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Experimental tests of interventions need to have sufficient sample Received 5 November 2019

size to constitute a robust test of the intervention’s effectiveness Accepted 17 October 2020

with reasonable precision and power. To estimate the required

sample size adequately, researchers are required to specify an ~ KEYWORDS

effect size. But what effect size should be used to plan the  Effect size; smallest effect
A X X X X X . size of interest; sample size

required sample size? Various inroads into selecting the a priori L !

- X . . - . planning; intervention

effect size have been suggested in the literature—including using research; meaningful
conventions, prior research, and theoretical or practical import- change definitions; practical
ance. In this paper, we first discuss problems with some of the significance
proposed methods of selecting the effect size for study planning.
We then lay out a method for intervention researchers that pro-
vides a way out of many of these problems. The proposed
method requires setting a meaningful change definition, it is spe-
cifically suited for applied researchers interested in planning tests
of intervention effectiveness. We provide a hands-on walk
through of the method and provide easy-to-use R functions to
implement it.

Awareness of the importance of having an adequate sample size for power and preci-
sion has spread through empirical psychology, but actually estimating the required
sample size in a meaningful way is often perceived as challenging. The reason for this
mostly relates to one aspect: one needs to decide on what effect size magnitude to
use for planning the required sample size, because the required sample size is
dependent on the effect size of an intervention. Specifying this effect size a priori can
be a challenging activity for researchers, arguably ‘the most difficult part of power
analysis’ (Cohen, 1992, p. 156). In this paper, we introduce a method for determining
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what effect size magnitude to use for planning sample size of experimental interven-
tion research. The method we propose involves backwards engineering a definition of
meaningful change, as it might result from an intervention, ultimately arriving at a
standardized effect size (e.g., Cohen'’s d) denoting the smallest effect size one is inter-
ested in to discover. Lakens (2014) uses the label ‘smallest effect size of interest’
(SESOI) for the smallest effect size that is of interest to a researcher. The proposed
method in this paper specifically enables applied researchers to specify such a SESOI -
which, in turn, can be used to plan the required sample size for a given experimental
test of an intervention.

This paper is organized as follows. First, we discuss and evaluate previously pro-
posed ‘gold standard’ strategies to select a SESOI for power or precision analysis.
Second, we describe a method to arrive at meaningful change definitions, which can
be used to determine the SESOI in experimental tests of interventions. We illustrate
through several steps how the proposed method to determine the SESOI can be used,
accompanied by functions in the R-software package ‘behaviorchange’ (Peters, 2020a)

What effect size should be used to plan sample size?

The question which SESOI to use for sample size planning is an important first-step
for any research project. Before discussing tactics to make inroads into this issue, we
delve a bit deeper into some common - but not very optimal - ways of dealing with
this question. One strategy to choose a SESOI relies on using rules of thumb for effect
size thresholds that were suggested in earlier publications, such as Cohen’s (e.g., 1962,
1988) benchmarks of “small” (r > .1), “medium” (r > . 3), and “large” (r >.5). Research
proposals, then, sometimes include a statement in line with: “this project aims to be
able to detect at least a medium size effect, so the power analysis and corresponding
sample size estimates are based on Cohen's d = .5". The (often implicit) rationale for
this decision is likely that it is believed that a “medium” effect size is something worth
to detect, as opposed to effect size magnitudes that are labelled “small”. This choice
hinges on the circular argument that things labelled as “small” are not interesting find-
ings because they are small, and that effects of medium and larger size are interesting
because they are not small.

Cohen (1962, 1988) understood that the justification for his cut-offs was tenuous.
The benchmarks were not intended to be used as a key method for a power analysis
or sample size planning. Instead, Cohen suggested them as a last resort when no
other guidance is available. As he put it: ‘... these proposed conventions were set
forth throughout with much diffidence, qualifications, and invitations not to employ
them if possible. The values chosen had no more reliable a basis than my own intu-
ition’ (Cohen, 1988, p. 532). The benchmarks were based on the intuition that some
range of ES magnitudes (labelled medium) would become perceptible, ‘visible to the
naked eye of a careful observer (Cohen, 1992, p. 156). Hence, the labels “small”,
“medium” and “large” do not carry any inherent meaning related to the importance or
triviality of an effect magnitude - though, they are often interpreted as if they do. As
Cortina and Landis (2009) put it: ‘reflexive dismissal of small effect sizes by researchers
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reflects an urban (and for that matter, rural) legend that small effect size values always
mean the same thing and justify labels such as weak effect or trivial effect’ (p. 288).

lllustrations of the falsity of this myth abound (Aguinis & Harden, 2009; Cortina &
Landis, 2009). For example, Furukawa and Leucht (2011) point out that improving a
depression treatment (e.g., improving an anti-depressant) by a Cohen’s d of 0.2 could,
given the incidence of depression in Japan, ‘bring about remission in additional 100
thousand or more people that would not have done so on the current treatment (p.5)".
It is unclear by what substantive standards such results are reasonably labelled as
“small”. Rosenthal and Rubin (1982) sketched a (hypothetical) scenario in which a correl-
ation of r = .1 between treatment and outcome would correspond to a 10% decrease
of some discrete outcome incidence (e.g., illness rate), in what they referred to as a
binomial effect size display (BESD; Rosenthal, 1990, 1991). These examples make clear
that “small” or “large” (or anything in between) effect size magnitudes are relative con-
cepts and fully dependent on the context of the research. Because of this, general rules
of thumb are unlikely to be calibrated to the context of any specific study.

Ways forward to specifying a meaningful SESOI

Cohen et al. (2003) specify three general approaches of choosing a SESOI to be used
for sample size planning — and note that these are not on equal footing in terms of
quality. In abbreviated form, strategies suggested to use for planning sample size are
as follows: 1) use the observed effect size of previous studies, 2) base the effect size
parameter on theoretical or practical significance, and 3) use conventions. As dis-
cussed, conventions are largely unfounded and not calibrated to any specific study’s
context, and are therefore best avoided. This implies that researchers’ preference
instead should move towards using previous studies, or theoretical or practical signifi-
cance to derive an effect size.

The first strategy, to use an observed effect size of one or more previous studies
as the SESOI, was aimed at close (or direct) replications. As Cohen et al. (2003) put it:
‘to the extent that studies that have been carried out [...] are closely similar to the
present investigation, the [effect sizes] found in these studies reflect the magnitude
that can be expected’ (p. 52). At first blush, this strategy appears sensible for replica-
tion attempts of previous work; giving both exact and conceptual replication studies a
means to specify the SESOI and plan the required sample size. However, when there is
insufficient conceptual overlap (e.g. changes in design or operationalisation), this
rationale for the SESOI dissipates entirely — because there is no reason to assume that
the conceptual differences are orthogonal to the studied effect. In many cases, it is
likely not feasible to determine with reasonable certainty whether sufficient concep-
tual overlap between an earlier and current study exists (see also Lakens & Evers,
2014). Such lack of clarity on study comparability is a cogent argument for avoiding
the strategy. Additionally, even if one aims to conduct a direct replication, there are
(at least) three more reasons to refrain from basing sample size planning procedures
on effect size estimates from earlier studies.

First, if only one study has been conducted, given the small sample sizes and low
statistical power that have long been customary in the psychological literature
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(Marszalek et al., 2011), the effect size estimate obtained in that study likely origi-
nates from an exceedingly wide sampling distribution. In other words, the observed
effect size in that single study is to a large degree arbitrary, may differ considerably
in the next direct replication (Peters & Crutzen, 2020), and as such does not provide
a solid starting point for inferences about the likely population effect size (see also
Anderson & Maxwell, 2017). If multiple studies have been conducted and their effect
size estimates are extracted from the extant literature, meta-analysis may yield a
more reliable estimate. Unfortunately, publication bias hinders this route as well.
Publication bias is the phenomenon that journals are unlikely to accept null or nega-
tive findings (Fanelli, 2012), which in turn discourages researchers from submitting
such studies in the first place. This means that the effect sizes in published studies
exhibit an upward bias of unknown magnitude (e.g., Driessen et al., 2015). Methods
to correct for uncertainty in the effect size estimate and publication bias have, how-
ever, been described in the literature (e.g., Anderson et al., 2017; Du & Wang, 2016).
Nonetheless, even if unbiased estimates of the population effect size can be
obtained, not every non-zero effect size is necessarily worthwhile to examine. For
example, a costly treatment may have shown an effect size of d = .3 in a meta-ana-
lysis of earlier studies that did not show evidence of publication bias; but that effect
size may simply be uninteresting if it fails to offset the treatment costs by a consid-
erable margin.

As a solution to these problems, some researchers instead resort to estimating the
effect size based on pilot studies. However, researchers are urged caution regarding
the use of pilot studies to guide power calculations for study proposals (Kraemer
et al.,, 2006). Pilot studies are typically designed to detect problems in a study’s pro-
posed procedure. To this end, relatively small samples often suffice, so applying the
appropriate sample size computations for pilots (see Viechtbauer et al., 2015) often
yields sample sizes that do not allow reasonably accurate estimation of parameters. As
a result, the observed effect size in a pilot study will often deviate considerably from
the population effect size. To acquire a reasonably precise estimate of the population
effect size, a pilot study would need to have sufficient precision — and therefore a
large sample size. This, of course, defeats the whole purpose of conducting a pilot
study (see also Lakens, 2014; Lakens & Evers, 2014).

Given the discussed limitations of relying on conventions or expectation, the third
proposed strategy described by Cohen et al. (2003) - practical or theoretical signifi-
cance - provides a remaining inroad into selecting the SESOI. Basing the SESOI on
practical or theoretical significance is from our vantage point the first that needs to be
attempted by researchers, and therefore preferred over Cohen et al. (2003) alterna-
tives. Simply put, this is because importance supersedes expectation or convention —
it is not clear why researchers would spend finite resources such as money, time, and
incurred participant burden on examining an association based on expectation when
the expected magnitude is thought to be practically or theoretically irrelevant.
Additionally, it may be worthwhile to invest resources in examining whether a treat-
ment reaches a Cohen’s d of 0.2 (see the example in the previous section) based on
the expected number of people this treatment would impact — even though this may
be a small effect by convention.
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However, basing the SESOI on theoretical importance is utopic by our estimation —
at least given the present state of theoretical psychology (see also Lakens, 2014;
Muthukrishna & Henrich, 2019; Smaldino, 2017). A prerequisite for this strategy is that
theories are specified with sufficient mathematical detail to allow a meaningful expres-
sion of importance. For example, formal theory could predict that under circumstance
z (e.g., an increase of p percent on variable x) variable y increases by g percent on
average. This magnitude could then be used to as the effect size parameter in a
power or precision analysis. While such precision in formal theory may be abundant in
the sciences, social science (thus far) is mostly involved with testing informal theory
lacking such precision (see also Meehl, 1967). The majority of theories are specified
only in terms of predicting the presence of associations (non-zero associations), rather
than making predictions on the magnitude of those associations. For this reason, most
social science theories do not provide a solid springboard to determine what effect
size magnitudes are theoretically interesting, and which are not.

Specifying the SESOI based on practical importance

A strategy allowing specification of the SESOI, one particularly feasible in the context
of applied intervention research, is to consider practical importance. At this point it is
helpful to make a pragmatic division between two types of outcome measures.
Whereas some studies examine associations on measures which have (at least, by
hypothesis) observable consequences in the ‘real world’ (on practically meaningful
scales), other projects aim to draw conclusions based on measures that are abstracted
from the real world (practically non-meaningful scales). For many basic science proj-
ects, there is no direct connection to practically meaningful units allowing the deter-
mination of a SESOI. For example, a factor could cause changes in individuals’ attitude
toward a behaviour (measured on a 7-point Likert scale) by a given Cohen’s d, but
what is the minimum amount of change in Likert scaled attitudes that is worthwhile
to study?

Clinical epidemiologists have long recognized the importance of finding out what
changes on a non-meaningful measure can be seen as a ‘meaningful’ intervention
result (e.g., Guyatt et al,, 2002; Jaeschke et al., 1989; McGlothlin & Lewis, 2014). As put
by Guyatt et al. (2002): ‘If a patient with chronic lung disease improves by 5 points in
physical function, will she now be able to climb a flight of stairs comfortably, keep up
with her spouse when they go for a walk, and resume playing with her grandchildren?
Or will she remained incapacitated by exertional dyspnea?’ (p. 373). In this literature,
the change on some unstandardized or standardized outcome needed to create a
meaningful change for patients or clients is known as the minimal (clinically) import-
ant difference (e.g., Jaeschke et al., 1989; McGlothlin & Lewis, 2014). Establishing such
a minimal important difference is usually done with one of the following three meth-
ods (see McGlothlin & Lewis, 2014). First, using the consensus method, which relies on
a panel of experts to determine what amount of quantitative change is clinically
meaningful. Second, using a distributional method, which involves looking at statistical
properties (score distributions) of the quantitative outcome to determine what consti-
tutes meaningful change. Third, by using an anchor-based method, which relates
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changes on a quantitative outcome to an independent qualitative measure of
improvement. For instance, results of clinical and health interventions can often be
anchored in noticeable improvement in quality-of-life (QOL) markers, such as ‘can walk
the stairs again’ in the lung disease example above.

Anvari and Lakens (2019) recently described a psychological application of the
anchor-based approach in more depth, suggesting methods to base the SESOI on the
concept of a minimally detectable difference —‘the smallest effect size that is associ-
ated with a subjectively noticeable change at the individual level’ (p. 1). To illustrate
their method, consider a study examining the benefit of a cognitive treatment in
reducing rumination symptoms of anxiety. In this example, one external QOL criterion
could be sleep quality, as a qualitative measure of improvement. That is, one could
examine how much rumination scores need to change in order for individuals to
experience a transition from ‘not feeling rested’ towards ‘feeling rested’. Using the
anchoring method enables researchers to estimate the threshold Cohen'’s d that corre-
sponds to a meaningful change on such a QOL indicator. It could, for example, turn
out that an intervention of Cohen’s d of 0.2 does not result (on average) in any
changes in the subjective judgment of feeling rested, whereas a Cohen’s d of 0.25
does. This would be an indication to specify the SESOI at d=0.25, and plan sample
size accordingly.

In addition to QOL-markers, there are various conceivable external criteria that
could serve as qualitative anchors. Overall, we think the anchoring method, as applied
by for instance Anvari and Lakens (2019) on a measure of affect, is one example of
the way forward to specifying a meaningful SESOIl in intervention studies where the
outcome measures are not practically meaningful - putting researchers in the position
to plan their sample sizes for power or precision accordingly. We aim to describe a dif-
ferent method, suitable for applied research projects that allow importance to be
defined on the primary intervention outcome directly. The strategy we propose to esti-
mate the SESOI is based on setting a meaningful change definition (MCD) to define
meaningful change on a continuous outcome variable. We use a concrete example in
what follows to provide a step-by-step walk-through of the MCD-method.

Meaningful change definitions: a case-study using a physical activity
intervention

Consider an intervention that is designed to increase physical activity in a population,
by trying to influence several psychological determinants of the behaviour (e.g., peo-
ple’s motivation to exercise, attitudes, and self-efficacy). The recommended develop-
ment process for such interventions generally includes a number of pre-tests, to
optimize the effect of specific intervention components on the targeted determinants,
as well as an evaluation of the intervention as a whole (Bartholomew Eldregde et al.,
2016). Such studies often do not measure intervention effects directly on a dichotom-
ous measure of success (e.g., physical activity status after intervention; ‘sufficient’ ver-
sus ‘not sufficient’). Rather, researchers interested in experimentally testing
interventions often rely on continuous (scaled) outcome measures - and there are, of

course, good statistical arguments to do so (Cohen, 1983; DeCoster et al, 2009;
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MacCallum et al.,, 2002). Nonetheless, to establish a meaningful SESOI, interventionists
using scaled outcomes need to have some idea of what range of outcome scores
count as ‘desirable’ and ‘undesirable’ (or at least, ‘insufficient’). Indeed, adequate inter-
vention development requires that such goals are specified in advance of intervention
tests with sufficient detail (Bartholomew Eldregde et al., 2016).

There are various conceivable ways to set meaningful intervention goals. One
example is a consideration of cost-benefit: if the costs are less than benefits (according
to some definition) then the effect size magnitude may be worthwhile to study. For
example, in health care research the effectiveness of a given intervention is often
quantified in terms quality-adjusted life years (QUALY) that are gained due to interven-
tion. In other settings, the financial costs per participant exposed to the intervention
may be known and could be used to set an MCD. However, for many health-related
interventions the desired outcome is difficult to quantify in terms of QUALY or con-
crete financial cost-benefits. A remaining option, then, is to determine the MCD based
on a consensus method - the research team determines in accordance with stakehold-
ers and policy-makers feasible and desirable intervention goals. Since definitions of
meaningful change are subject to policy, financial, and societal and cultural considera-
tions — and as such, usually beyond the purview of the primary research team - we
do not consider it feasible to provide context-independent guidelines on how to set a
given MCD.

STEP 1: Specifying a threshold definition

All scripts, functions and other materials described in this section are available at the
Open Science Framework (https://osf.io/xrs23/). The MCD-method is implemented in the
R-package ‘behaviorchange’ (Peters, Crutzen & Gruijters, 2020a). Additionally, the method
is also available in the ‘behaviorchange’ JAMOVI module (https://www.jamovi.org/).

For an intervention designed to promote physical activity levels, the MCD-proced-
ure requires that some external criterion is used to specify the physical activity levels
that are considered ‘positive’. In this instance, we use ‘expert consensus’ as an external
criterion: both the U.S. Department of Health and Human Services and the Dutch
health council (Gezondheidsraad, 2017; U.S. Department of Health & Human Services,
2018) maintain a policy recommending a minimum of 150 minutes of weekly exercise
(moderate-intensity). In this example, this consensus criterion will serve as the project’s
threshold definition (TD). Cases (i.e., participants) that meet such a criterion are referred
to as ‘positive events’, and those not meeting such levels are labelled as ‘negative
events’. Using this TD on the continuous ‘minutes of weekly exercise’ outcome, one
can distinguish two types of events: ‘positive events’ (> 150 minutes of weekly exer-
cise) and ‘negative events’ (< 150 minutes of weekly exercise).

STEP 2: Estimating the control event rate corresponding to a
threshold definition

Once a TD has been specified (and included in the preregistration plan) one needs to
estimate the base-rate occurrence of this outcome - that is, what proportion of the
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Table 1. Required sample sizes to estimate a base-rate or control event rate as a function of the
desired half-widths of a 95% confidence interval.

CER 95% confidence interval half-width

0.01 0.025 0.05 0.1 0.15
0.01 496 112 43 18 11
0.05 1926 333 93 28 14
0.10 3556 592 157 43 20
0.25 7300 1190 305 79 36
0.50 9700 1573 401 103 46

Note. Base-rate values depict proportions.

population currently meets this standard? In the clinical epidemiology literature (e.g.,
Furukawa & Leucht, 2011), this value is also commonly referred to as the control event
rate (CER). Conversely, the event rate in the intervention or experimental group is
often referred to as the experimental event rate (EER). In some instances, it is possible
that such CER population information is publicly available: for instance, in the
Netherlands we know that in 2018 roughly 47% of the general Dutch population over
18years of age meets the TD (>150 minutes) for physical exercise (CBS/RIVM., 2018). If
current population data are not available, the CER would need to be estimated using
sample data. In these instances, researchers would need to estimate the CER value
before planning an experimental test of the intervention. For instance, take the Dutch
situation, but assume that the ambitious researchers in this example have decided
that the intervention goal is to get more people to exercise at least 160 minutes a
week (instead of 150 minutes). In that case, the base-rate is again unknown, and needs
to be estimated. In such cases, it is important to consider the degree of uncertainty
accompanying a particular estimate of the population CER. When random samples are
used to estimate the CER, it is possible to account for uncertainty (random sampling
error) by obtaining a confidence interval for the CER estimate and involving the inter-
val in the MCD-method (see Step 4 on how to do so).

The required sample size to estimate a proportion can be computed with Accuracy
In Parameter Estimation (AIPE) procedures (e.g., Cumming, 2014; Kelley & Rausch,
2006; Lai & Kelley, 2012). For example, in R-software by using the ‘ufs’ (Peters, 2020b)
or ‘MBESS’ (Kelley, 2020) package. Table 1 shows the required sample sizes for estimat-
ing proportions of .01, .05, .1, .25, and .5, with 95% confidence interval half-widths of
.01, .025, .05, .1, and .15. Note that in the context of intervention evaluations, such
data will often have to be collected as part of the needs assessment; because an ana-
lysis of the scope of the problem is often a prerequisite to allocating resources to
intervention development in the first place.

STEP 3: Deciding on a meaningful change definition

Once both the TD (> 150 minutes of exercise) and corresponding CER (47%) is speci-
fied, the next step is to specify the smallest success rate difference that is considered
meaningful — that is, specifying a meaningful change definition (MCD). Similar to our
TD, such an MCD needs to be based on external criteria, such as extant policy, based
on expert-consensus or cost-benefit considerations. In the current illustrative case-
study, it is assumed that given the costs of the hypothetical intervention a change of
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Cohen's d corresponding to an MCD of 5% with a CER of 47%

D CER =47% . EER =52%

d=0.13
>
044

0.34

Density

0.14

0.0

No event (< 0.08) Event (> 0.08)

4 2 0 2 4
Continuous outcome

Figure 1. An illustration of the MCD-method to estimate a SESOI. The graph depicts the required
Cohen'’s d value required to increase the percentage of positive events by 5% for a behaviour with
a base-rate (CER) of 47%.

5% is considered practically meaningful (i.e. cost effective). Thus, the MCD of 5%
would correspond in this situation to a desired behaviour change in this population
from a CER= 47% to EER = 52%.

This increase of 5% can also be expressed as an absolute frequency: in the
Netherlands in 2019, around 14 million people were 18years or older (Centraal Bureau
voor de Statistiek, 2019); therefore, 47% corresponds to about 6.5 million, and an
improvement of 5% would mean that give or take 700.000 more would meet the
threshold - in the hypothetical scenario that the intervention would target this entire
population. Thus, the TD and MCD together provide a convenient interface between
frequently used outcome measures in intervention research and measures that more
familiar to politicians, policy makers, practitioners and members of the general public.
More importantly for the purposes of this paper, they enable computing the corre-
sponding SESOI.

STEP 4: Estimating the SESOI based on the MCD

Under parametric assumptions it is possible to estimate with a simple equation the
standardized difference (Cohen’s d value) that corresponds to an MCD of 5% (given
CER= 47%). The equation is as follows,

d = @ '(CER + MCD)—d ' (CER) (1)

where @' denotes the inverse of a standard normal distribution. Equation 1 estimates
the Cohen'’s d value that would be needed to increase a given base rate of desirable
outcomes (e.g.,, CER= 0.47) by a given MCD (e.g., an additional 5% positive events due
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CER=0.47
25%
20%
15%
2 -
10%
= 5%
=
(0]
L
o
o
1 -
d=0.13
0.00 0.5 0.50 0.75 1.00

Control Event Rate

Figure 2. The relationship between the control event rate (CER), Cohen’s d and the MCD. The
intersection of the dark blue lines depict the estimated SESOI for the exercising example used in
this paper. The different lines represent different MCD-values (ranging from 5% to 30%).

to intervention). This function is implemented in the R-package ‘behaviorchange’ as
‘dMCD’, and only requires the specification of the CER (0.47) and the MCD (0.05).

install.packages (’'behaviorchange’) ;
behaviorchange: :dMCD (cer=.47, mcd= .05) ;

Entering these numbers in the dMCD function results in the following: in order to
achieve an MCD of 5% given CER=.47, a Cohen’s d=0.13 would be sufficient to
obtain this change (see Figure 1). In case of uncertainty associated with the CER value
(see also Step 2) it is possible to include a sensitivity analysis to gauge how variance
in the CER affects the result of the MCD-procedure. Lower and upper bounds of the
CER 95% confidence interval would be natural candidates. For instance, assuming that
the above-used CER = 0.47 is a sample estimate with a confidence interval ranging
from [0.44; 0.50], we obtain Cohen'’s d values for the lower bound, point estimate and
upper bound as follows:

behaviorchange: :dMCD(cer=c (.44, .47, .50), mcd= .05);

Note that it is also possible to estimate the required SESOI (d) when the estimate
of the CER is derived from distributions other than Gaussian. For example, outcome
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Table 2. The Cohen'’s d corresponding to, and required sample size for, a variety of Control Event
Rates and Meaningful Change Definitions, for both Null Hypothesis Significance Testing and
Accuracy In Parameter Estimation approaches.

N for 95% Cl N for 95% CI
with half- with half-
width of width of

CER MCD d N (80% power) N (95% power) d=.10 d=.25
0.05 0.025 0.21 714 1182 1546 248
0.05 0.050 0.36 246 404 1562 250
0.05 0.100 0.61 88 142 1609 258
0.05 0.250 1.12 28 44 1778 285
0.25 0.025 0.08 4908 8124 1538 247
0.25 0.050 0.15 1398 2314 1541 247
0.25 0.100 0.29 376 620 1553 249
0.25 0.250 0.67 72 118 1623 260
0.50 0.025 0.06 8724 14442 1538 246
0.50 0.050 0.13 1860 3078 1540 247
0.50 0.100 0.25 506 834 1549 248
0.50 0.250 0.67 72 118 1623 260

Note. CER = control event rate, MCD = meaningful change definition, Cl = confidence interval, d = Cohen’s d esti-
mate for the standardized mean difference.

variables may be left or right skewed in a population. For some distributions exhibit-
ing right skewness, the quantiles can for instance be estimated using a lognormal dis-
tribution to derive d. In the ‘behaviorchange’ package it is possible to change the
default distribution parameter (@) and estimate the required d using user-specified
distributions (such as lognormal, beta, and so forth). This is implemented in the dMCD
function under the ‘dist’ parameter. Before implementing the MCD-method, it is
important to consider what distribution best describes the continuous variable in the
population. For example, variables with ratio measurement levels (e.g.,, number of cig-
arettes smoked a week) sometimes exhibit right skewness in populations, in which
case adding dist = ‘Inorm’ as an parameter may be warranted to provide a more
accurate estimate of the required d given an MCD.

Further note that the relationship between MCD and Cohen'’s d is dependent on the
CER value. For normally distributed outcome variables, it holds that the further the CER
value is away from the mean of the distribution, a larger Cohen’s d would be required
to achieve an MCD of 5%. This is because in normal distributions, a CER of .50 implies a
threshold value around the distribution mean. Therefore, the maximum number of peo-
ple will be distributed around the threshold value - resulting in relatively small Cohen’s
d value for a given MCD. The further the CER deviates from the mean value (CER= .50),
the larger Cohen’s d must be to create a meaningful change. Figure 2 further illustrates
this dependency between the MCD, the base-rate (CER) and the SESOI estimate in terms
of Cohen’s d (see also Gruijters & Peters, 2019). In case the population distribution of
the outcome is for instance lognormal (right skewed), then a given MCD will require the
smallest Cohen’s d for CER values lower on x. Conversely, on the right end of the distri-
bution tail, the largest d values are then required to generate an MCD.

STEP 5: Plan your sample size

Once the MCD-based Cohen’s d is established, the required sample size can be com-
puted using power or AIPE computations described in a previous section (see also
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Table 3. Summary of the steps in the MCD-procedure.

Step # Action

Step 1 Determine a threshold definition (TD) of positive events on the continuous outcome

Step 2 Ascertain or estimate the base-rate occurrence (CER) of positive events given the threshold definition.
Step 3 Set a meaningful change definition (MCD)

Step 4 Estimate Cohen’s d based on the MCD using Equation 1

Step 5 Use the calculated Cohen’s d as the SESOI to plan an appropriate sample size given power or small

margin of errors

Cohen, 1988; Cumming, 2014; Faul et al.,, 2007; Peters and Crutzen, 2020). To illustrate
the ball park, Table 2 shows the required sample sizes for control event rates of 5%,
25% and 50%, and MCDs of 2.5%, 5%, 10%, and 25%, the required sample sizes to
obtain 80% and 95% power and to estimate the intervention effect with 95% confi-
dence interval half-widths of d=.10 and d=.25.

Discussion and recommendations

The MCD-procedure outlined in this paper enables applied researchers to determine
the smallest effect of interest, for which the required sample size can then be planned
(see Table 3 for a summary of the procedure). The essence of the procedure is three-
fold: 1) applied researchers need to have some a priori idea about what range of val-
ues on a continuous intervention outcome are considered ‘positive’ versus ‘negative’,
2) researchers need to have an estimate of the base-rate occurrence (CER) of these
events, and 3) researchers need to set (or, obtain) a meaningful change definition -
the increase in percentage of positive events considered meaningful change due to
intervention. The MCD-procedure, besides giving intervention researchers a concrete
method to arrive at a SESOI, highlights several practical considerations that are import-
ant when planning experimental tests of interventions. First, the procedure stresses
the relevance of prevalence; in order to adequately test the efficacy of an intervention,
information on the current state of the population improves the prediction of how a
given effect size will affect this population.

The practical implication for normally distributed outcomes is this (illustrated in
Figure 2): interventions aiming to change a behaviour with a very high or very low
base-rate corresponding to the threshold definition will require larger effect sizes to
engender meaningful change (see also Furukawa & Leucht, 2011; Gruijters & Peters,
2019). Thus, implying that interventions targeting outcomes with a sufficient (but not
excessively small or large) base-rate in the population will tend to require relatively
smaller effect sizes. This population-level thinking can be made somewhat more intui-
tive with an analogy: Suppose that we aim to improve jumping ability in a normally
distributed population with a mean jumping skill of 1 meter 50 (sd = 20cm). If we
define a successful intervention as ‘able to jump at least 1 meter 90/, it will require a
strong intervention to substantially increase the proportion of people able to do so -
because few people will be anywhere close to this threshold. However, if we define
intervention success as ‘able to jump 1 meter 60’ it will not require as strong an inter-
vention to get a substantial number of people to jump more than 1 meter 60.

Requiring a smaller effect size is, of course, somewhat of a mixed blessing. On the
one hand, from a practical perspective, this means that the intervention development
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process is less demanding. For example, instead of requiring powerful behaviour
change principles that need to be administered by an intermediary (e.g. a lifestyle
coach), perhaps a mass media campaign can suffice. However, detecting small effect
sizes using null hypothesis significance testing, or estimating small effect sizes with an
accuracy commensurate to that small effect size magnitude, requires considerable
sample sizes. If such sample sizes are not feasible, one alternative approach would be
to develop a more efficacious intervention than is required to meet the established
MCD. The somewhat prohibitive problem of this approach is the lack of theories that
enable quantitative predictions of the effectiveness of behaviour change principles.

However, there is another — perhaps more practical - way to deal with small SESOI
values requiring unfeasibly large samples. The MCD-method allows a concrete way to
estimate the SESOI, but as implied by the term, this estimate is the lower-bound effect
size of interest. This implies that finding robust evidence that the intervention effect
size is larger than the SESOI (that is, d > dMCD) warrants termination of the interven-
tion efficacy test. For instance, given a SESOI of d=0.13, the required sample size for
a significance test with sufficient power — or a high precision estimate - is exceedingly
large. One viable approach to deal with power analysis in case of a small SESOI is to
use sequential analyses (for an accessible introduction, see Lakens, 2014). The basic
idea behind sequential analyses (see also Albers, 2019; Neumann et al., 2017) is as fol-
lows. Consider a project in which the estimated sample size for a sufficiently powered
test amounts to n=375. Going the whole nine yards in data collection may (depend-
ing on the specific design) involve considerable resources (e.g., time and money).
Researchers could instead plan for interim analyses at various pre-registered intervals
during data collection (e.g., after n=125, n=250). When following proper protocol
and controlling for the false positive rate (see Albers, 2019; Lakens, 2014), interim anal-
yses allow researchers to terminate data collection when sufficient evidence for inter-
vention effectiveness, or absence thereof, has been found (e.g., Albers, 2019; Lakens,
2014; Neumann et al., 2017).

In conclusion, the MCD-method further illustrates the importance of undergirding
the intervention research with concrete and specific goals: what outcomes of the
intervention will be deemed ‘positive’ and on what criteria are such choices based?
This, in turn requires interventionists to consider the real-world impact they want to
achieve. Finally, the MCD-method emphasizes the importance for intervention
researchers to involve stakeholders and policymakers external to the project in order
to set such goals.
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