
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=uaaj20

North American Actuarial Journal

ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/uaaj20

Optimal Dividends Paid in a Foreign Currency for a
Lévy Insurance Risk Model

Julia Eisenberg & Zbigniew Palmowski

To cite this article: Julia Eisenberg & Zbigniew Palmowski (2020): Optimal Dividends Paid in
a Foreign Currency for a Lévy Insurance Risk Model, North American Actuarial Journal, DOI:
10.1080/10920277.2020.1805633

To link to this article:  https://doi.org/10.1080/10920277.2020.1805633

© 2020 The Author(s). Published with
license by Taylor and Francis Group, LLC

Published online: 09 Nov 2020.

Submit your article to this journal 

Article views: 117

View related articles 

View Crossmark data

https://www.tandfonline.com/action/journalInformation?journalCode=uaaj20
https://www.tandfonline.com/loi/uaaj20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/10920277.2020.1805633
https://doi.org/10.1080/10920277.2020.1805633
https://www.tandfonline.com/action/authorSubmission?journalCode=uaaj20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=uaaj20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/10920277.2020.1805633
https://www.tandfonline.com/doi/mlt/10.1080/10920277.2020.1805633
http://crossmark.crossref.org/dialog/?doi=10.1080/10920277.2020.1805633&domain=pdf&date_stamp=2020-11-09
http://crossmark.crossref.org/dialog/?doi=10.1080/10920277.2020.1805633&domain=pdf&date_stamp=2020-11-09


Optimal Dividends Paid in a Foreign Currency for a L�evy
Insurance Risk Model

Julia Eisenberg1 and Zbigniew Palmowski2
1Institute of Mathematical Methods in Economics, TU Wien, Vienna, Austria
2Faculty of Pure and Applied Mathematics, Wrocław University of Science and Technology, Wrocław, Poland

This article considers an optimal dividend distribution problem for an insurance company where the dividends are paid in a
foreign currency. In the absence of dividend payments, our risk process follows a spectrally negative L�evy process. We assume
that the exchange rate is described by a an exponentially L�evy process, possibly containing the same risk sources like the surplus
of the insurance company under consideration. The control mechanism chooses the amount of dividend payments. The objective
is to maximize the expected dividend payments received until the time of ruin and a penalty payment at the time of ruin, which is
an increasing function of the size of the shortfall at ruin. A complete solution is presented to the corresponding stochastic control
problem. Via the corresponding Hamilton–Jacobi–Bellman equation we find the necessary and sufficient conditions for optimality
of a single dividend barrier strategy. A number of numerical examples illustrate the theoretical analysis.

1. INTRODUCTION
In the public eye, dividend payments are holding the title to be one of the most important signs of financial health and

future stability of shares-issuing companies. Thus, a forecast of opulent future dividends, compared to a benchmark such as 10
year government bonds, will most likely attract new investors, clients, and business partners. Therefore, it is natural to consider
future dividend payments as a risk measure quantifying company’s future profitability and debt sustainability. Because the
pathbreaking work of Bruno de Finetti in 1957, substantial research has been carried out on finding the optimal dividend strat-
egy in the framework of the classical risk model or diffusion approximation as a surplus process for an insurance company.
The survey by Albrecher and Thonhauser (2009) sums up the most important results for these types of surplus. Avram,
Palmowski, and Pistorius (2007) generalized de Finetti’s problem to spectrally negative L�evy processes as surplus. Loeffen
(2008, 2009) extended their results and added transaction costs. Loeffen and Renaud (2009) modified the optimization problem
by adding an affine penalty function at ruin.

Despite severe differences in modeling the surplus and additional constraints, the above works have one feature in common:
the discounting factor or rather the preference rate. The preference rate is usually assumed to remain constant and positive on
time, signalizing the setup “money today is more preferable to money tomorrow.” However, in the times of negative interest
rates, like nowadays, a perpetual positive interest rate will lead to deterioration of results. For instance, Akyildirim et al. (2013),
Eisenberg (2015), and Jiang and Pistorius (2012) incorporated stochastic interest rate into the dividend optimization framework.

Another aspect that has not been studied until now in the framework of dividend maximization is foreign interest rates. Big
insurance companies have clients and shareholders all on the world. For instance, top global reinsurance companies, including
such giants like Munich Re and Swiss Re, established themselves in the Middle East more than a decade ago and have been
recently expanding to Asia and Latin America, while “local” reinsurance companies are still in their infancy. In most cases,
the dividends are declared in the domestic currency of companies or in U.S. dollars and are paid to the shareholders in the local
currency using the actual exchange rate.
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Currency fluctuations are a natural consequence of the floating exchange rate system (i.e., a currency’s value is allowed to fluc-
tuate in response to foreign exchange market events), which is used in most economies. Indeed, just a few countries worldwide are
currently using the fixed rate approach, where the domestic currency is pegged to a stronger currency or a basket of them. Many
factors impact a foreign exchange rate; for instance, relative supply and demand of the two currencies, a forecast for inflation, etc.
Thus, any noticeable changes in the underlying economy affect the exchange rates and the economic activities of almost all domes-
tic market participants. For shareholders of an insurance company, such events might become crucial because the affected company
can decide to shorten dividend payments due to an unfavorable market situation. Thus, the changes with the exchange rate and the
shortening of dividends can have the same risk component. Note that the impact type described above is rather of a continuous
nature, reflecting infinitesimal economic changes on the daily basis; see, for instance, Mouna and Anis (2016). In the surplus of an
insurance company this continuous dependency can be modeled via adding a Brownian motion. A classical risk model (compound
Poisson process) perturbed by a diffusion component was first suggested by Gerber (1970) in order to model some uncertainties.
Therefore, this type of model has been studied quite intensively Because its introduction in 1970.

In recent years, a number of incidents known as “flash crashes” have been shaking the global financial market. Christensen,
Oomen, and Ren�o (2018) stated that the number of flashes will be even increasing. The sudden market crashes will again affect
both the exchange rates and insurance companies. These changes are of a jump nature, occurring at discrete times but on a regu-
lar basis. By modeling the surplus process of an insurance company, the factor describing the dependence of the surplus on the
financial crushes can be modeled, for instance, by continuous-time Markov chains. Another example of jump dependence pro-
vide countries with regular occurring catastrophic events; for instance, earthquakes in Japan and Mexico and floods in the UK,
China, and Egypt. After a catastrophic event, the affected country experienced a downturn in the domestic currency. Damage in
both the public and the private sector is (partly) taken on by (re)insurance companies. A common home insurance usually does
not include the conage of losses due to a catastrophic event, in particular in areas most vulnerable to natural hazards. However,
insurance companies can, in addition to a standard contract, offer a partial conage in case of a catastrophic event by introducing
a cap for the losses. The same effect may be achieved by purchasing reinsurance. It is intuitively clear that catastrophic and non-
catastrophic claims must be modeled separately. Thus, once a natural disaster occurs, the number of claims of an insurance com-
pany and the exchange rate have a joint jump. Li et al. (2009) give empirical proofs that a large group of U.S. insurers are
exposed to foreign exchange movements against the seven largest U.S. trade partners in insurance services; for example from
the UK, Japan, and Switzerland. Thus, many insurance companies are exposed to foreign exchange rate risks. These risks might
put a strain on the surplus of an insurance company and therefore also impact the dividend payment strategies.

In the present article we describe the surplus process of an insurance company by a L�evy process containing a diffusion part
and a jump part. We assume that the insurance company under consideration targets to maximize the expected discounted
amount of dividends paid in a foreign currency. The exchange rate is assumed to follow a L�evy process featuring a dependence
on the surplus process. Because L�evy processes can be decomposed into a diffusion part and a jump part, we distinguish two
cases for dependencies: dependence of the continuous and jump parts. The article is organized as follows. In Section 2, we intro-
duce the basic notation and describe the model we deal with. Subsection 2.1 is dedicated to the related one-sided and two-sided
problems. In Section 3, we present the verification theorem, necessary and sufficient conditions for the barrier strategy to be
optimal. Section 4 presents two detailed examples. For the sake of clarity of presentation, the proofs are provided in Section 5.

2. THE MODEL
Recall the classical Cram�er-Lundberg model

Rt�R0 ¼ ct�St, St ¼
XNt

k¼1

Ck, (1)

which is used in collective risk theory to describe the surplus R ¼ fRt, t 2 Rþg of an insurance company. Here, Ck are inde-
pendent and identically distributed. positive random variables representing the claims and St denotes the aggregate claims up
to time t. The claim number N ¼ fNt, t 2 Rþg is modeled via a homogeneous Poisson process with intensity k and is inde-
pendent of the claims. Finally, c represents the premium rate fulfilling c> km> 0 and m ¼ E½C1�<1, in order to allow the
process to remain nonnegative with a positive probability.

In 1970, Gerber introduced some uncertainty into the Cram�er-Lundberg model by adding a Brownian motion. The
“perturbed model” is then Rt�R0 :¼ rBt þ ct�St, where Bt denotes a standard Brownian motion, describing small random
fluctuations of the surplus.
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A further very important generalization is to replace the aggregate claim amount S by a general subordinator (a non-decreas-
ing L�evy process, with L�evy measure �RðdxÞ, x 2 Rþ, which may have infinite mass). Under this model, the “fluctuations”
can arise either continuously, due to the Brownian motion, or due to the infinite jump-activity.

Assuming S to be a pure jump martingale with independent and identically distributed increments and negative jumps with
L�evy measure �RðdxÞ, one arrives at a general integrable spectrally negative L�evy process R ¼ fRt, t 2 Rþg; that is, a sto-
chastic process with stationary independent increments and no positive jumps and c�adl�ag paths with Rt integrable for any t � 0
and E½R1�> 0 in order for the surplus to be profitable; see Kyprianou (2006) for details. The corresponding L�evy-Khintchin tri-
ple is ðc,r, �RÞ and R0 ¼ x; that is, the generator of R is given by

A1f ðxÞ ¼ cf 0ðxÞ þ r2

2
f 00ðxÞ þ

ð
R

f ðxþ hÞ � f ðxÞ � f 0ðxÞh1 jhj�1½ �
� �

�RðdhÞ

for a suitable function f from the domain of the generator.
We further assume that exchange rate process denoted by Y ¼ fYt, t 2 Rþg is a spectrally negative L�evy process with a

corresponding triple ðp, d, �YÞ and Y0 ¼ l; that is, the generator of Y has the form

A2f ðlÞ ¼ pf 0ðlÞ þ d2

2
f 00ðlÞ þ

ð
R

f ðlþ hÞ � f ðlÞ � f 0ðlÞh1 jhj�1½ �
� �

�YðdhÞ

for a suitable function f from the domain of the generator A2:
Both processes are defined on some common probability space ðX,F , fF tgft�0g,PÞ, where F ¼ fF tgft�0g is the natural

filtration satisfying the usual conditions of right-continuity and completeness generated by bivariate L�evy process X ¼ fXt :¼
ðRt,YtÞ, t 2 Rþg: To avoid degeneracies, we exclude the case that R or Y has monotone paths. We denote by �ðdz, dyÞ the
jump measure of the process X. Note that

�ðdz, ð�1,1ÞÞ ¼ �RðdzÞ and �ð 0,1Þ, dyÞ ¼ �YðdyÞ:½

We denote by fPx ¼ Pðx, lÞ, x ¼ ðx, lÞ 2 R
2g the family of probability measures that correspond to the translations of X by a

vector; that is, P½X0 ¼ x� ¼ 1: Later, when it will be clear, we skip underlining of x to note the only dependence on x. In this
case, by Ex and Ex we denote the corresponding expectations. Finally, we will use the notation P0 ¼ P and E0 ¼ E as well.

To ensure that Rt and Yt have finite means for fixed t � 0, the L�evy measure � is assumed to satisfy the integrability conditionð
R ð�1, 1Þ½ �2

jjxjj�ðdxÞ<1:

As stated in the Introduction, the processes R and Y are assumed to be dependent. Because the continuous part and the jump
part of a L�evy process are independent, it is enough to consider the dependence structure of the continuous and discontinuous
parts separately. The generator of the process X in case of both types of dependency is given by

Af ðx, lÞ ¼cfxðx, lÞ þ r2

2
fxxðx, lÞ þ pflðx, lÞ þ d2

2
fllðx, lÞ þ qrdfxlðx, lÞ

þ
ð
R

2
f ðxþ h2, lþ h1Þ�f ðx, lÞ�fxðx, lÞh11 jh1j�1½ ��flðx, lÞh21 jh2j�1½ ��ðdh1, dh2Þ:

If R and Y depend just on the jump part, qrdfxlðl, xÞ disappears. By dependency just on the continuous part, the integral above
transforms to ð

R

f ðx, lþ hÞ�f ðx, lÞ�flðx, lÞh1 jhj�1½ ��YðdhÞ

þ
ð
R

f ðxþ h, lÞ�f ðx, lÞ�fxðx, lÞh1 jhj�1½ ��RðdhÞ:

For more details, see B€auerle, Blatter, and M€uller (2008).
We assume that the considered insurance company pays dividends and the ex-dividend process is given by

Rp
t ¼ Rt�Lpt ,
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where p denotes a strategy chosen from the set P of all admissible dividend controls, resulting in dividend process Lpt denoting
the accumulated dividends under p paid up to time t. An admissible dividend strategy p generates the dividend process Lp ¼
fLpt , t 2 Rþg, which is c�adl�ag, adapted to the filtration F ¼ fF tgt�0, and at any time preceding the ruin, the dividend pay-
ment is smaller than the size of the available reserves (Lpt �Lpt� <Rp

t�); that is, the ruin cannot be caused by a divi-
dend payment.

The object of interest is the expected discounted amount of dividends paid in a domestic currency and declared in a foreign
currency

DðpÞ :¼
ðTp

0
e�Yt dLpt

and the expected discounted penalty payment (so-called Gerber-Shiu function)

WðpÞ :¼ e�YTpwðRp
TpÞ:

Here, Tp :¼ infft � 0 : Rp
t < 0g is the ruin time and w is a penalty function acting on the negative half-line. Later, unless it

is necessary, we will write T instead of Tp to simplify the notation.
Note that in the definition of D we mean that the integrand is taken at the time t in order for the integral to be well-defined.

We will use this notation without further mention throughout the article.
The process Yt apart from the interpretation as an exchange rate also describes discounting. In particular, if Y t ¼ qt the q

could be interpreted as a given discount or rather a preference rate, describing the monetary preferences of the considered
insurance company. Our objective is to maximize

Vpðx, lÞ :¼ Eðx, lÞ DðpÞ½ � þ Eðx, lÞ WðpÞ½ �

on all admissible strategies; that is, to find the so-called value function

Vðx, lÞ :¼ sup
p2P

Vpðl, xÞ, (2)

and the optimal strategy p� 2 P, if it exists, such that

Vðx, lÞ ¼ Vp� ðx, lÞ for all x � 0, l 2 R:

2.1. Preliminaries
In this section, we summarize the basic definitions and properties of L�evy processes and some other concepts we will use in

our modeling.
We conjecture that the optimal dividend payment strategy will be of a barrier type. This means that the dividends are paid

as the excess of the surplus above a certain constant level, say a> 0. If the surplus is above the level a, the excess will be
immediately distributed as a lump sum dividend payment and the surplus amounts to a. By starting below a, the insurance
company will not pay any dividends until the surplus attains a; the considerations stop if the surplus attains 0 before attaining
a. Therefore, we will need the following first passage times:

sþa :¼ infft � 0 : Rt � ag and s�0 :¼ infft � 0 : Rt < 0g:

We will now formally define auxiliary functions D for which the following exit identity holds true

Eðx, lÞ e
�Ysþa 1 sþa < s�0½ �

h i
¼ DðxÞ

DðaÞ e
�l, (3)

where x 2 ð0, aÞ:
In the following, we recall some results from the fluctuation theory for spectrally negative L�evy processes. For more details,

see Kyprianou (2006, 2013) and references therein.
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Let

Eðx, lÞ ehh,Xti½ � ¼ etwðhÞþh1xþh2l

for h ¼ ðh1, h2Þ 2 D � Rþ � R and some set D for which the above expectation is well defined and h:, :i is a scalar product.
For any h 2 D we denote by P

h an exponential tilting of measure P with the Radon-Nikodym derivative given by

dPh

dP

����
F t

¼ exp hh,Xti � wðhÞt� �
:

Under the measure Ph the process X is still a bivariate L�evy process with the Laplace exponent /hðsÞ with s 2 R
2 given by:

/hðsÞ ¼ log E
h ehs,X1i½ �ð Þ ¼ wðsþ hÞ�wðhÞ, (4)

where Eh denotes the expectation with respect to P
h: From now on we assume that there exists an a � 0 such that

wða,�1Þ ¼ 0: (5)

We denote by

wRðbÞ :¼ /ða,�1Þðb, 0Þ ¼ log E
ða,�1Þ ebR1½ �ð Þ

the Laplace exponent of R under Pða,�1Þ: Note that under Pða,�1Þ the process R has the following L�evy-Khintchin triple:

ð~c,r,lRÞ, (6)

where

~c : ¼ cþ ar2�qrdþ
ð
R

2
eah1�h2 � 1f gh11 jh1j�1½ ��ðdh1, dh2Þ,

lRðAÞ : ¼
ð
A�R

eah1�h2�ðdh1, dh2Þfor all Borel sets A:

Further, there exists a function Wa : ½0,1Þ ! ½0,1Þ, called the scale function, (see, e.g., Bertoin 1997), continuous and
increasing with the Laplace transform

ð1
0
e�byWaðyÞ dy ¼ wRðbÞ�1: (7)

The domain of Wa is extended to the entire real axis by setting WaðzÞ ¼ 0 for z< 0.

2.1.1. Assumption 1
Throughout the article we assume that the following (regularity) condition is satisfied:

Wa 2 C2ð0,1Þ: (8)

To obtain it we can assume that either

lRð�1, � xÞ, x � 0 has a completely monotone density (9)

(see Loeffen 2008; Chan, Savov, and Kyprianou 2011, p. 695)1

1A function f with the domain ð0,1Þ is said to be completely monotone, if the derivatives f ðnÞðxÞ exist for all n ¼ 0, 1, 2, 3, :::, and ð�1Þnf ðnÞðxÞ � 0
for all x> 0.
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r2 > 0

(see Chan, Savov, and Kyprianou 2011, theorem 1) or that Rt is given in (1) with

lRð�1, � xÞ 2 C1ð0,1Þ

(see Kyprianou 2006, problem 8.4 (ii)).
The function Wa plays a key role in the solution of the two-sided exit problem as shown by the following classical identity:

P
ða,�1Þ
x s�0 > sþa

� � ¼ WaðxÞ
WaðaÞ (10)

that holds for x 2 ½0, a�; see Kyprianou (2006).The function D defined in (3) is related to the above scale function Wa in the
following way.

Lemma 1. It holds that

DðzÞ ¼ eazWaðzÞ:

Proof. Note that by (10) we have

Eðx, lÞ e
�Ysþa 1 sþa < s�0½ �

h i
¼ eaðx�aÞe�l 	 Pða,�1Þ sþa < s�0

� � ¼ e�l 	 e
axWaðxÞ
eaaWaðaÞ ,

which completes the proof. w

In order for the optimization problem to be well defined, we require the following condition.

2.1.2. Assumption 2

wð0,�1Þ< 0: (11)

We first show that without this assumption the value function could be infinite. Indeed, let wð0,�1Þ> 0 and we assume with-
out loss of generality. w¼ 0 and E½R1�<1: Letting b :¼ E½R1�=2 and defining pb to be the strategy with the dividend payout
Lp

b

t ¼ bt yields, using Tonelli’s theorem,

Vðx, lÞ � Vpbðx, lÞ ¼ bEðx, lÞ

ðTpb

0
e�Yt dt

" #
¼ b

ð1
0
Eðx, lÞ e�Yt1

Tpb > t½ �
h i

dt

¼ be�l
ð1
0
ewð0,�1Þt 	 Pð0,�1Þ

x Tpb > t
� �

dt:

Because the ex-dividend process fulfills E½Rpb
1 �> 0 (see the prior definition of R), it holds that P½Tpb ¼ 1�> 0 and accordingly

P
ð0,�1Þ
x Tpb ¼ 1½ �> 0: Thus, we immediately get Vðx, lÞ ¼ 1:
On the other hand, under Assumption (11) our value function is well-defined. Indeed, this assumption yields that a> 0 for

a solving (5). A dividend process Lpt is nondecreasing so that using integration by parts one gets

ðTp

0
e�Yt dLpt ¼ LpTp�e

�YTp��
ðTp

0
Lpt de�Yt�L0e

�l� e�Y
,L½ �t:

Note that because L is nondecreasing and Y is spectrally negative, the square bracket ½e�Y ,L�t is nonnegative (see corollary
II.6.2 in Protter [2005] and theorem I.4.52 in Jacod and Shiryaev [2003]). Applying Ito’s formula on e�Yt and building the
expectations yields
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Eðx, lÞ

ðTp

0
e�Yt dLpt

" #
¼ Eðx, lÞ LpTp�e

�YTp�
� ��Eðx, lÞ

ðTp

0
wð0,�1Þe�YtLpt dt

" #
�L0e

�l:

By definition of Lpt it holds that Rt � Lpt for all t< Tp: Because there is an a> 0 with wða,�1Þ ¼ 0 and because ex is a convex
function, it holds that

Eðx, lÞ RTp�e�YTp�
� �

� 1
a
Eðx, lÞ eaRTp��YTp�½ � ¼ 1

a
eax�l <1: (12)

Furthermore, due to the continuity of w, there is an a 2 ð0, aÞ such that wða,�1Þ< 0: Then,

Eðx, lÞ

ðTp

0
e�YtLpt dt

" #
�

ðTp

0
e�YtRt dt

" #
�

ð1
0
Eðx, lÞ e�YtRt1 Tp > t½ �

h i
dt

� 1
a

ð1
0
Eðx, lÞ eaRt�Yt1 Tp > t½ �

h i
dt ¼ eax�l

a

ð1
0
ewða,�1Þt

E
ða,�1Þ
x 1 Tp > t½ �

� �
dt

� eax�l

a

ð1
0
ewða,�1Þt dt<1:

(13)

Using wð0,�1Þ< 0 and building the supremum on p yields Vðl, xÞ<1:

2.1.3. Penalty Functions
Throughout the article we will also consider the penalty functions belonging to the family of functions R, which is defined

in the following way. R is the set of c�adl�ag functions w : ð�1, 0� ! R that are left-continuous at 0, admit a finite first left-
derivative w0

�ð0Þ at 0 and satisfy the integrability condition

sup
y> 1

ð
½y,1Þ

sup
u2½y�1, y�

jwðu�zÞjeaz�RðdzÞ<1:

Let

GwðxÞ :¼ el 	 Eðx, lÞ e�Ys�
0 wðRs�0 Þ

h i
¼ E

ða,�1Þ
x wðRs�0 Þ

� �
: (14)

For w 2 R, from proposition 4.9 in Avram, Palmowski, and Pistorius (2016), we have the following lemma.

Lemma 2. Let w 2 R. For any x 2 R it holds that

GwðxÞ ¼ FwðxÞ�WaðxÞjw, with

jw : ¼ r2

2
w0ð0�Þ þ 1

E
ða,�1Þ R1½ �wð0Þ � Lw�

" #
,

where Lw� ¼
Ð1
0

Ð1
x ½wðx�zÞ�wð0Þ�eaz�Rð dzÞ dx and the function Fw : R ! R is given by FwðxÞ ¼ wðxÞ for x < 0, and by

FwðxÞ ¼ wð0Þ þ w0
�ð0Þx�

ðx
0
Waðx�yÞJwðyÞ dy, x 2 Rþ, with

JwðxÞ ¼ w0
�ð0Þcþ

ð1
x
fwðx�zÞ�wð0Þ þ w0

�ð0Þðz�xÞgeaz�RðdzÞ:

OPTIMAL DIVIDEND DISTRIBUTION PROBLEM 7



3. MAIN RESULTS
In this section we will present the main result of the article, namely, we show that the optimal strategy among all admissible

strategies P, defined previously, is of a constant barrier type. For that purpose, we consider the corresponding Hamilton-
Jacobi-Bellman (HJB) equation, which has been derived using heuristic arguments (see, e.g., Schmidli 2008).

max

	
cVxðx, lÞ þ r2

2
Vxxðx, lÞ þ pVlðx, lÞ þ d2

2
Vllðx, lÞ þ qdrVxlðx, lÞ

þ
ð
R

2
Vðxþ h2, lþ h1Þ�Vðx, lÞ�Vxðx, lÞh21 jh2j�1½ ��Vlðx, lÞh11 jh1j�1½ ��ðdh1, dh2Þ,

e�l�Vxðx, lÞ



¼ 0,

(15)

subject to the boundary condition

Vðx, lÞ ¼ e�lwðxÞ, for all x < 0,

Vð0, lÞ ¼ e�lwð0Þ, in the case r2 > 0 or
Ð 0
�1 ye

ay�RðdyÞ ¼ 1:

8<
: (16)

The second part of the HJB equation (15), multiplied by el yields 1�elVxðx, lÞ, which can result in a constant barrier strategy
for the surplus if elVxðx, lÞ does not depend on l. Because we conjecture that the optimal strategy is of a constant barrier type,
the value function should have the form e�lFðxÞ and the HJB equation becomes

max

	
cF0ðxÞ þ r2

2
F00ðxÞ�pFðxÞ þ d2

2
FðxÞ�qdrF0ðxÞ

þ
ð
R

2
e�h1Fðxþ h2Þ�FðxÞ�F0ðxÞh21 jh2j�1½ � þ FðxÞh11 jh1j�1½ ��ðdh1, dh2Þ,

1�F0ðxÞ



¼ 0:

(17)

subject to the boundary condition

FðxÞ ¼ wðxÞ, for all x < 0,

Fð0Þ ¼ wð0Þ, in the case r2 > 0 or
Ð 0
�1 ye

ay�RðdyÞ ¼ 1:

8<
: (18)

If w(x) ¼ 0 for all x< 0, which corresponds to the Gerber-Shiu function WðpÞ ¼ 0, then the boundary condition (18) is
equivalent to the requirement that F equals zero on the negative half-line.

In order to prove the optimality of a barrier strategy, we consider the HJB equation (17) with boundary conditions (18) first.

Theorem 1 (Verification Theorem).
Let p be an admissible dividend strategy such that Vp is twice-continuously differentiable and ultimately dominated by

some affine function. If (15) and (16) hold true for Vp, then Vpðx, lÞ ¼ Vðx, lÞ for all x � 0, l 2 R:

Proof. For the sake of clarity of presentation, the proof is postponed to Section 5. w

Now, we will focus on the set of barrier strategies paying out any excess above a given level as dividends. Let a> 0 and pa
denote a barrier and the corresponding barrier strategy. In the following, we will investigate the properties of the return func-
tions corresponding to barrier strategies in order to apply Theorem 1. For simplicity, we will denote the return function corre-
sponding to the strategy pa by Vaðx, lÞ ¼ e�lFaðxÞ; that is,

FaðxÞ :¼ elEðx, lÞ

ðTpa

0
e�Yt dLpat þWðpaÞ

" #
:

The above representation is possible because the underlying barrier does not depend on Y.
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Theorem 2
It holds that

FaðxÞ ¼
DðxÞ
D0ðaÞ 1� G0

wðaÞ
� �þ GwðxÞ, x � a,

x�aþ FaðaÞ, x> a

8<
: (19)

with Gw defined in (14). The function Fa is continuously differentiable with respect to x on ½0,1Þ:

Proof. See Section 5. w

Let

H0
aðyÞ :¼

1�G0
wðyÞ

D0ðyÞ
and define a candidate for the optimal dividend barrier by

a� :¼ sup a � 0 : H0
aðaÞ � H0

aðxÞ for all x � 0
� �

, (20)

where H0
að0Þ ¼ lim

x#0
H0

aðxÞ:
Now, using the above two theorems we can give necessary and sufficient conditions for the barrier strategy to be optimal.

Theorem 3
The value function Va� ðx, lÞ ¼ e�lFa� ðxÞ under the barrier strategy pa� is in the domain of the full generator A. The barrier
strategy pa� is optimal and Va� ðx, lÞ ¼ Vðx, lÞ for all x � 0 and l 2 R if and only if

A e�lFa� ðxÞ
� �

� 0 for all x> a�: (21)

Proof. See Section 5. w

Remark 1
1. The optimal level defined in (20) is uniquely defined. However, in general it might happen that there is another barrier pro-

ducing the same value function. We believe that in the case when condition (21) is not satisfied, the optimal strategy is a
band strategy involving several continuation bands ½bi, aiÞ, with upper reflecting boundaries bi, separated by lump-sum divi-
dend payment bands ½ai, biþ1Þ of jumping to the next reflecting barrier below ai by paying all of the excess as a lump-sum
payment. The proof will most probably follow Avram, Palmowski, and Pistorius (2016) and will be very complex and long.
Therefore, we decided to skip this analysis here and investigate the possibility of a band strategy in the future in a separate
article. Even an example yielding a band strategy as the optimal strategy would require a lot of background knowledge; see,
for instance, the example with a constant preference rate given in Azcue and Muler (2005).

2. Here, we would like to emphasize that in our case the barrier might even completely disappear, meaning that the value
function equals x on ½0,1Þ: This is, for example, the case if we choose Rt ¼ xþ ct þ rWt and Yt ¼ lþ pt þ dBt, where
W and B are two standard Brownian motions with correlation q ¼ 0:3, c¼ 1.3, p¼ 0.6, r¼ 5, and d¼ 1. The value func-
tion is given by Vðl, xÞ ¼ e�lx:
The interpretation is the following. The financial market component in the surplus process is too risky. Thus, the ruin
probability is so high that in order to maximize the discounted dividends it is better to pay out the entire capital as divi-
dends than to wait and get ruined without any payment.

Theorem 4
Suppose that

H0
aðaÞ � H0

aðbÞ for all a� � a � b: (22)

Then the barrier strategy with the barrier a� is the optimal strategy; that is, Vðx, lÞ ¼ e�lFa� ðxÞ for all x � 0:

Proof. See Section 5. w
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Corollary 1.
Assume that w(x) ¼ 0 (there is no penalty function) and that (9) holds true. Then pa� is the optimal strategy.

Proof. See Section 5. w

Remark 2
If w(x) ¼ 0 for x � 0—that is, there is no penalty function—then under the assumption that f a is monotone decreasing, we
have

Vðx, lÞ ¼ Va� ðx, lÞ ¼ e�lFa� ðxÞ ¼ e�l 	 DðxÞ
D0ða�Þ , (23)

where a� maximizes H0
aðxÞ ¼ 1=D0ðxÞ and hence solves

D00ða�Þ ¼ 0,

which is equivalent to the requirement that

d2

dx2
Vða�, lÞ ¼ 0: (24)

In other words, knowing the barrier strategy is optimal, identifying the value function could be based on solving the HJB
equation (17) (without any boundary conditions) and finding a� via (24) and using the boundary condition d

dx Vða�, lÞ ¼ e�l

or, equivalently, F0
a� ða�Þ ¼ 1:

4. EXAMPLES
In this section we pick up the idea of continuous dependence and flash crashes on the global market impacting both the

exchange rate and the surplus of an insurance company. In the first example below we deal with the continuous dependency
case; Example 2 considers the flash crashes. By assuming that the jumps in the considered L�evy processes are exponentially
distributed we are able to rewrite the HJB equation in terms of an ordinary differential equation of order 3. In this case, we can
show that the problem of finding the optimal barrier and the value function transforms in solving the underlying differential
equation with corresponding boundary conditions.

Example 1.
Let us first consider the following example. The classical model of risk theory describes the surplus of an insurance entity up
to infinity. We let Nt be the jump number Poisson process with intensity k, c the premium rate, Ci independent and identically
distributed claim sizes ExpðcÞ-distributed. We let the surplus be given by the perturbed classical risk model and the exponen-
tial expression of the exchange rate by a Brownian motion with drift.

Rt ¼ xþ ct�
XNt

i¼1

Ci þ rBt and Yt ¼ lþ pt þ dWt,

where B and W are Brownian motions with correlation coefficient q. Further, in order to guarantee the well-posedness of our
problem, we assume p> d2

2 ; see Assumption (11).
In the following, we first derive the value function directly from the HJB equation and show in the second part the deriv-

ation of the value function and the optimal barrier via scale functions.
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Derivation of the value function via HJB
The HJB equation (17) has the following form:

max

	
cF0ðxÞ þ r2

2
F00ðxÞ þ k

ðx
0
Fðx�yÞ dGðyÞ� kþ p� d2

2

� �
FðxÞ�qdrF0ðxÞ,

1�F0ðxÞ



¼ 0,

where GðyÞ ¼ 1�e�cy: Let gðxÞ :¼ Ð x
0 FðyÞecy dy: Then

kcgðxÞ þ d2 þ r2c2

2
� p� k� ccþ qcdr

� �
g0ðxÞ þ ðc�dqr�cr2Þg00ðxÞ

þ r2

2
g000ðxÞ ¼ 0:

For the sake of clarity

a2 : ¼ 2
r2

c� dqr� cr2
� �

,

a1 : ¼ 2
r2

pþ d2

2
� kþ r2c2

2
� ccþ qcdr

� �
,

a0 : ¼ 2kc
r2

:

Define

PðsÞ :¼ s3 þ a2s
2 þ a1sþ a0:

If si, 1 � i � n are different zeros of P(s) and ki 1 � i � n the corresponding multiplicities with n � 3, then due to Kamke
(1983, p. 105) or Walter (1998), all solutions to the above differential equation are given by

es1xPk1�1ðxÞ þ :::þ esnxPkn�1ðxÞ,

where Ph is a polynomial of the degree �h: Concerning the zeros of P(s), we can distinguish between two cases: P(s) has three
real zeros, P(s) has one real and two complex zeros (complex conjugates). In the second case, the general solution
is es1xC1 þ es2x sin ðxÞC2 þ es2x cos ðxÞC3:

Considering again the equation

cF0ðxÞ þ r2

2
F00ðxÞ þ k

ðx
0
Fðx�yÞ dGðyÞ� kþ p� d2

2

� �
FðxÞ�qdrF0ðxÞ ¼ 0

yields F00ðxÞ> 0 if F0ðxÞ ¼ 0 and F000ðxÞ> 0 if F00ðxÞ ¼ 0 and F0ðxÞ> 0: Therefore, for an a� fulfilling F00ða�Þ ¼ 0 and F0ða�Þ ¼
1 we have F0ðxÞ> 1 on ½0, a�Þ; that is, F fulfills the HJB equation. To identify the optimal level a�, note that by Remark 2 the
boundary conditions are given by the following equations: gð0Þ ¼ 0, g0ð0Þ ¼ 0,F0ða�Þ ¼ 1, and F00ða�Þ ¼ 0 for some a�:

For instance, for c¼ 1.3, p¼ 0.6, r¼ 1, d¼ 1, q ¼ 0:3, k¼ 2, and c¼ 2. Then,

gðxÞ ¼ C1e
s1x þ C2e

s2x þ C3e
s3x,

where s1 ¼ 1:697007, s2 ¼ 2:327991, and s3 ¼ �2:024999: The boundary conditions yield the unique solution, (see Walter
1998, p. 199)

gðxÞ ¼ �6:898735 	 es1x þ 5:898735 	 es2x þ es3xð Þ0:111605:
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The solution to the HJB equation (17), F(x), is then given by

FðxÞ ¼ g0ðxÞe�cx ¼ �1:306593e�0:302992x þ 1:532594e0:327991x�0:226002e�4:024999x:

The boundary conditions yield the optimal dividend barrier a� ¼ 0:840599: Figure 1(a) illustrates the first and second deriva-
tives of the value function F(x), where we see that F0ðxÞ> 1 and F00ðxÞ< 0 for x 2 ½0, a�Þ and F0ða�Þ ¼ 1,F00ða�Þ ¼ 0:

Because the function e�lFðxÞ is twice-continuously differentiable with respect to x, it can be shown using the standard
methods, (see, e.g., Schmidli 2008) that e�lFðxÞ is the value function.

Derivation via scale functions
Coming from the other side, using Theorem 2 we can derive the value function and the optimal barrier via scale functions.

First of all, find a � 0 that sets the Laplace exponent of the bivariate L�evy process (R, Y) to zero:

wða,�1Þ ¼ ðc�qdrÞaþ r2a2

2
þ k

c
cþ a

� 1
� �

þ d2

2
�p ¼ 0:

Having identified, a ¼ 0:32799143 one can calculate the function wRðbÞ due to (4) (or by [6]):

wRðbÞ ¼ wðbþ a,�1Þ ¼ ðcþ ar2�qdrÞbþ r2b2

2
� kc
cþ a

	 b
cþ aþ b

:

Now, using (7), we can get WaðxÞ: Noting that the zeros of wR are given by ~s1 ¼ 0,~s2 ¼ �0:630984,~s3 ¼ �4:352991 and
using the inverse Laplace transform, we get

WaðxÞ ¼ �0:249971e�4:352991x�1:445168e�0:630984x þ 1:695139:

Therefore, we can conclude

DðxÞ ¼ eaxWaðxÞ ¼ �0:249971e�4:024999x�1:445168e�0:302992x þ 1:695139e0:327991x:

By (6) and the form of wR given above, the density f aðyÞ ¼ ðcþ aÞe�ðcþaÞy of the generic jump size C of the surplus under
P
ða,�1Þ is completely monotone. Hence, from Corollary 1 the barrier strategy pa� is optimal. Due to (19), the value function

and the optimal strategy are given by

FIGURE 1. (a) The Derivatives F0ðxÞ and F00ðxÞ on the Interval ½0, 2� and (b) 1
D0 ðxÞ with the Optimal Barrier a� ¼ 0:840599:
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Vðx, lÞ ¼
(
e�l DðxÞ

D0ða�Þ : x � a�,

Vða�, lÞ þ x�a� : x> a�,

a� ¼ sup a � 0 :
1

D0ðaÞ �
1

D0ðxÞ for all x � 0
	 


¼ 0:840599:

Figure 1a illustrates that 1
D0ðxÞ has the global maximum at 0.840599. Because all assumptions of Corollary 1 are satisfied, the

value function is given in (23) and it is consistent with the previous analysis.

Example 2
In this example, we consider a company acting in a country exposed to some natural disaster. We assume that the damages
connected to this kind of natural disasters are modeled via the Weibull distribution with parameters n and 0.5; that is, the distri-
bution function is

1�e
�

ffiffi
x

p ffiffi
n

p
: x � 0

0 : x < 0:

(

Imagine now that the insurance company under consideration (the first insurer) buys reinsurance, so that the self-insurance
function—the function applied on the total claim due to the catastrophic event to be paid by the first insurer—is given by

ffiffiffi
x

p
:

This means in particular that the total catastrophic claims are exponentially distributed. We assume that the catastrophic events
happen on a regular basis and model the number of events by a Poisson process.

In this example, we again assume that the surplus process of the considered insurance company Rt is given by a perturbed
classical risk model and the exponential of the exchange rate Yt by a continuous drift and a jump part, where the number of
jumps is correlated with the number of jumps in the surplus. Let

Rt ¼ xþ ct þ rBt�
XNt

i¼1

Ci and Yt ¼ lþ pt�
XMt

i¼1

Zi,

where Bt is a standard Brownian motion, Ci describe the jumps in the surplus, and Zi describe jumps in the exchange rate,
where the sequences ðCiÞi�1 and ðZiÞi�1 are independent. Because we assume that the crashes are not severe, we let Ci have
the distribution function GðxÞ ¼ 1�e�cx and the distribution function of Zi is HðxÞ ¼ 1�e�gx; that is, the jumps are not heavy-
tailed. Further, let �Nt be a Poisson process with parameter �k independent of the Poisson process Mt with parameter h. We let
Nt ¼ �Nt þMt; that is, Nt is again a Poisson process with parameter k ¼ �k þ h:

In order for the problem to be well defined (Assumption [11]), we require

wð0,�1Þ ¼ �pþ h
g

g� 1
�h< 0:

Derivation of the value function via HJB
In this case, the HJB equation (17) (divided by e�1) has the form

max cF0ðxÞ þ r2

2
F00ðxÞ � pFðxÞ þ

ð
R

2
e�h2Fðxþ h1Þ � FðxÞ�ð dh1, dh2Þ, 1� F0ðxÞ

( )
¼ 0:

The integral in the above equation can be written as follows:ð
R

2
e�h2Fðxþ h1Þ�FðxÞ�ð dh1, dh2Þ ¼h

ð1
0

ðx
0
ezFðx�yÞ dGðyÞ dHðzÞ

þ �k
ðx
0
Fðx�yÞ dGðyÞ�kFðxÞ

¼ hcge�cx

g� 1

ðx
0
FðyÞecy dy

þ �kce�cx
ðx
0
FðyÞecy dy�kFðxÞ:
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As in the previous example, consider the differential equation with

gðxÞ ¼
ðx
0
FðyÞecy dy :

hcg
g� 1

þ �kc

� �
gðxÞ þ r2c2

2
� p� k� cc

� �
g0ðxÞ þ c� cr2

� �
g00ðxÞ þ r2

2
g000ðxÞ ¼ 0:

Let now c¼ 1.6, p¼ 0.6, r¼ 1, c¼ 2, h¼ 2, �k :¼ 0:5, g¼ 5.
The solution is given by

gðxÞ ¼ �4:598667es1x þ 3:598667es2x þ es3xð Þ0:09447

with s1 ¼ 1:329911, s2 ¼ 2:557360, s3 ¼ �3:087271: The solution to the HJB equation is then given by

FðxÞ ¼ �4:598667s1e
ðs1�2Þx þ 3:598667s2e

ðs2�2Þx þ s3e
ðs3�2Þx� �

0:09447:

The boundary conditions yield a� ¼ 0:684809: Figure 2a illustrates the derivatives F0 and F00 on the interval ½0, 2� : F0ðxÞ> 1
and F00ðxÞ< 0 on ½0, 0:684809Þ:

Because the solution to the HJB equation, e�1FðxÞ is twice-continuously differentiable with respect to x, using Ito’s formula
(see Schmidli 2008) one can prove that e�1FðxÞ is indeed the value function.

Derivation via scale functions
Consider first the Laplace exponent of the bivariate L�evy process (R, Y). Find a � 0 setting the Laplace exponent to zero:

wða,�1Þ ¼ r2a2

2
þ caþ h

c
cþ a

	 g
g� 1

� 1
� �

þ �k
c

cþ a
� 1

� �
�p ¼ 0:

It holds that a ¼ 0:557360, leading to

wRðbÞ ¼ wðbþ a,�1Þ ¼ r2b2

2
þ b cþ r2að Þ þ c

cþ a
hg

g� 1
þ �k

� �
cþ a

cþ aþ b
� 1

� �
:

Using the inverse Laplace transform, one gets due to (7) and Lemma 1

DðxÞ ¼ eaxWaðxÞ ¼ e0:557360x �0:2476417475e�5:644632x � 0:490573e�1:22745x þ 0:738215ð Þ:

From the representation of wRðbÞ above, we find that the density of the jumps in the surplus under the measure Pða,�1Þ is given
by f aðxÞ ¼ ðaþ cÞe�ðaþcÞx: Because f a is completely monotone, by Corollary 1 and Remark 2 the optimal strategy is of bar-
rier type.

The value function and the optimal strategy are

Vðx, lÞ ¼
(
e�l DðxÞ

D0ða�Þ : x � a�,

Vða�, lÞ þ x�a� : x> a�,

a� ¼ sup a � 0 :
1

D0ðaÞ �
1

D0ðxÞ for all x � 0
	 


¼ 0:684809:

The function 1
D0ðxÞ is illustrated in Figure 2b. And the achieved results are in line with the results derived via solving the HJB

equation directly. w
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5. PROOFS
5.1. Proof of Verification Theorem 1

The proof is based on a representation of v as the pointwise minimum of a class of “controlled” supersolutions to the HJB
equation. We start with the observation that the value function satisfies the following dynamic programming equation.

Lemma 3.
After extending V to the negative half-axis by VðxÞ ¼ wðxÞ for x < 0, we have, for any stopping time s,

Vðx, lÞ ¼ sup
p2P

Ex VðRp
s�T ,Ys�TÞ þ

ðs� T

0
e�Yt dLpt

" #
:

Proof. This follows by a straightforward adaptation of classical arguments,(see e.g., Azcue and Muler 2005, pp. 276–277).We
will prove that v is a supersolution to the HJB equation (15). w

Lemma 4.
The process

Vp
t :¼ VðRp

t �T ,Yt �TÞ þ
ðt �T

0
e�Ys dLps (25)

is a uniformly integrable (UI) supermartingale.

Proof. Fix arbitrary p 2 P, x � 0 and s, t � 0 with s< t. The process Vp
t isF t-measurable, and is UI. Indeed, by Lemma 3 we have

Eðx, lÞ Vp
t

� � � sup
p2P

Eðx, lÞ VðRp
t � T , Yt �TÞ þ

ðt � T

0
e�YsdLps

" #
¼ Vðx, lÞ:

Now, using the linearity of L�evy processes in the initial value and inequalities (12) and (13), we get

Vðx, lÞ � ðAxþ BÞe�l, (26)

for some constants A,B> 0:

FIGURE 2. (a) The Derivatives F0ðxÞ and F00ðxÞ on the Interval ½0, 2� and (b) 1
D0 ðxÞ with the Optimal Barrier a� ¼ 0:684809:
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Let Wp
t be the following value process:

Wp
s : ¼ ess sup

~p2Ps

J~ps , J~ps :¼ E

ðT~p

0
e�Yu dL~p

u þ e�YT~p wðR~p
T~p ÞjF s

" #
,

Ps : ¼ ~p ¼ ðp, �pÞ ¼ fLp, �pu , u � 0g : �p 2 P
� �

, Lp, �pu :¼ Lpu , u 2 0, s , Lps þ L�p
u�sðRp

s Þ, u � s,
��� (27)

where L�pðxÞ denotes the process of cumulative dividends of the strategy �p corresponding to the initial capital x.
The fact that Vp is a supermartingale is a direct consequence of the following P-a.s. relations:

(a) Vp
s ¼ Wp

s , (b) W
p
s � E½Wp

t jF s�, where Wp is the process defined in (27).

Point (b) follows by classical arguments, because the family fJ~pt , ~p 2 Ptg of random variables is upwards directed; see Neveu
(1975) and Avram, Palmowski, and Pistorius (2016, Lemma 3.1(ii)) for details.

To prove (a), note that because of the Markov property of Rp and Yt it also follows that conditional on Rp
s , fR~p

u�R~p
s , u � sg

is independent of F s: As a consequence, the following identity holds on the set fs< T~pg :

E

ðT~p

0
e�Yu dL~p

u þ e�YT~p wðR~p
T~p Þ

����F s

" #

¼ EðRp
s , YsÞ

ðT�p

0
e�Yu dL�p

u þ e�YT�p wðR�p
T�p Þ

" #
þ
ðs
0
e�Yu dLps

¼ V�pðRp
s , YsÞ þ

ðs
0
e�Yu dLpu ,

and then we have the following representation:

J~ps ¼ V�pðRp
s�T ,Ys�TÞ þ

ðs� T

0
e�Yu dLpu ,

which completes the proof on taking the essential supremum on the relevant family of strategies. w

To prove that the value function V is a solution to the HJB equation (15), we will denote by G the family of functions g for
which

Mg,TI :¼ fgðRt �TI , Yt �TI Þ, t � 0g, TI :¼ infft � 0 : Rt 62 Ig, (28)

is a supermartingale for any closed interval I 
 ½0,1Þ and such that

gðx, lÞ�gðy, lÞ
x� y

� e�l for all x> y � 0, gðx, lÞ � e�lwðxÞ for x< 0 (29)

and g is ultimately dominated by some linear function.

Lemma 5.
We have V 2 G:

Proof. Taking a strategy of not paying any dividends, by Lemma 5.2 we find that the process (28) with g ¼ v is a supermartin-
gale. We will show now that

Vðx, lÞ�Vðy, lÞ � e�lðx�yÞ for all x> y � 0 and l 2 R:

Denote by p�ðyÞ an �-optimal strategy for the case Rp
0 ¼ y: Then we take the strategy of paying x – y immediately and subse-

quently following the strategy p�ðyÞ (note that such a strategy is admissible), so that the following holds:
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Vðx, lÞ � ðx�yÞe�l þ Vp�ðy, lÞ � ðx�yÞe�l þ Vðy, lÞ��:

Because this inequality holds for any �> 0, the stated lower bound follows. Linear domination of v in x by some affine func-
tion in x follows from (26). w

We now give the dual representations of the value function on a closed interval I. Assume that HI is a family of functions k
for which

~M
k, p
t :¼ e

�Yt � sp
I kðRp

t � spI
,Yt � spI

Þ þ
ðt � spI

0
e�YsdLps

is an UI supermartingale for spI :¼ infft � 0 : Rp
t 62 Ig and

kðx, lÞ � Vðx, lÞ for x 62 I:

Then

Vðx, lÞ ¼ min
k2HI

kðx, lÞ for x 2 I: (30)

Indeed, let p 2 P, k 2 HI and x 2 I: Then the optional stopping theorem applied to the UI Dynkin martingale yields

kðx, lÞ � lim
t!1Eðx, lÞ e

�Ysp
I
� t kðRp

t � spI
,Yt � spI

Þ þ
ðt � spI

0
e�Ys dLpðsÞ

" #

�Eðx, lÞ e
�Ysp

I VðRp
spI
, YspI Þ þ

ðspI
0
e�Ys dLpðsÞ

" #
,

where the convention exp f�1g ¼ 0 is used.
Taking the supremum on all p 2 P shows that kðx, lÞ � Vðx, lÞ: Because k 2 HI was arbitrary, it follows that

inf
k2HI

kðx, lÞ � Vðx, lÞ:

This inequality is in fact an equality because V is a member of HI by Lemma 4 The value function V admits a more important
representation from which the Verification Theorem 1 follows.

Proposition 1.
We have

Vðx, lÞ ¼ min
g2G

gðx, lÞ:

Proof. Because v 2 G in view of Lemma 5, by (30) it suffices to prove that G 
 H½0,1Þ: The proof of this fact is similar to the proof
of the shifting lemma (Avram, Palmowski, and Pistorius 2016, Lemma 5.5). For completeness, we give the main steps. Fix arbitrary
g 2 G,p 2 P, and s, t � 0 with s< t. Note that ~M

g,p
is adapted and UI by the linear growth condition and arguments in the proof of

Lemma 5.2 and by Avram, Palmowski, and Pistorius (2016, section 8). Furthermore, the following (in)equalities hold true:

E ~M
g,p
t jF s�T

h i
¼ðaÞ lim

n!1E ~M
g,pn
t jF s�T

h i
�
ðbÞ

lim
n!1

~M
g,pn
s� T ¼

ðcÞ ~M
g, p
s� T ¼ðdÞ ~Mg, p

s ,

where the sequence ðpnÞn2N of strategies is defined by pn ¼ fLpnt , t � 0g with Lpn0 ¼ Lp0 and

Lpnu :¼
(
supfLpv : v< u, v 2 Tng, 0< u<T,
LpnT�, u � T,

Tn :¼ tk :¼ sþ ðt � sÞ k
2n

, k 2 Z

	 

[ f0g

� �
\ Rþ,
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where the above T is calculated for the strategy p. Because s and t are arbitrary, it follows that ~M
g, p

is a supermartingale,
which will complete the proof.

Points (a), (c), and (d) follow from the monotone and dominated convergence theorems. To prove (b), let Ti :¼ T � ti,
denote ~M

g, pn ¼ M, Lpn ¼ L and observe that

Mt�Ms ¼
X2n
i¼1

Qi þ
X2n
i¼1

Zi, with

Qi :¼ g RTi�, YTi
� ��gðRTi�1

,YTi�1Þ,
Zi :¼ gðRTi ,YTiÞ � gðRTi�,YTiÞ þ DLTi

� �
1 DLTi > 0½ �:

The strong Markov property of R and Y and the definition of Rp imply

E gðRTi� ,YTiÞ � gðRTi�1
,YTi�1ÞjF Ti�1

� � ¼ EðRTi�1 , YTi�1 Þ gðRsi , YsiÞ�gðR0, Y0Þ
� �

, (31)

with si :¼ Ti � hTi�1 , where h denotes the shift operator. The right-hand side of (31) is non-positive because g 2 G:
Furthermore, it follows from (29) that all Zi are non-positive. The tower property of conditional expectation then yields

E Mt�Ms j F s½ � � 0:

This establishes inequality (b) and the proof is complete.

Finally, we are ready to prove the verification theorem.

Proof of Verification Theorem 1.
Because Vp is twice-continuously differentiable and dominated by an affine function, the function hðx, lÞ :¼ Vpðx, lÞ is in the
domain of the extended generator of X ¼ ðR,YÞ: This means that the process

VpðRt � TI ,Yt �TI Þe�
Ð t � TI

0

AhðXsÞ
hðXsÞ ds

is a martingale for any closed interval I 2 ½0,1Þ: By (15) it follows that AhðXsÞ
hðXsÞ � 0 and hence Vp 2 G, which completes the

proof. w

5.2. On the Return Function for a Barrier Strategy

Proof of Theorem 2
Note that for the barrier strategy, until the first hitting of the barrier a, the regulated process Rpa behaves like the process R. By
the strong Markov property of Rt and by (3) for x 2 ½0, a�, we have

Vaðx, lÞ ¼ DðxÞ
DðaÞVaða, lÞ þ Eðx, lÞ e�Ys�

0 wðRs�0 Þ1 s�0 < sþa½ �
h i

:

Moreon, again using the strong Markov property and (3) we can derive

Eðx, lÞ e�Ys�
0 wðRs�0 Þ1 s�0 < sþa½ �

h i
¼ GwðxÞ � GwðaÞDðxÞDðaÞ

� �
e�l:

Hence,

Vaðx, lÞ ¼ DðxÞ
DðaÞ Vaða, lÞ � e�lGwðaÞ

� �
þ e�lGwðxÞ:

Note that Lpat ¼ ðsups�t Rs�aÞ�0: Thus, using the classical arguments for the L�evy dividend problem, (see, e.g., Avram,
Palmowski, and Pistorius 2016, eq. (5.12)), it follows that w
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d
dx

Vaða, lÞ ¼ e�l,

from which the assertion of Theorem 2 immediately follows.

5.3. Proofs of Necessary and Sufficient Conditions for Optimality of a Barrier Strategy

Proof of Theorem 3.
To prove sufficiency, we need to show that Va� satisfies the conditions of the Verification Theorem 1. From Theorem 2 it fol-
lows that Va� is ultimately linear and by Assumption (8) is twice-continuously differentiable. Moreon, by the choice of the
optimal barrier a� we know that V 0

a� ðxÞ � 1: Finally, by definition of D and Gw in (3) and (14), respectively, and the strong
Markov property of the risk process R, it follows that

e�Yt� TDðRt �T � sþ
a�
Þ, e�Yt � TGwðRt �TÞ

are martingales. Hence,

e�Yt� T Fa� ðRt � T � sþ
a�
Þ

is a martingale. This means that Fa� is in the domain of the full generator of R stopped on exiting ½0, a�� and that
AðFa� ðxÞe�lÞ ¼ 0 for x � a� and l 2 R: The remaining part of the HJB equation follows from assumption (21).

To prove necessity we assume that condition (21) is not satisfied. By the continuity of the function x7!AðFa� ðxÞe�lÞ there
exists an open and bounded interval J 
 ða�,1Þ such that AðFa� ðxÞe�lÞ> 0 for all x 2 J: Let ~p be the strategy of paying noth-
ing if the reserve process R~p takes a value in J, and following the strategy pa� otherwise. If we extend Va� to the negative half-
axis by Fa� ðxÞ ¼ wðxÞ for x< 0, we have

V~pðx, lÞ ¼ Eðx, lÞ e�YTJFa� ðRTJÞ
� �

, x 2 J,
e�lFa� ðxÞ, x 62 J,

	

where TJ is defined by (28).
By the optional stopping theorem applied to the process e�YtFa� ðRtÞ, for all x 2 J, we obtain

V~pðx, lÞ ¼ Eðx, lÞ e�YTJFa� ðRTJÞ
� �

¼ e�lFa� ðxÞ þ Eðx, lÞ

ðTJ
0
AðFa� ðRsÞe�YsÞ ds

" #
> e�lFa� ðxÞ:

This leads to a contradiction and consequently proves the optimality of the strategy pa� : w

Proof of Theorem 4.
In the first step, we will show that

lim
y"x

A ðFa��FxÞðyÞe�l
� �

� 0 for all x> a�, l 2 R: (32)

Let x> a�: By the dominated convergence theorem we obtain

lim
y"x

A ðFa��FxÞðyÞe�l
� �

¼e�l c� qdr�
ð
R

2
h21 jh2j�1½ ��ðdh1, dh2Þ

	 

F0

a� � F0
xð ÞðxÞ

�e�l p� d2

2
þ
ð
R

2
1� h11 jh1j�1½ ��ðdh1, dh2Þ

( )
Fa� � FxÞðxÞð Þ

þ e�l
ð
R

2
e�h1 ðFa� � FxÞðxþ h2Þ½ ��ðdh1, dh2Þ:

þ e�l r
2

2
F00
a� ðxÞ � lim

y"x
F00
x ðyÞ

� �
:

By (19) we have for x> a� :
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i. ðF0
a��F0

xÞðxÞ ¼ 0:
ii. ðF0

a��F0
xÞðbÞ ¼ DðbÞðH0

aða�Þ � H0
aðxÞÞ � 0 for b 2 ½0, a�� by the definition of a�:

iii. ðF0
a��F0

xÞðuÞ ¼ DðuÞðH0
aðuÞ � H0

aðxÞÞ � 0 for u 2 ½a�, x� by Assumption (22).
iv. ðFa��FxÞða�Þ � 0, thus by iii, ðFa��FxÞðxÞ � 0:
v. ðFa��FxÞðxþ zÞ � ðFa��FxÞðxÞ for all z � 0 by ii and iii.
vi. Assumption (11) yields �pþ d2

2 þ Ð
R

2 � 1þ h11½jh1j�1��ðdh1, dh2Þ<�Ð
R

2e�h1�ðdh1, dh2Þ:
vii. If r> 0, then by our Assumption (22) we have limy"xF00

x ðyÞ � 0 ¼ F00
a� ðxÞ:

Thus, we have shown (32).
Now assume that (21) does not hold. Then there exists an x> a� such that

AðFa� ðxÞe�lÞ> 0:

By the continuity of AðFa�e�lÞ we deduce that limy"xAðFxðyÞe�lÞ> 0, which contradicts (32).

Proof of Corollary 1.
It is well known that the scale function of a spectrally negative L�evy process that does not go to minus infinity is equal (up to
a multiplicative constant appearing in the local time) to the renewal function of the descending ladder height process.
Following Loeffen (2008) and Assumption (9), we conclude that WaðxÞ is completely monotone (see the footnote on p. 5 for
definition), and, because it is non-negative, it is also a Bernstein function. Thus (see, e.g., Jacob 2001, ch. 3.9),

WaðxÞ ¼ aþ bxþ
ð1
0
ð1� e�xtÞnðdtÞ, x> 0,

where a, b � 0 and n is a measure on ð0,1Þ satisfying the integrability condition:

ð1
0
ðt � 1ÞnðdtÞ<1:

From Lemma 1 it follows that

DðxÞ ¼ eaxðaþ bxÞ þ
ð1
0

eax � e�xðt�aÞð ÞnðdtÞ
� �

:

By repeatedly using the dominated convergence theorem, we can now deduce

D000ðxÞ ¼ g000ðxÞ þ
ð1
0

a3eaxxþ ðt�aÞ3e�xðt�aÞ
� �

nðdtÞ
� �

,

where gðxÞ ¼ eaxðaþ bxÞ: Hence, D000ðxÞ> 0 for all x> 0 and so D0ðxÞ is strictly convex on ð0,1Þ: We can now apply
Theorem 4 to deduce that the barrier strategy at a� is optimal.

CONCLUSIONS
In this article, we sought to maximize the amount of expected dividends paid in a foreign currency for dependent L�evy risk

processes as a surplus and exchange rate. We found some sufficient and necessary conditions for a constant barrier strategy to
be optimal.

It would be interesting to consider a more general exchange rates Yt; for examples, ones gonned by stochastic differential
equations. In the examples, we demonstrated how the optimal strategy and the value function can be found through direct solu-
tion of the HJB equation (classical method) and via scale functions (the method presented in this article). Of course, solution
via classical methods by guessing a twice-continuously differentiable function solving the HJB equation can be applied in just
few cases by dealing with L�evy processes; for instance, if the jumps are assumed to be exponentially distributed. In the remain-
ing cases one has to rely on the method presented in this article.
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