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ABSTRACT 

Ti-6Al-4V alloy has been favored by the transportation applications in the automotive 

and aerospace industries due to its good combination of excellent physical and 

mechanical properties. Ti alloys are naturally suited to additive manufacturing (AM) 

method, a layer wise manufacturing technique, since conventional manufacturing 

method of Ti alloys are quiet challenging. However, cooling rate and thermal processing 

history of AM Ti-6Al-4V alloy are quite different in comparison to conventionally 

fabricated Ti-6Al-4V alloy which leads to undesirable microstructures in the AM Ti-6Al-

4V alloy with respect to large columnar prior β grains being found to grow potentially 
across the entire height from bottom layer to top layer. Therefore, it is required to assess 

the microstructure-process-structure-property-performance relationship of the additive 

manufactured Ti-6Al-4V alloy to assess whether it could meet the demands of 

engineering design considerations. 

The samples studied in this research were prepared using laser powder bed fusion (L-

PBF) method, a well-developed AM process to print Ti-6Al-4V alloy in different scan 

direction and scan size. Instrumented indentation testing technique, a robust, reliable, 

convenient, and non-destructive characterization method to study small-scale 

mechanical properties in metals and alloys at ambient and elevated temperatures, was 

used to assess ambient-temperature indentation creep of AM Ti-6Al-4V alloy. To examine 

depth-sensing indentation creep behavior of Ti-6Al-4V alloy at ambient temperature, a 

dual-stage scheme (loading followed by a constant load-holding and unloading) at 

different peak loads of 250 mN, 350 mN, and 450 mN with holding time of 400 s was 

performed. Creep parameters i.e. creep rate, creep stress exponent, and indentation size 

effect were analyzed and compared with conventional findings, according to the Oliver 

and Pharr method, at different additive manufacturing scan directions and scan sizes.  

The effect of post heat treatment (i.e. aging and solutionizing with different cooling rates) 

on the microstructure and micromechanical properties of a Ti-6Al-4V alloy processed by 

laser powder bed fusion (L-PBF) technique is studied. Heat treatment cycles employed 

in this study include solutionizing at 950 °C (for 1 h) followed by three different cooling 

rates (water quench, air cooling, and furnace cooling). A separate set of samples were also 

used toward artificial aging (solutionizing followed by water quenching and artificial 

aging). To assess small-scale properties of as-printed/ heat treated materials, 

instrumented nanoindentation testing technique as a robust, convenient, and non-

destructive approach is employed. The martensitic α and ά in as -printed Ti-6Al-4V alloy 

grows in lamellar structure in epitaxial way upon various heat treatments below β- 

transus temperature. With the relatively steep cooling rate, the β phase recrystallization 
transforms into a compact secondary basket-weave α phase since the primary α-phase 

develops and connects each other with different orientations. 
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Microstructural quantitative analyses (i.e. optical microscopy and scanning electron 

microscopy) were performed as well to assess processing parameter-microstructure-

property correlations in the additively manufacture Ti-6Al-4V alloy. These studies were 

done in parallel to the two main tasks of this project to be able to elaborate the mechanical 

measurements with microstructural evidences. Also, the obtained results were compared 

against traditionally processed Ti-6Al-4V. 
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Chapter I 

1. Introduction 

1.1. Background Information and Motivation 

Titanium (Ti), named after the ‘Titans’ of Greek mythology, has emerged as a powerful 
metal of interest for transportation applications in the automotive and aerospace 

industries for the past several decades due to combination of its distinguishable physical 

and mechanical properties [15]. Ti (atomic number 22 and atomic weight 47.9) is a 

lustrous transition metal with a silver color, low density, light weight (almost half of 

steel), and high strength (almost similar to steel), and excellent biocompatibility [15]–[18]. 

Ti is resistant to corrosion in sea water, aqua regia, and chlorine. Its corrosion resistance 

and strength-to-density ratio is highest of any metallic element. It can form stable and 

adherent surface oxide layer upon exposure to water and air which has made Ti and its 

alloy and excellent candidates in extreme corrosive environments and sea water [15]. 

Moreover, Titanium is well-sought for high temperature applications due to its great 

strength-to-weight ratio at elevated temperature [15].  

Among different Ti alloys, Ti-6Al-4V alloy (UNS designation R56400, AMS designation 

4911) is known as the ‘workhorse’ [19] alloy which accounts for more than half of all 

commercial Ti applications. Its applications include but not limited to implants and 

prostheses (wrought and/or cast), additive manufacturing, parts and prototypes for 

racing and aerospace industry, marine applications, chemical industry, gas turbines etc. 

However, traditional fabricating methods like welding, casting, forming, and machining 

of the Ti-6Al-4V alloy, are quite challenging due to high-temperature oxidation, high 

chemical reactivity, and poor thermal conductivity. Additive manufacturing (AM), a 

layer-wise material manufacturing method, despite being a relatively new family of 

processing technologies seems to be a suitable replacement for the conventional 

manufacturing processes of the Ti-6Al-4V alloy.  

The AM of Ti-6Al-4V alloy is particularly well suited thank to both complexities 

associated with machining and the inherent high cost of the raw materials. The additive 

manufacturing of the Ti-6Al-4V alloy possesses several advantages over conventional 

manufacturing method including:  

 Cost reduction.  

 Decreased labor cost and material wastage. 

 Smaller footprints. 

 Less process. 
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 No mold and pattern. 

 Shorten fabrication time.  

 Enhanced material properties.  

There are also few disadvantages associated with additive manufacturing processes such 

as: 

 Slow build rates. 

 High production cost. 

 Considerable effort in application design and setting process parameters. 

 Requires post-processing. 

 Discontinuous production process. 

 Limited component size/small build volume. 

 Poor mechanical properties. 

Among different AM techniques, laser powder bed fusion (L-PBF), also known as direct 

metal laser sintering (DMLS), is a well-developed process to print the Ti-6Al-4V alloy. In 

the L-PBF process, high power density laser is used to melt and fuse metallic powder 

together [20]. Cooling rate during the additive manufacturing process and thermal 

processing history are quite different compared with conventional manufacturing 

processes that lead to the development of inconvenient microstructures where large 

columnar prior β grains, undesirable residual stress, and distortion. This type of 

microstructure has the tendency to influence mechanical property anisotropy.  

As Ti-6Al-4V alloy is a two-phase alloy and consistency of mechanical properties and 

microstructures in additive manufacturing is still a critical issue, mechanical properties 

can be significantly varied by tailored microstructure [21]. The microstructure of Ti-6Al-

4V alloy, in particular formation of α, can vary a lot due to various cooling rates at 
different positions and distances from the built plate in different additive manufacturing 

methods [22]. Formation of layers with repeated partial re-melting and solidification of 

previous layer and cooling in various ways for various geometries adds complications to 

the processes. In spite of many studies in the literature to date, rate dependent plastic 

deformation and effect of the post heat treatment cycles of the Ti-6Al-4V alloy 

manufactured by the L-PBF method has not been studied at small scales with 

microstructural gradients. Therefore, it is necessary to assess the relationship between the 

microstructure, processing parameters, and properties (i.e. creep) of the additively 

manufactured Ti-6Al-4V alloys to determine its ability in meeting demands of the 

engineering design considerations.  

Depth-sensing (instrumented) indentation testing technique is a robust, convenient and 

non-destructive characterization method to study small-scale and local mechanical 
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properties in metals and alloys at ambient and elevated temperatures. In this thesis, 

depth-sensing indentation creep behavior and effect of post heat treatment cycles 

analysis of an additively manufactured Ti-6Al-4V alloy, manufactured via laser powder 

bed fusion (L-PBF) method at different scan directions and scan sizes, is studied at 

ambient temperature through an indentation-based study. Microstructural quantitative 

analyses (i.e. optical microscopy and scanning electron microscopy) were performed to 

assess microstructure of additively manufactured Ti-6Al-4V α+β alloy, and creep 
property correlations during the holding time as a function of indenter load. 

1.2. Problem Statement and Scope of Thesis 

1.2.1. Ambient temperature creep behavior 

A number of researchers have used instrumented indentation technique and 

conventional methods (uniaxial tension) to assess rate-dependent plastic deformation of 

Ti and Ti alloys. Ma et al. [23] used micro-indentation to study room temperature creep 

behavior of Ti-10V-2Fe-3Al based on dislocation mechanism by micro-indentation and 

found that power-law creep deformation was the controlling mechanism of creep in Ti-

10V-2Fe-3Al alloy. Kumar et al. analyzed creep-fatigue interactions in the Ti-6Al-4V alloy 

at ambient temperature [24]. Matsunaga et al. experimented creep tests on polycrystalline 

Ti along with pure Mg and pure Zn at ambient temperature and found steady state creep 

rate around 10-9 s-1 and creep stress exponents (n) around 3.0 at ambient temperature [25]. 

Hasija et al. analyzed time-dependent plasticity by developing a computational model 

[26]. Barboza et al. studied creep behavior of conventionally made Ti-6Al-4V alloy 

consisting of Widmanst�̈�tten microstructure using conventional uniaxial test and found 

different creep stress exponents (n) as 4.4 and 4.1 at 5000C and 6000C respectively [27]. 

Kral et al. [8] using conventional uniaxial approach analyzed rate-dependent plastic 

deformation in conventionally manufactured ultrafine-grained Ti-6Al-4V at both 

elevated temperatures and ambient-temperature indentation creep. Badea et al. [6] 

investigated creep behavior of hot-forged Ti-6Al-4V alloy and compared the creep stress 

exponent and activation energy at different temperature ranges. However, it’s worth 
mentioning that, at higher stresses, Ti alloys can sometimes exhibit unusually high creep 

stress exponent values, such as n > 15 [6].  

There has been numerous reports of occurring ambient-temperature creep1 in α+β Ti–
6Al–4V [16], [20]. The hexagonal close packed (hcp) crystalline structure of the Ti-6Al-4V 

is responsible for the ambient-temperature creep in general [7, 28]. During room 

temperature creep, in the hcp structure, only one slip system is activated which is due to 
                                                           
1
 Ambient-temperature creep appears below 0.3–0.4Tm for the tested hcp metals. 
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the low symmetric structure, generating low work hardening. As a result, deformation 

proceeds at ambient temperature and under stresses below the yield stress [7, 28]. 

Harrison et al. [29] studied time dependent creep of Ti-6Al-4V by developing a model 

where strain accumulation is generated by dwell time fatigue effects at ambient “cold” 
temperature creep. Moreover, the occurrence of ambient temperature (or logarithmic) 

creep is not unusual in many materials including pure Ti and Ti alloys [30–32]. 

The prime factor in low-temperature (i.e. ambient temperature) creep sensitivity of Ti 

alloys (i.e. Ti-6Al-4V) is strong tendency of Ti in time-dependent strain accumulation at 

low temperatures [28]. According to the design criteria, the stress levels that impose the 

mentioned strain accumulations are normally in the acceptable (safe) range. To this end, 

understanding the nature of creep sensitivity could be a challenging task but it provides 

a foundation for our understanding on crack development in α+β Ti alloys.  For instance, 
ambient-temperature creep in the Ti-6Al-4V alloy fuel tanks and fasteners has been 

reported previously in the literature [23]. 

Having stated the above-mentioned literature, ambient-temperature creep response of an 

additively manufactured Ti-6Al-4V alloy and correlations between creep parameters (i.e. 

creep rate, creep stress exponent, indentation strain rate sensitivity) and additive 

manufacturing printing parameter variables (i.e. scan directions and scan sizes) has not 

yet been documented. In the present study an instrumented (depth-sensing) indentation 

testing technique was employed to assess ambient-temperature creep and the 

corresponding mechanisms of an additively manufactured (AM) Ti-6Al-4V alloy.  

Besides, indentation size effect and microstructural assessments were studied in the 

present thesis. To this end, microstructural quantitative analyses (i.e. optical microscopy 

(OM) and scanning electron microscopy (SEM)) are performed to assess microstructure 

of the AM Ti-6Al-4V alloy and the creep property correlations during the holding time 

as a function of indenter peak load. 

The findings of this thesis provide a baseline to study elevated-temperature creep of AM 

Ti-6Al-4V alloy and to compare the results with the conventionally made Ti-6Al-4V alloy. 

Most of the reported creep results in the literature are based upon traditional (tensile) 

approach which could be destructive, time-consuming and tough-to-control (specially at 

the elevated temperatures) tests. Specifically, on the AM aspect, a number of creep test 

coupons must be printed which could be a costly task as well. Considering this, the 

present thesis promotes the application of the depth-sensing indentation testing 

technique, as a reliable, convenient, and non-destructive approach that can be performed 

on a small volume of material and can be used toward assessing time-dependent plastic 

deformation (creep) in AM materials at ambient and elevated temperatures.   
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1.2.2. Study of effect of post heat treatment cycles 

Due to short interaction times and accompanying highly localized heat input, large 

thermal gradients exist during L-PBF process which results in build-up of thermal 

processes. Rapid solidification leads to segregation phenomena and development of non-

equilibrium process Moreover, additive manufacturing variables (scan size and scan 

directions) may affect melt pool stabilities during the process, which leads to an increased 

porosity and higher surface roughness.  

To ensure optimal building conditions, heat treatment of Ti-6Al-4V alloy has been 

investigated extensively [11, 33–35]. AM Ti-6Al-4V alloy manufactured via L-PBF 

technique experience a high yield stress, a high tensile strength, but relatively low 

ductility. To improve the ductility [36] and to achieve the desirable microstructural 

properties of Ti-6Al-4V alloy manufactured via L-PBF method, heat treatment may be a 

viable option. In addition, post heat treatment reduces the thermal stresses that has been 

built up during the process. However, there has been limited research based on the 

additive manufacturing variables [37, 38].    

In this thesis an instrumented (depth-sensing) indentation testing technique was 

employed to assess the effect of post heat treatment cycles (cooling rates) and the 

corresponding mechanisms of an additively manufactured (AM) Ti-6Al-4V alloy at 

different scan size and scan directions. The heat treatments employed in this thesis 

include (i) an aging treatment (solutionizing at 950 °C for an hr and then aging at 5400C 

for 5 hrs), (ii) solutionizing at cooling with different rates (solutionizing at 950 °C for an 

hr followed by water quench, solutionizing at 950 °C for an hr followed by air cooling, 

and solutionizing at 950 °C for an hr followed by furnace cooling). It is desired to study 

the effect of cooling rate and aging on the microstructure and mechanical properties of 

the AM Ti-6Al-4V and to compare the results with the as-printed sample.   

1.3 Thesis Organization 

The thesis has been divided into five chapters which are as follows:  

 Chapter one provides introduction to the thesis topic and states the motivation 

and objectives of the work.  

 Chapter two introduces background information regarding titanium alloys, Ti-

6Al-4V alloy, additive manufacturing, and instrumented indentation technique. It 

includes the discussion of the established theories and studies regarding the effect 

of features on the microstructural mechanical properties of Ti alloys and Ti-6Al-

4V alloy. It further discusses microstructure-process-property relationship of Ti-

6Al-4V alloy.  
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 Chapter three presents the various experimental methods used in this research. 

 Chapter four discussed the experimentally observed results and correlation 

established between the local mechanical properties and microstructural features 

of AM Ti-6Al-4V alloy. The experimental results determined via instrumented 

indentation technique for Ti-6Al-4V alloy were also compared with conventionally 

manufactured Ti-6Al-4V alloy. The relationship between microstructures and 

mechanical properties for each sample examined were reported. 

 Chapter 5 provides conclusions of the research results and recommendations to 

further understanding the relationship among microstructure-process-property 

relationship.  
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Chapter II 

2. Literature Review 

2.1. Titanium alloys 

2.1.1. Introduction 

Titanium (Ti) has been a metal of interest for transportation applications in the 

automotive and aerospace industries due to its excellent physical and mechanical 

properties. Having many desirable properties such as light weight (almost half of steel), 

high specific strength (almost similar to steel) and stiffness, use and development of the 

titanium alloy has been dominated by aerospace industry for over the past half century 

[17], [39], [40]. Excellent biocompatibility such as being non-toxic, non-allergic as well as 

Ti alloys with shape memory and superelastic properties increased its use in biomedical 

industries [18]. In addition, Ti and its alloys can form a stable and adherent surface oxide 

upon exposure to water and air and this ability has made Ti alloys excellent candidates 

for structural efficiency in extreme corrosive environments and sea water [39]. Moreover, 

its high strength-to-weight ratio at elevated temperatures have made Ti a suitable 

material for both ambient and high temperature applications [39]. However, high cost of 

extraction and processing of Ti metals has limited it’s applications [41].  

Having great strength-to-weight ratio and providing substantial weight have given Ti 

alloys an upper hand over steel for use in aerospace components. Although using Ti 

alloys instead of aluminum could be quite costly, Ti alloys possess the advantage of 

operating at far higher operating range where elevated temperature becomes an issue for 

aluminum alloy, or where volume constraints rule out the use of thicker gauge aluminum 

components [42]. Superior compatibility with composite materials, leading to weight 

reduction of composite materials in aircraft manufacturing, has increased the use of Ti 

alloys manifold in the aerospace industry [43]. 

In this section, along with the discussion of the main focus of this thesis, Ti-6Al-4V alloy, 

a brief metallurgical background of Ti alloys including crystallography and deformation 

mechanism were described. Finally, suitability and acceptability of titanium alloys for 

fabricating via additive manufacturing (AM) was discussed along with the 

microstructure characterization and mechanical properties of the AM Ti-6Al-4V alloy.       
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2.1.2. Crystal structure of Ti alloys 

Pure Ti consists of α hexagonal close packed (HCP) structure at ambient temperature 
which undergoes an allotropic phase transformation to a β body centered cubic (BCC) 
at a β-transus temperature of approximately 882 0C that stays stable up to the melting 

point 1625 0C [44]. These two types of crystal structure are shown in the Fig. 2:1. 

However, a mixed α+β is also found. 

 

Fig. 2.1: The α (HCP) and β (BCC) unit cells of Ti [45]. 

Being a transition element with an incomplete outer shell in its electronic configuration, 

Ti has the ability to readily form alloy with the substitutional solid solutions with the 

most transitional elements within a reasonable atomic size difference to Ti atom [45]. 

Moreover, forming solid solutions by non-metallic interstitial elements possesses a 

profound effect on solid solution hardening. These alloying additions often stabilize one 

of the phases in order to keep one or both phases at operating temperature [45]. 

Due to lack of symmetry in HCP structure, α-phase lower ductility than the β-phase but 

exhibits higher creep resistance. The α-Ti possessed higher strength and stiffness but it is 

anisotropic. It’s Young’s modulus varies from 100 GPa to 145 GPa depending on the 
direction of applying load relative to the crystal orientation [45]. 
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Phase distribution and volume distributions also affect both material and mechanical 

properties. The β-phase is both electrically [46] and thermally [47] more conductive than 

the α-phase. According to Fig 2.2, a sharp increase in conductivity at ~ 1150K is observed 

as Ti transforms from α to β. 

 

Fig. 2.2: Effect of temperature on the resistivity of commercially pure Ti [46]. 

Dual phase of Ti facilitates many alloying additions in Ti leading to numerous complex 

phase diagram of alloy composition. Major alloying additions have been classified into 

four categories as shown in Fig 2.3.    
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Fig. 2.3: Four generic binary phase diagram types of Ti alloy [48]. 

Alpha-stabilizers are the elements that increase the beta-transus. Al, O, N, and C are the 

most prominent alpha-stabilizers. They increase solute content after being added to the 

alloy. Oxygen can be added as an interstitial where adjustable strength level is required. 

B, Ga, Ge and the rare earth elements have lower solubility and are less used alpha 

stabilizers [45]. 

Beta stabilizers are the elements that decrease the temperature (beta -transus), dissolve 

in readily, strengthen the beta phase, and exhibit low alpha phase. Beta stabilizers can be 

split into two types: 

a) β-isomorphous stabilizers: β-isomorphous stabilizers are isomorphous with or 

totally soluble in Ti.  

b) β- eutectoid stabilizers: β- eutectoid stabilizers are of two types:  β- isomorphous 

stabilizers and β- eutectoid stabilizers. 
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β- isomorphous stabilizers include molybdenum and vanadium which are 

isomorphous with, or totally soluble in Ti.   

β- eutectoid stabilizers form intermetallic compounds with Ti and include Cu and 

Ni.  

Neutral stabilizers neither stabilizes α or β phase. However, the addition of neutral 
alloying can alter other material properties like providing solid solution strengthening. 

Sn, Zr etc. are examples neutral stabilizers.    

2.1.3. Ti phase transformation 

It is common for many α grains to be nucleated at the β grain boundaries by cooling, 
generally leading to a relatively fine grained microstructure. As a results, the anisotropic 

properties of the room temperature hcp α-phase, does not always meet the expectation 

of strongly anisotropic fabricated parts. However, there is still a texture inherited from 

the β phase due to orientation relationship that is maintained between the β and α 
through the transformation. Therefore, limited number of different α orientations are 

formed from each β grain. Preferential α variant selection can also occur by further 
limiting textural weakening. 

During the polymorphic Ti phase transformation, the same orientation relationship is 

maintained as was first observed by Burgers for single crystals of zirconium, a metal with 

similar phase behavior to Ti [49]. The Burgers orientation relationship is as follows: 

{110}β || {0002}α 〈111〉β || 〈112̅0〉α 

Upholding this Burgers orientation relationship ensures that there are only six possible 

orientations variants of β that can form from a single α grain in the α→β transformations. 

Further 12 α orientation variants can be formed with the β→α transformation. Total 72 

variants should form with equal probability, effectively randomizing the α texture if all 
of the variants mentioned in the previous two transformations form within a heat cycle 

that sees the material transform α→β→α [50]. If the transformation occurs, then the 

texture of material that has been through a heat treatment in the β-phase several times 

should have a very weak texture that bares little, if any, resemblance to the untreated 

material. However, sometimes there is an apparent preference for certain variants to form 

relative to others resulting in a stronger texture than would be expected. Variant selection 

may lead to the phenomenon of ‘texture memory’, where after β heat treatment the 
original α texture is recovered to a certain extent [51]. There are various factors affecting 

texture variant selection including deformation of the β-phase [52], an increased β grain 
size [53], and local internal strains [54].  
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2.2. Ti-6Al-4V alloy 

2.2.1. Introduction 

Among Ti alloys, Ti-6Al-4V alloy, which is also known as the ‘workhorse’ alloy [19], [42], 

accounts for more than half of all industrial Ti applications [15].  

The Ti-6Al-4V alloy is an α-β alloy where 5.50 – 6.75% of the composition by weight is 

the α stabilizing element aluminum (Al), and 3.5 – 4.5% of the composition is the β 
stabilizing element vanadium (V) [55]. Ti-6Al-4V is the most widely manufactured alloy 

of the Ti industry, accounting for approximately 60% of all Ti metal production [42]. Due 

to its good combination of properties of high temperature strength, corrosion resistance, 

and good weldability [42], it is mostly used in aerospace industries. However, traditional 

manufacturing processes including welding, casting, forming, and machining of the Ti-

6Al-4V alloy, are quite challenging due to high-temperature oxidation, high chemical 

reactivity, and poor thermal conductivity. Additive manufacturing, a layer-wise 

manufacturing technique, seems to be suitable solution for manufacturing problems 

arising from traditional manufacturing methods of Ti-6Al-4V alloy.  

2.2.2. Microstructure of conventional Ti-6Al-4V alloy 

The microstructure of Ti-6Al-4V alloy is largely dependent upon its thermal processing 

history. The cooling rate from the β-phase has an immense effect on the microstructure. 

On cooling slowly below the β-transus temperature, α is nucleated at the heterogeneous 
sites of β grain boundaries creating a continuous grain boundary layer. α lamella then 
proceed to grow by a diffusional process into the β grains by consuming them. At lower 
cooling rates α platelets tend to grow aligned with the same crystallographic orientation 
creating a ‘colony’ within close proximity. These colonies are shown in Fig. 2.4. Faster 

cooling rates results in finer α structures and several variants grow more inter-woven 

forming of a Widmanstätten or ‘basket weave’ microstructure [21]. Due to the growth of 

α enriching the β phase in vanadium, some β is retained down to room temperature to 
the point that the β is stable at room temperature [56]. Rapid cooling rate would be able 

to limit the amount of diffusion possible and therefore would result in the formation of 

martensitic structures. The most common martensite is α’ which is similar in structure to 
equilibrium α but has slightly altered lattice constants due to the super-saturation of 

alloying elements. The α’ laths tend to decompose into fine α plates with sufficient 

thermal energy for diffusion [57]. Martensitic microstructure is shown in Fig. 2.4. 
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Fig. 2.4: Microstructures of Ti-6Al-4V: (a) Widmanstättaen microstructure [58] and (b) α 

martensitic microstructure [59]. 

Such microstructures are not, however, always desirable for optimum mechanical 

properties. Alternative Ti-6Al-4V microstructures can be tailored through more complex 

thermo-mechanical processing like Fig. 2.5 resulting in either a bi-modal (Fig 2.6 a) or 

fully equiaxed structure (Fig 2.6 b) depending on the cooling rate from step III of the 

process [45]. 

 

Fig. 2.5: Processing route for developing bi-modal and equiaxed Ti-6Al-4V [45]. 

Sometimes, in an attempt to produce a more uniform wrought microstructure, hot 

working is initially conducted in the single β phase field to recrystallize and anneal cast 
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material. By Dynamic Recrystallization (DRX), deformation in the β phase field refines 
the very coarse prior β grain structures formed on solidification [60], [61]. The resultant 

DRX grain size in Ti-6Al-4V shows good agreement with the Zener-Holloman 

relationship i.e. higher strain rates and lower temperatures lead to a finer recrystallization 

grain size [60]. However, it is also found that, the volume percentage recrystallized by 

DRX is reduced by the same parameters. For instance, deforming at temperatures above 

the β transus at 1050 °C, at rates of 1 s-1, and down to a total strain 0.7, only 3.1% of the 

material is found to recrystallize [61]. The recrystallized volume fraction can be increased 

with the aid of higher deformation temperatures, lower strain rates, and higher total 

strains, although these changes are not favorable from a process practicality point of 

view, and these will lead to an increase in the recrystallized grain size [62]. 

 

Fig. 2.6: a) bi-modal and b) fully equiaxed Ti-6Al-4V alloy microstructures obtainable 

through the processing route shown schematically [63] 

Although α - β microstructure formed through the cooling from the β phase is dependent 
on the cooling rate, large prior β grain size is often a combination of Widmanstätten and 
colony α microstructures. Processes called ‘spheroidisation’ or ‘globularisation’, 
deformation in the α-β phase field break up this microstructure [64, 65]. Shape changes 

of a lamellar structure into a globular, equiaxed, morphology are occurred in the 

globularisation process. It is found to occur in a two-step processes: the deformation 

causes intense shear bands to form across and within α plates, and then the subsequent 
migration of interface boundaries to reduce surface energy which causes the penetration 

of the β phase to separate the α ‘globules’ [65, 66]. After the full break-up of the grain 

structure, the Burgers’ orientation relationship is no longer maintained between the α 
variants [64]. 
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2.2.3. Effects of Microstructure on Mechanical Properties 

Mechanical properties of the Ti-6Al-4V alloy is strongly affected by the microstructure. 

Lütjering et al. [45] investigated the relation of the difference in mechanical properties to 

the effective slip length, equivalent to the size of the alpha laths, or colonies if present. 

Since the slip can transfer across α plate boundaries within a single colony, hence the 
entire colony is able to act as a large single grain [67]. It is found that reduced slip length 

does not only improve the strength but also enhances the fatigue life as both the 

nucleation and propagation can be linked to the colony size and slip length. Higher the 

cooling rate through the β transus temperature, the higher the strength and potential 
fatigue performance of the alloy. Continuous higher cooling rate produces a martensitic 

microstructure leading to a reduction in ductility [68] and creep resistance [44]. 

2.2.4. Prior β-Ti Solidification Microstructure 

Mechanical properties of the Ti-6Al-4V alloy are determined by the α colony size. Since 
α-colony is in turn affected by the prior β grain size (as α laths can extend across entire 
prior β grains), it is desirable to have as fine prior β grain size as possible. 

Large β grain sizes are common in Ti-6Al-4V alloy solidification microstructures which 

is partly due to the rapid β grain growth that takes place above the β transus, and partly 
due to the nature of the solidification itself.  

2.2.5. Deformation Mechanisms of Ti-6Al-4V alloy 

The dual phase microstructure of Ti-6Al-4V alloy has made the deformation mechanisms 

complex. At ambient temperature, the deformation behavior is dominated by the α-phase 

since it is a dominant phase making up to 95% of the volume of the alloy. 

For the hexagonal close pack (HCP) phase, slip primarily occurs along the three 〈112̅0〉 

close packed directions in the <a> direction. There are 12 slip planes that this slip direction 

can act in: one basal (0002), three prismatic {101 ̅0}, and six pyramidal {101̅1}. However, 

these planes are reduced to 4 independent systems due to symmetry and combinations 

of slip systems giving the same slip as can be achieved by another slip system [69]. This 

indicates that the Von Mises criterion for five independent slip systems is not fulfilled. 

Hence, a deformation mode with a component in the <c> direction is required. This 

criterion can be fulfilled by slip in <c + a>, or by twinning, although both of these require 

a greater resolved sheer stress to be activated than pure <a> deformation [70]. There are 

four twinning modes commonly observed in hcp titanium: two are activated by tension 
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along the c-axis: {101̅2} and {112̅1}, and two are activated under compression: {101̅1}and 

{112̅2} [71]. Some of the main deformation modes are shown in Fig. 2.7. 

Fig. 2.7: A selection of some of the main deformation mechanisms observed in titanium 

alloys [72]. 

The deformation mechanism of most hcp metals can be generalized by their cation/ anion 

(c/a) ratio. As c/a ratio of α-Ti is below the ideal value of 1.633, slip most easily occurs on 

the prismatic planes although basal and pyramidal slip can also be activated [73]. 

Traditionally, twinning does not occur in Ti-6Al-4V alloy unless it is at very high strain 

rates or at cryogenic temperatures, when the critically resolved stress for deformation by 

slip is higher [74, 75]. High concentration of aluminum (Al) suppresses twinning [45] 

which is the reason behind it. However, twinning has more recently been observed at 

ambient temperature and low strain rates with deformations as small as only 6% strain 

[74]. Difficulty in distinguishing them from similarly orientated grains is the reason 

behind being missed by previous studies [76]. The dominating twin system stated in the 

literature, {101̅2} 〈101̅1̅〉, is shown in Fig. 2.8. 
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Fig. 2.8: Illustration of atom movements in {10-12} twin [77]. 

2.3. Additive Manufactured Ti-6Al-4V Alloy  

2.3.1. L-PBF process 

Laser-powder bed fusion (L-PBF) is an additive manufacturing (AM) technique used for 

fabricating metallic components from the ground-up [78]. In L-PBF process, a focused 

laser beam discriminately melts a thin bed of compacted powder material track-by-track 

and layer-by-layer to produce a solid part, typically within an inert atmosphere purged 

at a specific flow rate. A schematic representation of a L-PBF environment is shown 

in Fig. 2.9. L-PBF parts experience extremely localized temperature gradients and highly-

dynamic heating/ cooling rates due to the high heat flux laser irradiation required for 

melting powder metal, resulting in relatively fast melting and solidification during their 

manufacture. Initial solidification and cooling rates directly affect the microstructure of 

built parts, hence knowledge of the solidifying melt pool behavior upon removal of the 

laser, including solid phase nucleation and dendritic growth, allows one to deduce initial 

microstructure phase and distribution. Due to cyclic, laser-induced conduction with 

previous layers, solid-state transformation, i.e. microstructural evolution continues at a 

longer time scale in L-PBF process. Both the single (i.e. sensible) and multi-phase (i.e. 

latent) heat transfer rates that occur during L-PBF depend on process parameters 

including laser power, laser beam size, and traverse speed. Other design parameters such 

as scan patterns, build orientation, powder size etc. can also affect resultant heat transfer. 

https://www.sciencedirect.com/topics/materials-science/three-dimensional-printing
https://www.sciencedirect.com/topics/materials-science/irradiation
https://www.sciencedirect.com/topics/materials-science/powder-metals
https://www.sciencedirect.com/topics/materials-science/solidification
https://www.sciencedirect.com/topics/materials-science/nucleation
https://www.sciencedirect.com/topics/materials-science/microstructural-evolution
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Fig. 2.9: Schematic representation of a typical L-PBF process consisting of a single 

moving laser beam, a chamber with shielding gas, powder bed, part and substrate [79]. 

During welding and laser-based AM processes inert shielding gas is employed to 

reduce oxide formation along part/powder surfaces, to protect the melt pool against 

contamination and to aid in expelling so-called ‘spatter’ debris. Effects of shielding gases 
on welding/AM processes and on final material quality have been studied in the 

literature. Ly et al. [80] investigated spatter generation during the L-PBF process via 

experimentation and found that the presence of flowing argon gas can decrease spatter 

significantly relative to when the process is performed in vacuum. Wang et al. [81] 

analyzed the effects of shielding gas during laser deep penetration welding and showed 

that the shielding gas can help stabilize the laser welding process via convection heat 

transfer and enhanced ionization–recombination. Philo et al. [82] performed the 

simulation of the flow within an L-PBF (Renishaw AM 250) chamber. They found that the 

flow atop the powder bed to be non-uniform and these flow non-uniformities increased 

spatter generation. Kah et al. [83] experimentally investigated the effects of various 

shielding gases on the microstructure and mechanical properties of different materials 

including steel and aluminum during welding. For austenitic stainless steels, they found 

that increasing the amount of nitrogen in the shielding gas can increase the ductility and 

improve the tensile strength, hardness, and pitting corrosion resistance of the final weld 

[83]. 

There are numerous instances that the L-PBF process may be numerically modeled and 

simulated using finite element (FE) methods [84–87]. These approaches have been 

studied with varying degrees of fidelity for understanding process-structure-property 

https://www.sciencedirect.com/topics/materials-science/oxide
https://www.sciencedirect.com/topics/materials-science/argon
https://www.sciencedirect.com/topics/materials-science/laser-beam-welding
https://www.sciencedirect.com/topics/materials-science/convection
https://www.sciencedirect.com/topics/materials-science/steel
https://www.sciencedirect.com/topics/materials-science/austenitic-stainless-steel
https://www.sciencedirect.com/topics/materials-science/tensile-strength
https://www.sciencedirect.com/topics/materials-science/corrosion-resistance
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relationships while minimizing the need for repetitious, costly experimentation. In 

general, a continuum or powder-scale method can be utilized, while the latter requiring 

significantly more computational resources. In powder-scale techniques [88, 89], 

thermos-fluidic phenomena, (such as melt pool fluid dynamics, melt pool wetting/ 

spreading/ wicking, powder distribution/ size effects, solidification and microstructural-

coupling) can be more accurately modeled due to the L-PBF process being better 

represented. However, in most of the cases, such effects can be secondary or tertiary in 

nature relative to the impactful phenomena driven by the bulk temperature response of 

the participating media (i.e. powder, part, and substrate), for instances, cooling rates, 

temperature gradients, peak temperatures and others. In these studies, participating 

media was modeled as continua, and the effects of powder bed porosity was indirectly 

accounted for through use of effective bulk properties. The latent thermal energy transfer 

can be idealized and/ or incorporated into the model to model powder melting and melt 

pool solidification during L-PBF. The samples studied in this thesis were manufactured 

in single track directed L-PBF system with inert (argon) gas shielding as shown in the fig 

schematically and numerical modeling in Fig. 2.10 and Fig. 2.11  

 

Fig. 2.10: Schematic representation of substrate, powder bed, solidified tracks, and 

chamber including coordinate axes [79]. 
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Fig. 2.11: (Top) isometric view of meshed powder bed, substrate and part (part height not 

to scale) and (bottom) side view of meshed substrate, powder bed and chamber of 

numerical modeling [79]. 
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2.3.2. Columnar Prior β Macrostructure  

The cooling rate in the AM is way faster than the one in the conventional manufacturing 

methods like forging. This directly affect the morphology, size, and distributions of the 

grains in the microstructure.  

The most striking microstructure feature commonly observed in the AM Ti-6Al-4V alloy 

is large columnar prior β grains that can be often observed by naked eye and that can 
extend up to the entire height of the build. Columnar growth is observed with laser [68, 

90], electron [91, 92], and arc [93] heat sources as shown in Fig. 2.12.  

 

Fig. 2.12: Columnar prior β microstructures in: a) electron beam (SEBM) [91], b) laser 

beam (SLM) [94], and c) arc melted (WAAM) additive manufacturing processes [95].  

The large prior β grains are formed as a result of the AM solidification conditions when 
combined with the phase relationships in Ti alloys. The steps that lead to the columnar 

structure shown in Fig. 2.13 starting from an equiaxed prior β substrate that at ambient 
temperature made up of an α lamella structure with retained β (Fig. 2.13 a). Irrespective 
of the feedstock, the heat source not only melts the material being deposited and some 

of the substrate material beneath it, but to a certain depth the substrate is raised to a 
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temperature above the β-transus, fully transforming it to the cubic β-phase (Fig. 2.13). 

This β phase returns to the orientation prior to transformation due to re-growth of the 

residual β retained between the laths. With the heat source moving on and the molten 
material begins to cool and solidify, the high thermal gradients in the melt pool and low 

solute partitioning in Ti i.e. there is insufficient super-cooling ahead of the solidification 

front to enable nucleation ahead of the growth front [84]. Moreover, owing to the high 

solubility of most elements including oxygen in Ti, there are few particles present in the 

melt for heterogeneous nuclei. Therefore, the molten material solidifies in epitaxial way 

on to the β grain beneath it at the fusion boundary, continuing the grain. This cycle is 
repeated with each time of the heat source as additional layers are deposited (Fig. 2.13), 

the thermal field returning the previously deposited material to the previous high 

temperature β structure, and the melt pool solidifying epitaxial way upon it. The coarse 
columnar structure develops through many layers as no nucleation occurs ahead of the 

solidification front. These orientations are able to out compete other less well aligned 

orientations, as the <001> growth directions are the ‘easy growth directions’ for bcc 
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structures [47], [96].

 

Fig.2.13: Schematic of the steps involved that lead to the coarse columnar prior β structure 
observed in Ti-6Al-4V AM builds: (a) an equiaxed prior β substrate, (b) addition of 
feedstock (in this case powder), (c) the heat source that melts the feedstock and 

underlying material, and heats the surrounding material into the β phase, and (d) with 
additional layers, prior β grains grow epitaxially through the build height, growing 
competitively [76]. 
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2.3.3. α + β lamellar microstructure 

The microstructure of Ti-6Al-4V is highly dependent on the cooling rate through the β 
transus. Although with most AM techniques no cooling is forcibly applied, but because 

of the small melt pool is cooled by conduction through the substrate and previously 

deposited material as it is sufficient to cool the material very quickly. 

 

Fig. 2.14: Typical Ti-6Al-4V AM microstructures. (a) [95] & (b) [90] are typical α+β 
Widmanstätten microstructures generated in arc and laser blown powder based 

processes respectively. A typical microstructure of a heated powder bed process is given 

in (c) where diffusion has allowed a greater volume of β to be retained [47] and (d) α- 

martensitic microstructure generated by extreme cooling rates with SLM [59]. 
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A fine layer of α’ martensite has been observed in several studies at the top of AM Ti-

6Al-4V alloy including WAAM [97] and EBM [47] resulting in the acicular sub-micron 

structure shown in Figure 2:14 (d). The formation of martensite in the top layer is not 

surprising since the final layer of deposition is not subsequently reheated into the β phase 
by the successive passes, and its cooling rate through the β transus is greater than for the 
rest of the build. 

2.4. Instrumented Indentation  

Great steps have been achieved over the past few years in the development of techniques 

for probing the mechanical properties of materials on the submicron level through the 

advancement of the development of instruments that continuously measure force and 

displacement [98–101]. The load-displacement data derived through indentation can be 

used to determine mechanical properties even when the indentations are too small to be 

imaged conveniently. The indentation positioning capacity of some of the instruments is 

in the submicron regime, hence, a way is available by which the mechanical properties of 

a surface can be mapped with submicron resolution with mechanical properties 

microprobe [102, 103]. 

The elastic modulus (E) and the hardness (H) are the two mechanical properties 

measured most frequently using load and depth sensing indentation techniques from 

data obtained through one complete cycle of loading and unloading [101]. According to 

a model for the deformation of an elastic half space by an elastic punch, the unloading 

data are then analyzed which relates the contact area at peak load to the elastic modulus. 

To provide separate measurements of E and H, methods for independently estimating 

the contact area from the indenter shape function are used.  

In the late 19th century, Boussinesq [104, 105] and Hertz [106] originally considered the 

elastic contact problem, which plays a key role in the analysis procedure. For computing 

the stresses and displacements in an elastic body loaded by a rigid and axisymmetric 

indenter, Boussinesq developed a method based on potential theory which subsequently 

been used to derive solutions for a number of important geometries such as cylindrical 

and conical indenters [105, 107]. 

Tabor [108] performed the earliest experiments in which load and displacement sensing 

indentation methods were used to measure mechanical properties by studying the 

indentation of a number of metals deformed by hardened spherical indenters. Stillwell 

and Tabor performed a similar study to examine the behavior of conical indenters [109]. 

One particularly remarkable observation resulting from these studies concerns the shape 
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of the hardness impression after the indenter is unloaded and the material elastically 

recovers. Since elastic contact solutions exist for each of these geometries (i.e., a spherical 

indenter in a spherical hole and a conical indenter in a conical hole), it was observed that 

the ways in which plasticity affects the interpretation of elastic unloading data can be 

dealt with by taking into account the shape of the perturbed surface in the elastic analysis. 

Using the obtained results Tabor showed that the shape of the entire unloading curve 

and the total amount of recovered displacement can be accurately related to the elastic 

modulus and the size of the contact impression for both spherical and conical indenters. 

Important observations found from these studies are: (a) the diameter of the contact 

impression of the indenter in the surface formed by conical indenters does not recover 

during unloading but the depth recovers; (b) the indenter must be loaded and unloaded 

a few times before the load displacement behavior becomes perfectly reversible i.e., a 

limited amount of plasticity sometimes occurs in each of the first few loading and 

unloading recordings; and (c) effects of non-rigid indenters on the load (P)- displacement 

(h) behavior can be effectively accounted for by defining a reduced modulus, Er, through 

the equation [99]: 
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                                                                                                                    (1) 

Here, E and ν are Young's modulus and Poisson's ratio respectively for the specimen and 
Ei and νi are the same parameters for the indenter respectively. 

In the early 1970, interest in load and displacement sensing indentation testing as an 

experimental tool for measuring elastic modulus began with the work of Bulychev, 

Alekhin, Shorshorov, and co-workers [110–112]. Instrumented microhardness testing 

machines was used to obtain indentation load-displacement data which was then 

analyzed according to the equation [99]: 

2
r

dP
S E A

dh 
                                                                                                                       (2) 

Here, S (dP/dh) is the experimentally measured stiffness of the upper portion of the 

unloading data, Er is the reduced modulus of elasticity, and A is the projected area of the 

elastic contact. The modulus of elasticity can be derived by measuring the initial 

unloading stiffness and assuming that the contact area is equal to the optically measured 

area of the hardness impression. Equation (2) is applicable for all types of indenter 

including spherical and cylindrical indenter [112, 113]. 
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Doerner and Nix [101] put together ideas to produce the most comprehensive method to 

date for determining hardness and modulus from indentation load-displacement data. 

They proposed a simple empirical method based on extrapolating the initial linear 

portion of the unloading curve to zero load and using the extrapolated depth with the 

indenter shape function to determine the contact area which was later confirmed with 

finite element simulations of the indentation of silicon and nickel by conical indenters 

[114]. With the contact area so derived, the modulus can be computed from Eq. (2) and 

the hardness from its normal definition: 

max
P

H
A

                                                                                                                                        (3) 

Here, H is hardness, Pmax is the peak indentation load, and A is the projected area of the 

hardness impression. 

For real material behavior, the above stated findings could not adequately explain the 

continuous change of contact area and stiffness which change immediately and 

continuously as the indenter is withdrawn [99].  Oliver and Pharr [99, 102], developed a 

new method for analyzing indentation load-displacement data which addresses these 

problems. They presented an analysis technique is which accounts for the curvature in 

the unloading data and provides a physically justifiable procedure for determining the 

depth that was used in conjunction with the indenter shape function to establish the 

contact area at peak load. The hardness and moduli of several materials were then 

calculated using the analysis and compared with values determined by independent 

means to establish the accuracy of the method. Moreover, several practical issues 

concerning procedures for taking data and methods for determining load frame 

compliance and indenter shape functions were also discussed by Oliver and Pharr [99]. 

In this research, creep parameters, residual stress measurement, and effect of post heat 

treatment analysis were performed using Oliver and Pharr method. 

2.5. Creep  

2.5.1. Introduction 

Creep is a mechanical failure which is defined as time-dependent plastic deformation of 

materials subjected to a constant load or stress. However, In case of indentation creep 

behavior, from the variation of creep rate, a creep curve originating from the depth-

sensing indentation is divided into two separate zones: transient creep and steady-state 

creep [115]. Unlike traditional uniaxial creep curves obtained from tension/ compression 

testing, depth-sensing indentation testing does not have a third stage, or accelerated 

https://www.sciencedirect.com/topics/materials-science/primary-creep
https://www.sciencedirect.com/topics/materials-science/secondary-creep
https://www.sciencedirect.com/topics/materials-science/secondary-creep
https://www.sciencedirect.com/topics/materials-science/compression-testing
https://www.sciencedirect.com/topics/materials-science/compression-testing
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creep, as materials do not drastically fail under the indenter during indentation-based 

creep testing [116].  

 

Fig. 2.15: General creep curve of Ti-6Al-4V alloy at 4500C [6]. 

Moreover, stress states and volume of material deformation are different in the uniaxial 

and instrumented indentation creep techniques; a tri-axial non-homogeneous stress state 

and a continually growing deformation volume underneath the indenter are two 

important features of the instrumented indentation testing approach. 

2.5.2. Indentation Creep 

Indentation creep can be defined as time dependent motion of a hard indenter into a solid 

under constant load and temperature [117]. This process saves both time and cost 

associated with manufacturing samples since only sample of small size is required. This 

technique is particularly advantageous for health hazardous radioactive nuclear 

materials since a large number of data could be generated on the same sample. 

Metallographically polished specimen surface is the only requirement for evaluation of 

indentation hardness and creep. 

The methods for the measurement of time-dependent phenomena can be conveniently 

divided into two categories: (1) broad-band, quasistatic, or creep techniques: the load, 

stress, or strain rate is held constant for a period of time while measuring the response of 

the material; and (2) frequency-specific dynamic techniques: the load or stress is varied 

at a single frequency while measuring the response of the material. Though standard 

bulk-testing methods exist for these types of measurements, in many of today’s 
technologies, the volume of material of interest may be on such a scale that these 

techniques become impractical. For specimens prepared in a form that allows testing with 

modified uniaxial techniques, these preparation processes are often tedious or may very 

https://www.sciencedirect.com/topics/materials-science/nanoindentation
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well alter those properties that are of interest. Indentation creep testing might be an 

alternate means for mechanical characterization (i.e. conventional creep testing).  

There are instances of four types of tests being employed using depth-sensing indentation 

systems to gain insight into the relationship between indentation strain rate and 

hardness: indentation load relaxation (ILR) tests, [118, 119] constant rate of loading (CRL) 

tests, [120] constant-load indentation creep tests, [121–123] and impression creep tests 

[124]. Each of these tests have drawn analogies between hardness and flow strength, as 

well as between the uniaxial strain rate and the indentation strain rate, i.e. [123]: 

1
H C                                                                                                                                            (4) ɛ�̇� =  𝐶2ɛ�̇�                                                                                                                                       (5) 

Here, H is the hardness of the material, σ is the stress, ɛ�̇� is the uniaxial strain rate, ɛ�̇� is 

the indentation strain rate, and C1 and C2 are constants. 

In an indentation creep test, the dynamics of deformation are very different than those 

occurring in the previously described uniaxial creep test. The deformed volume of 

material under the indenter continually expands to encompass previously undeformed 

material. Since the material strains under the indenter, the material underneath the 

indenter is very much likely to form an expanding cavity with a hydrostatic core, where 

no deformation is occurring, and an expanding elastic/ plastic boundary. The creep 

process is dependent upon the rate at which the elastic/ plastic boundary can proceed 

into the material. Since the radius of the elastic/ plastic boundary is related to the radius 

of the indentation, the most appropriate definition for the indentation strain rate is 

defined as the instantaneous change in contact area divided by the instantaneous contact 

area ( �̇�/A) and it is a direct measure of the progression of the elastic/ plastic boundary 

into the material. However, for a geometrically similar indenter (𝑖. 𝑒. 𝑠𝑖𝑚𝑖𝑙𝑎𝑟 ℎ̇/h), the 

instantaneous displacement rate (ℎ̇) of the indenter divided by the instantaneous 

displacement (h) is simply related to �̇�/A, and the indentation strain rate has typically 

been defined as ℎ̇/h [123]. 
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Fig. 2.16: Schematic representation of the deformation field under an indenter, as an 

expanding hemispherical volume subjected to hydrostatic pressure, as developed by 

Marsh [1] and Johnson [2]. 

 

Fig. 2.17: (a) Scanning electron microscopy image of the indentation tip and geometrical 

definitions for evaluating tip coefficients (b) Schematic representation of the indentation 

curve of load-displacement and (c) surface profile behavior before and after indentation 

(hmax: maximum penetration depth, hc: contact depth, hf: final depth, hr: residual depth, S: 

stiffness, Pmax: maximum load, Ac: projected contact area) [3] 

Though indentation creep testing is a viable technique for comparing the time-dependent 

properties of materials that cannot be characterized by standard bulk techniques, 

comparison of the indentation results to uniaxial creep data is a subject of major 
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importance. The prime difference between uniaxial testing and indentation testing lies in 

the geometry of the two tests. In general, in any mechanical tests, forces and 

displacements are controlled and/or measured depending upon the type of apparatus 

being used. However, the displacement response of a material to an applied force, on its 

own, tells nothing of the properties of the material without incorporating the geometry 

of the specimen. In conventional uniaxial testing, the geometry of the test is defined by 

the user. Specimens are typically geometrically simple like a cylindrical compression 

specimen or a dog-bone tensile specimen. In an indentation test, the geometry of the 

material is actually being controlled by the very properties of the material that are of 

interest like the hardness, Young’s modulus, or strain-rate sensitivity. Typically, the test 

itself is designed to examine the properties that are of interest.  

2.5.3. Creep in Ti Alloy 

A number of researchers have used both nano/ micro-indentation technique and 

conventional methods (uniaxial tension) to assess rate-dependent plastic deformation in 

Ti and Ti alloys. Ma et al. [23] investigated room temperature creep behavior of Ti-10V-

2Fe-3Al alloy with dual phase alloy based on dislocation mechanism by micro-

indentation. It was found that power-law creep deformation was the controlling 

mechanism of creep in Ti-10V-2Fe-3Al alloy. Their results revealed that creep parameters 

exhibited significantly indentation depth dependent, at the secondary stage of creep, 

creep strain rate and creep rate increased with the increase of maximum indenter load, 

while creep stress and creep stress exponent showed an opposite trend.  Kumar et al. 

studied creep-fatigue interactions in the Ti-6Al-4V alloy at ambient temperature using 

low cycle fatigue tests with and without hold times and found that the creep damage was 

responsible for a large reduction in life of the sample tested with hold time [24]. 

Matsunaga et al. investigated inter-granular deformation mechanisms by performing 

creep tests on polycrystalline Ti along with pure Mg and pure Zn at ambient temperature. 

They observed straightly aligned dislocation arrays in all of the specimens, although only 

one slip system was activated inside of each grain. Steady state creep rate around 10−9 s-1 

and creep stress exponents (n) around 3.0 at ambient temperature were found [25]. 

Barboza et al. analyzed creep behavior of conventionally made Ti-6Al-4V alloy consisting 

Widmanst�̈�tten microstructure using conventional uniaxial test and found different 

creep stress exponents as 4.4 and 4.1 at 500 °C and 600 °C [27]. Creep strain rates of the 

conventional Ti–6Al–4V alloy were found lower than those of the α-Ti and composites. 

Kral et al. [8] analyzed uniaxial constant stress compression and constant load tensile 

creep tests in conventionally manufactured ultrafine-grained Ti-6Al-4V alloy at elevated 

temperatures compared it with ambient-temperature indentation creep. They found that 

https://www.sciencedirect.com/topics/materials-science/dislocation-mechanism
https://www.sciencedirect.com/topics/materials-science/secondary-creep
https://www.sciencedirect.com/topics/materials-science/strain-rate
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the results of the uniaxial creep tests showing the minimum creep rates of the Ultra Fine 

Grained (UFG) specimens were significantly higher in comparison with those of the 

Coarse Grained (CG) state. However, the differences in the minimum creep rates of both 

states of alloy greatly decrease with increasing values of applied stress. The CG alloy 

exhibited superior creep resistance than the UFG one over the stress range used. Badea et 

al. [6] analyzed creep behavior of hot-forged Ti-6Al-4V alloy and compared the creep 

stress exponent and activation energy at different temperature ranges from 4500C to 

6000C under applied stresses ranging from 100 MPa to 500 MPa. For all the creep 

conditions, as the temperature increased, fracture surfaces exhibited ductile rupture 

characteristics, with a more pronounced necking, deeper voids and larger void diameters. 

Gollapudi et al. [125] studied the stress and temperature dependence of the transient 

creep strain and transient time of Ti-834 alloy, i.e. Ti–5.8Al–4.0Sn–3.5Zr–0.7Nb–0.5Mo–
0.35Si–0.06C (in wt%) to understand the rate controlling mechanism of transient creep. 

Oliveira et al. [126] investigated the short-time creep behavior of Ti-6Al-4V by plasma 

carburizing under a constant tensile load in air at 600 °C using a dead-weight-creep-

rupture machine and found that the creep properties of the 

“Widmanstätten + carburized” specimens were improved relative to those of untreated 
specimens. Es-Souni [4] conducted research on the high-temperature near α-Ti alloy Ti–
5.8Al–4.0Sn–3.5Zr–0.7Nb–0.35Si–0.06C (Timetal 834) in order to further understanding of 

creep mechanisms and how they are affected by microstructure and alloying effects. He 

provided evidence to support the idea that at the stress and temperature range (500 0C to 

625 0C) investigated, creep is controlled by bow-out and climb of dislocation segments 

pinned at lath boundaries and second-phase particle. 

https://www.sciencedirect.com/topics/materials-science/tensile-loads
https://www.sciencedirect.com/topics/materials-science/creep-property
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Fig. 2.18: Stress dependence of the steady-state creep rate for the microstructures 

investigated at different temperatures (HT= heat treated, AR= as received) [4]. 

Ziaja et al [5] performed Finite Element Analyses (FEM) by modelling primary creep 

behavior of two-phase titanium alloy Ti-6Al-2Mo-2Cr (VT3-1) at elevated temperature 

with various microstructure. 

Evans et al [127] studied secondary creep behavior of two α/β titanium alloys (IMI318 and 

IMI685) at elevated temperature. Moreover, at higher stresses, Ti alloys can sometimes 

demonstrate unusually high creep stress exponent values, such as n > 15 [6, 127]. 
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Fig. 2.19:  Primary creep curves of Ti-6Al-2Mo-2Cr alloy (VT3-1) with lamellar and 

globular microstructure at 450°C [5]. 

 

Fig. 2.20: Dependence of steady-state creep rate on applied stress at 500°C and 600°C 

along with unusual high value of ‘n’ [6]. 
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2.5.4. Ambient Temperature Creep in Ti-6Al-4V Alloy 

It has been reported in numerous literature that the ambient-temperature creep2 occurs 

in α+β Ti–6Al–4V [40, 128]. In general, the HCP crystalline structure of the Ti-6Al-4V alloy 

is responsible for the ambient-temperature creep [7, 28]. That is, in the hcp structure, 

during ambient temperature creep, only one slip system is activated which is due to the 

low symmetric structure, generating low work hardening. As a result, deformation 

proceeds at ambient temperature and under stresses below the yield stress [7, 28]. 

Kameyama et al. [7] analyzed the suppressing effect of ambient-temperature creep of CP-

Ti by cold-rolling at ambient temperature and compared with as received samples. They 

found that with increasing the thickness reduction, the twin, dislocation density and σ0.2 

increased but at the same time, the steady-state creep rates under the applied stress for 

constant σ/σ0.2 were decreased. 

Fig. 2.21: Creep curves of the various CP-Ti samples at ambient temperature under the 

applied stress of 0.8σ0.2 [7] 

Imam et al. [129] found an appreciable amount of creep conventionally built Ti-6Al-4V 

alloy at room temperature through uniaxial loading. Hasija et al. developed an 

experimentally validated computational model for Ti-6Al alloys accounting for plastic 

                                                           

2 Ambient-temperature creep occurs below 0.3–0.4Tm for hcp metals. 

https://www.sciencedirect.com/topics/materials-science/crystalline-materials
https://www.sciencedirect.com/topics/materials-science/work-hardening
https://www.sciencedirect.com/topics/materials-science/yield-stress
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anisotropy and analyzed time-dependent plasticity for analyzing creep [26]. They 

observed cold creep to be the dominant mode of deformation in Ti alloys at low 

temperatures, where significant strains can accumulate with time. Kral et al [8] examined 

creep behavior of conventionally built Ti-6Al-4V alloy and compared it with the 

instrumented indentation creep tests at ambient temperature and found that annealing 

had little effect on the creep behavior in UFG Ti alloy at ambient temperature. 

 

Fig. 2.22: Dependence of indentation strain rate versus applied stress for Ti–6Al–4V in 

the UFG and annealed state measured at room temperature under constant load 5 mN 

[8]. 

Harrison et al. [29] developed a model to study creep of Ti-6Al-4V by time dependent 

strain accumulation generated by dwell time fatigue effects at ambient “cold” 
temperature creep. The phenomenon of ambient temperature (or logarithmic) creep is 

not unusual in many materials including pure Ti and Ti alloys [30–32]. 

Evans [30] stated that the key factor in low-temperature (i.e. ambient temperature) creep 

sensitivity of Ti alloys (including Ti-6Al-4V alloy) is strong tendency of Ti in time-

dependent strain accumulation at low temperatures. According to the design criteria, the 

https://www.sciencedirect.com/topics/materials-science/plasticity
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stress levels that impose the mentioned strain accumulations, are normally in the 

acceptable (safe) range. To this end, understanding the nature of creep sensitivity could 

be a challenging task but provides a foundation for understanding on crack development 

in α + β Ti alloys. For instance, room-temperature creep in the Ti-6Al-4V alloy fuel tanks 

and fasteners has been reported in the literature [25]. 

2.6. Heat Treatment of AM Ti-6Al-4V Alloy  

2.6.1. Introduction 

With regard to basic characteristics of titanium alloy including the equilibrium phase 

diagram, physical and metallurgical properties, heat treatment process and 

metallographic structure, there are a lot of useful data can be acquired for reference. A 

variety of microstructures can be tailored by simple thermo-mechanical treatments on 

this α + β alloy. Therefore, it is necessary to assess the effect of various heat treatment on 
microstructure and micromechanical properties of additively manufactured Ti-6Al-4V 

alloy. 

2.6.2. Heat treatment of Ti alloys 

Effect of heat treatment on microstructure and micromechanical properties of 

conventionally build Ti alloys has been reported in numerous literature. Seshacharyulu 

et al. [130] studied the hot deformation behavior of extra-low interstitial (ELI) grade Ti–
6Al–4V alloy with Widmanstätten preform microstructure over wide temperature (750–
1100oC) and strain rate ranges (0.001–100 s−1) with the help of processing maps and  the 

material exhibited cracking at prior β grain boundaries when deformed at lower 
temperatures (<800oC) and slower strain rates (<0.1 s−1). Naughton et al. [131] have 

conducted experiments for the strain rate sensitivity index (m) for the Ti–6Al–4V ELI 

grade wire alloy at the temperatures ranging from 7500C to 1050°C to determine 

superplastic forming capabilities.  

Venkatesh et al. [9] evaluated the strain rate sensitivity and the strain hardening exponent 

of the Ti–6Al–4V ELI alloy subjected to different heat treatment conditions with and 

without the thermal oxide layer. Although the as-received Ti–6Al–4V ELI alloy consisted 

of primary α and α + β phases, they found that after air cooling and aging (AC + aging), 

the microstructure became a mixture of acicular α and β with primary α. After water 
quenching and aging (WQ + aging), they observed that the microstructure consisted of 

primary α and α′ + β plus some fine secondary α phase in the β phase.  

https://www.sciencedirect.com/topics/materials-science/strain-rate
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Zhang et al. [132] noted that for Ti–6Al–4V alloy, the formation of martensite transformed 

from β phase at 955°C is due to the fast cooling rate during water quenching. It was 
explained by them that phase transformation occurs from the high temperature β-Ti to 

low temperature α-Ti (diffusion controlled when slow cooling) or α′-Ti (shear dominated 

when rapid cooling). This explanation was in agreement with the microstructure 

described by Donachie [133]. Jovanovic et al. [134] also found a similar microstructure 

after heat treatment at 950°C followed by water quenching for Ti–6Al–4V alloy. 

 

Fig. 2.23: Microstructures of Ti–6Al–4V ELI alloy studied by Venkatesh et al. [9] in 

different conditions, (a) as-received, (b) air cooling plus aging (AC + aging), and (c) 

water quenching plus aging (WQ + aging). 

Venkatesh et al. [9] also stated that both WQ + aging and AC + aging heat treatment 

procedures led to an effective surface hardening arising from the formation of an 

oxidized layer of about 0.15 mm in depth. Although the AC + aging moderately increased 

the interior hardness, the WQ + aging significantly increased the internal hardness by 

https://www.sciencedirect.com/topics/materials-science/quenching
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about 50% due to the formation of martensite. However, the formed surface layer seemed 

to have no effect on the yield strength (YS) and only have a slight decrease in the ultimate 

tensile strength (UTS), although they observed a certain reduction in the ductility. 

Their obtained micro-hardness profile is shown in Fig. 2.24. It was observed that the 

highest hardness value occurred at the surface of the specimens, indicating that the 

surface has effectively been hardened. The specimen which was subjected to water 

quenching followed by aging (WQ + aging) exhibited much higher hardness values, 

while the as-received specimen had the lowest hardness out of the three conditions 

considered in this study. This was supported in accordance with the results obtained by 

Jovanovic et al. [134] for Ti–6Al–4V alloy. In general, the hardness increases as the rate of 

cooling increases due to the formation of martensite arising from rapid cooling [132, 133, 

135]. The hardness of the sample subjected to air cooling followed by aging (AC + aging) 

lied in-between those of the WQ + aging and as-received specimens. From Fig. 2.23, it is 

clear that the size of the acicular α is relatively large in the AC + aging condition, when 

compared to the WQ + aging microstructure which has thin α′ plates. 
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Fig. 2.24: Knoop microhardness profile of the Ti–6Al–4V ELI alloy in three conditions 

studied by Venkatesh et al [9]. 

https://www.sciencedirect.com/topics/materials-science/microhardness
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Fig. 2.25: Stress–strain curves of Ti–6Al–4V ELI alloy in different conditions tested at 

a strain rate of 0.0001 s−1 showing the comparison of ductility of different types of heat 

treated Ti-6Al-4V alloy by Venkatesh et al. [9]. 

2.6.3. Heat treatment of additively manufactured Ti-6Al-4V alloy 

Although L-PBF process offers several advantages compared to conventionally built Ti-

6Al-4V, the unique conditions during L-PBF conditions arouses certain problems. Due to 

short interaction times and accompanying highly localized heat input, large thermal 

gradients exist during the process. These results in build-up of thermal stresses, while 

the rapid solidification leads to segregation phenomena and the development of non-

equilibrium phases. In addition, non-optimal scan parameters may cause melt pool 

instabilities during the process, leading to an increased porosity and a higher surface 

roughness. 

Vrancken et al. [10] performed optimization of mechanical properties of Ti-6Al-4V alloy 

via heat treatment of parts produced by Selective Laser Melting (SLM).  After 2 h at 

780 °C, followed by FC, the fine martensitic structure has been transformed to a mixture 

of α and β, in which the α phase is present as fine needles (Fig. 2.26a).  

https://www.sciencedirect.com/topics/materials-science/strain
https://www.sciencedirect.com/topics/materials-science/thermal-stress
https://www.sciencedirect.com/topics/materials-science/rapid-solidification
https://www.sciencedirect.com/science/article/pii/S0925838812011826#f0010
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Fig. 2.26: Microstructure of Ti-6Al-4V studied by Vrancken et al. [10] produced by SLM 

after heat treating at different temperatures for 2 h, followed by FC. (a) 780 °C and (b) 

843 °C below the β transus, (c) 1015 °C above the β transus. Lighter zones are β phase, the 

dark phase is the α phase. 
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Fig. 2.27 (a) shows the side view of SLM material after a heat treatment performed by 

Vrancken et al. [10] at 940 °C, followed by WQ, below the β transus. After conducting heat 

treatment below the β transus and at sufficiently low cooling rates, the prior β grains are 

became even more visible due to the formation of a layer of grain boundary α and the 

more aggressive etching of the α + β mixture as opposed to the original α′. However, Fig. 

2.27 (b) shows that the microstructure no longer contains long columnar prior β grains 

after treatment above the β transus, indicating extensive grain growth of the SLM 

material when heated above the β transus, up to the point of semi-equiaxed βgrains. 

Results found by Studies of Sercombe et al. [37] Vilaro et al. [38] are in agreement about 

this microstructural transformation. 

 

Fig. 2.27: Side view of study of SLM material by Vrancken et al. [10] (a) after 1 h at 940 °C 

followed by 2 h at 650°C, illustrating the long columnar prior β grains. After heat 

treatment, a lamellar mixture of α and β is present inside the columnar prior β grains. (b) 

After 1015°C, 2 h, followed by WQ, indicating the extensive growth of the columnar 

grains. Due to the WQ, the microstructure is fully martensitic.  
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Vrancken et al. [10] also found that, as the equilibrium fraction of β phase rises at high 

temperatures, the intergranular β phase in the reference material grows into equiaxed 

grains. Upon cooling, these β grains transformed to lamellar α + β, resulting in a duplex 

microstructure, seen in Fig. 2.28. Their obtained microstructure consisted of 

equiaxed α grains and lamellar transformed β grains. At higher heat treatment 

temperatures, the higher equilibrium volume fraction of β phase ultimately leads to a 

higher fraction of lamellar α + β at room temperature. While heating above the β transus, 

grain growth of the β phase can take place leading to large grains. 

 

Fig. 2.28: (a) Heat treated SLM Ti-6Al-4V for 2 h at 780°C, followed by furnace cooling 

and (b) 1 h at 940°C, followed by air cooling to 650°C. The α phase is light, the β phase is 

dark. Increase in lamellar fraction when treated at a higher maximum temperature 

observed by Vrancken et al. [10]. 

https://www.sciencedirect.com/topics/materials-science/volume-fraction
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Due to the specific microstructure resulting from the L-PBF process, to obtain optimal 

mechanical properties specific treatments are required. The microstructure of Ti-6Al-4V 

alloy processed by L-PBF consists of a fine acicular martensite called the α′ phase [136, 

137]. Mechanical properties of these L-PBF Ti-6Al-4V parts are a high yield stress (about 

1 GPa), a high ultimate tensile strength but a relatively low ductility (less than 10%) as 

shown in Fig. 2.29. To achieve a variety of desired mechanical properties for specific 

applications, and to improve the ductility of Ti-6Al-4V alloy products manufactured by 

L-PBF, suitable post-production heat treatments must be elaborated. In addition, these 

treatments allow the reduction of thermal stresses that have been built up during the 

additive manufacturing process.  

Fig. 2.29: Stress–strain curves for untreated SLM Ti-6Al-4V and reference Ti-6Al-4V [10]. 

However, only limited research has been performed on this topic. Facchini et al. [36] 

performed post‐building heat treatment of a Ti‐6Al‐4V alloy produced by selective laser 
melting of pre-alloyed powders causing the transformation of the metastable martensite 

in a biphasic α-β matrix resulting in an increase in ductility and a reduction in strength 

values. Sercombe et al. [37] performed solution treatment Ti‐6Al‐7Nb components that 
had been produced via selective laser melting (SLM) resulting in homogeneous structure. 

Vilaro et al. [38] analyzed as-fabricated and heat-treated microstructures of the Ti-6Al-4V 

https://www.sciencedirect.com/topics/materials-science/martensite
https://www.sciencedirect.com/topics/materials-science/yield-stress
https://www.sciencedirect.com/topics/materials-science/tensile-strength
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alloy processed by selective laser melting which exhibited high yield and ultimate 

strengths while the ductility is significantly improved. 

Vrancken et al. [10] studied the different response of SLM parts on generally 

applied titanium heat treatments and distinguished the influence of time, temperature 

and cooling rate. However, they found that, due to the specific process conditions and 

hence specific microstructure, application of standard heat treatments shows that these 

treatments do not lead to the usual or expected results, SLM produced parts need to be 

treated differently than bulk alloy parts. Becker et al. [138] studied LaserCUSING (a 

selective laser melting (SLM) process that is capable of manufacturing parts by melting 

powder with heat input from a laser beam) processed Ti-6Al-4V on the combination of 

machine parameters and heat treatments to optimize material behavior while minimizing 

residual stresses and porosity defect. They found that LaserCUSING produced Ti-6Al-

4V ELI is characterized by comparable hardness as well as better mechanical 

characteristics when subjected to appropriate heat treatments. Fan et al. [11] investigated 

the effects of process parameters of laser additive manufacturing (laser power, scanning 

speed, scanning direction) and heat treatment on the microstructure and properties of Ti-

6Al-4V alloy forming parts under coaxial powder feeding. Through the solution and 

aging heat treatment, they observed that the original properties can be improved and the 

high performance can be obtained. They also stated that the solid solution and aging heat 

treatment can effectively improve the strength and plasticity of the deposited Ti-6Al-4V 

alloy, and its strength and plasticity exceed the requirements of the national standard of 

Ti-6Al-4V alloy castings and forgings with annealed state.  

 

Fig. 2.30: Microstructure of 3D printing Ti-6Al-4V alloy under different states observed 

by Fan et al. [11]. 

Ahmadi et al. [12] applied two different heat treatment regime (below and above β-

transus) to investigate their effects on the microstructure and mechanical properties of 

additively manufactured porous Ti-6Al-4V alloy. Although it was observed that heat 

https://www.sciencedirect.com/topics/materials-science/titanium
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treatment substantially changes the microstructure of as-processed Ti6Al4V samples, 

they concluded that structure density of AM structures does not improve by heat 

treatment and in order to solve this problem other post treatments method like hot 

isostatic pressing (HIP) must be considered. 

 

Fig. 2.31: Microstructure of a) as-processed, b) T800 and c) T1050, observed by Ahmadi 

et al. [12] 

Yan et al. [13] studied the effect of thermo-mechanical treatment on the microstructure 

transformation and mechanical properties of SLM processed Ti-6Al-4V ELI alloy samples 

aiming to identify the appropriate treatment for biomedical or aeronautical applications, 

in order to improve the overall mechanical properties. They found that although as-built 

samples have a relatively higher microhardness, after HT up to 900°C, microstructure 

coarsening lead to a decrease of this microhardness. However, HT over 900°C contributes 

to an increase of the microhardness which reaches the highest value (after the as-built 

condition) at 1080°C due to the formation of a Widmanstatten structure upon cooling. 

https://www.sciencedirect.com/topics/materials-science/microhardness
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Fig. 2.32: Vickers microhardness of SLM samples following several thermo-mechanical 

treatments investigated by Yan et al. [13]. 

Galarraga et al. [14] investigated the effect of different heat treatments on the unique 

microstructure of the EBM Ti-6Al-4V ELI (Extra Low Interstitial) and its impact on 

mechanical properties. They found that It was observed that faster cooling rates after 

solution heat treatment produce a greater amount of α’ martensitic phase, with water-

cooling at a rate of 650°C/s resulting in a fully α’ martensitic microstructure.  
However, increases in α lath thickness was found to have a detrimental effect on 

mechanical properties like an increase in α lath thickness from 0.62 to 2.9 µm 

reduced micro-hardness, YS, UTS, and elongation by 11%, 8.5%, 1.5%, and 26% 

respectively. 

https://www.sciencedirect.com/topics/materials-science/cooling-water
https://www.sciencedirect.com/topics/materials-science/cooling-water
https://www.sciencedirect.com/topics/materials-science/microhardness
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Fig. 2.33: Micrographs at 500X magnification for (a) as-fabricated, (b) annealed at 700°C 

for 100 h, (c) annealed at 900°C for 20 h, (d) annealed at 900°C for 70 h, investigated by 

Galarraga et al. [14]. 

2.7. The Current Work.  

2.7.1. Depth-sensing time dependent deformation of AM Ti-6Al-4V alloy 

Consistency of mechanical properties and microstructures in the additive manufacturing 

is still a critical issue. Since Ti-6Al-4V alloy is a two-phase alloy, mechanical properties 

can be significantly varied by tailored microstructure [21]. Having various cooling rates 

at different positions and distances from the built plate in different additive 

manufacturing methods, the microstructure, in particular formation of α, can vary a lot 
[22]. Deposition of layers with partial re-melting and solidification of previous layer and 
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cooling in various ways for various geometries adds complications to the processes. In 

spite of many studies in the literature to date, rate dependent plastic deformation of the 

Ti-6Al-4V alloy manufactured by the L-PBF method has not been studied at small scales 

with microstructural gradients.  

In L-PBF method components are fabricated via directed energy and pre-deposited layer 

where energy source can be in the form of electron beam or laser [20]. Due to rotation of 

laser for each layer, L-PBF build materials ended up having net shape which often require 

subtractive machining.  L-PBF heat transfer is highly dependent on relative laser/ gas 

direction which plays a significant role on melt pool formation and surface properties. 

Manufacturing design decisions including scan strategy, laser power, scanning speed etc. 

directly affects the microstructure of the fabricated parts as well as affect the resultant 

heat transfer. To reduce oxide formation along the surface, protect the melt pool from 

contamination, and to co-operate expelling spatter/ debris, inert shielding gas is 

employed during welding and laser based AM processes. It was observed that shielding 

gas like argon gas not only decreases spatter significantly but also stabilize the laser 

welding process via convection heat transfer and enhanced ionization-recombination 

[139, 81]. Kah et. al. investigated effects of various shielding gases on the microstructural 

and mechanical properties including ductility, tensile strength, hardness, pitting 

corrosion resistance on different metals and found significant improvement of 

mechanical properties [83]. The samples investigated in this research were fabricated in 

unidirectional scan direction (i.e. without rotating pattern in each layer like typical L-PBF 

process) in both parallel and perpendicular to the argon gas flow. The sample were also 

manufactured using different scan size which also affected the temperature gradient i.e. 

the thermal response. Due to variation of scan direction with respect to argon gas flow, 

the temperature gradient was found to be different for each sample [79] and therefore, it 

is required to assess the time –dependent deformation for these Ti-6Al-4V alloy samples 

fabricated at different manufacturing scan direction and scan sizes. 

Considering the literature mentioned in this chapter, ambient-temperature creep 

response of an additively manufactured Ti-6Al-4V alloy and correlations between creep 

parameters (i.e. creep rate, creep stress exponent, indentation size effect) and additive 

manufacturing variables (i.e. scan directions and scan sizes) has not yet been 

documented. In this present research an instrumented (depth-sensing) indentation 

testing technique was employed to assess ambient-temperature creep and the 

corresponding mechanisms of an additively manufactured (AM) Ti-6Al-4V alloy. In 

addition, indentation size effect and microstructural assessments are studied in this 

research. Moreover, to this end, microstructural quantitative analyses (i.e. optical 
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microscopy (OM) and scanning electron microscopy (SEM)) are performed to assess 

microstructure of the AM Ti-6Al-4V alloy and the creep property correlations during the 

holding time as a function of indenter peak load. 

The outcome of this research provide a baseline to study elevated-temperature creep of 

AM Ti-6Al-4V alloy and to compare the results with the conventionally made Ti-6Al-4V 

alloy. Most of the reported creep results in the literature till date are based upon 

traditional (uniaxial/ tensile) approach which could be destructive, time-consuming and 

tough-to-control (specially at the elevated temperatures) tests. In particular, on the AM 

aspect, a number of creep test coupons must be printed which could be a costly as well 

as time consuming task. Having said this, the present research promotes the application 

of the depth-sensing indentation testing technique, as a noble, reliable, convenient and 

non-destructive approach that can be performed on a small volume of material and can 

be used toward assessing time-dependent plastic deformation (creep) in AM materials at 

both ambient and elevated temperatures. 

2.7.2. Effect of various heat treatment cycles on microstructure and micro-mechanical properties 

of AM Ti-6Al-4V alloy 

Microstructure evolution and mechanical properties have been studied in various 

literature for Ti-6Al-4V alloys due to its versatility resulting from the good balance 

between mechanical properties, castability, plastic workability, heat treatability, 

and weldability [14]. Ti-6Al-4V has been applied in industry and studied in the 

laboratory in large, resulting in an extensive knowledgebase relative to other metal alloys 

fabricated by this additive manufacturing technology. Heat treatment of AM Ti-6Al-4V 

for various heat treatment technologies has been extensively studied with the purpose 

of relieving stress and achieving an equilibrium microstructure, eliminating the 

metastable α’ martensite phase and obtaining a microstructure with exclusively α and β 
phases. However, for the L-PBF technology, the relation between microstructure and 

mechanical properties has been mainly limited to the as-fabricated condition. The L-PBF 

process, similarly to other AM processes, does not completely prevent the presence of 

porosity in the build. In order to mitigate the disadvantages caused by these defects, the 

effect of HIP treatment has been studied in numerous instances [68, 92, 140–142].  

Since the relatively poor wear resistance of this alloy leads to excessive wear, mechanical 

and chemical instability, and implant loosening [143], various surface treatment 

methods, such as ion implantation, TiN coating, and thermal oxidation, have thus been 

proposed to improve the wear resistance by changing the nature of the surface.  

https://www.sciencedirect.com/topics/materials-science/scanning-electron-microscopy
https://www.sciencedirect.com/topics/materials-science/creep-property
https://www.sciencedirect.com/topics/materials-science/weldability
https://www.sciencedirect.com/topics/materials-science/stress-relieving
https://www.sciencedirect.com/topics/materials-science/martensite
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With regard to basic properties of Ti alloy including the equilibrium phase diagram, 

physical and metallurgical properties, heat treatment process and metallographic 

structure, there are a lot of useful data can be acquired. A variety of microstructures can 

be tailored by different simple thermo-mechanical treatments at above and below β-

transus on this α + β alloy. Therefore, it is required to assess the effect of various heat 
treatment on microstructure and micromechanical properties of AM α+β Ti-6Al-4V alloy. 

While there are numerous data on the common Ti–6Al–4V alloy, very limited studies 

involving the microstructure and micro-mechanical characteristics of the Ti-6Al-4V alloy 

have been reported. The primary objective of this investigation is, therefore, to evaluate 

the effect of various heat treatment on microstructure and micromechanical properties of 

additively manufactured Ti-6Al-4V alloy. Indentation testing technique was applied to 

assess the micro-mechanical properties including stress distribution over the penetrated 

depth of the indenter. Vickers micro-hardness testing approach was used to verify the 

hardness after various heart treatment approach. 

Ti-6Al-4V is an α+β alloy where α and β microstructural phases coexist at room 

temperature. The α+β alloys are interesting as they combine both the strength of α 
alloys with the ductility of β alloys, and their microstructures and properties can be 

varied widely by appropriate heat treatments and thermomechanical processing [14]. 

The current study focuses on understanding the effect of various heat treatments on the 

unique microstructure of the L-PBF Ti-6Al-4V and its impact on microstructure and 

micro-mechanical properties. The heat treatments studied in this work were addressed 

using four various heat treatment approaches. The effect of water quenching, air cooling, 

furnace cooling, and ageing (precipitation hardening) heat treatments and subsequent 

formation of different microstructural phases and their impact on micro-mechanical 

properties were investigated.  

 

 

 

 

 

 

 

 

https://www.sciencedirect.com/topics/materials-science/alpha-beta-titanium-alloys
https://www.sciencedirect.com/topics/materials-science/alpha-titanium-alloys
https://www.sciencedirect.com/topics/materials-science/alpha-titanium-alloys
https://www.sciencedirect.com/topics/materials-science/beta-titanium-alloys
https://www.sciencedirect.com/topics/materials-science/thermomechanical-processing


53 

 

Chapter III 

3. Experimental Methodology 

This section describes a brief background of the fabrication of the samples and the various 

methods used throughout this thesis; more detailed process and experimental 

parameters are given in the relevant manuscripts.  

3.1. Additively Manufactured Ti-6Al-4V samples 

The material studied in this thesis is an additively manufactured Ti-6Al-4V alloy 

fabricated via the L-PBF process in horizontal and vertical scan direction. Fig. 3.1 shows 

the scanning direction and size of the samples used in this research. For both X and Y 

scan direction, two rectangular samples with dimensions of 9.8×9.8×5.60 mm3 (coded as 

Big sample and shown in Fig. 3.1(a) and 1(b)) and 4.8×4.8×5.5 mm3 (coded as Small sample 

and shown in Fig. 3.1(c) and 1(d)) were prepared.  

 

Fig. 3.1: Built direction and built size of samples of the additively manufactured Ti-6Al-

4V alloy used in this study (a) CNPY-Big, (b) CNPX- Big, (c) CNPY- Small, (d) CNPX- 

small. 
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Scanning tracks for sample “Core X” were parallel to flow (argon) direction and samples 

were named as “Core No Post X-big” (CNPX-big) and “Core No Post X-small” (CNPX-

small). Scanning tracks for sample “Core Y” were perpendicular to flow direction and for 
this research samples were named as “Core No Post Y-big” (CNPY-big) and “Core No 
Post Y-small” (CNPY-small). The term “No post” indicates that no post contour exposure 
was done on these specimens i.e. after fabrication of each layer, lasers re-melted the 

boundary of parts.  Masoomi et. al. [79] have found that by decreasing build area of 

additively manufactured parts or using shorter tracks, the temperature gradient will 

decrease, and it will cause lower residual stress in the parts. In this research, parts with 

different volumes are chosen to demonstrate this effect. The process parameters chosen 

to fabricate parts is summarized in Table 3.1: 

Table 3.1 - Parameters used for fabrication of Ti–6Al–4V parts 

System 

Substrate material 

Powder description 

Mean particle diameter 

Powder layer thickness  

Powder bed porosity  

Laser spot diameter 

Laser power 

Scan speed 

EOS M290 

Ti-6Al-4V  

Gas-atomized, air-dried 

35 µm  

50 µm  

0.4 

100 µm 

170 W 

1250 mm/s 

Building volume 25 x 25 x 35 cm3 

Shielding gas type 

Shielding gas inlet temperature 

Shielding gas inlet flow rate 

Chamber wall temperature 

Argon 

200C 

0.25 m3/s 

200C 
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Fig. 3.2: EOS 290 3D printer used in this research to print the samples. 

Prior to the instrumented indentation testing, the surfaces of the specimens were 

carefully ground with a series of progressively finer sand papers followed by fine 

polishing which resulted in scratch free mirror-like surface finish. A modified Kroll’s 
reagent (5 ml HF, 15 ml HNO3, and 80 ml distilled water) was used to reveal the 

microstructure. Microstructure and grain sizes of four specimens were then examined by 

Scanning Electron Microscope (SEM) and Optical Microscopy (OM). 

Hysitron Ubi-1 Nanoindenter is a quasistatic instrumented indentation system for 

nanomechanical testing of nano/ micro-mechanical properties, including Young’s 
modulus, fracture toughness, and hardness. It is ideal equipment for measuring micro-

mechanical properties of coatings and thin films, as well as the spatial dependence of 

hardness and elastic modulus of materials. It’s three-plate capacitive transducer is 

designed for a high displacement sensitivity and a low thermal drift. 

In situ scanning probe microscopy (SPM) capabilities are also available which has 

enabled to capture image of sample surfaces before and after indentation. The 
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piezoelectric scanner used for SPM imaging is also highly capable for an automated 

micro-mechanical testing at multiple locations within an imaged/ scanned area. Creep, 

stress relaxation, and surface adhesion can also be investigated using closed-loop load- 

or displacement-controlled indentation modes. Analysis software accompanied with the 

system was used to calculate reduced moduli and hardnesses from unloading curves and 

measured tip area functions. 

 

Fig. 3.3: Hysitron Ubi-1 Nanoindenter used in this project. 
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Table 3.2 - Hysitron Ubi-1 Nanoindenter specifications 

Maximum Force 10 mN 

Thermal Drift < 0.05 nm/sec 

Load Noise Floor 100 nN 

Maximum Displacement 20 µm 

Maximum Range of Piezoelectric Scanner 60 µm x 60 µm 

Displacement Noise Floor 0.2 nm 

Load Resolution 1 nN 

Displacement Resolution 0.04 nm 

Hysitron Ubi-1 Nanoindenter is an excellent tool to analyze the micro-mechanical 

properties of the materials and used throughout the research period. However, due to 

limited maximum loading capability (10 mN), limited maximum displacement (20 µm), 

and limited holding time capability, Hysitron Ubi-1 Nanoindenter is not an ideal 

equipment to analyze ambient temperature creep of high strength material like Ti-6Al-

4V alloy which needs significantly longer holding time for creep deformation. Hence, the 

nano indenter G200, which can exert high maximum loading capability (500 mN), high 

maximum displacement (500 µm), and high holding time capability, was used only to 

investigate ambient temperature time dependent deformation of additively 

manufactured Ti-6Al-4V alloy.  

Nano-Indenter G200 is one of the world’s most precise, flexible, and user-friendly 

instrument for nanoscale mechanical testing for micro-to-nano range of loads and 

displacements. In nano indenter G200, electromagnetic actuation allows to achieve 

unparalleled dynamic range in force and displacement.  

The Nano Indenter G200, a user friendly equipment, enables to deduce Young’s modulus 
and hardness in compliance with ISO 14577. The G200 also enables to measure 

deformation over six orders of magnitude (in the range of nanometers to millimeters). 

The capabilities of the G200 are also extended to facilitate frequency-specific testing, 

quantitative scratch and wear testing, high-temperature testing, integrated probe-based 

imaging, expanded load capacity up to 10N, and customizable test protocols.  
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The Nano-Indenter G200 is an excellent tool to quantify the relationship between 

structure, properties, and performance of their materials quickly and easily with minimal 

sample preparation. Unique design of the nano-indenter G200 avoids lateral 

displacement artifacts and it is powered by electromagnetic actuation-based force trans-

ducers to ensure accurate measurements. Benefits of the Nano-Indenter G200 design are 

including but not limited to convenient access to the entire sample tray, easy viewing of 

the sample position and the sample work area, excellent sample positioning accuracy, 

and simplicity in sample height adjustment to speed test throughput.  

 

Fig. 3.4: U9820A Keysight Nano-Indenter G200. 

Table 3.3 - Keysight Nano Indenter G200 specifications 

Standard XP Indentation Head  

Displacement resolution  < 0.01 nm 

Total indenter travel  1.5 mm 

Maximum indentation depth  > 500 μm 

Load application  Coil/magnet assembly 

Displacement measurement  Capacitance gauge 

Loading capability  

  Maximum load (standard)  

 

500 mN 
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  Maximum load with DCM II option  

  Maximum load with High Load      

option  

  Load resolution  

  Contact force  

  Load frame stiffness 

30 mN 

10 N 

 

50 nN 

< 1.0 μN 

~5 x 106 N/m 

Indentation placement  

  Useable surface area  

  Position control  

  Positioning accuracy  

 

100 mm x 100 mm 

Automated remote with mouse 

1 μm 

Microscope  

  Video screen  

  Objective  

 

25x (x objective mag.) 

10x and 40x 

DCM II Indentation Head Option 

  Displacement resolution  0.0002 nm (0.2 picometers) 

  Range of indenter travel  70 μm 

  Loading column mass  < 150 mg 

  Load application  Coil/magnet assembly 

  Displacement measurement  Capacitance gauge 

  Typical leaf spring stiffness  ~100 N/m 

  Typical damping coefficient  0.02 Ns/m 

  Typical resonant frequency  120 Hz 

  Lateral stiffness  80,000 N/m 

Loading capability  

  Maximum load  

  Load resolution  

 

30 mN (13 gm) 

3 nN (0.3 μgm) 

Express Test Option 

  Time per indentation Standard < 5.0 sec 

LFM Option 
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  Maximum lateral force  > 250 mN 

  Lateral resolution  < 2 μN 

  Maximum scratch distance  > 100mm 

  Scratch speed  100 nm/s up to 2 mm/s 

High Load Option 

  Maximum force 10 N 

  Load resolution  50 nN 

  Maximum indentation depth  ≥ 500 μm 

  Displacement resolution  0.01 nm 

  Frame stiffness  ≥ 5 x 106 N/m 

NanoVision Option 

  X-Y scan range  100 μm x 100 μm  

  Z scan range  Indentation head dependent  

  Positioning accuracy  ≤ 2 nm 

  Resonant frequency  > 120 Hz 
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Fig. 3.5: Sample preparation for this research. 

Before indentation testing, the microstructures of as-printed materials were analyzed 

using Scanning Electron Microscopy (SEM, QUANTA FEG 650) and Optical Microscopy 

(OM, MM500T). 
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Fig. 3.6: Optical Microscope (MM500T) employed in this study for microstructural 

assessments. 
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Fig. 3.7: QUANTA FEG 650 Scanning Electron Microscope used in this thesis.  

3.2. Instrumented Indentation Creep 

3.2.1. Introduction 

Traditional uniaxial creep testing involves homogeneous loading of the complete gauge 

length of the sample, usually lasts between a few hundred and several thousand hours 

which results in homogenized value of σind [144]. However, during a depth-sensing 

(instrumented indentation) creep testing, substantial and complex tri-axial stresses in the 

GPa ranges are generated beneath the indenter. This phenomenon could eventually 

induce significant creep deformation in the materials even at room temperature, unlike 

traditional uniaxial creep which is only observable at elevated temperatures. It is notable 

mentioning that non-homogeneous tri-axial stress states and a constantly growing 

deformation volume under the indenter during an indentation creep test could result in 

a deformation response rather different from that observed during conventional uniaxial 
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creep testing. The dynamics of the deformation in the indentation test are quite different 

in comparison to conventional uniaxial creep. Under the indenter, the deformed volume 

encompasses the previously undeformed material by continuous expansion. Material 

under the indenter being strained is very likely to expand the cavity with a hydrostatic 

core where no deformation was happening along with expanding plastic/ elastic 

boundary region. It is established that time dependent deformation process depends on 

rate of proceeding elastic/ boundary into the material [123]. 

During instrumented indentation, a fine scale indenter is used to load a sample in a 

controlled way, while the displacement is continuously recorded. The outcome of the test 

is indentation load versus indentation depth (see Fig. 3.9). The well-established 

procedure of Oliver and Pharr [99] was used to loading and unloading curves to deduce 

the hardness and modulus of the tested material.  

In this thesis, depth-sensing indentation creep tests with dual stage scheme (loading 

followed by constant load holding) were performed at ambient temperature (298 K) using 

a U9820A Keysight Nano-Indenter G200 (shown in Fig. 3.4). A self-similar pyramidal 

Berkovich diamond indenter [145], [146] with a face angle of 65.3° was in this thesis.  

 

Fig. 3.8: Geometrical model of diamond Berkovich indenter with a consideration of tip 

and edge radii: (a) 3D shape of indenter apex; (b) 2D cross-section intersected along the 

dotted line shown in (a) [147]. 
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Fig. 3.9: Indentation P-h curve [148]. 

Indentation creep tests were performed at three constant peak loads of 250 mN, 350 mN, 

and 450 mN. Loading rate was set at 10 mN/s. Upon reaching to the peak load, the load 

was held constant for 400 s which is considered as creep time. The purpose of the dwell 

phase is to allow the material to ‘creep out’, i.e. to deform sufficiently for creep 
deformation to be insignificant during unloading. Creep rate will fall off with time, 

possibly due to decreasing contribution from primary creep. After 400 s, for the purpose 

of thermal drift corrections, the sample was unloaded to 10% of the peak load. Prior to 

indentation, thermal drift calibration was done to keep it under 0.05 nm/s, and each test 

was repeated five times to confirm reproducibility. The SEM and OM were used to assess 

the indentation morphology in terms of any possible sink-in and/ or pile-up. Figure 3.10 

schematically shows the dual stage constant load rate constant load hold indentation 

creep performed in this project.  
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Fig. 3.10: Indentation P-h curve showing parts of curve used for creep, and thermal drift 

calculations [149]. 

 3.2.2. Calculation Method 

To analyze the time-dependent deformation behavior of a material by a depth-sensing 

indentation testing technique, it is required to mathematically represent the variation of 

indentation displacement as a function of time. With a Berkovich self-similar pyramidal 

indenter, experimental data of the holding stage was used to assess the creep behavior. 

In a depth-sensing self-similar instrumented indentation testing, the indentation strain 

rate can be written as [123, 150]: 

1

2
ind

h P

h P
                                          (6) 

Here, ɛ̇𝑖𝑛𝑑 is indentation strain rate, ℎ̇ is rate of indentation depth, h is the indentation 

displacement at a given time, �̇� is loading rate, and P is indentation load.  According to 

equation (6), under a constant indentation load rate test, indentation strain rate decreases 

with indentation depth. Radius of elastic/ plastic boundary is related with radius of 

indentation and hence, indentation strain rate is defined as instantaneous change in 

contact area divided by instantaneous contact area which is the direct measurement of 
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the progression of the elastic/ plastic boundary into material. Furthermore, for 

geometrically identical indenter, indentation strain rate is generally defined as 

instantaneous displacement rate of the time divided by instantaneous displacement as it 

is related with 𝐴/̇𝐴 [123]. 

Indentation stress can be calculated as [123, 150]: 𝜎𝑖𝑛𝑑 =  𝑃24.56 × C(ℎ + 0.06𝑅)2                                                                                                                (7) 

Here, P is indentation load, h is instantaneous contact depth, and R is the indenter tip 

radius due to blunting at tip which was 200 nm for the Berkovich indenter used in this 

research.  

The creep rate   of a crystalline metal is empirically described as [151]: 

0 exp

np

ind

ind

AD Gb b Q

kT d G kT




         
    

                          (8) 

Here, σind is the indentation stress, A is a coefficient related to temperature and 

microstructure, D0 is the diffusion coefficient, G is the shear modulus, ΔQ is the activation 

energy for thermal-activated process, n is the stress exponent, p is the grain size exponent, 

k is the Boltzmann constant, T is the temperature, d is the grain size, and b is the Burgers 

vector. 

At a constant temperature, the steady-state creep rate relation is further simplified as [151, 

152]: 

n

ind ind
B                                                                                                                                       (9) 

Here, B is a constant. 

At isothermal conditions, n can be ascertained by determining the slope of a ln(ɛ̇) versus 

ln(σ) plot in the steady state creep condition using following equation [151, 152]: 

ln

ln

ind

ind

n







                                                                                                                                    (10)  

The average indentation hardness can be written as [151, 152]: 

( )

ind

ind

c

P
H

A h
                                                                                                                                 (11) 
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Here, hc is instantaneous contact depth.  

The elastic recovery parameters can be deduced from the following equation [151, 152]: 

max

max

c
h h

ERP
h


                                                                                                                             (12) 

Here, hmax is the maximum indentation depth and hc is the contact depth. 

3.3. Heat Treatment of additively manufactured Ti-6Al-4V alloy 

In order to assess the effect of various post-heat treatment on microstructure and 

mechanical properties of the painted alloys, a separate set of the specimens were 

employed for the heat treatment operation. To assess the effect of various heat treatment 

on inner layer, CNPX-big samples were cut into half exactly at the middle from bottom 

surface to top. Four rectangular samples were thus prepared with dimensions of 

9.8×4.9×5.60 mm3. 

Heat treatment of the samples were executed in a KSL- 1100X furnace. We choose CNPX-

Big to study for the heat treatment purpose. To this end, three different cooling regimes 

were applied. At first the samples were heated to 9500C (heating rate 15.80C/min) and the 

samples were kept at the furnace for 1 h. Then one set of samples went through water 

quenching (WQ), one air cooling (AC), and one furnace cooling (FC). Air cooling was 

done by cooling the sample at the room temperature. Furnace cooling was done by 

turning off the heating (see Fig. 3.11). 



69 

 

 

 

Fig. 3.11: Three different types of heat treatment: water quenching (WQ), air cooling 

(AC), and furnace cooling (FC). 

A final sample was employed for aging (precipitation hardening) heat treatment. This 

was done to reveal the effect of aging heat structure on microstructure and mechanical 

property evolution. For this purpose, the sample was kept at the furnace for 1 hour at 

950°C, then the sample undergoes water quenching. After that the furnace was heated to 

540°C and the sample was kept at that temperature for 5 h and then air cooled. The 

schematic of the ageing is shown in the Fig. 3.12.  

1 
2 

3 
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Fig. 3.12: Schematic of precipitation hardening of Ti-6Al-4V sample. 

Following by these, micro-hardness tests were performed on all heat treated samples 

using a Vickers Hardness testing machine (HM 112 Mitutoyo) and depth sensing 

nanoindentation using Hysitron Ubi-1 nanoindenter. Nano indentation was performed 

with peak load of 10 mN. Loading rate was set at 2 mN/s. Upon reaching to the peak load, 

the load was held constant for 5 s. After 5 s, for the purpose of thermal drift corrections, 

the sample was unloaded to 10% of the peak load. Prior to the nano-indentation, thermal 

drift calibration was done to keep it under 0.05 nm/s, and each indentation test was 

repeated 25 times to confirm reproducibility. The SEM and OM were performed to study 

the indentation morphology. For micro-hardness testing, force of 4.9 N (0.5 KgF) was 

applied. The probe was in contact with the sample surface for 12 seconds for each indents 

performed to ascertain micro-hardness. Each plotted micro-hardness value is an average 

of 3 readings. For each sample, 25 positions were examined to confirm the 

reproducibility. 
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Fig. 3.13: KSL-1100X furnace used to perform heat treatment in this study. 
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Fig. 3.14: HM 112 Mitutoyo used to test micro-hardness in this project.  
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Chapter IV 

4. Results and Discussions 

The purpose of this chapter is to present and discuss the experimental results of this 

research. The results of the experiments include, ambient temperature creep parameters 

analysis (i.e. microstructural characterization, indentation creep response, creep stress 

exponent, indentation size effect etc.) across different scan size and scan direction, and 

effect of various heat treatment of additively manufactured Ti-6Al-4V alloy. The chapter 

is broken up into two sections investigation in the following ways:  

1. Ambient temperature creep of AM Ti-6Al-4V alloy 

2. Effect of various heat treatment of Ti-6Al-4V alloy 

4.1. Ambient temperature creep of AM Ti-6Al-4V alloy 

4.1.1. Microstructure 

Because of the low to intermediate cooling rates experienced by Ti-6Al-4V alloy 

manufactured by L-PBF processes, an α-β lamellar structure associated with α-phase 

lamellae in a β-phase matrix is created. The α-lamellae are created by diffusion controlled 

nucleation and growth of α platelets into β-grains [153]. Size of α platelets is controlled 
by the cooling rate; an increased cooling rate lead to a decreased diffusion rate, which 

subsequently leads to decreased length and thickness of the α-lamellae associated with 

higher yield strength [154]. Fig. 4.1 shows the SEM micrograph consisting of the 

microstructures of CNPX-big and CNPY-small samples where the size of α colony is 
determined by the cooling rate from β phase and β grain size, while Fig. 4.2 (a) 
demonstrates the optical microscopy images of the microstructure of a CNPY-small 

sample which is showing scan tracks of additive manufacturing. Fig. 4.2 (b) depicts 

optical microscopy of indents along both the horizontal and vertical direction. 
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a    

b   

Fig. 4.1: SEM microstructure demonstrating (a) CNPX-big, (b) CNPY-small. 
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a    

b   

Fig. 4.2: Optical microscopy of microstructure consisting of (a) CNPY-small (b) indents 

of CNPY-big. 
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Fig. 4.3 shows a SEM micrograph of an indent made on the surface of specimen. Some 

sink-in effects are observed on the indented area of the specimen. In the sink-in 

phenomenon, it is observed that the flat sides of the impression is  deformed inward 

around the indentation, which is a characteristic of elastic conical indentations [155]. 

According to Bolshakov and Pharr [156], while assessing pile-up or sink-in characteristics 

around the indenter, maximum indentation depth (hm) and the final plastic depth upon 

unloading (hf) are two expedient indicators. Sink-in behavior is a dominant factor when 

the ratio 
f

m

h

h
 is less than a critical value (0.7), and material exhibits strain-hardening 

deformation behavior (i.e. ambient-temperature plastic deformation). Mohan et al. stated 

in the literature that the value of the A/Anom determines the effect of pile-up or sink-in due 

to indentation near the tip. It was stated in the literature that if the ratio is lesser than 

unity, it indicates that sink-in has occurred with an actual contact area smaller than the 

nominal contact area and vice versa. [157]. Moreover, Elmustafa reported that strain rate 

sensitivity and work hardening influence the measure of pile-ups and sink-ins [158]. It 

was stated that rate-insensitive materials experience sink-in with the increase in the work 

hardening exponent and tend to pile-up in the absence of work hardening. 

 

Fig. 4.3: Indentation morphology of Ti-6Al-4V for sample CNPY-small. 
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4.1.2. Indentation creep behavior 

The load/ displacement (P-h) curves with a loading rate of 10 mN/s and holding time of 

400 s for four samples at different maximum indenter loads of 250 mN, 350 mN, and 450 

mN are demonstrated in Fig. 4.4. Load plateaus are observed at constant load holding 

stage and its width increases with increasing peak load. Stress distribution in the 

instrumented indentation technique is much more complex than conventional uniaxial 

tensile/ compressive creep tests, and at low displacement the maximum shear stress 

beneath the indenter exceeds the yield stress of the specimen (large tri-axial stresses in 

the range of some giga-Pascal) [159]. This phenomenon results in the occurrence of creep 

in the materials, including high melting-point materials, at ambient (room) temperatures, 

contrasting traditional creep tests which show creep mainly at elevated temperatures 

[160]. Specifically, in the Ti-6Al-4V alloy, ambient-temperature creep induced by prism 

and basal slip is reported [26]. 

a  
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c  
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Fig. 4.4: Indentation load versus depth at different maximum indenter load at samples 

(a) CNPX_big (b) CNPX_small (c) CNPY_big (d) CNPY_small. 

Alongside, stress states and volume of deformed material are essentially different in the 

uniaxial and nano-indentation creep techniques; a tri-axial non-homogeneous stress state 

and a continually growing deformation volume underneath the indenter are two 

important features of the nano-indentation testing approach.  

From the variation of creep rate, the creep curve originating from the depth-sensing 

indentation can be divided into two separate zones: transient creep and steady-state creep 

[115]. Unlike traditional creep curves obtained from tensile/ compression testing, depth-

sensing (instrumented) indentation testing does not have a third stage, or accelerated 

creep, since materials do not drastically fail under the indenter during indentation-based 

creep testing [116]. Due to high stress, the nucleated dislocations densified at nano-

indentation are highly unstable during loading stage and tend to relax during the 

constant load-holding stage. 

Fig. 4.5 depicts the variation of creep displacement and creep rate over time for a CNPX-

big sample. At first a sharp decrease in creep rate is observed, which then reaches an 



80 

 

almost constant stage gradually. For instantaneous indentation depth, a sharp initial rise 

is observed, which transitions to a gradual increase over the holding time.  

 

Fig. 4.5: Relationship between creep displacement with holding time and creep rate 

under peak load of 250 mN for CNPX-big with a holding time of 400 s. 

The relationship between creep displacement and constant load holding time for Ti-6Al-

4V alloy under different peak loads at different samples is plotted in Fig. 4.6. At the 

primary or transient creep stage all the curves experience an initial sharp rise and then as 

the indenter penetration continues within the specimen, the creep increases almost 

linearly at steady-state stage, which is similar to the uniaxial tensile/ compression creep. 

For all 4 samples, creep induced displacement is larger at higher peak loads (450 mN), 

which indicates that creep displacement depends on the indentation peak load (the larger 

the maximum indenter load, the higher the creep displacement will be). In the CNPX-big 

sample, the maximum displacements at the end of the dwell time were ~ 1890 nm, ~ 2200 

nm, ~ 2500 nm for the maximum indenter loads of 250 mN, 350 mN, and 450 mN, 

respectively. In addition, samples with perpendicular scan direction seem to have lower 

creep displacement compared to their counterparts. From Fig. 4.6 it is found that, for the 

450 mN peak load, creep displacement reaches ~ 2500 nm for both CNPX-big and CNPX-

small samples and 2200 nm and 2400 nm for the CNPY-small and CNPY-big samples, 
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respectively, at the end of the holding stage. No definite pattern was found for creep 

displacement regarding different scan size at peak loads.  

a  

b  
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d  

Fig. 4.6: Creep displacement vs Constant load holding time at different peak loads for 

(a) CNPX-big, (b) CNPX-small, (c) CNPY-small, and (d) CNPY-big. 
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Indentation creep rates obtained using equation (6) were plotted against holding time, as 

shown in Fig. 4.7. With the increase in the dwell (holding) time, there is a sharp decrease 

(transient creep) then plateau trend (steady state creep) in the creep rate. For all four 

samples, at the loading stage, an initial sharp decrease in creep rate of up to ~ 0.00025 s-1 

is observed, followed by a nearly steady creep rate at holding time. There are various 

instances of ambient temperature creep investigations of Ti/ Ti alloys through modelling 

and/ or traditional creep testing technique and it is difficult to compare the data obtained 

through traditional creep tests and nano/ micro-indentation creep tests. Harrison et. al. 

developed a numerical model for predicting ambient temperature time dependent strain 

accumulation for Ti-6Al-4V alloy and at 20°C temperature and at 892 MPa applied stress, 

~ 0.17 ks-1 creep rate was found [29]. Kameyama et. al. investigated ambient temperature 

creep of commercially pure (CP) Ti manufactured by cold-rolling followed by annealing 

[7]. More the CP Ti was rolled, creep rate reduced more (38% to 12%) which consequently 

become almost constant after being rolled-and –annealed (26% creep rate). Neeraj et al. 

studied ambient temperature creep for various Ti alloys of different microstructures and 

compositions and creep strain was found in the ranges of ~ 0.0006 to ~ 0.03 [32]. Evans 

[30] studied cold creep of Ti-6Al-4V at different peak loads in the range of 900 MPa to 950 

MPa and found strain in the range of ~ 0.04 to ~ 0.14.    

a  
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Fig. 4.7: Creep rate vs holding time at different maximum indenter load for samples (a) 

CNPX-big, (b) CNPX-small, (c) CNPY-big, (d) CNPY-small. 

In case of crystalline materials under conventional uniaxial tension/ compression, work 

hardening and increased dislocation density are the reasons behind gradually decreasing 

creep rates. Secondary, or steady state, creep zones undergoes a dynamic recovery of 

work hardening by a “softening” effect [161, 162]. From Fig. 4.7, it is found that as the 

indentation peak load increases, more time is required to start this dynamic recovery, or 

softening process. As the maximum indenter load increases, the time required to reach 

the peak load at a constant loading rate of 10 mN/s increases. That is, ample time would 

be available for the plastic deformation to occur (consume) in the loading stage (the 

plastic region underneath the indenter gradually increases as indentation depth 

increases). As a result, less creep is observed in the holding stage, which postpones the 

dynamic recovery process. Considering creep rate vs indentation depth (h) curve as 

shown in Fig. 4.8, it is observed that during the loading stage of all four sample types, 

creep rate decreases sharply with increasing indentation depth; the shallower the 

indentation depth, the higher the creep rate. This is followed by an almost constant creep 

rate in holding stage for all the four samples. From the Fig. 4.8 it is observed that vertically 
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scanned samples i.e. samples having vertical (Y-axis) laser track movement experienced 

slightly more creep rate than their horizontally scanned counter parts. The reason of this 

variation of creep rate between horizontally and vertically scanned samples might be 

attributed to the thermal response during manufacturing of the samples [163, 164]. 

Alongside, samples with scanning track parallel to flow of argon gas experienced more 

heat due to temperature convection which results in lower thermal gradient. Whereas, 

samples with perpendicular/ vertical scanning track experienced less heat which results 

in lower temperature gradient.   

a  



87 

 

b  

c  



88 

 

d  

Fig. 4.8: Creep rate vs indentation depth for samples (a) CNPX-big (b) CNPX-small (c) 

CNPY-big (d) CNPY-small. 

4.1.3. Creep stress exponent 

The creep stress exponent (n) is used to predict the creep behavior in order to demonstrate 

creep stability and the dominant creep mechanism during instrumented indentation tests 

[165]. The creep stress exponents were derived from the slope of ln ind
  versus ln ind

  

curves using equations (6), (7) and (10) in the secondary or steady-state creep zone. The 

creep stress exponent (n) depends on the indention peak load. Since the creep stress 

exponent (n) is greater than 3 for all samples, the indentation creep mechanism is 

attributed to dislocation creep [166]. 

Therefore, dislocation movement dominates the secondary stage i.e. steady-state creep in 

the printed Ti-6Al-4V materials at ambient (room) temperature. This is in agreement with 

the findings of Ma et al. [23] and Liu et al. [115], who mentioned dislocation climb as the 

controlling steady-state creep mechanism for Ti-10V-2Fe-3Al alloy and coarse-grained Ti, 

respectively. However, though the principal mechanism causing indentation creep is 

dislocation slip, it has been reported that various other dislocation behaviors, such as 
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dislocation climb and dislocation nodes, dominate the secondary stage of creep under 

different peak loads, leading to scattered n values [159].  

From Fig. 4.9 depicting creep stress exponent (n) across different samples for different 

peak loads, it is observed that, in both small and large horizontally scanned samples, the 

creep stress exponent (n) increases as the indentation peak load increases. There is a small 

increase in creep stress exponent (n) from the maximum indenter load of 250 mN to 350 

mN. When the maximum indenter load is 450 mN, a sudden increase in creep stress 

exponent is observed in both CNPY-small and CNPY-big samples. From the values of 

creep stress exponents observed from Fig. 4.9, it is observed that CNPX (horizontally 

scanned samples) are more ductile than CNPY (vertically scanned samples). 

 

Fig. 4.9: Creep stress exponent (n) across different samples for different peak loads. 

The smallest n-value of the studied Ti-6Al-4V alloy was recorded as 4.13 for the CNPY-

big sample at 250 mN indentation peak load and highest n-value was recorded as 22.94 

for the CNPY-small sample at 450 mN indentation peak load. For the 250 mN and 350 

mN maximum indenter loads, n values were discovered to be around ~ 4.5 to ~ 6.5. The 

measured n-values in the current thesis are in fairly good agreement with results reported 

by Kral et al. [8], who examined the effect of plastic deformation in coarse-grained (CG) 
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and ultrafine-grained (UFG) Ti-6Al-4V fabricated by multiaxial forging at 648 K - 698 K 

at stresses ranging from 300 MPa to 600 MPa. In their observation, creep stress exponent 

(n) for CG alloy was reported as 17, and that of UFG found was measured to be 

approximately 4. Kral et al. [8], using a nano-indentation technique in the UFG and 

annealed Ti-6Al-4V alloys, reported creep stress exponents of approximately 4 to 5.  

4.1.4. Indentation size effect (ISE) 

In a depth-sensing (instrumented) indentation test, the representative strain increases 

with increasing indentation size. Indentation size effect (ISE) is defined as an occurrence 

where indentation hardness or indentation stress varies as a function of indentation 

depth or impression size [167]–[169]. The ISE is generally attributed to geometrically 

necessary dislocations (GNDs) by “mechanism-based gradient plasticity theory” in the 
plastic zone under indents due to strain [5], [170–172]. Polishing the deformation layer at 

sub-surface levels may also bestow indentation size effect. The GNDs are nucleated in 

the material to accommodate the lattice rotation due to indenter penetration. This 

produces extra dislocation in comparison to uniformly strained material in a very small 

area just below the indenter. Hence, GNDs may be aligned along non-easy slip crystals, 

resulting in fundamentally different burger vectors and mobility acting as barriers to 

ordinary dislocations. Large amounts of GNDs collectively produces strain gradient or 

work hardening underneath the indenter. Higher indentation loading rate and density of 

GNDs generates large strain gradients and work hardening effect. Voyiadjis et al. [173] 

examined indentation experiments on various single and polycrystalline materials and 

came to the conclusion that indentation depth, temperature, and deformation rate all 

plays vital roles in the strain gradient. Voyiadjis et al. [174] also described the effect of 

grain boundaries (GB) on the dislocation movement pattern during nanoindentation. 

Unlike the single crystalline metals, the GNDs movements are blocked by grain 

boundaries in polycrystalline materials, which generate a dislocation pile-up against the 

GB. As a result, a local hardening is generated in the nanoindentation response due to 

the GB resistance. The GNDs can move to the next grain when the stress concentration 

induced by dislocation pile-up reaches a critical value with the nanoindentation response 

following the conventional size effect pattern. Babu et al. investigated nanomechanical 

behavior for conventionally built Ti-6Al-4V alloy and found strong indentation size 

effects with gradual decreases of nano-hardness and Young’s modulus with the increase 
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of indentation depth [175]. From Fig. 4.10 showing the indentation stress vs indentation 

displacement curve, strong indentation size effects are observed for the additively 

manufactured Ti-6Al-4V alloy. In all four sample types with different scan sizes and scan 

directions, the higher the maximum indenter load, the larger the indentation 

displacement observed. 

a  
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Fig. 4.10: Indentation size effect (ISE) under different maximum indenter loads for 

sample (a) CNPX-big, (b) CNPX-small, (c) CNPY-big, (d) CNPY-small. 

4.2. Effect of various heat treatment cycles of Ti-6Al-4V alloy 

4.2.1. Microstructure  

Cooling rate, time, and temperature are the main parameters of heat treatment which 

affect the final microstructure of the Ti-6Al-4V alloy.  In this study the samples were 

solutionized at 950°C for 1 hour with the purpose of studying the effect of different 

cooling rate from below β- transus temperature on the resultant microstructure and 

micro-mechanical properties were studied. Various cooling rates produce different 

microstructure as shown in the continuous cooling transformation curve (CCT diagram) 

(see Fig. 4.11). 
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Fig. 4.11: CCT diagram for Ti-6Al-4V alloy showing cooling curves of three different 

cooling methods (water quenching, air cooling, and furnace cooling) [176]. 

Figs. 4.13 and 4.14 show the optical and scanning electron microscopy images of the Ti-

6Al-4V alloy in the as-printed and heat treated conditions. In the as-printed samples, the 

size of α colony is determined by the cooling rate experienced during printing from β 
phase and β grain size. Additive manufactured α-β Ti-6Al-4V alloy is typically 

characterized with prior β grains that generates in an epitaxial way through several 
layers, consisting of grain boundary α, martensitic ά, and α lath size [95, 177, 178]. The 

microstructures of the Ti-6Al-4V alloy can be typically described as primary α, secondary 
α, colony α, plate-like α, and hcp martensite (  ), acicular α, grain boundary α, basket-
weave structure [179], and Widmanstätten structure [180]. The terms basket-weave 

structure, Widmanstätten structure, and acicular are often used to be interchanged [44]. 

In the Ti-6Al-4V alloy manufactured by the L-PBF processes, an α-β lamellar structure 
associated with α-phase lamellae in a β-phase matrix is created due to the low to 

intermediate cooling rates. The α-lamellae are created by diffusion controlled nucleation 

and growth of α platelets into β-grains [153]. In additively manufactured Ti-6Al-4V alloy, 
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size of these α platelets is controlled by the cooling rate; an increased cooling rate results 
in a decreased diffusion rate, which subsequently leads to decreased length and thickness 

of the α-lamellae associated with higher yield strength [154]. The prior β grain size is 
typically determined by the time the material is exposed to above β transus temperature, 
which is generally around 995 °C for the Ti-6Al-4V alloy [181].  

Considering the cross-sectional microstructural morphology in Figs. 4.12 and 4.13, it is 

observed that the growth of the prior β grains is parallel to the scanning direction. It is 
further noticed that the columnar shape of the prior β grains is prolonged along the 
building direction i.e. along bottom surface to top surface. The columnar shape is formed 

by the epitaxial growth of the original β phase due to successive layer deposition and the 
temperature gradient along the building direction of the L-PBF process. Moreover, “No 
post” (i.e. partly re-melting the formed columnar grains by laser beams) treatment was 

performed while printing the samples resulting in the epitaxial growth of the grains [38].  

It is quite possible to get an estimation of the mechanical properties of the different 

materials through microstructural characterization. The α colony size, a microstructural 
feature, is known to be most important mechanical properties since it correlates with the 

slip lengths of the material [182]. Smaller α colonies contributes to higher strength, and 
their size correlates with α lath and grain boundary α thickness. Prior β grain boundary 
determines the size of the α-colony. Faster cooling rate decreases the size of the α-colonies 

along with the size martensitic ά, α laths, and grain boundary α. From Figs. 4.12 and 4.13, 

it is observed that the size of α colony is very fine in the PH sample rendering highest 
strength of all the heat treated samples, followed by AC, FC, as-printed, and WQ samples.  

Thijs et al observed formation of intermetallic phase Ti3Al precipitation at high heat input 

when the temperature reaches at 5000C-6000C [137]. Due to rapid solidification and the 

effect of heat by the scanning of following layers during printing operation, segregation 

of Al leading to the precipitation of an intermetallic Ti3Al phase occurs at grain 

boundaries. Solubility of Al is very low in Ti and it causes solid solution strengthening 

along precipitation strengthening [183]. Due to short interaction times coupled with 

highly localized heat input, large thermal gradients exist during the process leading to 

build-up of thermal stresses. Alongside, rapid solidification leads to segregation 

phenomena along with the development of non-equilibrium process [10].    
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From Figs. 4.12 and 4.13, it appears that, after performing heat treating at 950°C, primary 

α became significantly coarser, slender, and shorter which is similar to the observation of 

Vrancken et al. [10]. The WQ sample is the softest one as this sample is solutionized and 

then water quenched. The expected state of material is known as supersaturated solid 

solution (SSSS). Upon holding for 1 h at 950 °C, various precipitates and strengthening 

phases are dissolved in the matrix and any segregation present in the alloy is reduced. 

Upon quenching, the SSSS which is in an un-equilibrium state is formed. Here, the atoms 

do not have time to diffuse to potential nucleation sites and therefore the precipitation do 

not form. Heating the α-β Ti-6Al-4V alloy to the solution treatment (solutionizing) 

temperature produces a higher ratio of β phase. This partitioning of phases is maintained 

by quenching which results in a soft microstructure. Besides, due to too fast cooling rate 

in the WQ sample, there will not be sufficient time available for the microstructural 

transformations which results in the formation of large density of entrapped gases, 

defects, voids, and porosities which adversely affect the strength of the material. Due to 

rapid cooling rate, upon water quenching, it is assumed that martensitic    is developed 

in prior β grains.  

Subtransus heat treatment followed by air cooling and furnace cooling show almost 

similar microstructure evolution. In AC samples, soluntionizing at temperature 9500C 

strongly promoted grain growth, as clearly shown in Figs. 4.13(c) and 4.14(c). Due to a 

relatively higher cooling rate in comparison to the furnace cooling, the β phase is 
transformed in to a finer lamellar structure in the air cooled sample. When the heating 

temperature was increased to 9500C, a transformed β structure which is also known as 

bi-lamella structure started to appear in the air-cooled samples formed by secondary α 
laths precipitated in the β matrix [182]. The heat treatment did not eliminate the 

microstructural anisotropy and was accompanied with    decomposition, lamella 

growth and diffusion. The stable interwoven microstructure of the initial martensite 

severely hindered the grain growth. 

In subtransus heat treatment followed by furnace cooling, due to low to intermediate 

cooling rate, α-lamellae are created by diffusion controlled nucleation and growth of α 
platelets into β-grains [184]. During subsequent heat treatment, the ά phase in the L-PBF 

fabricated Ti-6Al-4V alloy is expected to slow down the growth of new grains formed, 

leading to a fine α+β lamellar structure. After solutionizing, the ά phase was partially 
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decomposed but the prior ά phase is still clearly visible. As stated in different literature 
[185], the decrement of dislocation density in the α phase and the decomposition of the ά 

phase are the two prime microstructural changes observed during the stress-relief heat 

treatment. Typically, α colony is created from the β single-phase field during slow cooling 

after an annealing treatment and the prior β grain size restricts the initial α colony size. 
In the case of the L-PBF fabricated Ti-6Al-4V alloy, during subsequent subtransus 

treatment the initial acicular martensite ά gradually decomposes into α+β in the shape of 
colony containing parallel α lamellae. Vrancken et al. [10] had almost similar observation. 

Vrancken et al. [10] observed that after heat treating for 2 h at 780°C, followed by furnace 

cooling (FC), the fine martensitic structure has been transformed to a mixture of α and β, 

in which the α phase is present as fine needles. After conducting heat treatment below 

the β transus and at sufficiently low cooling rates, due to the formation of a layer of grain 

boundary α and the more aggressive etching of the α + β mixture as opposed to the 

original α′, the prior β grains became even more visible. However, the microstructure no 

longer contained long columnar prior β grains after treatment above the β transus, 

indicating extensive grain growth of the SLM material, up to the point of semi-equiaxed β 
grains. Studies by Sercombe et al. [37] Vilaro et al. [38] have reported similar results 

regarding this microstructural transformation. 

In the precipitation hardened (PH) sample, as shown in Figs. 4.12 (e) and 4.13 (e), both α 
and β phases compete with each other to coarsen simultaneously but effectively hindered 
each other’s growth, leading to a compact microstructure. Moreover, some nano-sized 

particles are found to be dispersedly distributed on the α-laths and α phase grain 

boundaries of the air cooled sample (see Fig. 4.14). There are limited reports of these 

nano-size particles generated in SLM Ti-6Al-4V alloy in the literature till date.  These 

nano-sized particles are identified as the nano-sized β particles [186]. The nano-sized β 
particles also were observed in the spark plasma sintering fabricated Ti-6Al-4V alloy after 

aging at 450 °C [187]. Zhang et al. [188] through XRD patterns concluded that the nano-

sized particles are nanaosized β particles in α phase matrix. In the current research, it was 
observed that the cooling rate influences this decomposition of nano-sized particles, 

indicating these particles to be metastable and temperature sensitive. As showed in Fig. 

4.14, during the furnace cooling, some of these nano-sized particles dissolved into the α-

matrix, which is similar to the observation of Zhang et al. [188]. 

https://www.sciencedirect.com/science/article/pii/S0921509318311596#f0035
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Fig. 4.12: Optical microscopy of (a) as-printed, (b) water quenched (WQ), (c) air cooled 

(AC), (d) furnace cooled (FC), and (e) aged (PH) microstructures. 
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Fig. 4.13: SEM images of (a) as-printed, (b) water quenched (WQ), (c) air cooled (AC), 

(d) furnace cooled (FC), and (e) aged (PH) samples 
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Fig. 4.14: (a) Nano-sized particles in air cooled sample in AC sample, (b) nano-sized 

particles being dissolved in FC samples 
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4.2.2. Microhardness  

The Vickers microhardness evolution of the Ti-6Al-4V alloy produced by the L-PBF 

followed by various heat treatments is presented in Fig. 4.15.  The as-received L-PBF Ti-

6Al-4V sample consists of martensitic ά microstructure with an average hardness number 
of 358.63 HV0.5. The microhardness values were increased for the AC and FC samples. 

With air cooling, average microhardness of 476.46 HV0.5 and with furnace cooling, 

average microhardness of 389.91 HV0.5 were measured. The micro-hardness of the water 

quenched sample (SSSS) was found to be the lowest with the average microhardness of 

316.63 HV0.5.  

The average microhardness of the aged specimen (PH) was recorded as 527.67 HV0.5 

which is the highest measured hardness in the current experiments. In the aging heat 

treatment, both α and β phases tended to coarsen simultaneously but hindered each 

other’s growth. This phenomenon led to compact microstructure resulted in increase in 
microhardness. Yan et al. [13], after heat treating SLM Ti-6Al-4V alloy at 8000C, 9000C, 

and 10800C, found Vickers microhardness of 367 HV0.2, 344 HV0.2, and 421 HV0.2 

respectively, which are in good agreement with the results obtained in this study. 

Furthermore, this variation in hardness is confirmed by the nanoindentation 

investigation of the as-printed and heat treated samples.   
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Fig. 4.15: Vickers microhardness of L-PBF Ti-6Al-4V alloy following as received sample 

and various heat treatments 

4.2.3. Indentation responses 

The load/ displacement (P-h) curves with a loading rate of 2 mN/s and holding time of 5 

s for as-printed and heat treated samples at peak load of 10 mN are shown in Fig. 4.16. 

Load plateaus are observed at constant load holding stage and its instantaneous 

displacement variation with different types of heat treatment. Indenter displacements 

within the specimen, h, for the aged, air cooled, furnace cooled, as received, and water 

quenched samples are 120.87 nm, 148.02 nm, 189.18 nm, 222.89 nm, and 255.51 nm, 

respectively. The aged samples showed least indentation depth, consisting highest 

hardness of all the heat treated samples. The aged heat treated consisted of most compact 

α growth along the epitaxial way, resulting in less penetration of the indenter during 
penetration. The indentation depth is followed by air cooled, furnace cooled, and water 

quenched samples. The compact connected semi-equiaxed formation of α and martensitic 
ά in aged, air cooled, and furnace cooled sample is the reason behind their less 

250

300

350

400

450

500

550

600

650

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

V
H

N
, 

5
0

0
 g

X (mm)

PH

AC

FC

As printed

WQ



107 

 

indentation penetration depth in compared with the as received sample. The less compact 

formation of α and ά in the water quenched sample due to incompatibility to complete 

full transformation during cooling along with presence of defects and entrapped gases 

led to large indentation penetration depths. 

 

Fig. 4.16: P-h curves demonstrating indentation response of as received sample and 

various heat treated samples. 

Plasticity index is defined as ratio of indentation hardness to reduced modulus of 

elasticity [189]. Reduced modulus of elasticity represents the elastic deformation that 

occurs in both sample and indenter tip. Fig. 4.17 shows the plasticity index of different 

heat treated samples. H and Er is calculated using Eqs. (11) & (1) respectively. 

Considering the H/Er measured through the nanoindentation, the WQ sample possesses 

the lowest value. The hardness and elastic modulus is directly related to the damage 

variable (i.e. defects volume fraction) which is assumed to be higher in the WQ specimen 

as compared with the other samples. This fact is further supported by the elastic recovery 

parameters (ERP) of the heat treated samples as shown in the Fig. 4.18. Fig. 4.18 shows 

the ERP of different heat treated samples using Eq. (12). ERP is a dimensionless index 
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which is closely related to the ratio between hardness and Young’s modulus. ERP is 
lowest in the WQ sample confirming this as the softest microstructure. 

 

Fig. 4.17: Variation of plasticity index across different heat treated samples. 

 

Fig. 4.18: Elastic recovery parameters (ERP) of the heat treated samples. 
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4.2.4. Indentation Size Effect (ISE) 

Fig. 4.19 demonstrates the indentation stress vs indentation displacement curve. 

Indentation stress was calculated by using Eq. (7). Strong indentation size effects are 

observed for the additively manufactured Ti-6Al-4V alloy in as-printed and heat treated 

conditions. From Fig. 4.19, it is observed that all the heat treated samples experience a 

sharp decline of the indentation stress in shallower depth, which almost become constant 

at deeper depth, demonstrating a strong size effect for the heat treated samples. All the 

four heat treated samples exhibited more size effects in compared to the as-printed 

sample. As shown in the micrographs of the heat treated samples, the aged heat treated 

sample contains most compact growth of α, resulting in experiencing highest indentation 
stress of all the samples, followed by air cooled, furnace cooled, as received, and water 

quenched sample. 

 

Fig. 4.19: Indentation size effect of as received and heat treated samples. 
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depth greater 100 nm showed depth dependency i.e. all the heat treated samples 

experienced indentation size effects.  

 

 

Fig. 4.20: Indentation size effect measured for different heat treated samples. 
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Chapter V 

5. Conclusions and Future Work 

The goal of this research was to assess ambient temperature depth-sensing indentation 

creep behavior of an additive manufactured Ti-6Al-4V alloy at different scan sizes and 

scan directions and to examine the effect of various cooling rates on the microstructure 

and micromechanical properties of a Ti-6Al-4V alloy, processed via laser powder bed 

fusion (L-PBF) technique. The depth-sensing (instrumented) indentation testing 

technique (i.e. micro/ nano-indentation), a reliable, convenient, and non-destructive 

testing technique, was applied to examine the microstructure/ mechanical property 

correlation. To evaluate microstructure/ processing parameter/ property correlations in 

the additive manufacture Ti-6Al-4V alloy, microstructural quantitative analyses (i.e. 

optical microscopy and scanning electron microscopy) were performed as well. 

5.1. Ambient temperature creep of AM Ti-6Al-4V alloy 

 Some sink-in effects are observed on the indented area where the flat sides of the 

impression deformed inward around the indentation. 

 Creep parameters (creep rate and creep stress exponent) are dependent upon 

indentation load and dwelling time during constant-load holding stage.  

 Tri-axial non-homogeneous stress state and a continually growing deformation 

volume underneath the indenter causes creep of Ti-6Al-4V materials at ambient 

temperature. 

 Dislocation movement (i.e. power-law creep) dominates the secondary stage of 

indentation creep in the printed Ti-6Al-4V materials at ambient (room) 

temperature. 

 Indentation creep curves experienced an initial sharp rise at the primary or 

transient creep stage and then the creep increases almost linearly at steady-state 

stage just like conventional uniaxial creep. 

 A clear indentation size effect (ISE) response primarily attributed to the 

Geometrically Necessary Dislocations (GNDs) was found in the indentation stress 

versus indentation depth graphs.  

 Vertically scanned samples experienced slightly more creep rate in comparison to 

their horizontally scanned counter parts. 
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 Indentation depth was slightly higher in horizontally scanned samples in 

compared to their counter parts indicating they have experienced slightly more 

creep. 

5.2. Effect of various cooling methods after heat treatment of AM Ti-6Al-4V alloy 

 After cooling the samples followed by solutionizing treatment at 950°C, primary 

α became significantly coarser, slender, and shorter, connected with each other to 
form compact structure. 

 The WQ sample is the softest one as this sample is solutionized and then water 
quenched and upon quenching, the Super Saturated Solid Solution (SSSS) which 

is in an un-equilibrium state is formed. 

 The intermetallic Ti3Al precipitates disappeared from the microstructure of 

samples during solutionizing but reappear after air cooling and furnace cooling. 

 In the precipitation hardened samples, both the α and β tended to coarsen 
simultaneously however hindered each other’s growth. This results in the 
formation of compact microstructure consisting of highest micro-hardness of all 

the heat treated samples, followed by air cooled and furnace cooled samples. 

 Due to high cooling rate in the WQ sample, lack of sufficient time available for the 

microstructural transformations results in large density of entrapped gases, 

defects, voids, and porosities which adversely affect the strength of the material. 

 A clear Indentation Size Effect (ISE) response primarily attributed to the GNDs 

was observed in the indentation stress versus indentation depth graphs in heat 

treated samples.  

5.3. Future work 

The following future works are recommended to assess the ambient temperature creep 

and effect of various cooling methods for L-PBF fabricated Ti-6Al-4V alloy: 

 Depth-sensing creep of conventionally manufactured Ti-6Al-4V alloy should be 

measured and compared against the obtained values in the present thesis. 

 Instrumented creep of Ti-6Al-4V parts produced by other types of additive 

manufacturing should be assessed to reconfirm and establish depth sensing 

indentation as a regular approach to study creep of materials. 
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 Elevated temperature creep of AM Ti-6Al-4V can be performed to have a 

comprehensive understanding of the time-dependent plastic deformation of the 

material both at ambient and elevated temperature conditions.  

 AM Ti-6Al-4V with different build parameters and orientations can be assessed to 

better understand the effect of print parameter on the response of the material. 

 Microstructures of heat treated samples should be analyzed by X-ray diffraction 

(XRD) or Electron backscatter diffraction (EBSD) to properly investigate the 

formation of precipitations. 

 Heat treatments of L-PBF Ti-6Al-4V with different print parameters and build 

conditions can be investigated. 

 Micro/ nano- indentions can be employed to assess other types of micro-

mechanical properties including residual stress measurements. 

 Mathematical models can be developed to predict creep behavior and heat 

treatment response of the additive manufactured Ti-6Al-4V alloy. 
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Appendix 

5.4. Equations used for calculating instrumented indentation parameters: 
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