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ABSTRACT 

This work illustrates the synthesis and characterization of novel MAX reinforced 

metals (MRMs) composites. These composites were tested for their mechanical and 

tribological performance in ambient temperature. Synthesis and characterization of Bi-

Ti3SiC2 and Ag-Ti3SiC2 was studied in Chapter 2. Both composites showed an 

enhancement in their mechanical and tribological behavior. For example, the addition of 

20% Ti3SiC2 decreased the wear rate (WR) by ~12 times in Ag and ~33 times in Bi 

comparing with the pristine metal. In Chapter 3, Bi-Cr2AlC composites were studied and 

results had been compared to Bi-Ti3SiC2 composites. The addition of 10 vol% Cr2AlC was 

able to decrease the WR of Bi-composites by ~100 times as compared to the Bi metal. 

Chapter 4 reports the current progress of synthesis and tribological behavior of Al-V2AlC, 

Al-Ti3SiC2 and Al-Cr2AlC composites. The addition of MAX phase particulates enhanced 

the hardness and compressive yield strength of all the compositions. Al-V2AlC, Al-Ti3SiC2 

and Al-Cr2AlC exhibit better tribological behavior compared with pure Al. The WR 

decreased significantly from 0.25 mm3/N.m to 1.1 X 10-3 mm3/N.m in Al-30%V2AlC. 

Similarly, the addition of Ti3SiC2 decreased the WR to 7.3 X 10-4 mm3/N.m in the Al-

10%Ti3SiC2. In Chapter 5, comprehensive conclusion of this thesis and the future scope 

of study is discussed. Briefly, the addition of MAX phases has beneficial effects on the 

mechanical and the tribological behavior. However, there is an optimum concentration 

where the best results are found. That is mainly due to the nature of these phases where 

they perform much better at higher temperatures rather than room temperature. 
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CHAPTER I 

 

INTRODUCTION 

1.1  Solid Lubricants 

Lubricants, generally in the form of liquid or grease, are used to lower friction and 

minimize wear rate [1]. However, lubricant properties vary greatly under different service 

conditions which cause severe deterioration of properties and failure if service parameters 

were not maintained properly. For example, most liquid lubricants evaporate under 

vacuum environment whereas solid lubricants can perform outstandingly in vacuum 

services since they usually have a very low vapor pressure. On the other hand, changes 

in temperature lead to change in the state of liquid lubricants where liquids may solidify 

at low temperatures and decompose or oxidize at high temperatures [1]. Furthermore, the 

heat generated could differ based on the viscosity and whether the liquid follows a shear 

thinning or shear thickening phenomena. Except for soft metals, most solid lubricants are 

lacking the ability to carry away the heat that is generated from sliding surfaces since they 

have a low thermal conductivity. Furthermore, solid lubricants show quite higher friction 

coefficient and sometimes significant fluctuating of friction. However, this is truly 

dependent on test environment and applied conditions, e.g. graphite shows a range of 

friction coefficient from 0.07 to 0.5 [1].    

Soft metals are also being used as solid lubricants since they are soft in nature which 

provide maximum contact area when rubbing against harder surface for load support. 

Furthermore, soft metals can imbed abrasive debris and neutralize it [2].  Wear debris is 

often made harder by oxidation and work hardening which leads to poor surface 

interactions as a result of the three-body abrasive wear process [3]. Soft metals used 
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commercially as coating on strong metals where the coating provides self-lubricity while 

the substrate supports the normal load. Thin coatings tend to wear out quickly and thick 

coatings may reveal adherent issues or cause excessive deformation [2]. In their pure 

state, soft metals show low mechanical properties such as compressive and tensile 

strengths. In addition, their hardness values are in the range of 25 – 50 HV [2]. That 

makes them less attractive for structural applications and limits their use as coating 

materials. Another drawback is related to their melting point; some soft metals like tin, 

lead, indium and bismuth have melting points below 340 °C which cause metals to soften 

and oxidized at generally low temperatures [1].  

Novel ternary nanolaminates, MAX phases, have been studied extensively over the 

last decade due their superior mechanical properties and tribological behaviors [4]. Some 

recent studies show excellent tribological behavior of MAX phases at elevated 

temperatures [4]. Also, it has been reported that adding such materials as the 

reinforcement phase in a matrix helped in improving mechanical and tribological 

properties [5-7].   

1.2  MAX Phase 

MAX phases are layered, hexagonal carbides and nitrides with general formula 

Mn+1AXn. (MAX) where n=1-3, M stands for the early transition metal, A stands for group-

A elements and X are either carbon or nitrogen. Fig 1.1 shows the different combinations 

that can be used to fabricate MAX phases. MAX phases show unique and remarkable 

properties. MAX phases are highly damage tolerant, oxidation resistant, readily 

machinable and soft (2-8 GPa) [4, 8]. Moreover, MAX phases are excellent thermal and 

electrical conductors. By reviewing the previous properties, we can conclude that MAX 
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phases has the best properties of both metals and ceramics. It can be further classified 

as an intermediate class between metals and ceramics [9]. A comprehensive review has 

been done on MAX phases by Barsoum showed MAX phases incorporate both the 

properties of metal and ceramic in 2000 [8]. 

MAX phases consist of over 60 different ternary carbides and nitrides. When n=1, 2 

and 3 the series of MAX phases are known as 211, 312, 413 respectively [13]. The unit 

cell of MAX phases for 3 different series of MAX phases are shown in figure 1.2. 

 

Fig 1.1 Possible combination of MAX phases [13]  
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Fig 1.2 Unit Cell for 211(a), 312 (b) and 413 (c) series of MAX phases [13]                                                               

 

The layered structure of MAX phases and their high machinability in dry conditions 

indicate that they might show solid lubricity [9]. For example, Sarkar et al. [10] studied the 

tribology of Ti3SiC2 against steel using a ball-on-disc method under fretting condition as 

the load was varied between 1 and 10 N. The μ’s they obtained varied between 0.5-0.6, 

and the WRs were between (11-37) x 10-5 mm3/N.m. Moreover, Gupta [11] studied 

tribological behavior of numerous MAX phases which include Ti3SiC2 and Cr2AlC at RT 

and 550 °C. His study concluded that MAX phases perform better at higher temperatures 

where wear rates were negligible and accompanied by friction coefficient of less than 0.5.  
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1.3 Introduction of MAX Reinforced Metals (MRMs) 

      MAX reinforced metals (MRMs) are the composites made from metal matrix where 

MAX phase is used as particulate reinforcement. Gupta et al. [4] showed that MAX phases 

at room temperature shows dual characteristics; in stage one they show low friction 

coefficient and wear but in stage two they show high friction coefficient and wear. That is 

mainly because of the formation of third body abrasion in the later stage. But at high-

temperature MAX phases shows low friction coefficient and negligible wear [4, 11]. 

Summary of his work at room temperature is shown in Figure 1.3. Also, Gupta et al. [12] 

showed that MAX phase can be used as a particulate reinforcement to the polymer matrix. 

When composites are made of polymer matrix and MAX phases are used as a particulate 

reinforcement it is called MAX reinforced polymers (MRP) [12]. The study revealed that 

the addition of Ti3SiC2 improved the mechanical and tribological properties of the polymer 

matrix. For example, the compressive strength and hardness were increased greatly as 

the concentration of the MAX phase increased. In addition, friction coefficient and wear 

rates decreased significantly as compared to the pristine epoxy.  

There are earlier studies on the MAX reinforced metals (MRMs) composites by Gupta 

et al. [5-7]. In these studies, Ti3SiC2 was used as reinforcement phase in aluminum (Al), 

tin (Sn) and zinc (Zn). Gupta et al. showed that the addition of hard, machinable and 

lubricious MAX phase particles to metals can impart self-lubricity and improve the 

mechanical and tribological behavior of metal matrix composites.  
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Fig. 1.3 Tribological performance of MAX phases at room temperature [11] 

         As shown in Figure 1.4, the compressive strength of Sn-Ti3SiC2 composites were 

increased gradually from 47 MPa for pure Sn to 75 MPa for the 30% concentration of 

Ti3SiC2. The same trend was also observed in Al-Ti3SiC2 where compressive strength 

increased significantly as Ti3SiC2 content increased in the composition. However, at 

higher concentrations, 35 vol%, the strength decreased sharply. The authors suggest that 

the high porosity, ~ 25% porosity, of the sample degrades the strength of the composition. 

On contrary, the addition of Ti3SiC2 did not improve nor deteriorate the compressive 
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strength significantly of the Zn-Ti3SiC2 composites. Compressive strength values 

changed slightly from the pure Zn. The authors emphasize that the mechanical 

performance of the MRM is influenced by the ductility of the metal matrix, processing 

parameters, and interaction of Ti3SiC2 particulates with metal matrix [7]. For example, it 

is well known that hexagonal metals like Zn are less ductile compared to Al.  

 

 

 

 

 

 

 

 

Fig 1.4 Compressive Strength of Sn-Ti3SiC2 composites [6] 

 

 

 

 

 

 

 

Fig 1.5 Summary of Compressive Strength of different MRM composites [5-7] 
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Fig 1.6. Tribological performances of different MRM composite [5-7] 

Figure 1.6 shows tribological performance of Zn-Ti3SiC2, Sn-Ti3SiC2 and Al-Ti3SiC2 

composites. It is evident that the addition of Ti3SiC2 directly impacted the friction 

coefficient of the MRM composite and resulted in low friction coefficient comparing with 

the pure matrix. It has also noted that the addition of Ti3SiC2 helped in stabilizing the 

friction coefficient and eliminating the huge fluctuation of the pure samples. On the other 

hand, wear rate (WR) of Sn-Ti3SiC2 composites were similar, and varied between (3-5) X 
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10-4 mm3/N.m. However, the addition of 30 vol% of Ti3SiC2 increased the WR to 6 X 10-4 

mm3/N.m but it’s accompanied with low friction coefficient (µ~0.4). The WRs of Zn-Ti3SiC2 

composites varied between in the range of (2-7) X 10-4 mm3/N.m. The addition of Ti3SiC2 

particulates marginally decreased the WRs compared to the pure Zn, and showed an 

optimum value of 2 X 10-4 mm3/N.m for the addition of 20 vol% of Ti3SiC2. The higher WR 

of increasing Ti3SiC2 content to 30 vol% can be due to the brittle nature of these 

composites. For Al-Ti3SiC2 composites, the WRs were in the range of (2-5) X 10-4 

mm3/N.m and accompanied by lower friction coefficients comparing with the pure Al. It’s 

well established now that there are beneficial effects on the mechanical and tribological 

properties of soft metals because of adding Ti3SiC2 to the matrix. However, the 

performance of MRM composites is influenced by the ductility of the metal matrix, 

processing parameters, and interaction of Ti3SiC2 particulates with metal matrix [7].  

 

1.4 Current Research Effort 

During this thesis, different soft metals (Ag, Bi & Al) were selected as the main 

constituents for the composite “matrix” and reinforced with different MAX phases (Ti3SiC2, 

Cr2AlC & V2AlC) as reinforcement phase. The MAX phase will enhance the mechanical 

performance of MRM composites by increasing the compressive strength and hardness. 

In addition, MAX phase will have beneficial effect on the tribological behavior of MRM 

composites by decreasing the friction coefficient and the wear rate. Synthesis and 

characterization of Bi-Ti3SiC2 and Ag-Ti3SiC2 will be studied in Chapter 2. Thereafter, Bi-

Cr2AlC composites will be studied in Chapter 3 and the results will be compared to Bi-

Ti3SiC2 composites. In Chapter 4, the effect of adding Ti3SiC2, Cr2AlC and V2AlC to Al 

matrix will studied for their mechanical performance and tribological behavior.  
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CHAPTER II 

Synthesis and Tribological Behavior of Novel Ag and Bi based MRMs 
(MAX Reinforced Metals) 

 

Abstract (Please note the content of this chapter has been accepted for publication 

in Wear): 

This work reports the synthesis and characterization of Bi-Ti3SiC2 and Ag-Ti3SiC2 

composites for the first time. The addition of Ti3SiC2 particulates enhanced the hardness 

and compressive yield strength of both the compositions. Bi-based MRM systems showed 

an enhancement in yield strength from ~42 MPa in Bi to ~71 MPa in Bi-30 Vol% Ti3SiC2 

(enhancement in strength by ~1.7 times). Similarly, Ag-based MRM systems showed an 

enhancement from ~47 MPa in Ag to ~164 MPa in Ag-20 Vol% Ti3SiC2 (enhancement in 

strength by ~3.5 times). The addition of Ti3SiC2 particulates also had a remarkable effect 

on tribological performance. All the samples were tested by block (tab)-on-disk method. 

The μmean decreased gradually from ~0.38 in Ag to ~0.30 in Ag-30 Vol% Ti3SiC2. Similarly, 

the μmean decreased gradually from ~0.50 in Bi to ~0.41 in Bi-20 Vol% Ti3SiC2, thereafter 

it increased ~0.53 in Bi-70%312Si. The WR of Ag decreased from 4.9 x 10-5 mm3/N.m to 

4.2 x 10-6 mm3/N.m in Ag-20 Vol% Ti3SiC2 (decreased by ~12 times). Similarly, Bi had a 

WR of 0.02 mm3/N.m, and it decreased to 3 x 10-4 mm3/N.m in Bi-10 Vol% Ti3SiC2, and 

marginally increased to 6 x 10-4 mm3/N.m and 4.5 x 10-4 mm3/N.m in Bi-20 Vol% Ti3SiC2 

and Bi-30 Vol% Ti3SiC2, respectively. In other words, the addition of 20 Vol% Ti3SiC2 

particulates decreased the WR by ~33 times. Detailed SEM studies showed that the 

tribological behavior is governed by the formation of Type IVa tribofilms. The presented 

work in this chapter has been accepted for publication in Wear journal.  
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2.1 Introduction 
 

Soft metals like Ag, Bi, and their composites are promising materials for designing 

novel materials which possess enhanced mechanical properties along with functional 

properties like solid lubrication, tailored hardness, and corrosion resistance, among 

others. These materials can be potentially used in space-age transportation systems, air-

foil bearings, biomedical applications, propulsion bearing and fasteners, thermal interface 

materials (TIMs), among others [1-12]. More particularly, different studies are being 

pursued to use Ag and their composites as solid lubricant materials for different 

applications over a wide range of temperatures [1-9]. Similarly, Bi can be considered as 

a green alternative to Pb and has been studied for solid lubrication and hot forming [10-

12]. 

Gupta et al. [3] have shown that composites of MAX phases (Cr2AlC and Ta2AlC) 

with Ag can be used as a solid lubricant over a wide range of temperatures. Wang et al. 

[20] have shown that Al-matrix material composites fabricated from pure Al and 40 vol% 

Ti3AlC2 powders have twice the yield strength of pure aluminum. Hu et al. [21] have shown 

AA6061/Ti2AlC composites had 1.5 times the specific yield strength of peak aged 

AA6061. Recently, Gupta et al. [24-26] showed that the addition of Ti3SiC2 particulates 

enhanced the mechanical and tribological performance of Al-matrix, Sn-matrix, and Zn-

matrix composites. In this work, we will report the effect of Ti3SiC2 particulates on the 

mechanical and tribological behavior of Bi- and Ag- based MRM composites. 
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2.2 Experimental Methods 

Ti3SiC2 powder (-325 mesh, Kanthal, Hallstahammar, Sweden) and calculated 

concentrations of metal powders (Ag powders (5-8 μm, Sigma Aldrich, St. Louis, MO) or 

Bi powders (-100 mesh, Sigma Aldrich, St. Louis, MO)) were dry ball milled (8000 M mixer 

Mill, SPEX SamplePrep, Metuchen, NJ) for 2 minutes. All the powders were then poured 

in a die. Ag-based compositions were cold-pressed at ~232 MPa (the cycle was repeated 

twice) in a ~6.35 mm die (EQ-Die-06D, MTI Corporation, Richmond, CA), and sintered at 

900 0C for 10 min. For comparison, samples of pure Ag were also fabricated by following 

the above mentioned method. Bi-based were difficult to machine as they were soft at low 

concentration of Ti3SiC2 or brittle at 30 vol% Ti3SiC2, thus, in order to minimize machining, 

two sets of Bi-based compositions were fabricated by using ~12.7 mm (EQ-Die-12D-B, 

MTI Corporation, Richmond, CA) and ~6.35 mm (EQ-Die-06D, MTI Corporation, 

Richmond, CA), respectively. The Bi-based compositions were then sintered in 

atmospheric air by hot pressing (HP) with a uniaxial compressive stress of ~201 MPa 

(~12.7 mm die) or ~251 MPa (~6.35 mm) at 290 0C for 5 minutes. Samples from the 

former set were used for tribology and hardness studies where samples from the latter 

set were used for mechanical performance. Composites were allowed to cool in the HP 

to room temperature (RT) before characterization. For comparison, samples of pure Bi 

were also fabricated by following the above mentioned method. Ag-based MRM 

composites were designed by adding 30 vol% (Ag-30 vol% Ti3SiC2), 20 vol% (Ag-20 vol% 

Ti3SiC2), 10 vol% (Ag-10 vol% Ti3SiC2), 5 vol% (Ag-5 vol% Ti3SiC2) Ti3SiC2 in the Ag 

matrix. Similarly, Bi-based MRM composites were designed by 30 vol% (Bi-30 vol% 
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Ti3SiC2) 20 vol% (Bi-20 vol% Ti3SiC2), 10 vol% (Bi-30 vol% Ti3SiC2), 5 vol% (Bi-5 vol% 

Ti3SiC2) Ti3SiC2 in the Bi- matrix. 

Rule of mixtures was used to calculate the theoretical density of all the composite 

samples by using the theoretical density of Ti3SiC2 and metal particulates. The 

experimental density of the composites was then calculated from the mass and 

dimensions of each sample. The relative density (RD) was then calculated by normalizing 

the experimental density with theoretical density. Thereafter the porosity is calculated 

from:     Porosity% = (1-RD) X 100 

Samples of Ag-based compositions and Bi-based compositions were mildly 

polished and were then used directly after HP for mechanical testing. These samples 

were then tested in a mechanical testing unit in compression (Shimadzu AD-IS UTM, 

Shimadzu Scientific Instruments Inc., Columbia, MD). For each composition, a set of 3 

samples were tested at a deflection rate of 1 mm/min. Stress versus displacement plots 

are reported as experimental limitations did not allow for accurate measurement of the 

actual strain during mechanical testing. In this work, yield strength is defined as the critical 

stress at which the stress verse displacement plot transitions from the linear to nonlinear 

regime. The linear region of the composites had a regression fitting of R2 > 0.95. Reported 

within this text is the average of 3 yield strength measurements for each composite [24-

26]. All composites were polished (Ra < 1 μm) and then tested by a Vicker’s micro-

hardness indenter (Mitutoyo HM-112, Mitutoyo Corporation, Aurora, IL). For Ag-based 

MRMs, Vicker’s hardness was performed by loading the samples at 4.9 N for 12 s, and 

Bi-based MRMs were tested by loading the samples at 0.49 N for 12 s. In this research, 

an average of five readings for each composite system is reported.  
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XRD measurements were performed by a Rigaku Diffractometer (SmartLab, 

Rigaku, Japan) at a scan rate of 0.05o /min from 20o to 70o. The tribological behavior of 

the samples were tested by using a block (tab)-on-disc tribometer (CSM Instruments SA, 

Peseux, Switzerland) at 5 N (~0.3 MPa), 50 cm/s linear speed, 1000 m sliding distance, 

and ~10 mm track radius against alumina disks (AL-D-42-2, AdValue Technology, 

Tucson, AZ). Pure Bi samples were tested for only ~80 m as they had a higher wear. For 

tribological testing, the blocks were machined in the dimensions of ~4 mm x ~ 4 mm x ~3 

mm samples, and then they were polished to a ~1 μm finish. Alumina disks were also 

polished to a ~1 μm finish. A surface profilometer (Surfcom 480A, Tokyo Seimitsu Co. 

Ltd., Japan) was used to confirm that all the samples had a Ra <1 μm. For each 

composition, three experimental studies for tribological studies were performed. For data 

analysis, an average of all the friction coefficients (μ) reading was used to calculate mean 

response of a single experiment. Thereafter, average of three means was calculated and 

reported in the text as μmean. The mass of the samples and substrates were measured 

before and after the testing using a scale (Model AL204, Mettler Toledo, Columbus, OH). 

The specific wear rate (WR) was calculated from: 

WR = (mi – mf)/(ρ.N.d) 

where, mi is the initial mass, mf is the final mass, ρ is density of the composite, N is the 

applied load, and d is the total distance traversed by the tab during the tribology testing 

[24-26]. 

Alumina samples were coated with Au/Pd by using a Balzers SCD 030 sputter 

coater (BAL-TEC RMC, Tucson AZ USA), and then mounted on aluminum mounts. For 

all samples, secondary electron (SE) and backscattered electrons (BSE) images were 
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obtained by using a JEOL JSM-6490LV Scanning Electron Microscope (JEOL USA, Inc., 

Peabody, Massachusetts.) X-ray information was obtained via a Thermo Nanotrace 

Energy Dispersive Xray detector with NSS-300e acquisition engine. It is critical to note 

that the accuracy of measuring the presence of carbon is quite low in the EDS. Thus, it is 

expected that all the compositions listed, especially sub-stoichimetric oxides, could very 

well contain C. In the text, *microconstituent* is defined as the region where the chemistry 

of a region is deemed chemically uniform at the micron level as quantified by Energy 

Dispersive Spectroscopy (EDS). It will be designated with two asterisks, as to emphasize 

that these areas are not necessarily single phases, and the presence of C in these 

tribofilms will be shown by adding {Cx} in the composition [2]. For comparing grain size, 

Bi and Bi-20 vol% Ti3SiC2 samples were etched using H2O (distilled water (DI water)) and 

HCl (ACS Reagent 37%, Sigma Aldrich, St. Louis, MO)) mixed in the ratio of 10:1. Ag and 

Ag-20 vol% Ti3SiC2 samples were etched using H2O, HCl, and HNO3 (ACS Reagent 70%, 

Sigma Aldrich, St. Louis, MO)) in the ratio of 2.2:1.0:1.05. All the polished samples were 

etched for ~30 s and then cleansed with DI water. The etched samples were inspected 

by a Scanning Electron Microscope (650 FEG, FEI Company, Hillsboro, OR). The length 

of each individual grain was measured by Image J software. An average of 100 grains is 

reported for each sample. Image J software is a Java-based public domain software [27]. 

2.3 Results and Discussion 

2.3.1 Microstructure and Phase Analysis  

Figures 2.1 – 2.2 show SE images of different Bi-, and Ag-based MRM composites. 

In all the compositions, the Ti3SiC2 particulates are well-dispersed in the metal matrix. As 

an illustration, Fig. 2.1d shows a Ti3SiC2 particulate embedded in the Bi-10 vol% Ti3SiC2 

matrix with negligible interfacial reaction. Similarly, Fig. 2.2d shows Ti3SiC2 particle inside 
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the Ag-10 vol% Ti3SiC2 matrix with no signs of interfacial reaction. Figures 2.3a-b show 

the etched surfaces of Bi and Bi-20 vol% Ti3SiC2. Both the samples had similar micron-

sized grains of (18.67±8.88) μm and (23.62±8.17) μm, respectively. Similarly, Figures 

2.3c-d show the etched surfaces of Ag and Ag-20 vol% Ti3SiC2, and the grain size of both 

the samples were (0.399±0.097) μm and (0.533±0.278) μm, respectively. The addition of 

Ti3SiC2 particulates do not have a drastic effect on the grain size. Figure 2.4 shows the 

XRD plots of all the designed MRM composites. By analyzing the XRD diffraction and 

SEM micrographs - it can be concluded that there is minimal reaction between the metal 

and Ti3SiC2 particulates. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 2.1 SEM of (a) Bi in SE, (b) Bi-5 vol% Ti3SiC2, (c) Bi-10 vol% Ti3SiC2, (d) higher 

magnification of the marked region in (c), (e) Bi-20 vol% Ti3SiC2, and (f) Bi-30 vol% Ti3SiC2 in 

BSE.  
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Figure 2.6a shows porosity of the composites as a function of Ti3SiC2 additions. In 

all Bi-based MRM samples, porosity increased with the addition of higher vol% of Ti3SiC2 

concentrations which indicates that it becomes difficult to process these samples as the 

amount of Ti3SiC2 is increased in the metal matrix. A similar trend was also observed 

during the processing of Al- [24], Sn- [25], and Zn- [26] based MRM composites.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 2.2 SEM BSE images of (a) Ag, (b) Ag-5 vol% Ti3SiC2, (c) Ag-10 vol% Ti3SiC2, (d) higher 

magnification of the marked region in (c), (d) Ag-20 vol% Ti3SiC2, and (e) Ag-30 vol% Ti3SiC2. 

Interestingly, the porosity of the Ag-based MRMs decreased from ~39% in Ag to 

~13% in Ag-5 vol% Ti3SiC2, thereafter it increased marginally to ~18% in Ag-10 vol% 

Ti3SiC2, and retained similar values at higher concentration of Ti3SiC2 additions (Fig. 

2.5a). This important result shows that Ti3SiC2 can be used as sintering additives for 
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sintering Ag and its composites during pressureless sintering. As a comparison, Panigrahi 

et al. [28] have shown that metallic addition like 1 wt% Ni can enhance the sintering of 

Ti3SiC2 but no studies have been performed to study the effect of Ti3SiC2 particulates on 

the sintering of metallic systems. This study shows that Ti3SiC2 particulates can be an 

effective sintering aid for Ag-based system and warrants further fundamental research to 

understand the exact mechanism. 

 

 

 

 

 

 

 

 

Fig 2.3 SE SEM micrographs of etched surfaces of (a) Bi, (b) Bi-20 vol% Ti3SiC2, (c) Ag, and 

(d) Ag-20 vol% Ti3SiC2. 

 

Fig 2.4 Plot of XRD patterns of, (a) Bi-based MRMs, and (b) Ag-based MRMs. 
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Fig 2.5 Plots of variation of (a) porosity, and (b) hardness versus Ti3SiC2 additions. 

 

Figure 2.5b plots the variation of hardness as a function of Ti3SiC2 content. In Bi-

based MRMs, the hardness increased gradually from ~0.17 GPa in Bi to ~0.31 GPa in Bi-

30 vol% Ti3SiC2. Similarly, in Ag-based MRMs the hardness increased from ~0.27 GPa 

to ~0.48 GPa in Ag-10 vol% Ti3SiC2, thereafter, it decreased marginally to ~0.43 GPa and 

~0.45 GPa in Ag-20 vol% Ti3SiC2 and Ag-30 vol% Ti3SiC2, respectively. In general, the 

addition of hard Ti3SiC2 particulates increased the hardness of the composites, but the 

presence of porosity in samples accounts for the slight decreased in hardness of Ag-20 

vol% Ti3SiC2 and Ag-30 vol% Ti3SiC2 as compared to Ag-10 vol% Ti3SiC2. A similar trend 

was also observed in Al- [24], Sn- [25], and Zn- [26] based MRM composites. 

2.3.2 Mechanical Performance of MRMs 

Figures 2.6a-b plot the compressive strength versus displacement of Bi-based and 

Ag-based MRMs, respectively. Brittle failure is observed in Bi-30 vol% Ti3SiC2 (Fig. 2.6a) 

and Ag-30 vol% Ti3SiC2 (Fig. 2.6b) whereas all the other compositions showed gradual 

failure. However, in general, the compressive yield strength is improved as the 

concentration of Ti3SiC2 particulates is increased in the matrix (Fig. 2.6c). For example, 
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for Bi-based MRMs; the yield strength improved from ~42 MPa in Bi to ~71 MPa in Bi-30 

vol% Ti3SiC2 (an enhancement of 1.7 times as compared to pristine Bi). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 2.6 Plot of (a) stress versus displacement of Bi MRMs, (b) stress versus displacement Ag 

MRMs, and (c) yield strength of different MRMs versus Ti3SiC2 additions [24-26]. 
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For Ag-based MRMs, the yield strength improved from ~47 MPa in Ag to ~164 MPa in 

Ag-20 vol% Ti3SiC2 (an enhancement of 3.5 times as compared to pristine Ag); thereafter, 

it dropped to ~117 MPa in Ag-30 vol% Ti3SiC2. The brittle failure in Ag-30 vol% Ti3SiC2 

can account for the decrease in yield strength as compared to Ag-30 vol% Ti3SiC2. 

Comparatively, Al-and Sn-based MRMs showed similar behavior, but Zn-based MRMs 

did not show any enhancement in yield strength [24-26] (Fig. 2.6c). By analyzing these 

results, it can be concluded that mechanical performance of the MRMs is affected by a 

host of factors like ductility of the base metal, processing parameters, and subtle 

interactions of Ti3SiC2 particulates with the metal matrix which can affect dislocation 

motion, and sintering and grain growth kinetics. 

2.3.3 Tribological Behavior of MRMs 

Figure 2.7 shows the plot of μ versus distance profile of Bi- (Fig. 2.7a), and Ag- 

(Fig. 2.7b) based MRMs. In all the cases, it can be easily construed that the addition of 

Ti3SiC2 particulates have a direct impact on the μ of the MRMs. For example, Bi had a 

very high μ (~0.7) after cycling for ~80 m as compared to Bi-based MRM which were 

cycled for 1000 m (Fig. 2.7 a). In these MRMs, initially, the μ was low (Region I), but it 

gradually reached steady state (Region II). Similarly, Ag showed erratic behavior as 

compared to Ag-based MRMs which showed initially a run-in period for ~200 m (region 

I), thereafter, it attained a steady state (Region II) (Fig. 2.7 b).  

Figure 2.8 a compares the μmean of all the MRMs. Ag-based MRMs have the lowest 

μmean amongst all the compositions followed by Bi-based MRMs. More particularly, the 

μmean decreased gradually from ~0.38 in Ag to ~0.30 in Ag-30 vol% Ti3SiC2. Similarly, the 

μmean decreased gradually from ~0.50 in Bi to ~0.41 in Bi-20 vol% Ti3SiC2, thereafter it 
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increased ~0.53 in Bi-30 vol% Ti3SiC2. Comparatively, Sn-, Zn-, and Al-based MRMs had 

higher μmean as compared to Ag- and Bi-based MRMs but showed a decrease in μmean as 

the concentration of Ti3SiC2 particulates was increased in the metal matrix [24-26]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 2.7 Plot of friction coefficient (μ) versus distance of (a) Bi-based MRMs, and (b) Ag-based 

MRMs. 
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Fig 2.8 Plot of (a) μmean, and (b) WR as a function of Ti3SiC2 content for different MRMs [24-26]. 
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Figure 2.8b plots the WRs of all MRMs. Ag-based MRMs showed the lowest WR. 

WR of Ag decreased gradually from 4.9 x 10-5 mm3/N.m to 4.2 x 10-6 mm3/N.m in Ag-20 

vol% Ti3SiC2, and then increased to 2.5 x 10-5 mm3/N.m in Ag-70 vol% Ti3SiC2. In other 

words, the addition of 20 vol% Ti3SiC2 decreased the WR by ~12 times. In literature, there 

are no results to compare these results with Ti3SiC2-Ag composites with greater >70 vol% 

Ti3SiC2 content. In addition, it is very difficult to compare tribology results as they are done 

under different conditions according to the specific requirements of an application. For 

illustrative purposes, Table 2.1 compares tribological behavior of different Ag-based 

composites. Comparatively, composites of Ta2AlC (TaAg11) and Cr2AlC (CrAg11) with 

20 vol% Ag showed a WR of ~3 x 10-5 mm3/N.m and ~1 x 10-4 mm3/N.m, respectively, 

during testing against alumina at 3 N load and 100 cm/s linear speed [3]. These results 

show that the addition 5-20 vol% Ti3SiC2 can decrease the WR of Ag. In addition, among 

all the reviewed systems, Ag-MRMs and alumina tribocouples showed better or 

comparable results as other Ag-based tribocouples (Table 2.1). Li et al. [5] had outlined 

that two major drawbacks of using Ag-based lubricants: (a) limited life and replenishment 

of the solid lubricant, and (b) serious plastic deformation at higher temperatures. This 

work shows that Ag-based MRMs can be potential candidates for structural components 

due to their superior yield strength and enhanced tribological performance. In other 

words, Ag-based MRMs can be potential candidates for triboactive structural 

components. These exciting results also open new avenues for more fundamental 

research for high temperature solid lubrication studies. 

Similarly, in Bi-based MRMs, Bi had a WR of ~0.02 mm3/N.m, and it decreased 

gradually to ~3 x 10-4 mm3/N.m in Bi-10 vol% Ti3SiC2, and marginally increased to ~6 x 
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10-4 mm3/N.m and 4.5 x 10-4 mm3/N.m in Bi-20 vol% Ti3SiC2 and Bi-30 vol% Ti3SiC2, 

respectively. In other words, the addition of 10 and 20 vol% Ti3SiC2 particulates 

decreased the WR by ~67 and ~33 times, respectively. As far as we are aware, this is the 

first study of the effect of Ti3SiC2 particulates on the tribological behavior of Bi-based 

composites. Comparatively, the addition of Ti3SiC2 particulates marginally decreased the 

WRs of Zn-based MRMs as compared to pure Zn metal and showed an optimum value 

of ~2 x 10-4 mm3/N.m for Zn-20 vol% Ti3SiC2 composite. The WRs of Al- and Sn-based 

MRMs were also in the same range (Fig. 2.8b). Based on these results, it can be 

concluded that Ti3SiC2 particulates are excellent candidates as solid lubricants over a 

wide range of metallic systems. 

 

Table 2.1: Comparison of tribological behavior of different Ag-based composites. 
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Figures 2.9 shows the SEM evaluation of tribosurfaces of Bi-based MRM after 

tribological testing. Figures 2.9 a-d show the SEM study of Bi-Al2O3 tribolocouple. Bi 

sample was riddled with scars from abrasive wear whereas the alumina surface was 

covered with a uniform tribofilm transferred from the Bi surface. The surface has a 

tribochemistry with composition A1 (Table 2). The Bi-20 vol% Ti3SiC2 and Al2O3 

tribocouple also showed similar features where abrasive wear scars was present on the 

Bi-20 vol% Ti3SiC2 surface and the Al2O3 surface was covered with tribofilm of chemistry 

B1 (partially oxidized mixtures of Bi and Ti3SiC2) and C1 (partially oxidized Bi), 

respectively (Table 2). Figure 2.10 shows the SEM evaluation of Ag-20 vol% Ti3SiC2 and 

alumina surfaces. Ag-20 vol% Ti3SiC2 surface was covered with abrasive wear tracks 

whereas Al2O3 surface was covered with patchy tribofilms. These tribofilms were 

composed of mildly oxidized Ag and Ti3SiC2 mixtures and had a composition of D1 with 

no phase separation (Table 2.2). 

Table 2.2: Tribochemistry of Different Tribocouples 
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Fig 2.9: SE SEM micrographs of (a) Bi surface, (b) BSE of the same region, (c) alumina 

counter surface, (d) BSE of the same region, (e) Bi-20 vol% Ti3SiC2 surface, (f) BSE of the same 

region, (g) alumina countersurface, and (h) BSE of the same region (inset shows the higher 

magnification of the marked region) after tribological testing. 
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Fig. 2.10: SE SEM micrographs of, (a) Ag-20 vol% Ti3SiC2 surface, (b) BSE of the same region, 

(c) alumina countersurface, and (d) BSE of the same region. 

 

 

2.3.4 Mechanism of Wear 

The tribology of MAX phases and their composites can be understood by studying 

their tribofilms [1]. Gupta and Barsoum [1] proposed that these tribofilms can be classified 

into four categories, namely (a) MAX phase surface is the source of triboreactions (Type-

I), (b) countersurface is the source of triboreactions (Type-II), (c) both MAX phase or their 

composites and the tribopartner contributes to the formation of tribofilms (Type-III), and 

(d) MAX phase based composites contribute predominantly to the triboreactions (Type-

IV). These categories can be further divided into sub-categories by documenting the 

architectures and physical appearance of the tribofilms. The architectures of the tribofilms 
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were mainly dependent on their degree of oxidation and mechanical integrity like 

adhesion to the substrate and hardness [1]. 

According to the evidence presented, the metal-based MRMs are mainly 

contributing to the formation of tribofilms, thus these tribofilms can be classified into Type 

IV tribofilms. At this juncture, it is critical to review the Type IV tribofilms. Figure 2.11 

shows different types of Type IV tribofilms. Based on the architecture of the tribofilms, the 

Type IV tribofilms can be further divided into: (a) Type IVa tribofilms are lubricous and 

chemically homogenous at the microscale [1, 29] (Fig. 2.11a), (b) Type IVb tribofilms are 

composed of decomposed Ag-rich regions dispersed with different triboxides (Fig. 2.11b) 

[1, 29], and (c) Type IVc tribofilms were powdery; and this type of tribofilm was first 

observed during dry sliding of Al-Ti3SiC2 composites against Al2O3 or Zn-Ti3SiC2 

composites against Al2O3 [24 - 26] (Fig. 2.11c). Clearly, the tribofilms formed between Bi-

based MRMs and alumina and Ag-based MRMs and alumina can be classified as Type 

IVa as the tribofilms are lubricious and chemical homogenous. This study also shows that 

the formation of patchy but lubricious tribofilms can be effective in alleviating the WR and 

reducing μ between moving surfaces. 
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Fig. 2.11: Schematics of (a1) tribocontact, (a2) Type IVa tribofilm, and (a3) SEM micrograph 

showing a Type IVa tribofilm formed on alumina surface [1, 29]; (b1) tribocontact, (b2) Type IVb 

tribofilm [2, 28], and (b3) Type IVb tribofilm formed on alumina surface [1]; and (c1) tribocontact, 

(c2) Type IVc tribofilm, and (c3) Type IVc tribofilm formed on alumina surface [24]. 
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2.4 Conclusion 

During this study, Bi- and Ag-based MRMs were fabricated for the first time. The 

addition of Ti3SiC2 particulates enhanced the hardness and compressive yield strength of 

both the compositions. For example, in Bi-based MRM systems, the yield strength 

improved from ~42 MPa in Bi to ~71 MPa in Bi-30 vol% Ti3SiC2 (enhancement in strength 

by ~1.7 times). For Ag-based MRM systems, the yield strength improved from ~47 MPa 

in Ag to ~164 MPa in Ag- 20 vol Ti3SiC2 (enhancement in strength by ~3.5 times), 

thereafter, it dropped slightly to 117 MPa in Ag-30 vol% Ti3SiC2. As the Bi samples were 

fabricated by using two different dies, more studies are needed to understand the effect 

of die size of the physical and mechanical properties of these composites. The addition 

of Ti3SiC2 particulates also enhanced the tribological performance. The μmean decreased 

gradually from ~0.38 in Ag to ~0.30 in Ag-30 vol% Ti3SiC2. Similarly, the μmean decreased 

gradually from ~0.50 in Bi to ~0.41 in Bi-20 vol% Ti3SiC2, thereafter it increased ~0.53 in 

Bi-30 vol% Ti3SiC2. Ag-based MRMs showed the lowest WR, more particularly, the WR 

of Ag decreased from 4.9 x 10-5 mm3/N.m to 4.2 x 10-6 mm3/N.m in Ag-20 vol% Ti3SiC2, 

and then increased to 2.5 x 10-5 mm3/N.m in Ag-30 vol% Ti3SiC2. Similarly, in Bi-based 

MRMs, Bi had a WR of 0.02 mm3/N.m, and it decreased to 3 x 10-4 mm3/N.m in Bi-10 

vol% Ti3SiC2, and marginally increased to 6 x 10-4 mm3/N.m and 4.5 x 10-4 mm3/N.m in 

Bi-20 vol% Ti3SiC2 and Bi-30 vol% Ti3SiC2, respectively. The tribological mechanism was 

governed by the formation of tribofilms, for example, the tribofilms formed by Bi-based 

MRMs and Ag-based MRMs against alumina can be classified as Type IVa. 
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CHAPTER III 

Synthesis and Tribological Behavior of Bi-Cr2AlC Composites 

 
Abstract (this Chapter has been accepted for publication in 41st ICACC 

Proceedings): 

In this research, we report the synthesis of Bi-Cr2AlC composites for the first time 

by hot pressing. Detailed inspection of the samples by SEM showed the Cr2AlC 

particulates are well dispersed in the Bi-matrix. The addition of Cr2AlC particulates had a 

beneficial effect on the mechanical and tribological behavior. For example, the yield 

strength increased by 1.8 times from ~40 MPa in Bi to ~72 MPa in Bi-30%Cr2AlC. The 

addition of 10 vol% Cr2AlC was able to decrease the WR of Bi-composites by ~100 times 

as compared to the Bi metal.  Detailed SEM investigations showed the anti-wear 

properties of these composites are due to the formation of smooth and lubricious 

tribofilms.  

 

 

 

 

 

 

 

 

 

 



33 

 

3.1 Introduction 
 

Bi is an important metal for solid lubrication and hot forming as it can be considered 

green alternative to Pb and has been studied for solid lubrication and hot forming [1-2]. 

As reported in Chapter 2 in this thesis, Ti3SiC2 can be added as reinforcing additive in Bi 

which improved the mechanical and tribological behavior of Bi. As a background, Ti3SiC2 

and Cr2AlC belongs to a family of compound called Mn+1AXn (MAX) phases (over 70+ 

phases), where n = 1-3, M is an Early Transitional Metal, A is a Group A element (mostly 

groups 13 and 14), and X is C or N. These solids have attracted a lot of attention due 

their excellent properties like solid lubrication, damage tolerance, thermal shock 

resistance and machinability [4-8]. Gupta [13] studied Cr2AlC tribological behavior at room 

temperature and 550 0C against alumina and Inc718 substrates and found a negligible 

wear rate at 550 0C and quite a high wear rate at room temperature. Recently, Gupta et 

al. [9-11] also demonstrated that the addition of Ti3SiC2 particulates enhanced the 

mechanical and tribological performance of different technologically important metals like 

Al-matrix, Sn-matrix, and Zn-matrix composites. The authors referred to this new 

generation of composites as MRM (Metal Reinforced with MAX) as 5-30 vol% Ti3SiC2 

was used to reinforce the metal matrix. In this research, the effect of Cr2AlC particulates 

on the mechanical and tribological behavior of Bi will be studied. 

3.2 Experimental Methods 

Cr (-325 mesh, Sigma-Aldrich, St. Louis, MO), Al (-325 mesh, Alfa Aesar, Haverhill, 

MA), and C (-325 mesh, Alfa Aesar, Haverhill, MA) powders were mixed in the molar ratio 

of 2:1.1:1 in a ball mill (8000 M mixer Mill, SPEX SamplePrep, Metuchen, NJ) for 5 

minutes. The powders were cold pressed then heated at 10 °C/min to the desired 
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temperature, and then sintered at 1350 °C for 4 h in a tube furnace with Ar gas flowing 

though the furnace. The phase pure Cr2AlC powder was then mixed with calculated 

concentrations of Bi powders (-100 mesh, Sigma Aldrich, St. Louis, MO)) by dry ball 

milling for 5 minutes.  All the powders were then poured in a die. Bi-based were difficult 

to machine as they were soft at low concentration of Ti3SiC2 or brittle at 30 vol% Ti3SiC2, 

thus, in order to minimize machining, two sets of Bi-based compositions were fabricated 

by using ~12.7 mm (EQ-Die-12D-B, MTI Corporation, Richmond, CA) and ~6.35 mm (EQ-

Die-06D, MTI Corporation, Richmond, CA) dies for hot pressing. The Bi-based 

compositions were sintered in atmospheric air by hot pressing (HP) with a uniaxial 

compressive stress of ~201 MPa (~12.7 mm die) or ~251 MPa (~6.35 mm) at 290 °C for 

5 minutes. Samples from the former set were used for hardness and tribology studies 

where samples from the latter set were used for mechanical performance. Composites 

were allowed to cool in the HP to room temperature (RT) before characterization. For 

comparison, samples of pure Bi was also fabricated by following the above mentioned 

method.  Bi-based MRM composites were fabricated by adding 10 vol% (Bi-10%Cr2AlC), 

20 vol% (Bi-20%Cr2AlC), and 30 vol% (Bi-30% Cr2AlC) Cr2AlC in the Bi- matrix.  

The methodology for determining relative density and porosity of the compacts is 

reported in Chapter 2. Briefly, the relative density was determined by normalizing the 

experimental density with theoretical density. Thereafter, the porosity is calculated based 

on the methodology explained in Chapter 2. A mechanical testing unit (Shimadzu AD-IS 

UTM, Shimadzu Scientific Instruments Inc., Columbia, MD) applied a deflection rate of 1 

mm/min to evaluate the strength of samples during compression by testing a set of 3 

samples for each composition. In this work, stress versus displacement plots are reported 



35 

 

due to the experimental limitations which did not allow for accurate measurement of the 

actual strain during mechanical testing. During this study, the yield strength is defined as 

the stress at which the stress verse displacement plot transitions from the linear to non-

linear regime where the linear region of the composites had a regression fitting of R2 > 

0.95. An average of 3 yield strength results was used to calculate average strength. 

Vicker’s micro-hardness indenter (Mitutoyo HM-112, Mitutoyo Corporation, Aurora, IL) 

was used to measure the hardness of the polished samples (Ra < 1 µm). Bi-based MRMs 

were tested by loading the samples at 0.49 N for 12 s and an average of five readings for 

each composite system is reported in this study. 

The tribological behavior of the samples were tested by using a block (tab)-on-disc 

tribometer (CSM Instruments SA, Peseux, Switzerland) at 5 N (~0.3 MPa), 50 cm/s linear 

speed, 1000 m sliding distance, and ~10 mm track radius against alumina disks (AL-D-

42-2, AdValue Technology, Tucson, AZ). Bi samples were tested for only ~80 m as they 

had higher wear as compared to Bi-based MRMs which were cycled for ~1000 m [3]. For 

tribological testing, the blocks (~4 mm x ~ 4 mm x ~3 mm) were polished to a ~1 µm 

finish. Alumina disks were also polished to a ~1 µm finish. A surface profilometer (Surfcom 

480A, Tokyo Seimitsu Co. Ltd., Japan) was used to confirm that all the samples had a Ra 

<1 µm. For each composition, three experimental studies for tribological studies were 

performed. The average of the individual mean results reported from the three data set 

was calculated and reported in the text as µmean. The specific wear rate (WR) was then 

calculated from: 

WR = (mi – mf)/(ρ.N.d) 
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where, mi is the initial mass, mf is the final mass, ρ is density of the composite, N is the 

applied load, and d is the total distance traversed by the tab during the tribology testing 

[9-11].  

Secondary electron (SE) and backscattered electrons (BSE) images were 

obtained by using a JEOL JSM-6490LV Scanning Electron Microscope (JEOL USA, Inc., 

Peabody, Massachusetts) and X-ray information was obtained via a Thermo Nanotrace 

Energy Dispersive X-ray detector with NSS-300e acquisition engine. For microscopy 

analysis, alumina samples were coated with Au/Pd by using a Balzers SCD 030 sputter 

coater (BAL-TEC RMC, Tucson AZ USA), and then mounted on aluminum mounts. The 

tribosurfaces, especially sub-stoichimetric oxides, could very well contain C which is very 

difficult to determine experimentally by X-ray analysis. If a region is determined to be 

chemically uniform at the micron level then it will identified with two asterisks as 

*microconstituent* to emphasize that these areas are not necessarily single phases. In 

addition, the presence of C in these tribofilms will be shown by adding {Cx} in the 

composition [12].  

3.3 Results and Discussion 

3.3.1 Microstructure and Phase Analysis  

Figure 3.1 shows the microstructure of Bi-Cr2AlC composites.  In all the cases, 

Cr2AlC particles are well dispersed in the Bi-matrix with minimal reaction. Figure 3.2a 

plots the variation of hardness as a function of Cr2AlC and Ti3SiC2 content. In both cases, 

the addition of harder MAX phase constituent increased the hardness of the matrix. Figure 

3.2b shows the porosity of the composites as a function of the MAX phase content. In 

both cases, the porosity increased with the addition of higher vol% of MAX phases which 
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shows that it is difficult to densify the compacts as the concentration of both Cr2AlC and 

Ti3SiC2 [3] is increased inside the matrix.  The same behavior was observed during the 

processing of Al- [9], Sn- [10], and Zn- [11] based MRM composites. Thus, it can be 

concluded that higher pressures and/or temperature are needed as compared to the 

pristine metal samples when the amount of MAX phases are increased in the metal 

matrix. 

Figure 3.1: SEM SE microstructure of (a) Bi-10%Cr2AlC, (b) Bi-20%Cr2AlC, and (c) Bi-30%Cr2AlC. 

 

Figure 3.2: Plot of (a) hardness, and (b) porosity versus MAX content. 
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3.3.2 Mechanical Performance of MRMs 

Figure 3.3a plots the compressive strength versus displacement of Bi-Cr2AlC 

composites. The yield strength gradually improved as the concentration of Cr2AlC was 

increased in the Bi-matrix. Figure 3.3b compares the yield strength of Bi-Ti3SiC2 and Bi-

Cr2AlC composites. Both the composites showed similar trend and the addition of MAX  

 

Figure 3.3: Plot of (a) compressive stress versus displacement, and (b) yield strength versus 

MAX phase content of different Bi-MAX composites. 
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phases enhanced the yield strength of Bi-matrix, for example, the yield strength of Bi-

Cr2AlC composites increased from ~40 MPa in Bi to ~72 MPa in Bi-30%Cr2AlC (~1.8 

times increased in enhancement).  Furthermore, this study shows that Cr2AlC particulates 

can be as effective as Ti3SiC2 in enhancing the yield strength of metal matrix. 

3.3.3 Tribological Behavior of MRMs 

Figure 3.4a plots the µmean of Bi-Cr2AlC and Bi-Ti3SiC2 composites. In general, Bi-

Ti3SiC2 composites showed lower friction coefficient that Bi-Cr2AlC composites. Figure 

3.4b plots the comparison of WR of Bi-Cr2AlC and Bi-Ti3SiC2 composites. Both the 

composites showed similar trends in WR. For example, the WR of Bi decreased from 

~0.02 mm3/N.m to ~2 x 10-4 mm3/N.m in Bi-10%Cr2AlC, then increased to ~9 x 10-4 and 

~7 x 10-4 mm3/N.m in Bi-20%Cr2AlC and Bi-30%Cr2AlC, respectively. In other words, the 

addition of 10 vol% Cr2AlC particulates decreased the WR of the composites by ~100 

times. This study demonstrates that Cr2AlC can be as effective an anti-wear additive as 

Ti3SiC2. At this juncture, it is not clear why the µmean of Bi-Cr2AlC is higher as compared 

to Bi-Ti3SiC2 composites. Detailed investigations are needed to understand the exact 

mechanism. Figure 3.5a shows the surface of Bi-20%Cr2AlC after tribological testing. 

Figures 3.5b-c show the tribofilms formed due to triboxidation of Bi-20%Cr2AlC on the 

alumina surface. The tribofilms were uniform, for example, the chemistry of two regions 

are (Bi0.71±0.07Cr0.18±0.01Al0.11±0.01)O0.75±0.09{Cx} and 

(Bi0.54±0.01Cr0.19±0.02Al0.14±0.01)O0.93±0.03{Cx}, respectively. Like Bi-Ti3SiC2 composites [3], 

the Bi-Cr2AlC composites are mainly contributing towards the formation of tribofilms. 

According to the classification proposed by Gupta and Barsoum [12], the tribofilms formed 
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between Bi-based MRMs and alumina can be classified as Type IVa as the tribofilms are 

lubricious and chemical homogenous. 

 

Figure 3.4: Plot of (a) friction coefficient, and (b) wear rate versus MAX phase additions. 
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Figure 3.5: SEM SE micrographs of (a) Bi-20%Cr2AlC, (b) alumina surface, and (c) BSE image of the 

same region after tribological testing. 

 

3.4 Conclusion 

Bi-Cr2AlC composites were fabricated for the first time by hot pressing. The 

addition of Cr2AlC particulates increased the yield strength of Bi-Cr2AlC composites 

increased from ~40 MPa in Bi to ~72 MPa in Bi-30%Cr2AlC (~1.8 times increased in yield 

strength). The WR of Bi decreased from 0.02 mm3/N.m to ~2 x 10-4 mm3/N.m in Bi-

10%Cr2AlC, then increased to ~9 x 10-4 and ~7 x 10-4 mm3/N.m in Bi-20%Cr2AlC and Bi-

30%Cr2AlC, respectively. In other words, the addition of 10 vol% Cr2AlC particulates can 

decreased the WR of the composites by ~100 times. Type IVa (smooth and lubricious) 

tribofilms was observed on the alumina surfaces. 
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CHAPTER IV 

Synthesis and Tribological Behavior of Al-V2AlC, Al-Ti3SiC2 and Al-
Cr2AlC Composites (Current Research Progress) 

 

Abstract: 

This chapter reports the current progress of synthesis and tribological behavior of 

Al-V2AlC, Al-Ti3SiC2 and Al-Cr2AlC composites. The addition of MAX phase particulates 

enhanced the hardness and compressive yield strength of all compositions. The yield 

strength is increased gradually from ~118 MPa in pristine Al to ~194 MPa in Al-30%V2AlC. 

Furthermore, the addition of Ti3SiC2 and Cr2AlC increased the yield point gradually and 

reached ~194 MPa and 211 MPa for Al-30%Ti3SiC2 and Al-30%Cr2AlC, respectively. In 

other words, the addition of 30% MAX phase particulates showed an enhancement in 

strength by ~1.7 times. The study showed that the addition of MAX phase particulates 

also had a remarkable effect on tribological performance. All the samples were tested by 

block (tab)-on-disk method. The pure Al samples showed μmean value of 0.55. However, 

the addition of Ti3SiC2 and V2AlC particulates decreased μmean to below 0.50. On the other 

hand, the WR of Al decreased from 0.25 mm3/N.m to 1.1 X 10-3 mm3/N.m in Al-30%V2AlC. 

Similarly, the addition of Ti3SiC2 decreased the WR to 7.3 X 10-4 mm3/N.m in the Al-

10%Ti3SiC2, thereafter it increased to 1.6 X 10-3 mm3/N.m and 2.1 X 10-3 mm3/N.m in the 

Al-20%Ti3SiC2 and Al-30%Ti3SiC2, respectively. 
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4.1 Introduction 
 

Aluminum-based materials can be used in different applications due to their promising 

properties under different applications. Most importantly, Al has good strength-to-weight 

ratio, high corrosion resistance, and good thermal and electrical conduction [1]. Thus, 

aluminum based materials have been used to replace crucial components for aerospace 

and automotive industries which leads to lower fuel and power consumption [1]. However, 

Al-based materials showed a poor tribological behavior where they showed high wear 

rates comparing with other soft metals like Ag and Sn [2-4]. Several attempts where 

approached to reinforce Al with different ceramics to improve tribological behavior of Al 

based materials. Jinfeng et al. [5] studied the effect of adding Graphite to Al based 

material and successfully decreased the friction coefficient and wear rate significantly. 

However, the addition of graphite resulted in significant reduction in the yield strength. 

Furthermore, it’s well knowing that the presence of water or hydrocarbons are essential 

for graphite to be an effective solid lubricant [6]. Hard ceramics like Al2O3, SiC and B4C 

showed significant reduction in wear rate; however, it also reported that there is variation 

in friction coefficient [7-9]. Recently, Gupta et al. [2-4] demonstrated that the addition of 

Ti3SiC2 particulates enhanced the mechanical and tribological performance of different 

technologically important metals like Al-matrix, Sn-matrix, and Zn-matrix composites. 

Gupta et al. [2] used liquid phase pressureless sintering for fabricating Al-based MRMs 

composites. In this research, the effect of adding V2AlC, Ti3SiC2 and Cr2AlC particulates 

on the mechanical and tribological behavior of Al via hot pressing will be studied. 
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4.2 Experimental Methods 

V (-325 mesh, Sigma-Aldrich, St. Louis, MO), Al (-325 mesh, Alfa Aesar, Haverhill, 

MA), and C (-325 mesh, Alfa Aesar, Haverhill, MA) powders were mixed in the molar ratio 

of 2:1.2:1 in a ball mill (8000 M mixer Mill, SPEX SamplePrep, Metuchen, NJ) for 10 

minutes. The powders were cold pressed then heated at 10 °C/min to the desired 

temperature, and then sintered at 1550 °C for 2 h in a tube furnace with Ar gas flowing 

though the furnace. Cr (-325 mesh, Sigma-Aldrich, St. Louis, MO), Al (-325 mesh, Alfa 

Aesar, Haverhill, MA), and C (-325 mesh, Alfa Aesar, Haverhill, MA) powders were mixed 

in the molar ratio of 2:1.1:1 in a ball mill (8000 M mixer Mill, SPEX SamplePrep, Metuchen, 

NJ) for 5 minutes. The powders were cold pressed then heated at 10 °C/min to the desired 

temperature, and then sintered at 1350 °C for 4 h in a tube furnace with Ar gas flowing 

though the furnace.  

The phase pure V2AlC, Cr2AlC and Ti3SiC2 (-325 mesh, Kanthal, Hallstahammar, 

Sweden) powder was then mixed with calculated concentrations of Al powders (-325 

mesh, Alfa Aesar, Haverhill, MA) by dry ball milling for 5 minutes.  All the powders were 

then poured in a die. In order to minimize machining, two sets of Al-based compositions 

were fabricated by using ~12.7 mm (EQ-Die-12D-B, MTI Corporation, Richmond, CA) 

and ~6.35 mm (EQ-Die-06D, MTI Corporation,  Richmond, CA) dies for hot pressing.  The 

Al-based compositions were sintered in atmospheric air by hot pressing (HP) with a 

uniaxial compressive stress of ~201 MPa  at 450 oC for 5 minutes. Composites were 

allowed to cool in the HP to room temperature (RT) before characterization. Samples from 

the former set were used for hardness and tribology studies where samples from the latter 

set were used for mechanical performance. For comparison, samples of pure Al were 
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also fabricated by following the above mentioned method.  Al-based MRM composites 

were fabricated by adding 10 vol%, 20 vol%, and 30 vol% of the MAX phases to produce 

Al-V2AlC, Al-Cr2AlC and Al-Ti3SiC2 composites as shown in table 4.1. 

Table 4.1: Compositions Table 

Al vol% MAX Phase vol% Composition name 

100 0 Al 

90 10 (V2AlC) Al-10%V2AlC 

80 20 (V2AlC) Al-20%V2AlC 

70 30 (V2AlC) Al-30%V2AlC 

90 10 (Cr2AlC) Al-10%Cr2AlC 

80 20 (Cr2AlC) Al-20%Cr2AlC 

70 30 (Cr2AlC) Al-30%Cr2AlC 

90 10 (Ti3SiC2) Al-10%Ti3SiC2 

80 20 (Ti3SiC2) Al-20%Ti3SiC2 

70 30 (Ti3SiC2) Al-30%Ti3SiC2 

 

The methodology for determining relative density and porosity of the compacts is 

reported in Chapter 2. Briefly, the relative density was determined by normalizing the 

experimental density with theoretical density. Please refer for Chapter 2 for detailed 

experimental procedure.  
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4.3 Results and Discussion 

4.3.1 Mechanical Performance of Al-MAX Composites 

Figure 4.1 shows the porosity of the composites as a function of the MAX phase 

content. In the case of adding Ti3SiC2 and Cr2AlC, the porosity increased with the addition 

of higher vol% of MAX phases which shows that it is difficult to densify the compacts as 

the concentration of both Cr2AlC and Ti3SiC2 is increased inside the matrix.  The same 

behavior was observed in the previous chapters. It had also noted during the processing 

of Al- [2], Sn- [3], and Zn- [4] based MRM composites. However, the addition of V2AlC 

particles did not have the same effect and the porosity was almost similar to the pristine 

aluminum. Hu et al., [15] reported that V2AlC is relatively softer than Cr2AlC and Ti3SiC2 

and thus has less effect on densification process of Al up to 30%V2AlC. For example, Hu 

et al., [15] reported that the hardness of V2AlC is less than 2.9 GPa whereas the hardness 

of Cr2AlC is ~3.5 GPa. This was also true in our current research where the hardness of 

Al-V2AlC composites is relatively lower than the hardness of Al-Ti3SiC2 or Al-Cr2AlC 

composites as shown below.  

Figure 4.1: Plot of porosity versus MAX phase content. 
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Figure 4.2 plots the variation of hardness as a function of MAX phase content. In Al-V2AlC 

system, the hardness increased gradually from ~0.46 GPa in Al to ~0.58 GPa in Al-

30%V2AlC. Similarly, in Al-Cr2AlC composites, the hardness increased as the Cr2AlC 

content increased and reached to ~0.60 GPa in Al-30%Cr2AlC.  Hardness is also 

increased from ~0.46 GPa in Al to 0.58 GPa in Al-20%Ti3SiC2. Thereafter, it decreased 

slightly to ~0.56 GPa Al-30%Ti3SiC2. In general, the addition of hard MAX phase 

particulates increased the hardness of the composites, but the presence of porosity in 

samples account for the slight decreased in hardness of Al-30%Ti3SiC2 as compared to 

Al-20%Ti3SiC2. A similar trend was also observed in Sn- [3], Zn- [4] and Ag- [16] based 

MRM composites. 

 

Figure 4.2: Plot of hardness versus MAX phase content. 
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Figure 4.3: Plot of compressive stress versus displacement (a) Al-V2AlC, (b) Al-Ti3SiC2, (c) Al-Cr2AlC 

(a) 

(b) 

(c) 
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Figures 4.3a-c plot the compressive strength versus displacement plots of Al-based 

composites. All samples showed gradual failure under different MAX phase 

concentrations. However, brittle failure is observed in Al-20%Ti3SiC2 and Al-30%Ti3SiC2 

(Fig. 4.3b). Even though, in all the cases, the compressive yield strength is improved as 

the concentration of MAX phase particulates is increased in the matrix (Fig. 4.4). The 

yield strength improved from ~118 MPa in Al to ~194 MPa in Al-30%V2AlC. Furthermore, 

the addition of Ti3SiC2 and Cr2AlC increased the yield point gradually and reached to 

~194 MPa and ~211 MPa for the Al-30%Ti3SiC2 and Al-30%Cr2AlC, respectively. In other 

words, the addition of 30% MAX phase particulates showed an enhancement in strength 

of ~1.7 times. 

Figure 4.4: Plot of yield strength versus MAX phase content of different Al-MAX phase composites. 

 

4.3.2 Tribological Behavior of MRMs 

Figure 4.5 plots the µmean of Al-V2AlC, Al-Ti3SiC2 and Al-Cr2AlC composites. The 

pure Al samples showed μmean value of 0.55. However, the addition of V2AlC and Ti3SiC2 

particulates decreased μmean to below than 0.50. Both composites showed almost similar 

trend where the addition of 10% of V2AlC or Ti3SiC2 reduce the µmean to 0.46 and 
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thereafter it increased slightly as the concentration increased to 20% and 30%. On the 

other hand, the addition of Cr2AlC increased μmean and same effect was also observed 

when Cr2AlC particulates were added to bismuth matrix. Figure 4.6 plots the comparison 

of WR of Al-V2AlC, Al-Ti3SiC2 and Al-Cr2AlC composites. the WR of Al decreased from 

0.25 mm3/N.m to 1.1 X 10-3 mm3/N.m in Al-30%V2AlC. Similarly, the addition of Ti3SiC2 

decreased the WR to 7.3 X 10-4 mm3/N.m in the Al-10%Ti3SiC2, thereafter it increased to 

1.6 X 10-3 mm3/N.m and 2.1 X 10-3 mm3/N.m in the Al-20%Ti3SiC2 and Al-30%Ti3SiC2, 

respectively. The addition of Cr2AlC at different concentrations retained almost similar 

WR values ~ (8-10) X 10-4 mm3/N.m. High porosity at high concentrations in Al-Ti3SiC2 

comparing with Al-V2AlC could account for high WR and lead to form a less effective film. 

Gupta [6] showed that Ti3SiC2 is less lubricious and exhibits high wear rate at room 

temperature. Thus, increasing Ti3SiC2 content beyond certain concentration has more 

drastic effect. Same behavior was observed in Sn- [3], Zn- [4] and Ag- [16] based MRM 

composites. On the other hand, it can be concluded that V2AlC is more effective in 

lowering wear rate at room temperature. Further studies are need to understand the exact 

mechanism. 

Figure 4.5: Plot of friction coefficient versus MAX phase additions. 
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Figure 4.6: Plot of wear rate versus MAX phase additions 

 

4.4 Conclusion 

Al-V2AlC, Al-Ti3SiC2 and Al-Cr2AlC composites were fabricated and tested for the 

first time by hot pressing. The addition of MAX Phase particulates enhanced the hardness 

and compressive yield strength of all the compositions. The yield strength is increased 

gradually from ~118 MPa in pristine Al to ~194 MPa in Al-30%V2AlC. Furthermore, the 

addition of Ti3SiC2 and Cr2AlC increased the yield point gradually and reached to ~194 

MPa and 211 MPa for the Al-30%Ti3SiC2 and Al-30%Cr2AlC, respectively. In other words, 

the addition of 30% MAX phase particulates showed an enhancement in strength of ~1.7 

times. The study showed that the addition of MAX phase particulates also had a 

remarkable effect on tribological performance. All the samples were tested by block (tab)-

on-disk method. The pure Al samples showed μmean value of 0.55. However, the addition 

of V2AlC and Ti3SiC2 particulates decreased μmean to below than 0.50. In contrary, the 

addition of Cr2AlC increased μmean and same effect was also observed when Cr2AlC 

particulates were added to bismuth matrix. On the other hand, the WR of Al decreased 
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from 0.25 mm3/N.m to 1.1 X 10-3 mm3/N.m in Al-30%V2AlC. Similarly, the addition of 

Ti3SiC2 decreased the WR to 7.3 X 10-4 mm3/N.m in the Al-10%Ti3SiC2, thereafter it 

increased to 1.6 X 10-3 mm3/N.m and 2.1 X 10-3 mm3/N.m in the Al-20%Ti3SiC2 and Al-

30%Ti3SiC2, respectively. The addition of Cr2AlC at different concentrations retained 

almost similar WR values ~(8-10) X 10-4 mm3/N.m. 
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CHAPTER V 

Conclusion and Future Scope 

5.1 Conclusion  

Throughout this thesis, different MAX Reinforced Metals (MRMs) composites were 

studied for their mechanical and tribological behavior for the first time. The addition of 

MAX phase particulates has many beneficial effects on the mechanical and tribological 

behavior of MRMs. Although the porosity increased as the concentration of MAX phase 

content increased, the yield strength and wear resistance improved in all systems. 

Literature demonstrated that MAX phases exhibit outstanding tribological behavior at high 

temperatures compared to room temperatures. This work, along with the previous work 

at Advanced Material Science Lab at the University of North Dakota, showed a practical 

and beneficial effect of using these materials as particles reinforcement for soft metal 

matrix.  

These studies confirm that the tribological behavior in a solid lubricant such as Ag 

can be further improved by adding MAX phase particulates in the matrix. In addition, 

Ti3SiC2 showed remarkable effect in improving densification of Ag samples in pressure 

less sintering. Bismuth, the green alternative for lead, showed excellent performance 

when Ti3SiC2 or Cr2AlC particulates were added to it. The wear rate was decreased by 

more than ~60 times when 10% of Ti3SiC2 is added to Bi. Furthermore, the yield strength 

and hardness were increase comparing with the pristine samples. The addition of Ti3SiC2 

particulates do not have a drastic effect of the grain size. The grain sizes were almost 

similar when the etched surfaces of Bi and Bi-20%Ti3SiC2, Ag and Ag-20%Ti3SiC2 were 

investigated. Al-based composites showed also a significant improvement in tribological 
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behavior when MAX phases are added to the matrix. Al-Ti3SiC2 and Al-Cr2AlC composites 

showed the same behavior in increasing porosity. However, Al-V2AlC did not affect 

porosity as the V2AlC is relatively softer than Ti3SiC2 and Cr2AlC. The addition of MAX 

phase particulates also decreased μmean compared with the pristine Al. Furthermore, the 

wear rate decreased significantly for Al-V2AlC and Al-Ti3SiC2 composites compared to 

the pure Al. Wear rate decreased as the concentration of V2AlC increased in the Al-V2AlC. 

However, the addition of Ti3SiC2 decreased the WR to 7.3 X 10-4 mm3/N.m in the Al-

10%Ti3SiC2, thereafter it increased slightly in the Al-20%Ti3SiC2 and Al-30%Ti3SiC2.  

Many factors are affecting the mechanical and tribological behavior of MRMs 

composites. Presence of porosity in the sample affects the mechanical performance of 

the composites and could cause a reduction in hardness readings. Furthermore, some 

samples showed brittle failure during the compressive testing and the nature of failure 

should be studied for further analysis. Finally, it’s always true that the addition of MAX 

phases improves the tribological behavior but there is an optimum concentration where 

the best results is found. That is mainly due to the nature of these phases where they 

perform much better at higher temperatures rather than room temperature.  

 
5.2 Future Work  

 All the preceding work was done by using pure metals as matrix. The next level 

would be studying the effect of adding MAX phases to commercial metal alloys like 

aluminum-based alloys. The presented studies in this thesis worked with different MAX 

phases, namely Ti3SiC2, V2AlC and Cr2AlC. It would be recommended to study other 

phases like Cr2GaC to have better and comprehensive understanding about different 

MRMs.  
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Furthermore, as the science is moving toward nanotechnology, it would be 

recommended to study several systems in submicron size and report the effect as a 

function of particle sizes. Another approach would be depositing MRMs on the surface of 

stronger materials for improving tribocontact and improving their tribological behavior.     
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