and ecoregions as in Figure 3 (from west to east: NWGP, MC, NGP, RRV). 



 

98 

 

Objective 2: Estimate the prevalence of chytrid fungus in North Dakota amphibians   

 I detected Bd in five northern leopard frogs (Lithobates pipiens) out of 705 assayed 

amphibians, resulting in an overall prevalence (percent of infected individuals within a sample) 

of 0.007%. I could not estimate predictors for Bd occurrence because of the low number of 

detections.   

DISCUSSION 

   Bd was surprisingly uncommon (0.007%) in North Dakota amphibians and primarily 

found near central North Dakota. Because of the low detection of infections, it is impossible to 

make any statistical conclusions that estimate ecological predictors for Bd occurrence. Other 

nearby states including Minnesota, Iowa, Montana, Nebraska, and Wyoming found variable high 

to low prevalence of Bd in amphibian populations (Briggs et al. 2010; Moffit et al. 2015; Muths 

et al. 2008; Olson et al. 2013) Many factors influence Bd occurrence and the complexity of those 

interactions result in sporadic disease outbreaks that limit our ability to detect infections before 

mortality events.  

Four possible explanations for low Bd prevalence in North Dakota are: 1) Bd is rare in 

North Dakota, 2) infected amphibians die too rapidly to detect infections, 3) the summer prior to 

this study (2012) was very dry and reduced Bd survival in the environment, and 4) our diagnostic 

and swabbing techniques were inadequate for Bd detection. In the following paragraphs I will 

discuss these explanations for low Bd detection.  

Bd could be rare in North Dakota because warmer temperatures and lower precipitation 

rates are not ideal for zoospore production and persistence outside of the host (Beyer et al. 2014; 

Puschendorf et al. 2009; Woodhams et al. 2008). North Dakota has a wide variety of 

temperatures with warm to hot and somewhat humid summers and cold windy winters. Warmer 
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temperatures reduce zoospore production limiting opportunities for disease transmission because 

amphibians require direct contact with the zoospores to become infected (Kilpatrick et al. 2010). 

North Dakota also has lower annual precipitation rates compared to other nearby states, which is 

unfavorable for Bd growth and persistence outside of the host (Beyer et al. 2014; Puschendorf et 

al. 2009).  

Another possibility is infected animals died before I visited a location and predators or 

decomposition removed carcasses before I was able to detect infections. I primarily collected 

post metamorphic individuals and they are most susceptible to infections because they contain 

greater amounts of keratin. Several studies have demonstrated frequent metamorph and adult 

mortality while infected with Bd (Berger et al. 1999; Bradley et al. 2002; Kilpatrick et al. 2010; 

Scheele et al. 2010). Therefore, I could have easily missed a mortality event that occurred earlier 

in the season and found no evidence at the time of collection.  

For Bd to persist in the environment for long periods of time it requires a cool and moist 

habitat. The summer of 2012 was very dry in North Dakota, with the majority of small ponds 

drying completely. This could have resulted in failure of Bd to persist and subsequently 

recolonize those locations. We do not know if the drought during the summer of 2012 was long 

enough to kill off Bd throughout most of the prairie pothole region. We also do not know how 

long it would take for Bd to re-establish in those areas given that it infects multiple ectothermic 

hosts and can be dispersed throughout the area by waterfowl and human movement.  

 For Bd detection, I used Boyle et al. (2004) and Richards-Hrdlicka et al. (2013) real time 

PCR protocols to identify individual infections. These protocols are well established and proven 

successful in various other studies (Briggs et al. 2010; Hrdlicka et al. 2013; Kriger and Hero et 

al. 2007; Retallick et al. 2006) so false negatives are unlikely. I also found five positive Bd 
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infections using this protocol so I would expect to detect other infections using the same 

protocol. However, some studies have also extracted Bd DNA from the mouthparts, sloughed 

skin (Retallick et al. 2006; Berger et al. 2005), and toe clippings (Boyle et al. 2004) in addition to 

skin swabs and yielded positive results.  

Researchers also discovered different swabbing procedures including swabbing location, 

number of strokes, pressure applied, and type of swab used could result in variable levels of Bd 

detection (Simpkins et al. 2014). I followed the swabbing protocol of Berger and Speare (1998) 

that targets areas highly susceptible to Bd infections including the ventral surface, thighs, feet, as 

well as the dorsal surface of the amphibian. However, other studies have air-dried the skin swabs 

for 30 minutes before putting into ethanol vials or did not store in ethanol at all (Adams 2010; 

Gower et al. 2012). In contrast, I stored the skin swabs immediately into ethanol without drying, 

which could have accounted for the low detection results. Hyatt et al. 2007 also found fine tipped 

swabs is best for Bd detection and I did not use these.  

I suggest continued disease surveillance for Bd in North Dakota amphibians because it is 

a well-established cause of mass mortality in amphibian populations worldwide (Lips et al. 2006; 

Lips et al. 2008; Muths et al. 2003; Rachowicz et al. 2006). Sampling for this study was limited 

to just two collecting years and future studies should incorporate more years of sampling data. 

Sampling designs should also include multiple amphibian collection visits per location to 

increase Bd detection throughout different seasons. Researchers should also extract DNA from 

mouthparts, sloughed skin and toes to increase probability of Bd detection. In addition, multiple 

researchers should swab each amphibian with a fine tip swab (Hyatt et al. 2007; Simpkins et al. 

2014).  

 



 

101 

 

LITERATURE CITED 

Adams, M.J., Chelgren, N.D., Reinitz, D., Cole, R.A., Rachowicz, L.J., Galvan, S., McCreary, 

B., Pearl, C.A., Bailey, L.L., Bettaso, J., Bull, E.L., Leu, M. 2010. Using occupancy 

models to understand the distribution of an amphibian pathogen, Batrachochytrium 

dendrobatidis. Ecological Applications 20 (1): 289-302.  

Addis, B.R., Lowe, W.H., Hossack, B.R., Allendorf, F.W. 2015. Population genetic structure and 

disease in montane boreal toads: more heterozygous individuals are more likely to be 

infected with amphibian chytrid. Conservation Genetics 16: 833-844. 

Berger, L., Speare, R. 2005. Chytridiomycosis: a new disease of wild and captive amphibians." 

ANZCCART Newsletter 11(4): 1-3. 

Berger, L., Speare, R., Hyatt, A. 1999. Chytrid fungi and amphibian declines: overview, 

implications and future directions. Declines and disappearances of Australian frogs. 

Environment Australia, Canberra: 23-33. 

Berger, L., Speare, R.1998. Chytridiomycosis: a new disease of wild and captive amphibians. 

Australia and New Zealand Council for the Care of Animals in Research and Teaching 

Newsletter 11:1-3.  

Beyer, S., Schooley, R.L., Phillips, C.A., Allan, B.F. 2014. Effects of canipy cover on the 

landscape epidemiology of an amphibian chytrid fungus. Thesis. Pg 1-53.  

Bielby, J., Cooper, N., Cunningham, A.A., Garner, T.W.J., Purvis, A. 2008. Predicting 

susceptibility to future declines in the world's frogs. Conservation Letters 1(2): 82-90. 

Boyle, D.G., Boyle, D.B., Olsen, V., Morgan, J.A., Hyatt, A.D. 2004. Rapid quantitative 

detection of chytridiomycosis (Batrachochytrium dendrobatidis) in amphibian samples 

using real-time Taqman PCR assay. Diseases of Aquatic Organisms 60: 141-148. 



 

102 

 

Briggs, C.J., Knapp, R.A., Vredenburg, V.T. 2010. Enzootic and epizootic dynamics of the 

chytrid fungal pathogen of amphibians. Proceedings of the National Academy of 

Sciences 107(21): 9695-9700. 

Fisher, M.C., Garner, T.W., Walker, S.F.  2009. Global emergence of Batrachochytrium 

dendrobatidis and amphibian chytridiomycosis in space, time, and host. Annual review of 

microbiology 63: 291-310. 

Fisher, M.C., Henk, D.A., Briggs, C.J., Brownstein, J.S., Madoff, L.C., McCraw, S.L., Gurr, S.J. 

2012. Emerging fungal threats to animal, plant and ecosystem health. Nature, 484(7393): 

186-194. 

Forrest, M.J., Schlaepfer, M.A. 2011. Nothing a hot bath won’t cure: Infection rates of 

amphibian chytrid fungus correlate negatively with water temperature under natural field 

settings. PLOS One 6(12): e28444.  

Gahl, M.K., Pauli, B.D., Houlahan. J.E. 2011. Effects of chytrid fungus and a glyphosate-based 

herbicide on survival and growth of wood frogs (Lithobates sylvaticus). Ecological 

Applications 21.7: 2521-2529. 

Gaietto, K.M., Rumschlag, S.L., Boone, M.D. 2014. Effects of pesticide exposure and the 

amphibian chytrid fungus on gray treefrog (Hyla chrysoscelis) metamorphosis. 

Environmental Toxicology and Chemistry 33.10: 2358-2362. 

Garmyn, A., Van Rooij, P., Pasmans, F., Hellebuyck, T., Van Den Broeck, W., Haesebrouck, F., 

Martel, A. 2012. Waterfowl: Potential environmental reservoirs of the chytrid fungus 

Batrachochytrium dendrobatidis. PloS one 7(4): e35038. 



 

103 

 

Gower, D.J., Doherty-Bone, T.M., Aberra, R.K., Mengistu, A., Schwaller, S., Menegon, M., Sa, 

R.D., Saber, S.A., Cunningham, A.A., Loader, S.P. 2012. High prevalence of the 

amphibian chytrid fungus (Batrachochytrium dendrobatidis) across multiple taxa and 

localities in the highlands of Ethiopia. Herpetological Journal 22: 225-233.  

Gray, M.J., Miller, D.L., Hoverman, J.T. 2009. Ecology and pathology of amphibian 

Ranaviruses. Diseases of Aquatic Organisms 87: 243-266.  

Hanlon, S.M., Parris, M.J. 2014. The interactive effects of chytrid fungus, pesticides, and 

exposure timing on gray treefrog (Hyla versicolor) larvae. Environmental toxicology and 

chemistry 33.1: 216-222. 

Holmes, I., McLaren, K., Wilson, B. 2014. Precipitation constrains amphibian chytrid fungus 

infection rates in a terrestrial frog assemblage in Jamaica, West Indies. Biotropica 46(2): 

219-228. 

Hyatt, A.D., Boyle, D.G., Olsen, V., Boyle, D.B., Berger, L., Obendorf, D., Dalton, A., Kriger, 

K., Hero, M., Hines, H., Phillott, R., Campbell, R., Marantelli, G., Gleason, F., Colling, 

A. 2007. Diagnostic assays and sampling protocols for the detection of Batrachochytrium 

dendrobatidis. Disease of aquatic organisms 73: 175-192.  

James, T.Y., Letcher, P.M., Longcore, J.E., Mozley-Standridge, S.E., Porter, D., Powell, M.J., 

Griffith, G.W., Vilgalys, R. 2006. A molecular phylogeny of the flagellated fungi 

(Chytridiomycota) and description of a new phylum (Blastocladiomycota). Mycologia 

98(6): 860-871. 

Johnson, M.L., Speare, R. 2005. Possible modes of dissemination of the amphibian chytrid 

Batrachochytrium dendrobatidis in the environment. Diseases of Aquatic Organisms 65: 

181–186. 



 

104 

 

Kilpatrick, M.A., Briggs, C.J., Daszak, P. 2010. The Ecology and impact of chytridiomycosis: an 

emerging disease of amphibians. Trends in Ecology and Evolution 25(2): 109-118.  

Kriger, K.M., Hero, J. 2007. The chytrid fungus Batrachochytrium dendrobatidis is non‐

randomly distributed across amphibian breeding habitats. Diversity and Distributions 

13(6): 781-788. 

Lips, K.R., Brem, F., Brenes, R., Reeve, J.D., Alford, R.A., Voyles, J., Carey, C., Livo, L., 

Pessier, A.P., Collins, J.P. 2006. Emerging infectious disease and the loss of biodiversity 

in a Neotropical amphibian community. Proceedings of the national academy of sciences 

of the United States of America 103(9): 3165-3170. 

Lips, K.R., Diffendorfer, J., Medelson, J.R., Sears, M.W. 2008. Riding the wave: reconciling the 

roles of disease and climate change in amphibian declines. PLoS Biology 6(3): e72. 

Moffitt, D., Williams, L.A., Hastings, A., Pugh, M.W., Gangloff, M.M., Siefferman, L. 2015. 

Low prevalence of the amphibian pathogen Batrachochytrium dendrobatidis in the 

Southern Appalachian Mountains. Herpetological Conservation and Biology 10(1):123-

136.  

Muths, E., Corn, P.S., Pessier, A.P., Green, D.E. 2003. Evidence for disease-related amphibian 

decline in Colorado. Biological Conservation 110(3): 357-365. 

Muths, E., Pilliod, D.S., Livo, L.J. 2008. Distribution and environmental limitations of an 

amphibian pathogen in the Rocky Mountains, USA. Biological Conservation 141(6): 

1484-1492. 

Olson, D.H., Aanensen, D.M., Ronnenberg, K.L., Powell, C.I., Walker, S.F., Bielby, J., Garner, 

T.W.J., Weaver, G. 2013. Mapping the global emergence of Batrachochytrium 

dendrobatidis, the amphibian chytrid fungus. PloS one 8(2): e56802. 



 

105 

 

Paetow, L.J., McLaughlin, J.D., Cue, R.I., Pauli, B.D., Marcogliese, D.J. 2012. Effects of 

herbicides and the chytrid fungus Batrachochytrium dendrobatidis on the health of post-

metamorphic northern leopard frogs (Lithobates pipiens). Ecotoxicology and 

environmental safety 80: 372-380. 

Piotrowski, J.S., Annis, S.L., Longcore, J.E. 2004. Physiology of Batrachochytrium 

dendrobatidis, a chytrid pathogen of amphibians. Mycologia 96: 9-15. 

Puschendorf, R., Carnaval, A.C., VanDerWal, J., Zumbado-Ulate, H., Chaves, G., Bolanos, F., 

Alford, R.A. 2009. Distribution models for the amphibian chytrid Batrachochytrium 

dendrobatidis in Costa Rica: proposing climatic refuges as a conservation tool. Diversity 

and Distributions 15(3): 401-408. 

Rachowicz, L.J., Knapp, R.A., Morgan, J.A., Stice, M.J., Vredenburg, V.T., Parker, J.M., Briggs, 

C.J. 2006. Emerging infectious disease as a proximate cause of amphibian mass 

mortality. Ecology 87(7): 1671-1683. 

Raffel, T.R., Halstead, N.T., McMahon, T.A., Davis, A.K., Rohr, J.R. 2015. Temperature 

variability and moisture synergistically interact to exacerbate an epizootic disease. 

Proceedings of the Royal Society of London B: Biological Sciences 282(1801): 

20142039. 

Retallick, R.W.R., Miera, V., Richards, K.L., Field, K.J., Collins, J.P. 2006. A non-lethal 

technique for detecting the chytrid fungus Batrachochytrium dendrobatidis on tadpoles. 

Diseases of Aquatic Organisms 72(1): 77-85.  

Richards-Hrdlicka, K.L., Richardson, J.L., Mohabir, L. 2013. First survey for the amphibian 

chytrid fungus Batrachochytrium dendrobatidis in Connecticut (USA) finds widespread 

prevalence. Diseases of Aquatic Organisms 102: 169-180. 



 

106 

 

Rohr, JR., Dobson, A.P., Johnson, P.T., Kilpatrick, A.M., Paull, S.H., Raffel, T.R., Ruiz-

Moreno, D., Thomas, M.B. 2011. Frontiers in climate change–disease research. Trends in 

Ecology & Evolution 26(6): 270-277. 

Simpkins C.A., Sluks M.V., Hero J. 2014. Swabber effect: Swabbing technique affects the 

detectability of Batrachochytrium dendrobatidis. Herpetological Review 45(3): 443-445.  

Speare, R., Berger, L., Skerratt, L.F., Alford, R., Mendez, D., Cashins, S., Kenyon, N., 

Hauselberger, K. 2004. Hygiene protocol for handling amphibians in field studies. AD 

Group. Townsville, James Cook University 4. 

Stuart, S.N., Chanson, J.S., Cox, N.A., Young, B.E., Rodrigues, A.S., Fischman, D.L., Waller, 

R.W. 2004. Status and trends of amphibian declines and extinctions worldwide. Science 

306(5702): 1783-1786. 

Whitfield, S.M., Kerby, J., Gentry, L.R., Donnelly, M.A. 2012. Temporal variation in infection 

prevalence by the amphibian chytrid fungus in three species of frogs at La Selva, Costa 

Rica. Biotropica 44(6): 779-784. 

Woodhams, D.C., Alford, R.A., Briggs, C.J., Johnson, M., Rollins-Smith, L.A. 2008. Life-

history trade-offs influence disease in changing climates: strategies of an amphibian 

pathogen. Ecology 89(6): 1627-1639. 

Valencia-Aguilar, A., Ruano-Fajardo, G., Lambertini, C., da Silva Leite, D., Toledo, L.F., Mott, 

T. 2015. Chytrid fungus acts as a generalist pathogen infecting species-rich amphibian 

families in Brazilian rainforests. Diseases of Aquatic Organisms 114(1): 61-67.



 

107 

CHAPTER IV 

 

PREVALENCE AND GEOGRAPHIC DISTRIBUTION OF HELMINTHS IN NORTH 

DAKOTA AMPHIBIANS 

 

ABSTRACT 

 

 Parasites are integral components of all biotic communities and their diversity is an 

indicator for ecosystem health. Some parasites can also impair the health of amphibians. 

Knowledge about the diversity, distribution, and host associations of parasites is limited in North 

Dakota. To understand the ecology of parasites and their role in host populations, I conducted a 

statewide survey to estimate the prevalence and geographic distribution of parasites in multiple 

amphibian hosts. I collected amphibians broadly across the state, including all major ecoregions 

and land use categories. I identified parasites to taxonomic level by both morphology and 

molecular techniques. Overall, 60.3% of amphibians were infected with digeneans, 17% with 

nematodes, and 2.8% with cestodes. Common parasite genera included the digeneans Alaria 

(29.2% prevalence), Echinoparyphium (23.3%), Haematoloechus (13.3%), Glypthelmins 

(11.2%), and the nematodes Cosmocercoides (7.7%), and Rhabdias (8.2%). Some parasite 

species were widely distributed, including Alaria, Echinoparyphium, and Haematoloechus and 

some had more limited distributions including Glypthelmins and Rhabdias. Alaria had a fine 

scale spatial dependency at distances less than 20km and Rhabdias at distances less than 40km, 

indicating a patchy distribution for both. More complete surveys need to be designed to establish 

causation for each parasite’s occurrence.
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INTRODUCTION 

 Parasites play an important role in ecology because they may shape host population 

dynamics (Lafferty 2006), alter interspecific competition (Lafferty 1997), influence energy flow 

(Hatcher et al. 2006; Lefevre et al. 2009; Marcogliese 2002; Prenter et al. 2004) and reflect 

diversity of biotic communities (Hudson et al. 2006; Lafferty 2003). In general, parasite 

communities should reflect the hosts that are available to them, therefore a community rich with 

hosts should also be one rich with parasites (Lafferty 2003). Several studies have shown that 

parasite species diversity increases as ecosystem health improves (Marcogliese 2002; Thompson 

et al. 2005).  

Even though parasites are useful indictors of ecosystem health, they can also impair the 

health of their hosts to further their own fitness. In amphibians, digeneans in the family 

Echinostomatidae (Koprivnikar et al. 2006) and genus Ribeiroia (Johnson et al. 2002) are known 

to have negative health impacts and sometimes reported at high prevalence in aquatic habitats 

(Beasley et al. 2005; Johnson and Hartson 2009).  Several species of the lung nematode 

Rhabdias can also decrease growth rates and survival in toads (Goater et al. 1993; Kelehear et al. 

2009; Kelehear et al. 2011). The body size of amphibians is directly correlated with all aspects of 

performance, so infection with Rhabdias appears to impair fitness related traits (Goater et al. 

1993). In addition, Rhabdias can reach 2/3 the length of the host’s lung, occupying a significant 

portion of the lung cavity, possibly inhibiting the mechanical functioning of the lung, damage the 

lung lining and cause blockages of blood vessels (Goater et al. 1993). These symptoms have 

important implications for reproductive success because they often impair amphibians’ chorusing 

ability (Goater and Vandenbos 1997). 
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 Given the importance of parasites both as indicators of ecosystem health and in relation 

to host population ecology, I conducted a statewide survey to estimate the prevalence and 

geographic distribution of parasites found in six of the more commonly encountered North 

Dakota amphibian species. I also tested for associations between parasite occurrence and 

ecological features such as ecoregion, land use, wetland length, area, and density. There have 

been two previous parasite surveys in the Sheyenne National Grasslands (Gustafson et al. 2013) 

and Nelson County, North Dakota (Pulis et al. 2011). To our knowledge this is the first survey of 

amphibian parasites of this scope in North Dakota.  

North Dakota is a likely location for parasite occurrence because it contains many prairie 

pothole wetlands that are inhabited by a wide range of hosts necessary for parasite life cycles, 

including snails, waterfowl and other birds, amphibians, and mammals (Fig 1).  In addition, 

agricultural development can result in pesticide runoff into wetlands, which compromises the 

immunological response in amphibians (Gendron et al. 2003; Kiesecker 2002; Rohr et al. 2008) 

and contributes to the overall habitat loss and fragmentation of wetlands (Greer and Collins 

2008). North Dakota also contains ephemeral ponds that periodically dry during the summer or 

fall, resulting in seasonal habitat reductions and clustering of amphibians (Greer and Collins 

2008). The incidence of parasites should increase when amphibians are clustered at fewer 

locations because the probability of transmission is high.  

OBJECTIVES AND HYPOTHESES 

I tested for associations between helminth occurrence in North Dakota and several 

ecological factors. I selected the ecological factors based on information already known about 

helminth occurrence. These hypothesized factors do not operate independently and are often 
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confounded with each other. Consequently, estimating the independent contributions of each 

may be challenging or even not feasible in this study.  

(1) Estimate the geographic distribution of helminths in North Dakota.  

Hypothesis 1: Helminth genera will vary in occurrence across the state because of 

different ecological conditions and distributions of host species. For instance, helminths 

might be more common in hosts that inhabit the Missouri Coteau and Northern Glaciated 

Plains ecoregions because these contain many prairie pothole wetlands (Fig 1). Prairie 

pothole wetlands are suitable habitats for many parasite hosts (snails, amphibians, birds, 

etc) necessary for reproduction and development. In addition, hosts vary in geographic 

distribution across the state and their parasites will exhibit the same pattern.   

(2) Estimate the prevalence of helminths in North Dakota amphibians. 

Hypothesis 2A: Helminth prevalence will vary among host species because helminths 

have different host requirements. For example, Echinoparyphium rubrum will be found 

in amphibians that inhabit the same wetlands or surrounding areas as birds, mammals, 

and turtles. In contrast, some parasites require specific hosts to complete their lifecycle, 

such as Rhabdias bakeri that only infects wood frogs.   

Hypothesis 2B: Land use will influence helminth occupancy. The occupancy of parasites 

should be higher in hosts that inhabit wetlands surrounded by cropland because 

amphibians are more susceptible to infections when exposed to agricultural chemicals 

(Carey and Bryant 1995; Carey et al. 2003; Christin et al. 2003, 2004; Gendron et al. 

2003; Kiesecker 2002; Rohr et al. 2008). Atrazine runoff and eutrophication also 

increases algae production leading to the increase in biomass of the first intermediate 

host, a gastropod (Johnson et al. 2007; Rohr et al. 2008). A larger gastropod can harbor 
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more parasites potentially increasing parasitic load (Johnson et al. 2007; Szuroczki et al. 

2009) and the likelihood of infection in the second intermediate host, amphibians (Rohr 

et al. 2008; Szuroczki et al. 2009). However, atrazine also negatively impacts the 

parasites by reducing survival and infectivity (Koprivnikar et al. 2006; Pietrock and 

Marcogliese 2003; Rohr et al. 2008).  

Hypothesis 2C: Wetlands at close proximity to each other are more likely to contain 

infected hosts than wetlands at further distances because of increased habitat connectivity 

and movement of intermediate and definitive hosts. If amphibians are moving between 

wetlands they are more likely to consume infected hosts or have a parasite penetrate its 

skin because they are exposed to more habitats and hosts suitable for parasites.  

Hypothesis 2D: Wetlands with smaller length and area should also have higher helminth 

prevalence because hosts including snails and amphibians prefer this wetland size. 

However, other parasite hosts such as waterfowl and mammals will visit larger wetlands 

increasing transmission opportunities for parasites that require these hosts in their 

lifecycle.  

Hypothesis 2E: Helminth occupancy should be higher in the Missouri Coteau and 

Northern Glaciated Plains ecoregions because they contain many prairie pothole wetlands 

located fairly close to one another (Fig 1). A higher percentage of wetlands provide more 

habitats for parasite hosts and will likely result in increased movement between wetlands. 

Increased amphibian movement should increase opportunities for parasite transmission 

throughout the surrounding area by depositing parasite eggs with their feces, contacting 

snail cercaria, or increasing the chances of being eaten by a definitive host, such as a bird.
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 In contrast, a lower percentage of wetlands might restrict and concentrate hosts to fewer 

wetlands increasing the chances of transmission, if an infected host is nearby (Greer and 

Collins 2008).  

METHODS 

 

Study Design  

The main objective was to estimate the geographic extent of infections across a portion of 

the northern plains in a wide variety of habitats. To achieve this, I sampled amphibians broadly 

across the state of North Dakota using a stratified sampling design. The four level III ecoregions 

(Omernik 1987) were the primary sampling strata, with the four general categories of land use 

within ecoregion as secondary strata. The routes for collecting trips were selected to cover as 

much of the state as possible, but were constrained by accessibility of wetlands, and incorporating 

as much of the active season as possible. Routes were generally driven east to west and collection 

trips focused on the southern, central, or northern tiers of the state. Wetlands were selected based 

on availability (sites with water apparent) and accessibility (proximity to roads that were passable 

under prevailing conditions) and to include a gradient of land uses. I specifically sought out 

wetlands that were in or adjacent to croplands, pasture, grasslands (including hayland, CRP-type 

land, or anything that resembled currently untilled, ungrazed land), and woodland. Sample 

locations (N=171) are indicated in Figure 3. Each symbol on the map represents a location where 

I collected amphibians. 

Amphibian collection efforts spanned two field seasons, 2013 and 2014. The start of each 

field season depended on the weather and phenology of each amphibian species. In the early 

field season (April-May), collection focused on adult breeding amphibians. In the mid field 

season (June-July), I searched for tadpoles and adults and in the late season (August-September), 
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meta-morphs and juveniles were primarily collected along with any additional adults found. The 

2013 field season did not begin until late May because of extended snowfall leading to late 

thawing of wetlands resulting in limited time for collection of early breeders including the boreal 

chorus frog and the wood frog. I attempted to include all amphibian species and life stages in 

collection but did not encounter the gray tree frog (Hyla versicolor), American toad (Anaxyrus 

americanus), spadefoot toad (Spea bombifrons), and the Woodhouse’s toad (Anaxyrus 

woodhousei) and collected very few tadpoles. 

Field protocol 

I relied on chance encounters to collect amphibians while I walked around and waded 

through wetlands. This was the most efficient method because it limited the time needed at 

individual wetlands and allowed inclusion of more sites. This method of sampling is subject to 

substantial bias in terms of which amphibian species were found. Some amphibian species have 

limited geographic ranges and specific habitat preferences that reduce the likelihood for 

encounters. For example, the plains spadefoot toad spends most of its time buried underground, 

limiting our ability to detect them. In addition, the gray tree frog is only found in the eastern 

margin of the state and is highly arboreal except during larval stages. One species, the tiger 

salamander Ambystoma mavortium, is unlikely to be encountered by this method and is best 

sampled using traps or seines. Hence, any inference related to this host species will be limited.  

The field protocol from James Cook University was followed to avoid cross 

contamination in the field and maintain field hygiene when handling amphibians (Speare et al. 

2004). After amphibians were collected, each individual was assigned a numerical ID for future 

reference along with a photograph to confirm species identification and placed in a numbered 

container. In each container, I placed a wet paper towel in with the adults, juveniles and 
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metamorphs to avoid desiccation. Tadpoles were kept in sufficient water so they remained 

submerged during transport. The containers with each individual amphibian were then stored in a 

cooler with ice to avoid over-heating. I recorded the snout-vent length of each amphibian, GPS 

coordinate of the location, and environmental characteristics such as wind speed, humidity, 

temperature, vegetation structure, and land use, and also took a picture of the location for future 

reference.  

Necropsy Protocol 

 Amphibians collected for necropsy focused on males and abundant species to avoid 

demographic and population impacts. Five of each species at each location are collected for 

necropsy and euthanized following an IACUC approved protocol (#1305-2). All amphibians 

were necropsied following standard endoparasite collecting procedures (Bennett 1970) and 

further optimized for amphibian necropsy. The blood, liver, spleen and skin swab were also 

collected from each amphibian for DNA extraction and stored in 95% ethanol at -20°C. Blood 

smears were taken immediately to avoid coagulation and allowed to air dry. After the blood dried 

they were fixed with 100% methanol, and later stained with 10% buffered Geisma for parasite 

detection. During dissection, the mouth cavity, leg muscles and body cavity were examined for 

helminths and the bladder, lungs, kidneys, liver, and complete digestive tract were removed and 

placed in clean Petri dishes with saline. The complete digestive tract was dissected by cutting 

lengthwise down the intestine and the inner lumen was scraped out with a clean microscope slide 

and examined using a stereomicroscope. Each organ was later dissected and examined for 

helminths using stereomicroscopy. Once the parasites were found, I heat killed them in hot water 

for all digeneans and hot saline for all nematodes. Then I fixed all parasites in 70% ethanol and 

labeled each vial with the corresponding frog ID number.  
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Morphological Identification  

To identity parasites to the lowest possible taxonomical level, worms were rehydrated in 

distilled water and stained with alum carmine. Acid ethanol was then used to remove any excess 

stain to clearly distinguish taxonomic structures. Digeneans were then dehydrated in a graded 

ethanol series of increasing concentrations of 70%, 80%, 90%, 95%, and 100% (twice). The 

length of time each worm spent in each ethanol concentration depended on the size of the worm. 

Next, the digeneans were cleared in clove oil and mounted permanently in Damar gum. 

Nematodes were cleared in glycerin–phenol (3:1) solution and temporarily mounted on slides for 

morphological identification (Kruse and Pritchard 1982). All parasites used for morphological 

identification were photographed and sometimes measured using a DIC equipped Olympus BX-

51 microscope and Rincon HD software (Imaging Planet, Goleta, California). Original 

descriptions and related literature were used to identify helminths (Baker 1978; Bolek and 

Janovy 2008; Bolek et al. 2009; Cort 1915; Faust 1918; Ingles 1936; Kuzmin et al. 2003; Ogren 

1953; Rankin 1944; Slimane and Dessett 1997; Stafford 1902a; Stafford 1902b; Stafford 1905; 

Tkach et al. 2006; Walton 1929).  

Molecular Identification 

Immature digenean and nematode identifications were completed by molecular 

techniques because taxonomic traits are not always visible. A portion or sometimes the entire 

parasite was used for species differentiation. I followed Tkach and Pawlowski (1999) protocol 

for all parasite extractions. I slightly modified this protocol for metacercaria DNA extraction. 

First, I placed one metacercaria into a microcentrifuge tube and aspirated most of the ethanol 

with a pipette. The specimens were then dried for 20 minutes at 60°F to remove any remaining 

ethanol from the tissues. Next, 60µl of pure H2O was added to the tube to rehydrate the 
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metacercariae. The metacercariae were then broken apart by sonication using a UP100H compact 

ultrasonic processor (Hielscher USA, Inc., Ringwood, NJ) at 80-100% for 20 seconds. After 

sonication, 250µl of Zymo Cell Lysis Buffer was added to the tubes and samples were allowed to 

lyse for at least one hour. The remaining extraction steps follow Tkach and Pawlowski (1999) 

protocol. All of the DNA extracts were then stored at -20°C after being eluted with 25 µl of 

pure H2O.  

Various nuclear and mitochondrial DNA regions were amplified depending on the group 

of parasite following Tkach and Snyder (2003). For digenean and nematode identifications, DNA 

fragments of approximately 1400 base pairs covering the 28S nuclear ribosomal DNA gene were 

amplified by PCR in Eppendorf Mastercycler thermocycler. Each PCR reaction contained 1µL of 

each forward and reverse primer at a concentration 10pM/µl, 12.5µl of OneTaq 2xMaster Mix 

with stand buffer, 1-3µl of template genomic DNA extract, and enough nuclease free water to 

total the reaction to 25µL (typically 7.5-9.5µl). The 28S thermocycler PCR protocol is: initial 

step 94°C for 30 seconds, 40 cycles of the denaturing step at 94°C for 30 seconds, annealing step 

53°C for 40 seconds, extension step 68°C for 2 minutes, and final extension at 68°C for 5 

minutes. Table 12 shows a list of 28S primers used for species differentiation.  

I also amplified regions of the ITS gene because it provides greater variability than the 

28S gene. The ITS thermocycler protocol was: 30 sec initial denaturation at 94°C; 40 cycles of 

30 sec denaturation at 94°C, 1min and 45 sec annealing at 55°C, 2 min extension at 68°C; and 5 

min final extension at 68°C. Table 12 also lists the ITS primers used for amplification.  

Mitochondrial genes including cox1, 12S, and nad1 were also used for species 

differentiation because they contained higher interspecific variation than nuclear ribosomal 

genes, which was needed for some parasites. The mitochondrial thermocycler protocol was 30 
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sec initial denaturation at 94°C; 40 cycles of 30 sec denaturation at 94°C, 30 sec annealing at 

45°C, 1 min extension at 68°C; and 5 min final extension at 68°C. Table 12 also lists the 

mitochondrial primers used.   

For nematodes, regions of the 18S gene are amplified because this region is somewhat 

represented in public sequence databases. I compared our sequences to submitted sequences in 

databases and added any new sequences of unrepresented nematodes.  The thermocycler PCR 

protocol for 18S genes: 30 sec initial denaturation at 94°C; 40 cycles of 30 sec denaturation at 

94°C, 35 sec annealing at 53°C, 2 extension min at 68°C; and 5 min final extension at 68°C. 

Table 12 also lists 18S primers. 

Table 12. PCR and sequencing primers for 18S, ITS, 28S, Cox1, Nad1, 12S genes C = cestode, D = digenean, and 

N = nematode  

Primer Name Primer 

Type 

Direction Helminth 

Group(s) 

Primer Sequence (5’ – 3’) 

18S Primers     

SSUR23 PCR forward N TCTCGCTCGTTATCGGAAT 

GI8S4 Internal forward N GCTTGTCTCAAAGATTAAGCC 

RITF PCR forward N GCGGCTTAATTTGACTCAACA 

C1800F PCR forward N CCTAGTAAGTGTGAGTCATCA 

N900R PCR reverse N GGTTCGATTAGTCTTTCGCC 

ITS Primers     

ITSF PCR forward C, D CGCCCGTCGCTACTACCGATTG 

ITSF1 Internal forward C, D, N GTCCCTGCCCTTTGTACACACCG 

ITS5 PCR forward C, D GGAAGTAAAAGTCGTAACAAGG 

M18F1 Internal forward C, D CGTAACAAGGTTTCCGTAG 

28S Primers     

LSU5 PCR forward C, D, N TAGGTCGACCCGTGAAYTTAAGCA 

1500R PCR reverse C, D CGAAGTTTCCCTCAGGATAGC 

300R Internal reverse C, D CAACTTTCCCTCACGGTACTTG 

ECD2 Internal reverse C, D CCCGTCTTGAAACACGGACCAAG 

DIGL2 PCR forward D AAGCATATCACTAAGCGG 

1500R1 PCR reverse D GCTACTAGATGGTTCGATTAG 

Cox1 Primers     

JB5 PCR forward C, D, N AGCACCTAAACTTAAAACATAATGA

AAATG 

JB3 PCR reverse C, D, N TTTTTTGGGCATCCTGAGGTTTAT 

TRNNR PCR reverse C TTCYTGAAGTTAACAGCATCA 

12S Primers     

60FOR PCR forward C TTAAGATATATGTGGTACAGGATTAG

ATACCC 

375R PCR reverse C AACCGAGGGTGACGGGCGGTGTGTA

CC 
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After amplification of selected genes, I conducted gel electrophoresis to determine the 

length of each DNA fragment. First, I placed a 1.2% agarose gel into a gel electrophoresis 

apparatus and filled it with 0.5% Tris/Borate/EDTA (TBE) buffer solution. Then I pipetted 5µl 

of each PCR product into the gel wells along with 4 µl of the standard DNA ladder to determine 

the DNA fragment length. I did not add loading dye to each PCR product because it was already 

included in the OneTaq 2xMaster Mix used for PCR amplification. After the PCR product and 

DNA ladder are added to the gel, I ran each electrophoresis at 96V for 45minutes or until the 

PCR product has traveled the majority of the way down the gel. The gel is then stained with 

ethidium bromide for 10 minutes, rinsed in water for 12 minutes, visualized on a UV 

transilluminator, and photographed using a digital gel documentation system.  

After successful amplification of selected genes, all PCR products were purified using 

ExoSap PCR clean up enzymatic kit from Affimetrix (Santa Clara, CA, USA) or DNA Clean & 

Concentrator™ kit from Zymo Research (Irvine, CA, USA) followed according to 

manufacturer’s instructions.  After PCR products were purified, I prepared each reaction for 

sequencing. Each sequencing reaction contained 2µl of BigDye Terminator 5X sequencing 

buffer, 1.5µl of the appropriate primer, 1 µl of BigDye (Life Technologies), 1-1.5µl of purified 

PCR product (depending on the strength of PCR reaction), and enough nuclease free water to 

make the total reaction be 10µl. The sequencing protocol was: 96°C for 15 sec, 50°C for 5 

seconds, and 60°C for 4 minutes repeated for a total of 25 cycles. Sequencing reactions were 

alcohol precipitated and sequenced directly on an automated capillary sequencer ABI Prism 

3100. Contiguous sequences were assembled using Sequencher™ ver. 4.2 (GeneCodes Corp., 

Ann Arbor, Michigan) and aligned using BioEdit alignment software, version 7.0.1 (Hall 1999). 

Poor quality sequences with high background interference were not used for parasite 
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identification or species differentiation. Sequences were compared to entries in a public database 

called NCBI (National Center for Biotechnology Information) Blast. 

Data analysis 

To summarize the occurrence of parasites in amphibians across the state, I calculated the 

prevalence (percent of infected individuals within a sample) and occupancy (percent of locations 

containing infected individuals) for each ecoregion and land use. I also tested for statistical 

differences in parasite prevalence among amphibian species, ecoregions, and land use categories 

using exact 
2
 tests (StatXact version 9.0, Cytel, Inc. 2010).  

I used ArcGIS version 10.2 (ESRI 2014) to visualize the geographic distribution of 

parasites and to estimate the wetland neighborhood around sample locations. I created buffers of 

250 m and 500 m around each sample location to estimate wetland density, the percent cover of 

wetlands identified in the National Wetlands Inventory database within buffers. Because wetland 

densities at these scales proved to be highly correlated, I retained only one for further analysis. I 

also estimated wetland density as the number of wetlands within each buffer.  

To determine if locations with parasite-infected amphibians were spatially dependent I 

estimated spatial autocorrelation in relation to distance separating sample locations. Distances 

were estimated from GPS coordinates using the software Passage 2.1 (Rosenburg et al. 2011). 

Significance of autocorrelations was determined using a permutation test with 1000 

permutations. 

I used Moran’s eigenvector-based maps (Legendre and Legendre 2012) to generate a 

series of factors reflecting different components of the underlying spatial structure to incorporate 

into regression models. Spatial factors in this approach are derived based purely on the 

geographic arrangement of sampling locations. This method allows for more complex aspects of 
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spatial structure to be represented, rather than simply distance along linear axes (UTM 

coordinates or latitude and longitude) for each location. For example, some components might 

appear as simple gradients, whereas more complex aspects of spatial structure would appear as 

different patterns of patchiness, perhaps differing in scale or spatial arrangement. These spatial 

factors can then be used as predictor variables in regression models to test for similarities between 

response variables (e.g., parasite occurrence) and spatial patterns. During the initial spatial factor 

selection process, I looked at each factor individually and selected those that appeared to have at 

least some correlation with the parasite’s occurrence. I used program SAM (Spatial Analysis in 

Macroecology version 4, Rangel et al. 2010) to estimate and conduct initial screening of spatial 

factors using a minimum separation threshold of 10 km between sites.  

To test for associations between parasite occurrence and the combined influence of all 

ecological and spatial predictor variables (Table 1), I constructed generalized linear models with 

various combinations of predictors. Because presence-absence is a binary response variable, I fit 

logistic regression models in R version 3.1.2 (R Core 2013). Model selection was based on a best 

subsets approach (Hosmer and Lemeshow 2000), with AICc as the criterion for comparing 

models (Burnham and Anderson 2002). The model selection process allowed us to identify 

factors that have the strongest association with parasite occurrence. Because multiple models had 

a AICc < 2, I used multi-model inference to generate a model-averaged estimate for each 

predictor variable compiled from all the component models.  I specified AIC of less than two 

(Burnham and Anderson, 2002) for model averaging, and estimated the contribution of all 

variables included in these models to the prediction of parasite occurrence. 
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RESULTS 

 

I collected a total of 705 amphibians during the 2013 and 2014 field seasons combined 

(Tables 2 and 3). The northern leopard frog was the most abundant species collected during both 

years. Tiger salamanders had the smallest overall sample size because I did not use collecting 

methods suitable for that species. 

Objective 1: Estimate the geographic distribution of helminths in North Dakota 

 

Some parasites had broad geographic distributions across the state including Alaria, 

Echinoparyphium, and Haematoloechus (Fig. 11-12 and 14 respectively). Other parasites had a 

more limited geographic range including Glypthelmins and Rhabdias (Fig. 13 and 15 

respectively). For example, Rhabdias was found in the eastern and northern margins of the state.  

 
Figure 11. The geographic distribution of Alaria infections pooled across all amphibian species. 

For all of the following maps the green circles represent infected amphibians, open circled “X”s 
indicate amphibian specimens testing negative. Lines illustrate county boundaries and ecoregions 

as in Figure 3 (from west to east: NWGP, MC, NGP, RRV). 
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Figure 12. The geographic distribution of Echinoparyphium infections pooled across all 

amphibian species.  

 
Figure 13. The geographic distribution of Glypthelmins infections pooled across all amphibian 

species.  
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Figure 14. The geographic distribution of Haematoloechus infections pooled across all 

amphibian species.  

 

 
Figure 15. The geographic distribution of Rhabdias infections pooled across all amphibian 

species. 
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Among all sampled locations, Alaria was found at 60% of the sites, Echinoparyphium 

46.5%, Rhabdias 17.1%, Haematoloechus 34.7% and Glypthelmins 27.1% (Tables 13 and 14). I 

also found Alaria, Echinoparyphium, Glypthelmins, and Haematoloechus occupancy did not 

vary significantly among ecoregions (Table 13). However, Rhabdias had significantly greater 

prevalence in the RRV compared to elsewhere.  

Helminth occupancy appeared to depend somewhat on land use at least for some 

parasites including Echinoparyphium, Haematoloechus, and Rhabdias (Table 14). However, 

Alaria and Glypthelmins did not significantly vary by land use. It is not surprising the pattern of 

helminth occurrence in each land use varied among parasite species considering each helminth 

relies on different snail and vertebrate hosts to complete its life cycle. 

Table 13. Number and percentage of sites where common helminths were found in at least one 

amphibian specimen of any species per ecoregion. Ecoregion abbreviations are noted in Figure 3. 

Some helminth genera are abbreviated: Echino = Echinoparyphium, Haem = Haematoloechus, 

Glypth = Glypthelmins.  

a. N sites where indicated parasite was found in each ecoregion see Tables 32-34 for full names 

of helminth taxa.  

Ecoregion  

(N sites) 

N amphibian 

specimens 

Alaria Echino Rhabdias Haem Glypth 

NWGP (19) 87 15 10 0 7 5 

NGP (79) 317 47 33 14 27 19 

MC (43) 140 24 19 4 12 12 

RRV (29) 160 16 17 11 13 10 

Total (170) 704 102 79 29 59 46 
2
 (3 df)  3.45 2.80 14.69 2.24 1.19 

p (exact, 2 sided)  0.34 0.42 0.0022 0.53 0.76 

b. Percent of sites (occupancy) where parasite was detected in each ecoregion 

NWGP  78.9 52.6 0.0 36.8 26.3 

NGP  59.5 41.8 17.7 34.2 24.1 

MC  55.8 44.2 9.3 27.9 27.9 

RRV  62.1 62.1 62.1 62.1 62.1 

total  60.0 46.5 17.1 34.7 27.1 
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Table 14. Number and percentage of sites where common helminths were found in at least one 

amphibian specimen of any species per land use. Helminth abbreviations are noted in Table 13.  

a. N sites where indicated parasite was found in each land use see Tables 32-34 for full names of 

helminth taxa.  

Land use 

(N sites) 

N amphib 

specimens 

Alaria Echino Rhabdias Haem Glypth 

Cropland (104) 428 63 51 17 30 27 

Pasture (12) 162 10 5 1 9 12 

Grassland (43) 66 21 15 8 14 3 

Woodland (11) 51 8 8 3 6 4 

Total (170) 707 102 79 29 59 46 

Exact test (3 df)  4.81 8.275 12.29 10.29 0.99 

p (exact, 2-sided)  0.19 0.04 0.008 0.014 0.81 

b. percent of sites (occupancy) where parasite was detected in each land use 

Cropland  60.6 49.0 16.3 28.8 26.0 

Pasture  83.3 41.7 8.3 75.0 100.0 

Grassland  48.8 34.9 18.6 32.6 7.0 

Woodland  72.7 72.7 72.7 54.5 36.4 

Total  60.0 46.5 17.1 34.7 27.1 

 

Because northern leopard frogs comprised the majority of collected amphibians, I also 

plotted helminth occupancy by ecoregion (Fig. 16) and land use (Fig. 17) for just the northern 

leopard frogs. I only included the helminths that occurred at high enough frequency to warrant 

statistical analysis. I found Alaria, Echinoparyphium, and Haematoloechus occupancy did not 

vary significantly by ecoregion and land use for northern leopard frogs.   
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Figure 16. The occupancy of infected northern leopard frogs by ecoregion. The total sample size 

of locations within each ecoregion is represented by N.  

 
Figure 17. The occupancy of infected northern leopard frogs by land use. The total sample size 

of locations within each ecoregion is represented by N.  

 

Analysis of spatial patterns 

 

In analysis based on combined detections for Alaria across all amphibian host species, I 

found evidence for spatial autocorrelation (non-independence in disease occurrence) among 

wetlands closer than 20 km, but not at greater distances, indicating a moderately patchy 

distribution (Fig. 18). The genera Echinoparyphium, Haematoloechus, and Glypthelmins did not 
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show a significant relationship in their occurrence with distance between sampled wetlands 

(Figs. 19-21). However, Rhabdias showed a significant finer scale spatial dependency at 

wetlands less than 40 km, but not at greater distances, also indicating a patchy distribution (Fig. 

22).  

 
Figure 18. Spatial correlogram (solid line) for locations with Alaria infections pooled across all 

amphibian species. Lower and upper 95% confidence intervals are represented by the dotted lines. The 

number of pairs of points ranged from 113-290 from 10-60km and up to over 1800 beyond that.  

 

 
Figure 19. Spatial correlogram (solid line) for locations with Echinoparyphium rubrum infections pooled 

across all amphibian species. Lower and upper 95% confidence intervals are represented by the dotted 

lines. The number and pairs of points ranged from 113-290 from 10-60km and up to over 1800 beyond 

that.  
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Figure 20. Spatial correlogram (solid line) for locations with Haematoloechus infections pooled 

across all amphibian species. Lower and upper 95% confidence intervals are represented by the 

dotted lines. The number of pairs of points ranged from 113-290 from 10-60km and up to over 

1800 beyond that.  

 

 
Figure 21. Spatial correlogram (solid line) for locations with Glypthelmins infections pooled 

across all amphibian species. Lower and upper 95% confidence intervals are represented by the 

dotted lines. The number of pairs of points ranged from 113-290 from 10-60km and up to over 

1800 beyond that.  
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Figure 22. Spatial correlogram (solid line) for locations with Rhabdias infections pooled across 

all amphibian species. Lower and upper 95% confidence intervals are represented by the dotted 

lines. The number of pairs of points ranged from 113-290 from 10-60km and up to over 1800 

beyond that. 

 

Objective 2: Estimate the prevalence of helminths in North Dakota amphibians 

 

Across all amphibians collected, 565 were infected with helminth endoparasites, resulting 

in a prevalence of 80.1%. The majority of amphibians were infected with digeneans (60.3%) 

followed by nematodes (17.4%) and cestodes (2.8%). I did not detect blood parasites in any of 

the 705 collected amphibians.  

The major helminth groups found in each amphibian species are summarized in Table 15. 

The few tiger salamanders in our sample lacked flukes but had a high prevalence of intestinal 

nematodes, as well as cestodes. The two toad species and wood frogs, all largely terrestrial 

except during breeding, also tended to carry some nematodes, although these were mainly 

lungworms (Rhabdias sp.). All of the anuran species carried some species of digenean.  
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Table 15. Prevalence of helminth parasites at the broadest taxonomic level in amphibian host 

species.  

Amphibian species 

(sample size, N) 

Digenea 

prevalence (%) 

Nematoda 

prevalence (%) 

Cestoda 

prevalence (%) 

Tiger salamanders (N = 14) 0 71.4 14.3  

Great Plains toads (N = 29) 58.6 34.5 20.7 

Canadian toads (N = 45) 42.2 22.2 22.2 

Northern leopard frogs (N = 402) 63.2 13.2 0.5 

Wood frogs (N = 109) 67.9 35.8 0 

Boreal chorus frogs (N = 106) 61.3 0.01 0 

 

A more taxonomically refined compilation of the helminth community across all 

amphibian species for common helminth genera includes these estimates of prevalence for 

helminth taxa: 29.2% for Alaria, 23.3% for Echinoparyphium, 13.3% for Haematoloechus, 

11.2% for Glypthelmins, 7.7% for Cosmocercoides and 8.2% for Rhabdias. Uncommon 

helminths with less than 2.5% prevalence included Cephalogonimus americanus, Megalodiscus 

temperatus, Apharyngostrigea pipientis, Lechriorchis tygarti, Diplostomatidae sp, Telorchis 

bonnerensis, Mesocestoides sp., Oswaldocruzia spp, Eustrongylides sp., Spirurida sp., and 

Spiroxys sp. These parasite taxa are even further broken down by infection prevalence per 

amphibian host in Tables 32-34.  

After molecular screening of parasite taxa, I discovered some helminth genera had 

several different species. For Alaria, I sequenced 31 DNA extracts from multiple amphibian 

hosts including northern leopard frogs, wood frogs, and boreal chorus frogs and found at least 3 

different species. These three species of Alaria do not show any host specificity. For 

Haematoloechus, I detected 3 different species including Haematoloechus varioplexus, 

Haematoloechus medioplexus, and Haematoloechus longiplexus. H. varioplexus and H. 

medioplexus were found in several different amphibian species. H. longiplexus was only detected 

in one northern leopard frog therefore it is difficult to compare host specificities. The nematode 
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genus Oswaldocruzia also contained at least 3 species shown by the difference in nucleotide 

bases ranging from 0.2-19.8% in the Cox1 gene (Table 16). For the genus Spiroxys, I detected at 

least 3 different species with the difference in nucleotide bases ranging from 5.4-23.9% (Table 

17). This is the first time the Cox1 gene has been sequenced from Oswaldocruzia and Spiroxys. 

These results demonstrate the importance of sequencing data in determining the taxonomic status 

of parasites.   

Table 16. The percentage (%) of variable sites based on pairwise comparison of Oswaldocruzia 

taxa at 420 base pairs of partial Cox1 gene. 

Individual ID and 

amphibian species 

5176 

Great 

Plains 

Toad 

5177 

Wood 

frog 

5178 

northern 

leopard 

frog 

5179 

Canadian 

toad 

5180 

tiger 

salamande

r 

5176 Great Plains Toad Identical 1.91 19.8 19.5 19.8 

5177 Wood frog 1.91 Identical 20 19.8 20 

5178 northern leopard 

frog 

19.8 20 Identical 0.2 0.7 

5179 Canadian toad 19.5 19.8 0.2 Identical 0.5 

5180 tiger salamander 19.8 20 0.7 0.5 Identical 

 

Table 17. The percentage (%) of variable sites based on pairwise comparison of Spiroxys taxa at 

351 base pairs of partial Cox1 gene.  

Individual ID and 

amphibian species 

5181 

boreal chorus frog 

5182 

tiger salamander 

5185 

tiger salamander 

5181 boreal chorus frog Identical 19.7 5.4 

5182 tiger Salamander 19.7 Identical 23.9 

5185 tiger salamander 5.4 23.9 Identical 

 

In contrast, we only found one species of some Digenea and Nematoda genera even with 

repeated sequencing in multiple host species. These digenean genera include Apharyngostrigea, 

Cephalogonimus, Echinoparyphium, Glypthelmins, Lechriorchis, Megalodiscus and Telorchis. 

The nematode genera with only one species found include Cosmocercoides and Eustrongylides. 

This is also the first time Cox1 and 18S gene has been sequenced from Cosmocercoides.  

Among the nematode taxa, the genus Cosmocercoides varied significantly across host 
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species, and primarily infected tiger salamanders (35.7%) (Table 32). Rhabdias also varied 

significantly across host species, with the highest prevalence (25.7%) in wood frogs and Great 

Plains toads (20.7%). Spiroxys was primarily found in tiger salamanders (35.7%), but one 

infected boreal chorus frog was found.  

For the digeneans, Alaria prevalence varied significantly among host species, with the 

highest value in northern leopard frogs (37.8%), followed by wood frogs (23%), and Great Plains 

toads (20.7%) (Table 33). Echinoparyphium prevalence also varied significantly among host 

species, occurring at the highest in wood frogs (44%). Glypthelmins primarily infected boreal 

chorus frogs (40.5%) and all other hosts had less than 11% prevalence.  Haematoloechus 

prevalence also varied significantly among host species, with the highest prevalence in Great 

Plains toads (17.2%) and northern leopard frogs (18.4%). I also found one Telorchis bonnerensis 

in a Great Plains toad, although this helminth usually infects tiger salamanders.  

Cestodes were uncommon in most amphibian species. I found the genus Mesocestoides in 

Great Plains toads and northern leopard frogs at prevalence of less than 4% (Table 34). The 

cestode family Proteocephalidea varied significantly among host species, but primarily infected 

the Great Plains toads, Canadian toads, and tiger salamanders. 

Helminth species richness within individual hosts ranged from 0 to 5 taxa and varied little 

among host species (Fig. 23). It was most common to find 0-2 different species of parasites 

within an individual host than 3-5 species. In fact, only one northern leopard frog had 5 different 

species of helminths. 
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Figure 23. Minimum number of helminth taxa found in each host individual, reported separately 

for each amphibian species. E.g., the purple bars illustrate the number of leopard frogs with 0-5 

helminth taxa per frog. More than half of leopard frogs were infected with at least one helminth 

species (note that this does not quantify infection intensity, or the number of individual parasites 

found within the frog). The mean number of helminth taxa per host individual is given in the 

legend.  

 

Combined effects of geographic and ecological factors on helminth occurrence 

  

I included all predictor variables listed in Table 1 in logistic regression models except the 

spatial factors because most parasites tended to show no spatial pattern in their occurrence. For 

Alaria and Echinoparyphium, the top models with AICc < 2 included land use, Nwetlands500 

and Pcwet500 (Tables 18 and 20, respectively). Both of these sets of models explained very little 

of the variation in Alaria and Echinoparyphium occurrence (based on the similarity of residual 

and null deviance). To synthesize the information content of the top component models, I used 

multi-model inference to obtain a model-averaged estimate generated from the top component 

models for each predictor variable. For both Alaria (Table 19) and Echinoparyphium (Table 21) 

occurrence, the 95% confidence intervals of all predictor variables included zero. The top models 

for Glypthelmins occurrence included Pcwet500 and Nwetlands500 (Table 22) but these models 
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also explained very little of the variation, and again, none of the coefficients of predictor 

variables were significantly different from zero in multi-model inference (Table 23). For 

Haematoloechus occurrence, the top model included land use and the interaction between land 

use and Pcwet500 and Nwetlands500 (Table 24). These top models contribute very little 

information about the variation in Haematoloechus occurrence based on the similar values 

between the residual and null deviance. After using multi-model inferences to synthesize the 

information from the top models, I found pasture, relative to cropland, was the only variable with 

an estimate effect that departed from zero (Table 25).  

Table 18. The top models (AICc < 2) for Alaria occurrence pooled across all amphibians. The 

null deviance is 230.65 

Model Variable Residual 

Deviance 

df AICc delta weight 

1 Null ---- 1 232.67 0 0.45 

2 Land use 226.01 4 234.25 1.58 0.20 

3 Nwetlands500 230.42 2 234.49 1.82 0.18 

4 Pcwet500 230.50 2 234.57 1.90 0.17 

 

Table 19. Model averaged coefficients ( AIC < 2) for Alaria occurrence pooled across all 

amphibians 

Variable Estimate Standard Error P 

Intercept 0.429519 0.209328 0.0416 

Land use [Grassland] -0.476083 0.365153 0.1955 

Land use [Pasture] 0.774410 0.688183 0.2639 

Land use [Woodland] 0.551267 0.706113 0.4383 

Nwetlands500 -0.006696 0.014083 0.6369 

Pcwet500 -0.572903 1.506338 0.7057 
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Table 20. The top models (AICc < 2) for Echinoparyphium occurrence pooled across all 

amphibians. The null deviance is 236.07.  

Model Variable Residual 

Deviance 

df AICc delta weight 

1 Null ---- 1 238.09 0 0.27 

2 Land use 229.97 4 238.21 0.12 0.25 

3 Nwetlands500 235.80 2 239.52 1.43 0.13 

4 Land use_Pcwet500 229.27 5 239.63 1.54 0.12 

5 Land use_Nwetlands500 229.49 5 239.85 1.76 0.11 

6 Nwetlands500 235.80 2 239.87 1.78 0.11 

 

Table 21. Modeled averaged coefficients ( AIC < 2) for Echinoparyphium occurrence pooled 

across all amphibians.  

Variable Estimate Standard Error P 

Intercept -0.028745 0.243542 0.907 

Land use[Grassland] -0.580861 0.375731 0.125 

Land use [Pasture] -0.437773 0.603835 0.472 

Land use[Woodland] 1.040128 0.707464 0.144 

Pcwet500 -1.232427 1.535677 0.426 

Nwetlands500 -0.008612 0.014383 0.552 

 

Table 22. The top models (AICc < 2) for Glypthelmins occurrence pooled across all amphibians. 

The null deviance is 199.14. 

Model Variable Residual 

Deviance 

df AICc delta weight 

1 Null ---- 1 201.16 0 0.42 

2 Pcwet500 197.19 2 201.26 0.10 0.40 

3 Nwetlands500 198.84 2 202.91 1.75 0.18 

 

Table 23. Model averaged coefficients ( AIC < 2) for Glypthelmins occurrence pooled across all 

amphibians 

Variable Estimate Standard Error P 

Intercept -0.85489 0.27769 0.0022 

Pcwet500 -2.47690 1.83782 0.1809 

Nwetlands500 -0.00874 0.01616 0.5914 

 

Table 24. The top models (AICc < 2) for Haematoloechus occurrence pooled across all 

amphibians. The null deviance is 220.26.  

Model Variable Residual 

Deviance 

df AICc delta weight 

1 Land use 210.43 4 218.67 0 0.49 

2 Land use_Pcwet500 209.22 5 219.58 0.91 0.31 

3 Land use_Nwetlands500 210.11 5 220.48 1.80 0.20 
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Table 25. Model averaged coefficients ( AIC < 2) for Haematoloechus occurrence pooled 

across all amphibians.  

Variable Estimate Standard Error P 

Intercept -0.998889 0.284633 0.000488 

Land use[Grassland] 0.167340 0.391672 0.671462 

Land use [Pasture] 1.729073 0.640633 0.007375 

Land use[Woodland] 1.068319 0.645108 0.100176 

Pcwet500 1.761266 1.595700 0.273205 

Nwetlands500 0.008503 0.069 0.572846 

 

 I also estimated parasite occurrence in northern leopard frogs with the same ecological 

variables because they comprised the largest sample size of collected amphibians. The top 

models with AICc < 2 for Alaria occurrence included the null and Nwetlands500 (Table 26). 

After using multi-model inferences to synthesize the information from the top models, I found 

none of the predictor variables significantly explained the variation in Alaria occurrence (Table 

27). The top models for Echinoparyphium included the null, Pcwet500, and Nwetlands500. All 

of the top models contributed similar information based on similar weights and residual 

deviances (Table 28). After using multi-model inference to obtain a model-averaged estimate for 

each predictor variable, I found no significant predictors for Echinoparyphium occurrence (Table 

29). The top models For Haematoleochus occurrence included the intercept and land use (Table 

30).  These models explained very little variation in Haematoloechus occurrence based on the 

similar null and residual deviance values. However, pasture was a significant predictor for 

Haematoloechus occurrence (Table 31).  

Table 26. The top models (AICc < 2) for Alaria occurrence in northern leopard frogs. The null 

deviance is 136.27 

Model Variable Residual 

Deviance 

df AICc delta weight 

1 Null ---- 1 138.31 0 0.73 

2 Nwetlands500 136.14 2 140.26 1.95 0.27 
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Table 27. Model averaged coefficients ( AIC < 2) for Alaria occurrence in northern leopard 

frogs 

Variable Estimate Standard Error P 

Intercept 0.579565 0.259119 0.027 

Nwetlands500 0.007885 0.021826 0.721 

 

Table 28. The top models (AICc < 2) for Echinoparyphium occurrence in northern leopard frogs. 

The null deviance is 140.48.  

Model Variable Residual 

Deviance 

df AICc delta weight 

1 Null ---- 1 142.52 0 0.43 

2 Pcwet500 138.67 2 142.79 0.27 0.37 

3 Nwetlands500 139.96 2 144.08 1.56 0.20 

 

Table 29. Model averaged coefficients ( AIC < 2) for Echinoparyphium occurrence in northern 

leopard frogs 

Variable Estimate Standard Error P 

Intercept -0.28184 0.31694 0.378 

Pcwet500 -2.51747 1.93528 0.199 

Nwetlands500 -0.01542 0.02157 0.480 

 

Table 30. The top models (AICc < 2) for Haematoloechus occurrence in northern leopard frogs. 

The null deviance is 144.79. 

Model Variable Residual 

Deviance 

df AICc delta weight 

1 Null ---- 1 146.83 0 0.43 

2 Land use 139.69 4 148.09 1.27 0.23 

3 Nwetlands500 144.48 2 148.60 1.77 0.18 

4 Pcwet500 144.70 2 148.82 1.99 0.16 

 

Table 31. Model averaged coefficients ( AIC < 2) for Haematoloechus occurrence in northern 

leopard frogs 

Variable Estimate Standard Error P 

Intercept -0.20921 0.29085 0.4762 

Land use[Grassland] 0.19783 0.45702 0.6689 

Land use [Pasture] 1.50408 0.71686 0.0382 

Land use[Woodland] 0.40547 1.03414 0.6985 

Nwetlands500 -0.01149 0.02088 0.5866 

Pcwet500 0.52588 1.74420 0.7657 
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DISCUSSION 

Parasites were frequently found in amphibians throughout North Dakota, with 

considerable variation in prevalence of different classes and species of helminths, along with 

differences in infection rates among host species. For example, Cosmocercoides was more 

prevalent in tiger salamanders than any other host species. Rhabdias was also more common in 

the toads and wood frogs. These results are consistent with past studies because amphibians that 

prefer a terrestrial habitat usually have a helminth fauna dominated by nematodes (Fransden 

1974; Kuc and Sulgostowska 1988). The route of transmission in nematodes by either 

consumption (Cosmocercoides) or penetration (Rhabdias) does not require an aquatic 

intermediate snail host.  

In contrast, all digeneans require a molluscan (usually snail) intermediate host to 

complete their lifecycle. Amphibians are exposed to snails during aquatic stages of development 

(larvae and tadpoles) or during the breeding season for adults, which likely contributed to all 

anurans infected with some species of digenean. Amphibian host species also differed in cestode 

infection rates. I primarily found infections in toads and tiger salamanders and very rarely the 

northern leopard frogs. Amphibians become infected with cestodes by consuming infected 

arthropods or crustaceans. Toads and salamanders might inhabit locations more suitable for 

infected arthropods or crustaceans resulting in higher prevalence of cestodes.  

I also discovered some helminth genera including Alaria, Haematoloechus, 

Oswaldocruzia, and Spiroxys had several different species. Within the genus Oswaldocruzia I 

likely found 3 species because of the differences between nucleotide bases (Table 16). The 

Oswaldocruzia sequence from Thompson is very different from the Oswaldocruzia detected in 

Pickard (19.8% difference in bases), Eastman (19.5%), and Nelson County (19.8%). The 3 
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different species were also found far from one another including the cities Thompson, Homen, 

Pickard, Eastman and Nelson County. Given the morphology data alone, two of the three species 

resemble Oswaldocruzia pipiens and Oswaldocruzia andersoni. However, taxonomic status is 

questionable because no researchers have submitted molecular sequences of these species. In 

fact, this is the first time Cox1 or 18S gene has even been sequenced for Oswaldocruzia and the 

results are indicating greater species diversity.  

The broad distribution of parasites across the state closely resembles the host 

distributions required of each parasite. For example, Alaria was found broadly across the state 

(Fig. 11), most likely because their definitive hosts (Canidae) also have broad geographic 

distributions. Similarly, Echinoparyphium is widespread (Fig. 12) and their definitive hosts are 

waterfowl and many mammals including muskrats, raccoons, foxes, and coyotes that also have 

broad geographic distributions across the state. In contrast, Glypthelmins has somewhat of a 

more limited distribution (Fig. 13), perhaps because the definitive and intermediate hosts are 

amphibians and snails, which differ in geographic distribution across the state depending on the 

species of amphibian and snail. Haematoloechus has a broad distribution across the state and so 

does the Northern leopard frog, one of its hosts. Rhabdias was primarily found at the northern 

and eastern sides of the state (Fig. 15) in a pattern resembling the wood frog distribution because 

Rhabdias bakeri (the most prevalent Rhabdias species) is specific to wood frogs who are the 

only hosts in this lifecycle. Rhabdias americanus was another prevalent species and is specific to 

toads that are also found in these areas. 

Parasite distributions also appeared to reflect finer scale aspects of host space use. For 

example, Alaria and Echinoparyphium hosts (birds and medium-sized mammals) travel long 

distances and spread parasite eggs in their feces throughout North Dakota, resulting in boad 
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dispersal of parasite eggs throughout the host home range. In contrast, Glypthelmins hosts are 

amphibians and snails that do not travel long distances or must be aided in dispersal by 

waterfowl, connected streams, or by mammals in the case of snails (Leeuwen et al. 2012). 

Therefore, it is more likely these hosts infect nearby wetlands. Haematoloechus has a 

geographically widespread distribution (Fig. 14), likely because the intermediate hosts 

(odonates) have high dispersal rates between ponds (Conrad et al. 2006), which increases the 

opportunities for consumption by amphibians. Rhabdias also had a fairly limited fine scale 

distribution across the state because amphibians are the only hosts in its lifecycle and they have 

smaller home ranges.  

Helminth occupancy varied significantly by land use for some species, including 

Echinoparyphium, Haematoloechus, and Rhabdias. Echinoparyphium was found at more sites in 

cropland than other land use categories, ignoring woodland because of the low sample size. 

Haematoloechus was found at more sites surrounded by pasture and Rhabdias at more sites 

surrounded by grassland. The cause of differences in parasite occupancy is not known; there are 

a variety of factors that might differ geographically across the state, and our study was not 

designed to reveal underlying causation. In addition, Rhabdias occupancy was significantly 

higher in the Red River Valley compared to all other ecoregions likely because we primarily 

collected Rhadias bakeri, which is specific to wood frogs that are also found in the Red River 

Valley.  

Other variables used in logistic regression models including ecoregion, wetland length, 

wetland area, Nwetlands500 and Pcwet500 were not significant predictors for any of the 

parasites’ occurrence. Perhaps these variables did not vary enough across the region with 

helminth occupancy to generate an effect. Other factors, including host presence, density, and 
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habitat use might be better predictors for parasite occurrence because these factors play a role in 

parasite transmission.  

Alaria and Rhabdias were the only parasites to show significant spatial dependency in 

their infections. These results suggest the connectivity between wetlands is an important factor 

involved in the transmission of Alaria and Rhabdias parasites. Wetlands closer together are likely 

to be similar in the presence or absence of these two helminths, because the movement of 

amphibians to nearby wetlands increasing the probability of transmission. For example, if 

amphibians are visiting multiple wetlands they have a greater probability of contacting cercaria 

shed from snails or being eaten by a predator from the family Canidae in the case of Alaria. 

Rhabdias likely has a spatial dependency because amphibians are the only host in its lifecycle and 

they have smaller home ranges that would restrict infections to nearby wetlands. Other parasites 

(Echinoparyphium, Haematoloechus, and Glypthelmins) were not spatially autocorrelated 

probably because other factors such as surrounding topography and amount of human disturbance 

limited movement or accessibility of wetlands for definitive or intermediate hosts to a particular 

wetland.  

These results were only compiled from two years of data and captured only a limited 

view of parasite occurrence. This study has many caveats including uneven sample sizes between 

the different life stages, species, land use categories, and ecoregions. It would be interesting to 

look at other variables affecting parasite occurrence such as non-amphibian host occurrence and 

density. Future studies should include more years for data collection to estimate seasonal and 

yearly changes in parasite occurrence. Continued sampling of parasite communities is important 

because it can provide important insights into biotic communities because parasite diversity is an 

indicator of ecological integrity and general environmental health. Higher parasite species 
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richness results in richer, more diverse biotic communities (Hatcher et al. 2012, Hudson et al. 

2006). Therefore, parasite surveys can provide a relatively inexpensive method to index 

ecosystem integrity.  

It is also important to continue conducting parasite surveys in North Dakota because 

some parasite species found are known to impair amphibian health including Echinoparyphium 

infecting the host’s kidneys, and the two taxa infecting the host’s lungs, Haematoloechus and 

Rhabdias (Kelehear et al. 2011, Koprivnikar et al. 2006, Szuroczki and Richardson 2009). 

Additionally, infection risk may be amplified by exposure to a variety of environmental 

stressors, some of which are likely or certain to be encountered on agricultural landscapes 

(Gendron et al, 2003, King et al. 2007, Koprivnikar et al. 2006). Consequently, parasite surveys 

can provide useful information about factors that might influence amphibian demography and 

distribution.  
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Appendix A 

Table 32. Nematode prevalence (%) per amphibian species. The sample size of each amphibian species is represented by the 

letter N. The genus Rhabdias is host specific. Rhabdias americanus is found in the toads, Rhabdias bakeri is found in wood frogs 

and Rhabdias ranae is found in northern leopard frogs. 

 

Nematoda Taxa Tiger 

salamander 

(N=14) 

Great 

Plains 

toad 

(N=29) 

Canadian 

toad (N=45) 

Northern 

leopard 

frog 

(N=402) 

Wood 

frogs 

(N=109) 

Boreal 

chorus frog 

(N=106) 

2
 P 

Cosmocercoides 

variabilis 

35.7 6.9 4.4 7.4 11.9 0 28.69 0.000293 

Eustrongylides sp. 0 0 0 0.25 0 0 na  

Oswaldocruzia spp. 0 6.9 6.7 2.2 5.5 0 10.97 0.0567 

Rhabdias spp. 0 20.7 15.6 4.2 25.7 0 72.45 < 0.0001 

Spirurida sp. 0 3.4 0 0 0 0 na na 

Spiroxys sp. 35.7 0 0 0 0 0.9 na na 
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Appendix A 

 

Table 33. Digenean prevalence (%) per amphibian species. The sample size of each amphibian species is represented by the letter 

N. 

 

Digenea taxa Tiger 

Salamander 

(N=14) 

Great 

Plains 

Toad 

(N=29) 

Canadian 

toad 

(N=45) 

Northern 

leopard 

frog 

(N=402) 

Wood 

frog 

(N=109) 

Boreal 

chorus frog 

(N=106) 

2
 P 

Alaria spp. 0 20.7 13.3 37.8 23 16 37.62 < 0.00001 

Apharyngostrigea pipientis 0 0 0 1.5 3.7 0 6.758 0.2086 

Cephalogonimusamericanus 0 0 0 0.1 0 0.9 na na 

Diplostomatidae sp. 0 0 0 2.2 0 0 na na 

Echinoparyphium rubrum 0 13.8 20 17 44 33 47.97 < 0.00001 

Glypthelmins 

pennsylvaniensis 

0 10.3 4.4 5.7 7.3 40.5 109.5 <0.00001 

Haematoloechus spp. 0 17.2 6.7 18.4 11 0 30.04 0.000067 

Lechriorchis tygarti 0 0 0 1.2 1.8 0 na na 

Megalodiscus temperatus 0 0 0 1.2 0 0 na na 

Telorchis bonnerensis 0 3.4 0 0 0 0 na 

 

na 
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Appendix A 

 

Table 34. Cestode prevalence (%) per amphibian species. The sample size of each amphibian species is represented by the letter 

N. 

 

Cestoda taxa Tiger 

Salamander 

(N=14) 

Great 

Plains toad 

(N=29) 

Canadian 

toad 

(N=45) 

Northern 

leopard frog 

(N=402) 

Wood frog 

(N=109) 

Boreal 

chorus frog 

(N=106) 

2
 P 

Mesocestoides sp. 

 

0 3.4 0 0.25 0 0 na na 

 

Proteocephalidea 

sp. 

14.3 17.2 22.2 0.25 0 0 117.1 

 

< 0.00001 
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Appendix A 

 

Table 35. Life cycle characteristics for all identified helminths. Helminths that do not use a first or second intermediate host are 

marked as not applicable N/A.  

Parasite taxa Life cycle Transmission 

to 

amphibians 

Site of 

infection in 

amphibians 

First 

intermediate 

Second 

intermediate 

Definitive Life cycle 

reference 

Nematoda        

Cosmocercoides 

variabilis 

(Harwood 1930) 

Direct Trophic or 

penetration 

Intestines 

Bladder 

N/A N/A Amphibian 

Mollusk 

(Ogren 1953) 

Eustrongylides sp. 

(Jagerskiold 1909) 

Complex Trophic Bladder Arthropod Fish and 

amphibian 

Bird 

Mammal 

(Olsen 1974) 

Oswaldocruzia spp. 

(Slimane & Durette-

Desset, 1997) 

Direct Penetration Intestines N/A N/A Amphibian (Baker 1987) 

Rhabdias spp. 

(Walton 1929) 

Heterogonic Penetration Lungs N/A N/A Amphibian (Langford and 

Janovy 2009) 

Spirurida sp 

(Anderson 1976) 

Complex Trophic Intestines Arthropod N/A Vertebrate (Olsen 1974) 

Spiroxys sp. 

(Rudolphi 1819) 

Complex Trophic Intestines Arthropod N/A Vertebrate (Olsen 1974) 

 

Digenea        

Alaria spp. 

(Bosma 1931) 

Complex Penetration Leg muscle 

Body Cavity 

Snail Amphibian 

Snake 

Mammal 

(Canidae) 

(Olsen 1974) 

Apharyngostrigea 

pipientis 

(Faust 1918) 

Complex Penetration Body Cavity Snail Fish 

Frog 

Snail 

Fish 

Frog 

Bird 

Mammal 

(Olsen 1974) 

Cephalogonimus 

americanus 

(Stafford 1902) 

Complex Penetration Intestines Snail Amphibian 

Fish 

Reptile 

Amphibian 

Fish 

Reptile 

(Lang 1968) 

Diplostomatidae 

(Dubois 1968) 

Complex Penetration Intestines 

Liver 

Snail Fish 

Amphibian 

Fish 

Bird 

Mammal 

(Olsen 1974) 
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Echinoparyphium rubrum 

(Cort 1915) 

Complex Penetration Kidneys Snail Turtle 

Amphibian 

Bird 

Mammal 

(Olsen 1974) 

Glypthelmins 

pennsylvaniensis 

(Cheng 1961) 

Complex Trophic Intestines Snail Amphibian 

Skin 

Amphibian (Olsen 1974) 

Haematoloechus spp. 

(Stafford 1902) 

Complex Trophic Lungs Snail Odonate 

 

Amphibian (Olsen 1974) 

Lechriorchis tygarti 

(Talbot 1933) 

Complex Penetration Liver 

Bladder 

Snail Amphibian Snake 

 

(Cort et al. 

1952) 

Megalodiscus temperatus 

(Stafford 1905) 

Complex Trophic Intestines Snail Amphibian 

skin 

Amphibian (Olsen 1974) 

Telorchis bonnerensis 

(Waitz 1960) 

Complex Penetration Intestines Snail Snail 

Amphibian 

Turtle 

Snake 

Salamander 

(Schell 1962) 

Cestoda        

Mesocestoides sp. 

(Goeze 1782) 

Complex Trophic Body Cavity Arthropod Amphibian 

Bird 

Reptile 

Mammal 

Mammal 

Bird 

Reptile 

Amphibian 

(Foronda et 

al. 

2007) 

Proteocephalidea sp. 

(Mola 1928) 

Complex Trophic Intestines Crustacean N/A Fish, 

Amphibian 

Reptile 

(Scholz 1999) 
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