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ABSTRACT 

 An evaluation of the radar systems in the Red River Valley of North Dakota (ND) 

and its surrounding areas for its ability to provide Detect and Avoid (DAA) capabilities for 

manned and unmanned aircraft systems (UAS) was performed. Additionally, the data was 

analyzed for its feasibility to be used in autonomous Air Traffic Control (ATC) systems in 

the future. With the almost certain increase in airspace congestion over the coming years, 

the need for a robust and accurate radar system is crucial. This study focused on the Airport 

Surveillance Radar (ASR) at Fargo, ND and the Air Route Surveillance Radar at Finley, 

ND. Each of these radar sites contain primary and secondary radars.  

It was found that both locations exhibit data anomalies, such as: drop outs, altitude 

outliers, prolonged altitude failures, repeated data, and multiple aircraft with the same 

identification number (ID) number. Four weeks of data provided by Harris Corporation 

throughout the year were analyzed using a MATLAB algorithm developed to identify the 

data anomalies. The results showed Fargo intercepts on average 450 aircraft, while Finley 

intercepts 1274 aircraft. Of these aircraft an average of 34% experienced drop outs at Fargo 

and 69% at Finley. With the average drop out at Fargo of 23.58 seconds and 42.45 seconds 

at Finley, and several lasting more than several minutes, it shows these data anomalies can 

occur for an extended period of time. Between 1% to 26% aircraft experienced the other 

data anomalies, depending on the type of data anomaly and location. When aircraft were 

near airports or the edge of the effective radar radius, the largest proportion of data 

anomalies were experienced. It was also discovered that drop outs, altitude outliers, and
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repeated data are radar induced errors, while prolonged altitude failures and multiple 

aircraft with the same ID are transponder induced errors. The risk associated with each data 

anomaly, by looking at the severity of the event and the occurrence was also produced. The 

findings from this report will provide meaningful data and likely influence the development 

of UAS DAA logic and the logic behind autonomous ATC systems.  
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CHAPTER I 

INTRODUCTION 

Overview 

An analysis of radar performance in the Red River Valley of North Dakota (ND) 

and its surrounding area was completed to understand vulnerabilities and assess the current 

radar environment. From the literature review performed, this type of study is the first of 

its kind for information regarding radars open to the public. As unmanned aircraft systems 

(UAS) and autonomous air traffic control (ATC) towers are integrated into the aviation 

industry, the vulnerabilities of radar systems need to be understood to make reliable and 

robust designs. This study looked at radar sites in Fargo, ND and Finley, ND, which cover 

the states of North Dakota, South Dakota, Minnesota, and the provinces of Manitoba, 

Ontario, and Saskatchewan. These radars can be seen in Figure 1 [1, 2]. This study was 

funded by the Federal Aviation Administration’s (FAA) Alliance for System Safety of 

UAS through Research Excellence (ASSURE), Harris Corporation, the University of North 

Dakota (UND) Mechanical Engineering Department, and the Unmanned Aircraft Systems 

Engineering (UASE) Laboratory. What began as supplemental work for the ASSURE A6 

Project that investigated surveillance criticality for UAS, spun off into the research 

presented in this document.  

  ASSURE is an alliance of universities across the United States with partnerships 

from companies that help guide and fund the research being conducted. The mission of this 
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group is to provide the FAA with the research needed to quickly, efficiently, and safely 

integrate UAS into the national airspace (NAS) [3]. This partnership between the 

government, research universities, and industry will allow the UAS industry to grow and 

support the needs of the world’s economy.  

This study began by assessing the radar environment at Fargo and Finley on one 

day: June 15, 2015 for the ASSURE project. This analysis was all done by hand looking at 

the data, which showed many anomalies and unusual behavior exhibited by the radars. 

Some behaviors identified included: drop outs, altitude deviations, and multiple aircraft 

with the same aircraft identification number [4]. These behaviors, along with several others 

will be discussed in detail in Chapter II. This anomalous behavior can pose threats to the 

aircraft and people due to loss of well clear, additional stress on ATC personal, and failure 

of autonomous systems on UAS. After the realization of these data anomalies, follow on 

work was justified, which looked at one week of data in each season of the year. The dates 

of March 1-7, 2015; June 1-7, 2015; September 1-7, 2015; and December 1-7, 2015 were 

studied for both the Fargo and Finley radar locations. In order to process this extremely 

large amount of data, an algorithm was also developed to identify and classify the various 

Figure 1. Radars at Fargo and Finley 

(a.)  Fargo [1] (b.) Finley [2] 
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anomalous behavior initially discovered for the ASSURE study. What took weeks of time 

for the initial study just looking at June 15, took hours to process the months’ worth of data 

with the algorithm.  

Primary and Secondary Radar 

 Radar was originally an acronym that stands for radio detection and ranging. These 

systems have evolved substantially since their early days and are used for a wide variety 

of applications nowadays. A few of the many applications include: tracking aircraft, 

collision avoidance, weather observations, Earth resource monitoring, and mapping. 

Modern radars can track, identify, classify, and image targets while reducing or eliminating 

clutter and jamming [5].  

 While radar is one of the oldest technology to support the FAA’s airspace 

monitoring, several other systems are used to supplement the radar systems, namely: traffic 

collision avoidance system (TCAS), automatic dependent surveillance – broadcast (ADS-

B), and even simply the pilot’s ability to see and avoid other aircraft. The current TCAS 

system was developed in the 1980’s, and is a system that functions independently from the 

ground based ATC system [6]. TCAS provides pilots with traffic alerts and resolution 

advisories to prevent midair collisions with other transponder equipped aircraft. A traffic 

advisory instructs the pilot to visually search for other aircraft in the area. While a 

resolution advisory instructs the pilot to perform a certain maneuver to avoid the intruding 

aircraft which is inside the pre-defined envelope of the ownship aircraft. ADS-B is a real-

time global positioning system (GPS) system which broadcasts the ownship’s information, 

such as position, heading, and altitude [7]. This system allows the aircraft information to 

be received by any receiver within range of the aircraft. Lastly, every pilot is required, per 
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the FAA to see and avoid all aircraft according to §14 CFR 91.113 [8]. All these systems 

help supplement the existing radar network across the United States.  

The FAA uses two primary radar systems to monitor the NAS over the United 

States, namely: primary radar and secondary radar. Both types of radar are used to help 

ATC monitor and control the air traffic in their respective regions. With rich histories 

dating back before World War II, these systems have matured over the following years. 

While primary and secondary radars complement each other, they operate on different 

principles which are described in the subsequent subsections.  

Primary Radar 

 Primary radar is often thought of as traditional radar. This system sends high 

frequency pulses that are reflected off the target and received again; this reply is typically 

referred to as an echo [9]. This system is passive, which means that no equipment on the 

aircraft is needed for detection. The only piece of equipment needed is the ground radar 

station. Having a passive system is very important, because it allows rogue aircraft to be 

detected. An example of this is during the terrorist attacks on September 11, 2001 in the 

United States. The terrorist pilots turned off the aircraft transponders which made the 

aircrafts invisible to ATC [10]. The primary radar systems couldn’t detect the aircraft in 

the city skyline, but in most other environments they would have been. However, despite 

the advantages of being a passive system, primary radar has several disadvantages. A large 

antenna is typically required, the system provides only position information, and is prone 

to clutter (unwanted replies from buildings or antenna sidelobes) [11]. The power loss 

equation is given by  𝑃𝑃𝑆𝑅~ 1𝑅4 ,          (1) 
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where PPSR  is the power of the primary surveillance radar and R is the range [9]. The basic 

schematic of a primary radar system can be seen in Figure 2 [5]. The major elements to 

this system are the transmitter, receiver, antenna, and signal processor.  

 
Figure 2. Primary Radar Schematic 

 

Secondary Radar  

 Secondary radar is slightly different, where the aircraft needs to have a transponder 

onboard that replies to interrogations [9]. The interrogations are high frequency impulses, 

just like primary radar. In fact, the secondary radar transmitter is usually mounted on the 

antenna of a primary radar unit. The primary disadvantage of secondary radar is that it is 

an active system, which requires a transponder. The advantages of this radar system include 

not being effected by ground clutter or weather, and also having a longer range, because 

the pulse sent out only needs to travel one direction (the transponder reply is a different 

pulse) [12]. The power loss equation for secondary radar is given by  𝑃𝑆𝑆𝑅~ 1𝑅2 ,          (2) 

Courtesy: Principles of 
Modern Radar [5]. 
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where PSSR  is the power of the secondary surveillance radar and R is the range [9]. 

In fact, all aircraft are required to have a transponder that is capable of reporting 

the altitude and aircraft identification number according to the FAA’s Aeronautical 

Information Manual section 4-1-20 [13]. These transponders can be broken down into 

many classes. The two that concern this study are Mode A and Mode C. Mode A reports 

the aircraft identification number, while Mode C reports the barometric altitude from the 

aircraft’s barometric altimeter. A summary of a few of the aircraft identification numbers 

can be seen in Table 1 [14]. A full list of all the possible numbers are provided in Appendix 

A: Mode A Transponder Identification Numbers [14]. Each time an aircraft takes off, it is 

assigned one of the possible combinations of 4096 identification codes [15], which the pilot 

sets before takeoff.  

 

Table 1. Summary of Mode A Transponder Identification Codes 

Code Description 

0000 Should never be assigned 
0100 – 0400  Allocated to Service Area Operations for assignment for use by 

Terminal/CERAP, NAS Stakeholder, Unique Purpose and 
Experimental activities. 

1200 Visual Flight Rules (VFR) aircraft that may or may not be in 
radio contact with an ATC Facility. 

5000 – 5057  Reserved for use by DOD 
7601 – 7607  Allocated by the FAA for special use by Federal Law 

Enforcement 
7400 Reserved for UAS experiencing a lost link situation 
7500 Hijack in accordance with FAA JO 7610.4. 

 

 One of the biggest challenges of using two radar systems is syncing the data of both 

the primary and secondary radar systems. A brief schematic of the process can be seen in 

Figure 3 [16]. The ground unit, often called the interrogator sends a coded pulse to the 
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transmitter. Following this the transponder receives the pulse, decodes it, and transmits the 

appropriate response. The interrogator on the ground receives the reply, decodes it, and 

syncs the data with the primary data on the radar display.  

 

 

Figure 3. Secondary Surveillance Radar Schematic 

 

Radar Site & Classifications 

 The Fargo and Finley radars cover a wide area around the Red River Valley and 

upper Midwest. Figure 4 shows the effective radar radius of both radars. The red circle 

represents the range of the Finley radar, while the blue circle represents the Fargo radar 

range. As a result, a wide variety of aircraft can be intercepted by the radars, while the 

exact aircraft can’t be identified, because the Mode A transponder numbers change 

multiple times a day, even for the same aircraft. The general type of aircraft can be 

deciphered from the Mode A ID, along with knowledge of the type of aircraft that fly over 

the airspace. Figure 5 shows a few of the many aircraft that are intercepted by the Fargo 

and Finley radar, namely a Cessna and helicopter from the UND training fleet, a Delta 

commercial regional jet, and an Allegiant commercial jet [17-20].  

Courtesy: Classification 
of RADARS [16]. 
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Figure 4. Effective Radar Radii of the Fargo & Finley Radars 

 

  

 

Figure 5. Aircraft Detected by the Fargo & Finley Radars 

Courtesy: [17-20] 
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The location not only varies between Fargo and Finley, but also the radar type. 

Fargo is classified as an Airport Surveillance Radar (ASR), or an ASR-11; while Finley is 

classified as an Air Route Surveillance Radar (ARSR), or an ARSR-4. The ASR-11 is an 

integrated primary and secondary radar system that is deployed at terminal air traffic 

control sites. The range of this system is 60 nautical miles [21]. This radar system is 

primarily used for approaches and flight plans around towered airports. The ARSR-4 is a 

long range surveillance radar with a range of up to 250 nautical miles [22]. These radar 

systems are used primarily for cross country or long range flight paths, using both primary 

and secondary radar as well. Table 2 provides a summary of the power, frequency, rotation 

rate, and other factors of the ASR-11 and ARSR-4 radars (highlighted in yellow) [23]. With 

a rotation rate of 12.5 RPM, the ASR-11 has a scan rate of 4.8 seconds. The ARSR-4 has 

a rotation rate of 5.0 RPM, which indicates a scan rate of 12 seconds. The scan rate is the  

amount of time for the radar unit to turn one full rotation (360 degrees).  

Table 2. Summary of Radar Specifications 

Courtesy: [23] 
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Purpose of the Study 

 The primary purpose of this study was to assess the radar network in the 

surrounding area to understand vulnerabilities in the system. As UAS are integrated in the 

NAS, these vulnerabilities need to be understood to account for autonomous systems on 

the UAS and to better prepare pilots if radar data is used on the flight operations. With the 

New York Times dubbing North Dakota and specifically the Red River Valley area as the 

“Silicone Valley for drones” [24], it’s only a matter of time before these aircraft fill the 

skies. This claim to fame makes this study in the area especially important. The FAA also 

just published Part 107 in August 2016, which is the first step forward for commercial 

operations of UAS in the United States [25]. In fact, the FAA is predicting that there will 

be 7 million drones that could be active in the airspace by 2020 [26]. The United States 

Government Accountability Office also predicts that UAS will add $82.1 billion to the 

economy over the next 10 years [27]. These numbers just show the importance for this 

study, especially if UAS use radar for Detect and Avoid (DAA) operations.  

In addition to UAS, ATC centers will likely one day be autonomous. In fact, one 

group of researchers has looked at how to how to deal with conflict resolution and flight 

operation services for an autonomous system [28]. Additional publications have worked 

on other aspects of an autonomous ATC system, such as algorithms for short term conflict 

avoidance for UAS in an autonomous ATC [29], a network based ATC paradigm [30], and 

an autonomous ATC system for non-towered airports [31]. Additionally, several articles 

have stressed the importance of autonomous ATC systems and ATC systems for UAS [32, 

33], because the man force required for providing ATC services for manned and unmanned 

vehicles is not sustainable. Right now if an ATC tower loses radar contact with an aircraft 
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even for one radar scan rate, they need to reestablish contact. ATC personal also instruct 

pilots to turn off their Mode A transponders if they are providing erroneous data. These are 

just two examples of the many functions humans provide if the radar system is not 

functioning properly. Knowing what types of failures radar experience and how to address 

them will help build a robust autonomous system without the interaction of humans.  

Previous Work 

Radar systems have evolved substantially since their inception dating back to the 

early 1900’s. Despite this fact, radar, just like any other complex system is prone to 

problems. Many researchers have performed studies identifying these issues. Some work 

has been done on the reliability/performance of current radars, while others look at future 

applications. However, from the literature review performed, no work to date has identified 

radar data anomalies to the scale of the study presented in this paper.  

Several reports have been published covering surveillance resolution, measurement 

errors, and coverage of various radars. Lieutenant Colonel Thomas prepared maps of radar 

coverage throughout the continental U.S. to identify blind spots in the U.S. radar network 

[34]. Healy, McDonald, Pomrink, and Conklin developed an operational test and 

evaluation of the ARSR-4 radar system and found that most basic functions were 

performed well [35]. Weber and Schanne also performed a similar analysis for the ASR-

11 radar system [36]. A comparison and analysis of azimuth errors between the ASR-11 

and ASR-9 radars was completed by Mayer and Tzanos [37]. A system error assessment 

for the ARSR-4 radar was performed by Busch and Bradbury [38]. Some specific studies 

were done on secondary radar identifying the vulnerabilities [39, 40]. One vulnerability 

included the potential of having an aircraft interrogated up to 20 times in one radar scan, 
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leading to congestion in the bandwidth and erroneous data. Additionally, there is no 

difference between a Mode A or Mode C response from a transponder. If a Mode A 

interrogation is issued, a Mode A response is expected, and likewise for Mode C. This 

could lead to problems decoding the response if more than one ground station was 

interrogating an aircraft. Lemmon, Carrol, Sanders, and Turner even performed an 

assessment of the effects of wind turbines on radars [41]. 

While some studies have identified the problems of the radar network in the U.S., 

others have looked at addressing the problems by developing the next generation of radar 

systems. Immoreev and Taylor discuss new capabilities for civilian radar by simply 

increasing the bandwidth [42]. Buckler discusses the benefits of using a phased array radar 

to replace current radars [43]; the FAA even published a document highlighting the 

national requirements for a phased array radar [44]. When arrays are implemented, the 

multiple secondary radar signals will need to be separated, which is why Petrochilos, 

Galati, Mené, and Pracci developed a simple and robust algorithm to do so [45]. 

Additionally, ADS-B and radar data fusion will be essential for ATC in the future, so 

several studies have theorized and analyzed this data fusion [46, 47]. 
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CHAPTER II 

RADAR BEHAVIOR CLASSIFICATION ALGORITHM  

 This chapter will provide an overview and an explanation behind the logic of the 

MATLAB algorithm developed to analyze and classify the radar data into the various 

different anomalies described in in the first section of this chapter. The spreadsheets of data 

that Harris provided were separated by hour. For the analysis done in this paper, each hour 

of data for each day (24 hours total) was compiled into one spreadsheet. This was done for 

each day at each location, which resulted in 56 files, at a size of 4.28GB or 19,164,844 

total lines long. This shear amount of data justifies the need for an algorithm to process it. 

What takes hours for the computer to process, would take months to process by hand. Of 

the 50 columns of data contained in each spreadsheet, the program reads only time, aircraft 

ID, altitude, azimuth, and range. The following sections describe how each function and 

the main script operates. The entire algorithm can be found in Appendix B: MATLAB 

Code.  

Radar Data Anomaly Classification 

 From the initial study performed, a variety of data anomalies were identified which 

included: drop outs, altitude outliers, prolonged altitude failures, repeated data, and 

multiple aircraft with the same identification (ID) number. These behaviors directed how 

the algorithm described later in this chapter was written. The majority of the anomalies 

discovered were associated with altitude from the secondary radar. However, position from
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the primary radar was used to help identify repeated data and multiple aircraft with the 

same (ID) number. In some cases, aircraft experience several modes of unusual behavior. 

For example, the same aircraft may experience a drop out and an altitude outlier within a 

short period of time. The following sections in this chapter provide a description and a 

visual example of each data anomaly.  

Drop Outs 

 A drop out occurs when there is a missed data point that should have been logged, 

which means the time between two data points is larger than the radar scan rate. Drop outs 

ranged in time from anywhere slightly greater than one radar scan rate to several minutes. 

The end limit was put in place to ensure that if aircraft went out of range for a period of 

time and came back into the radar’s detection area it was not considered a drop out. A plot 

depicting a drop out can be seen in Figure 14 in Chapter III. Drop outs prevent ATC from 

getting updated information on the aircraft, which prevents up to date radar aircraft 

separation services. The typical separation of aircraft is 5 miles enroute and 3 miles in a 

terminal environment, or 1000 feet and 500 feet vertically, respectively [48]. To put the 

significance of drop outs in perspective, a drop out of just single scan rate forces ATC to 

reestablish contact with the aircraft. So a drop out just over 4.8 seconds at Fargo or just 

over 12 seconds at Finley puts additional strain on the ATC system. When aircraft are 

traveling several hundred miles an hour they can cover a great deal of distance in just one 

scan rate too. For example, an aircraft flying at 250mph would travel 0.33 miles in one 

radar scan at Fargo and 0.83 miles in one radar scan at Finley. 
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Altitude Discrepancies 

Altitude Outliers 

 The first type of altitude discrepancy, an altitude outlier, happens when there is a 

significant deviation in the expected altitude for a given aircraft. A jump between data 

points is considered an outlier when the expected altitude is more than 800 feet off from 

nominal. Many times an outlier was accompanied by a drop out, where the data showed an 

outlier, and then a drop out occurred, or vice versa. Many of the outliers displayed an 

elevation of 0 feet above ground level (AGL) or over 120,00 feet. These readings were 

false because the aircraft was at an altitude above ground, and no commercial aircraft exists 

that can reach 120,000 feet. While altitude quantization and limitations on the barometric 

altimeter resolution are expected, large jumps observed are not nominal behaviors. The 

FAA requires altitude reported from Mode C to be quantized in 100 foot increments and 

be accurate within 2% of the actual value [49], so a properly functioning system shouldn’t 

have more than a few hundred feet of variation from scan rate to scan rate. This data 

anomaly prevents ATC from providing accurate vertical separation between aircraft. An 

image showing altitude outliers can be seen in Figure 15 in Chapter III.  

Prolonged Altitude Failure 

 The second type of altitude discrepancy is a prolonged altitude failure. This 

behavior occurs when there are a series of three or more zero altitude readings when the 

previous and/or past altitudes were greater than zero feet AGL. This failure is indicative of 

a transponder related issue, which will be expanded upon later in this paper. Again, this 
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type of behavior prevents ATC from providing proper vertical separation between aircraft 

in the NAS. Figure 16 depicts a plot of a prolonged altitude failure in Chapter III.  

Repeated Data 

Repeated data is defined as receiving multiple data points with near identical 

altitude and position within a fraction of a second. The radar site needs to receive and log 

two or more data points with a time period less than one second to qualify as this type of 

behavior. While this anomaly may not necessarily be harmful for aircraft or ATC, it is a 

type of behavior that was identified from this study, nonetheless. This behavior is shown 

in Figure 17 in Chapter III.  

Multiple Aircraft with the Same Identification Number 

 The final data anomaly is multiple aircraft with the same identification number. As 

the name implies, there are several aircraft with equivalent Mode A transponder numbers 

which the pilot sets before takeoff. While some transponder ID’s are non-discrete, meaning 

the same class of aircraft are all assigned the same number, such as VFR traffic, others are 

intended to be discrete. Even the discrete ID numbers have multiple aircraft occasionally. 

This problem stems back to only having 4096 possible combinations of numbers to assign 

to aircraft in the entire United States. Typically, there are more aircraft than that number in 

the sky at once. This data anomaly puts additional stress on ATC to determine the 

difference between two aircraft with the same ID. Figures 18 and 19 show examples of 

discrete and non-discrete multiple aircraft examples in Chapter III.  

Main Script 

 The main script titled Combined calls all the individual functions and outputs the 

required information for analysis. The main script starts with three different for loops to 
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allow all the files to be processed at once. The for loop with the counter ll dictates whether 

the data is from Fargo or Finley. The for loop with the counter ii indicates which month 

the data is from; with 1 representing March, 2 representing June, 3 representing September, 

and lastly 4 representing December. Finally, the last for loop’s counter kk indicates which 

day of the month the data is from, with 1 representing the first of the month, ranging all the 

way to 7 which represents the seventh of the month.  

 The rest of the code in the Combined file is contained within the three for loops. 

Three if statements are next in the code to direct the algorithm to the correct file path where 

the radar data spreadsheets are saved. Once the file path is determined the Data_Read 

function is called to read the data from the spreadsheet. After the data is read in and stored 

in a matrix, all the rows with missing data are eliminated. The missing data is from the 

secondary radar, namely the aircraft ID and altitude. Some aircraft were detected by just 

primary radar, while others were detected by both primary and secondary radar. Aircraft 

ID was the method to differentiate different aircraft for this study, so those rows of data 

with the missing aircraft ID/altitude had to be eliminated. Table 3 summarizes the average, 

maximum, and minimum row size for the original data, the updated data with rows 

eliminated that contained missing data, and the difference between the two. The average 

reduction in rows for Fargo was 73,628, accounting for an average of 33% of the original 

data. While Finley had an average reduction in rows of 117, 324, approximately 25% of 

the original data.  
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Table 3. Data Removal Summary 

 Fargo Finley 

Original 

Data  

Updated 

Data  

Difference Original 

Data  

Updated 

Data  

Difference 

Average 222,651 149,383 73,268 461,805 344,481 117,324 

Maximum 393,112 225,151 186,210 749,859 459,712 357,503 

Minimum 124,052 69,244 50,026 273,290 226,928 46,362 

 

 The next process is converting the azimuth and range to latitude and longitude. The 

azimuth is the angle in degrees between true north and where the target/aircraft is currently 

located. Range is the distance from the radar to the target/aircraft, given in nautical miles. 

An image showing these measurements is provided in Figure 6 [50]. The first step in 

converting azimuth and range to latitude and longitude is calculating the ground range, 

because the slant range is the range given in the data spreadsheets. This is calculated by 

Pythagoras Theorem,  𝑎2 + 𝑏2 = 𝑐2,          (3) 

where a and b are the two legs of a right triangle, and c is the hypotenuse. In this case, the 

altitude is a, the ground range is b, and the slant range is c. The formula can be rearranged 

to solve for ground range,  𝑏 = √𝑐2 − 𝑎2,          (4) 

because the altitude and slant range are provided in the spreadsheet and already stored 

within the program. However, in some cases, when the aircraft gets too close to the radar, 

the altitude becomes larger than the slant range, this is shown in Figure 7; where GR is 

ground range, SR is slant range, and alt is altitude. When this happens, the number under 
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the radical in Equation 4 becomes negative, making the solution undefined. To correct this, 

new equations need to be used:  𝑏′ = √𝑎2 − 𝑐2 ,         (5) 𝛽 = sin−1 𝑐𝑎,          (6) 

and 𝑏 = 𝑏′ + sin 𝛽 ,         (7) 

where 𝛽 and 𝑏′ are the angle and length, respectively given in Figure 13.  

 

Figure 6. Azimuth and Range Diagram 
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Figure 7. Ground Range, Slant Range, and Altitude of Aircraft 
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 Once the ground range is calculated, the last step is to use latitude and longitude of 

the radar location, along with the azimuth and ground range to determine the latitude and 

longitude of the aircraft. This is given by Equation 8 which calculates the aircraft’s latitude 

and Equation 9 which calculates the aircraft’s longitude. These formulas calculate the 

latitude traveling along a great arc circle, knowing the start point, initial bearing (azimuth), 

and distance (ground range). Equations 8 and 9 are given by 𝑙𝑎𝑡𝑎𝑖𝑟𝑐𝑟𝑎𝑓𝑡 = sin−1 (sin(𝑙𝑎𝑡𝑟𝑎𝑑𝑎𝑟) ∗ cos (𝑏𝑅) + cos(𝑙𝑎𝑡𝑟𝑎𝑑𝑎𝑟) ∗ sin (𝑏𝑅) ∗ cos(∅)) (8) 

and 𝑙𝑜𝑛𝑔𝑎𝑖𝑟𝑐𝑟𝑎𝑓𝑡 = 𝑙𝑜𝑛𝑔𝑟𝑎𝑑𝑎𝑟 + tan−1 (sin(∅) ∗ sin (𝑏𝑅) ∗ cos(𝑙𝑎𝑡𝑟𝑎𝑑𝑎𝑟) , cos (𝑏𝑅) −
sin(𝑙𝑎𝑡𝑟𝑎𝑑𝑎𝑟) ∗ sin(𝑙𝑎𝑡𝑎𝑖𝑟𝑐𝑟𝑎𝑓𝑡)),       (9)  

where 𝑙𝑎𝑡𝑎𝑖𝑟𝑐𝑟𝑎𝑓𝑡 and 𝑙𝑎𝑡𝑟𝑎𝑑𝑎𝑟 are the latitudes of the aircraft and radar, respectively. The 

variables 𝑙𝑜𝑛𝑔𝑎𝑖𝑟𝑐𝑟𝑎𝑓𝑡 and 𝑙𝑜𝑛𝑔𝑟𝑎𝑑𝑎𝑟 are the longitude of the aircraft and radar, 

respectively. R is the Earth’s radius in nautical miles, b is the ground range in nautical 

miles, and lastly ∅ is the azimuth.  

 This process to convert the azimuth and range to latitude and longitude is performed 

in a for loop, so the process is repeated for each row of data in the matrix stored within 

MATLAB. These locations are then added to the existing matrix in two new columns. 

There are two variants of the matrix that stores the time, aircraft ID, altitude, azimuth, 

range, latitude, and longitude. The first is titled rd_sorted, which has the data sorted by 

aircraft ID and within each ID number is chronological with respect to time. The second is 

a cell array, which has each aircraft data’s array within a new cell, titled rd_split.  

 The remainder of the main script calls the various functions written and plots/saves 

the required data for analysis. Each type of data anomaly has its own function and after 
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each function is called, the locations of each occurrence are plotted on Google maps, along 

with the radar radius.  A .png image and .fig MATLAB figure are saved for each map on 

each day, at each location for further analysis. At the very end of the script, all of the 

relevant data is output and saved for each day at each location. The data saved includes 32 

different pieces of information, listed in Table 4. In addition to the Excel file saved, a .mat 

file was saved for each day at each location, so additional data could be referenced without 

running the algorithm again.  

A flow chart summarizing the main script is shown in Figure 8. The algorithm starts 

and reads in the radar data with the data read function. Following that process, the missing 

data is eliminated and the position data is converted to latitude and longitude. The four data 

anomaly functions are then called which plot the location of the anomalies with open 

source software and the output from the four functions are also saved. Once this process is 

complete, the algorithm ends.   

  



22 
 

Table 4. Data Saved by the MATLAB Algorithm 

Number Description 

1 
Location (Fargo or Finley) 

2 
Month 

3 
Day 

4 
Number of aircraft detected by the radar 

5 Number of aircraft that experienced drop 
outs 

6-12 Summary of drop out instances in 7 
different time intervals 

13 
Average drop out time length 

14 
Minimum drop out time length 

15 
Maximum drop out time length 

16 
Number of drop out instances 

17 Number of aircraft that experienced 
altitude outliers 

18 
Number of altitude outlier instances 

19-25 
Summary of prolonged altitude failures 

26 Average prolonged altitude failure time 
length 

27 Minimum prolonged altitude failure time 
length 

28 Maximum prolonged altitude failure time 
length 

29 Number of prolonged altitude failure 
instances 

30 Number of aircraft ID numbers that 
experienced multiple aircraft 

31 Number of aircraft that experienced 
repeated data 

32 Number of repeated data instances 
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Figure 8. Main Script Flow Chart 

 

Data Read 

 The first function that is utilized, reads in the radar data from the Excel spreadsheet, 

and is titled Data_Read. The input to this function is the filename of the spreadsheet. The 

output is a matrix called rd, which contains all the necessary radar data. Each piece of 

information is separated by column that is read into the program. The plane ID, time, 

altitude, azimuth, and range correspond to columns A through E, respectively. Once the 

data is read in, the function checks to ensure all the columns are the same length. If there 

is missing information in the last row of any of the columns, a value of Not-a-Number 

(NaN) is added to ensure all the columns are the same length. The five columns of 

information are then input into the matrix rd.  
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Multiple Aircraft and Repeated Data 

 The function that is called in the main script to identify the multiple aircraft and 

repeated data is titled MARD (short for Multiple Aircraft and Repeated Data). This function 

has the following inputs: the location identifier (1 for Fargo or 2 for Finley), the number of 

planes, rd_split, and rd_sorted. The outputs are the multiple aircraft data matrix, the 

repeated data matrix, and a matrix called rd_wo_ma. The matrix rd_wo_ma contains the 

radar data contained in rd_split and rd_sorted, without the multiple aircraft data. The data 

that was associated with multiple aircraft was taken out because it would skew the rest of 

the data anomaly identification and analysis.  

 The majority of the function is split into two if statements, based on the location. 

Within either if statement, the same fundamental logic remains the same, however the 

thresholds and parameters vary based on location. Once the input data is read in, the data 

points for each aircraft in rd_split are run through a for loop. In the loop, the time difference 

is taken, along with the difference in latitude and longitude from row to row in in each cell. 

Data that is under the time threshold based on the radar scan rate then either falls into the 

multiple aircraft category or repeated data category. The differentiator between the two is 

the latitude and longitude difference. If the positional difference is greater than some 

threshold, the data is considered a multiple aircraft. If the difference is less than that 

threshold, it is classified as repeated data. This logic is used because multiple aircraft with 

the same ID will have a large difference in position, while repeated data have almost 

identical positions. Once this process is complete, a new cell array titled rd_wo_ma is 

created that excludes any aircraft ID that corresponded to multiple aircraft. A table 

summarizing the thresholds is given in Table 5. These thresholds were selected in degrees 



25 
 

of latitude and longitude for convenience to plot the behaviors in the algorithm. 

Additionally, when converting latitude or longitude to a standard measurement such as 

nautical miles, there is very little variation for the area of interest in this study.  

 

Table 5. Thresholds Used in the Multiple Aircraft and Repeated Data Function 

Location Time Threshold 

(seconds) 

Latitude Threshold 

(degrees) 

Longitude Threshold 

(degrees) 

Fargo 3.8 .012 .035 

Finley 10 .016 .16 

 

 The thresholds provided in Table 5 were experimentally determined from the data. 

Five different days chosen at random from Fargo, and five days chosen at random from 

Finley, with at least one day from each season was used to set the thresholds. An initial 

threshold was set, then using the 10 total days, the data was processed by hand checking 

for false positives, false negatives, true negatives, and true positives. A false positive is 

when the algorithm labeled data as a positive (multiple aircraft or repeated data), and it was 

not in fact a positive. False negative is when the function marked data as multiple aircraft 

or repeated data when it should not have been. A true negative is when the system correctly 

identified data that was not multiple aircraft or repeated data. Lastly, a true positive is when 

the program correctly marked the data that was multiple aircraft or repeated data. These 

values were adjusted until all the all the multiple aircraft and repeated data were correctly 

identified. The time threshold is slightly below the radar scan rate for both Fargo and Finley 

because the aircraft may be moving against the rotation of the radar, so it is detected sooner 

than the radar scan rate of the radar. Another interesting note is the latitude threshold 

between Fargo and Finley are relatively similar, while the longitude threshold is 
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significantly apart. This indicates that aircraft move more longitudinally in Finley, rather 

than latitudinally. Finley is a long range radar, picking up many aircraft in cross county 

routes, which tend to fly more east to west, rather than north to south. Additionally, Fargo 

is a regional radar, near an airport, so planes move more uniformly in both longitude and 

latitude on the approach paths to the Fargo International Airport. This explains why the 

latitude and longitude threshold at Fargo are closer to each other than the Finley thresholds. 

At the geographical location of either radar, the distance of one degree latitude is about 1/3 

larger in nautical miles than one degree longitude, which explains why the longitude 

threshold is larger for both Fargo and Finley as well. A flowchart describing the process of 

the multiple aircraft/repeated data function is provided in Figure 9.  

 

 

Figure 9. Multiple Aircraft/Repeated Data Function Flow Chart 
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Drop Outs 

 The drop out function, titled DropOut, is called in the main script to identify drop 

outs in the radar data. This function has inputs of the location identifier and rd_wo_ma. Its 

outputs include: all the data that has drop outs associated with them, a statistical summary 

of the drop outs, and a categorization of drop outs into time categories.  

 Once the data is input into the function, for each aircraft, it takes the time difference 

between each data entry. The function then looks at the upper and lower bounds of the time 

threshold to determine if it is a drop out. The lower bound is slightly above the scan rate, 

and the upper bound is several minutes. These thresholds vary by location, because of the 

different radar scan rates. A summary of the thresholds is given in Table 6. These 

thresholds again were selected based of setting a nominal value and modifying the 

threshold, until all the data from five different days at both the Fargo and Finley locations 

gave correct outputs.  

Table 6.Drop Out Threshold Values 

Location Fargo Finley 

Lower Threshold  (sec) 5.5 13 

Upper Threshold  (sec) 300 400 

 

 Once the drop outs are identified, statistics such as the average, minimum, and 

maximum values are taken. In addition, the drop outs are classified into seven different 

time intervals, to get an understanding of the time distribution of the drop outs. The number 

of drop outs are counted in each time interval. Due to the different radar scan rates, Fargo 

and Finley have different time intervals for the analysis. These time intervals are listed in 

Table 7.  
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Table 7. Time Interval Classifications for Fargo and Finley 

Interval Number Fargo Finley 

1 <10 sec <24 sec 

2 10-15 sec 24-36 sec 

3 15-20 sec 36-48 sec 

4 20-25 sec 48- 60 sec 

5 25-30 sec 60-90 sec 

6 30-60 sec 90-120 sec 

7 >60 sec >120 sec 

 

A flow chart depicting the logic behind the drop out function is shown in Figure 10. 

 

 

Figure 10. Drop Out Function Flow Chart 
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Altitude Outliers 

 The function, titled Outliers, identifies and classifies altitude outliers in the radar 

data. The inputs to this function are again, the location identifier and rd_wo_ma. The output 

is a matrix summarizing the outliers. After the radar data is input, the time difference 

between each data point and the altitude difference between each data point is taken. The 

time difference is used to ensure that the data being compared doesn’t occur at different 

times of the day, or different aircraft (one aircraft lands and another takes off). If the altitude 

difference is greater than 800 feet, and the following altitude difference is greater 800 feet, 

this indicates an altitude outlier. The value of 800 feet was chosen to ensure an aircraft 

descending at a rapid rate were not misidentified as an aircraft with outliers. This was based 

on research of the maximum ascent/descent rate of the UND Cessna 172 training aircraft, 

a Bombardier CRJ700, and an Airbus A320. All these aircraft are likely to be detected by 

the radars at Fargo and Finley. The rate of climb of a Cessna 172 is 730fpm [51], 2,000fpm 

for the Bombardier CRJ700 [52], and 2,400fpm for the Airbus A320 [53]. Just considering 

the largest ascent/descent rate of 2,400fpm, the distance traveled vertically in one scan rate 

at Fargo is 200 feet and 480 feet at Finley. These values are much less than the 800-foot 

threshold chosen for this function. The threshold was also verified by processing several 

hours of data by hand, to ensure there were no false classifications. Once the outliers are 

detected, a matrix is produced containing the aircraft information, time, and location 

information. A flow chart highlighting the process of the altitude outlier function is given 

in Figure 11. 
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Figure 11. Altitude Outliers Function Flow Chart 

 

Prolonged Altitude Failure 

 The function titled prolonged_alt_failure, processed the data to identify prolonged 

altitude failures. Just like many of the other functions, the inputs are the location identifier, 

along with rd_wo_ma. The outputs are matrices summarizing the prolonged altitude 

failures, along with their time durations. In addition, time statistics and time interval 

instances are output for analysis. The altitude information is looked at for a series of zero 

values. The function notes the start and stop indices of these series of zero values. Then 

only the strings of more than a length of two are kept, denoting a prolonged altitude failure. 

Both a cell array, separated by aircraft ID and a matrix with the time duration of the 

prolonged altitude failure are output. Again, just like the drop outs, the time statistics and 

time interval instances are output as well. These values are calculated the same exact way 



31 
 

as described in the previous sections. A flow chart highlighting the logic of the prolonged 

altitude failure function is shown in Figure 12.  

 

 

Figure 12. Prolonged Altitude Failure Function Flow Chart 

 

Google Maps Plot & Draw Ellipse 

  The three functions used to plot the locations of the data anomaly locations and plot 

the effective radius on a Google Maps image were obtained online, through open source 

software. These functions were written for MATLAB. Due to these functions being open 

source and not authoring them myself, simply a broad description of how they are used 

will be provided in this section. 

 The function plot_google_map, allows a plot to be created with a static Google 

maps image to be inserted into the background [54]. The plot function within MATLAB is 
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used, plotting latitude and longitude, then the plot_google_map function is called to place 

a static Google maps image in the background. The image is automatically taken to 

encapsulate the latitude and longitude plotted. Many options can be varied on the Google 

maps image and output, such as the size, resolution of the image, and map type (roadmap, 

satellite, hybrid, etc.). Additional documentation can be found on the source site [54]. The 

export_fig function is also used to save the Google Map output [55]. 

 To draw the effective radar radius, an ellipse needs to be drawn. The reason an 

ellipse is used, even though it appears as a circle on the map is due to the measurement 

differences in nautical miles of the one degree of latitude and one degree of longitude. 

There was no built in ellipse function into MATLAB, so an open source function titled 

ellipse, was utilized [56]. The inputs to the function include: the semi-major axis length, 

the semi-minor axis length, angle of the semi-major axis, center point, color of the drawn 

ellipse, and the number of points used. Table 8 summarizes the inputs into the ellipse 

function. The semi-major and semi-minor axis lengths were calculated based on the 

conversion factor between nautical miles to one degree of latitude or longitude at the 

radar’s location. At Fargo, one degree of latitude and longitude is 60.0266nmi and 

41.1279nmi, respectively. At Finley, one degree of latitude and longitude is 60.03287nmi 

and 40.66041nmi, respectively. To calculate the semi-major and semi-minor axis length, 

the radar range in nautical miles is simply divided by the conversion factor for one degree 

of latitude/longitude at that location. While the measurement will vary slightly, once a 

location deviates from the radar’s location, it is minimal for the distances considered in this 

study. So, the conversion factor at either Fargo or Finley is simply used for the entire 

radar’s range.  
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Table 8. Ellipse Function Input Values 

Description Fargo Finley 

Semi-Major Axis Length 6041.1279 
25040.6604 

Semi-Minor Axis Length 6060.0266 
25060.0329 

Semi-Major Axis Angle 0 degrees 0 degrees 

Initial Longitude location 46.9202 degrees 47.5282 degrees 

Initial Latitude Location 96.8122 degrees 97.9006 degrees 

 

Overlapping Analysis 

 The script titled Overlapping_Analysis is a standalone algorithm that performs an 

overlapping analysis to understand whether the data anomalies were radar or transponder 

induced. If the data anomalies occurred at one location, it was considered a radar error, 

while if the data anomaly occurred at both locations it was considered a transponder error. 

This analysis will be described in more detail later in Chapter IV. The script reads in the 

.mat files that were created from the main script Combined for each of the Fargo and Finley 

locations. The script also has a nested for loop to process all the data at once from all 28 

days. Once the .mat file is read in, the specific matrix associated to the data anomaly of 

interest is called. The program then looks for aircraft ID numbers that occur in both the 

Finley and Fargo data. Once those numbers are recorded, the timestamps associated with 

each location are analyzed. If the time difference was 17 seconds or less it was considered 

to occur at both the Fargo and Finley location (transponder error). The value of 17 seconds 

was obtained by adding the two scan rates together of both locations. This value was chosen 

because the aircraft could have just been missed by one radar and not be picked up by the 



34 
 

other radar until the end of its scan rate. The data points that did not occur at both sites are 

then considered radar failures. The script outputs the number of aircraft intercepted at each 

radar site, the number of transponder failures, and the percentage of aircraft with 

transponder or radar failures. This process is repeated for each data anomaly: drop outs, 

altitude outliers, prolonged altitude failures, repeated data, and multiple aircraft with the 

same ID. To summarize the logic of the overlapping analysis algorithm, a flow chart is 

provided in Figure 13.  

 

 

Figure 13. Overlapping Analysis Algorithm Flow Chart 

 

Algorithm Verification 

 Once the entire algorithm was finished, it was checked against data that was 

analyzed by hand from the previous June 21, 2015 study. In addition, the data from March 

1, 2015 was also analyzed for the purposes for algorithm verification. The algorithm found 
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all of the data anomalies identified in both those studies, along with several other randomly 

selected groups of time throughout the other data from March, June, September, and 

December. In fact, the program was able to find data anomalies that were missed by the 

hand analysis, showing how significant human error can be in large data studies such as 

this. Once the algorithm was completed, it took seven hours, 18 minutes to process all the 

data from four weeks of data at both Fargo and Finley.  
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CHAPTER III 

SUMMARY OF DATA ANOMALY RESULTS 

 Once the radar data was processed, the engineering and scientific analysis of the 

data could begin. By using an algorithm, the large, daunting amount of data became more 

reasonable to analyze and understand. This chapter will highlight a basic summary of the 

results, including graphical depictions of the anomalies, the number of each type of data 

anomaly, time durations, and locations of the anomalies. This summary is provided for 

each location, and is an average of the data for brevity. All the data for each day analyzed 

is provided in Appendix C: Radar Data Anomalies Summary. There are a number of 

sections in Appendix C: Aircraft Count/Location, Drop Outs, Altitude Outliers, Prolonged 

Altitude Failures, and Multiple Aircraft/Repeated Data. Each data anomaly was plotted on 

an altitude versus time plot to provide a visual representation in the Graphical 

Representation of Data Anomalies section. These plots were chosen to provide what a 

typical case for each anomaly looks like. The Aircraft Count/Location section summarizes 

the number of aircraft detected each day, at each location. The Drop Outs section provides 

a daily summary of the number of aircraft with drop outs, the number of instances of drop 

outs that occur in various time durations, the average drop out length, the minimum drop 

out length, the maximum drop out length, and the number of instances of drop outs. The 

Altitude Outliers section summarizes the number of aircraft that experienced outliers each 

day, along with the number of instances of outliers. The Prolonged Altitude Failure
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section provides a nearly identical summary when compared to the Drop Out section. 

Lastly, the Multiple Aircraft/Repeated Data section provides aircraft counts for each day 

for each anomaly. A more thorough discussion of the results will be provided in Chapter 

IV.  

Graphical Representation of Data Anomalies 

 Each data anomaly was plotted on an altitude versus time plot to provide a better 

understanding of what the behavior truly looked like. An example of a drop out is shown 

in Figure 14, which plots altitude versus time for a single aircraft. Notice how there are 

both large and small gaps where there are no data points, this indicates a drop out. Figure 

15 depicts several outliers, going between the aircraft’s cruising altitude of 900/1000 feet 

AGL and 0 feet AGL. An example of a prolonged altitude failure is shown in Figure 16, 

which has a zero-foot altitude reading for 17 radar scan rates, then the altitude returns to 

nominal. Repeated data is shown in Figure 17. The red boxes are zoomed areas of the data 

points to show a close up of what is happening. In this example, there are four instances of 

repeated data, each with two data points within a fraction of a second. Figure 18 shows a 

multiple aircraft example plotting altitude versus time. The non-discrete ID number of 1200 

is shown in this example which is assigned to VFR traffic in the airspace by ATC. Figure 

18 shows many aircraft making the plot very congested, this is because many of the aircraft 

in the sky are VFR traffic, which are all assigned the same ID number. Figure 19 shows 

two aircraft with a discrete code of 2603 in the same airspace. The ID is discrete in Figure 

19, meaning that ideally there would only be one aircraft that was assigned that number. 

However, in this case the number was used twice.  
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Figure 14. Drop Out Example Plot 

 

 

Figure 15. Outlier Example Plot 
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Figure 16. Prolonged Altitude Failure Example Plot 

 

 

Figure 17. Repeated Data Example Plot 
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Figure 18. Non-Discrete Multiple Aircraft Example Plot 

 

 

Figure 19. Discrete Multiple Aircraft Example Plot 
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Aircraft Count & Time Duration Summary 

 After the data was processed through the algorithm, the aircraft counts were 

analyzed, along with the time duration for drop outs and prolonged altitude failures. Table 

9 summarizes the total number of aircraft observed each day at Fargo and Finley, along 

with the number of aircraft that experienced each type of anomaly. The number of aircraft 

is on the left column for each location, while the percentage of total aircraft effected is on 

the right hand column. The numbers in upper most section of Table 9 represent the average 

number over the four weeks of data analyzed, while each subsequent section is an average 

of each specific week. This provides a clear picture of the overall status of the radar 

network because the averages encapsulate four distinct different times of year over a wide 

variety of weather conditions.  

 When comparing the averaged data from each separate week to the to the overall 

averaged data, the results were relatively similar. It should be noted that more aircraft were 

intercepted in the fair weather months of June and September. While fewer aircraft flew in 

March and December when the weather typically is not as nice for flight. There also seemed 

to be a significantly larger number of drop outs in September compared to the nominal 

average percentage of drop outs for Fargo (37%) and especially Finley (84%). The opposite 

trend was observed in March for the percentage of drop outs at Finley with a significant 

decrease in drop outs, 52%, versus the overall average of 69%. There were not any 

noticeable trends for the other data anomalies from month to month. It is noteworthy that 

overall, 34% of aircraft experienced drop outs at Fargo, while 69% of aircraft experienced 

drop outs at Finley. Additionally, the other data anomalies ranged from 1-26% of aircraft 
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at either location. Both altitude outliers and drop outs were the two types of data anomalies 

that happened most frequently.  

To understand the severity of the drop outs and prolonged altitude failures, the time 

duration was looked at. The average, minimum, and maximum values of occurrence were 

identified for each location. The anomalies were then counted in different time intervals 

that were set based on the radar scan rate at each location. Table 10 provides this summary 

of the drop out times and Table 11 provides the summary of the PAF times. Again, these 

tables are the average values over the course of the four weeks of data. Just the overall 

averages for the time durations were chosen to be displayed in the main body of this 

document. This was decided, because from Table 9, there was not any drastic change when 

comparing the weekly averages to the overall averages. All required data to do a weekly 

average analysis is provided in Appendix C. In the time interval classification section for 

each table, the left column represents the instances (there can be multiple instances per 

aircraft), and the right column is the percentage of instances relative to the total number of 

instances.  
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Table 9. Aircraft Count Summary for Fargo and Finley 

 Fargo Finley 

Number of 
Aircraft 

Percentage Number of 
Aircraft 

Percentage 
O

v
er

a
ll

 

Total Observed 450 - 1274 - 

Drop Outs 155 34% 885 69% 

Outliers 61 14% 326 26% 

PAF 7 2% 9 1% 

Repeated Data 11 2% 45 4% 

Multiple Aircraft 14 3% 11 1% 

M
a
rc

h
 

Total Observed 433 - 1150 - 

Drop Outs 147 34% 602 52% 

Outliers 60 14% 190 17% 

PAF 6 1% 7 1% 

Repeated Data 11 3% 41 4% 

Multiple Aircraft 6 1% 8 1% 

J
u

n
e 

Total Observed 459 - 1328 - 

Drop Outs 159 35% 936 70% 

Outliers 61 13% 304 23% 

PAF 5 1% 6 1% 

Repeated Data 11 2% 35 3% 

Multiple Aircraft 16 4% 10 1% 

S
ep

te
m

b
er

 

Total Observed 440 - 1332 - 

Drop Outs 161 37% 1116 84% 

Outliers 55 12% 442 33% 

PAF 6 1% 6 1% 

Repeated Data 6 1% 59 4% 

Multiple Aircraft 15 3% 12 1% 

D
ec

em
b

er
 

Total Observed 467 - 1287 - 

Drop Outs 153 33% 888 69% 

Outliers 69 15% 366 28% 

PAF 9 2% 16 1% 

Repeated Data 14 3% 44 3% 

Multiple Aircraft 18 4% 15 1% 
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Table 10. Drop Out Summary for Fargo and Finley 

Fargo Finley 

Drop Out Duration  Drop Out Duration 

Average (sec) 23.58 -  Average (sec) 42.45 - 

Minimum (sec) 6.81 -  Minimum (sec) 17.17 - 

Maximum (sec) 282.46 -  Maximum (sec) 391.15 - 

Time Interval Classification  Time Interval Classification 

Number of Drop 
Outs 

552 -  Number of Drop 
Outs 

3279 - 

Less than 10 sec 326 59%  Less than 24 sec 1105 34% 

10 -15 sec 81 15%  24 -36 sec 1302 40% 

15 -20 sec 10 2%  36-48 sec 296 9% 

20 -25 sec 21 4%  48 - 60 sec 57 2% 

25 -30 sec 16 3%  60 -90 sec 232 7% 

30 -60 sec 52 9%  90 -120 sec 92 3% 

Greater than 60 sec 47 9%  Greater than 120 sec 195 6% 

 

  



45 
 

Table 11. Prolonged Altitude Failure Summary (PAF) for Fargo and Finley 

Fargo Finley 

PAF Duration  PAF Duration 

Average (sec) 124.99 -  Average (sec) 170.15 - 

Minimum (sec) 16.53 -  Minimum (sec) 39.40 - 

Maximum (sec) 426.83 -  Maximum (sec) 495.42 - 

Time Interval Classification  Time Interval Classification 

Number of PAF 6.5 -  Number of PAF 9.0 - 

Less than 10 sec 0.8 13%  Less than 24 sec 1.0 11% 

10 -15 sec 0.3 5%  24 -36 sec 1.3 15% 

15 -20 sec 0.1 2%  36-48 sec 0.6 7% 

20 -25 sec 0.3 4%  48 - 60 sec 0.8 9% 

25 -30 sec 0.3 4%  60 -90 sec 1.0 11% 

30 -60 sec 1.1 17%  90 -120 sec 0.7 7% 

Greater than 60 sec 3.6 55%  Greater than 120 sec 3.6 40% 

 

There was an average drop out of 23.58sec at Fargo and 42.45sec at Finley. While 

74% drop outs occurred for less than three radar scan rates at both Fargo and Finley; this 

is still a significant period of time to not have ATC receive information on the aircraft. It 

should also be noted that if ATC loses an aircraft for even one radar scan rate, they need to 

reestablish contact with them, so even having a short drop out adds more strain to the 

current ATC system. The maximum values show the drop outs can last for several minutes 

in some cases. Additionally, the average PAF was 124.99sec at Fargo and 170.15sec at 
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Finley. This is a substantial amount of time for ATC to not have a correct altitude reading 

to help with vertical separation services. It is also noteworthy that 55% of PAF at Fargo 

lasted for more than one minute, while 58% of prolonged altitude failures at Finley 

occurred for greater than one minute. 

Time of Day & Location Summary 

Time of day and location were also investigated to understand if either factor 

impacted the drop outs and data anomalies. Other than the fact that more aircraft are flying 

during daylight hours, time of day not play a large role in the occurrence of the drop outs 

and data anomalies. However, despite that fact, location did appear to have an impact on 

the unique behavior observed. Figure 20 gives a typical plot of drop out locations at Fargo 

and Finley. Figure 21 provides a usual altitude outlier location plot for both locations. 

Figure 22 does the same for prolonged altitude failure, Figure 23 for repeated data, Figure 

24 for multiple aircraft with the same discrete ID, and Figure 25 for multiple aircraft with 

the same non-discrete ID.  

 From Figures 20 and 21, it can be seen that majority of all outliers occur on the 

approach paths/near airports and on the edge of the effective radar radius. The prolonged 

altitude failure shown in Figure 22 appears to be a transponder related issue, with long 

trails showing the path of the aircraft. While Figure 23 show most repeated data occurs 

near airports as well. Figure 24 also shows that discrete multiple aircraft ID failures are 

transponder/aircraft specific. This is logical because ATC assigns each aircraft an ID before 

takeoff. However, Figure 25 shows that non-discrete ID failures are more sporadic. It is 

obvious there is a large concentration near airports and additionally transponder/aircraft 

flight paths can be seen. So this failure also appears to be transponder specific. The 
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behaviors that occurred near the edge of the radar effective radius occur because the radar 

is being pushed to its operational capacity to detect those aircraft. Additionally, airports are 

high traffic areas. As the airspace gets more congested, the radar is more likely to make 

mistakes. Based off Table 9 and Figures 20-25, drop outs and outliers are the most 

prominent unique behavior observed. 

 
Figure 20. Drop Out Location Plots for Finley (left) and Fargo (right) 

 
Figure 21. Altitude Outlier Location Plots for Finley (left) and Fargo (right) 
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Figure 22. Prolonged Altitude Failure Plots for Finley (left) and Fargo (right) 

 
Figure 23. Repeated Data Location Plots for Finley (left) and Fargo (right) 
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Figure 24. Multiple Aircraft with the Same Discrete ID Location Plots for Finley (left) and 

Fargo (right) 

 

Figure 25. Multiple Aircraft with the Same non-Discrete ID Location Plots for Finley (left) 

and Fargo (right) 
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CHAPTER IV 

DISCUSSION OF RESULTS 

 While Chapter III provided a summary of the results based on aircraft count, time 

duration, and location. This chapter will provide a more through explanation and conjecture 

for why some of these anomalies are occurring. The overlapping analysis mentioned earlier 

will be presented in this chapter, along with a correlation of weather/climate conditions on 

each day of this study. The final sections will cover a risk matrix/hazard assessment to 

understand the true severity of data anomalies, and lastly a comparison to previous studies 

will be assessed. 

Overlapping Analysis 

 To understand if the data anomalies were radar or transponder induced errors, an 

overlapping analysis was performed. Only the aircraft that were intercepted at both Fargo 

and Finley were considered. Fargo’s radar radius fits entirely inside Finley’s radar radius, 

as shown by Figure 4, so theoretically all of the aircraft detected by Fargo should be 

detected by Finley. The two primary exceptions to that rule are if the aircraft were detected 

by Finley, but in Fargo’s radar cone of silence, or the aircraft were too low to be intercepted 

by Finley’s radar beam. If the data anomalies occurred at both sites, it was considered a 

transponder error, because it is highly unlikely both radar sites were experiencing failures 

at the same time. If the data anomalies occurred only at one site, it was considered a radar 

error. Only the drop outs and altitude outliers produced statistically significant results for 

this analysis, so only those behaviors were considered. Table 12 summarizes the percentage 
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of aircraft that experienced transponder induced errors and radar induced errors for drop 

outs and outliers. These percentages consider the average value of over the time period 

listed in the far left hand column of the table. The overall average, and average for each 

week of data was considered. For a complete day by day breakdown, a more detailed table 

can be seen in Appendix D: Overlapping Analysis Results.  

 

Table 12. Radar and Transponder Failure Summary 

 Data Anomaly 
Description 

Percentage of Aircraft 
w/ Radar Error 

Percentage of Aircraft 
w/ Transponder. Error 

O
v
er

a
ll

 Drop Outs 93% 7% 

Outliers 51% 49% 

M
a
r.

 

Drop Outs 94% 6% 

Outliers 49% 51% 

J
u

n
e 

Drop Outs 95% 5% 

Outliers 52% 48% 

S
ep

. 

Drop Outs 93% 7% 

Outliers 53% 48% 

D
ec

. 

Drop Outs 91% 9% 

Outliers 50% 50% 

 

Table 12 shows there isn’t a drastic change from season to season when compared 

to the overall results for the method of failure. In this study, the overall results showed 93% 

of drop outs were radar errors, while only 51% of altitude outliers experienced radar errors. 

The largest deviation from these values were by ±2% considering the weekly averages. 



52 
 

The most probable explanation for why outliers have roughly equal percentages for the 

source of error, between the radar and transponder, while drop outs are mostly caused by 

the radar is the number of systems that can contribute to the data anomalies. Outliers have 

many more systems involved than drop outs. The altimeter, system to convert the altitude 

reading to binary for the transponder, transponder, and all the systems at the ground station 

can all contribute to altitude outliers. The increase in sources of error, make the distribution 

more uniform between radar or transponder induced errors for the altitude outliers.  

It should be noted that prolonged altitude failures and multiple aircraft with the 

same ID are also transponder induced errors, which can be seen from Figures 22, 24 and 

25. However, there were not enough data points of those anomalies to be considered for 

the overlapping analysis.  

Hazard Assessment 

 To assess risk, the FAA and other organizations use Safety Risk Management 

(SRM), which is a process to analyze, assess, and accept risk for designs, policies, and 

many other aspects. One tool that is used in SRM is a risk matrix to help quantify the 

amount of risk. The risk matrix takes into account the severity and likelihood of an event, 

then using the combination of both interactions, assigns a rating in terms of risk: 

unacceptable risk, acceptable risk with mitigation, and acceptable risk. Table 13 provides 

the FAA severity definitions [57] and Table 14 provides the FAA likelihood definitions 

[57]. Due to the broad nature of the likelihood definitions, a revised table, specific for this 

study was developed; this is shown in Table 15. Table 16 provides the generic FAA risk 

matrix [57]. 
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Table 13. FAA Severity Definitions 

 

 

Table 14. FAA Likelihood Definitions 

 

 

Table 15. Radar Data Anomaly Likelihood Definitions 

 

Frequent (A) Probable (B) Remote (C) Extremely 
Remote (D) 

Extremely 
Improbable (E) 

Occur on 
40%+ of 
aircraft each 
day 

Occur on 10-
40% of 
aircraft each 
day 

Occur on 1-
10% aircraft 
each day 

Occur on 
0.05-1% of 
aircraft each 
day 

Occur on less 
than 0.05% of 
aircraft each day 

Courtesy: Federal Aviation Administration [57]. 

Courtesy: Federal Aviation Administration [57]. 
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Table 16. Generic FAA Risk Matrix 

 

 

 In the risk assessment used for the radar anomalies, the ratings were assigned under 

the assumption that no other DAA system were in place, including the pilot’s ability to see 

and avoid. The risk assessment performed assumes only the radar system is in place, 

providing the five pieces of information run through the algorithm: time, aircraft ID, 

altitude, range, and azimuth. A study incorporating other DAA systems is beyond the scope 

of this project. By performing the risk analysis under these underlying assumptions, a true 

sense of the severity of these issues can be understood. Using the likelihoods assigned in 

Table 15 and severity ratings from Table 13, a risk matrix was assembled for the data 

anomalies. The severity was taken for each data anomaly to assume the worst case scenario, 

Courtesy: Federal Aviation Administration [57]. 
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given that condition. It should be noted that typically the severity at Finley was higher than 

Fargo for the data anomalies studied for the risk matrices. This is because the scan rate is 

larger and the radar covers a larger area, so there is an increase in the potential severity of 

events, if they do happen. An overall risk matrix, looking at the averages from the four 

weeks of data is shown in Table 17. Tables 18-21 show the averages from each week, 

starting in March and ending in December. The number from the severity rating and the 

letter from the likelihood rating, along with the risk color (green, yellow, or red) are shown 

in each risk matrix. This done for each location, with Fargo in the left column, and Finley 

in the right column. This work provides one of the biggest findings from this study, because 

it shows the true severity of the data anomalies. Risk matrices are one of the most 

commonly used methods for analysis in the aerospace industry, so this helps individuals 

with more of an aerospace background understand the significance of the engineering 

analysis in this report.  

 When comparing the overall results to each week, there weren’t very many 

significant changes. The likelihood varied slightly from week to week in some categories. 

In fact, the only time the risk rating changed was from the prolonged altitude for greater 

than 6 scan rates in June, which went from unacceptable risk to acceptable risk with 

mitigation. Other than that specific case, the risk ratings stayed consistent. While the results 

look problematic, keep in mind that the risk assessment considers only the radar DAA 

system. The current airspace is safe, with near midair collisions (NMAC) and midair 

collisions (MAC) happening very infrequently. This is due to other DAA technologies and 

over 100 years of policy and technology going into the current NAS system. However, as 

UAS are incorporated into the NAS, they may only have one or two DAA systems, so the 
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results shown from Tables 17-21 may be more representative of that system. This shows 

that a robust logic to handle these anomalies is required to create a safe, efficient DAA 

system for UAS if radar was used. It also shows that multiple DAA systems may be 

required on UAS.  

 Additional findings show that Finley has more cases for unacceptable risk, when 

compared to Fargo. This is can be explained by the increased surveillance area and scan 

rate, and typically an increased severity rating. Drop outs, altitude outliers, and prolonged 

altitude failures greater than six scan rates all pose unacceptable risk. Drop outs and altitude 

outliers are also considered the most catastrophic data anomalies. Every scenario with these 

behaviors poses either acceptable risk with mitigation or unacceptable risk. They also have 

identical risk ratings when comparing Fargo or Finley. Completely losing an aircraft with 

a drop out or having inconsistent altitude readings from altitude outliers poses the biggest 

risk for aircraft and ATC. Prolonged altitude readings are not as problematic because with 

a prolonged altitude reading of zero feet elevation, it is obvious that the aircraft is not at 

that elevation, so ATC can make more informed decisions on aircraft separation services. 

Additionally, an algorithm could do the same thing for an autonomous UAS. Multiple 

aircraft is the fourth lowest data anomaly in terms of risk, because ATC has protocols in 

place and is aware of the problem of assigning multiple aircraft with the same ID number. 

Lastly repeated data is the lowest risk, with acceptable risk for both locations. Receiving 

multiple data points doesn’t contribute any harm to knowing the aircraft position. About 

the only potential harm is increasing bandwidth congestion in the airspace.  
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Table 17. Overall Radar Phenomena Risk Matrix 

Description Fargo Risk 

Rating 

Finley Risk 

Rating 

Drop out less than 2 scan rates 4B 3B 

Drop outs lasting 2-6 scan rates 3C 2B 

Drop outs lasting 6+ scan rates 2C 1C 

Outlier less than 2 scan rates 4A 3B 

Outlier lasting 2-6 scan rates 3C 2B 

Outlier lasting 6+ scan rates 2C 1C 

Prolonged alt failure less than 2 scan 
rates 

4D 3D 

Prolonged alt failure lasting 2-6 scan 
rates 

3D 2D 

Prolonged alt failure lasting 6+ scan 
rates 

2C 1D 

Multiple aircraft  3C 4C 

Repeated data 5C 5C 
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Table 18. March Radar Phenomena Risk Matrix 

Description Fargo Risk  
Rating 

Finley Risk 

Rating 

Drop out less than 2 scan rates 4B 3B 

Drop outs lasting 2-6 scan rates 3C 2B 

Drop outs lasting 6+ scan rates 2C 1C 

Outlier less than 2 scan rates 4A 3A 

Outlier lasting 2-6 scan rates 3C 2B 

Outlier lasting 6+ scan rates 2C 1C 

Prolonged alt failure less than 2 scan 
rates 

4D 3E 

Prolonged alt failure lasting 2-6 scan 
rates 

3D 2D 

Prolonged alt failure lasting 6+ scan 
rates 

2C 1D 

Multiple aircraft  3C 4C 

Repeated data 5C 5C 
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Table 19. June Radar Phenomena Risk Matrix 

Description Fargo Risk 

Rating 

Finley Risk 

Rating 

Drop out less than 2 scan rates 4B 3B 

Drop outs lasting 2-6 scan rates 3C 2A 

Drop outs lasting 6+ scan rates 2C 1C 

Outlier less than 2 scan rates 4A 3A 

Outlier lasting 2-6 scan rates 3C 2B 

Outlier lasting 6+ scan rates 2C 1C 

Prolonged alt failure less than 2 scan 
rates 

4D 3D 

Prolonged alt failure lasting 2-6 scan 
rates 

3D 2D 

Prolonged alt failure lasting 6+ scan 
rates 

2D 1D 

Multiple aircraft  3B 4C 

Repeated data 5D 5C 
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Table 20. September Radar Phenomena Risk Matrix 

Description Fargo Risk 

Rating 

Finley Risk 

Rating 

Drop out less than 2 scan rates 4B 3B 

Drop outs lasting 2-6 scan rates 3C 2A 

Drop outs lasting 6+ scan rates 2C 1C 

Outlier less than 2 scan rates 4A 3B 

Outlier lasting 2-6 scan rates 3C 2B 

Outlier lasting 6+ scan rates 2C 1C 

Prolonged alt failure less than 2 scan 
rates 

4D 3D 

Prolonged alt failure lasting 2-6 scan 
rates 

3D 2D 

Prolonged alt failure lasting 6+ scan 
rates 

2C 1D 

Multiple aircraft  3B 4C 

Repeated data 5C 5C 
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Table 21. December Radar Phenomena Risk Matrix 

Description Fargo Risk 

Rating 

Finley Risk 

Rating 

Drop out less than 2 scan rates 4B 3B 

Drop outs lasting 2-6 scan rates 3C 2B 

Drop outs lasting 6+ scan rates 2C 1C 

Outlier less than 2 scan rates 4A 3B 

Outlier lasting 2-6 scan rates 3C 2B 

Outlier lasting 6+ scan rates 2C 1C 

Prolonged alt failure less than 2 scan 
rates 

4D 3D 

Prolonged alt failure lasting 2-6 scan 
rates 

3D 2D 

Prolonged alt failure lasting 6+ scan 
rates 

2C 1D 

Multiple aircraft  3C 4C 

Repeated data 5C 5C 

 

 

 

 

 

 



62 
 

Climate Effects 

 Weather is one of the factors that can impact the performance of a radar system. 

While clutter from weather, namely: rain and hail are important for professionals who study 

climate and the environment, they can severely hinder the performance of radars used to 

detect aircraft or other large objects. A significant portion of radar design goes into 

reducing the amount of clutter picked up. Typically, the Doppler frequency shift is the 

method to detect moving objects from the clutter of stationary objects. Circular polarization 

is another method to enhance the detection of aircraft in rain, because rain drops are 

symmetrical/spherical and aircraft are typically asymmetrical [58].  

 This section aims to understand the correlation between weather conditions and the 

data anomalies, if any. To do this weather information for each day of study was obtained 

[59]. For the Fargo analysis, the weather data from the Fargo International Airport was 

used. For the Finley study, the weather information from the Grand Forks Air Force Base 

was used, because this was the closest major airport with weather information dating back 

to 2015. Once the data was obtained, the weather was classified as fair weather and poor 

weather. The conditions were considered poor when the visibility was less than 1 mile, 

which is the minimum requirement for VFR traffic to take off and land in day light hours 

[60]. Conditions were also considered poor if the maximum wind speed exceeded 30mph, 

there was measured precipitation during the day, or any events were recorded (snow, fog, 

rain, or thunderstorms). If the weather during each day didn’t experience any of the above 

conditions, it was considered fair weather.  

 The climate conditions were then compared to the percentage ratio of the instances 

of each type of data anomaly to the total number of aircraft detected that day. In some 
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cases, the ratios were greater than 100% because an aircraft can experience multiple 

instances of that specific data anomaly. Table 22 summarizes the instance/aircraft number 

ratio for each type of data anomaly in poor and fair weather at Fargo. The overall average 

results are listed first, with average of each week listed afterwards. Table 23 provides the 

same information, except for Finley.  

 

Table 22. Fargo Climate Effects 

 Weather 

Condition 

Drop 

Outs 

Altitude 

Outliers 

Prolonged 

Altitude 

Failure 

Repeated 

Data 

Multiple 

Aircraft 

Overall Poor 94% 18% 1% 5% 4% 

Fair 134% 30% 2% 31% 2% 

Mar. Poor 75% 15% 2% 11% 1% 

Fair 118% 24% 1% 49% 1% 

June Poor 86% 14% 1% 7% 4% 

Fair 174% 38% 1% 15% 3% 

Sep. Poor 129% 22% 1% 2% 4% 

Fair 119% 26% 2% 82% 3% 

Dec. Poor 36% 9% 0% 0% 22% 

Fair 120% 30% 2% 23% 2% 
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Table 23. Finley Climate Effects 

 Weather 

Condition 

Drop 

Outs 

Altitude 

Outliers 

Prolonged 

Altitude 

Failure 

Repeated 

Data 

Multiple 

Aircraft 

Overall Poor 256% 38% 0% 4% 1% 

Fair 240% 47% 1% 8% 1% 

Mar. Poor 134% 20% 0% 2% 1% 

Fair 110% 28% 1% 8% 0% 

June Poor 201% 29% 0% 2% 1% 

Fair 269% 47% 1% 9% 1% 

Sep. Poor 388% 52% 0% 7% 1% 

Fair 487% 70% 1% 6% 1% 

Dec. Poor 246% 50% 1% 1% 2% 

Fair 232% 54% 1% 9% 1% 

 

 The effects on weather at Fargo can be seen much more easily than Finley, because 

Fargo covers a much smaller area than Finley. Finley may also be experiencing different 

climate conditions in different parts of its scan path, so it’s difficult to draw meaningful 

conclusions. However, when looking at Table 22 for Fargo, drop outs, altitude outliers, and 

repeated data all seem to be effected by weather. It’s interesting to see the ratio go down 

for poor weather days, while it increases for good weather days. This demonstrates the 

method of failure for those three anomalies listed above. With the poor weather, fewer 

aircraft are in the sky, however, for fair weather more aircraft are in the sky. This implies 

that drop outs, altitude outliers, and repeated data are a function of aircraft density. As more 
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aircraft are airborne, the density goes up, along with the ratio of instances to aircraft. The 

opposite trend can be seen with a lower aircraft density. The only exception to this behavior 

is the drop out average from September at Fargo. There was a slight increase in the instance 

to aircraft ratio for poor weather, rather than the typical increase for good weather. This 

was likely because of the small sample size in fair weather days (two days) versus the 

sample size in good weather days (five days). Other factors could also be in play to effect 

the results from that week of data.  

The multiple aircraft with the same ID and prolonged altitude failures had minimal 

correlation with weather, with only a few percentage points separating the fair and poor 

weather days. The one exception to this rule was for multiple aircraft with the same ID in 

December at Fargo. Again, this is likely due to small sample size, with only one day of 

poor weather, versus six days of fair weather. This shows that transponder induced errors 

are not as susceptible to changes in climate conditions, because multiple aircraft with the 

same ID and prolonged altitude failures are the two behaviors that are most exclusively 

transponder induced. In the introduction, it was mentioned that secondary radar is better at 

handling poor weather conditions; these results further verify that statement.  

  To further show the correlation of climate and the data anomalies, a day to day 

summary for the June data at Fargo is provided in Table 24. When the weather is poor 

(rows highlighted in yellow/orange), the general trend is for the ratio of instances to aircraft 

to decrease when compared to fair weather days. A detailed day to day summary for all the 

data analyzed in this study at both Fargo and Finley is provided in Appendix E: Climate 

Effects Summary.  
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 Additionally, with poor weather there are likely better pilots and better aircraft in 

the sky. With better aircraft, the equipment is less likely to malfunction, and pilots are 
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more likely to operate the equipment correctly. This may also explain why the ratio of 

data anomaly instances to total number of aircraft decreases for poor weather as well.  

Comparison of Results to Previous Studies 

 While many studies have been performed on the performance and problems with 

radar, no study of this scale or scope has been done. This section will compare some 

previous work to the research presented in this document. Particularly the secondary radar 

vulnerabilities, the ADS-B/radar comparisons, and the wind turbine study. While the all 

the other research is relevant and important work, it is difficult to directly relate it to the 

findings from this study. If more specifics on the radar measurements were provided from 

Harris, studies looking at azimuth and range accuracy could also be addressed in the future. 

 The secondary radar vulnerability studies [39, 40] stated that aircraft transponders 

could be interrogated up to 20 times per scan rate depending on where the aircraft was 

relative to the radar site. This phenomenon likely explains why repeated data is occurring. 

With repeated data, many nearly identical data points were received within a fraction of a 

second. Although logic exists in the current radar system’s computer to filter out most of 

the erroneous data, no software is ever perfect. The bandwidth congestion with 

interrogating the aircraft up to 20 times per scan rate, along with TCAS and ADS-B sharing 

some of the same frequencies as radar may contribute to the data anomalies observed as 

well. For the climate effects summary, it was shown as aircraft density increased, the ratio 

of data anomaly instances to total number of aircraft increased for drop outs, altitude 

outliers, and repeated data. When traffic density increases, so does the bandwidth 

congestion. In one of the ADS-B/radar studies [47], the authors struggled with correlating 

radar data to ADS-B data because of erratic radar and radar drop outs around the 
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Philadelphia airspace. This demonstrates that these radar data anomalies are occurring in 

other parts of the country, and especially in congested airspaces.  

 Additionally, the wind turbine study [41], has indicated that wind turbines around 

ATC radars can cause undesired effects, such as: electromagnetic shadowing, effects on 

Doppler, and clutter effects. While these effects are most often seen on primary radar 

resulting in erroneous data, the author suggests secondary radar could be effected as well. 

Some of the observed phenomenon from secondary radar effects were bearing and azimuth 

error, along with target splits (i.e. altitude outliers). A map depicting the over 47,000 wind 

turbines locations in the U.S. was obtained from the U.S. Geological Survey [61]. A map 

of the coverage area in the U.S. from both radars is provided in Figure 26, with a close up 

near Fargo and Finley provided in Figure 27. Each dot (the colors vary based on power 

output) represent a single wind turbine. The blue circle with an X represents Fargo and the 

red circle with an X represents Finley in both Figures 26 and 27.  

 
Figure 26. Wind Turbine Locations in the Fargo/Finley Radar Coverage Area 

Courtesy: USGS [61]. 
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Figure 27. Close Up of the Wind Turbine Locations Near Fargo and Finley 

 

 It can be seen from Figures 26 and 27 there are quite a few wind turbines located 

close to the Fargo and Finley radar sites and in their scan areas. There are two wind turbines 

right next to the Fargo radar site, and a large wind turbine farm just south of the Finley 

radar site. It is likely these wind turbines may have contributed to the some of the drop outs 

and outliers due to interference with the radar’s performance.  

 While many external factors may have contributed to the observed data anomalies, 

such as weather conditions, bandwidth congestion, traffic density, multiple interrogations 

per scan, and wind turbines. Other factors such as jamming (intentional or unintentional), 

engineering limitations of the radars, or simply design flaws could have contributed as 

Courtesy: USGS [61]. 
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well. While it is important to understand where these data anomalies originated from, it is 

just as important to understand the anomalies themselves and know how to handle them if 

they do occur. Especially when radar data is used in UAS autonomy or DAA logic and for 

autonomous ATC systems.  
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CHAPTER V 

CONCLUSIONS 

 The goal of this study was to understand the current state of the radar environment 

around the Red River Valley. To understand the status of the radar network, vulnerabilities 

needed to be understood. Chapter II described the five different types of data anomalies 

identified through this work, namely: drop outs, altitude outliers, prolonged altitude 

failures, repeated data, and multiple aircraft with the same ID. A MATLAB algorithm was 

developed to classify and sort out the data anomalies from the four weeks of data at both 

the Fargo radar site and the Finley radar site. This algorithm is described in detail in 

Chapter III.  

 Once the data was processed through the computer program developed, the results 

were analyzed by occurrence rate, time duration, and location. Finley always detected more 

aircraft each day because it is a long range radar, while Fargo is primarily used around the 

Fargo International Airport. The drop outs were the most prevalent data anomaly, with an 

average of 34% of aircraft at Fargo and 69% of aircraft at Finley experiencing at least one 

drop out. The other data anomalies ranked in order from most common (behind drop outs) 

to least common are altitude outliers, repeated data, multiple aircraft with the same ID, and 

prolonged altitude failures. These data anomalies occurred on 1-26% of the aircraft, 

depending on anomaly and location. Drop outs and prolonged altitude failures were 

analyzed by time duration. It was discovered the average drop lasted 23.58 seconds and 

42.45 seconds, at Fargo and Finley, respectively. While 74% of drop outs occurred for less
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than three scan rates at both locations, there were some drop outs lasting several minutes. 

The average prolonged altitude failure was 124.99 seconds at Fargo and 170.15 seconds at 

Finley, showing a much longer time duration than drop outs. Location was also analyzed, 

showing that many of the data anomalies occur near airports or on the edge of the effective 

radar radius. 

Error source (radar or transponder induced), risk, weather impacts, and a correlation 

to previous studies was also done. The overlapping analysis, along with the location of data 

anomaly plots showed that drop outs, repeated data, and outliers are predominately radar 

induced errors. Multiple aircraft with the same ID and prolonged altitude failures are 

primarily transponder induced errors. While the weather conditions were not shown to 

directly impact the data anomalies, an indirect correlation was discovered. With poor 

weather, fewer aircraft are in the sky, decreasing the traffic density. It was also shown the 

ratio of instances to total number of aircraft detected decreased in poor weather as well. 

The opposite trend was observed with good weather, showing radar induced data anomalies 

are potentially a function of traffic density in the airspace. The risk assessment showed that 

multiple aircraft with the same ID and repeated data pose the lowest risk to aircraft, while 

prolonged altitude failures, altitude outliers, and drop outs pose the greatest risk. The 

comparison to previous studies also showed bandwidth congestion with multiple 

interrogations per scan rate and wind turbines can cause erroneous radar behavior.  

While identifying the various data anomalies, their duration, and severity are eye 

opening. The airspace is still safe with the additional systems in place such as TCAS and 

ADS-B. However, with the addition of autonomous ATC systems and especially UAS into 

the NAS, the effect of these data anomalies could be compounded. If autonomous DAA 
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systems use radar data, work definitely needs to be done either on improving the radar 

systems or a robust logic to handle the data anomalies onboard the aircraft. Other systems 

will likely need to supplement UAS DAA, just like manned aircraft today. This will ensure 

that if there is a failure in one system, the aircraft is not flying without guidance. Future 

work could look at replicating the data anomalies to further understand how they are 

caused. This could be done at the Northern Plains UAS Test Site with their mobile radar 

unit. Additionally, to understand how radar data could be used for a DAA system onboard 

UAS, algorithms could be developed to handle the data anomalies and fuse other sources 

of data from other systems, such as: vision, ADS-B, or Light Detection and Ranging 

(LIDAR). 

The information presented in this document can be used by developers of DAA 

logic for UAS and autonomous ATC systems. While knowing what types of behaviors 

radars are experiencing is important for radar designers, it is just important for users of this 

data to know how to handle data anomalies. To create a robust DAA system and 

autonomous ATC system, understanding how to deal with radar data anomalies is crucial 

if that information is used for those systems. While newer technologies will supplement 

radar in the coming years, radar will likely be used for the foreseeable future. 
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APPENDIX A: MODE A TRANSPONDER IDENTIFICATION NUMBERS 
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APPENDIX B: MATLAB CODE 

Main Script 

clc 
clear all 
close all 
  
all_data=[]; 
counter=0; 

 
%Read file data 
for ll=1:2 
    location=ll 
for ii=1:4 
    for kk=1:7 
        if 3*ii<10 
            Date= ['2015.0', num2str(3*ii), '.0', num2str(kk)] 
        else 
            Date= ['2015.', num2str(3*ii), '.0', num2str(kk)] 
        end 
  
Filepath='C:\Users\nicholas.allen\OneDrive - North Dakota University 
System\UAS Research\Radar Analysis\Radar Data Merged Short\'; 
  
if location==1 
 Location='Fargo'; 
 file=['Short_Merged_', Date,'_', Location]; 
 filename= [Filepath, file, '.xlsx']; 
end 
  
if location==2 
 Location='Finley'; 
 file=['Short_Merged_', Date,'_', Location]; 
 filename= [Filepath, file, '.xlsx']; 
end 
  
rd=Data_Read(filename); 
  
% New data ==> deletes all the rows with missing data 
 rd_new = rd(all(~isnan(rd),2),:); 
  
%Convert Range & Azimuth to Latitude and longitude 
if location ==1 
lat=46.920222;    
lat1=deg2rad(lat); 
long=-96.812167;   
long1=deg2rad(long);   
  
radii1=60/41.1279; 
radii2=60/60.0266; 
%1 degree of latitude = 60.02647nmi 
%1 degree of longitude = 41.1279nmi 
end 
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if location ==2 
lat=47.528167;    
lat1=deg2rad(lat); 
long=-97.90061;   
long1=deg2rad(long); 
  
radii1=250/40.6604; 
radii2=250/60.0329; 
%1 degree of latitude = 60.0329nmi 
%1 degree of longitude = 40.6604nmi 
end 
  
ER=3440.27694;   %Earth's radius in nautical miles                                                
count= size(rd_new(:,1)); %count how many data points 
lat_in=[]; 
long_in=[]; 
  
for i=1:count(1,1) 
    alt(i)=0.000164578833693*rd_new(i,2); %feet to nmi 
    if alt(i)< rd_new(i,5) 
        ran(i)=sqrt(rd_new(i,5)^2-alt(i)^2); %ground range (range in 
data is slant range) 
    else  
        ran_prime(i)=sqrt(alt(i)^2-rd_new(i,5)^2); 
        beta(i)= asind(rd_new(i,5)/alt(i)); 
        ran(i)=ran_prime(i)*sind(beta(i)); 
    end 
    b(i)=ran(i)/ER; %conversion 
    rad(i)=deg2rad(rd_new(i,4)); 
    lat2(i)=asin(sin(lat1)*cos(b(i))+cos(lat1)*sin(b(i))*cos(rad(i))); 
    a(i)=atan2(sin(rad(i))*sin(b(i))*cos(lat1),(cos(b(i))-
sin(lat1)*sin(lat2(i)))); 
    long2(i)=long1+a(i); 
    long_f(i)=rad2deg(long2(i)); 
    lat_f(i)=rad2deg(lat2(i)); 
    long_in=[long_in long_f(i)]; 
    lat_in=[lat_in lat_f(i)]; 
 end 
             
latitude=lat_in'; 
longitude=long_in'; 
rd_new_pos= [rd_new, ran', latitude, longitude]; 
  
% Sorted rows ==> sorts the data based on the aircraft ID number 
 rd_sorted= sortrows(rd_new_pos); 
  
%split data ==> splits rd_sorted matrix into a cell array based on the 
aricraft ID number 
 rd_split=arrayfun(@(x) rd_sorted(rd_sorted(:,1) == x, :), 
unique(rd_sorted(:,1)), 'uniformoutput',false); 
  fprintf('done split rd \n') 
  
 %Count planes 
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  count_planes= size(unique(rd_new(:,1))); %count how many planes there 
are 
   
%% Multiple Aircraft & Repeated Data 
[ multiple_aircraft_repeated_data, multiple_aircraft, repeated_data, 
rd_wo_ma ] = MARD( location, count_planes, rd_split, rd_sorted ); 
  
Filepath_ma='C:\Users\nicholas.allen\OneDrive - North Dakota University 
System\UAS Research\Radar Analysis\Multiple Aircraft Maps\'; 
  
addpath('altmany-export_fig-5be2ca4') 
  
%Plot Multiple Aircraft 
if length(unique(multiple_aircraft(:,2)))>2 
ma_loc=[]; 
for mm=1:length(multiple_aircraft) 
    if multiple_aircraft(mm,2) ~=0  
        if multiple_aircraft(mm,2) ~=1200  
            ma_loc=[ma_loc;multiple_aircraft(mm,:)]; 
        end 
    end 
end 
plot(ma_loc(:,9),ma_loc(:,8),'.r','MarkerSize',10) 
h=ellipse(radii1, radii2,0, long,lat, 'b'); 
set(gca,'visible','off') 
set(gcf, 'Units', 'Inches', 'Position', [0, 0, 9, 9], 'PaperUnits', 
'Inches', 'PaperSize', [9, 9]) 
plot_google_map('maptype', 'hybrid','scale', 2, 'resize', 2) 
savefig([Filepath_ma,file,'_multiple_aircraft_map.fig']) 
set(gcf,'renderer','zbuffer')  
export_fig([Filepath_ma,file,'_multiple_aircraft_map.png']) 
  
close all 
end 
  
Filepath_rd='C:\Users\nicholas.allen\OneDrive - North Dakota University 
System\UAS Research\Radar Analysis\Repeated Data Maps\'; 
 
%Plot Repeated Data 
plot(repeated_data(:,9),repeated_data(:,8),'.r','MarkerSize',10) 
h=ellipse(radii1, radii2,0, long,lat, 'b'); 
set(gca,'visible','off') 
set(gcf, 'Units', 'Inches', 'Position', [0, 0, 9, 9], 'PaperUnits', 
'Inches', 'PaperSize', [9, 9]) 
plot_google_map('maptype', 'hybrid','scale', 2, 'resize', 2) 
savefig([Filepath_rd,file,'_repeated_data_map.fig']) 
set(gcf,'renderer','zbuffer')  
export_fig([Filepath_rd,file,'_repeated_data_map.png']) 
  
close all 

 
%% Drop Outs 
[ data_do, drop_out_summary, do_time_categorization ] = DropOut( 
location, rd_wo_ma ); 
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Filepath_do='C:\Users\nicholas.allen\OneDrive - North Dakota University 
System\UAS Research\Radar Analysis\Drop Out Maps\'; 
  
plot(data_do(:,7),data_do(:,6),'.r','MarkerSize',10) 
h=ellipse(radii1, radii2,0, long,lat, 'b'); 
set(gca,'visible','off') 
set(gcf, 'Units', 'Inches', 'Position', [0, 0, 9, 9], 'PaperUnits', 
'Inches', 'PaperSize', [9, 9]) 
plot_google_map('maptype', 'hybrid','scale', 2, 'resize', 2) 
savefig([Filepath_do,file,'_drop_out_map.fig']) 
set(gcf,'renderer','zbuffer')  
export_fig([Filepath_do,file,'_drop_out_map.png']) 
  
close all 

 
%% Outliers 
[ outliers ] = Outliers( location, rd_wo_ma ); 
  
Filepath_out='C:\Users\nicholas.allen\OneDrive - North Dakota 
University System\UAS Research\Radar Analysis\Outlier Maps\'; 
  
plot(outliers(:,9),outliers(:,8),'.r','MarkerSize',10) 
h=ellipse(radii1, radii2,0, long,lat, 'b'); 
set(gca,'visible','off') 
set(gcf, 'Units', 'Inches', 'Position', [0, 0, 9, 9], 'PaperUnits', 
'Inches', 'PaperSize', [9, 9]) 
plot_google_map('maptype', 'hybrid','scale', 2, 'resize', 2) 
savefig([Filepath_out,file,'_outlier_map.fig']) 
set(gcf,'renderer','zbuffer')  
export_fig([Filepath_out,file,'_outlier_map.png']) 
  
close all 

 
%% Prolonged Altitude Failure 
[p_alt_failure_pre, p_alt_failure, p_alt_failure_time, 
alt_failure_summary, alt_failure_time_categorization ] = 
prolonged_alt_failure( rd_wo_ma, location ); 
  
%obtain lat and long values 
p_alt_lat_long=[]; 
for zz=1:length(p_alt_failure) 
p_alt_lat_long=[p_alt_lat_long;p_alt_failure{zz}(:,7:8)]; 
end 
  
Filepath_paf='C:\Users\nicholas.allen\OneDrive - North Dakota 
University System\UAS Research\Radar Analysis\Prolonged Altitude 
Failure Maps\'; 
  
if length(p_alt_lat_long)>=1 
plot(p_alt_lat_long(:,2),p_alt_lat_long(:,1),'.r','MarkerSize',10) 
h=ellipse(radii1, radii2,0, long,lat, 'b'); 
set(gca,'visible','off') 
set(gcf, 'Units', 'Inches', 'Position', [0, 0, 9, 9], 'PaperUnits', 
'Inches', 'PaperSize', [9, 9]) 
plot_google_map('maptype', 'hybrid','scale', 2, 'resize', 2) 
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savefig([Filepath_paf,file,'p_alt_failure_map.fig']) 
set(gcf,'renderer','zbuffer')  
export_fig([Filepath_paf,file,'p_alt_failure_map.png']) 
end 
  
close all 
 
 %% Store all data 
 counter=counter+1; 
 repeated_data_instances=size(repeated_data); 
 alt_failure_summary_size=size(alt_failure_summary); 
  
 if alt_failure_summary_size(1)==0 
     alt_failure_summary=cell(1,4); 
     alt_failure_summary{1}=0; 
     alt_failure_summary{2}=0; 
     alt_failure_summary{3}=0; 
     alt_failure_summary{4}=0; 
     alt_failure_time_categorization=cell(1,7); 
     alt_failure_time_categorization{1}=0; 
     alt_failure_time_categorization{2}=0; 
     alt_failure_time_categorization{3}=0; 
     alt_failure_time_categorization{4}=0; 
     alt_failure_time_categorization{5}=0; 
     alt_failure_time_categorization{6}=0; 
     alt_failure_time_categorization{7}=0; 
      
 end 
  
 if repeated_data_instances(1)>0 
 all_data=[all_data; ll, 3*ii, kk, count_planes(1), 
length(unique(data_do(:,1))), do_time_categorization{:,:}, 
drop_out_summary{:,:}, length(unique(outliers(:,1))), 
length(outliers(:,1)), alt_failure_time_categorization{:,:}, 
alt_failure_summary{:,:}, length(unique(multiple_aircraft(:,1))), 
length(unique(repeated_data(:,1))), repeated_data_instances(1)];   
elseif repeated_data_instances(1)==0 
 all_data=[all_data; ll, 3*ii, kk, count_planes(1), 
length(unique(data_do(:,1))), do_time_categorization{:,:}, 
drop_out_summary{:,:}, length(unique(outliers(:,1))), 
length(outliers(:,1)), alt_failure_time_categorization{:,:}, 
alt_failure_summary{:,:}, length(unique(multiple_aircraft(:,1))), 0, 
repeated_data_instances(1)];   
end 
  
 if counter==28 
     xlswrite('Summary of Fargo Data Anomalies.xlsx', all_data) 
 elseif counter==56 
     xlswrite('Summary of Fargo & Finley Data Anomalies.xlsx', 
all_data) 
 end 
  
 %% Save .mat file 
 matFileDir= 'C:\Users\nicholas.allen\OneDrive - North Dakota 
University System\UAS Research\Radar Analysis\mat Files\'; 
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 save([matFileDir,file, '.mat']) 
 disp('done data write') 
  
 % Clear variables 
 clearvars -except ii kk ll location all_data counter 
    end 
end 
end     
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Data Read 

function [ rd ] = Data_Read( filename) 
%This function reads in the data from the Excel sheets & creates the 
radar 
%data matrix with the required information in the matrix titled rd 
%   Location 1 is Fargo & Location 2 is Finley 
%   The output contains columns of the data in the following order: 
planeid, time, altitude, azimuth, range 
  
 planeid = xlsread(filename, 'A:A'); 
 time = xlsread(filename, 'B:B'); 
 altitude = xlsread(filename, 'C:C'); 
 azimuth = xlsread(filename, 'D:D'); 
 range = xlsread(filename, 'E:E'); 
 length1=length(planeid); 
 length2=length(altitude); 
 length3=length(time); 
 length4=length(azimuth); 
 length5=length(range); 
 length_comb=[length1, length2, length3, length4, length5]; 
 max_size=max(length_comb); 
 for i=1:5 
    diff=abs(max_size-length_comb(i)); 
    if diff>0 
        if i==1 
            planeid= [planeid; NaN(diff,1)]; 
        elseif i==2 
            altitude= [altitude; NaN(diff,1)]; 
        elseif i==3 
            time= [time; NaN(diff,1)];  
        elseif i==4 
            azimuth= [azimuth; NaN(diff,1)]; 
        elseif i==5 
            range= [range; NaN(diff,1)]; 
        end 
         
         
    end 
end 
  
rd= [planeid, time, altitude, azimuth, range];  
end 
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Multiple Aircraft and Repeated Data 

function [ multiple_aircraft_repeated_data, multiple_aircraft, 
repeated_data, rd_wo_ma ] = MARD( location, count_planes, rd_split, 
rd_sorted ) 
%This function identifies the plane ID's with multiple aircraft and 
%repeated data 
%   Inputs: location = location number defined previously in the 
script, count_planes=number of aircraft, rd_split=radar data split into 
a cell array, rd_sorted= radar data 
%   Outputs: multiple_aircraft_repeated_data= a combination of the 
multiple aircraft and repeated data, multiple_aircraft= data that has 
multiple aircraft, repeated_data= data that has repeated data, 
rd_wo_ma= radar data without multiple aircraft  
  
multiple_aircraft_repeated_data=[]; 
multiple_aircraft=[]; 
if location==1 
for kk=1:count_planes(1,1) 
      datapts=size(rd_split{kk}(:,2)); %Count how many data points 
there are for each aircraft 
      for ll=1:(datapts(1,1)-1) 
          delta_t_ma= rd_split{kk}(ll+1,2) - rd_split{kk}(ll,2); 
          delta_lat= rd_split{kk}(ll+1,7) - rd_split{kk}(ll,7); 
          delta_long= rd_split{kk}(ll+1,8) - rd_split{kk}(ll,8); 
          if rd_split{kk}(ll,1)==0 
              
multiple_aircraft=[multiple_aircraft;kk,rd_split{kk}(ll,:),delta_t_ma, 
delta_lat, delta_long]; 
          end 
          if delta_t_ma<3.8 
              
multiple_aircraft_repeated_data=[multiple_aircraft_repeated_data;kk,rd_
split{kk}(ll,:),delta_t_ma, delta_lat, delta_long]; 
              if abs(delta_lat)>0.012  
                  if abs(delta_long)>0.035  
                    
multiple_aircraft=[multiple_aircraft;kk,rd_split{kk}(ll,:),delta_t_ma, 
delta_lat, delta_long]; 
                  end 
              end 
          end 
      end 
end 
  
%Repeated Data 
repeated_data_potential=setdiff(multiple_aircraft_repeated_data, 
multiple_aircraft, 'rows'); 
  
    %Eliminate multiple aircraft from repeated data matrix 
    repeated_data=repeated_data_potential; 
    ma_unique=unique(multiple_aircraft(:,2)); 
    for qq=1:length(ma_unique) 
       repeated_data(any(repeated_data(:,2)==ma_unique(qq),2),:)=[];   
    end 
end 
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if location==2 
for kk=1:count_planes(1,1) 
      datapts=size(rd_split{kk}(:,2)); %Count how many data points 
there are for each aircraft 
      for ll=1:(datapts(1,1)-1) 
          delta_t_ma= rd_split{kk}(ll+1,2) - rd_split{kk}(ll,2); 
          delta_lat= rd_split{kk}(ll+1,7) - rd_split{kk}(ll,7); 
          delta_long= rd_split{kk}(ll+1,8) - rd_split{kk}(ll,8); 
          if delta_t_ma<10 
              
multiple_aircraft_repeated_data=[multiple_aircraft_repeated_data;kk,rd_
split{kk}(ll,:),delta_t_ma, delta_lat, delta_long]; 
              if abs(delta_lat)>0.016 
                  if abs(delta_long)>0.16 
                    
multiple_aircraft=[multiple_aircraft;kk,rd_split{kk}(ll,:),delta_t_ma, 
delta_lat, delta_long]; 
                  end 
              end 
          end 
      end 
end 
  
%Repeated Data 
repeated_data_potential=setdiff(multiple_aircraft_repeated_data, 
multiple_aircraft, 'rows'); 
  
    %Eliminate multiple aircraft from repeated data matrix 
    repeated_data=repeated_data_potential; 
    ma_unique=unique(multiple_aircraft(:,2)); 
    for qq=1:length(ma_unique) 
       repeated_data(any(repeated_data(:,2)==ma_unique(qq),2),:)=[];   
    end 
     
end 

 
% Sort out multiple aircraft from data 
  
%Find indices in drop out data that correspond to multiple aircraft 
indices=[]; 
for oo=1:length(ma_unique) 
        indices=[indices;find(rd_sorted(:,1)== ma_unique(oo))]; 
end 
  
rd_wo_ma_combined=rd_sorted; 
rd_wo_ma_combined(indices,:)=[]; %Remove indices that correspond to 
multiple aircraft 
  
%split data ==> splits rd_sorted matrix into a cell array based on the 
%aircraft ID number without multiple aircraft 
 rd_wo_ma=arrayfun(@(x) rd_wo_ma_combined(rd_wo_ma_combined(:,1) == x, 
:), unique(rd_wo_ma_combined(:,1)), 'uniformoutput',false); 
   
end 
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Drop Outs 

function [ data_do, drop_out_summary, do_time_categorization ] = 
DropOut( location, rd_wo_ma ) 
%This function identifies drop outs from the radar without the multiple 
%aircraft 
%   Inputs: location = location indicated by user (1 or 2, for Fargo or 
Finley), rd_wo_ma= radar data without multiple aircraft 
%   Outputs: data_do= drop out data, drop_out_summary=avg, min, max and 
%   total number of drop outs, do_time_categorization= time 
categorization of drop outs 
  
data_do=[]; 
   
  if location==1 
  for ii=1:length(rd_wo_ma) 
      datapts=size(rd_wo_ma{ii}(:,2)); %Count how many data points 
there are for each aircraft 
       
      for jj=1:(datapts(1,1)-1) 
          delta_t= rd_wo_ma{ii}(jj+1,2) - rd_wo_ma{ii}(jj,2); 
           
          if delta_t>5.5 && delta_t<300 
              
              
data_do=[data_do;ii,rd_wo_ma{ii}(jj,1),delta_t,rd_wo_ma{ii}(jj,2:3),rd_
wo_ma{ii}(jj,7:8)]; 
               
          end 
      end 
  end 
  end 
   
   
  if location==2 
  for ii=1:length(rd_wo_ma) 
      datapts=size(rd_wo_ma{ii}(:,2)); %Count how many data points 
there are for each aircraft 
     
      for jj=1:(datapts(1,1)-1) 
          delta_t= rd_wo_ma{ii}(jj+1,2) - rd_wo_ma{ii}(jj,2); 
                    if delta_t>13 && delta_t<400 
              
              
data_do=[data_do;ii,rd_wo_ma{ii}(jj,1),delta_t,rd_wo_ma{ii}(jj,2:3),rd_
wo_ma{ii}(jj,7:8)]; 
               
          end 
      end 
  end 
  end 
   
%% Categorize drop outs 
average_do=mean(data_do(:,3)); %average 
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min_do=min(data_do(:,3)); %minimum 
max_do=max(data_do(:,3)); %maximum 
total_do=length(data_do(:,3)); %total number of drop outs 
drop_out_summary=table(average_do, min_do, max_do, total_do); 

 
%Time interval classification 
do_count1=[]; 
do_count2=[]; 
do_count3=[]; 
do_count4=[]; 
do_count5=[]; 
do_count6=[]; 
do_count7=[]; 
  
if location==1 
for aa=1:length(data_do(:,3)) 
    if data_do(aa,3)<10 
        do_count1=[do_count1;data_do(aa,3)]; 
    elseif data_do(aa,3)>=10 && data_do(aa,3)<15 
         do_count2=[do_count2;data_do(aa,3)]; 
    elseif data_do(aa,3)>=15 && data_do(aa,3)<20 
         do_count3=[do_count3;data_do(aa,3)]; 
    elseif data_do(aa,3)>=20 && data_do(aa,3)<25 
         do_count4=[do_count4;data_do(aa,3)]; 
    elseif data_do(aa,3)>=25 && data_do(aa,3)<30 
         do_count5=[do_count5;data_do(aa,3)]; 
    elseif data_do(aa,3)>=30 && data_do(aa,3)<60 
         do_count6=[do_count6;data_do(aa,3)]; 
    elseif data_do(aa,3)>=60  
         do_count7=[do_count7;data_do(aa,3)]; 
    end 
end 
  
do_less10=length(do_count1); 
do_10_15=length(do_count2); 
do_15_20=length(do_count3); 
do_20_25=length(do_count4); 
do_25_30=length(do_count5); 
do_30_60=length(do_count6); 
do_greater60=length(do_count7); 
do_time_categorization= table(do_less10,do_10_15, do_15_20, do_20_25, 
do_25_30, do_30_60, do_greater60); 
end 
  
if location==2 
   for aa=1:length(data_do(:,3)) 
    if data_do(aa,3)<24 
        do_count1=[do_count1;data_do(aa,3)]; 
    elseif data_do(aa,3)>=24 && data_do(aa,3)<36 
         do_count2=[do_count2;data_do(aa,3)]; 
    elseif data_do(aa,3)>=36 && data_do(aa,3)<48 
         do_count3=[do_count3;data_do(aa,3)]; 
    elseif data_do(aa,3)>=48 && data_do(aa,3)<60 
         do_count4=[do_count4;data_do(aa,3)]; 
    elseif data_do(aa,3)>=60 && data_do(aa,3)<90 
         do_count5=[do_count5;data_do(aa,3)]; 
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    elseif data_do(aa,3)>=90 && data_do(aa,3)<120 
         do_count6=[do_count6;data_do(aa,3)]; 
    elseif data_do(aa,3)>=120  
         do_count7=[do_count7;data_do(aa,3)]; 
    end 
end 
  
do_less24=length(do_count1); 
do_24_36=length(do_count2); 
do_36_48=length(do_count3); 
do_48_60=length(do_count4); 
do_60_90=length(do_count5); 
do_90_120=length(do_count6); 
do_greater120=length(do_count7); 
do_time_categorization= table(do_less24,do_24_36, do_36_48, do_48_60, 
do_60_90, do_90_120, do_greater120); 
end 
  
  
end 
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Altitude Outliers 

function [ outliers ] = Outliers( location, rd_wo_ma ) 
%This function identifies drop outs from the radar without the multiple 
%aircraft 
%   Inputs: location = location indicated by user (1 or 2, for Fargo or 
Finley), rd_wo_ma= radar data without multiple aircraft 
%   Outputs: outliers= data with outliers, outlier_summary=average 
time, min time, max time, and number of outliers 
outlier_time_categorization= outliers categorized by time 
  
outliers=[]; 
rd_split_outliers=cell(length(rd_wo_ma),1); 
if location==1 
for bb=1:length(rd_wo_ma) 
      rows_to_last_row=size(rd_wo_ma{bb}(:,2)); 
      last_row=rd_wo_ma{bb}(rows_to_last_row(1,1),:); 
      rd_split_outliers{bb}=[rd_wo_ma{bb}(:,:);last_row]; 
      datapts=size(rd_split_outliers{bb}(:,2));%Count how many data 
points there are for each aircraft 
      if datapts(1,1)>2 
      for cc=1:(datapts(1,1)-2) 
          
          delta_t_out= rd_split_outliers{bb}(cc+1,2) - 
rd_split_outliers{bb}(cc,2); 
          delta_alt_out= rd_split_outliers{bb}(cc+1,3) - 
rd_split_outliers{bb}(cc,3); 
          delta_alt_out_prev= rd_split_outliers{bb}(cc+2,3) - 
rd_split_outliers{bb}(cc+1,3); 
           
          
          if delta_t_out>4 && delta_t_out<300 
             if delta_alt_out>800 || delta_alt_out<-800 
                  if abs(delta_alt_out_prev)<800  
                     
outliers=[outliers;bb,rd_split_outliers{bb}(cc,:),delta_alt_out,delta_a
lt_out_prev, delta_t_out]; 
                  end 
             end 
         end 
      end 
      end 
end 
end 
  
if location==2 
for bb=1:length(rd_wo_ma) 
      rows_to_last_row=size(rd_wo_ma{bb}(:,2)); 
      last_row=rd_wo_ma{bb}(rows_to_last_row(1,1),:); 
      rd_split_outliers{bb}=[rd_wo_ma{bb}(:,:);last_row]; 
      datapts=size(rd_split_outliers{bb}(:,2));%Count how many data 
points there are for each aircraft 
      if datapts(1,1)>2  
      for cc=1:(datapts(1,1)-2) 
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          delta_t_out= rd_split_outliers{bb}(cc+1,2) - 
rd_split_outliers{bb}(cc,2); 
          delta_alt_out= rd_split_outliers{bb}(cc+1,3) - 
rd_split_outliers{bb}(cc,3); 
          delta_alt_out_prev= rd_split_outliers{bb}(cc+2,3) - 
rd_split_outliers{bb}(cc+1,3); 
           
          if delta_t_out>10 && delta_t_out<400 
             if delta_alt_out>800 || delta_alt_out<-800 
                  if abs(delta_alt_out_prev)<800  
                     
outliers=[outliers;bb,rd_split_outliers{bb}(cc,:),delta_alt_out,delta_a
lt_out_prev, delta_t_out]; 
                  end 
             end 
          end 
      end 
      end 
end 
end 
  
if length(outliers)<1 
    outliers=[]; 
    return 
end 
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Prolonged Altitude Failure 

function [p_alt_failure_split_pre, p_alt_failure, p_alt_failure_time, 
alt_failure_summary, alt_failure_time_categorization  ] = 
prolonged_alt_failure( rd_wo_ma, location ) 
%This function finds all the prolonged altitude failures at 0ft 
%   Inputs: rd_wo_ma= radar data without multiple aircraft 
%   Outputs: p_alt_failure: data with prolonged altitude failure, 
%   p_alt_failure_time= time duration of failures, 
alt_failure_summary=avg, min, max and total number of alt failures, 
alt_failure_time_categorization= time categorization of alt failures 
  
start_stop=cell(length(rd_wo_ma),1); 
all_indices=cell(length(rd_wo_ma),1);  
p_alt_failure_pre=[]; 
for ii=1:length(rd_wo_ma) 
      datapts=size(rd_wo_ma{ii}(:,2)); %Count how many data points 
there are for each aircraft 
       
          alt= rd_wo_ma{ii}(:,3)'; 
          %logical array for when alt is equal to 0 ft 
          t_alt= (abs(alt) >= 1); 
          %Find the starting and ending indices and duration of the 
string of zeroes 
            d_alt = diff([1 t_alt 1]); 
            startIndex = find(d_alt < 0); 
            endIndex = find(d_alt > 0)-1; 
            duration = endIndex-startIndex+1; 
            %Find the strings of zeros with a duration greater than 2 
to indicate a prolonged altitude failure 
            stringIndex = (duration >= 2); 
            startIndex = startIndex(stringIndex); 
            endIndex = endIndex(stringIndex); 
            start_stop{ii}= [startIndex; endIndex]; 

 
            %Find indices corresponding to prolonged altitude failure 
            indices = zeros(1,max(endIndex)+1); 
            indices(startIndex) = 1; 
            indices(endIndex+1) = indices(endIndex+1)-1; 
            indices = find(cumsum(indices)); 
            all_indices{ii}=indices;           
            
           if length(endIndex)>=1 
                 for kk=1:length(endIndex) 
                      p_alt_failure_pre=[p_alt_failure_pre; 
rd_wo_ma{ii}(startIndex(kk):endIndex(kk),:)]; 
                 end 
           end 
end 
  
%Output matrix with altitude readings of 0ft 2 more times in a row 
p_alt_failure_split_pre=arrayfun(@(x) 
p_alt_failure_pre(p_alt_failure_pre(:,1) == x, :), 
unique(p_alt_failure_pre(:,1)), 'uniformoutput',false); 
  



91 
 

%Separate aircraft at different time of day & only include aircraft 
with 
%readings of 3 or more 0ft alt readings in a row 
p_alt_failure=[]; 
  
for mm=1:length(p_alt_failure_split_pre) 
    current_length=length(p_alt_failure); 
     
    time_diff=find(diff(p_alt_failure_split_pre{mm}(:,2))<300); 
    index=setdiff(1:(length(p_alt_failure_split_pre{mm}(:,2))-
1),time_diff); 
    index=[0, index, length(p_alt_failure_split_pre{mm}(:,2))]; 
        if length(index)>2  
            ind_count=length(index); 
                for hh = 1:(ind_count-1) 
                     
                    p_alt_failure{current_length+hh}= 
p_alt_failure_split_pre{mm}((index(hh)+1):index(hh+1),:); 
                end 
        else  
            
p_alt_failure{current_length+1}=p_alt_failure_split_pre{mm}(:,:); 
        end 
  
end 
for qq=1:length(p_alt_failure) 
    length_matrix=size(p_alt_failure{qq}); 
    if length_matrix(1)<3 
        p_alt_failure{qq}=[]; 
    end 
end 
  
%eliminate empty arrays 
TF=[]; 
for aa=1:length(p_alt_failure) 
TF=[TF; isempty(p_alt_failure{aa})]; 
end 
p_alt_failure=p_alt_failure(find(TF==0)); 
p_alt_failure=p_alt_failure'; 
  
 if length(p_alt_failure)<1 
     p_alt_failure=[]; 
     p_alt_failure_time=[]; 
     alt_failure_summary=[]; 
     alt_failure_time_categorization=[]; 
     return 
 end 
 
%Categorize by time interval & stats 
p_alt_failure_time=[]; 
 for mm=1:length(p_alt_failure) 
     points=length(p_alt_failure{mm}(:,1)); %Count how many data points 
there are for each aircraft 
     
p_alt_failure_time=[p_alt_failure_time;p_alt_failure{mm}(points,2)-
p_alt_failure{mm}(1,2)]; 
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 end 
  
alt_failures=p_alt_failure_time; 
average_alt_failure=mean(alt_failures(:,1)); %average 
min_alt_failure=min(alt_failures(:,1)); %minimum 
max_alt_failure=max(alt_failures(:,1)); %maximum 
total_alt_failures=length(alt_failures(:,1)); %total number of alt 
failure 
alt_failure_summary=table(average_alt_failure, min_alt_failure, 
max_alt_failure, total_alt_failures); 
  
%Time interval classification 
alt_failure_count1=[]; 
alt_failure_count2=[]; 
alt_failure_count3=[]; 
alt_failure_count4=[]; 
alt_failure_count5=[]; 
alt_failure_count6=[]; 
alt_failure_count7=[]; 
  
if location==1 
for aa=1:length(alt_failures(:,1)) 
    if alt_failures(aa,1)<10 
        alt_failure_count1=[alt_failure_count1;alt_failures(aa,1)]; 
    elseif alt_failures(aa,1)>=10 && alt_failures(aa,1)<15 
         alt_failure_count2=[alt_failure_count2;alt_failures(aa,1)]; 
    elseif alt_failures(aa,1)>=15 && alt_failures(aa,1)<20 
         alt_failure_count3=[alt_failure_count3;alt_failures(aa,1)]; 
    elseif alt_failures(aa,1)>=20 && alt_failures(aa,1)<25 
         alt_failure_count4=[alt_failure_count4;alt_failures(aa,1)]; 
    elseif alt_failures(aa,1)>=25 && alt_failures(aa,1)<30 
         alt_failure_count5=[alt_failure_count5;alt_failures(aa,1)]; 
    elseif alt_failures(aa,1)>=30 && alt_failures(aa,1)<60 
         alt_failure_count6=[alt_failure_count6;alt_failures(aa,1)]; 
    elseif alt_failures(aa,1)>=60  
         alt_failure_count7=[alt_failure_count7;alt_failures(aa,1)]; 
    end 
end 
  
alt_failure_less10=length(alt_failure_count1); 
alt_failure_10_15=length(alt_failure_count2); 
alt_failure_15_20=length(alt_failure_count3); 
alt_failure_20_25=length(alt_failure_count4); 
alt_failure_25_30=length(alt_failure_count5); 
alt_failure_30_60=length(alt_failure_count6); 
alt_failure_greater60=length(alt_failure_count7); 
alt_failure_time_categorization= 
table(alt_failure_less10,alt_failure_10_15, alt_failure_15_20, 
alt_failure_20_25, alt_failure_25_30, alt_failure_30_60, 
alt_failure_greater60); 
end 
  
if location==2 
   for aa=1:length(alt_failures(:,1)) 
    if alt_failures(aa,1)<24 
        alt_failure_count1=[alt_failure_count1;alt_failures(aa,1)]; 
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    elseif alt_failures(aa,1)>=24 && alt_failures(aa,1)<36 
         alt_failure_count2=[alt_failure_count2;alt_failures(aa,1)]; 
    elseif alt_failures(aa,1)>=36 && alt_failures(aa,1)<48 
         alt_failure_count3=[alt_failure_count3;alt_failures(aa,1)]; 
    elseif alt_failures(aa,1)>=48 && alt_failures(aa,1)<60 
         alt_failure_count4=[alt_failure_count4;alt_failures(aa,1)]; 
    elseif alt_failures(aa,1)>=60 && alt_failures(aa,1)<90 
         alt_failure_count5=[alt_failure_count5;alt_failures(aa,1)]; 
    elseif alt_failures(aa,1)>=90 && alt_failures(aa,1)<120 
         alt_failure_count6=[alt_failure_count6;alt_failures(aa,1)]; 
    elseif alt_failures(aa,1)>=120  
         alt_failure_count7=[alt_failure_count7;alt_failures(aa,1)]; 
    end 
end 
  
alt_failure_less24=length(alt_failure_count1); 
alt_failure_24_36=length(alt_failure_count2); 
alt_failure_36_48=length(alt_failure_count3); 
alt_failure_48_60=length(alt_failure_count4); 
alt_failure_60_90=length(alt_failure_count5); 
alt_failure_90_120=length(alt_failure_count6); 
alt_failure_greater120=length(alt_failure_count7); 
alt_failure_time_categorization= 
table(alt_failure_less24,alt_failure_24_36, alt_failure_36_48, 
alt_failure_48_60, alt_failure_60_90, alt_failure_90_120, 
alt_failure_greater120); 
end 
  
end 
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Plot Google Map 

function varargout = plot_google_map(varargin) 
% function h = plot_google_map(varargin) 
% Plots a google map on the current axes using the Google Static Maps 
API 
% 
% USAGE: 
% h = plot_google_map(Property, Value,...) 
% Plots the map on the given axes. Used also if no output is specified 
% 
% Or: 
% [lonVec latVec imag] = plot_google_map(Property, Value,...) 
% Returns the map without plotting it 
% 
% PROPERTIES: 
%    Axis           - Axis handle. If not given, gca is used. 
%    Height (640)   - Height of the image in pixels (max 640) 
%    Width  (640)   - Width of the image in pixels (max 640) 
%    Scale (2)      - (1/2) Resolution scale factor. Using Scale=2 will 
%                     double the resulotion of the downloaded image (up 
%                     to 1280x1280) and will result in finer rendering, 
%                     but processing time will be longer. 
%    Resize (1)     - (recommended 1-2) Resolution upsampling factor.  
%                     Increases image resolution using imresize(). This 
results 
%                     in a finer image but it needs the image 
processing 
%                     toolbox and processing time will be longer. 
%    MapType        - ('roadmap') Type of map to return. Any of 
[roadmap,  
%                     satellite, terrain, hybrid]. See the Google Maps 
API for 
%                     more information.  
%    Alpha (1)      - (0-1) Transparency level of the map (0 is fully 
%                     transparent). While the map is always moved to 
the 
%                     bottom of the plot (i.e. will not hide previously 
%                     drawn items), this can be useful in order to 
increase 
%                     readability if many colors are plotted  
%                     (using SCATTER for example). 
%    ShowLabels (1) - (0/1) Controls whether to display city/street 
textual labels on the map 
%    Style          - (string) A style configuration string. See: 
%                     
https://developers.google.com/maps/documentation/static-
maps/?csw=1#StyledMaps 
%                     http://instrument.github.io/styled-maps-wizard/ 
%    Language       - (string) A 2 letter ISO 639-1 language code for 
displaying labels in a  
%                     local language instead of English (where 
available). 
%                     For example, for Chinese use: 
%                     plot_google_map('language','zh') 
%                     For the list of codes, see: 
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%                     http://en.wikipedia.org/wiki/List_of_ISO_639-
1_codes 
%    Marker         - The marker argument is a text string with fields 
%                     conforming to the Google Maps API. The 
%                     following are valid examples: 
%                     '43.0738740,-70.713993' (default midsize orange 
marker) 
%                     '43.0738740,-70.713993,blue' (midsize blue 
marker) 
%                     '43.0738740,-70.713993,yellowa' (midsize yellow 
%                     marker with label "A") 
%                     '43.0738740,-70.713993,tinyredb' (tiny red marker 
%                     with label "B") 
%    Refresh (1)    - (0/1) defines whether to automatically refresh 
the 
%                     map upon zoom/pan action on the figure. 
%    AutoAxis (1)   - (0/1) defines whether to automatically adjust the 
axis 
%                     of the plot to avoid the map being stretched. 
%                     This will adjust the span to be correct 
%                     according to the shape of the map axes. 
%    FigureResizeUpdate (1) - (0/1) defines whether to automatically 
refresh the 
%                     map upon resizing the figure. This will ensure 
map 
%                     isn't stretched after figure resize. 
%    APIKey         - (string) set your own API key which you obtained 
from Google:  
%                     
http://developers.google.com/maps/documentation/staticmaps/#api_key 
%                     This will enable up to 25,000 map requests per 
day,  
%                     compared to a few hundred requests without a key.  
%                     To set the key, use: 
%                     
plot_google_map('APIKey','SomeLongStringObtaindFromGoogle') 
%                     You need to do this only once to set the key. 
%                     To disable the use of a key, use: 
%                     plot_google_map('APIKey','') 
% 
% OUTPUT: 
%    h              - Handle to the plotted map 
% 
%    lonVect        - Vector of Longidute coordinates (WGS84) of the 
image  
%    latVect        - Vector of Latidute coordinates (WGS84) of the 
image  
%    imag           - Image matrix (height,width,3) of the map 
% 
% EXAMPLE - plot a map showing some capitals in Europe: 
%    lat = [48.8708   51.5188   41.9260   40.4312   52.523   37.982]; 
%    lon = [2.4131    -0.1300    12.4951   -3.6788    13.415   23.715]; 
%    plot(lon,lat,'.r','MarkerSize',20) 
%    plot_google_map 
% 
% References: 
%  http://www.mathworks.com/matlabcentral/fileexchange/24113 
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%  http://www.maptiler.org/google-maps-coordinates-tile-bounds-
projection/ 
%  http://developers.google.com/maps/documentation/staticmaps/ 
% 
% Acknowledgements: 
%  Val Schmidt for his submission of get_google_map.m 
% 
% Author: 
%  Zohar Bar-Yehuda 
% 
% Version 1.8 - 25/04/2016 - By Hannes Diethelm 
%       - Add resize parameter to resize image using imresize() 
%       - Fix scale parameter 
% Version 1.7 - 14/04/2016 
%       - Add custom style support 
% Version 1.6 - 12/11/2015 
%       - Use system temp folder for writing image files (with fallback 
to current dir if missing write permissions) 
% Version 1.5 - 20/11/2014 
%       - Support for MATLAB R2014b 
%       - several fixes for complex layouts: several maps in one 
figure,  
%         map inside a panel, specifying axis handle as input (thanks 
to Luke Plausin) 
% Version 1.4 - 25/03/2014 
%       - Added the language parameter for showing labels in a local 
language 
%       - Display the URL on error to allow easier debugging of API 
errors 
% Version 1.3 - 06/10/2013 
%       - Improved functionality of AutoAxis, which now handles any 
shape of map axes.  
%         Now also updates the extent of the map if the figure is 
resized. 
%       - Added the showLabels parameter which allows hiding the 
textual labels on the map. 
% Version 1.2 - 16/06/2012 
%       - Support use of the "scale=2" parameter by default for finer 
rendering (set scale=1 if too slow). 
%       - Auto-adjust axis extent so the map isn't stretched. 
%       - Set and use an API key which enables a much higher usage 
volume per day. 
% Version 1.1 - 25/08/2011 
  
persistent apiKey useTemp 
if isnumeric(apiKey) 
    % first run, check if API key file exists 
    if exist('api_key.mat','file') 
        load api_key 
    else 
        apiKey = ''; 
    end 
end 
  
if isempty(useTemp) 
    % first run, check if we have wrtie access to the temp folder 
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    try  
        tempfilename = tempname; 
        fid = fopen(tempfilename, 'w'); 
        if fid > 0 
            fclose(fid); 
            useTemp = true; 
            delete(tempfilename); 
        else 
            % Don't have write access to temp folder or it doesn't 
exist, fallback to current dir 
            useTemp = false; 
        end 
    catch 
        % in case tempname fails for some reason 
        useTemp = false; 
    end 
end 
  
hold on 
  
% Default parametrs 
axHandle = gca; 
height = 640; 
width = 640; 
scale = 2; 
resize = 1; 
maptype = 'roadmap'; 
alphaData = 1; 
autoRefresh = 1; 
figureResizeUpdate = 1; 
autoAxis = 1; 
showLabels = 1; 
language = ''; 
markeridx = 1; 
markerlist = {}; 
style = ''; 
  
% Handle input arguments 
if nargin >= 2 
    for idx = 1:2:length(varargin) 
        switch lower(varargin{idx}) 
            case 'axis' 
                axHandle = varargin{idx+1}; 
            case 'height' 
                height = varargin{idx+1}; 
            case 'width' 
                width = varargin{idx+1}; 
            case 'scale' 
                scale = round(varargin{idx+1}); 
                if scale < 1 || scale > 2 
                    error('Scale must be 1 or 2'); 
                end 
            case 'resize' 
                resize = varargin{idx+1}; 
            case 'maptype' 
                maptype = varargin{idx+1}; 
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            case 'alpha' 
                alphaData = varargin{idx+1}; 
            case 'refresh' 
                autoRefresh = varargin{idx+1}; 
            case 'showlabels' 
                showLabels = varargin{idx+1}; 
            case 'figureresizeupdate' 
                figureResizeUpdate = varargin{idx+1}; 
            case 'language' 
                language = varargin{idx+1}; 
            case 'marker' 
                markerlist{markeridx} = varargin{idx+1}; 
                markeridx = markeridx + 1; 
            case 'autoaxis' 
                autoAxis = varargin{idx+1}; 
            case 'apikey' 
                apiKey = varargin{idx+1}; % set new key 
                % save key to file 
                funcFile = which('plot_google_map.m'); 
                pth = fileparts(funcFile); 
                keyFile = fullfile(pth,'api_key.mat'); 
                save(keyFile,'apiKey') 
            case 'style' 
                style = varargin{idx+1}; 
            otherwise 
                error(['Unrecognized variable: ' varargin{idx}]) 
        end 
    end 
end 
if height > 640 
    height = 640; 
end 
if width > 640 
    width = 640; 
end 
  
% Store paramters in axis handle (for auto refresh callbacks) 
ud = get(axHandle, 'UserData'); 
if isempty(ud) 
    % explicitly set as struct to avoid warnings 
    ud = struct; 
end 
ud.gmap_params = varargin; 
set(axHandle, 'UserData', ud); 
  
curAxis = axis(axHandle); 
if max(abs(curAxis)) > 500 || curAxis(3) > 90 || curAxis(4) < -90 
    warning('Axis limits are not reasonable for WGS1984, ignoring. 
Please make sure your plotted data in WGS1984 coordinates,') 
    return; 
end     
  
% Enforce Latitude constraints of EPSG:900913  
if curAxis(3) < -85 
    curAxis(3) = -85; 
end 
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if curAxis(4) > 85 
    curAxis(4) = 85; 
end 
% Enforce longitude constrains 
if curAxis(1) < -180 
    curAxis(1) = -180; 
end 
if curAxis(1) > 180 
    curAxis(1) = 0; 
end 
if curAxis(2) > 180 
    curAxis(2) = 180; 
end 
if curAxis(2) < -180 
    curAxis(2) = 0; 
end 
  
if isequal(curAxis,[0 1 0 1]) % probably an empty figure 
    % display world map 
    curAxis = [-200 200 -85 85]; 
    axis(curAxis) 
end 
  
  
if autoAxis 
    % adjust current axis limit to avoid strectched maps 
    [xExtent,yExtent] = latLonToMeters(curAxis(3:4), curAxis(1:2) ); 
    xExtent = diff(xExtent); % just the size of the span 
    yExtent = diff(yExtent);  
    % get axes aspect ratio 
    drawnow 
    org_units = get(axHandle,'Units'); 
    set(axHandle,'Units','Pixels') 
    ax_position = get(axHandle,'position');         
    set(axHandle,'Units',org_units) 
    aspect_ratio = ax_position(4) / ax_position(3); 
     
    if xExtent*aspect_ratio > yExtent         
        centerX = mean(curAxis(1:2)); 
        centerY = mean(curAxis(3:4)); 
        spanX = (curAxis(2)-curAxis(1))/2; 
        spanY = (curAxis(4)-curAxis(3))/2; 
        
        % enlarge the Y extent 
        spanY = spanY*xExtent*aspect_ratio/yExtent; % new span 
        if spanY > 85 
            spanX = spanX * 85 / spanY; 
            spanY = spanY * 85 / spanY; 
        end 
        curAxis(1) = centerX-spanX; 
        curAxis(2) = centerX+spanX; 
        curAxis(3) = centerY-spanY; 
        curAxis(4) = centerY+spanY; 
    elseif yExtent > xExtent*aspect_ratio 
         
        centerX = mean(curAxis(1:2)); 
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        centerY = mean(curAxis(3:4)); 
        spanX = (curAxis(2)-curAxis(1))/2; 
        spanY = (curAxis(4)-curAxis(3))/2; 
        % enlarge the X extent 
        spanX = spanX*yExtent/(xExtent*aspect_ratio); % new span 
        if spanX > 180 
            spanY = spanY * 180 / spanX; 
            spanX = spanX * 180 / spanX; 
        end 
         
        curAxis(1) = centerX-spanX; 
        curAxis(2) = centerX+spanX; 
        curAxis(3) = centerY-spanY; 
        curAxis(4) = centerY+spanY; 
    end             
    % Enforce Latitude constraints of EPSG:900913 
    if curAxis(3) < -85 
        curAxis(3:4) = curAxis(3:4) + (-85 - curAxis(3)); 
    end 
    if curAxis(4) > 85 
        curAxis(3:4) = curAxis(3:4) + (85 - curAxis(4)); 
    end 
    axis(axHandle, curAxis); % update axis as quickly as possible, 
before downloading new image 
    drawnow 
end 
  
% Delete previous map from plot (if exists) 
if nargout <= 1 % only if in plotting mode 
    curChildren = get(axHandle,'children'); 
    map_objs = findobj(curChildren,'tag','gmap'); 
    bd_callback = []; 
    for idx = 1:length(map_objs) 
        if ~isempty(get(map_objs(idx),'ButtonDownFcn')) 
            % copy callback properties from current map 
            bd_callback = get(map_objs(idx),'ButtonDownFcn'); 
        end 
    end 
    delete(map_objs) 
     
end 
  
% Calculate zoom level for current axis limits 
[xExtent,yExtent] = latLonToMeters(curAxis(3:4), curAxis(1:2) ); 
minResX = diff(xExtent) / width; 
minResY = diff(yExtent) / height; 
minRes = max([minResX minResY]); 
tileSize = 256; 
initialResolution = 2 * pi * 6378137 / tileSize; % 156543.03392804062 
for tileSize 256 pixels 
zoomlevel = floor(log2(initialResolution/minRes)); 
  
% Enforce valid zoom levels 
if zoomlevel < 0  
    zoomlevel = 0; 
end 
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if zoomlevel > 19  
    zoomlevel = 19; 
end 
  
% Calculate center coordinate in WGS1984 
lat = (curAxis(3)+curAxis(4))/2; 
lon = (curAxis(1)+curAxis(2))/2; 
  
% Construct query URL 
preamble = 'http://maps.googleapis.com/maps/api/staticmap'; 
location = ['?center=' num2str(lat,10) ',' num2str(lon,10)]; 
zoomStr = ['&zoom=' num2str(zoomlevel)]; 
sizeStr = ['&scale=' num2str(scale) '&size=' num2str(width) 'x' 
num2str(height)]; 
maptypeStr = ['&maptype=' maptype ]; 
if ~isempty(apiKey) 
    keyStr = ['&key=' apiKey]; 
else 
    keyStr = ''; 
end 
markers = '&markers='; 
for idx = 1:length(markerlist) 
    if idx < length(markerlist) 
        markers = [markers markerlist{idx} '%7C']; 
    else 
        markers = [markers markerlist{idx}]; 
    end 
end 
  
if showLabels == 0 
    if ~isempty(style) 
        style(end+1) = '|'; 
    end 
    style = [style 'feature:all|element:labels|visibility:off']; 
end 
  
if ~isempty(language) 
    languageStr = ['&language=' language]; 
else 
    languageStr = ''; 
end 
     
if ismember(maptype,{'satellite','hybrid'}) 
    filename = 'tmp.jpg'; 
    format = '&format=jpg'; 
    convertNeeded = 0; 
else 
    filename = 'tmp.png'; 
    format = '&format=png'; 
    convertNeeded = 1; 
end 
sensor = '&sensor=false'; 
  
if ~isempty(style) 
    styleStr = ['&style=' style]; 
else 
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    styleStr = ''; 
end 
  
url = [preamble location zoomStr sizeStr maptypeStr format markers 
languageStr sensor keyStr styleStr]; 
  
% Get the image 
if useTemp 
    filepath = fullfile(tempdir, filename); 
else 
    filepath = filename; 
end 
  
try 
    urlwrite(url,filepath); 
catch % error downloading map 
    warning(['Unable to download map form Google Servers.\n' ... 
        'Matlab error was: %s\n\n' ... 
        'Possible reasons: missing write permissions, no network 
connection, quota exceeded, or some other error.\n' ... 
        'Consider using an API key if quota problems persist.\n\n' ... 
        'To debug, try pasting the following URL in your browser, which 
may result in a more informative error:\n%s'], lasterr, url); 
    varargout{1} = []; 
    varargout{2} = []; 
    varargout{3} = []; 
    return 
end 
  
[M, Mcolor] = imread(filepath); 
Mcolor = uint8(Mcolor * 255); 
%M = cast(M,'double'); 
delete(filepath); % delete temp file 
width = size(M,2); 
height = size(M,1); 
  
% We now want to convert the image from a colormap image with an uneven 
% mesh grid, into an RGB truecolor image with a uniform grid. 
% This would enable displaying it with IMAGE, instead of PCOLOR. 
% Advantages are: 
% 1) faster rendering 
% 2) makes it possible to display together with other colormap 
annotations (PCOLOR, SCATTER etc.) 
  
% Convert image from colormap type to RGB truecolor (if PNG is used) 
if convertNeeded 
    imag = zeros(height,width,3, 'uint8'); 
    for idx = 1:3 
        cur_map = Mcolor(:,idx); 
        imag(:,:,idx) = reshape(cur_map(M+1),height,width); 
    end 
else 
    imag = M; 
end 
% Resize if needed 
if resize ~= 1 
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    imag = imresize(imag, resize, 'bilinear'); 
end 
  
% Calculate a meshgrid of pixel coordinates in EPSG:900913 
width = size(imag,2); 
height = size(imag,1); 
centerPixelY = round(height/2); 
centerPixelX = round(width/2); 
[centerX,centerY] = latLonToMeters(lat, lon ); % center coordinates in 
EPSG:900913 
curResolution = initialResolution / 2^zoomlevel / scale / resize; % 
meters/pixel (EPSG:900913) 
xVec = centerX + ((1:width)-centerPixelX) * curResolution; % x vector 
yVec = centerY + ((height:-1:1)-centerPixelY) * curResolution; % y 
vector 
[xMesh,yMesh] = meshgrid(xVec,yVec); % construct meshgrid  
  
% convert meshgrid to WGS1984 
[lonMesh,latMesh] = metersToLatLon(xMesh,yMesh); 
  
% Next, project the data into a uniform WGS1984 grid 
uniHeight = round(height*resize); 
uniWidth = round(width*resize); 
latVect = linspace(latMesh(1,1),latMesh(end,1),uniHeight); 
lonVect = linspace(lonMesh(1,1),lonMesh(1,end),uniWidth); 
[uniLonMesh,uniLatMesh] = meshgrid(lonVect,latVect); 
uniImag = zeros(uniHeight,uniWidth,3); 
  
% Fast Interpolation to uniform grid 
uniImag =  myTurboInterp2(lonMesh,latMesh,imag,uniLonMesh,uniLatMesh); 
  
if nargout <= 1 % plot map 
    % display image 
    hold(axHandle, 'on'); 
    cax = caxis; 
    h = image(lonVect,latVect,uniImag, 'Parent', axHandle); 
    caxis(cax); % Preserve caxis that is sometimes changed by the call 
to image() 
    set(axHandle,'YDir','Normal') 
    set(h,'tag','gmap') 
    set(h,'AlphaData',alphaData) 
     
    % add a dummy image to allow pan/zoom out to x2 of the image extent 
    h_tmp = image(lonVect([1 end]),latVect([1 
end]),zeros(2),'Visible','off', 'Parent', axHandle); 
    set(h_tmp,'tag','gmap') 
    
    uistack(h,'bottom') % move map to bottom (so it doesn't hide 
previously drawn annotations) 
    axis(axHandle, curAxis) % restore original zoom 
    if nargout == 1 
        varargout{1} = h; 
    end 
     
    % if auto-refresh mode - override zoom callback to allow autumatic  
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    % refresh of map upon zoom actions. 
    figHandle = axHandle; 
    while ~strcmpi(get(figHandle, 'Type'), 'figure') 
        % Recursively search for parent figure in case axes are in a 
panel 
        figHandle = get(figHandle, 'Parent'); 
    end 
     
    zoomHandle = zoom(axHandle);    
    panHandle = pan(figHandle); % This isn't ideal, doesn't work for 
contained axis     
    if autoRefresh         
        set(zoomHandle,'ActionPostCallback',@update_google_map);           
        set(panHandle, 'ActionPostCallback', @update_google_map);         
    else % disable zoom override 
        set(zoomHandle,'ActionPostCallback',[]); 
        set(panHandle, 'ActionPostCallback',[]); 
    end 
     
    % set callback for figure resize function, to update extents if 
figure 
    % is streched. 
    if figureResizeUpdate &&isempty(get(figHandle, 'ResizeFcn')) 
        % set only if not already set by someone else 
        set(figHandle, 'ResizeFcn', @update_google_map_fig);        
    end     
     
    % set callback properties  
    set(h,'ButtonDownFcn',bd_callback); 
else % don't plot, only return map 
    varargout{1} = lonVect; 
    varargout{2} = latVect; 
    varargout{3} = uniImag; 
end 
  
  
% Coordinate transformation functions 
  
function [lon,lat] = metersToLatLon(x,y) 
% Converts XY point from Spherical Mercator EPSG:900913 to lat/lon in 
WGS84 Datum 
originShift = 2 * pi * 6378137 / 2.0; % 20037508.342789244 
lon = (x ./ originShift) * 180; 
lat = (y ./ originShift) * 180; 
lat = 180 / pi * (2 * atan( exp( lat * pi / 180)) - pi / 2); 
  
function [x,y] = latLonToMeters(lat, lon ) 
% Converts given lat/lon in WGS84 Datum to XY in Spherical Mercator 
EPSG:900913" 
originShift = 2 * pi * 6378137 / 2.0; % 20037508.342789244 
x = lon * originShift / 180; 
y = log(tan((90 + lat) * pi / 360 )) / (pi / 180); 
y = y * originShift / 180; 
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function ZI = myTurboInterp2(X,Y,Z,XI,YI) 
% An extremely fast nearest neighbour 2D interpolation, assuming both 
input 
% and output grids consist only of squares, meaning: 
% - uniform X for each column 
% - uniform Y for each row 
XI = XI(1,:); 
X = X(1,:); 
YI = YI(:,1); 
Y = Y(:,1); 
  
xiPos = nan*ones(size(XI)); 
xLen = length(X); 
yiPos = nan*ones(size(YI)); 
yLen = length(Y); 
% find x conversion 
xPos = 1; 
for idx = 1:length(xiPos) 
    if XI(idx) >= X(1) && XI(idx) <= X(end) 
        while xPos < xLen && X(xPos+1)<XI(idx) 
            xPos = xPos + 1; 
        end 
        diffs = abs(X(xPos:xPos+1)-XI(idx)); 
        if diffs(1) < diffs(2) 
            xiPos(idx) = xPos; 
        else 
            xiPos(idx) = xPos + 1; 
        end 
    end 
end 
% find y conversion 
yPos = 1; 
for idx = 1:length(yiPos) 
    if YI(idx) <= Y(1) && YI(idx) >= Y(end) 
        while yPos < yLen && Y(yPos+1)>YI(idx) 
            yPos = yPos + 1; 
        end 
        diffs = abs(Y(yPos:yPos+1)-YI(idx)); 
        if diffs(1) < diffs(2) 
            yiPos(idx) = yPos; 
        else 
            yiPos(idx) = yPos + 1; 
        end 
    end 
end 
ZI = Z(yiPos,xiPos,:); 
  
  
function update_google_map(obj,evd) 
% callback function for auto-refresh 
drawnow; 
try 
    axHandle = evd.Axes; 
catch ex 
    % Event doesn't contain the correct axes. Panic! 
    axHandle = gca; 
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end 
ud = get(axHandle, 'UserData'); 
if isfield(ud, 'gmap_params') 
    params = ud.gmap_params; 
    plot_google_map(params{:}); 
end 
  
  
function update_google_map_fig(obj,evd) 
% callback function for auto-refresh 
drawnow; 
axes_objs = findobj(get(gcf,'children'),'type','axes'); 
for idx = 1:length(axes_objs) 
    if ~isempty(findobj(get(axes_objs(idx),'children'),'tag','gmap')); 
        ud = get(axes_objs(idx), 'UserData'); 
        if isfield(ud, 'gmap_params') 
            params = ud.gmap_params; 
        else 
            params = {}; 
        end 
         
        % Add axes to inputs if needed 
        if ~sum(strcmpi(params, 'Axis')) 
            params = [params, {'Axis', axes_objs(idx)}]; 
        end 
        plot_google_map(params{:}); 
    end 
end 
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Draw Ellipse 

function h=ellipse(ra,rb,ang,x0,y0,C,Nb) 
% Ellipse adds ellipses to the current plot 
% 
% ELLIPSE(ra,rb,ang,x0,y0) adds an ellipse with semimajor axis of ra, 
% a semimajor axis of radius rb, a semimajor axis of ang, centered at 
% the point x0,y0. 
% 
% The length of ra, rb, and ang should be the same.  
% If ra is a vector of length L and x0,y0 scalars, L ellipses 
% are added at point x0,y0. 
% If ra is a scalar and x0,y0 vectors of length M, M ellipse are with 
the same  
% radii are added at the points x0,y0. 
% If ra, x0, y0 are vectors of the same length L=M, M ellipses are 
added. 
% If ra is a vector of length L and x0, y0 are  vectors of length 
% M~=L, L*M ellipses are added, at each point x0,y0, L ellipses of 
radius ra. 
% 
% ELLIPSE(ra,rb,ang,x0,y0,C) 
% adds ellipses of color C. C may be a string ('r','b',...) or the RGB 
value.  
% If no color is specified, it makes automatic use of the colors 
specified by  
% the axes ColorOrder property. For several circles C may be a vector. 
% 
% ELLIPSE(ra,rb,ang,x0,y0,C,Nb), Nb specifies the number of points 
% used to draw the ellipse. The default value is 300. Nb may be used 
% for each ellipse individually. 
% 
% h=ELLIPSE(...) returns the handles to the ellipses. 
% 
% as a sample of how ellipse works, the following produces a red 
ellipse 
% tipped up at a 45 deg axis from the x axis 
% ellipse(1,2,pi/8,1,1,'r') 
% 
% note that if ra=rb, ELLIPSE plots a circle 
% 
  
% written by D.G. Long, Brigham Young University, based on the 
% CIRCLES.m original  
% written by Peter Blattner, Institute of Microtechnology, University 
of  
% Neuchatel, Switzerland, blattner@imt.unine.ch 
  
  
% Check the number of input arguments  
  
if nargin<1, 
  ra=[]; 
end; 
if nargin<2, 
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  rb=[]; 
end; 
if nargin<3, 
  ang=[]; 
end; 
  
%if nargin==1, 
%  error('Not enough arguments'); 
%end; 
  
if nargin<5, 
  x0=[]; 
  y0=[]; 
end; 
  
if nargin<6, 
  C=[]; 
end 
  
if nargin<7, 
  Nb=[]; 
end 
  
% set up the default values 
  
if isempty(ra),ra=1;end; 
if isempty(rb),rb=1;end; 
if isempty(ang),ang=0;end; 
if isempty(x0),x0=0;end; 
if isempty(y0),y0=0;end; 
if isempty(Nb),Nb=300;end; 
if isempty(C),C=get(gca,'colororder');end; 
  
% work on the variable sizes 
  
x0=x0(:); 
y0=y0(:); 
ra=ra(:); 
rb=rb(:); 
ang=ang(:); 
Nb=Nb(:); 
  
if isstr(C),C=C(:);end; 
  
if length(ra)~=length(rb), 
  error('length(ra)~=length(rb)'); 
end; 
if length(x0)~=length(y0), 
  error('length(x0)~=length(y0)'); 
end; 
  
% how many inscribed elllipses are plotted 
  
if length(ra)~=length(x0) 
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  maxk=length(ra)*length(x0); 
else 
  maxk=length(ra); 
end; 
  
% drawing loop 
  
for k=1:maxk 
   
  if length(x0)==1 
    xpos=x0; 
    ypos=y0; 
    radm=ra(k); 
    radn=rb(k); 
    if length(ang)==1 
      an=ang; 
    else 
      an=ang(k); 
    end; 
  elseif length(ra)==1 
    xpos=x0(k); 
    ypos=y0(k); 
    radm=ra; 
    radn=rb; 
    an=ang; 
  elseif length(x0)==length(ra) 
    xpos=x0(k); 
    ypos=y0(k); 
    radm=ra(k); 
    radn=rb(k); 
    an=ang(k) 
  else 
    rada=ra(fix((k-1)/size(x0,1))+1); 
    radb=rb(fix((k-1)/size(x0,1))+1); 
    an=ang(fix((k-1)/size(x0,1))+1); 
    xpos=x0(rem(k-1,size(x0,1))+1); 
    ypos=y0(rem(k-1,size(y0,1))+1); 
  end; 
  
  co=cos(an); 
  si=sin(an); 
  the=linspace(0,2*pi,Nb(rem(k-1,size(Nb,1))+1,:)+1); 
%  x=radm*cos(the)*co-si*radn*sin(the)+xpos; 
%  y=radm*cos(the)*si+co*radn*sin(the)+ypos; 
  h(k)=line(radm*cos(the)*co-
si*radn*sin(the)+xpos,radm*cos(the)*si+co*radn*sin(the)+ypos); 
  set(h(k),'color',C(rem(k-1,size(C,1))+1,:)); 
  
end; 
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Overlapping Analysis 

clear all 
close all 
clc 
  
counter=0; 
all_data_overlap=[]; 
%% Read in data 
addpath('mat Files') 
for ii=1:4 
    for kk=1:7 
        if 3*ii<10 
            Date= ['2015.0', num2str(3*ii), '.0', num2str(kk)] 
        else 
            Date= ['2015.', num2str(3*ii), '.0', num2str(kk)] 
        end 
         
Fargo_data=load(['Short_Merged_', Date,'_', 'Fargo.mat']); 
Finley_data=load(['Short_Merged_', Date,'_', 'Finley.mat']); 
  
%% Drop Outs 
  
%Load Data 
Fargo_do=Fargo_data.data_do; 
Finley_do=Finley_data.data_do; 
  
%Find all the ID numbers that experienced drop outs  
Finley_unique_do=unique(Finley_do(:,2),'rows','sorted'); 
Fargo_unique_do=unique(Fargo_do(:,2),'rows','sorted'); 
  
%Compare Finley to Fargo data 
do_logical_same_ID_Fargo=ismember(Fargo_do(:,2),Finley_unique_do); 
do_Fargo_same_ID=Fargo_do(do_logical_same_ID_Fargo==1,:); 
Fargo_do_size=size(do_Fargo_same_ID); 
  
%Compare Fargo to Finley data 
do_logical_same_ID_Finley=ismember(Finley_do(:,2),Fargo_unique_do); 
do_Finley_same_ID=Finley_do(do_logical_same_ID_Finley==1,:); 
Finley_do_size=size(do_Finley_same_ID); 
  
%Check for overlap at same time instance => transponder failure 
do_overlap_summary=[]; 
for aa=1:Finley_do_size(1) 
    for bb=1:Fargo_do_size(1) 
        if do_Finley_same_ID(aa,2)==do_Fargo_same_ID(bb,2) 
            if (abs(do_Finley_same_ID(aa,4)- 
do_Fargo_same_ID(bb,4)))<17 
                do_overlap_summary=[do_overlap_summary; 
do_Fargo_same_ID(bb,:),0000000000000000000, do_Finley_same_ID(aa,:)]; 
            end 
        end 
    end 
end 
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%Summary of results for drop outs 
instances_transponder_do=size(do_overlap_summary);  
instances_transponder_do=instances_transponder_do(1); %transponder 
failure instances 
if length(do_overlap_summary)>=1 
    planes_transponder_do=length(unique(do_overlap_summary(:,2))); 
%number of planes with transponder failures 
else 
    planes_transponder_do=0; 
end 
  
planes_Finley_radar_do=length(unique(do_Finley_same_ID(:,2)));%number 
of planes with radar failures at Finley 
planes_Fargo_radar_do=length(unique(do_Fargo_same_ID(:,2)));%number of 
planes with radar failures at Fargo 
percentage_radar_do=((planes_Finley_radar_do(1)-
planes_transponder_do(1))/planes_Finley_radar_do(1)); %percentage of 
radar failures  
percentage_transponder_do=((planes_transponder_do(1))/planes_Finley_rad
ar_do(1)); %percentage of transponder failures 
  
%% Outliers 
  
%Load data 
Fargo_out=Fargo_data.outliers; 
Finley_out=Finley_data.outliers; 
  
%Find all the ID numbers that experienced outliers 
Finley_unique_out=unique(Finley_out(:,2),'rows','sorted'); 
Fargo_unique_out=unique(Fargo_out(:,2),'rows','sorted'); 
  
%Compare Finley to Fargo data 
out_logical_same_ID_Fargo=ismember(Fargo_out(:,2),Finley_unique_out); 
out_Fargo_same_ID=Fargo_out(out_logical_same_ID_Fargo==1,:); 
Fargo_out_size=size(out_Fargo_same_ID); 
  
%Compare Fargo to Finley data 
out_logical_same_ID_Finley=ismember(Finley_out(:,2),Fargo_unique_out); 
out_Finley_same_ID=Finley_out(out_logical_same_ID_Finley==1,:); 
Finley_out_size=size(out_Finley_same_ID); 
  
%Check for overlap at same time instance => transponder failure 
out_overlap_summary=[]; 
for aa=1:Finley_out_size(1) 
    for bb=1:Fargo_out_size(1) 
        if out_Finley_same_ID(aa,2)==out_Fargo_same_ID(bb,2) 
            if (abs(out_Finley_same_ID(aa,4)- 
out_Fargo_same_ID(bb,4)))<17 
                out_overlap_summary=[out_overlap_summary; 
out_Fargo_same_ID(bb,:),0000000000000000000, out_Finley_same_ID(aa,:)]; 
            end 
        end 
    end 
end 



112 
 

  
%Summary of results for outliers 
instances_transponder_out=size(out_overlap_summary);  
instances_transponder_out=instances_transponder_out(1); %transponder 
failure instances 
if length(out_overlap_summary)>=1 
    planes_transponder_out=length(unique(out_overlap_summary(:,2))); 
%number of planes with transponder failures 
else 
    planes_transponder_out=0; 
end 
  
planes_Finley_radar_out=length(unique(out_Finley_same_ID(:,2)));%number 
of planes with radar failures at Finley 
planes_Fargo_radar_out=length(unique(out_Fargo_same_ID(:,2)));%number 
of planes with radar failures at Fargo 
percentage_radar_out=((planes_Finley_radar_out(1)-
planes_transponder_out(1))/planes_Finley_radar_out(1)); %percentage of 
radar failures  
percentage_transponder_out=((planes_transponder_out(1))/planes_Finley_r
adar_out(1)); %percentage of transponder failures 
  
%% Prolonged Altitude Failure 
  
if length(Fargo_data.p_alt_failure)<1 
    instances_transponder_paf=0; 
    planes_transponder_paf=0; 
    planes_Finley_radar_paf=0; 
    planes_Fargo_radar_paf=0; 
    percentage_radar_paf=0; 
    percentage_transponder_paf=0; 
else 

 
%Load data 
Fargo_paf=cell2mat(Fargo_data.p_alt_failure);  
Finley_paf=cell2mat(Finley_data.p_alt_failure); 
 
%Find all the ID numbers that experienced prolonged altitude failures 
Finley_unique_paf=unique(Finley_paf(:,2),'rows','sorted'); 
Fargo_unique_paf=unique(Fargo_paf(:,2),'rows','sorted'); 
  
%Compare Finley to Fargo data 
paf_logical_same_ID_Fargo=ismember(Fargo_paf(:,2),Finley_unique_paf); 
paf_Fargo_same_ID=Fargo_paf(paf_logical_same_ID_Fargo==1,:); 
Fargo_paf_size=size(paf_Fargo_same_ID); 
  
%Compare Fargo to Finley data 
paf_logical_same_ID_Finley=ismember(Finley_paf(:,2),Fargo_unique_paf); 
paf_Finley_same_ID=Finley_paf(paf_logical_same_ID_Finley==1,:); 
Finley_paf_size=size(paf_Finley_same_ID); 
  
%Check for overlap at same time instance => transponder failure 
paf_overlap_summary=[]; 
for aa=1:Finley_paf_size(1) 
    for bb=1:Fargo_paf_size(1) 
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        if paf_Finley_same_ID(aa,2)==paf_Fargo_same_ID(bb,2) 
            if (abs(paf_Finley_same_ID(aa,4)- 
paf_Fargo_same_ID(bb,4)))<17 
                paf_overlap_summary=[paf_overlap_summary; 
paf_Fargo_same_ID(bb,:),0000000000000000000, paf_Finley_same_ID(aa,:)]; 
            end 
        end 
    end 
end 
  
%Summary of results for prolonged alititude failure 
instances_transponder_paf=size(paf_overlap_summary);  
instances_transponder_paf=instances_transponder_paf(1); %transponder 
failure instances 
if length(paf_overlap_summary)>=1 
    planes_transponder_paf=length(unique(paf_overlap_summary(:,2))); 
%number of planes with transponder failures 
else 
    planes_transponder_paf=0; 
end 
planes_Finley_radar_paf=length(unique(paf_Finley_same_ID(:,2)));%number 
of planes with radar failures at Finley 
planes_Fargo_radar_paf=length(unique(paf_Fargo_same_ID(:,2)));%number 
of planes with radar failures at Fargo 
percentage_radar_paf=((planes_Finley_radar_paf(1)-
planes_transponder_paf(1))/planes_Finley_radar_paf(1)); %percentage of 
radar failures  
percentage_transponder_paf=((planes_transponder_paf(1))/planes_Finley_r
adar_paf(1)); %percentage of transponder failures 
end 
  
%% Repeated Data 
  
%Load Data 
Fargo_rd=Fargo_data.repeated_data; 
Finley_rd=Finley_data.repeated_data; 
  
%Find all the ID numbers that experienced repeated data 
Finley_unique_rd=unique(Finley_rd(:,2),'rows','sorted'); 
Fargo_unique_rd=unique(Fargo_rd(:,2),'rows','sorted'); 
  
%Compare Finley to Fargo data 
rd_logical_same_ID_Fargo=ismember(Fargo_rd(:,2),Finley_unique_rd); 
rd_Fargo_same_ID=Fargo_rd(rd_logical_same_ID_Fargo==1,:); 
Fargo_rd_size=size(rd_Fargo_same_ID); 
  
%Compare Fargo to Finley data 
rd_logical_same_ID_Finley=ismember(Finley_rd(:,2),Fargo_unique_rd); 
rd_Finley_same_ID=Finley_rd(rd_logical_same_ID_Finley==1,:); 
Finley_rd_size=size(rd_Finley_same_ID); 
  
%Check for overlap at same time instance => transponder failure 
rd_overlap_summary=[]; 
for aa=1:Finley_rd_size(1) 
    for bb=1:Fargo_rd_size(1) 
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        if rd_Finley_same_ID(aa,2)==rd_Fargo_same_ID(bb,2) 
            if (abs(rd_Finley_same_ID(aa,4)- 
rd_Fargo_same_ID(bb,4)))<17 
                rd_overlap_summary=[rd_overlap_summary; 
rd_Fargo_same_ID(bb,:),0000000000000000000, rd_Finley_same_ID(aa,:)]; 
            end 
        end 
    end 
end 
  
%Summary of results for repeated data 
instances_transponder_rd=size(rd_overlap_summary);  
instances_transponder_rd=instances_transponder_rd(1); %transponder 
failure instances 
if length(rd_overlap_summary)>=1 
    planes_transponder_rd=length(unique(rd_overlap_summary(:,2))); 
%number of planes with transponder failures 
else 
    planes_transponder_rd=0; 
end 
planes_Finley_radar_rd=length(unique(rd_Finley_same_ID(:,2)));%number 
of planes with radar failures at Finley 
planes_Fargo_radar_rd=length(unique(rd_Fargo_same_ID(:,2)));%number of 
planes with radar failures at Fargo 
percentage_radar_rd=((planes_Finley_radar_rd(1)-
planes_transponder_rd(1))/planes_Finley_radar_rd(1)); %percentage of 
radar failures  
percentage_transponder_rd=((planes_transponder_rd(1))/planes_Finley_rad
ar_rd(1)); %percentage of transponder failures 
  
%% Multiple Aircraft 
  
%Load Data 
Fargo_ma_pre=Fargo_data.multiple_aircraft; 
Finley_ma_pre=Finley_data.multiple_aircraft; 
  
%Eliminate ID numbers of 0 and 1200  
Fargo_ma=[]; 
for mm=1:length(Fargo_ma_pre) 
    if Fargo_ma_pre(mm,2) ~=0  
        if Fargo_ma_pre(mm,2) ~=1200  
            Fargo_ma=[Fargo_ma;Fargo_ma_pre(mm,:)]; 
        end 
    end 
end 
  
Finley_ma=[]; 
for mm=1:length(Finley_ma_pre) 
    if Finley_ma_pre(mm,2) ~=0  
        if Finley_ma_pre(mm,2) ~=1200  
            Finley_ma=[Finley_ma;Finley_ma_pre(mm,:)]; 
        end 
    end 
end 
  
if length(Fargo_ma)>=1 



115 
 

    if length(Finley_ma)>=1 
        %Find all the ID numbers that experienced multiple aircraft  
        Finley_unique_ma=unique(Finley_ma(:,2),'rows','sorted'); 
        Fargo_unique_ma=unique(Fargo_ma(:,2),'rows','sorted'); 
  
        %Compare Finley to Fargo data 
        
ma_logical_same_ID_Fargo=ismember(Fargo_ma(:,2),Finley_unique_ma); 
        ma_Fargo_same_ID=Fargo_ma(ma_logical_same_ID_Fargo==1,:); 
        Fargo_ma_size=size(ma_Fargo_same_ID); 
  
        %Compare Fargo to Finley data 
        
ma_logical_same_ID_Finley=ismember(Finley_ma(:,2),Fargo_unique_ma); 
        ma_Finley_same_ID=Finley_ma(ma_logical_same_ID_Finley==1,:); 
        Finley_ma_size=size(ma_Finley_same_ID); 
  
        %Check for overlap at same time instance => transponder failure 
        ma_overlap_summary=[]; 
        for aa=1:Finley_ma_size(1) 
            for bb=1:Fargo_ma_size(1) 
                if ma_Finley_same_ID(aa,2)==ma_Fargo_same_ID(bb,2) 
                    if (abs(ma_Finley_same_ID(aa,4)- 
ma_Fargo_same_ID(bb,4)))<17 
                        ma_overlap_summary=[ma_overlap_summary; 
ma_Fargo_same_ID(bb,:),0000000000000000000, ma_Finley_same_ID(aa,:)]; 
                    end 
                end 
            end 
        end 
  
        %Summary of results for multiple aircraft 
        instances_transponder_ma=size(ma_overlap_summary);  
        instances_transponder_ma=instances_transponder_ma(1); 
%transponder failure instances 
        if length(ma_overlap_summary)>=1 
            
planes_transponder_ma=length(unique(ma_overlap_summary(:,2))); %number 
of planes with transponder failures 
        else 
            planes_transponder_ma=0; 
        end 
  
        
planes_Finley_radar_ma=length(unique(ma_Finley_same_ID(:,2)));%number 
of planes with radar failures at Finley 
        
planes_Fargo_radar_ma=length(unique(ma_Fargo_same_ID(:,2)));%number of 
planes with radar failures at Fargo 
        percentage_radar_ma=((planes_Finley_radar_ma(1)-
planes_transponder_ma(1))/planes_Finley_radar_ma(1)); %percentage of 
radar failures  
        
percentage_transponder_ma=((planes_transponder_ma(1))/planes_Finley_rad
ar_ma(1)); %percentage of transponder failures 
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    end 
else 
    instances_transponder_ma=0; 
    planes_transponder_ma=0; 
    planes_Finley_radar_ma=0; 
    planes_Fargo_radar_ma=0; 
    percentage_radar_ma=0; 
    percentage_transponder_ma=0; 
end 
  
 %% Store all data 
 counter=counter+1; 
  
 all_data_overlap=[all_data_overlap; planes_Finley_radar_do, 
planes_Fargo_radar_do, planes_transponder_do, instances_transponder_do, 
percentage_radar_do, percentage_transponder_do, 
planes_Finley_radar_out, planes_Fargo_radar_out, 
planes_transponder_out, instances_transponder_out, 
percentage_radar_out, percentage_transponder_out, 
planes_Finley_radar_paf, planes_Fargo_radar_paf, 
planes_transponder_paf, instances_transponder_paf, 
percentage_radar_paf, percentage_transponder_paf, 
planes_Finley_radar_rd, planes_Fargo_radar_rd, planes_transponder_rd, 
instances_transponder_rd, percentage_radar_rd, 
percentage_transponder_rd, planes_Finley_radar_ma, 
planes_Fargo_radar_ma, planes_transponder_ma, instances_transponder_ma, 
percentage_radar_ma, percentage_transponder_ma]; 
  
 if counter==28 
     xlswrite('Overlapping Analysis.xlsx', all_data_overlap) 
 end 
  
 %% Save .mat file 
 matFileDir= 'C:\Users\nicholas.allen\OneDrive - North Dakota 
University System\UAS Research\Radar Analysis\Overlapping Mat Files\'; 
 save([matFileDir, Date, '.mat']) 
 disp('done data write') 
    end 
end 
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APPENDIX C: RADAR DATA ANOMALIES SUMMARY 

Aircraft Count/Location Summary 

Fargo Aircraft Count/Location 

Location Month Day Number of Aircraft 

Fargo 3 1 328 

Fargo 3 2 392 

Fargo 3 3 322 

Fargo 3 4 472 

Fargo 3 5 468 

Fargo 3 6 586 

Fargo 3 7 463 

Fargo 6 1 512 

Fargo 6 2 386 

Fargo 6 3 438 

Fargo 6 4 569 

Fargo 6 5 565 

Fargo 6 6 382 

Fargo 6 7 360 

Fargo 9 1 564 

Fargo 9 2 551 

Fargo 9 3 458 

Fargo 9 4 464 

Fargo 9 5 369 

Fargo 9 6 231 

Fargo 9 7 446 

Fargo 12 1 313 

Fargo 12 2 492 

Fargo 12 3 549 

Fargo 12 4 506 

Fargo 12 5 457 

Fargo 12 6 442 

Fargo 12 7 511 
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Finley Aircraft Count/Location 

Location Month Day Number of Aircraft 

Finley 3 1 987 

Finley 3 2 1149 

Finley 3 3 1008 

Finley 3 4 1203 

Finley 3 5 1284 

Finley 3 6 1298 

Finley 3 7 1118 

Finley 6 1 1313 

Finley 6 2 1283 

Finley 6 3 1264 

Finley 6 4 1464 

Finley 6 5 1512 

Finley 6 6 1254 

Finley 6 7 1209 

Finley 9 1 1503 

Finley 9 2 1515 

Finley 9 3 1515 

Finley 9 4 1417 

Finley 9 5 1065 

Finley 9 6 1035 

Finley 9 7 1274 

Finley 12 1 1133 

Finley 12 2 1433 

Finley 12 3 1487 

Finley 12 4 1364 

Finley 12 5 1126 

Finley 12 6 1208 

Finley 12 7 1261 
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Drop Outs 

Fargo Drop Outs 

Date # of 

Aircraft  

<10 10-15 15-20 20-25 25-30 30-60 >60 Avg. Min Max # of 

Instances 

3/1/2015 93 136 36 4 10 6 24 28 27.28 5.50 231.66 244 

3/2/2015 131 210 69 3 13 9 36 48 26.82 8.76 260.54 388 

3/3/2015 77 120 38 7 11 16 26 24 25.69 6.14 255.80 242 

3/4/2015 169 291 87 13 25 13 69 57 26.23 9.08 299.26 555 

3/5/2015 174 368 129 15 21 19 59 82 27.82 9.40 299.01 693 

3/6/2015 218 491 105 20 24 20 58 69 23.49 5.50 299.20 787 

3/7/2015 168 317 109 12 32 25 64 64 26.74 5.60 299.20 623 

6/1/2015 163 222 80 8 24 14 51 38 25.36 5.54 289.65 437 

6/2/2015 125 301 22 3 4 9 21 8 13.23 5.50 281.28 368 

6/3/2015 162 435 142 11 37 24 84 76 23.61 5.70 284.67 809 

6/4/2015 239 573 176 20 44 37 86 92 25.49 8.70 299.26 1028 

6/5/2015 216 620 102 10 24 15 56 59 20.13 5.50 285.39 886 

6/6/2015 105 166 54 4 7 13 44 49 31.16 9.29 294.25 337 

6/7/2015 101 155 45 2 13 5 27 24 23.72 9.16 251.09 271 

9/1/2015 244 771 141 19 50 28 68 81 20.34 5.50 284.93 1158 

9/2/2015 212 427 118 11 25 20 66 66 25.11 5.60 284.92 733 

9/3/2015 168 354 46 8 9 6 38 24 17.27 5.50 282.80 485 

9/4/2015 127 190 58 7 16 11 40 29 25.01 9.44 260.71 351 

9/5/2015 140 307 35 3 10 6 18 19 15.49 5.50 279.81 398 

9/6/2015 60 91 26 2 6 6 13 10 21.45 9.14 294.32 154 

9/7/2015 176 543 117 10 33 22 64 58 21.29 5.50 299.29 847 

12/1/2015 53 93 8 1 0 3 5 2 12.01 5.50 254.32 112 

12/2/2015 172 311 83 15 33 16 64 53 26.24 8.04 289.62 575 

12/3/2015 192 345 105 19 19 27 75 59 26.05 5.51 299.25 649 

12/4/2015 190 306 87 9 34 18 108 48 26.26 9.36 284.84 610 

12/5/2015 180 415 71 12 18 11 54 32 19.26 5.50 265.44 613 

12/6/2015 127 262 94 14 14 26 66 58 28.67 5.50 299.20 534 

12/7/2015 157 296 91 11 20 18 61 67 29.03 5.57 299.30 564 

 

 

 



120 
 

Finley Drop Outs 

Date # of 

Aircraft  

<24 

sec 

24-36 

sec 

36-48 

sec 

48-60 

sec 

60-90 

sec 

90-120 

sec 

>120 

sec 

Avg. Min Max # of 

Instances 

3/1/2015 518 361 463 48 11 49 12 24 33.16 22.12 347.98 968 

3/2/2015 715 505 673 114 27 88 38 77 38.93 22.81 395.63 1522 

3/3/2015 619 1289 393 52 11 30 10 25 23.02 13.00 396.09 1810 

3/4/2015 668 568 652 100 18 60 21 67 36.83 13.13 372.10 1486 

3/5/2015 615 434 555 123 24 78 29 125 47.95 23.31 396.07 1368 

3/6/2015 596 374 563 133 30 114 48 183 57.59 13.20 396.24 1445 

3/7/2015 482 260 418 81 19 79 33 121 55.41 23.59 396.29 1011 

6/1/2015 949 1188 1301 244 49 166 53 73 34.19 22.45 395.69 3074 

6/2/2015 854 858 989 254 39 168 46 113 38.41 17.76 395.86 2467 

6/3/2015 820 654 843 176 30 138 42 65 38.25 13.42 383.94 1948 

6/4/2015 1042 1142 1566 351 69 297 116 267 45.02 22.35 396.57 3808 

6/5/2015 1139 1320 1696 405 69 335 131 254 43.52 23.58 396.40 4210 

6/6/2015 798 690 851 154 33 104 41 73 37.22 13.06 395.71 1946 

6/7/2015 949 1103 1348 254 58 197 99 171 40.74 22.67 396.24 3230 

9/1/2015 1234 1961 2396 620 108 436 176 368 42.97 13.00 396.34 6065 

9/2/2015 1299 2288 3021 755 117 486 210 392 41.50 13.02 396.44 7269 

9/3/2015 1323 2809 3576 816 141 629 214 466 41.20 13.28 396.36 8651 

9/4/2015 1160 1758 2397 587 82 406 159 254 40.10 13.17 396.63 5643 

9/5/2015 871 1752 1530 264 50 195 87 95 32.36 13.00 383.55 3973 

9/6/2015 890 1370 1541 310 43 193 72 94 34.27 13.46 359.80 3623 

9/7/2015 1033 1538 1720 315 81 265 112 295 43.59 13.17 395.97 4326 

12/1/2015 723 634 810 155 44 93 49 140 44.92 13.04 399.17 1925 

12/2/2015 1126 1299 1717 548 113 496 165 399 50.11 13.06 396.50 4737 

12/3/2015 1044 1896 1422 413 119 402 194 343 44.92 13.00 397.92 4789 

12/4/2015 1029 1070 1614 442 73 428 184 410 52.26 23.63 396.19 4221 

12/5/2015 626 413 552 122 33 106 29 126 48.55 13.01 384.21 1381 

12/6/2015 766 531 787 219 40 254 113 232 55.36 23.70 395.95 2176 

12/7/2015 904 888 1066 228 52 206 79 219 46.29 22.89 396.41 2738 
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Altitude Outliers 

Fargo Altitude Outliers 

Date Number of Aircraft  Number of Instances 

3/1/2015 31 54 

3/2/2015 44 69 

3/3/2015 34 49 

3/4/2015 74 111 

3/5/2015 82 135 

3/6/2015 71 140 

3/7/2015 83 166 

6/1/2015 53 83 

6/2/2015 19 30 

6/3/2015 94 213 

6/4/2015 107 206 

6/5/2015 72 165 

6/6/2015 41 67 

6/7/2015 40 58 

9/1/2015 88 199 

9/2/2015 101 205 

9/3/2015 34 64 

9/4/2015 54 105 

9/5/2015 27 34 

9/6/2015 13 13 

9/7/2015 67 173 

12/1/2015 11 29 

12/2/2015 78 157 

12/3/2015 111 209 

12/4/2015 74 133 

12/5/2015 58 107 

12/6/2015 60 103 

12/7/2015 89 177 
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Finley Altitude Outliers 

Date Number of Aircraft  Number of Instances 

3/1/2015 110 135 

3/2/2015 230 317 

3/3/2015 142 218 

3/4/2015 189 293 

3/5/2015 223 343 

3/6/2015 262 484 

3/7/2015 177 244 

6/1/2015 240 364 

6/2/2015 240 347 

6/3/2015 247 312 

6/4/2015 406 662 

6/5/2015 425 726 

6/6/2015 229 279 

6/7/2015 339 525 

9/1/2015 493 928 

9/2/2015 553 1109 

9/3/2015 608 1191 

9/4/2015 446 749 

9/5/2015 286 398 

9/6/2015 285 409 

9/7/2015 423 744 

12/1/2015 214 349 

12/2/2015 510 1020 

12/3/2015 453 1038 

12/4/2015 489 933 

12/5/2015 226 378 

12/6/2015 336 599 

12/7/2015 337 580 
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Prolonged Altitude Failures 

Fargo Prolonged Altitude Failures 

Date <10 10-15 15-20 20-25 25-30 30-60 >60 Avg. Min Max Number of 

Aircraft 

3/1/2015 1 0 0 0 0 0 0 9.67 9.67 9.67 1 

3/2/2015 0 0 0 0 0 0 0 0.00 0.00 0.00 0 

3/3/2015 0 0 0 0 1 0 5 134.07 28.98 357.22 6 

3/4/2015 3 0 1 0 0 0 3 83.47 4.86 333.53 7 

3/5/2015 1 1 0 0 0 0 1 51.59 9.66 130.65 3 

3/6/2015 3 0 0 1 0 0 6 240.76 9.49 1056.26 10 

3/7/2015 1 1 0 0 2 2 12 398.94 9.70 1159.05 18 

6/1/2015 1 0 0 0 0 3 6 436.38 9.75 2471.76 10 

6/2/2015 0 0 0 0 0 0 1 72.30 72.30 72.30 1 

6/3/2015 0 1 0 0 0 1 1 166.19 14.44 440.71 3 

6/4/2015 1 0 0 0 0 1 3 80.17 9.66 135.23 5 

6/5/2015 1 0 0 0 0 1 7 174.86 9.77 694.99 9 

6/6/2015 1 0 0 1 0 0 2 83.26 9.66 154.48 4 

6/7/2015 1 1 0 0 0 1 0 27.39 9.60 58.11 3 

9/1/2015 1 0 0 0 0 1 5 112.61 9.90 260.48 7 

9/2/2015 4 1 0 1 0 3 2 44.34 9.54 159.39 11 

9/3/2015 0 1 0 0 0 2 3 152.86 14.44 637.17 6 

9/4/2015 0 0 0 1 0 3 4 89.27 24.14 236.56 8 

9/5/2015 1 0 0 0 0 1 1 258.88 9.61 728.42 3 

9/6/2015 0 0 0 0 0 0 0 0.00 0.00 0.00 0 

9/7/2015 0 0 0 0 0 0 5 96.49 72.12 168.92 5 

12/1/2015 0 0 0 0 0 0 0 0.00 0.00 0.00 0 

12/2/2015 0 1 0 1 1 1 3 164.09 14.49 584.96 7 

12/3/2015 1 1 3 0 0 5 6 112.83 9.61 713.04 16 

12/4/2015 0 0 0 0 1 2 6 179.78 28.82 526.33 9 

12/5/2015 2 1 0 2 0 0 0 16.38 9.55 24.11 5 

12/6/2015 0 0 0 1 0 1 6 155.49 24.17 432.82 8 

12/7/2015 0 0 0 0 3 2 12 157.57 28.82 405.03 17 
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Finley Prolonged Altitude Failures 

Date <24 

sec 

24-36 

sec 

36-48 

sec 

48-60 

sec 

60-90 

sec 

90-120 

sec 

>120 

sec 

Avg. Min Max Number of 

Instances 

3/1/2015 0 1 0 0 0 0 0 35.98 35.98 35.98 1 

3/2/2015 1 1 0 1 3 0 2 265.53 23.98 984.93 8 

3/3/2015 1 0 0 0 0 1 1 100.05 23.96 156.38 3 

3/4/2015 0 1 0 0 0 1 3 148.78 35.92 264.36 5 

3/5/2015 1 1 1 0 1 1 2 101.22 23.92 252.50 7 

3/6/2015 1 9 5 2 3 0 4 114.01 23.89 888.48 24 

3/7/2015 1 0 0 0 1 0 2 482.60 23.89 1546.65 4 

6/1/2015 1 0 0 0 0 0 3 609.29 23.86 2053.38 4 

6/2/2015 2 1 1 1 0 0 7 155.07 23.98 419.90 12 

6/3/2015 0 0 0 0 1 0 2 238.10 72.06 498.18 3 

6/4/2015 2 0 0 1 1 1 3 129.03 23.95 335.73 8 

6/5/2015 2 0 0 0 1 0 7 169.19 23.98 312.32 10 

6/6/2015 0 0 0 0 0 0 2 276.21 264.24 288.19 2 

6/7/2015 0 0 0 0 0 0 1 156.15 156.15 156.15 1 

9/1/2015 1 1 2 1 1 2 4 110.96 23.98 443.70 12 

9/2/2015 3 0 0 3 1 0 4 192.02 23.92 971.96 11 

9/3/2015 0 3 2 0 0 0 1 70.00 24.03 275.61 6 

9/4/2015 0 1 0 0 0 0 0 24.17 24.17 24.17 1 

9/5/2015 0 1 0 0 0 0 0 24.02 24.02 24.02 1 

9/6/2015 1 0 0 0 0 1 0 60.02 12.06 107.97 2 

9/7/2015 1 1 0 1 2 0 6 249.85 23.96 660.01 11 

12/1/2015 1 1 0 1 0 2 7 232.43 23.79 603.37 12 

12/2/2015 1 5 0 3 2 1 7 130.13 23.91 395.97 19 

12/3/2015 1 1 1 1 3 4 12 199.84 23.93 612.30 23 

12/4/2015 4 0 1 2 1 0 6 150.82 23.85 588.07 14 

12/5/2015 1 4 3 3 1 1 2 60.03 23.88 179.98 15 

12/6/2015 1 0 1 2 3 2 4 128.27 23.87 347.49 13 

12/7/2015 1 5 0 1 2 2 8 150.32 23.94 444.04 19 
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Multiple Aircraft & Repeated Data 

Fargo Multiple Aircraft/ Repeated Data 

Date Number Multiple 

Aircraft w/ Same ID 

Aircraft  

Number of Repeated 

Data Aircraft 

3/1/2015 2 5 

3/2/2015 2 10 

3/3/2015 3 7 

3/4/2015 3 14 

3/5/2015 3 16 

3/6/2015 28 3 

3/7/2015 4 22 

6/1/2015 2 15 

6/2/2015 53 5 

6/3/2015 4 12 

6/4/2015 2 22 

6/5/2015 48 3 

6/6/2015 3 6 

6/7/2015 2 14 

9/1/2015 18 2 

9/2/2015 3 19 

9/3/2015 24 5 

9/4/2015 2 6 

9/5/2015 28 4 

9/6/2015 2 1 

9/7/2015 25 8 

12/1/2015 70 1 

12/2/2015 4 25 

12/3/2015 11 23 

12/4/2015 6 14 

12/5/2015 24 3 

12/6/2015 5 13 

12/7/2015 5 19 
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Finley Multiple Aircraft/ Repeated Data 

Date Number Multiple 

Aircraft w/ Same ID 

Aircraft  

Number of Repeated 

Data Aircraft 

3/1/2015 2 15 

3/2/2015 5 36 

3/3/2015 29 5 

3/4/2015 5 40 

3/5/2015 5 66 

3/6/2015 9 73 

3/7/2015 4 55 

6/1/2015 4 21 

6/2/2015 13 31 

6/3/2015 10 30 

6/4/2015 16 63 

6/5/2015 11 61 

6/6/2015 8 24 

6/7/2015 10 16 

9/1/2015 12 72 

9/2/2015 17 79 

9/3/2015 8 63 

9/4/2015 10 33 

9/5/2015 18 7 

9/6/2015 6 75 

9/7/2015 10 85 

12/1/2015 5 11 

12/2/2015 18 55 

12/3/2015 49 20 

12/4/2015 6 57 

12/5/2015 6 54 

12/6/2015 12 51 

12/7/2015 8 58 
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APPENDIX D: OVERLAPPING ANALYSIS RESULTS 

Drop Outs 

Date Total Number of 

Aircraft 

Number of radar 

Failures 

Number of 

Transponder 

Failures 

Percentage of 

Radar Failures 

Percentage of 

Transponder 

Failures 

3/1/2015 54 51 3 94% 6% 

3/2/2015 97 94 3 97% 3% 

3/3/2015 51 46 5 90% 10% 

3/4/2015 111 100 11 90% 10% 

3/5/2015 107 103 4 96% 4% 

3/6/2015 112 105 7 94% 6% 

3/7/2015 90 83 7 92% 8% 

6/1/2015 109 105 4 96% 4% 

6/2/2015 86 81 5 94% 6% 

6/3/2015 115 110 5 96% 4% 

6/4/2015 169 160 9 95% 5% 

6/5/2015 141 133 8 94% 6% 

6/6/2015 56 54 2 96% 4% 

6/7/2015 87 80 7 92% 8% 

9/1/2015 194 174 20 90% 10% 

9/2/2015 161 156 5 97% 3% 

9/3/2015 143 140 3 98% 2% 

9/4/2015 101 95 6 94% 6% 

9/5/2015 102 97 5 95% 5% 

9/6/2015 48 44 4 92% 8% 

9/7/2015 144 122 22 85% 15% 

12/1/2015 32 32 0 100% 0% 

12/2/2015 118 110 8 93% 7% 

12/3/2015 112 103 9 92% 8% 

12/4/2015 135 122 13 90% 10% 

12/5/2015 94 90 4 96% 4% 

12/6/2015 80 64 16 80% 20% 

12/7/2015 118 105 13 89% 11% 
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Altitude Outliers 

Date Total Number of 

Aircraft 

Number of radar 

Failures 

Number of 

Transponder 

Failures 

Percentage of 

Radar Failures 

Percentage of 

Transponder 

Failures 

3/1/2015 5 3 2 60% 40% 

3/2/2015 16 8 8 50% 50% 

3/3/2015 11 4 7 36% 64% 

3/4/2015 16 8 8 50% 50% 

3/5/2015 25 17 8 68% 32% 

3/6/2015 33 11 22 33% 67% 

3/7/2015 27 14 13 52% 48% 

6/1/2015 8 4 4 50% 50% 

6/2/2015 5 3 2 60% 40% 

6/3/2015 23 12 11 52% 48% 

6/4/2015 51 27 24 53% 47% 

6/5/2015 33 13 20 39% 61% 

6/6/2015 10 7 3 70% 30% 

6/7/2015 15 9 6 60% 40% 

9/1/2015 39 17 22 44% 56% 

9/2/2015 48 25 23 52% 48% 

9/3/2015 16 8 8 50% 50% 

9/4/2015 21 14 7 67% 33% 

9/5/2015 4 2 2 50% 50% 

9/6/2015 3 3 0 100% 0% 

9/7/2015 29 15 14 52% 48% 

12/1/2015 2 0 2 0% 100% 

12/2/2015 36 20 16 56% 44% 

12/3/2015 39 20 19 51% 49% 

12/4/2015 32 16 16 50% 50% 

12/5/2015 18 7 11 39% 61% 

12/6/2015 24 13 11 54% 46% 

12/7/2015 32 15 17 47% 53% 
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APPENDIX E: CLIMATE EFFECTS SUMMARY 

Fargo 
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