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ABSTRACT 

Passerine birds that primarily use grassland habitats are rarely the focus of a parasite 

study. With many rapidly declining bird populations that breed at even faster decreasing 

grassland habitat, it is important to know the potential risks to the birds posed by blood parasites. 

During the breeding seasons of 2009-2011, 150 samples from 148 individual birds (fourteen 

species) were collected from five grassland sites in northwest Minnesota, USA and surveyed for 

blood parasites using microscopy and molecular methods. Eighty-five (56.67%) of the 150 

samples were infected with at least one of three haemosporidian genera: Haemoproteus, 

Plasmodium and Leucocytozoon. Seventy (46.67%) of the 150 samples were infected with either 

Haemoproteus or Plasmodium (fourteen infections were Haemoproteus, forty were Plasmodium 

and sixteen were undetermined due to dual infections or lack of sequences) and 41 samples 

(27.33%) were infected with Leucocytozoon, for a total of 111 infections. Plasmodium infections 

in two juvenile bobolinks provided evidence of active transmission within the study area. 

Haemoproteus/Plasmodium prevalence was significantly higher in May and June than in 

later collection months (July-Sept.) and dual infections were significantly higher in June 

compared with other sampling months. Of the three most frequently collected bird species, clay-

colored sparrows (Spizella pallida) had a significantly greater prevalence of Haemoproteus 

infections than savannah sparrows (Passerculus sandwichensis) and bobolinks (Dolichonyx 

oryzivorus). Only bobolinks were classified based on sex and/or age and adult males had 
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significantly more Leucocytozoon and dual infections than adult females or juveniles. Parasite 

prevalence did not differ significantly between study sites or years.  

Phylogenetic reconstructions based on Maximum Likelihood and Bayesian analyses 

produced three major clades, corresponding to the three haemosporidian genera. Bird host 

species were well mixed within the trees, indicating that infective vectors fed on bird species 

opportunistically rather than selectively and that the Haemosporidia were generalists, capable of 

infecting a wide range of the sampled bird species.
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  Chapter 1

 

CHAPTER I 

PREVALENCE OF BLOOD PARASITES (HAEMOSPORIDIA: HAEMOPROTEUS, 

PLASMODIUM, AND LEUCOCYTOZOON) IN SONGBIRD PASSERINES FROM 

GRASSLANDS OF NORTHWEST MINNESOTA 

Introduction 

Haemoproteus, Plasmodium and Leucocytozoon are closely related genera of single 

celled, vector-borne organisms. Along with several others, these three genera are found within 

the Order Haemosporida (Phylum Apicomplexa). Haemosporidia have been found on every 

continent except Antarctica [1, 2, 3, 4, 5] and in nearly every country where samples have been 

collected; they are also found in every class of vertebrate animals (mammals, birds, reptiles and 

amphibians) except fish [6]. Prevalence (proportion of infected individuals) studies help to 

define naturally occurring compositions of Haemosporidia inhabiting animals. These studies are 

the first step toward understanding these parasites and the impact they have on their hosts [7].  

Though Charles Laveran was the first person to see Plasmodium in humans in 1880, it 

was V. Y. Danilewsky who realized this organism was actually a parasite. Danilewsky laid the 

foundation for current parasitology in avian malaria by publishing a small paper called ‘About 

blood parasites (Haematozoa)’ in 1884 [6]. Ross [8, 9] added a missing piece of the malaria 

lifecycle puzzle by discovering the role of mosquitoes for Plasmodium transmission. In the many 

years since these discoveries, hundreds of surveys have accumulated into what has been become 

a vast (yet incomplete) knowledge base about Haemosporidia in nature. 

Hundreds of species of Haemoproteus, Plasmodium and Leucocytozoon are now known 

to parasitize birds. Haemoproteus is perhaps the least pathogenic of the three genera in wild birds 
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[10, 11, 4] with a few exceptions, mainly in captive or non-adapted birds [12, 13, 14, 15, 16, 17]. 

Most Haemoproteus species are transmitted by biting midges (Diptera: Ceratopogonidae), 

though some are transmitted by hippoboscid flies (Diptera: Hippoboscidae). Plasmodium is a 

well-recognized genus, commonly called avian malaria in birds [18] and is transmitted to by 

mosquitoes (Dipera: Culicidae). Leucocytozoon vertebrate hosts are limited to birds, and this 

genera is transmitted by black flies (Diptera: Simuliidae) [6]. Though each haemosporidan genus 

infects only one or two families of insect vectors, a single bird may attract multiple families of 

insect vectors; hence there is the potential for a bird to be infected by more than one 

haemosporidian genus. Also, a single species of parasite can infect multiple families of birds. 

It is extremely important to know the parasites present in bird populations to allow for the 

detection of new avian parasites. Discovery of novel parasites is especially important for birds in 

declining habitats and for populations of birds on islands, where the avifauna are exposed to 

fewer pathogens than mainland populations. For example, the mosquito, Culex quinquefasciatus, 

was introduced to the Hawaiian Islands in the 1800s and eventually led to the emergence of P. 

relictum in previously unexposed native avifauna. This introduction was implicated as the cause 

of severe decline, even extinction, for several bird species on the islands [19, 20]. Levin et al. 

[21] also detailed the recent exposure of the endangered Galapagos penguin (Spheniscus 

mendiculus) to an avian Plasmodium lineage that is a close relative to Plasmodium lineages that 

are pathogenic for captive penguins. The suspected cause is the recent introduction of C. 

quinquefasciatus to the Galapagos Islands. Leucocytozoon may also cause severe symptoms 

when they are introduced to new wild avian hosts [22, 23, 6]. 
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Haemosporidian Life Cycle 

Confirmation of active transmission of these three haemosporidian genera in birds at a 

geographic location involves discovering parasites in nestlings, fledglings or juveniles that have 

not yet migrated [24] or in non-migratory birds. Active transmission requires three components 

to be present: the parasite, a competent dipteran vector and a competent bird.  

An infective dipteran transmits the parasites as sporozoites found in their salivary glands 

into every bird it takes a blood meal from. Each sporozoite travels in the bird’s bloodstream until 

it infects an appropriate tissue cell (e.g. liver, spleen). Once inside, the sporozoite then undergoes 

asexual reproduction to form a schizont (which contains many merozoites) during a process 

called schizogony or merogony. The merozoites are released when the tissue cell ruptures. 

Merozoites will either continue the cycle of infecting tissue cells to produce more schizonts and 

merozoites or they may infect blood cells and develop into either micro- or macrogametocytes, 

the male and female sexual forms of the parasite, respectively. The process of gametocyte 

formation is called gametogony. Plasmodium is the only genus that undergoes additional asexual 

reproduction in the blood. During this process, a portion of the Plasmodium merozoites proceed 

to infect red blood cells to produce more schizonts and merozoites. 

Following sporozoite transmission by the vectors, the three haemosporidian genera 

become detectable in avian blood at different times (i.e. they have different pre-patent periods). 

Haemoproteus becomes detectable in the blood after about 11-21 days, while Plasmodium 

becomes detectable two days to several months after sporozoite infection [6]. Leucocytozoon has 

a pre-patent period of roughly five days [25]. The acute phase when the parasitemia (proportion 

of infected cells) is highest in the blood happens soon after the infection becomes detectable. 

High parasitemia can last days or weeks before chronic infection with fewer detectable parasites. 
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The infection can even become latent or dormant and reside back to the tissue/organ stage [6]. 

During latency, it is nearly impossible to detect the parasites in the blood. Some triggering events 

(e.g. migration, weakened immune system, reproductive effort) can cause a relapse that allows 

detection of the parasite in the blood again. 

Gametocytes, along with other blood components from an infective bird, are ingested by 

one or more dipterans during subsequent feeding. While in the gut of a dipteran, each 

macrogametocyte releases itself from the blood cell in which it resides (creating a macrogamete). 

At the same time, each microgametocyte undergoes rapid asexual reproduction to produce eight 

flagella-like microgametes that burst out of the blood cell, a process called exflagellation. The 

microgamete fertilizes a macrogamete to produce a diploid zygote, an elongated structure called 

an ookinete. The ookinete penetrates the gut and attaches to the outside of the gut wall where it 

becomes a sphere called an oocyst. The oocyst matures and grows by producing many haploid 

sporozoites via asexual reproduction. Eventually the oocyst bursts and the sporozoites are 

released to travel to the salivary glands. This process of sporozoite production is called 

sporogony. The parasites are now ready to repeat the life cycle when the infective dipteran feeds 

on another avian host.  

Most host-parasite association studies of avian haemosporidians screen for parasites in 

blood. Taking a peripheral blood sample does not require sacrificing the host, minimizing the 

impact on avian population dynamics. Most researchers make thin or thick blood smears on 

microscope slides to examine with microscopy and/or preserve additional whole blood to screen 

using molecular methods (i.e. PCR based detection methods). Less often, the birds are killed to 

screen for parasites, but this presents an opportunity to also smear organ samples (e.g. liver 

and/or spleen) onto slides for microscopy or collect tissue samples for molecular testing. 
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Sampling organs can be very helpful because sometimes parasites are in the latent phase and can 

only be detectable in the tissues. 

Detection Methods 

Microscopy. Prior to 2000 the main method available to screen for avian malaria in birds 

was microscopy which yields morphological data. Several morphological and lifecycle 

differences help to distinguish between the three genera in a blood smear. Haemoproteus and 

Plasmodium are most similar because both produce hemozoin granules (malaria pigment) in 

gametocytes (Figure 1.1a-b). One major difference between these two genera is the presence of a 

schizont on a blood smear; a schizont indicates a Plasmodium infection. Haemoproteus 

infections only form schizonts within tissues and not in blood. If only gametocytes are seen and 

there are enough of them to clearly define their morphology, the use of a dichotomous key such 

as the one by Valkiūnas (2005) [6] is required to determine the species of Haemoproteus. In 

addition, morphological comparisons should be made to newly described Haemoproteus species 

in more recent studies. An infection that is detected by the presence of trophozoites is nearly 

impossible to identify to genus (Figure 1.1d). Infections of more than one species and/or genus in 

the same bird get very difficult to identify. Leucocytozoon is easily identified, because unlike 

members of the other two genera, it does not produce hemozoin and staining of the parasite’s 

cytoplasm results in fairly uniform, yet slightly mottled color. Leucocytozoon also tends to 

distort the host cell and displace the host cell’s nucleus more drastically than the other genera 

(Figure 1.1c). For members of all three genera, the larger the parasite the more likely the parasite 

will migrate to the edges of thin blood smears during slide preparation. Because members of 

Leucocytozoon are larger than Haemoproteus and Plasmodium, they are more likely than the 

other two genera to be found at the edges of a blood smear slide (personal observation).  
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Molecular methods. Polymerase chain reaction (PCR) has become an important 

molecular tool to screen birds for Haemosporidia and is often used in conjunction with 

microscopy. Using both microscopy and molecular results can help to determine 1) which genus 

and species each parasite belongs to, 2) if a bird is infected with one or more haemosporidian 

genera or species (dual infection) and 3) whether there is enough variability in morphology and 

DNA to determine if the parasite is a separate species from those already discovered. 

Sequencing of PCR products yields RNA and DNA sequences. Most RNA sequences are 

sourced from ribosomal RNA (rRNA). There are three DNA sources: nucleus, mitochondria and 

apicoplast. Though several primer pairs were published in the 1980s and 1990s, most were 

intended to amplity RNA from primate Plasmodium [26, 27, 28, 29]. Bensch et al. (2000) [30] 

helped to revolutionize avian malaria screening by designing a primer set to amplify a 478 

nucleotide portion of the mitochondrial cytochrome b (mt-cytb) gene from avian Haemoproteus 

and Plasmodium Every year since, more primers are designed to amplify different nucleotide 

fragments from one or both of these two genera. Some primers amplify Leucocytozoon fragments 

a) b) 

c) d) 

Figure 1.1: 1000-1500x magnification of three 
haemosporidian parasite genera and a 
trophozoite from Giemsa-stained, thin blood 
smears.  
(a) Plasmodium sp. 
(b) Haemoproteus sp. (the two light colored 

parasites are microgametocytes and the dark 
one is a macrogametocyte) 

(c) Leucocytozoon sp. 
(d) trophozoite (young parasite) 
Black arrow= parasite 
White arrow= host nucleus 
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homologous to those of Haemoproteus and Plasmodium, making it possible to compare the same 

fragment in all three genera [31].  

Some other molecular methods or variations of PCR used to screen bird samples include 

restriction fragment length polymorphism (RFLP) [32], serological testing [19, 33], quantitative 

PCR, real time PCR and amplifying DNA via PCR from a single cell that is selected using a 

laser [34]. There is also the post-PCR manipulation of cloning (e.g. TA cloning) which, in the 

case of avian Haemosporidia, is often used to separate Haemoproteus and Plasmodium infections 

in the same bird. 

More recently and not yet as common, researchers have used primers to screen wild 

caught insect vectors of Haemosporidia to identify prevalence and determine potential vector 

competency (mosquitoes: [35, 36, 37, 38, 39, 40, 41, 42, 43, 44] [45, 46, 47], black flies: [48, 49, 

46], biting midges: [50, 51, 52, 46]). However, the presence of parasite DNA does not confirm 

the ability of the vector to actually transmit the sporozoites from their salivary glands into 

vertebrate hosts [4, 53]. 

Occasionally, a genus of parasites is found via PCR in a vector that is not considered a 

competent host. Mosquitoes are screened more often than other vectors; thus, there are records of 

Haemoproteus being amplified from mosquitoes [36, 41, 42, 44, 46]. This amplification does not 

prove competency because, at the very least, the entire thorax is often used for DNA extraction. 

Salivary glands are found in the thorax, but may not actually house the parasite. Valkiūnas et al. 

[53] experimentally infected mosquitoes with two species of Haemoproteus but the development 

of both species was halted during oocyst development and no sporozoites were present in the 

salivary glands. Despite the mosquitoes being incompetent and resistant, DNA from 

Haemoproteus was detectable in the mosquito for several weeks. Plasmodium DNA is also 
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occasionally found in biting midges [50, 51, 44], which are competent vectors for 

Haemoproteus. Valkiūnas [4] cautions against the all too frequent use of only PCR to identify 

Haemosporidia in vectors and urges that microscopy be implemented in addition to DNA-based 

methods. 

The prevalence of Haemosporidia in vectors is always much lower than the prevalence 

found in avian populations in the same geographic locations [7, 54, 47]. This difference due to 

the presence of many more potential vectors compared to individual birds. Further, some vectors 

do not feed on all birds species, and only the females take blood meals in many species of 

vectors. 

Rationale for Study 

While investigating literature regarding blood parasites in bobolinks (Dolichonyx 

oryzivorus) during 2009, I became aware of deficiencies in blood parasite research. Birds from 

Minnesota (MN) are rarely screened for blood parasites and grassland birds, even passerines, are 

rarely the focus of a blood parasite study.  

The number of Passeriformes that have been screened for blood parasites globally is quite 

extensive, though there are many geographic regions yet to be surveyed. Minnesota is certainly 

one of these regions; I found only three studies that presented data on the prevalence of 

Haemosporidia in birds from this state, and only one included a passerine species. Micks [55] 

screened a widespread passerine species, the house sparrow (Passer domesticus), and found that 

Plasmodium prevalence was 27.3% (3/11) in MN samples. The other two studies screened non-

passeriformes birds. Stuht et al. [56] found that 100% (12/12) of nestling bald eagles from MN 

were infected with L. toddi, while Castle and Christensen [57] found H. meleadridis, P. kempi 

and L. smithi in 29% (5/17), 44% (8/18) and 6% (1/18), respectively, in MN wild turkeys. 
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Three studies from nearby North Dakota (ND) had prevalence data for birds but two 

studies were the same ones referenced above. Micks [55] found Plasmodium in 20% (3/15) of 

house sparrows while Castle and Christensen [57] found P. kempi in 100% (2/2) of ND wild 

turkeys. Wetmore [58] found P. pedioecetii [59] in the blood of a sharp-tailed grouse from ND. 

The number of species in Passeriformes screened for blood parasites is extensive; 

however, grassland passerine species are extremely undersampled, to the point that there are no 

records of many grassland passerine species having been screened. In the United States, 

grassland passerine populations are declining due to the shrinking of preferable habitat. Many 

authors have voiced concern regarding apparent broadscale declines in abundance of most 

grassland bird species (e.g.: [60, 61]). Knopf [60] summarized breeding bird survey (BBS) data 

from 1966-1991 and found that savannah sparrows, clay-colored sparrows and grasshopper 

sparrows declined from 1966-1991, significantly for the latter two species. Peterjohn and Sauer 

[61] also summarized BBS data from 1966-1996 and found that savannah sparrows, bobolinks 

and grasshopper sparrows were significantly decreasing while Le Conte’s sparrows and sedge 

wrens both showed nonsignificant increases (however, their article made it clear that they were 

skeptical about the validity of the increases). Both studies noted that of all the BBS bird groups, 

grassland birds contained the lowest proportion of species (17-23%) that showed a positive trend 

in population growth. This low population growth is even more troubling considering that the 

average proportion of all bird species that are increasing in population was approximately 51%.  

The habitat of northwest MN where birds were sampled for this study is called tallgrass 

aspen parkland and is considered a natural transition zone between the prairie grassland and 

coniferous forest habitats [62]. The steady conversion of the grasslands to cropland is a major 

contributing factor to grassland habitat loss in MN. Because of the habitat loss, grassland 
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passerines must either increase population density at the remaining optimum grasslands (causing 

overcrowding) or choose inferior breeding sites (which could lead to poorer health) during the 

breeding season. These factors could cause the introduction of new blood parasites to grassland 

passerines to have much more dire consequences. The increase in population density could allow 

the parasites to spread quickly because vectors would have many more hosts to feed on and 

poorer health of birds at inferior grasslands could make individual birds more susceptible to 

parasitic infections. This is the first study that monitors blood parasite prevalences to identify 

any emerging blood parasites in these birds that could affect their population biology. 

Materials and Methods  

Study Sites 

Though many sites in northwest Minnesota (MN) were considered for this study, five 

were chosen based on several characteristics in the summer of 2009. Each site had to be at least 

320 acres of continuous grassland to maximize the avian species present and include standing 

water necessary for vector breeding. The sites had to be sufficiently distant from one another in 

order to increase the diversity of bird species and parasite lineages between sites. 

Figure 1.2 shows the five chosen study sites located throughout three counties in 

northwest MN: Pennington County (site 1 [47°59’09” N, 96°26’35” W]), Red Lake County (sites 

2 [47°57’03” N, 96°07’37” W] and 3[47°54’14” N, 95°47’37” W]) and Polk County (sites 4 

[47°38’39” N, 96°05’50” W] and 5[47°41’39” N, 96°20’00” W]). Study sites 1, 2 and 3 were 

part of the Conservation Reserve Program (CRP) and the two largest sites, 4 and 5, are native tall 

grass prairies located on Rydell and Glacial Ridge National Wildlife Refuges, respectively. Sites 

1 and 3 are the furthest away from each other (about 31 miles in a straight line). 
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Figure 1.2: Locations of the five grassland study sites in Red Lake, Pennington and 
Polk Counties of northwest Minnesota, USA where blood samples were obtained 
from birds. 

Permissions 

Permit number MB072162-2 was issued by the Federal Fish and Wildlife Service and 

permit numbers 15700 (2009), 16317 (2010) and 17425 (2011) were issued by the State of 

Minnesota Fish and Wildlife Service, granting permissions to collect migratory bird samples for 

scientific research. Permissions were granted by landowners to conduct research on the CRPs 

and Special Use permits 0907 (2009) and 2010-005 (2010 and 2011) were obtained to collect 

samples on National Wildlife Refuge property. Federal Bird Banding Permit #10760 – B was 

issued by the Bird Banding Laboratory. The UND IACUC protocol 0904-1c was followed. 

Field Methods 

Blood samples were collected in Aug. 2009, May-Sept. 2010 and May-Sept. 2011 for a 

total of 150 samples from 148 birds of 14 species. On days when wind was very light, birds were 

captured using six mist nets (each measured 30’ x 8’) that were placed linearly from just before 

dawn until noon. The mist nets were left at a study site until birds were sampled for two days. If 

this criterion was not met after attempting to capture birds for four days, the nets were set up at 

Red Lake 

Polk 

Pennington 

1 

5

4

32

Minnesota 
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the next study site. This pattern continued until sample collection at all five study sites was 

attempted two to three times throughout the field season.  

The site, month and year of capture and species was recorded for each captured bird. 

Bobolink samples were classified as juvenile (hatched within the collection year and able to fly 

well), adult male or adult female based on color characteristics. Since recaptures can provide 

valuable prevalence data [63, 64, 65, 21, 66, 67, 68], birds captured in 2009 and 2010 were 

banded to identify recaptures during and between the collection years. To limit unnecessary 

sampling and stress to the birds, they were not resampled if recaptured on the same day or, if 

applicable, during the following collection days before the nets were moved to the next site. 

Birds were never recaptured at a time when they met the criteria to be resampled within the same 

year. Thus, birds in 2011 received a temporary nontoxic mark on their right leg to identify 

recaptures until the mist nets were moved to the next site. Two savannah sparrows that were 

sampled in 2010 were resampled in 2011and were negative for parasites both years. 

To collect blood, the brachial vein was pricked using a 27 or 30 gauge needle (depending 

on vein size) and blood was collected into one 80 µl heparinized microcapillary tube (10-70 µl of 

blood was collect depending on bird size). Pressure was applied to the vein with sterile gauze 

until bleeding subsided. While the blood was being processed (see below), movement of each 

bird was restricted for one or two more minutes in a mesh bag to minimize further bleeding or 

hematoma formation. Birds were then released on site. Total handling time never exceeded ten 

minutes per bird.  

For each bird, a small portion of the blood was used to make one or two thin blood 

smears that were then air dried. The remaining portion of each blood sample was either stored in 
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a 1.5 ml microcentrifuge tube with Longmire’s lysis buffer [69] and kept at room temperature or 

absorbed on Whatman filter paper, air dried, stored in separate plastic bags and kept frozen.  

Lab Methods 

Microscopy. The thin blood smears were fixed for five minutes in methanol within a 

week of being made. The smears were stained for 40 mins in a solution of 5% Giemsa stain 

within a month of being made. Microscopy was used to examine each blood smear for 40 fields 

of view at 400x magnification to search for Leucocytozoon parasites and for 100 fields of view at 

1000x magnification to search for Haemoproteus and Plasmodium parasites. A bird was 

considered to be positive if at least one cell was obviously infected with a parasite from any of 

the three genera. Haemoproteus and Plasmodium were not differentiated using microscopy.  

Molecular Methods. The initial steps of the DNA extraction process differed depending 

on the sample storage method. For each blood sample stored in Longmire’s lysis buffer, a small 

portion was transferred to a new 1.5 ml microcentrifuge tube and placed in a heat block at 70°F 

with the cap open until all liquid was evaporated. Depending on how much residue was left in 

the tube after drying, 100-300 µl of guanidine thiocyanate extraction buffer [70] was added to 

the tube. The tube was placed in a heat block at 70°F for one hour until the contents were 

dissolved; occasional mixing with a vortex and grinding the sample with a sterile pestle 

facilitated sample dissolution.  

For blood samples stored on filter paper, a small disk was removed and transferred to a 

new 1.5 ml microcentrifuge tube. To elute the blood from the disk, 300 µl of extraction buffer 

was added to the tube. The tube was placed in a heat block at 70°F for one hour with occasional 

vortexing, and then the contents were ground using a sterile pestle. The tube was centrifuged at 
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high speed for two minutes to separate the pulp from the liquid. The supernatant was transferred 

to a new tube and the pulp discarded. 

Once samples were dissolved in extraction buffer, the DNA extraction procedure was 

standardized. The process was completed using steps described by Tkach and Pawlowski [70] 

although the volumes of liquids used for each step were doubled because the samples were 

larger. 

Spectrophotometry was used to determine the purity and concentration of each DNA 

extraction product (Nanodrop 1000). A ratio absorbance at 260nm and 280nm (A260/280) of 

1.8-1.95 was considered pure enough to use for PCR. If a sample was not pure enough or if there 

was no DNA detected, DNA extraction was repeated until a satisfactory result was achieved. If 

the yield of produced DNA was at a high concentration, a small amount of the sample was 

transferred to a sterile 1.5 ml tube and diluted with distilled water to approximately 20 ng/µl 

(Nanodrop 1000).  

An initial PCR and two nested PCRs were run for each DNA sample using published 

methods described by Hellgren et al. in 2004 [31]. A 478 base pair portion of the mt-cytb gene 

was amplified. Each reaction was run in a total volume of 25 µl; approximately 100 ng of DNA 

was used as the template. The initial PCR was run with primers HaemNFI (5’-

CATATATTAAGAGAAITATGGAG-3’) and HaemNR3 (5’-

ATAGAAAGATAAGAAATACCATTC-3’) [31] that amplified Haemoproteus, Plasmodium 

and Leucocytozoon. The following thermocycler settings were used for the reaction: 20 cycles of 

30 seconds at 94°C, 30 seconds at 50°C and 45 seconds at 72°C and the samples were incubated 

for 3 minutes at 94°C before the cyclic reaction and for 10 minutes at 72°C after the cyclic 

reaction. The second PCR was run with nested primers. One primer set, HaemF (5’-



15 

ATGGTGCTTTCGATATATGCATG-3’) and HaemR2 (5’-

GCATTATCTGGATGTGATAATGGT-3’) [30] amplified Haemoproteus and Plasmodium in 

one reaction while another primer set, HaemFL (5’-ATGGTGTTTTAGATACTTACATT-3’) 

and HaemR2L (5’-CATTATCTGGATGAGATAATGGIGC-3’) [31] amplified Leucocytozoon 

infections in a separate reaction. Two µl of template DNA (product from the initial PCR) was 

used for each nested PCR. The thermocycler settings for the nested PCRs were identical to the 

initial PCR except it ran for 35 cycles. Two positives controls (one from a bird known to be 

infected with Plasmodium and another from a bird known to be infected with Leucocytozoon) 

and one negative control (from a bird negative for Haemosporidia) were run for every seven 

samples. 

All products from the nested PCRs were run on ethidium bromide-containing, 1.5% 

agarose gels and viewed under UV light to identify bands, indicating DNA was amplified. All 

positive nested PCR products were cleaned up using ExoSAP-IT and 3 µl were directly 

sequenced using terminator cyclic sequencing with 2 µl of BigDye Master Mix (Applied 

Biosystems, USA) in total reactions of 10 µl. The reverse primers were used for the sequencing 

reactions; HaemR2 was used for samples positive for Haemoproteus/Plasmodium and HaemR2L 

was used for samples positive for Leucocytozoon. The following thermocycler settings were used 

for the sequencing reactions: 25 cycles of 15 seconds at 96°C, 10 seconds at 50°C and 4 minutes 

at 60°C and the samples were incubated at 4°C following the cyclic reaction.  

Resulting sequence information was utilized for identification by comparing these with 

published sequences archived in GenBank and MalAvi [71]. If sequences were not able to match 

published sequences, then unknown were sampled again. If sequence data could not be obtained 

after three attempts, then that sample was determined to be a false positive. A bird was 
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considered to have an infection using molecular methods if a sequence was determined to match 

one of the three genera in this study. The closest matching parasite species (and the percentage of 

matching nucleotides) was also recorded. 

Results 

Birds Sampled 

A total of 150 samples from 148 individual birds were collected. Of the fourteen bird 

species sampled, the following six species were sampled the most and seem to prefer grassland 

habitats: savannah sparrow (SAVS, Passerculus sandwichensis, n=73), bobolink (BOBO, 

Dolichonyx oryzivorus, n=32), clay-colored sparrow (CCSP, Spizella pallida, n=17), Le Conte’s 

sparrow (LCSP, Ammodramus leconteii, n=6), grasshopper sparrow (GRSP, A. savannarum, 

n=4) and sedge wren (SEWR, Cistothorus platensis, n=4). The remaining eight species had low 

sample sizes and are considered to be inhabitants of riparian zones; these were included in the 

data since the individuals are assumed to have spent a considerable amount of time in grasslands. 

These species are the yellow warbler (YEWA, Setophaga petechia, n=4), song sparrow (SOSP, 

Melospiza melodia, n=2), American goldfinch (AMGO, Spinus tristis, n=2), common 

yellowthroat (COYE, Geothlypis trichas, n=2), gray catbird (GRCA, Dumetella carolinensis, 

n=1), brown-headed cowbird (BHCO, Molothrus ater, n=1), eastern kingbird (EAKI, Tyrannus 

tyrannus, n=1) and willow flycatcher (WIFL, Empidonax traillii, n=1). 

Prevalence of Haemosporidia 

Besides Haemoproteus, Plasmodium and Leucocytozoon, no other blood parasites that are 

known to infect passerines in northwest Minnesota (MN) such as trypanosomes or microfilariae 

were found using microscopy. Table 1.1 shows the infections found in each bird species using a 

combination of microscopic and molecular methods. All six of the grassland species had at least 
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one infected individual while three of the eight other species had at least one infected individual. 

Of the collected samples, 56.67% (85/150) were infected with at least one haemosporidian 

genus; the total number of infections was 111. Haemoproteus or Plasmodium was found in 

Table 1.1: Overall prevalences of Haemosporidia based on a combination of microscopy and molecular 
methods. The numbers (percentages below) represent how many individual birds were infected with 
Haemoproteus (H.), Plasmodium (P.) and Leucocytozoon (L.) infections, dual infected individuals and total 
infected individuals broken down by the fourteen species of birds sampled (n=150). 

Bird Species 
Total 

Sampled 
H./P.* H. P. L. 

Dual 
Infected 

Total 
Infected 

Savannah sparrow 
Passerculus sandwichensis 

73 
37 

50.7% 
4 

5.5 
25 

34.2 
23 

31.5 
16 
22 

44 
60.3 

Bobolink 
Dolichonyx oryzivorus 

32 
11 

34.4 
 

7 
21.9 

10 
31.3 

5 
15.6 

16 
50.0 

Clay-colored sparrow 
Spizella pallida 

17 
14 

82.4 
8 

47.1 
4 

23.5 
5 

29.4 
4 

23.5 
15 

88.2 

Le Conte's sparrow 
Ammodramus leconteii 

6 
3 

50 
1 

16.7 
1 

16.7 
1 

16.7 
1 

16.7 
3 
50 

Grasshopper sparrow 
A. savannarum 

4 
1 

25 
 

1 
25 

1 
25 

 
2 
50 

Sedge wren 
Cistothorus platensis 

4 
1 

25 
 

1 
25 

  
1 
25 

Yellow warbler 
Setophaga petechia 

4 
1 

25 
 

1 
25 

1 
25 

 
2 
50 

Song sparrow 
Melospiza melodia 

2       

American goldfinch 
Spinus tristis 

2 
1 

50 
    

1 
50 

Common yellowthroat 
Geothlypis trichas 

2       

Gray catbird 
Dumetella carolinensis 

1 
1 

100 
1 

100 
   

1 
100 

Brown-headed cowbird 
Molothrus ater 

1       

Eastern kingbird 
Tyrannus tyrannus 

1       

Willow flycatcher 
Empidonax traillii 

1       

Totals 150 
70 

46.7 

14 

9.3 

40 

26.7 

41 

27.3 

26 

17.3 

85 

56.7 
 

* H/P column contains sixteen infections for which the exact genus cannot be identified 
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46.67% (70/150) of samples; of these, 54 of the 70 could be identified to genus. Sixteen 

infections could not be identified to a genus due to lack of successfully collected sequence 

(n=11) or multiple base callings (MBCs) in the chromatogram (n=5) indicating that more than 

one haemosporidian species (and possibly genus) was present. Thus, the overall prevalence of 

Haemoproteus was 9.3% (14/150), Plasmodium was 26.7% (40/150) and Leucocytozoon was 

27.33% (41/150). A total of 95 infections were successfully identified to genus. Dual infections 

(infected with two genera) occurred in 17.33% (26/150) of samples. Since 56.67% (85/150) of 

samples were infected with at least one of the three genera, and 17.33% (26/150) of samples 

were infected with two genera (= dual infection), we can estimate that if a bird was infected with 

one genus, there is a 30.6% chance that the same bird would be infected with at least one of the 

other two genera.  

Tentative Identification of Haemosporidia to Species 

The only infections that were tentatively identified to species were those that were the 

result of single infections and had successful sequence reactions. Ninety-nine infections were 

sequenced but seven were eliminated for having MBCs (five Haemoproteus/Plasmodium and 

two Leucocytozoon). Three other reactions were eliminated for sequences that terminated early. 

Eighty-nine sequences were used for identifications. Table 1.2 shows the number of infections 

by parasite species and bird species. The 89 sequences included fifteen species of 

Haemosporidia. The dominant species for each parasite genus was H. coatneyi (n=8), P. 

cathemerium (n=14) and P. circumflexium (n=12) and L. majoris (n=28). 

False Results 

Fifty-one false negatives were recorded using microscopy. Twelve false negatives were 

recorded using molecular methods. Molecular testing has a greater chance of producing false  
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Table 1.2: Numbers of infections identified to each parasite species using molecular methods. Aside from one 
exception (see table below), a blastn with each sequence from this study resulted in a 97%-100% match to a 
sequence from a parasite identified to species. The other six bird species (WIFL, EAKI, BHCO, COYE, AMGO 
and SOSP) not listed in the table had no infections identified to species. 
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Savannah sparrow 
Passerculus sandwichensis 

3     10 7 5 2    1 15 6b 11 60 

Bobolink 
Dolichonyx oryzivorus 

     3a   2 1a  1  10  4 21 

Clay-colored sparrow 
Spizella pallida 

4 1 1 1  1 3       2 2 4 19 

Le Conte's sparrow 
Ammodramus leconteii 

1      1        1 1 4 

Grasshopper sparrow 
A. savannarum 

        1       1 2 

Sedge wren 
Cistothorus platensis 

      1          1 

Yellow warbler 
Setophaga petechia 

          1   1   2 

American goldfinch 
Spinus tristis 

               1 1 

Gray catbird 
Dumetella carolinensis 

    1            1 

Total Infections 8 1 1 1 1 14 12 5 5 1 1 1 1 28 9 22 111 

a= 1 infection was from a juvenile bobolink 
b= 1 infection was only a 95% match 
*= Includes the infections not able to be identified due to being microscopy positive only  
 

positives than microscopy [72, 73]; indeed there were fourteen false positives. These false 

positives occurred when a band was visible on the gel but sequencing was unsuccessful. Of these 

fourteen, nine were caused by HaemF/HaemR2 nested primers amplifying Leucocytozoon (for 

more about the primers in this study amplifying unintended genera see [74, 75, 72, 76]) and five 

were caused by sequences matching non-parasite DNA. 
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Comparison of Microscopy and PCR 

Figure 1.3 shows that molecular methods were significantly more likely than microscopy 

to detect infections in samples collected in 2009 and 2010. There was no significant difference 

for samples collected in 2011. Combining data from all three years, molecular methods were 

always significantly more sensitive than microscopy for parasite detection. Additionally, 

considering microscopy only, 34% (51/150) of samples were infected with at least one genus and 

using molecular methods only, 53% (79/150) of samples were infected. 

Figure 1.3: Comparison between microscopy and molecular methods’ ability to detect infections. The bar heights 
show the percentages of birds infected with at least one genus (Infected), Haemoproteus or Plasmodium (H/P) and 
Leucocytozoon (L) for 2009/2010 and 2011 separately and all three years combined. A Fisher’s Exact test was run 
with the data for each pair of bars and p-values are labeled above each pair. An * indicates a significant p-value 
<0.05. 

Discussion 

Prevalence of Haemosporidia 

One of the largest compilations of blood parasite works is by Valkiūnas (2005) [6], in 

which he summarized Haemosporidia prevalence by genus for each zoogeographical region. He 

determined that in the Holarctic region (the majority of the northern hemisphere) the prevalence 
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of Haemoproteus was 17.9%, Plasmodium was 2.9% and Leucocytozoon was 16.2%. By 

comparison, the current study of 150 samples from 148 birds found that the prevalence of 

Haemoproteus was 9.3%, Plasmodium was 26.7% and Leucocytozoon was 27.3%. In another 

frequently cited work, Greiner et al. (1975) [77] compiled studies that screened samples from 

North American birds and found that 19.5%, 3.8% and 17.7% of birds were infected with 

Haemoproteus, Plasmodium and Leucocytozoon, respectively, which is fairly similar to what 

Valkiūnas (2005) [6] found. Greiner et al. (1975) [77] also divided the continent into seven 

regions. Region 2, the Great Plains, includes the area for the current study. The prevalence of 

Haemoproteus, Plasmodium and Leucocytozoon was approximately 22%, 4% and 3%, 

respectively. In all of the preceeding cases, compared to this study, Haemoproteus prevalence 

was found to be higher overall, while Plasmodium and Leucocytozoon were lower. The 

Minnesota (MN) grassland passerines must have more contact with infective mosquitoes and 

black flies than with biting midges compared to other birds in general and/or are more 

susceptible to Plasmodium and Leucocytozoon than to Haemoproteus.  

Greiner et al. (1975) [77] also reported that 36.9% (21,048/57,026) of the North 

American birds screened were positive for Haemoproteus, Plasmodium, Leucocytozoon, 

microfilariae, Trypanosoma, and/or Haemogregarina/Lankestrella. The overall prevalence 

within Region 2 birds was approximately 27% (Haemoproteus, Plasmodium and Leucocytozoon 

only). Both of these are lower than the 56.67% (85/150) found in this study. Perhaps the use of 

PCR is responsible for a much higher prevalence found here. Alternatively, MN grassland 

passerines could be in contact with infective vectors more or are more susceptible to 

haemosporidian infections than other birds. 
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Host-Genus Associations 

Several of the host-genus associations found in this study are new records. Table 1.3 

shows all of the previously published and current associations for the bird species sampled in this 

study. The first six bird species listed on the table prefer grasslands; very few host-genus 

associations had been found previously with these six species compared to those found for the  

Table 1.3: List of the currently known host-genus associations for the fourteen bird species sampled in this study. A 
black square () means the association was found in the current study. A black circle () means the association was 
retrieved from the MalAvi database, indicating that one or more mt-cytb sequences exist for the parasite genus. A 
black triangle (▲) means the association was found in one or more sources other than the current study or MalAvi 
database. The gray highlight indicates the host-genus association is new. The letter(s) in parentheses following each 
resource is/are the genus/genera found. 

Bird Species Haemoproteus (H) Plasmodium (P) Leucocytozoon (L) Resource 

Savannah sparrow 
Passerculus sandwichensis 

▲ ▲ ▲ [78, 77] 

Bobolink 
Dolichonyx oryzivorus 

▲   [77] 

Clay-colored sparrow 
Spizella pallida 

▲  ▲ [77] 

Le Conte’s sparrow 
Ammodramus leconteii 

    

Grasshopper sparrow 
A. savannarum 

▲ ▲  [79, 77] 

Sedge wren 
Cistothorus platensis 

    

Yellow warbler 
Setophaga petechia 

▲ ▲ ▲ [80, 77, 81] 

Song sparrow 
Melospiza melodia 

▲ ▲ ▲ 
[79, 7, 80, 78, 77, 
82, 83] 

American goldfinch 
Spinus tristis 

▲ ▲ ▲ [78, 77, 80] 

Common yellowthroat 
Geothlypis trichas 

▲ ▲ ▲ [78, 77, 80, 82] 

Gray catbird 
Dumetella carolinensis 

▲ ▲ ▲ 
[84, 78, 77, 80, 82, 
85, 65] 

Brown-headed cowbird 
Molothrus ater 

▲ ▲ ▲ [79, 7, 77, 80] 

Eastern kingbird 
Tyrannus tyrannus 

▲ ▲ ▲ [79, 78, 77] 

Willow flycatcher 
Empidonax traillii 

▲  ▲ [77] 
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eight other bird species that are considered inhabitants of riparian zones. Of the seventeen total 

host associations from this study, fourteen of those are with grassland species because these 

species were most extensively sampled. Seven associations found in this study are new, all of 

which are with grassland birds. Most notably, I found no evidence that blood parasites had ever 

been found in Le Conte’s sparrows or sedge wrens before my current study. 

Haemosporidia Species 

Species identification in the current study should be considered tentative since they have 

not been confirmed morphologically and are based solely on closest matching DNA sequences 

with those published in GenBank and MalAvi. There are many haemosporidian species that have 

no mt-cytb sequences available for comparison. Nevertheless, I obtained 89 sequences in this 

study that closely matched published sequences representing fifteen different haemosporidian 

species. There were fifteen parasite species that were tentatively matched to 89 of the sequences 

in this study. All fifteen species had been previously reported from Passeriformes but from what 

I could find in the literature, there were no microscopy or molecular records for five of these in 

the USA prior to this work (H. homobelopolskyi, H. pallidus, H. tartakovskyi, P. lutzi and P. 

unalis). These species were described in 2011, 1991, 1986, 1939 and 2013, respectively. It was 

no surprise that the two most recently described species have not been found in the USA but it 

was unexpected to not find other records of P. lutzi since it was described in 1939 and was 

identified in this study. Plasmodium lutzi is very similar to P. relictum [6], so it is possible it has 

been found but was misidentified. Haemoproteus pallidus and H. tartakovskyi have been found 

mainly in Russia and Europe. According to MalAvi [71], the ten other species have been found 

in the USA previously: H. coatneyi, H. fringillae, P. cathemerium, P. circumflexum, P. 

homopolare, P. nucleophilum, P. polare, P. relictum, L. fringillinarum and L. majoris.  
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Evidence of Active Transmission 

Two juvenile bobolinks tested positive for Plasmodium using DNA sequencing. This 

indicates that active transmission of Plasmodium is occurring within the study area. One 

sequence was a 100% match to P. cathemerium and the other matched 98% to P. homopolare. 

Plasmodium cathemerium is very widespread geographically and infects a wide range of bird 

species spanning several different Orders, mainly Passeriformes. Natural vectors are unknown 

but sporogony has been completed in at least seventeen experimentally infected mosquito species 

[6]. Plasmodium homopolare was described in 2014 and has been found in passerines from 

Colombia and California, USA, but there is no information on its vector. 

It is unknown whether the bobolinks were infected as nestlings or once they left the nest. 

One thing that could affect whether birds get infected as nestlings is how the nest is constructed. 

Ribeiro et al. [86] suspects that birds raised in open nests are more exposed to vectors than those 

in closed nests though the parasite prevalence was not significantly different in the study. Of the 

six grassland bird species in this study, grasshopper sparrows and sedge wrens construct closed 

nests while the other four species, including boblinks, construct open nests. The length of time 

that a bird spends as a nestling is also a factor; a longer stay can result in more exposure to 

vectors [6]. Unfortunately, information on how many days each grassland bird species spends as 

a nestling was only found for savannah sparrows, clay-colored sparrows, and bobolinks. These 

three species have similar durations as nestlings [87], so the nestling time may not have been a 

significant reason for the infections in the juvenile bobolinks. 

Other authors have found similar evidence of active transmission in other bird species 

within the contiguous USA; a portion of these studies are listed here (Haemoproteus: [80] 

(Vermont), [82] (New Jersey), [65] (Ohio), [88] (Florida), [89] (Florida), [90] (South Carolina), 
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[91] (New York and Georgia), [83] (California); Plasmodium: [7] (California), [92] (Kansas), 

[80] (Vermont), [82] (New Jersey), [93] (Michigan), [91] (New York and Georgia), [83] 

(California), [94] (north central USA); Leucocytozoon: [80] (Vermont), [82] (New Jersey), [95] 

(Wisconsin), [89] (Florida), [83] (California)). The only local study was by Stuht et al. in 1999 

[56] which reported that 100% (n=12) of nestling bald eagles from northern MN were infected 

with L. toddi, showing active transmission via black flies. Some researchers even made specific 

attempts to find active transmission such as Cosgrove et al. [75] who screened 195 blue tits in the 

U.K. specifically for Haemoproteus or Plasmodium but turned up with zero infections. Though 

neither genus was found, the study did find one Leucocytozoon infection. 

Critical Review of Methods Used 

Mist nets. A note of caution about the use of mist nets in grasslands regards the cardinal 

direction positioning of the nets. Initially, the nets were set up in straight line from north to 

south. Unfortunately, there is nearly nothing to block wind in grasslands and it almost always 

comes from the west. This left me unable to capture any birds on days when the wind was 

greater than five mph because the wind would make the nets billow to the fullest extent. This 

caused the pocket that is supposed to exist at the bottom of each of the five tiers of all nets to be 

absent. All birds, even the heavier bobolinks, merely bounced off of the billowed tiers as there 

was no pocket for them to fall into and get trapped in. Eventually, I oriented the nets in a straight 

line from west to east to minimize the billowing from the wind and allow more birds to be 

captured, even on slightly windy mornings. 

The use of mist nets caused the respective sample size of each bird species to not reflect 

the actual population composition of birds at the study sites. For example, of the most sampled 

bird species, I observed first-hand that the mist nets seemed to capture savannah sparrows best 
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and many clay-colored sparrow and most sedge wren individuals were too small to be captured 

by the mist nets. Also, Le Conte’s sparrows were frequently encountered but were very difficult 

to persuade to fly into the nets.  

In birds, Haemosporidia blood infections can either be at a chronic or acute stage. Birds 

in the acute stage tend to be sick due to higher parasitemia so these birds may be lying low trying 

to survive and are not easily persuaded to fly into nets [96, 6]; therefore they are not sampled. If 

a disproportionate number of individual birds per species are in the acute stage or if a certain 

species of birds tends to get sicker than the others, the proportion of individuals per bird species 

that were sampled may be different than what was actually at each site. Possibly, a combination 

of methods for obtaining birds (mist nets, shooting, ground traps, playback recordings etc.) 

would have been best. 

The above conditions also skew the actual representation of parasites. If there is a 

specific genus or species of parasite causing severe acute infections, this genus or species does 

not get accurately represented in the data because the birds are not sampled. On the other side of 

this, a genus or species may cause chronic infections with fewer parasites than others, making it 

easier to catch the birds but more difficult to come across parasites on thin smears or for PCR to 

successfully amplify DNA.  

PCR. A downside to this study is that Haemoproteus and Plasmodium were never found 

in the same host because the nested primer pair (HaemF and HaemR2) amplified both genera and 

they were not differentiated using microscopy. It does not affect the overall prevalence of 57% or 

the prevalence of Leucocytozoon (27%) for example, but it means there could have been more 

Haemoproteus, Plasmodium and dual infections than the 14, 40 and 26 that were found, 

respectively. If both genera infected the same bird and the difference in parasitemia was large 
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enough, evidence of the dual infection in an electrophoretogram (more than one peak at one or 

more nucleotide positions or multiple base callings [MBCs]) may not have been evident. 

However, it is known that three of the five sequences that had MBCs in this study were amplified 

by the Haemoproteus/Plasmodium primers, so it is possible that in these three cases the MBCs 

were caused by the host being infected with both Haemoproteus and Plasmodium. Only one of 

those three birds was not infected with Leucocytozoon, so had it been two genera causing the 

MBCs, the bird would have been considered dual infected.  

Three methodological changes could have given the best estimate of prevalence and 

better assisted with parasite identification: 1) use a combination of primer pairs to screen for 

parasites because some primers may pick up an infection that others miss but this is rarely done 

for other studies [97, 98, 99, 100, 101], 2) ensure that at least one primer pair amplifies only 

Haemoproteus and another for only Plasmodium and 3) have someone very skilled in discerning 

between Haemoproteus and Plasmodium using morphology assist with microscopy.  

Sample preservation. Though collecting blood on filter paper is a method that has been 

used for the past 50 years [102], I found that it is certainly inferior compared to storing the blood 

in Longmire’s lysis buffer. The difficulty with using filter paper is the limited amount of blood 

that can be eluted off the paper for DNA extraction [103]. The Longmire’s lysis buffer was much 

easier to work with as the blood was already in a liquid solution, so the difficulty of having to 

elute the blood was eliminated. Also, more infections were amplified from the blood stored in 

Longmire’s lysis buffer (see below) but it is unclear if this is directly related to the blood storage 

method. 

Comparison of microscopy and PCR. As was shown in Figure 1.3, for all three 

collection years together, PCR was always significantly more sensitive at detecting infections 
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than microscopy. Samples from 2009 and 2010 showed the same trend but samples from 2011 

indicated that, although PCR was always more sensitive than microscopy, the difference was not 

significant. I believe that a combination of the following two explanations are responsible for the 

non-significance between methods in 2011: 1) the ability of the observer to detect infections 

using microscopy was significantly improved in 2011 compared to 2009 and 2010 and 2) blood 

samples in 2011 were stored on filter paper, which is suspected to be an inferior storage method 

compared to the Longmire’s lysis buffer that was used in 2009 and 2010 and this possibly caused 

the molecular method to miss some infections that microscopy also missed.  

Most other studies that compare microscopy and PCR also find that PCR is more 

sensitive, sometimes significantly [97, 104, 98, 105, 86, 106, 107, 99, 108, 109] or, less often, 

both methods are equally as good [30, 110]. Zehtindjiev et al. [110] found microscopy to be 

more sensitive than PCR in identifying dual infections which is impossible for many primers (as 

discussed above). Garamszegi [111] found that the overall prevalences as determined by PCR 

and microscopy were not significantly different; however, when the genera were considered 

separately, PCR was significantly more sensitive in detecting Plasmodium. Valkiūnas et al. [73] 

did not find a significant difference between the two methods used to assess prevalence for 

Haemoproteus, Plasmodium and Leucocytozoon. They, along with Jarvi et al. [97], even suspect 

that both methods can underestimate prevalence for all three genera due to dual infections and/or 

low parasitemia. Jarvi et al. [97] knew exactly what the infection prevalence was in the birds 

they tested as they were experimentally infected, giving them a way to calculate just how 

accurate serological, PCR and microscopy methods were in detecting infections. Serology was 

best, then PCR, then microscopy, being able to detect 97%, 61-84% (depending on the primers 

used) and 27% of infections, respectively.  
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It is beneficial and recommended to use both methods, however, because morphology 

from microscopy and DNA sequences from PCR help to identify genus and/or species of 

parasites. Though morphology should definitely be used as well to identify genus, at this point, 

there are enough sequences for many DNA fragments in GenBank and MalAvi databases that a 

quick comparison will identify the genus as long as there is no question that the sequences are 

accurate. Unfortunately, not all species have DNA sequences available and there are many 

haemosporidian species in GenBank that are clearly misidentified [112, 113]. Identification of 

species based on DNA alone is not optimal unless an exact match is found to another sequence 

that has the species defined using proper methods. As long as morphology is very clear, it may 

be best to identify species using available dichotomous keys [6] with comparison of morphology 

with newly identified species. If there is a corresponding DNA sequence, then it can be added to 

databases with a complete identification. Using both methods can also find if a parasite in 

question is a novel morphospecies or parasite lineage [114, 115, 116, 117]. 

It is also highly beneficial and recommended to use a combination of molecular and 

microscopy methods to screen for parasites [97, 118, 73, 119, 111, 116, 120, 108] because they 

give the best estimate of prevalence. The results of this study support this recommendation, 

because had only microscopy been used, 51 infections (32 Haemoproteus /Plasmodium, 19 

Leucocytozoon) would have been missed and the prevalence would have been 34%. If only PCR 

had been used, twelve infections (eleven Haemoproteus /Plasmodium and one Leucocytozoon, 

all in 2011) would have been missed and prevalence would have been 53%. The prevalence was 

57% because both methods were used (Table 1.1).  
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DNA was possibly too overwhelming for the PCR to amplify enough parasitic DNA, 2) 

there may have been mismatched bases between the template and primer sequences and/or 3) the 

preserved parasite DNA on the filter paper was too degraded. The six most likely reasons for the 

51 false negatives via microscopy are 1) fixing and staining of slides produced less than optimal 

results (Figure 1.4a-b) making parasites difficult to discern, 2) insufficient fields of view were 

studied, 3) observer inexperience, 4) low parasite intensity 5) higher sensitivity of PCR methods 

and/or 6) there was no active blood infections (the sporozoites may have been injected and began 

the tissue phase of infection but then died in the resistant bird, leaving the DNA in the blood 

which is then detected up by PCR). Valkiūnas et al. [73] suspects that reasons 1, 2 and 3 for 

microscopy false negatives may best explain the low microscopy estimates in most studies. A 

benefit of microscopy is the absence of false positives.

b) a) Figure 1.4: Two examples of poorly 
fixed slides. 
(a) Haemoproteus 
(b) Leucocytozoon 
Black arrow= parasite 
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  Chapter 2

 

CHAPTER II 

STATISTICAL TRENDS OF BLOOD PARASITES (HAEMOSPORIDIA: 

HAEMOPROTEUS, PLASMODIUM AND LEUCOCYTOZOON) IN SONGBIRD 

PASSERINES FROM GRASSLANDS OF NORTHWEST MINNESOTA 

 

Introduction 

Most Haemosporidia studies that focus on blood parasite prevalence in wild bird 

populations report either the presence or absence of a variety of trends in the data. Trends that 

are commonly tested for are driven by parasite genus and time (temporal), space (spatial), bird 

species, sex, age and health in relation to the prevalence of blood parasites. Generally, 

discovering trends is not the main purpose of a study, but sometimes a study is actually designed 

to test for a specific trend.  

Occasionally, while reviewing other studies, it was difficult to decide whether I should 

report that there was a lack of a trend or not when significance was not tested for. For example, 

the author(s) may report that parasite prevalence in male and female birds was 57% and 51%, 

respectively but not provide statistical test results. In this case I would conclude that there was a 

trend of male biased parasitism. If another study found male and female parasite prevalence was 

57% and 49%, respectively and reported that statistical testing was not significant, I would have 

concluded that there was no difference in prevalence between sexes. For the vast majority of the 

studies I list as lacking a trend were place there because statistical testing concluded there was no 

significance, but had testing been done on some of the trends that I concluded were present may 

not be significant either. This situation occurred more frequently with less recent studies, 
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because it was less likely that the authors would have done statistical tests on the data. In 

general, trends from studies prior to 1980 are scarce. 

I found that when overall prevalence was used to test a trend, it would not be significant. 

The insignificance with overall prevalence was often caused by a trend of one genus cancelling 

out an opposing trend of another genus. For example, a theoretical avian population was sampled 

during spring and summer (Mar.-Aug.) and is infected primarily with Plasmodium and 

Leucocytozoon. Plasmodium prevalence becomes very high in the spring due to relapse/stress 

and Leucocytozoon prevalence becomes very high in the summer due to being infected at or near 

the study site during the sampling period. Considering both genera together, prevalence would be 

high each month, with no month being significantly higher than others. Testing the two genera 

separately, however, would show that Plasmodium is significantly more prevalent in the spring 

and prevalence of Leucocytozoon is significantly higher in the summer. 

Parasite Genera Trend 

Most studies report the prevalence of blood parasites by genus but they rarely statistically 

test for a trend to find out if the prevalence of one or more genus/genera is significantly different 

from the other(s) (exceptions: [83, 121, 122]). However, a main comment to make is that 

Haemoproteus is the most prevalent haemosporidian genus, both worldwide [123, 6] and in 

North America [77], a contrasting finding compared to the results of this study.  

Temporal Trends 

Months. Temporal trends are reported on quite often for studies that span several 

months. Studies usually find one of three temporal trends related to high Haemosporidia 

prevalence: highest early in the breeding season, Mar.-Jun. [124, 125, 82, 64, 126, 65, 127] or 

highest later in the breeding season, Jul.-Sept. [128, 129, 93, 130, 131, 91, 132], or they find both 
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peaks in the same study [78, 133, 63, 88, 134, 91]. The early peak is associated with a relapse of 

existing infections in after hatch year birds [125] caused by the stress of migration and/or 

reproduction efforts. The later peak is caused by adults and juveniles being infected at the 

collection sites during the study. Alternatively, Schrader et al. [134] had a different hypothesis 

for the cause of a later peak in woodpeckers; they suspect it was due to another relapse brought 

on by the stress of subsequent reproductive effort. Results always show that prevalence is lowest 

during the winter months. 

Freeman-Gallant et al.’s [135] study is most notable because they studied savannah 

sparrows in New York but found no significant difference in Plasmodium prevalence between 

collection months (May-Jul.). Very few other studies find that prevalence was not significantly 

higher during certain months or seasons [136, 137, 138]. 

Interestingly, several studies that identify haemosporidian infections in vectors by month 

found that the prevalence climbs higher later in the bird breeding season [37, 39, 42, 44, 45]. 

Atkinson’s [139] study is one of the few where there was no temporal trend because prevalence 

in southern Florida biting midges remained around 2% year round. 

Years. It is not uncommon for sample collection to span more than one year in which 

case there is the potential to have a significant prevalence difference between years, as has been 

found on occasion [133, 140, 67] but most authors found no significant difference [141, 136, 63, 

142, 129, 143, 88, 144, 145, 146] [94, 147, 21, 148].  

Few haemosporidian studies occur across several years, allowing determination of long 

term trends of regular (stable) or irregular (unstable) patterns to the oscillation of parasite 

prevalence. Bensch et al. [149] found that parasite prevalence was stable over a seventeen year 

period of monitoring parasites in a population of great reed warblers. Fallon et al.’s [138] study 
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found that parasite prevalence was generally stable over the course of a year and over a ten year 

period but after the ten years, only one lineage was gained at a study site and one was lost at 

another site.  

Spatial Trends 

Many researchers have more than one location from which samples are collected, 

allowing for statistical testing on parasite prevalence by site. Authors of studies with sites that 

are very similar and only vary by geographic location are usually interested in parasite 

prevalence of one or more bird species preferring that particular habitat; the presence or absence 

of a spatial trend (if it is tested for at all) generally is not a main purpose of the study. 

Geographically distant sites are more likely to display spatial trend. 

Only two studies that were not compilations were found that included Minnesota (MN) in 

spatial trend testing. Castle and Christensen [57] screened turkeys and found that Plasmodium 

and Haemoproteus prevalence was significantly higher in Wisconsin and MN compared to 

Michigan and Missouri. Pagenkopp et al. [94] sampled common yellowthroats across the USA 

and parts of Canada and grouped sample sites into five regions. Prevalence differed significantly 

between five regions: the north central region which includes MN had highest prevalence at 

78.47% (Plasmodium prevalence was very high but Haemoproteus and Leucocytozoon was very 

low). 

Other global studies found significant difference in prevalence between similar sampling 

sites (USA: [150, 91, 145]; Canada: [151]; North America: [135, 152]; Africa: [120, 153]; Spain: 

[154]; Lesser Antilles: [155, 156]; Phillippines: [121]; Brazil: [136]). Not unexpectedly, many 

studies that include sites of similar habitat do not find a significant spatial trend (Michigan: [93]; 
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Canada: [64]; Jamaica: [63]; Russia: [157]; Uganda: [158]; Australia: [159]; Australo-Papuan 

region: [160]) 

Spatial trends can get more complex because many studies are designed to show the 

presence or absence of a spatial trend by choosing sites with opposing characteristics (sometimes 

the sites still have a very similar habitat). Researchers have chosen sites at opposite sides of a 

country [161], urban and rural sites [162], natural and expanded ranges of a bird species [145, 

163], breeding and wintering grounds [164], low and high elevations [165, 166, 167, 168, 169, 

170, 171, 172, 148], deforested and undisturbed locations [173, 174], large and small habitat 

fragments [86, 175], tropical and temperate zones [176, 107], humid and dry forests [171], island 

and continental land [177, 178], and freshwater/inland and marine/coastal environments [179, 

180] for the main purpose of testing if there is any significant difference in parasite prevalence 

between the two types of collection sites. Not surprisingly, the vast majority of these studies did 

find a significant spatial trend.  

Bird Species Trends 

It is certainly possible that differences in prevalence between species will exist in a study 

that includes a large number of samples. Unfortunately, of the studies found that did test for this 

trend, less than half tested for significant differences between two or more species or subspecies 

[158, 145, 181, 81, 127]. Many other studies group species by higher taxonomic group (genus: 

[122]; family: [83, 182]) and test for differences in prevalence between these categories instead 

of by species. Others grouped their bird species based on diet [86, 175], feeding preference [82], 

habitat preference [171], ant following [183] or other characters, then test for differences 

between the groups. Catergorization creates difficulties for comparing results between studies 
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that sampled the same species as I did, because it is not possible to separate a category into 

individual species. 

Bird Sex Trends 

Due to differences between male and female birds, there is the possibility that one may be 

more susceptible to haemosporidian infection. Whether authors were looking at overall 

prevalence or each genus separately, some studies have found a trend of higher prevalence in 

females [125, 184, 185] and males [186, 127]. Even though it was not statistically significant, the 

most notable study found male biased parasitism in savannah sparrows infected with 

Plasmodium in Canada and New York [135]. Most studies find no significant difference in 

parasite prevalence or intensity between males and females [142, 93, 82, 137, 187, 188, 126, 

154, 88, 134] [189, 190, 86, 158, 159, 157, 191, 192, 91, 181] [120, 66, 193, 194]. 

It is generally well known that in vertebrates, females tend to have higher 

immunocompetence and be less parasitized than males [195, 196, 197]. The immunocompetence 

handicap hypothesis suggests that, among its other functions, high testostertone in males can 

actually cause immunosupporession [198, 199, 200, 201, 202] so males are less able to fight off 

parasitic infections. In birds, occurrence of female bias may be due to longer exposure of females 

to vectors while sitting on the nest [185]. Of the 30 studies referenced in the preceeding 

paragraph, eighteen provided enough information to determine whether one sex had a higher 

prevalence than the other (whether significant or not). Seven found male bias while nine found 

female bias and two found that the sexes had the same prevalence. Perhaps it was due to chance 

that the split was nearly even but maybe for birds in general, the added prevalence in females due 

to exposure on the nest equals the addition in males due to immunosuppression. 
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Bird Age Trends 

The age of a bird may also affect whether or not it is likely to have a parasitic infection. 

Fourteen studies found that for at least one parasite genus, older birds tend to have higher 

prevalence [78, 133, 184, 82, 64, 203, 126, 154, 204, 88] [179, 157, 205, 186], while only two 

found that juvenile birds have higher prevalence [80, 191]. Thirteen other studies found no 

significant difference in prevalence between age classes [141, 137, 187, 188, 189, 131, 65, 190, 

152, 86] [158, 159, 91]. It was rather surprising to find how many studies reported no significant 

difference. The studies that found infections to be very low or absent in juveniles but also very 

low in adults are not the surprising ones. The remarkable ones are those that reported high 

prevalence is adults and high prevalence in juveniles. This would indicate a high level of active 

transmission, most notably in juveniles.  

Higher prevalences in older birds could be caused by relapse of existing infections and/or 

the result of cumulative years of exposure [125, 206, 6] while higher prevalences in younger 

birds may be caused by them being more susceptible to acquiring parasites due to more exposure 

to vectors as nestlings and/or lack of immunity [207, 208, 25, 209]. For juveniles to have higher 

infection prevalence, however, greatly depends on whether they are in an area with infective 

vectors. 

Bird Health Trends 

Many studies have found a significant negative or positive correlation between 

haemosporidian infections and a variety of different measures of health. Some of the most 

common measurements of health are body condition, body mass, reproductive success (# of eggs 

laid, egg volume, laying date, fledgling success etc), male plumage color, bird survival and 

immune functions. Though health trends are an important part of research into the effects of 
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blood parasites on birds, health measurements were not taken for the current study so 

unfortunately it will not be discussed further  

Materials and Methods 

At this point, all field data had been collected for each sample such as the study site, 

month and year of collection, species, sex and/or age of bird, if determined. Lab data had also 

been collected. Of the 95 infections that were identified to genus, 14 were Haemoproteus, 40 

were Plasmodium and 41 were Leucocytozoon. 

A two-column dataset was created using Microsoft Excel in CSV format in order to test 

for a parasite genera trend using the 95 infections identified to genus. The first column was the 

dependent variable (categories= infected and uninfected), which indicates the status of the 95 

infections for each category (Haemoproteus, Plasmodium and Leucocytozoon) of the 

independent variable (parasite genus) in column two for a total of 285 rows of data. The dataset 

was loaded into the R program [210] and a Pearson’s chi-squared (χ2) test was performed on a 

contingency table of the data (Table 2.1). The resulting p-value was significant (< 0.05), so the 

data was subdivided and retested [211] (pp. 466-467). This was done by studying Table 2.1 to 

identify the independent variable category that most differed from the values in the other 

categories (Haemoproteus was the obvious choice). The Haemoproteus category and its 

associated dependent variable information were removed from the dataset and a χ2 test was run 

on the remaining dataset. The R program automatically determined that Yates Correction for 

Continuity was needed since there were only two categories left in the independent variable. As 

expected, the resulting p-value was not significant (> 0.05), so all the data about Haemoproteus 

was put back into the dataset exactly as it was before and all other independent variable 

categories (Plasmodium and Leucocytozoon) were combined into one category by changing the 
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names to ‘Other’. The dataset was once again loaded into the R program and a χ2 test was run 

(Yates Correction for Continuity was once again automatically applied). The resulting p-value 

was significant, so the category that caused the significance in the first χ2 test was identified as 

Haemoproteus. 

Testing for the other trends was done just slightly differently. For these tests, there are 

five dependent variables (categories= yes and no): Infected with Haemoproteus /Plasmodium, 

Infected with Haemoproteus, Infected with Plasmodium, Infected with Leucocytozoon and Dual 

Infected (infected with more than one genus). The dependent variable called Infected with 

Haemoproteus/Plasmodium exists because it contains sixteen additional infections that were 

caused by either Haemoproteus or Plasmodium but the exact genus could not be determined due 

to multiple base callings in the sequence (n= 5) or complete lack of sequence (n= 11) caused by 

molecular false negatives. The five independent variables are Month (categories= May, Jun., Jul., 

Aug. and Sept.), Year (categories= 2009, 2010 and 2011), Study Site (categories= the 5 study 

sites), Species (categories= SAVS, CCSP and BOBO) and Sex/Age (categories= adult male, 

adult female and juvenile). 

Again, datasets were created using Microsoft Excel in CSV format. Month, Year and 

Study Site refer to when (temporal) and where (spatial) birds were sampled and a dataset of these 

variables was created using all samples (n=150). Another dataset was created for the Species 

variable and consists of savannah sparrow (SAVS), bobolink (BOBO) and clay-colored sparrow 

(CCSP) samples (n=73, 32 and 17, respectively) since these species were sampled most. The 

third dataset was made for the variable Sex/Age which consists of only bobolink samples (n=32) 

since only this species was categorized based on sex and/or age.  
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Each sample could only belong to one category of each independent variable but may 

belong to more than one dependent variable (if infected with more than one genus). For example, 

bird # 23 that was captured in June 2010 at study site three was an adult male bobolink and was 

determined to be infected with Plasmodium and Leucocytozoon. Bobolink samples are included 

in all three of the datasets and based off of the prevalence data it is determined that this sample is 

to be assigned to four of the five dependent variables: Infected with Haemoproteus/Plasmodium, 

Infected with Plasmodium, Infected with Leucocytozoon and Dual Infected. Based on the 

information about this bird above, it was assigned to one category for each independent variable 

as follows: Sex/Age= Adult Male, Study Site= 3, Year= 2010, Month= Jun., Species= BOBO. 

Each infected sample was evaluated in this fashion until all were assigned to appropriate 

variables and categories. Table 2.2 was created as a visual aid that sums up the dependent and 

independent variable information in the datasets. Each of the three datasets was loaded in the R 

program and the five independent variables were tested against the five dependent variables (25 

initial tests total) using contingency tables. The tests were done using the Pearson’s chi-squared 

(χ2) test or Fisher’s exact test when appropriate. 

The Pearson’s chi-square test is applicable for circumstances where the sample size (n) is 

≥ 10, the number of categories (k) in the independent variable is ≥ 3 and n2/k  ≥ 10 [211]. The 

Fisher’s Exact Test is appropriate when the dataset does not conform to the aforementioned 

conditions (i.e. there are too few samples or categories). The Pearson’s chi-square test would 

have been applicable for all 25 tests but the Fisher’s exact test was used for the five Month and 

five Year tests because the sample size was so low for September (n=5) and 2009 (n=6), 

respectively. A result was determined to be significant if the p-value was < 0.05. The null 
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hypothesis is that there is no significant difference between the observed and expected values in 

the categories of the independent variables. 

To test which category(ies) of the independent variables caused the significant p-values 

(which results in rejection of the null hypothesis), the data was subdivided and retested [211] 

(pp. 466-467). This was done by studying Table 2.2 to identify the category(ies) that appeared to 

differ the most from the values in the other categories. The category that differed most was 

removed from the dataset and the appropriate statistical test was run in the R program on the 

remaining dataset. Again, the R program automatically determined whether Yates Correction for 

Continuity was needed for independent variables (Sex/Age and Species) that were left with 2 

categories. As long as the resulting p-value was not significant, the category that was removed 

was put back into the dataset exactly as it was before and all other independent variable 

categories were combined into one category by changing the names to ‘Other’. The dataset was 

tested again. If the resulting p-value was significant, it can be determined that the category that 

was subdivided from the rest of the data was causing the original significant result. If 

subdividing the data did not produce either a non-significant or significant result where needed, a 

different category was used to subdivide the dataset or a second category was chosen to 

subdivide the dataset and the appropriate statistical tests were run again in the R program until 

the significant category(ies) were identified. 

Results 

A contingency table of the prevalences for the three haemosporidian genera is shown in 

Table 2.1. There was a significant difference in prevalence between the three genera (χ2 = 22.2, 

df = 2, P < 0.0001). Haemoproteus was removed and the dataset retested (Yates χ2 = 0, df = 1, P 

= 1) then put back in the dataset and all other categories were combined together and retested  
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 (Yates χ2 = 20.9388, df = 1, P < 0.0001). This shows that the original significance was caused 

by Haemoproteus infections being significantly lower than that of Plasmodium or 

Leucocytozoon. 

 
Table 2.1: Contingency table showing the infected and uninfected status of 95 infections for 
each parasite genus. 

 Haemoproteus Plasmodium Leucocytozoon Totals 
Infected 14 40 41 95 
Uninfected 81 55 54 190 
Totals 95 95 95 285 

 

Table 2.2 shows the numbers and percentages of Haemoproteus, Plasmodium, 

Leucocytozoon and dual infections found in each month and year, at each study site, in the three 

most sampled bird species and in different sex/age classes of bobolinks. 

Table 2.3 shows the p-values for the initial statistical tests on the datasets. There were no 

significant differences in parasite prevalence between years or study sites. The independent 

variables called Month, Species and Sex/Age all produced two significant p-values each so the 

null hypothesis was rejected in these six cases. Rejection indicates that the observed value of one 

or more categories of each dependent variable was significantly different from what was to be 

expected. 

The p-value results after subdividing the data are shown in Table 2.4. The subsequent 

conclusions are made based on this table. Clay-colored sparrows had significantly higher 

Haemoproteus/Plasmodium infections than bobolinks or savannah sparrows. High infection in 

clay-colored sparrows was driven by the significantly high infection rate of Haemoproteus in 

clay-colored sparrows. Adult male bobolinks had significantly higher Leucocytozoon and dual 

infections than either adult female or juvenile bobolinks. Haemoproteus/Plasmodium infections  
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Table 2.2: The number of samples belonging to each dependent and independent variable. 
Percentages of samples follow in parentheses. 
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Montha       
 May 18 13 (72%) 4 (22) 7 (39) 4 (22) 4 (22) 

 Jun. 61 41 (67) 8 (13) 20 (33) 23 (38) 17 (28) 

 Jul. 34 8 (24) 1 (3) 6 (18) 9 (26) 3 (9) 

 Aug. 32 8 (25) 1 (3) 7 (22) 5 (16) 2 (6) 

 Sept. 5      

Yeara       
 2009 6 1 (17)  1 (17) 3 (50) 1 (17) 

 2010 68 35 (51) 10 (15) 23 (34) 18 (26) 10 (15) 

 2011 76 34 (45) 4 (5) 16 (21) 20 (26) 15 (20) 

Study Sitea       

 1 24 12 (50) 4 (17) 6 (25) 6 (25) 4 (17) 

 2 36 17 (47) 2 (6) 12 (33) 9 (25) 6 (17) 

 3 22 12 (55) 1 (5) 7 (32) 11 (5) 7 (32) 

 4 19 12 (63) 4 (21) 5 (26) 4 (21) 3 (16) 

 5 49 17 (35) 3 (6) 10 (20) 11 (22) 6 (12) 

Bird Speciesb       
 SAVS 73 37 (51) 4 (5) 25 (34) 23 (32) 16 (22) 

 BOBO 32 11 (34)  7 (22) 10 (31) 5 (16) 

 CCSP 17 14 (82) 8 (47) 4 (24) 5 (29) 4 (24) 

Sex/Agec       
 Adult Male 14 6 (43)  4 (29) 9 (64) 5 (36) 

 Adult Female 9 3 (33)  1 (11) 1 (11)  

 Juvenile 9 2 (22)  2 (22)   
a= Includes all 150 samples 
b= Includes only the 3 most sampled bird species 
c= Includes only the 32 bobolink samples 
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Table 2.3: P-values of initial statistical tests. The unshaded cells contain p-value results from Pearson’s 
chi-squared tests and shaded cells contain p-value results from Fisher’s exact test. 

 
Montha Yeara Study Sitea Speciesb Sex/Agec 

Infected with H./P. < 0.0001* 0.2593 0.2346 0.0060* 0.5945 

Infected with H. 0.1025 0.1763 0.1706 < 0.0001* 0.4578 

Infected with P. 0.2153 0.1812 0.7112 0.3722 0.6132 

Infected with L. 0.1278 0.4932 0.1456 0.9859 0.0016* 

Dual Infected 0.0357* 0.7466 0.3852 0.7216 0.0222* 

* indicates a significant p-value.  
a= includes all 150 samples, b= includes 73 SAVS, 32 BOBO and 17 CCSP samples, c= includes 32 
BOBO samples. 
 

Table 2.4: P-values for the chi-squared tests run on the subdivided data. A superscript of 
either 1, 2, 3 or 4 after each p-value indicates the category(ies) used to subdivide the 
dataset (see list below). The top p-values were calculated after the category(ies) used to 
subdivide the data was removed from the dataset completely. The bottom p-value were 
calculated after the category(ies) were put back in the dataset and all other category 
names changed to ‘Other’. 

 Month Species Sex/Age 

Infected with H./P. 
0.742 1 
1.319e-07 *, 1 

0.183 3 
0.01103 *, 3 

 

Infected with H.  
0.4258 3 
3.118e-07 *, 3 

 

Infected with L.   
1 4 
0.001518 *, 4 

Dual Infected 
0.3316 2 
0.009255 *,  2 

 
1 4 
0.02323 *, 4 

* = significant p-value 
1 = May and Jun. categories used to subdivide dataset 
2 = Jun. category used to subdivide dataset 
3 = CCSP category used to subdivide dataset 
4 = Adult Male category used to subdivide dataset 

 

were significant higher in May and Jun. compared to Jul., Aug. and Sept. Dual infections were 

significantly higher in Jun. compared to all other collection months. 

Discussion 

Parasite Genera Trend 

There was a significant difference in prevalence between the parasite genera in this study 

(the number of Haemoproteus infections [n=14] was significantly lower than Plasmodium 
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[n=40] and Leucocytozoon ([n=41]) but since there are so few studies to compare against that do 

this statistical test, I decided to look at prevalence by genus for other studies in two different 

ways. 

Hundreds of studies on avian Haemosporidia worldwide had been compiled as references 

for this current study (biased toward USA studies). Table 2.5 was created with 69 of those 

studies that screened for all three genera (67 other studies were eliminated as references for the 

table due to various reasons). For each of the 69 studies, the prevalence of the genera was ranked 

from highest to lowest and the study was referenced in one of the six rankings in Table 2.5. 

Haemoproteus was the most prevalent genus for 45% (31/69) of the studies while Plasmodium 

and Leucocytozoon were most prevalent in 25% (17/69) and 30% (21/69) of the studies, 

respectively.  

Though Haemoproteus was by far the most prevalent genus worldwide (concurred by 

[123, 6]), it was the least prevalent genus in this current study. In fact, based on the infections 

that were identified to genus, this study would belong in the rank of Leucocytozoon > 

Plasmodium > Haemoproteus, the least common one with only six other studies. It is worth 

noting that there are sixteen additional infections that were either Plasmodium or Haemoproteus. 

Had these infections been identified to genus, it is almost certain that the number of Plasmodium 

infections would have surpassed that of Leucocytozoon, placing this study in the rank of 

Plasmodium > Leucocytozoon > Haemoproteus instead, the second least common rank with only 

seven other studies. I did not expect to find that, of the twenty studies that sampled birds strictly 

in the USA, 85% (17/20) of them fell into two rankings (Haemoproteus > Plasmodium > 

Leucocytozoon and Leucocytozoon > Haemoproteus > Plasmodium); this study does not fall in 

either one. Thus, based on the large scale, the results presented here appear to be unusual. 
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Table 2.5: All combinations of highest to lowest rankings of parasite prevalence by genus. Studies compiled as 
references for the current study were placed in the appropriate ranking in the table according to their prevalence 
results. The geographic location and bird group was also recorded in the table for each study. The gray highlight 
indicates a study using only birds sampled in the USA. 

Rank of 
prevalence 
by genus 

Continent/Region/ Country Bird Group Reference 

P.>H.>L.* USA Passeriformes [161] (found no L) 
North America Passeriformes [94] 
Galapogos Passeriformes [109] (found no L) 
Nigeria Non-Passeriformes [212] 
Japan Passeriformes + others [213] (found no L) 
Colombia Passeriformes + others [177] 
Colombia Passeriformes + others [214] 
Africa Passeriformes + others [144] 
Europe Passeriformes [110] (found no L) 
West Africa Passeriformes + others [215] 

P.>L.>H. Canada Passeriformes [130] 
Russia Passeriformes [157] (found no H) 
Bulgaria Passeriformes + others [189] 
Spain Passeriformes [188](found no H) 
Switzerland Passeriformes [148] 
Japan Passeriformes + others [47] 
Azores Passeriformes [178] 

H.>P.>L. USA Passeriformes [81] 
USA Passeriformes [147] 
USA Passeriformes [91] (found no L) 
USA Passeriformes [88] (found no L) 
USA Passeriformes [85] 
USA Passeriformes [84](found no L) 
USA Passeriformes + others [216] 
USA Passeriformes + others [79] 
USA Non-Passeriformes [217](found no L) 
USA Non-Passeriformes [57] 
Canada Non-Passeriformes [142] 
Costa Rica Passeriformes + others [218] 
Colombia Passeriformes + others [219] (found no L) 
Jamaica Passeriformes + others [63] 
Brazil Passeriformes + others [136] 
Bulgaria Passeriformes [127] (found no L) 
Czech Republic Passeriformes [46] 
Subantarctic and tropical sites Non-Passeriformes [3] (found no L) 

Europe and Africa 
Passeriformes for sure but not sure 
   about other orders 

[164] 

Israel Passeriformes + others [220] 

H.>L.>P. USA Passeriformes + others [83] 
Canada Non-Passeriformes [221] 
Iran Non-Passeriformes [222] (found no P) 
Madagascar Passeriformes + others [171] 
Denmark Passeriformes [140] (found no P) 
Curonian Spit Passeriformes [190] 
Japan Passeriformes + others [143] 
Spain Passeriformes [223] 
Finland Passeriformes [187] (found no P) 
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Table 2.5: cont. 

Rank of 
prevalence 
by genus 

Continent/Region/ Country Bird Group Reference 

H.>L.>P., 
cont. 

France Passeriformes + others [129] 

Philippines Passeriformes + others [182] 

L.>P.>H. USA Non-Passeriformes [131] (found no H) 
Europe, Africa, North America Passeriformes + others [73] 
Canada Passeriformes [64] 
Uganda Passeriformes + others [158] 
Africa Passerines [174] 
Japan Passeriformes + others [66] 

L.>H.>P. USA Passeriformes [82] 
USA Passeriformes [224] (found no P) 
USA Passeriformes + others [80] 
USA Non-Passeriformes [225] (found no P) 
USA Non-Passeriformes [226] (found no P) 
USA Non-Passeriformes [227] 
USA Non-Passeriformes [95] (found no P) 
Europe, USA and Africa Non-Passeriformes [145] 
Canada Passeriformes [228] (found no P) 
Canada Passeriformes + others [78] 
Canada Non-Passeriformes [184] (found no P) 
Canada Non-Passeriformes [141] 
Spain Passeriformes + others [229] 
Spain Non-Passeriformes [194] 
Europe Passeriformes [126] 

* P. = Plasmodium, H. = Haemoproteus, L. = Leucocytozoon 

Parasite genera trends were also compared on a smaller scale by creating Figure 2.1 using 

36 studies on birds from the contiguous USA (citations provided in Appendix A). For each 

study, prevalence results (the number of infected birds/number of birds sampled) were separated 

by parasite genus then separated further based on which state(s) the birds were from. Two tables 

were made with this information (Appendix A). For each cell of the table with results from more 

than one study, the data were added together.  

Figure 2.1 presents a pictographic version of the table by showing the proportion that 

each of the 3 genera comprise of the total infections for 34 states. The proportion of the 

infections caused by Haemoproteus, Plasmodium and Leucocytozoon in the current study is also 

shown and is most similar to the proportions in Minnesota (MN) but Haemoproteus was higher  
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Figure 2.1: A map of the contiguous USA 

showing the combined Haemosporidia 

prevalence results of 36 previous works 

for 34 states. 
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and Plasmodium lower in MN by comparison. Missouri was the second closest match. This 

indicates that although Table 2.5 shows a marked difference in the parasite genera trend in this 

study compared to the larger scale (worldwide and USA), perhaps the prevalence for each genus 

in this study is not unusual for the midwest. 

Temporal Trends 

The temporal trends in this study were not a surprise having read what other authors have 

found. Haemoproteus/Plasmodium prevalence being highest early in the breeding season 

(average of 69.72% between May and Jun. in this study) compared to later (average of 16.18% 

between Jul.-Sept.) is a common trend. An accepted explanation for this trend is that many birds 

have a relapse of their chronic infections after the stress of migrating to the breeding grounds 

[78, 125] and the stress of reproductive efforts. This makes it easier to come across the parasites 

during screening but also shows that the lower prevalence later in the season is likely caused by 

missing infections in birds that have recovered from the relapse. This relapse could also increase 

the chances that the parasites will be spread at the breeding site after migration. This may be 

especially true for Plasmodium parasites as this study confirmed that this genus undergoes active 

transmission within the study area. Since a peak in prevalence later in the breeding season is 

usually caused by active transmission, especially for juveniles, its absence in this study is likely 

due to sampling so few juveniles and/or not many birds got infected at the sampling sites during 

the study. 

Haemoproteus and Plasmodium prevalences by themselves were not significantly 

different by month though prevalence was highest in May (22.22%) and Jun. (38.89%), 

respectively. Prevalence of one or both of the genera separately may have been significant had 

there been a larger sample size or genus-specific primers been used. 
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Leucocytozoon showed no significant difference in prevalence between collection months 

though it was highest in June (37.70%). The lack of significance may be due to the absence of a 

possible relapse, so the chance of finding the infections through screening is not significantly 

different no matter which month the blood was collected. Based on my observations, 

Leucocytozoon parasites are easier to find than Haemoproteus or Plasmodium, so even if 

Leucocytozoon does undergo relapse, the chance of finding the infection may not change 

significantly from month to month.  

Dual infections were significantly higher in June (27.87%) than any other collection 

month. This observation is probably a consequence of the prevalence for each genera being 

highest or second highest during this month.  

The temporal trend that looked at differences in prevalence between collections years was 

never significant. This lack of significance can be interpreted as a good sign. It could indicate 

that the dynamics of hosts-parasites-vectors are temporally stable between years within the study 

area. Sample sizes per year were quite low in this study, especially for 2009, so it is possible that 

even if a significant trend was present the sample sizes were too low to accurately represent it. 

An important reason for surveying Haemosporidia for several years is to detect 

introductions of novel parasite species that easily infects hosts and vectors, and to document if 

that species or genus would quickly increase in prevalence in successive years. A decrease in 

prevalence in years could be caused by decrease in precipitation. 

Spatial Trends 

There was no significant difference in prevalences between the study sites. This was not a 

surprise because the five sites were very similar habitats and only spanned three counties. Study 

sites 1 and 3 were the furthest away from each other, at about 31 miles in a straight line. I doubt 
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there would have been a difference even if the sample sizes were larger at each site. There 

probably would have only been a significant difference if very similar habitats were chosen 

between several states. 

Essentially, the presence of spatial trends among very similar habitats are caused by 

variations in compositions of vector families and bird species at each site resulting from 

uncontrollable variables (rainfall, temperature, humidity etc), the differences between which get 

more substantial with increased distance. It would have been interesting to know if there could 

have been a difference in prevalence between sites that are not similar in habitat; perhaps the 

prevalence of Haemosporidia would have been different between forest and grassland sites if 

samples had also been collected from birds at forest sites within the same study area. 

Bird Species Trends 

Trends of prevalence by bird species are likely caused by the susceptibility of a bird 

species to infection and the exposure of the birds to infective vectors. Of the three species that 

were sampled most often, clay-colored sparrows had significantly more Haemoproteus infections 

than bobolinks or savannah sparrows. It is unknown exactly what is causing this trend but it is 

possible that clay-colored sparrows have more exposure to Haemoproteus. It can be assumed that 

if the birds were being infected with Haemoproteus primarily at the breeding grounds, then there 

would not be a significant difference in prevalence for this genus, so clay-colored sparrows are 

most likely getting infected at the wintering grounds. As shown in Figure 2.1a the wintering 

grounds of clay-colored sparrows are concentrated in Mexico so perhaps this is an area where 

active transmission is occurring via biting midges and/or hippoboscid flies. Savannah sparrows 

winter distribution (Figure 2.1b) does overlap that of clay-colored sparrows but it is also much 

more widespread. Perhaps the savannah sparrows that breed in northwest MN do not winter in  
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Figure 2.2: Distribution maps of the three most sampled bird species [87].  
(a) Clay-colored sparrows 
(b) Savannah sparrows 
(c) Bobolinks 

 

Mexico but a different area where competent vectors are limited. Even if savannah sparrows and 

clay-colored sparrows from northwest MN do winter in the same geographic location they may 

prefer habitats that are just different enough for savannah sparrows to limit exposure to 

Haemoproteus vectors. Bobolinks wintering grounds (Figure 2.2c) are very different as they 

migrate much further south to South America, some as far as the Galapagos Islands. No 

infections were identified as Haemoproteus in bobolinks, so perhaps they are least exposed to 

these parasites. 

It may also be possible that clay-colored sparrows are more susceptible to Haemoproteus 

or perhaps the high infection rate can be partially explained by high parasitemia. Even if clay-

colored sparrows, savannah sparrows and bobolinks are equally exposed to Haemoproteus, there  

a) b) c) 
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is the chance that this genus causes infection much easier in clay-colored sparrows and/or 

savannah sparrows and bobolinks are not as competent of a host. A trend that became obvious 

during slide screening is the parasitemia in clay-colored sparrows was much higher on average 

than in any other bird species. It was not uncommon to see two to four Haemoproteus parasites 

per field of view in blood smears of clay-colored sparrows (Figure 2.3). This trend of high 

parasitemia by Haemoproteus compared to Plasmodium and/or Leucocytozoon is a common one 

[80, 122, 177, 163, 144, 190]. Studies by Murata [143] and Kirkpatrick and Suthers [82] were the 

only exceptions found. 

Bird Sex/Age Trends 

Adult male bobolinks had significantly more Leucocytozoon and dual infections than 

adult females or juveniles. They also had a higher prevalence of Haemoproteus and Plasmodium 

though it was not significant. Sample size was low so it is very possible that a higher sample size 

would have produced different results. If this is indeed an accurate representation of the trend for 

bobolinks in the study area, then this could be due to the appearance of the adult males being 

different from adult females or juveniles. Figure 2.4 shows the coloration differences between 

breeding adult males (Figure 2.4a) and females (Figure 2.4b) and juveniles (Figure 2.4c). 

Nonbreeding adult males look like females at the wintering grounds, so if black flies are 

Figure 2.3: Example of high parasitemia 
in a blood smear from a clay-colored 
sparrow. Four erythrocytes are infected 
with Haemoproteus in this field of view. 
Black arrow = parasite 
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preferentially feeding on adult male bobolinks based on color then they must be doing so at the 

breeding grounds where sexual dimorphism is obvious. Though the current study did not 

demonstrate active transmission of Leucocytozoon, one study did after screening bald eagles 

from MN [56]. 

    
 

 

The behavioral differences between age and sex classes of bobolinks may also be to 

blame for the higher prevalences in males. During the breeding season, the polygymous males 

compete vigorously for the best terrirory that attracts the most females. They are usually much 

more visible than females or juveniles, perching on the tallest vegetation and flying short 

distances frequently, while the polyandrous females build nests. The juveniles obviously had less 

than one breeding season of exposure to vectors so it is not surprising that parasite prevalence 

was low. 

Figure 2.4: Variations in physical 
characteristics of bobolinks. 
(a) adult male 
(b) adult female 
(c) juvenile 
 

c) 

b) a) 
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  Chapter 3

 

CHAPTER III 

PHYLOGENETICS OF BLOOD PARASITES (HAEMOSPORIDIA: HAEMOPROTEUS, 

PLASMODIUM AND LEUCOCYTOZOON) IN SONGBIRD PASSERINES FROM 

GRASSLANDS OF NORTHWEST MINNESOTA 

 
Introduction 

Pre-molecular Phylogeny 

The earliest phylogenies of Haemosporidia were primarily created using vector 

competency, life history traits and/or morphological data from microscopy prior to the 1990s. 

These original methods helped to determine how to classify the different apicomplexan parasites 

taxonomically. The Haemoproteus, Plasmodium and Leucocytozoon genera were all established 

by the late 1800s and the characteristics used to classify parasites into these genera have changed 

very little. The various subgenera of Haemoproteus (n=2), avian Plasmodium (n=5) and 

Leucocytozoon (n=2), were established between 1890 and 1997 using non-molecular methods 

[6]. Several other original phylogenetic goals regarding haemosporidian genera and species were 

to define their origins and relatedness and determine which are ancestral. A simplified tree is 

shown in Figure 3.1a to illustrate the classic idea of Haemosporidia phylogeny. The addition of 

molecular data has helped to alter and clarify this original phylogeny and determine whether 

current naming conventions for genera and subgenera are supported. 

Phylogeny Based on Molecular Data 

The earliest phylogenies on Haemosporidia that included molecular data were produced 

in the 1990s and were based on DNA sourced primarily from ribosomes (rDNA) [230, 28, 27, 
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26] and the circumsporozoite protein gene [231]. Plasmodium sequences from humans, primates, 

rodents and birds (only two sequences) were available at the time (no Haemoproteus or 

Leucocytozoon infections had been sequenced). One interesting debate that came about due to 

early molecular phylogeny was the relationship of the two avian Plasmodium sequences to P. 

falciparum, which infects humans. One study concluded that P. falciparum and avian 

Plasmodium shared a recent common ancestor [28] while another found that they share a much 

more distant common ancestor [27]. 

By 1998, rDNA proved to be inadequate for constructing Haemosporidia phylogeny. 

Attention instead turned to DNA sourced from the mitochondria, mt-DNA [232]. Some evidence 

suggests that mt-DNA lineages may be reproductively distinct and therefore a better source for 

phylogenetic analysis at this taxonomic level [233]. In 2000, Bensch et al. [30], published 

primers designed to screen for a fragment of a highly diverse mitochondrial gene called 

cytochrome b (mt-cytb) from avian Haemoproteus and Plasmodium. Many other authors 

followed suit with new primers for a wide variety of RNA and DNA fragments. By 2004, 

Hellgren et al. [31] designed primers to amplify a homologous fragment of Leucocytozoon, 

allowing simultaneous phylogenetic analysis with all three genera. Today, dozens of primer pairs 

exists to amplify RNA or DNA fragments of one, two or all three target genera infecting avians 

and some primer pairs will also amplify other Haemosporidia genera such as Hepatocystis, 

Nycteria and Polychromophilus; all are useful in obtaining sequences to be used in phylogeny. A 

fragment of the mt-cytb gene was obtained from avian Haemosporidia infections found in the 

current study and phylogenetic analyses were used to find the relationships between all of the 

infections. 
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Comprehensive Molecular Phylogenies 

Three of the most comprehensive phylogenetic studies analyzed sequences from three of 

the major Haemosporidia genera: Hepatocystis (mammal hosts), Haemoproteus (bird and lizard 

hosts) and Plasmodium (mammal, bird and lizard hosts). Perkins and Schall (2002) [234] 

analyzed the mt-cytb gene and the tree they created was rooted with Theileria annulata. The two 

included Leucocytozoon sequences were found to be basal in the tree as a close sister outgroup to 

the ingroup. Martinsen et al. (2008) [235] (who analyzed mt-cytb and three other genes from 

more samples) used Leucocytozoon both as the outgroup and to root the tree. Outlaw and 

Ricklefs (2011) [236] analyzed the same data as Martinsen et al., [235] using an alternate rooting 

method.  

Simplified versions of the three comprehensive phylogenies are shown in Figure 3.1b-d. 

In Figure 3.1c-d, the two subgenera of Haemoproteus (Parahaemoproteus and Haemoproteus: 

Kruse, 1890) are phylogenetically distinct. These subgenera are found between Plasmodium and 

Leucocytozoon, and of the two subgenera, H. Parahaemoproteus (which was found in the current 

study) is more closely related to Plasmodium in birds. 

Figure 3.1b-c indicates that Plasmodium is not monophyletic due to Hepatocystis being 

found within the genus (the location of Hepatocystis was not specified by Outlaw and Ricklefs 

[236] for Figure 3.1d). In all three comprehensive phylogenies, Plasmodium is divided into two 

clades based on vertebrate hosts (one clade with mammal hosts and the other with lizard/bird 

hosts).  

Evidence has been mounting that suggests there is a need for a revision of Haemospordia 

taxonomy. Specifically, there has been a request for reassignment of bird and reptile 
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Haemosporidia that are currently considered to belong to Plasmodium [236, 237], since 

Plasmodium is not monophyletic and clearly forms separate clades, divided by vertebrate hosts. 

 
Figure 3.1: Four hypotheses for phylogenies of several haemosporidian genera with the vertebrate hosts they infect 
noted. The trees are (a) based on classic life history traits and morphology, (b) based on analysis of one gene and the 
originally published tree was rooted with Theileria annulata [234], (c) based on analysis of four genes and 
Leucocytozoon was used as an outgroup and to root the tree [235] and (d) based on the same data that [235] used, 
except the data was analyzed using an outgroup-free rooting method [236]. Plas= Plasmodium, Haem= 
Haemoproteus (genus or subgenus), Para= Parahaemoproteus (Haemoproteus subgenus), Hep= Hepatocystis, 
Leuco= Leucocytozoon, M= mammals, B= birds, L= lizards. 

 

Most malaria trees contain an outgroup from the genus Leucocytozoon, which is closely 

related to, but not usually considered to be one of the malaria genera, since Leucocytozoon 

gametocytes lack hemozoin and meronts are not present in the blood of the vertebrate host. 

Because of this, together with a high divergence rate, Leucocytozoon is often assumed to be 

ancestral to Hepatocystis, Haemoproteus and Plasmodium. 

However, the notion that Leucocytozoon is the ancestral genus and therefore represents a 

good outgroup is controversial. Using the same data as Martinsen et al., [235], Outlaw and 

Ricklefs (2011) [236] created a tree of Haemosporidia that infers the root based on the data 

provided [238] rather than establishing a priori by specifying Leucocytozoon as the root and/or 

outgroup. A simplified version of their tree is shown in Figure 3.1d and it suggests that 

Leucocytozoon is actually the most derived genus and is a sister group to Haemoproteus while 

Plasmodium is ancestral to both (species infecting mammals being most ancestral). This is the 

opposite tree configuration from what was previously found.  
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If the interpretation by Outlaw and Ricklefs [236] is correct, it implies that the two 

important traits of merogony in blood and hemozoin production are primitive; i.e. these traits 

evolved once in Haemosporidia and were then subsequently lost in some genera. Plasmodium 

and Haemoproteus both retain the hemozoin trait, only Plasmodium retains the merogony trait 

and Leucocytozoon, as the most derived genus, has lost both traits. Plasmodium retains the 

merogony trait; this assertion was the basis for creating this genus when merogony in blood was 

considered a recent acquisition to Haemosporidia. It remains to be seen which theory of 

Haemosporidia evolution is correct (whether Leucocytozoon is the ancestral or derived genus). 

The controversy of which haemosporidian genus is ancestral, where the root of the 

phylogenetic trees should be placed and which genus should be used as the outgroup is why an 

outgroup was not specified for the phylogenies in the current study and the resulting trees were 

unrooted. 

Missing Phylogenetic Information 

Phylogenetic parameters that are still lacking are: 1) a molecular clock for Haemosporidia 

and 2) rates of extinction for Haemosporidia [239]. Thus, these parameters were not specified 

while performing phylogenetic analyses in the current study. The problem in determining these 

parameters is the lack of fossil DNA. There are only two existing fossil records; 

Paleohaemoproteus from a biting midge preserved in 100 million year old (myo) amber [240] 

and Plasmodium from a Culex mosquito preserved in 35 myo amber [241]. Unfortunately, it is 

not conclusive whether these fossils can be used as a calibration point to define the clock or 

extinction rate for avian malaria since present-day Plasmodium is not monophyletic [236].  

Using cospeciation to find the clock and extinction rate has been shown to be a poor 

method. For example, it was previously assumed that when humans split from chimpanzees 4-7 
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mya, P. falciparum and P. reichenowi (which differ by 3.3% in the cyt b gene) cospeciated 

respectively [232, 27, 231, 242]. This idea that the two species diverged at the same time as their 

hosts 4-7 mya was used as the calibration point for the molecular clock. This was challenged by 

the recent discovery that P. falciparum actually falls within the clade of gorilla Plasmodium 

[243] instead of within the clade containing other species of human malaria (e.g. P. vivax, P. 

ovale and P. malariae). Similar approaches have been tried with malaria in other animals, but 

using cospeciation to determine the parameter settings has not been helpful thus far. 

There are molecular clocks for most vertebrate hosts like birds and mammals. The rate of 

mt-dna divergence between species is about 2% per million years [244, 245, 246]. Many studies 

suggest a slower clock for Haemosporidia than their vertebrate hosts (e.g., [232, 247, 248]); it is 

just unclear just how much slower this clock would be. A slower haemosporidian clock is 

surprising since generation time is much shorter for Haemosporidia than vertebrates. Though 

they made several assumptions, Ricklefs and Outlaw (2010) [248] found a divergence rate of 

1.3% per million years for Haemosporidia (highest rate being in Leucocytozoon and 

Hepatocystis), lower than that of their avian hosts but higher than former estimates based on 

cospeciation. If a 1.3% rate of divergence is correct, then it is amazing that some haemosporidian 

genera could have diversified to infect so many hosts in under 20 million years [239]. 

Divergence Between Species 

There is some debate as to how divergent two or more sequences need to be in order to be 

considered different species. Perkins (2000) [249] sequenced twelve mt-cytb lineages of P. 

azurophilum (identified morphologically) from lizards and found that the sequences differed by a 

maximum of 3.1%. Hellgren et al. (2007) [250] analyzed fragments of the mt-cytb gene from six 

morphospecies of avian Haemoproteus and the average divergence between the morphospecies 
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was 5.5%. This suggests that, in most cases, separate morphospecies can be expected for 

sequences with a genetic difference >5% [251]; however, two morphospecies differed by only 

0.7%. Križanauskienė et al. (2010) [117] found that a divergence of 2% was enough for species 

to be morphologically distinct. Closely related P. falciparum and P. reichenowi diverge by 2.3% 

across their mitochondrial DNA. Beadell and Fleischer (2005) [32] found that sequences from 

three infections identified as P. relictum differed by 3.4-3.9%. It seems safest to declare that two 

Haemosporidia sequences belong to separate species if they are diverged by at least 5%. If the 

divergence is less than that, morphological data from both infections should be gathered to 

support or disprove species status. 

Since there are many hypotheses as to how divergent particular gene sequences need to 

be in order to assign them to separate species, broader measurements of divergence within and 

between Haemoproteus, Plasmodium and Leucocytozoon were performed for this study, rather 

than between sequences. 

Three Species Concept 

An interesting idea exists called a three species concept [249, 220] that defines a species 

based on morphological, genetic, or phylogenetic characteristics. The morphological species 

concept is a classical method that distinguishes parasite species through differences or 

similarities in morphology as seen in blood smears using microscopy. The genetic species 

concept is a molecular method that distinguishes parasites species based on similarities or 

divergence of genetic (DNA, RNA, amino acid) sequences. The phylogenetic species concept 

requires that defined species are monophyletic. In 2006, Martinsen et al. [220] found that 

fourteen of fifteen Haemoproteus, Plasmodium and Leucocytozoon parasites species identified 

using morphology were supported by genetic and phylogenetic analyses. The exception was H. 
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belopolskyi which was identified using morphology but fell into two separate phylogenetic 

clades. 

In another 2006 study by Martinsen et al. [252], the three species concept was used to 

molecularly test the validity of the five Plasmodium subgenera that infect birds (as mentioned 

previously, these subgenera were originally created and defined based on microscopy data). 

Analysis of the coI and mt-cytb genes indicated that monophyly was supported for 

Haemamoeba, Huffia and Bennettinia. While most (twelve of the fourteen) Novyella sequences 

formed a clade, the two remaining Novyella samples were outside the clade, forming the most 

basal branches of the tree. The subgenus Giovannolaia did not form a monophyletic group.  

Avian Malaria in Galapagos Penguins 

In 2009, Levin et al. [21] found that the introduction of Plasmodium to the Galapagos 

Islands (located >600 miles off the west coast of South America) posed a threat to the 

endangered Galapagos penguin (Spheniscus mendiculus) and other endemic birds. The sequences 

obtained from the penguins closely match lineages that are known to cause severe morbidity and 

mortality in captive penguins. More recently in 2013, Levin et al. [253] suspected that a bird 

species capable of migrating vast distances could have introduced Plasmodium which was then 

transmitted to the endangered Galapagos penguins. Levin et al. [253] specifically cite the 

bobolink as one of the few species with the ability to transmit Plasmodium to Galapagos bird 

species.  

This study confirmed active Plasmodium transmission in two juvenile bobolinks from 

northwest Minnesota (MN). Phylogenetic methods were used to determine if the haemosporidian 

sequences found in these bobolinks matched haemosporidian sequences obtained from 

Galapagos penguins. If so, then MN could be a source of the penguin infections. 
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Materials and Methods 

Of the total 111 Haemosporidia infections, 99 have molecular evidence in the form of 

mitochondrial cytochrome b (mt-cytb) sequences. The lack of twelve sequences was caused by 

molecular false negatives: eleven were Haemoproteus or Plasmodium infections and one was 

Leucocytozoon. All sequences were edited using MEGA version 5.2 [254] to delete the primer 

sequences and the 5’ and 3’ ends for which nucleotides could not be distinguished and to fix any 

nucleotide mistakes such as missed bases or multiple base callings. While editing, it was noticed 

that two of the Leucocytozoon and five of the Haemoproteus/Plasmodium sequences had 

multiple double base callings, indicating that there were at least two different parasite species in 

those particular samples. These were eliminated from further phylogenetic analysis. Although as 

many sequences as possible were retained for analysis, two Haemoproteus (there were enough 

bases to determine genus) and one Leucocytozoon sequences were determined to be too short 

(<100 bp) to be useful and were eliminated as well  

A blastn was done in NCBI’s GenBank and MalAvi [71] with the remaining 89 

sequences to find the closest related sequences, species and lineages. This was useful because it 

further confirmed that my identification of the genera were correct. 

The 89 sequences were also grouped by genus in MEGA. The mean distances between 

and within the three groups was determined in the form of the number of nucleotide differences 

after pairwise deletion. 

Creating Two Alignments 

The 89 edited sequences were loaded into MEGA to create an alignment. Since the first 

alignment was the small one, the shortest sequence (Haemoproteus) was removed but it was 



64 

unique and would instead be used in the larger alignment. The remaining 88 sequences 

comprised the final small alignment. 

A public database called MalAvi [71] contains Haemoproteus, Plasmodium and 

Leucocytozoon mt-cytb sequences collected from various avian hosts. Each unique sequence is 

called a lineage. All lineages from North America (n=138) were downloaded from MalAvi on 6 

August 2015 and added to a build in MEGA. The 89 sequences (this time including the short 

Haemoproteus sequence) from this study were added to the alignment for total of 227 sequences 

comprising the larger alignment. 

Both alignments were performed with Muscle using default settings. No gaps were 

present. Though the target sequence that the primers amplified was 479 bases long, all of the 

sequences from this study were shorter after editing while most of the sequences from MalAvi 

were complete. The alignments were exported from MEGA in fasta format and loaded into 

jModelTest version 2.1.7 [255]. The program determined that, with 4 gamma categories, the best 

nucleotide substitution model to use for phylogenetic analysis of both alignments was General 

Time Reversal with a discrete gamma distribution and the presence of invariant sites (GTR + G 

+ I). 

The haemosporidian lineages from the MalAvi database that were closely related to 

haemosporidian sequences found in this study were kept in the larger alignment. This was done 

by creating a Maximum Likelihood (ML) tree in MEGA of the 227 sequences. Settings of GTR 

+ G + I with four gamma categories on all 479 sites were used. The large alignment of 227 

sequences was also exported in PAUP format and the file was uploaded into MrBayes version 

3.2.2 [256, 257]. A Bayesian analysis was performed using GTR + G + I with four gamma 

categories for two runs of one cold and three heated markov chain monte carlo (mcmc) searches 
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for 3 million generations, sampling one in every 500 trees with a 25% burnin of trees being 

discarded. The resulting ML tree and Bayesian tree were examined in MEGA and FigTree 

(http://tree.bio.ed.ac.uk/software/ figtree/), respectively, to find the lineages from MalAvi that 

were most closely related to the infections from the current study. Only the closely related 

lineages (n=53) and the 89 sequences from this study were kept in the build, which was aligned 

with Muscle again. The larger alignment was further reduced to 142 sequences and jModelTest 

indicated that GTR + G + I was still the best model. 

Maximum Likelihood (ML) Methods 

MEGA was used to create an ML tree for each alignment of 88 and 142 sequences. Both 

trees were created using GTR + G + I with four gamma categories on all 479 sites and 2000 

Bootstrap replications were run. Both unrooted trees were exported in Newick format and edited 

in FigTree. 

Bayesian Methods 

Both MEGA alignments were exported in PAUP format and the files were uploaded into 

MrBayes version 3.2.2. Each of the two Bayesian analyses were performed using GTR + G + I 

with four gamma categories for two runs of one cold and three heated markov chain monte carlo 

(mcmc) searches for either 5,300,000 (the smaller alignment of 88 sequences) or 2,200,000 (the 

larger alignment of 142 sequences) generations, sampling one in every 500 trees with a 25% 

burnin of trees being discarded. The standard deviation of split frequencies indicated good 

convergence with values of 0.0094 and 0.0095 for the 88 and 142 sequence analyses, 

respectively. Each of the two runs of the analysis of the 88 sequences produced 10,601 trees 

(21,202 total), of which 7,951 were sampled (15,902 total) after the 25% burnin to elucidate the 

best tree. Each run for the 142 sequences produced 4,401 trees (8,802 total), of which 3,301 

http://tree.bio.ed.ac.uk/software/%20figtree/
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(6,602 total) were sampled to create the best tree. Both unrooted, consensus trees were edited in 

FigTree. 

Comparison with Avian Malaria from Galapagos Penguins 

As of 6 August 2015, NCBI’s GenBank contained 63 haemosporidian sequences from 

Galapagos penguins (35 Haemoproteus and 28 Plasmodium). These were loaded into a MEGA 

build and the 12 Haemoproteus and 40 Plasmodium sequences from this study were also added 

and the build was aligned using Muscle’s default settings. Some of the 115 sequences extended 

beyond the target 479 bases of the mt-cytb so they were trimmed. The pairwise distances (with 

pairwise deletion) were computed in MEGA to see how many nucleotides were different 

between the Haemoproteus and Plasmodium sequences from this study and those from penguins. 

Two of the 40 Plasmodium sequences from the current study were from the two juvenile 

bobolinks, proof of active transmission in northwest Minnesota. Since the bobolink is one of the 

few species capable of migrating to the Galapagos Islands, the resulting pairwise distances were 

used to find out which of the 63 penguin sequences best matched the sequences from the juvenile 

bobolinks. All of the other Plasmodium and Haemoproteus sequences from this study were 

included in the phylogeny just in case any of them matched a sequence from a penguin.  

Results 

Lineages 

Since none of the 89 electropherograms were produced with enough clarity to determine 

all of the 479 nucleotides, it is impossible to determine if any match a haemosporidian lineage in 

MalAvi, or determine how many lineages are present in northwest Minnesota (MN). Fourteen 

sequences had at least 455 (95%) of the target 479 bases so the best analysis of lineages that 

could be done was to study the MalAvi blastn results of these sequences. The nine 
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Leucocytozoon sequences most closely matched the lineages called CNEORN01 and CISPAL01 

while the five Plasmodium sequences most closely matched TRPIP2, ZEMAC01, BT7 and 

SEIAUR01. 

Evolutionary Divergence 

Estimates of evolutionary divergence give a limited idea about the diversity of the 

Haemosporidia in northwest MN. The calculations are based on the 89 sequences that have been 

grouped into the three genera. The mean distances within the genera were 6.7, 18.8 and 13.5 (the 

numbers of nucleotide differences) for Haemoproteus, Plasmodium and Leucocytozoon, 

respectively. Haemoproteus was the least diverse group but this may be misleading because it 

also contained the fewest and shortest sequences while Plasmodium was the most diverse and 

had the most sequences. The mean distances between the three genera are shown in Table 3.1. 

Table 3.1: Mean evolutionary distances 
between the three genera. The number of 
nucleotide differences between Haemoproteus 
(H.), Plasmodium (P.) and Leucocytozoon (L.) 
are shown. 
 H. P. L. 

H.    

P. 34.833   

L. 60.610 67.045  

 

The table suggests that perhaps Plasmodium and Leucocytozoon are the least related and that 

Haemoproteus is more closely related to Plasmodium than to Leucocytozoon. 

Phylogenetic Trees 

Figures 3.2-3.5 show the resulting Maximum Likelihood (ML) and Bayesian trees for 88 

and 142 haemosporidian sequences. In the ML tree of only the 88 sequences (Figure 3.2), 

Plasmodium was polyphyletic, with the top clade being comprised of what is most likely P. 
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cathemerium and all other Plasmodium species are grouped into the bottom clade. The 

monophyletic clades of Leucocytozoon and Haemoproteus fall in the middle. By comparison, in 

the ML tree of 142 sequences (Figure 3.4), Plasmodium was monophyletic due to the additional 

support of the 53 Plasmodium from MalAvi. Haemoproteus and Leucocytozoon remained 

monophyletic with Haemoproteus being a sister clade to both Plasmodium and Leucocytozoon 

but more closely related to Plasmodium. The conclusions based on the Bayesian trees of 88 

(Figure 3.3) and 142 (Figure 3.5) sequences were similar to eachother. The additional support of 

the 53 sequences from MalAvi did not change the tree as was the case with the ML analyses. 

Again, each genus was monophyletic and Haemoproteus was a sister clade to Plasmodium and 

Leucocytozoon but was more closely related to Plasmodium than to Leucocytozoon. 

In all of the phylogenies, the bird host species were scattered throughout with no obvious 

trend of them associating with specific haemosporidian clades. 

Comparison with Avian Malaria from Galapagos Penguins 

 Based on the comparison of Haemoproteus and Plasmodium from this study and 

Galapagos penguins, none of the sequences between the two groups matched perfectly. The two 

sequences from juvenile bobolinks tentatively identified as P. homopolare and P. cathemerium 

were most closely related to accessions GQ395670 and GQ395679, respectively, being different 

by five and three nucleotides, respectively. There was one Plasmodium sequence (from an adult 

bobolink) and three Haemoproteus sequences (one from a gray catbird and two from savannah 

sparrows) from MN that were different from several Galapagos penguin sequences by only one 

nucleotide.  
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Figure 3.2: Unrooted Maximum Likelihood tree based on 88 cytochrome b sequences from Haemosporidia found in 
the current study. The branch tip labels are four letters corresponding to the bird host species and are colored as 
follows: Haemoproteus, Plasmodium and Leucocytozoon. The black numbers are the Bootstrap values in 
percentages; only those ≥ 50% are shown. 
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Figure 3.3: Unrooted, consensus tree resulting from Bayesian anaylsis of 88 cytochrome b sequences from 
Haemosporidia found in the current study. The branch tip labels are four letters corresponding to the bird host 
species and are colored as follows: Haemoproteus, Plasmodium and Leucocytozoon. The black numbers are the 
support values in percentages; only those ≥ 50% are shown. 
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Figure 3.4: Unrooted Maximum Likelihood 
tree based on 142 cytochrome b sequences 
from Haemosporidia. The 89 branch tips 
labelled with four letters correspond to the bird 
host species and represent the infections found 
in this study. The other 53 branch tip labels are 
the most closely related North America 
haemosporidian lineages from MalAvi. The 
labels are colored as follows: Haemoproteus, 
Plasmodium and Leucocytozoon. The black 
numbers are the Bootstrap values in 
percentages; only those ≥ 50% are shown. 
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Figure 3.5: Unrooted, consensus tree resulting from Bayesian anaylsis of 142 cytochrome b 
sequences from Haemosporidia. The 89 branch tips labelled with four letters correspond to 
the bird host species and represent the infections found in this study. The other 53 branch tip 
labels are the most closely related North America haemosporidian lineages from MalAvi. 
The labels are colored as follows: Haemoproteus, Plasmodium and Leucocytozoon. The 
black numbers are the support values in percentages; only those ≥ 50% are shown. 
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Discussion 

Relatedness and Divergence of the Genera 

The findings that Plasmodium and Leucocytozoon are the least related genera and 

Haemoproteus is more close related to Plasmodium than to Leucocytozoon was supported by all 

of the ML and Bayesian trees and by the calculations of divergence between the genera. This is 

supported by many other phylogenetic studies as well, though not all.  

The divergence within the three genera indicated that Haemoproteus and Plasmodium 

were the least and most diverse genus, respectively. Of the 89 sequences, the number identified 

as Haemoproteus (n= 12) was much fewer than the number of sequences identified as 

Plasmodium (n=40) and Leucocytozoon (n= 37). Haemoproteus sequences were much shorter on 

average (388 bases) compared to the average length of a Plasmodium (428 bases) and 

Leucocytozoon (444 bases) sequence (the maximum length of a sequence was 479 bases). Fewer 

and shorter Haemoproteus sequences are likely the reasons why this genus appeared to be the 

least diverse. Initially, it was surprising that Leucocytozoon was not the least diverse genus 

because of the 37 sequences, only two species were identified. To understand why, the 

divergence within each of the two Leucocytozoon species was calculated. Divergence (i.e. 

number of nucleotide differences after pairwise deletion) was only 1.9 for L. majoris and 5.5 for 

L. fringillinarum. Since the divergence for the entire Leucocytozoon genus is 13.5, this suggests 

that the relatively low values were primarily due to the two species being very genetically 

different. Apparently, this is not unusual as many other studies have found substantial genetic 

diversity between species in this genus [87, 220, 258, 145, 259, 260]. 

In terms of species richness, Leucocytozoon is probably the least diverse genus because 

between the 37 sequences, only two species were tentatively identified, while Haemoproteus 
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may be the most diverse (five species were identified between twelve sequences). In addition, 

eight Plasmodium species were identified between 40 sequences. 

Lineages 

The 53 lineages from MalAvi that were most closely related to the 89 sequences from 

this study have a wide range in the USA. The three North American Haemoproteus lineages 

from MalAvi were originally taken from birds in Alaska, Missouri, New York and Vermont. The 

43 most closely related Plasmodium lineages from MalAvi were reportedly first taken from birds 

in Alaska, Arizona, California, Colorado, Florida, Georgia, Idaho, Kentucky, Michigan, 

Missouri, New Hampshire, New York, Oregon, Texas, Vermont and Wisconsin. The three 

Leucocytozoon lineages have only been found previously in birds from Alaska. 

It is unfortunate that the exact lineages could not be determined due to all of the 89 

sequences being shorter than the target sequence, and the lineages in MalAvi are based on the 

full 479 nucleotides. However, 14 of the 89 sequences contained 455 bases or more (95% of 479) 

so for these sequences, the possible lineages could be greatly narrowed down. The nine long 

Leucocytozoon sequences were nearly identical and matched lineages CNEORN01 and 

CISPAL01 equally well. Both have only been found in passerines from Alaska [261]. The five 

long Plasmodium sequences were more variable and most closely matched lineages BT7, 

SEIAUR01, TRPIP2 and ZEMAC01. Lineages BT7 and ZEMAC01 are found worldwide, 

including in the USA, but BT7 is found more frequently. SEIAUR01 is not as widespread but is 

common within the USA and has even been found in bobolinks. TRPIP2 is least common, 

having been found once in Africa and twice in Alaska. When lineages CISPAL01, BT7, 

SEIAUR01 and ZEMAC01 were included in the trees, they fell in with clades tentatively 

identified as L. majoris, P. circumflexum, P. cathemerium and P. relictum, respectively. 
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Evidence of Generalist Vectors and Haemosporidia 

There does not appear to be any trend in the phylogenetic trees related to bird host 

species. This indicates that infective mosquitoes feed opportunistically, rather than specializing 

in feeding on select bird species. It also indicates that the lineages found in the study area are 

generalists, having the capability of infecting a wide range of bird species that were sampled. 

Comparison with Avian Malaria from Galapagos Penguins 

The two Plasmodium sequences taken from juvenile bobolinks proved active 

transmission in Minnesota (MN), but did not match the Plasmodium infections in Galapagos 

penguins. Pairwise analysis showed that the two sequences from juvenile bobolinks differed by a 

minimum of three nucleotides compared to the sequences from Galapagos penguins. Another 

pairwise analysis of all Haemoproteus and Plasmodium from this study and those from penguins 

showed that none matched exactly but three sequences differed by only one nucleotide compared 

to three sequences from penguins. Though this study failed to support the idea that MN may be a 

source of malaria in Galapagos penguins, it did not completely rule it out either as more 

intensive sampling of long distance migrants for malaria could produce a matching lineage. 

Ancestral Genus 

Though the current study does not elucidate the subject, one aspect of phylogeny that is 

still being debated is which of the three genera is the most ancestral. For the vast majority of 

time that Haemosporidia phylogeny has been studied, Leucocytozoon has been considered to be 

the most ancestral of the three genera due to its lack of merogony in blood and lack of hemozoin. 

If this hypothesis of Haemosporidia evolution is true, the fact that Plasmodium is virulent and 

widespread (both geographically and among vertebrates) could mean that vertebrates have not 

yet developed a defense to it like they could have for a much older genus such as Leucocytozoon 
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(which only infects avians). Perhaps Valkiūnas’s [6] finding that Leucocytozoon is found in 

phylogenetically derived birds and but is rarely found in phylogenetically basal birds supports 

this hypothesis of evolution. It suggests there is a possibility that primitive bird species have 

evolved with Leucocytozoon (indicating that Leucocytozoon may be primitive as well) and 

developed a defense to the genus. 

The results of a recent study has rivaled the classic view of phylogeny and concluded that 

mammalian Plasmodium was ancestral [236]. This suggests that the production of hemozoin and 

erythrocytic merogony may actually be ancestral and that one or both of these traits were lost 

over time in Haemoproteus and Leucocytozoon, respectively. If this hypothesis of phylogeny 

turns out to be true and considering that Plasmodium infects such a wide range of vertebrate 

hosts such as mammals, birds and reptiles, then perhaps this genus has been around much longer 

than the other genera and has had more time to radiate (especially considering the hypothesized 

slow divergence rate). Haemoproteus is slightly more specialized with regard to the variety of 

vertebrate hosts it can infect (mostly birds, some reptiles and amphibians, but no mammals). 

Leucocytozoon is the most specialized of all and infects only birds. Perhaps Leucocytozoon has 

had the least amount of time to evolve, radiate and infect other vertebrate classes.  

Which mode of evolution is correct remains to be seen as the methods with which to 

analyze Haemosporidia data (genetic, life history traits, morphology etc) are clarified and more 

sequences are amassed.
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Appendix A 

 
Tables of Results from 36 USA Studies 

Table 4.1: Prevalence of Haemoproteus, Plasmodium and Leucocytozoon by 34 USA states, separated 
by reference. The prevalence is presented as ‘number of birds infected/number of birds screened’. 

 Haemoproteus Plasmodium Leucocytozoon 
 Prevalence Reference Prevalence Reference Prevalence Reference 
Alabama 1/30  [161] 

 
    

Arizona 23/60  
4/10  

[162] 
[16]* 
 

16/33  
2/10  

[161] 
[16] * 

  

Arkansas   3/18  [55] 
 

  

California 3/9  
8/26  
95/305  

[226]* 
[73]* 
[83] 

11/26  
10/305  
880/8176 
 

[73] * 
[83]  
[7] 

6/9  
177/591  
23/26  
36/305 
  

[226] * 
[258]* 
[73] * 
[83] 

Colorado 2/10  [226] * 
 

  8/10  [226] * 

Florida 10/114  
49/196  

[89]* 
[134]* 
 

  11/114  [89] * 

Georgia 61/757  
136/1047 
182/1097  
 

[91] 
[79] 
[84] 

40/757 
154/1097  

[91] 
[84] 

4/1047  [79] 

Illinois 2/14  [152] 
 

    

Indiana 4/19  [152] 
  

    

Kansas   8/48  
4/41  

[92] 
[55] 
 

  

Louisiana 213/934  [85] 32/934  [85] 10/934  [85] 
 

Maine   1/10  [55] 
 

  

Maryland   29/210  [55] 
 

  

Michigan   9/350  
2/44 
1/19  
 

[93] 
[146] 
[55] 

2/9  [56]* 

Minnesota 8/18  [57]* 5/17  
3/11  
 

[57] * 
[55] 

12/12  
1/18  

[56]* 
[57]* 

Missouri 4/50  [57]* 6/137  [57]* 5/136  [57]* 
 

Montana 31/82  [226] * 
 

  76/82  [226] * 

Nevada 1/13  [226] *   12/13  
3/71  

[226] * 
[131]* 
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Table 4.1, cont. 
 Haemoproteus Plasmodium Leucocytozoon 
 Prevalence Reference Prevalence Reference Prevalence Reference 
New Jersey 69/697  [82] 21/697  

1/25  
[82]  
[55]  
 

116/697  [82] 

New Mexico   4/32  
5/23 

[262]* 
[55] 
 

  

New York 8/282  [91] 5/282  
39/135  

[91]  
[135] 
 

  

North Dakota   2/2  
3/15  

[57] * 
[55] 
 

  

Ohio 40/98  
295/1106  

[65] 
[81] 
 

57/1106  
1/17  

[81]  
[55] 

64/1106  [81] 

Oklahoma 12/175  [147] 4/175  
5/99  

[147] 
[263] 
(subset of 
passerifor-
mes only) 

3/175  [147] 

Oregon 7/8  [226] *   8/8  
16/125  
 

[226] * 
[131]* 

Pennsylvania 2/17  
41/69 

[152] 
 [137]* 
 

    

South Carolina 1/33  
51/565  

[90]* 
[216] 

37/565  
2/5  

[216]  
[55] 

13/565  [216] 
 
 

Tennessee 5/10  [152] 
 

    

Texas 7/580  [227]* 1/580  
118/282  
1/9  
 

[227]*  
[133] 
[55] 
 

77/580  [227]* 

Vermont 98/1520  [80] 15/1520  [80]  559/1520  [80] 
 

Virginia   4/53  [55] 
 

  

Washington 2/6  [226] * 
 

  6/6  [226] * 

West Virginia 18/22  [152] 
  

    

Wisconsin 42/125  
29/80  

[57] * 
[95]* 

10/154  [57]* 3/125  
47/80  

[57] * 
[95]* 
 

*= Non-Passeriformes birds 
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Table 4.2: Proportions (percentages) of total infections caused by Haemoproteus, Plasmodium and Leucocytozoon 
for 34 USA states based on 36 studies. 

 Haemoproteus (%) Plasmodium (%) Leucocytozoon (%) 
# of 

infections 
N (sample 

size) 

Alabama 100   1 30 

Arizona 60 40  45 103 

Arkansas  100  3 18 

California 8 72 19 1249 9107 

Colorado 20 0 80 10 10 

Florida 84 0 16 70 310 

Georgia 66 34 0.6 577 2901 

Illinois 100   2 14 

Indiana 100   4 19 

Kansas  100  12 89 

Louisiana 84 13 4 255 934 

Maine  100  1 10 

Maryland  100  29 210 

Michigan  86 14 14 422 

Minnesota 28 28 45 29 41 

Missouri 27 40 33 15 137 

Montana 29  71 107 82 

Nevada 6  94 16 84 

New Jersey 33 11 56 207 722 

New Mexico  100  9 55 

New York 15 85  52 417 

North Dakota  100  5 17 

Ohio 73 13 14 457 1221 

Oklahoma 50 38 13 24 274 

Oregon 23  77 31 133 

Pennsylvania 100   43 84 

South Carolina 50 38 13 104 603 

Tennessee 100   5 10 

Texas 3 59 38 204 871 

Vermont 15 2 83 672 1520 

Virginia  100  4 53 

Washington 25  75 8 6 

West Virginia 100   18 22 

Wisconsin 54 8 38 131 234 
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