
University of North Dakota

UND Scholarly Commons

Theses and Dissertations Theses, Dissertations, and Senior Projects

January 2018

Plate Vibration Dispalcement Curve Measurement
Using PVDF
Aniket Nandkumar Pinjan

Follow this and additional works at: https://commons.und.edu/theses

This Thesis is brought to you for free and open access by the Theses, Dissertations, and Senior Projects at UND Scholarly Commons. It has been

accepted for inclusion in Theses and Dissertations by an authorized administrator of UND Scholarly Commons. For more information, please contact

zeineb.yousif@library.und.edu.

Recommended Citation
Pinjan, Aniket Nandkumar, "Plate Vibration Dispalcement Curve Measurement Using PVDF" (2018). Theses and Dissertations. 2311.
https://commons.und.edu/theses/2311

https://commons.und.edu?utm_source=commons.und.edu%2Ftheses%2F2311&utm_medium=PDF&utm_campaign=PDFCoverPages
https://commons.und.edu/theses?utm_source=commons.und.edu%2Ftheses%2F2311&utm_medium=PDF&utm_campaign=PDFCoverPages
https://commons.und.edu/etds?utm_source=commons.und.edu%2Ftheses%2F2311&utm_medium=PDF&utm_campaign=PDFCoverPages
https://commons.und.edu/theses?utm_source=commons.und.edu%2Ftheses%2F2311&utm_medium=PDF&utm_campaign=PDFCoverPages
https://commons.und.edu/theses/2311?utm_source=commons.und.edu%2Ftheses%2F2311&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:zeineb.yousif@library.und.edu


PLATE VIBRATION DISPLACEMENT CURVE MEASUREMENT USING PVDF 

by 

Aniket Nandkumar Pinjan 

Bachelor of Engineering, Savitribai Phule Pune University, India, 2014 

A Thesis 

Submitted to the Graduate Faculty 

of the 

University of North Dakota 

In partial fulfillment of the requirements 

for the degree of 

Master of Science 

Grand Forks, North Dakota 

AUGUST 

2018 



ii 

Copyright 2018 Aniket Pinjan



iii





v 

 

1 TABLE OF CONTENTS 

LIST OF TABLES ............................................................................................................ xii 

LIST OF VARIABLES.................................................................................................. xiiiii 

ACKNOWLEDGMENT.................................................................................................. xix 

ABSTRACT  ................................................................................................................. xx 

1. INTRODUCTION .......................................................................................................... 1 

1.1 Research Objective ............................................................................................... 1 

1.2 Vibration Measurement ........................................................................................ 2 

1.2.1 Importance of vibration measurement ........................................................ 2 

1.2.2 Types of vibration and measurements ......................................................... 5 

1.2.3 Types of sensors ............................................................................................ 7 

1.2.4 Vibration Exciters ........................................................................................ 13 

1.2.5 Signal Analysis ............................................................................................. 15 

1.2.6 Modal Analysis ............................................................................................ 17 

1.3 Origin of piezoelectricity and applications ........................................................ 21 

1.3.1 Sensors ........................................................................................................ 22 

1.3.2 Actuators ..................................................................................................... 23 



vi 

 

1.3.3 Field of application ...................................................................................... 23 

1.3.4 PVDF Properties .......................................................................................... 24 

1.4 Thesis Layout ..................................................................................................... 25 

2 PIEZOELECTRIC SHELL VIBRATION THEORY .................................................. 27 

2.1 Fundamentals ..................................................................................................... 27 

2.2 Distributed Sensing of Elastic Shells ................................................................. 42 

2.2.1 Generic Shape ............................................................................................. 42 

2.2.2 Spatial Thickness Shaping ........................................................................... 44 

2.2.3 Spatial Surface Shaping ............................................................................... 46 

2.3 Cylindrical Shell ................................................................................................. 47 

2.4 Plate Substrate .................................................................................................... 50 

2.5 Beam Substrate ................................................................................................... 53 

3 SENSOR DEVELOPMENT ........................................................................................ 37 

3.1 Sensor Design ..................................................................................................... 37 

3.1.1 Beam Displacement Sensor Design ............................................................ 37 

3.1.2 Plate Displacement Sensor Equation .......................................................... 60 

3.2 Numerical Simulation ......................................................................................... 63 

3.2.1 Beam Sensor ............................................................................................... 63 

3.2.2 Plate Sensor ................................................................................................ 69 



vii 

3.2.3 Multiphysics Simulation .............................................................................. 73 

4 EXPERIMENTAL DISPLACEMENT MEASUREMENT ........................................ 78 

4.1 Beam Experimental Displacement Measurement .............................................. 78 

4.1.1 Sensor shaping and fabrication .................................................................. 81 

4.1.2 Experimental Measurement Procedure for beam ...................................... 83 

4.1.3 Experimental Results for the beam. ........................................................... 86 

4.2 Plate Experimental Displacement Measurement. .............................................. 89 

4.2.1 Experimental Results for the plate. ............................................................ 92 

5 CONCLUSION AND RECOMMENDATIONS ......................................................... 95 

5.1 Conclusion .......................................................................................................... 95 

5.2 Recommendation for Future Work .................................................................... 97 

6 APPENDICES .............................................................................................................. 99 

7 REFERENCES ........................................................................................................... 107 



viii 

 

 

LIST OF FIGURES 

Figure 1.1: Basic vibration measurement scheme.............................................................. 4 

Figure 1.2:  Strain gauge ..................................................................................................... 8 

Figure 1.3 PCB Accelerometer ........................................................................................... 9 

Figure 1.4: Linear variable differential transformer (LVDT) ........................................... 11 

Figure 1.5: Noncontact Displacement sensors .................................................................. 12 

Figure 1.6: Sper Scientific Direct Vibrometer model 840060 .......................................... 12 

Figure 1.7: Reed K4030 Digital Stroboscope. .................................................................. 13 

Figure 1.8: Labworks ET-126 Electrodynamic shaker. .................................................... 14 

Figure 1.9: Time domain and frequency domain graph. ................................................... 16 

Figure 1.10: E4440A PSA Spectrum Analyzer, 3 Hz to 26.5 GHz .................................. 17 

Figure 2.1: Representation of piezoelectric sensor bonded to a shell structure. ............... 28 

Figure 2.2: Spatial Thickness Shaping.............................................................................. 45 

Figure 2.3: Spatial Surface Shaping.................................................................................. 47 

Figure 2.4: Cylindrical Shell with a Shaped Sensor Adhered .......................................... 48 

Figure 2.5: A Rectangular Plate Bonded with a Piezoelectric Sensor .............................. 52 

Figure 3.1: Beam with PVDF film and deflection curve. ................................................. 59 

Figure 3.2: Beam (S-S) first and second mode response (Continuous= Actual; 

Dot=Sensor) .................................................................................................... 65 

file:///C:/Users/aniket.pinjan/Downloads/FinalThesisLayoutJuly6.docx%23_Toc518656865


ix 

 

Figure 3.3: Beam (S-S) third and fourth mode response (Continuous= Actual; 

Dot=Sensor) .................................................................................................... 65 

Figure 3.4: Beam (C-C) first and second mode response (Continuous= Actual; 

Dot=Sensor) .................................................................................................... 66 

Figure 3.5:Beam (C-C) third and fourth mode response (Continuous= Actual; 

Dot=Sensor) .................................................................................................... 66 

Figure 3.6: Beam (C-F) first and second mode response (Continuous= Actual; 

Dot=Sensor) .................................................................................................... 66 

Figure 3.7: Beam (C-F) first and second mode response (Continuous= Actual; 

Dot=Sensor) .................................................................................................... 67 

Figure 3.8: Layout of the PVDF sensor across plate for measuring plate deflection curve   

at resonance ..................................................................................................... 70 

Figure 3.9: Plate (S-S) first and second mode response (Continuous= Actual; 

Dot=Sensor) .................................................................................................... 72 

Figure 3.10: Plate (S-S) third and fourth mode response (Continuous= Actual; 

Dot=Sensor) .................................................................................................... 72 

Figure 3.11: Plate (C-C) first and second mode response(Continuous= Actual; 

Dot=Sensor) .................................................................................................... 72 

Figure 3.12: Plate (C-C) third and fourth mode response (Continuous= 

Actual;Dot=Sensor) ........................................................................................ 73 

Figure 3.13: Geometry of beam in ANSYS ...................................................................... 75 

Figure 3.14: S-S Beam first mode of vibration at frequency 56.672 Hz .......................... 77 

Figure 3.15: S-S Beam second mode of vibration at frequency 230.77 Hz...................... 77 

file:///C:/Users/aniket.pinjan/Downloads/FinalThesisLayoutJuly6.docx%23_Toc518656887
file:///C:/Users/aniket.pinjan/Downloads/FinalThesisLayoutJuly6.docx%23_Toc518656887


x 

 

Figure 3.16: S-S Beam third mode of vibration at frequency 519.53 Hz ......................... 77 

Figure 3.17: C-C Beam first mode of vibration at frequency 129.44 Hz ......................... 78 

Figure 3.18: C-C Beam second mode of vibration at frequency 358.88 Hz ..................... 78 

Figure 3.19: C-C Beam third of vibration at frequency 706.64 Hz .................................. 78 

Figure 3.20: C-F Beam first mode of vibration at frequency 20.771 Hz .......................... 79 

Figure 3.21: C-F Beam second mode of vibration at frequency 130.04 Hz ..................... 79 

Figure 3.22: C-F Beam third mode of vibration at frequency 364.41 Hz ......................... 79 

Figure 4.1: Setup for Clamped-Clamped boundary condition of the beam. ..................... 78 

Figure 4.2: Setup for Simply Supported boundary condition of the beam. ...................... 79 

Figure 4.3: Setup for Clamped-Free boundary condition of the beam. ............................ 80 

Figure 4.4: Sensor template. ............................................................................................. 82 

Figure 4.5: Sensor fabrication details. .............................................................................. 82 

Figure 4.6: Beam Experimental Setup using an accelerometer ........................................ 84 

Figure 4.7: Beam divided into 14 sections for accelerometer measurements. .................. 86 

Figure 4.8: Beam (S-S) first and second mode response (Continuous= Actual; 

Dot=Sensor) .................................................................................................... 87 

Figure 4.9: Beam (S-S) third mode r esponse(Continuous= Actual; Dot=Sensor) ........... 87 

Figure 4.10: Beam (C-C) first and second mode response (Continuous= Actual; 

Dot=Sensor) .................................................................................................... 88 

Figure 4.11: Beam (C-C) third mode response (Continuous= Actual; Dot=Sensor) ........ 88 

Figure 4.12: Beam (C-F) first and second mode response (Continuous= Actual; 

Dot=Sensor) .................................................................................................... 89 



xi 

 

Figure 4.13: Beam (C-F) third mode response (Continuous= Actual; Dot=Sensor) ........ 89 

Figure 4.14: Plate with the grid mapping. ......................................................................... 90 

Figure 4.15: Plate Experimental Setup using an accelerometer. ...................................... 91 

Figure 4.16: Plate (S-S) first and second mode response (Continuous= Actual; 

Dot=Sensor)................................................................................................... 93 

Figure 4.17: Plate (S-S) third mode response (Continuous= Actual; Dot=Sensor) .......... 93 

Figure 4.18: Plate (C-C) first and second mode response (Continuous= Actual; 

Dot=Sensor)................................................................................................... 93 

Figure 4.19: Plate (C-F) third mode response (Continuous= Actual; Dot=Sensor) .......... 94 



xii 

 

LIST OF TABLES  

Table 3.1: Simulation data for beam. ................................................................................ 65 

Table 3.2: Boundary Condition and characteristics of the vibrating beam ....................... 68 

Table 3.3: Natural Frequencies of Beam with boundary conditions ................................. 69 

Table 3.4: Simulation data for plate. ................................................................................. 70 

Table 3.5: Theoretical and finite element beam natural frequencies ................................ 81 

Table 3.6: Percentage error for analytical and simulation calculation. ............................. 81 

Table 4.1: Properties of the test specimen. ....................................................................... 80 

  

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 



xiii 

 

LIST OF VARIABLES 

1 2 3  ------------------------------------------------------------- curvilinear coordinate system 

1, 2   ---------------------------------------------------------------- angles related to displacement 

 

33  --------------------------------------- impermeability coefficient of the piezoelectric sensor 

 

 ----------------------------------------------------------------------------------------------- variation 

ij  --------------------------------------------------- strain of the th
i  surface and the 

th
j  direction 

ij
  -------------------------------------- membrane strain of the th

i  surface and the 
th

j  direction 

   ------------------------------------------------------------------------- dielectric constant matrix 

 --------------------------------------------------------- theta direction in cylindrical coordinates 

ij  ---------------------------------------- bending strain of the th
i  surface and the 

th
j  direction 

j  -------------------------------------------------------- fraction of critical damping for mode j  

  ----------------------------------------------------------------------------------------- mass density 

ij  ------------------------------------ mechanical stress of the th
i  surface and the 

th
j  direction 

  ------------------------------------------------------------------------------ surface charge density 

   --------------------------------------------------------------------------------------- Poisson’s ratio 

  -------------------------------------------------------------------------------------- electric potential 

3

S  -------------------------------------------------------- total signal output in the three direction 

 
i

   ------------------- eigenvector representing the mode shape of the 
th

i natural frequency 

  ------------------------------------------------------------------------------------ natural frequency 



xiv 

 

i  --------------------------------------------------------------------- th
i  natural circular frequency 

1A  and 2A  --------------------------------------------------------------------------- Lamé parameters 

B  ------------------------------------------------------------------ the thickness of cylindrical shell 

 c  ----------------------------------------------------------------------------- elastic constant matrix 

 C   ----------------------------------------------------------------------- structural damping matrix 

D  ------------------------------------------------------------------------------- electric displacement 

 jD  ------------------------------------------------------------------- electric displacement vector 

E  ------------------------------------------------------------------------------- modulus of elasticity 

jE  -------------------------------------------------- the electric field strength in the 
j  direction 

e

iE   ------------------------------------------- electric field induced by an electric displacement 

 e  --------------------------------------------------------------------- piezoelectric constant matrix 

31e  ------------------------------------------------- PVDF sensor strain/charge coefficients in the one direction 

32e ----------------------------------------------- PVDF sensor strain/charge coefficients in the two directions 

F  --------------------------------------------------------------------------------------------------- force 

 F   --------------------------------------------------------------------------------------- force vector 

( , )F x y  ---------------------------------------------------------------- shape function of the sensor 

Fx ------------------------ first derivative of the shape function of the sensor with respect to x 

Fxx -------------------- second derivative of the shape function of the sensor with respect to x 

Fy ------------------------ first derivative of the shape function of the sensor with respect to y 

Fyy -------------------- second derivative of the shape function of the sensor with respect to y 

 f  ---------------------------------------------------------------------------------- natural frequency 

H ----------------------------------------------------------------------------------------------- enthalpy 



xv 

 

S
h  ------------------------------------------------------------------------ the thickness of the sensor 

ijh  ------------------------------------------- strain charge coefficient of the piezoelectric sensor 

,i j  --------------------------------------------- stress tensors: surface and direction, respectively 

K̂  ---------------------------------------------------------------------------------------- kinetic energy 

 K   ------------------------------------------------------------------------ structural stiffness matrix 

Lx  ------------------------------------------------------- dimension of the plate in the x-direction 

Ly  ------------------------------------------------------- dimension of the plate in the y-direction 

 M  --------------------------------------------------------------------------------------- mass matrix 

, 'P P  ------------------------------------------------------------ initial and end points, respectively 

Q  ----------------------------------------------------------------------- surface charge per unit area 

q  ------------------------------------------------------------------------ charge output of PVDF film 

R  ---------------------------------------------------------------------- the radius of cylindrical shell 

1R  and 2R  ----------------------------------------- radii of curvatures in the 1 and two directions 

1 2,r r  - distance measured from the neutral surface to the top and bottom of the sensor layer 

S ----------------------------------------------------------------------------- surface over the volume 

ijS  ------------------------------------ mechanical strain of the th
i  surface and the 

th
j  direction 

e
S  -------------------------------------------------------------- the effective surface electrode area 

 sgn   -------------------------------------------------------------------------------- signum function 

 3 1 2sgn ,U      ------------------------------------------------------------------- polarity function 

t  ---------------------------------------------------------------------------------------- surface traction 

0 1,t t  --------------------------------------------------------------- initial and end time, respectively 

 ijT  --------------------------------------------------------------------------------------- stress vector 



xvi 

 

1U , 2U , and 3U  ----------------------------------------------------------------- generic deflections 

Ux , Uy , and Uz  ------------------------------------- displacements in the x, y, and z directions 
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ABSTRACT 

Beam and plate dynamics are often measured using accelerometers and in some cases laser-

based systems. Natural frequencies, mode shapes, and deflections are then derived from 

these measurements. The work presented here describes a method to directly measure the 

deflection curve of a vibrating beam and plate using piezoelectric films. The sensor consists 

of constant shape segment of PolyVinyliDene Fluoride (PVDF) films bonded to the surface 

of the structure. We show in here that each segment of the sensor measures the deflection 

slope at its particular location. The overall lateral displacement curve of the structure 

(beam/plate) is calculated from these slopes using central difference formulas.  In this 

work, the equations of the sensor are presented along with the results of the numerical 

verifications. Numerical simulations are executed through MATLAB, whereas 

Multiphysics simulation is accomplished through ANSYS, and the results of these 

simulations are compared to the experimental results. The results indicate that the proposed 

sensors can be used to efficiently and respectively measure the lateral vibration 

displacements curves of beams and plates with various boundary conditions.  
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CHAPTER I 

1. INTRODUCTION 

1.1 Research Objective 

The focus of this research aims towards the design of PolyVinyliDene Fluoride 

(PVDF) sensor to measure the deflection curve of the vibrating beam and a vibrating plate. 

The displacement measurements of these vibrating structures are often conducted through 

accelerometers and sometimes laser-based system. Natural frequencies, modes shapes, and 

deflections are obtained through these measurements. The sensor used in this research is 

made of multiple constant shape PVDF film, bonded to the vibrating surface. The 

individual charge of each PVDF section is proportional to the slope of the beam or plate’s 

section. Using the slopes of the structures at different segments and implementing central 

difference method, the beam or plate surface deflection curve can be calculated. The 

equation of the sensor is derived, followed with numerical calculations through MATLAB 

and Multiphysics simulation using ANSYS. The experimental results along with numerical 

calculations confirm that the designed sensors can effectively measure the deflection curve 

of prismatic beams and plates with various boundary conditions. The accuracy of the sensor 

highly depends upon the number of sensor patches and the range of frequency over which 

the measurements are intended.
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1.2 Vibration Measurement  

In this section, we see the various aspects of vibration measurement and  applications. 

The basic scheme for vibration measurement is outlined here.  Devices like transducers are 

described which transform physical variables into equivalent electrical signals. Frequency 

response function and the instruments used for vibration measurement along with 

electrodynamic shakers or exciters used to excite a machine or system to study its dynamic 

characteristics are outlined too. Signal analysis process, to represents the signal received 

from the vibrating system in a convenient form, is discussed. The modal analysis 

determines the natural frequencies, mode shapes, and damping ratio through vibration 

testing. Thus, in the process of vibrating testing of the structure, the necessary equipment, 

digital signal processing, analysis of random signals received from the structure, 

determining mode shapes are all described in this section.  

1.2.1 Importance of vibration measurement 

Vibration is a mechanical phenomenon which results in oscillations of the structure 

from its equilibrium point. The word vibration is derived from the Latin word 

‘vibrationem,’ i.e., shaking, brandishing. The process of earing involves eardrum vibration, 

and we see because light waves undergo vibration too. Breathing is associated with lung 

vibration, and so is the fact that humans speaking is associated with the tongue vibration. 

Vibration can be desirable in cases such as tuning fork, guitar strings producing melody 

tune, loudspeaker producing loud sounds or a mobile phone vibration. In many cases, 

vibration is undesirable, cause for energy wastage and creating undesirable effects in 

vehicle engines, electric motors, bridge, etc. Wheels of some locomotives rise from the 

ground at high speeds due to imbalance and vibration arises from the imbalances in the 
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rotating parts of the mechanical system, friction between the mating objects, effects of 

other working parts in a larger assembly or the environmental conditions affecting the 

operation of a structure. In a situation such as structures designed to support heavy 

machinery, like turbines and motors, steam and gas engines, and reciprocating pumps are 

subjected to vibrations. Engineers have found the task of vibration mitigation in turbine 

difficult due to disk and blade vibration, and hence it is crucial to address the failure in 

machinery like hydraulic turbines [1]. Vibration is also held responsible for rapid wear of 

machine parts such as bearings and gears [2]. Furthermore, vibration causes chatter in the 

cutting process resulting in reduced surface finish [3]. In the State of Illinois, the case of 

highway light poles; characterized with slender structures and low values of structural 

damping leading to large-amplitude vibration causing the structure to collapse [4] [5] and 

thus recommending vibration reduction through proposed dampers. The resonance 

phenomenon occurs when the natural frequency of a structure coincides with the external 

excitation frequency, leading to high amplitude vibrations, excessive deflection, and 

structural failure. The standard example of resonance effect is the bridge collapsing due to 

human-induced external events and natural causes [6]. Vibration measurement is 

necessary, as with industrialization and modernization need for more sophisticated gadgets 

has hassled the markets. These equipment’s characterized by factors such as high efficiency 

and being light-weight, tend to face resonance situations more frequent, hampering their 

performances. Knowing the natural frequency not only helps to suppress resonance but 

also assists to deduce the speed of other machines parts to avoid resonance. It might be 

challenging to develop a mathematical model of the system in practical situations and 

predict its vibration characteristics. In such cases, we make use of experimental models to 
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measure the vibration response of the system through a known input, thus helping in 

identifying the system regarding its mass, stiffness, and damping. The computational 

process adopted to measure natural frequencies have different values when compared to 

the practical situation because of the assumptions made during analysis [7]. Machines are 

put under certain environment to experience specific vibration, and their sustainability 

decides whether they can survive the practical situations. These events and circumstances 

make vibration measurement an important issue. Basic vibration measurement scheme is 

outlined in Figure 1.1. 

 

 

   

 

Vibration measurement is done in following way: transducers are employed to 

convert the vibration of the structure to an electrical signal. These electrical signals in the 

form of voltage are too small for direct recording, and hence a signal conversion instrument 

is used to amplify the signal to required values. The output signals can be recorded through 

a computer or stored in a display unit for visual inspection. The data recorded in the form 

of signals undergo analysis to determine the vibration characteristics of the structure. 

During vibration testing, it is important to consider certain factors such as the frequency 

ranges and amplitudes with the substantiality of the structure involved along with 

operational conditions imposed on the machine, and the type of data processing as the 

output can be in the form of graphical representations or digital recording for further 

analysis. 

Signal 

converting 

device 

Data 

analysis 

Display unit, 

analyzer, 

computer 

Vibrating 

Structure  

Vibration 

Transducer 

Figure 1.1: Basic vibration measurement scheme 
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Vibration measurement is sometimes used as an indirect measurement of some 

other value, as the final measurement goal determines the approach to obtaining the 

vibration response. Often, condition monitoring process is used to predict or monitor wear, 

fatigue, and failure which in turn assist in machine maintenance. Condition monitoring also 

called inertial vibration [8]. E.g., monitoring machinery motors (especially the bearings) in 

critical applications.  

1.2.2 Types of vibration and measurements 

Free Vibration happens when a system, after an initial disturbance, is left to vibrate 

on its own, the ensuing vibration is known as free vibration, and no external force acts on 

the system. An example of free vibration is the oscillation of a simple pendulum. Forced 

Vibration occurs when a system is subjected to an external force, i.e., an impact or often a 

repeating type of force, the resulting vibration is known as forced vibration. A condition 

known as resonance takes place when the frequency of the external force coincides with 

one of the natural frequencies of the system, and the system undergoes large oscillations. 

Failures of such structures as bridges, buildings, turbines blades and airplane wings have 

been associated with the occurrence of resonance phenomenon.  

When no energy is lost or dissipated during oscillation in the form of friction or 

other resistance, the vibration is known as undamped vibration. However, it is called 

damped vibration in case of energy loss. In many physical systems, the amount of damping 

is so small that it can be considered as negligible and disregarded for most engineering 

purposes. However, during analysis of vibrating systems, the consideration of damping 

becomes extremely important. 
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Vibration is known as linear vibration when all the basic components of a vibratory 

system, i.e. the spring, the mass, and the damper behave linearly. If any of the basic 

components behave nonlinearly, the vibration is termed as nonlinear vibration. The 

differential equations governing the behavior of such linear and nonlinear vibratory 

systems are also linear and nonlinear, respectively. Linear vibration holds the principle of 

superposition and the mathematical techniques of analysis are well developed. For 

nonlinear vibration, the superposition principle is not valid, and thus, the techniques of 

analysis are less known. With increasing amplitude of oscillation, all vibratory systems 

tend to behave nonlinearly. Hence knowledge of nonlinear vibration is desirable while 

dealing with practical vibratory systems. 

If at any given time the value or magnitude of the excitation (force or motion) acting 

on a vibratory system is known, the excitation is known as deterministic. Therefore, the 

resulting vibration is known as deterministic vibration. Wind velocity, road roughness, and 

ground motion during earthquakes are categorized under random vibration. When 

excitation is random, the resulting vibration is also called as random vibration. In the 

system with the random vibratory response; the excitation can be described only regarding 

statistical quantities. 

Different measurement technologies have merits and demerits depending on the 

ultimate vibration response goals. Continuous vibration measurements are used for 

condition monitoring of machines. It directly measures the dynamic characteristics of the 

object of interest under real operating conditions, also facilitating in real-time maintenance 

and preventing failure. An impulse vibration measurement involves striking the object, 

often with a “hammer” that measures impact force and then measuring the resulting 
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vibration of the object. This type of test reveals resonances and help predict its behavior in 

real operating conditions. It often leads to design considerations to either avoid or 

accentuate resonant frequencies depending on the application. There is non-contact type 

displacement sensors that measure displacement without being in contact with the vibrating 

structure. The types of sensor used for vibration measurement are discussed in the 

following part of this section. With instantaneous vibration focusing on obtaining the 

limited vibration response of particular instance on the structure whereas total vibration 

measurement involves measuring the total vibration response of the structure.   

1.2.3 Types of sensors  

During vibration the structure vibrating undergoes physical change about its resting 

position and measuring this change is termed as vibration measurement. The transducer is 

a device that transforms values of physical variables into the equivalent electrical signal. 

Figure 1.2 shows the strain gauge functioning under tension and compression. A strain 

gauge is one of the transducers; construction of a strain gauge includes a fine wire of 

copper-nickel alloy, sandwiched between two sheets of thin paper.  When bonded to a 

vibrating structure the strain gauge experiences the same motion as that of vibrating 

structure is attached to and thus the change in strain experienced by the gauge results in a 

change in resistance, producing the electrical signals equivalent to the strain experienced. 

The strain at any point on the structure is proportional to the structural deflection thus can 

be calibrated to read strain directly. To measure the change in resistance of the wire, the 

strain gauge is accompanied by Wheatstone bridge, potentiometer or voltage divider. 

Transducers facing problems such as nonlinearity or slow response find less application in 

vibration measuring field. 
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Figure 1.2: Strain gauge   

For accurate surface strain and temperature measurements for propulsion systems, 

techniques have advanced through the development of thin strain gauges and 

thermocouples sensors few micrometers thick (5 − 8 𝜇𝑚), sputter deposited directly on 

test structure without any structural alteration and minimal gas flow disturbances in an 

environment such as furnace testing and harsh engine conditions. [9]. There are certain 

materials like quartz, tourmaline, lithium sulfate and Rochelle salt that directly generate 

an electrical signal when subjected to deformation or mechanical stress and the charge 

disappears when the material is back to its original shape. These materials are termed as a 

piezoelectric material, and the transducer with such material is termed as a piezoelectric 

transducer. Researchers have studied the behavior of piezoelectric elements as strain 

sensors. Strain developed in the testing structure is measured regarding electric charge 

generated by the piezoelectric element as a direct effect of piezoelectricity. A typical 

example of a piezoelectric transducer is an accelerometer, enclosed with a small spring-

loaded mass against a piezoelectric crystal used to measure the acceleration of vibrating 
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body. Different accelerometers from PCB Piezotronics are shown in Figure 1.3.  When the 

base to which the accelerometer is attached vibrates, the mass experiences the changes in  

  

Figure 1.3: PCB Accelerometer 

acceleration, hence the output voltage generated by the crystal will be proportional to the 

acceleration of the vibrating structure. The main advantages of the piezoelectric 

accelerometer include compactness, ruggedness, high sensitivity, and high-frequency 

range. An accelerometer is a point sensor requiring multiple readings to measure total 

deformation of a structure undergoes. Accelerometers are used to measure the acceleration 

of the vibrating surface and the frequency response generated is used to determine the 

dynamic characteristics such as natural frequency, mode shapes and damping ratio. [10]. It 

is to be noted that accelerometers are point sensor and thus multiple accelerometers are 

needed to be embedded on the vibrating surface to derive the frequency response 

determining the dynamic characteristics. The accelerometer also finds application in basic 

activity recognition [11] such as walking, running and similar activities. 
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Linear variable differential transformer (LVDT) consisting of a primary coil in the 

center with two secondary coils at each end, connected in opposite phase to the center coil, 

and magnetic core free to move in an axial direction. With core positioned in the center, 

the two Secondary coils are equal with 1800 out of phase, thus making the LVDT output 

voltage as zero. Figure 1.4 (a) shows the schematic diagram of LVDT and Figure 1.4 (b) 

represents a displacement LVDT from Omega𝑇𝑀. With the core movement in either 

direction resulting in a change of magnetic coupling i.e, increased magnetic coupling on 

the side where the core moves and decreased coupling on the opposite side. The output of 

LVDT depends on the directional magnetic core movement. The output voltage from 

LVDT varies linearly with displacement and hence the name LVDT (this apply until the 

core is not moved far away from the center coil). The LVDT offers its displacement range 

from 0.0002 to 40 cm. It includes advantage such as insensitivity to temperature, but the 

magnetic core restricts its use at higher frequencies.  

Non-contact displacement sensors are mounted with a small gap between the sensor 

(probe) and the vibrating surface. Non-contact displacement sensors are categorized as: 

eddy current, capacitive and optical sensors, where the choice of the sensor depends upon 

the environmental conditions in which the sensor is placed [12] and these sensors are 

shown in Figure 1.5. The sensors not being mounted on the object, hence do not interfere 

with the object’s mass or its resonant characteristics. The output is not affected by the 

frequency of the vibration; therefore, more accurate measurements are recorded across the 

frequency spectrum.      

A transducer, when used in conjunction with another device to measure vibration, 

is known as a vibration pickup. Seismic instrument formulated with the mass-spring-

http://www.lionprecision.com/micro-displacement-position-sensors.html
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damper system is commonly used as vibration pickups; measuring displacement of the 

mass concerning the base it is mounted on. A vibrometer or seismometer is a device used 

to measure the displacement of the vibrating structure as shown in Figure 1.6. 

(a) Basic construction of LVDT  

 

(b) Omega𝑇𝑀 Displacement 

LVDT sensor 

Figure 1.4: Linear variable differential transformer (LVDT) 

 

(a) AkuSense Eddy current sensor  (b) Capacitive sensor 
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(c) Sycamore Optical sensor 

Figure 1.5: Noncontact Displacement sensors  

 

Figure 1.6: Sper Scientific Direct Vibrometer model 840060 

Mechanical type frequency measuring instruments are based on the principle of 

resonance. Single-Reed Instrument or Fullarton Tachometer is built with a variable length 

cantilever strip and mass attached at one end and clamped at the other end with a screw 

mechanism to change the free length. Then the reed is marked based on natural frequency 

along its length in such a way that when the excitation frequency matches the natural 

frequency, a direct reading is obtained. A Multireed-Instrument or Frahm Tachometer is 
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constructed on the same principle as the single reed, except with the fact that multireed has 

a multiple number of cantilever strip useful to measure a wide range of frequencies. 

  The stroboscope is a device that produces light pulse intermittently, and the 

frequency of the light pulse can be altered and read. Figure 1.7 represents a stroboscope.  

When a specific point on a rotating (Vibrating) structure is viewed with the help of the 

stroboscope, it will appear to be stationary only when the frequency of the pulsating light 

is equal to the speed of the rotating (vibrating) structure. Lowest frequency captured 

through this instrument is up to 15 Hz.      

 

 

Figure 1.7: Reed K4030 Digital Stroboscope. 

1.2.4 Vibration Exciters  

The exciter may be impact hammer or an electromagnetic shaker. The response can 

be measured easily with the help of electrodynamic shaker as it can provide large input 

forces. The mass loading effect in case of the electrodynamic shaker should be taken care 

off. The vibration exciters or shakers are used in applications such as determination of the 
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dynamic characteristics of machines and structures, and fatigue testing of materials. There 

are various types of vibration exciters like the mechanical, electrodynamic or hydraulic 

type.  In small shakers, the magnetic field is produced by a permanent magnet while 

electromagnet is used in larger ones like the one in Figure 1.8. Another traditional method 

of exciting the structure is the impact hammer with an inbuilt force transducer in its head. 

The mass of the hammerhead and impact velocity contributes to the force generated to 

excite the structure.  

 

 
Figure 1.8: Labworks ET-126 Electrodynamic shaker. 
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1.2.5 Signal Analysis 

Signal conditioners, in the form of charge or voltage amplifiers, are used to match 

and amplify the signals before analysis. After conditioning, the response signal is sent to 

an analyzer for processing. In signal analysis, we determine the response of a system under 

a known excitation force and represent the response in a convenient form. The time 

response of a system will not provide insight to the response. Frequency response will show 

one or more discrete frequencies where energy is concentrated. The acceleration-time 

history of a machine frame subjected to excessive vibration gives a graph (as shown in 

Figure 1.9 (a)) that cannot be used to identify the cause of vibration. If the acceleration-

time history is transformed to the frequency domain (as shown in Figure 1.9 (b)), it shows 

energy concentration at location where the peaks represent the natural frequencies of the 

vibrating structure. Real-time analyzers find their application in machinery health 

monitoring, as a change in the vibration spectrum can be observed at the same time when 

an actual change occurs in the machine.  Real-time analysis procedures can be 

differentiated into two types: the digital filtering method and the fast Fourier transform 

(FFT) method. Fast Fourier Transform (FFT) analyzer is used where the analyzer receives 

the analog voltage signals from the conditioning process for computations. 
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(a) Shows the acceleration-time graph of machine frame subjected to excessive 

vibration. 

(b)  Frequency-domain with peak representing natural frequency of vibrating structure 

 

Figure 1.9: Time domain and frequency domain graph. 

 

FFT is performed by an analog-to-digital (A/D) converter (which is part of a digital 

analyzer).  It computes the discrete frequency spectra of individual signals and cross-

spectra between the input and the output signals thus determining the natural frequencies, 

damping ratios, and mode shapes in either numerical or graphical form. Digital analyzers 

have become quite popular for real-time signal analysis where the signal is continuously 

analyzed over all the frequency bands. The frequency bandwidth of these analyzers 
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depends on the manufacturers and range from few kHz to 100 kHz. Figure 1.10 shows a 

digital analyzer from Keysight Technologies. 

When the machine starts developing faults, the shape of the frequency spectrum 

changes. Hence the nature and location of the fault can be detected by comparing the 

frequency spectrum of the machine in damaged condition concerning the frequency 

spectrum of the machine in good condition. 

 

 

Figure 1.10: E4440A PSA Spectrum Analyzer, 3 Hz to 26.5 GHz 

1.2.6 Modal Analysis 

Experimental modal analysis, also known as modal testing, deals with determining 

the natural frequencies, mode shapes, and damping ratios through vibration testing. In 

vibrating structure, when the forcing frequency equals the natural frequency of the structure 

(almost no damping), a sharp peak response exhibited (known resonance) and the output 

of this process is termed as FRF (Frequency Response Function). Measuring this FRF over 

a period of time is termed as Modal Analysis. As the forcing frequency crosses the natural 
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frequency of the structure the response phase changes by 180° with the phase at 90° 

resonance.  

Modal analysis process requires an exciter to apply input force to the structure and 

a sensor converting the physical motion of the structure to an electrical signal. An amplifier 

controlling the input signal to set the structure into vibration and a digital analyzer to 

display the frequency response [13].  

In an Undamped-Multidegree-of-Freedom System, the equations of motion of a system in 

physical coordinates are represented by 

 [𝑚]{�̈⃗�} + [𝑘]{�⃗�} = {𝑓} (1.1) 

Where 𝑚 refers to the mass matrix of the system, �̈⃗� stands for acceleration of mass, 𝑘 refers 

to stiffness constant, �⃗� refers to displacement of mass and 𝑓 refers to the force acting on 

the mass. Therefore, for free harmonic vibration, Eq. (1.1) becomes  

 [[𝑘] − 𝜔𝑖2[𝑚]] {𝑦𝑖⃗⃗⃗ ⃗} = 0 (1.2) 

Where 𝜔𝑖 stands for the 𝑖𝑡ℎ modal frequency and 𝑦𝑖⃗⃗⃗ ⃗ is the corresponding mode shape. The 

orthogonality relations for the mode shapes can be represented as  

 [𝑌]𝑇[𝑚][𝑌] = 𝑑𝑖𝑎𝑔[𝑀]= [↖𝑀𝑖↘] (1.3) 

 

 [𝑌]𝑇[𝑘][𝑌] = 𝑑𝑖𝑎𝑔[𝐾]= [↖𝐾𝑖↘] (1.4) 

Where [𝑌] & [𝑌]𝑇 refers to modal matrix & transpose modal matrix respectively, 

containing the modes �⃗�1, �⃗�2, �⃗�3, … … 𝑦𝑁 as columns (N refers to the number of measured 

natural frequencies), 𝑀𝑖 and 𝐾𝑖 are the elements of diagonal matrix [𝑀] and [𝐾] 
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respectively for the 𝑖𝑡ℎ mode. 𝑀𝑖  and 𝐾𝑖   also known as the modal mass and modal 

stiffness of the 𝑖𝑡ℎ mode. 

 𝜔𝑖2 = 𝐾𝑖𝑀𝑖 (1.5) 

When harmonic force applied, {𝑓(𝑡)} = �⃗�𝑒𝑖𝜔𝑡, with 𝑖̃ = √−1, Eq. (1.4) can be written as 

 �⃗�(𝑡) = �⃗�𝑒𝑖𝜔𝑡 = [[𝑘] − 𝜔𝑖2[𝑚]]−1 �⃗�𝑒𝑖𝜔𝑡 ≡ [𝛼(𝜔)]�⃗�𝑒 �̃�𝜔𝑡 (1.6) 

Where �⃗� is complex amplitude independent of time and �⃗� & 𝑒𝑖𝜔𝑡 are the magnitude and 

phase respectively. 𝛼(𝜔) refers to receptance matrix or the frequency-response function of 

the system. Now using the orthogonality relations as expressed in Eq. (1.3) and Eq. (1.4) 

we can express 𝛼(𝜔) as  

 [𝛼(𝜔)] = [𝑌][[𝐾] − 𝜔2[𝑀]]−1[𝑌]𝑇  (1.7) 

The harmonic response of one coordinate, 𝑋𝑝 is denoted by an individual element of the 

matrix lying in row p and column q, caused by a harmonic force applied at another 

coordinate,𝐹𝑞 (with no other forces), can be expressed as 

  𝛼𝑝𝑞(𝜔) = [𝛼(𝜔)]𝑝𝑞 = 𝑋𝑝𝐹𝑞 |𝑤𝑖𝑡ℎ  𝐹𝑗=0;𝑗=1,2,…..𝑁;𝑗≠𝑞   

 =  ∑ (�⃗�𝑖)𝑝(�⃗�𝑖)𝑞𝐾𝑖 − 𝜔2𝑀𝑖
𝑁

𝑖=1   (1.8) 

where (�⃗�𝑖)𝑝 denotes the jth component of mode �⃗�𝑖 and 𝜔 refers to natural frequency of 

system. If the modal matrix [Y] is further normalized as 

 [𝛷] ≡ [∅1∅2 … . ∅𝑁] = [𝑌][𝑀]−0.5   (1.9) 
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Where 𝛷 is the normalized mode matrix and  ∅1, ∅2 … . ∅𝑁 are the normalized mode 

shapes. With the normalized mode shapes, Eq. (1.8) becomes 

 𝛼𝑝𝑞(𝜔) =  ∑ (∅⃗⃗⃗𝑖)𝑝(∅⃗⃗⃗𝑖)𝑞 𝜔𝑖2 − 𝜔2𝑁
𝑖=1  (1.10) 

Where 𝛼𝑝𝑞(𝜔) represents the receptance matrix with individual element of matrix lying 

in the row p & column q and (∅⃗⃗⃗𝑖)𝑝 denotes the jth component of mode ∅⃗⃗⃗𝑖 . The equations 

of motion of a damped multidegree-of-freedom system in physical coordinates can be 

expressed as  

 [𝑚]{�̈⃗�} + [𝑐]{�̇⃗�} + [𝑘]{�⃗�} = {𝑓}  (1.11) 

Where [𝑐] represents the damping matrix with �̇⃗� as the velocity. We assume proportional 

damping for simplicity, therefore, that the damping matrix [c] can be written as 

  [𝑐] = 𝑎[𝑘] + 𝑏[𝑚]  (1.12) 

Where a and b are constants. Then the undamped mode shapes of the system diagonalize 

not only the mass and stiffness matrices shown in Eq. (1.3) and Eq. (1.4), but also the 

damping matrix as shown in Eq. (1.13) 

  [𝑌]𝑇[𝑐][𝑌] = 𝑑𝑖𝑎𝑔[𝑐] = [↖𝐶𝑖↘] (1.13) 𝐶𝑖 represents the element of diagonal matrix [𝑐] and [↖𝐶𝑖↘] represents the modal constant 

matrix of 𝑖𝑡ℎ mode.Here the mode shapes of the damped system will be the same as those 

of the undamped system except the natural frequencies will change and in general 

become complex. In Eq. (1.11) the forcing vector is assumed to be harmonic. Therefore, 

the frequency-response function or receptance can be expressed as  
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 𝛼𝑝𝑞(𝜔) = [𝛼(𝜔)]𝑝𝑞 =  ∑ (�⃗�𝑖)𝑝(�⃗�𝑖)𝑞𝐾𝑖 − 𝜔2𝑀𝑖 + 𝑖̃𝜔𝐶𝑖
𝑁

𝑖=1  (1.14) 

On including the mass-normalized mode shapes from Eq. (1.8), the frequency response or 

receptance becomes 

 𝛼𝑝𝑞(𝜔) = [𝛼(𝜔)]𝑝𝑞 =  ∑ (∅⃗⃗⃗𝑖)𝑝(∅⃗⃗⃗𝑖)𝑞 𝜔𝑖2 − 𝜔2 + 2𝑖̃𝜁𝑖𝜔𝑖𝜔𝑁
𝑖=1  (1.15) 

𝜁𝑖, refers to the 𝑖𝑡ℎmode damping ratio,  

1.3 Origin of piezoelectricity and applications 

The word ‘piezo’ is derived from the Greek word for pressure, hence the word 

piezoelectricity means electricity resulting from pressure, it’s the ability of a material to 

generate a voltage in response to stress and develop strain in response to the applied electric 

field. Piezoelectricity and ferroelectricity properties were found in PVDF material [14]. 

The piezoelectric effect was discovered by, Jacques and Pierre Curie in 1880. Their 

experiment consisted of crystals of tourmaline, quartz, topaz, cane sugar and Rochelle salt 

subjected to mechanical stress. In 1920, the first application of this technology was 

implemented in quartz transmitter and receiver for underwater sound (first sonar) by 

Frenchman, Langevin. By 1960’s, a weak piezoelectric effect was exhibited by whalebone 

and tendon which indulged the researchers to search for other materials possessing such 

property. By 1969, a high level of piezo activity was detected amongst the polyvinylidene 

fluoride (PVDF). Also, nylon and PVC exhibit the effect, but none claim to be as highly 

piezoelectric as PVDF and its copolymers. PVDF structures are made of long chains of 

repeating monomer (−𝐶ℎ2 − 𝐶𝐹2 −). The inherent dipole moment exists within each 

monomer unit as the hydrogen atoms have positive charge whereas fluorine atoms have 
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negative charge with respect to carbon atoms. PVDF also being pyroelectric produces an 

electric charge in response to temperature change too. Strongly absorbs infrared energy in 

range 7-20μm wavelength which is the same wavelength spectrum representing human 

body heat. With this we see applications of PVDF material as sensor, exhibiting direct 

piezoelectric effect in the next section. 

1.3.1 Sensors 

PVDF films are useful to detect early damage in wind turbine blades [15] where 

several film sensors were installed on the component skin and the behavior of these sensors 

were examined under opening and closing loads. As pressure sensor, accompanied by a 

wide working temperature range, preferably from −40 to +125 °C, long working life: more 

than 10 years and 100 million pressure cycles along a pressure range from 10kPa till 2 MPa 

with about 10% accuracy and about 1ms response time [16]. PVDF as a pressure sensor 

senses the input, output and near the valve pressure, which notifies whether the valve 

functions as expected, thus an effective way to monitor the valve functioning. Development 

of novel wearable cardiorespiratory signal sensor device for monitoring sleep conditions 

[17] like sleep apnea. PVDF thin film with one layer is used as 3D force sensor [18] 

measuring the stress in three principle directions. PVDF film used as a sensor in detecting 

respiratory disorder like bronchial asthma by analyzing the recorded breathing pattern 

through imping exhale air on the PVDF sensor to sense the breath patterns [19]. Other 

wearable gadgets include; pulse detection in the form of finger clip and/or wrapped around 

the wrist, and in measuring the physical response of muscle. Piezoelectricity of PVDF 

material can also be exhibited as actuators in the form of indirect piezoelectric effect, and 

thus we see applications of PVDF as actuators in the following section.  
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1.3.2 Actuators 

PVDF material also functions as an actuator. In a loudspeaker, the voltages are 

converted to mechanical movement of the piezoelectric film. A similar concept is 

applicable to the headphones. Other general application includes; printers where the 

cartilage has a circuit at bottom consisting of a piezoelectric material which deforms as the 

electrical signal is converted to mechanical energy, hence causing the nozzle to deflect. 

Lighter utilizes the mechanical energy generated by the fingers pressing the trigger, as this 

causes the piezoelectric material beneath to deflect which in return generates electrical 

signal resulting in a flame. Watch having a quartz crystal which mechanically oscillates 

deforming at a constant frequency and transducing mechanical energy to an electrical 

signal. Samsung keyboard has piezoelectric device beneath the keys. Pressing the keys 

causes deformation of the piezo material producing electric charge. In case of cellphone 

battery runs out, you can vigorously press the keys on the keypad generating some electric 

charge capable of charging the battery to make a call (though not applicable to the touch 

screen phones available these days). The next section highlights the field of application for 

PVDF material.  

1.3.3  Field of application 

Variety of application can be seen in the field of active noise and vibration, Material 

characterization [20], Medical fields [21] like Pacemaker activity motion sensor-

acceleration, etc. In the field of monitoring structural health and design fatigue, where 

sensors with a response time of about several nanoseconds along with frequency range 

from 0.001Hz to 2GHz are used [22]. Extending its application to manufacturing industries 

for monitoring of dynamic cutting torque in single-point cutting processes [23]. PVDF as 
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an actuator, behaves as a vibrating membrane used for fatigue test of thin film [24] and 

control vibration of a cylindrical shell [25]. PVDF film is much superior to the foil type 

strain gage in term of signal conditioning requirement, especially in applications with low 

strain levels and high noise levels.  Vibration measurement is useful in monitoring the 

deflection curve of the structure to derive the design fatigue life and call for the need of 

maintenance, of the structure, i.e., structural health and fatigue design monitoring of traffic 

sign structural support vibrations [26]. Use of PVDF material in various fields is possible 

due to its properties, and hence these properties are presented in the following section.  

1.3.4  PVDF Properties   

With high pyroelectric and piezoelectric coefficients, PVDF has excellent 

mechanical properties, high chemical resistance and good thermal stability facilitating easy 

processing of PVDF films [27]. PVDF film possesses exceptionally high mechanical 

performance and belonging to the family of ultra-light structural materials hence find a 

place in the manufacturing of aircraft parts [28]. Polymer-based composite materials 

belong to the family of ultra-light structural materials are used massively not only in 

military and civil aircraft, but in other fields like civil and automotive engineering as well 

[29]. It could also be used to encompass a large area of the vibrating surface as it is 

potentially inexpensive and could also generate voltages 10–25 times higher than that of 

piezoceramics at the same input pressure [30]. Apart from being lightweight and flexible, 

the PVDF film extends its properties as a transducer by possessing high elastic compliance 

with a dynamic range of 10−8 𝑡𝑜 106𝑝𝑠𝑖 [22]. Low acoustic impedance followed by higher 

mechanical strength and impact resistance of 109 − 1010 𝑃𝑎𝑠𝑐𝑎𝑙 𝑚𝑜𝑑𝑢𝑙𝑢𝑠. High 

dielectric strength is helping to withstand strong fields, whereas most piezo ceramics would 
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depolarize. Highly stable, resisting most chemical, oxidants, moisture, ultraviolet and 

nuclear radiation. And most importantly easily fabricated and applicable to a variety of test 

specimens. Being non-reactive, can be glued by commercial adhesives. PVDF has Young’s 

modulus approximately 1/12𝑡ℎ  that of aluminum, least likely affecting the dynamics as 

the aluminum beam stiffness is much greater than that of the PVDF film. Using piezo 

ceramics in absence of the thin film sensors would add a degree of complexity to the system 

for measuring the surface parameters such as stress, strain and temperature. They also 

eliminate the need for machining surfaces for sensor installation like the wire or foil 

sensors. With negligible mass and minimal gas flow disturbance over specimen surface 

these sensors have minimal impact on stress, strain, thermal and vibration pattern within 

the operational limits. PVDF is unaffected by water but the electrodes are vulnerable to 

such conditions leading to low Z bridging, the shortening of the electrode circuit. Human 

body is good antenna for picking up 50/60 Hz hence sensor shielding is required. The 

material is flexible to accommodate the required shape but not stretchable. High amount of 

force necessary to stretch the film even by 2%. The properties exhibited by the piezoelectric 

film: Design Flexibility, dynamic range, dimensional properties and ease to fabricate and 

apply to structure make it favorable to be used as a sensor in this work. After studying 

aspects of PVDF as sensors and actuators, and the field of applications we move to the 

thesis layout, outlining the processes to be carried out to successfully establish PVDF film 

as a sensor to measure deflection curve of vibrating beams and plates.   

1.4 Thesis Layout 

The processes involved in the research are as follows: starting with the equation of a 

PVDF film attached on arbitrary structures, sensor equation for the plate and beam with 
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general boundary conditions are derived under sensor design section in Chapter II. The 

sensor along with plate equations and beam equations are discretized for numerical 

simulations through MATLAB in numerical simulation section 3.1 and 3.2, followed by 

ANSYS further assisting in performing Multiphysics simulations as illustrated in sensor 

simulation section 3.3.3, under Chapter III. Finally, in Chapter IV, experimental procedure 

demonstrates the experimental setup and application of various boundary conditions to the 

beam. Whereas, the plate is constrained to clamped-clamped boundary condition only. In 

the final chapter i.e. Chapter V, the results conclude the PVDF film as effective and 

affordable means of measuring deflection curve of the vibrating plate and beam.



27 

 

CHAPTER II 

2 PIEZOELECTRIC SHELL VIBRATION THEORY 

 This chapter further discusses the general piezoelectric shell vibration theory, 

followed by the development of general output charge equation for the PVDF film. The 

generic output charge equation is then applied to the different structures to derive the 

respective output charge equations.          

2.1 Fundamentals 

In the following section, derivations of generic piezoelectric shell theories are 

reviewed based on linear piezoelectricity and Hamilton’s principle presented by Tzou [31]. 

Figure 2.1 depicts a generic piezoelectric shell continuum defined in a tri-orthogonal 

curvilinear coordinate system where 1  and 2  define the shell neutral surface and 3  the 

normal direction. The shell sensor has a constant thickness S
h  which is very thin as 

compared to the shell structure and its radii of curvatures, 1R  and 2R , such that the strains 

in the film are assumed constant and equal to the outer surface strains of the shell. 1U ,  

2U , and 3U  represent the generic deflections: in three principal directions, respectively: 

1 , 2 , and 3 ,are assumed to be small. The piezoelectric sensor is perfectly coupled with 

the shell continuum, not change its dynamic characteristics. 
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Figure 2.1: Representation of piezoelectric sensor bonded to a shell structure. 

Here are some fundamental physical laws defined, including Hamilton’s principle 

which is the fundamental basis of all theoretical derivations performed. Hamilton’s 

principle is written as: 

 
1

0

ˆ ˆ 0
t

t
dt K U                (2.1) 

Where K̂  represents the kinetic energy; Û  represents the total potential energy (inclusive 

of mechanical energy, electric energy, and work was done by externally applied forces and 

charge);   represents the variation concerning the variable that follows, in this case kinetic 

energy and total  potential energy.  In case of a piezoelectric continuum subjected to a 



29 

 

prescribed surface traction t  and a surface charge per unit area Q , Hamilton’s principle 

states: 

 
  

1 1
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t t
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t V t V
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j j j
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(2.2) 

where the electric enthalpy is defined by  ,ij jH S E ;  mass density by  ; deflection 
jU  

in the 
j  direction; mechanical strain 

ijS , of the th
i  surface and the 

th
j  direction;  electric 

field strength as 
jE  in the 

j  direction; surface charge by 
jQ ; electric potential by  ; 

piezoelectric volume considered as V ; S  is the surface over the volume. The relation 

between electric field 
jE  and potential   in the curvilinear coordinate system are defined 

as: 
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Where the Lamé parameters are from the fundamental equation are represented as 1A  and 

2A : 
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     2 2 22 2

1 1 2 2ds A d A d         (2.6) 

1A  and 2A  may also be considered as the fundamental form parameters and, 1R  

and 2R  are the radii of curvatures of 1  and 2  axes, respectively. The Lamé parameters 

are named after the French mathematician, Gabriel Lamé, known for his work in 

curvilinear coordinates. The infinitesimal distance between points P  and 'P  can be defined 

on the neutral surface, from Figure 2.1. The differential change d r  of the vector r moving 

from P  to 'P  is 
1 2

1 2

dr dr
dr d d 

 
 
 

. The magnitude ds  of d r  is obtained by 

 2
ds dr dr  . The following can be defined which produces Eq. 2.6:       

2

2

1

1 1 1

r r r
A

  
  

  
         and      

2

2

2

2 2 2

r r r
A

  
  

  
   .                                      (2.6.1) 

In general, linear piezoelectric relations of a piezoelectric continuum can be described as: 

        t

ij ij jT c S e E 
 

       j ij jD e S E        (2.7) 

where  ijT  represents the stress vector induced by mechanical and electrical effects [31]. 

 c  represents the elastic constant matrix;  e  represents the piezoelectric constant matrix; 

 ijS  represents the mechanical strain of the 
th

i surface in the 
th

j  direction;  jE  

represents the electric field strength in the 
j  direction;  jD  represents the electric 

displacement vector;    represents the dielectric constant matrix. The converse 

piezoelectric effect and the direct piezoelectric effect are denoted by Eq. (2.7). An applied 

mechanical force results in the internal generation of electrical charge leading to direct 
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piezoelectric effect. Whereas the internal generation of a mechanical strain due to an 

applied electrical field leads to converse piezoelectric effect [32]. A piezoelectric material 

with a symmetrical hexagonal structure  6 6
v

C mm  in the transverse 3  is isotropic but 

is anisotropic in the 1  and 2 directions. The material expands along the axis of 

polarization, i.e. the thickness direction, when an electric field having the same polarity 

and orientation as the original polarization field is placed across the thickness of a 

piezoelectric shell, and contracts perpendicular to the axis of polarization. When polarized 

in the thickness direction,  c ,  e , and    matrices are defined as [31]: 

 

11 12 13

12 11 13

13 13 33

44

44

66

0 0 0

0 0 0

0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

c c c

c c c

c c c
c

c

c

c

 
 
 
 

  
 
 
 
  

           (2.8)

 

 
15

24

31 32 33

0 0 0 0 0

0 0 0 0 0

0 0 0

e

e e

e e e

 
   
  

           (2.9) 

 
11

11

33

0 0

0 0

0 0

 
    
  

           (2.10) 

Where  66 11 12 2c c c  .  Note 31 32e e  for the 6mm structure. And 24 15e e , if a 

piezoelectric material is electrically polarized, but is not mechanically stretched in the 

process. Based on the above matrices, enthalpy H can be written as: 



32 

 

 

 

 

11 11 22 22 12 12 13 13 23 23 33 33

15 1 13 15 2 23 31 3 11 31 3 22 33 3 33

2 2 2

11 1 11 2 33 3

1

2

1

2

H S S S S S S

e E S e E S e E S e E S e E S

E E E

          

    

   

        (2.11) 

The strain-displacement relationships as defined in [33]: 
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            (2.12) 
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            (2.14) 

where the membrane strains are given by

 

31 2 1
11

1 1 1 2 2 1

1 uu u A

A A A R


 
  
  

 
            (2.15) 

32 1 2
22

2 2 1 2 1 2

1 uu u A

A A A R


 
  
  

 
           (2.16) 

2 2 1 1
12

1 1 2 2 2 1

A u A u

A A A A


 
     
        

           (2.17) 

and the change-in-curvature terms (bending strains) are further given by 

1 2 1
11

1 1 1 2 2

1 A

A A A
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where 1  and 2  represent angles, given by 

31
1

1 1 1

1 uu

R A





 


           (2.21) 

32
2

2 2 2

1 uu

R A





 


           (2.22) 

Substituting Eq. (2.21) and Eq. (2.22) into Eq. (2.18) gives: 

 3 31 2 1
11

1 1 1 1 1 1 2 2 2 2 2

1 1 1 1u uu u A

A R A A A R A


   
     

            
      (2.23) 

Since 11S  is equivalent to 11 , then substituting Eq. (2.15) and (2.23) into Eq. (2.12) gives:  

31 2 1
11

3 1 1 1 1 2 2 1

3 31 2 1
3

1 1 1 1 1 1 2 2 2 2 2

1 1

1

1 1 1 1

uu u A
S

R A A A R

u uu u A

A R A A A R A

  


   

  
    

                        

      (2.24) 

Further simplification will give: 

 
1 2 1 1

11 3

1 3 1 1 2 2 1

1

1

u u A A
S u

A R A R  
  

      
        (2.25) 

Similarly 22S  & 33S  , the normal strain components are given by: 

 
1 2 1 1

11 3

1 3 1 1 2 2 1

1

1

U U A A
S U

A R A R  
  

      
        (2.26) 

 
2 1 2 2

22 3

2 3 2 2 1 1 2

1

1

U U A A
S U

A R A R  
  

      
         (2.27) 
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              (2.28)

  

Substituting Eqs. (2.9) and (2.10) into (2.7) gives: 
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15
1 1 13 1 1

11 11

1 e de
E D S E E   

 
           (2.29) 

15
2 2 23 2 2

11 11

1 e de
E D S E E   

 
           (2.30) 

31 11 31 22 33 33
3 3 3 3

33 33

1 e de S e S e S
E D E E

 
   
 

         (2.31) 

where the electric field induced by an electric displacement is denoted by 𝐸𝑖𝑒;  the electric 

field induced by the direct piezoelectric effect  1,2,3i   is denoted by 𝐸𝑖𝑑;  . The two 

separate effects are further defined as: 

,e i
i

ii

D
E 


  1,2,3i               (2.32) 

15
1 13

11

d e
E S


              (2.33) 

15
2 23

11

d e
E S 


              (2.34) 

31 11 31 22 33 33
3

33

d e S e S e S
E

 
 


            (2.35) 

These fundamental definitions and mechanical/electric relations will be useful in 

derivations of piezoelectric shell theories. All variations in Eq. (2.2) need to be calculated 

in order to derive the system electromechanical equations and mechanical/electric 

boundary conditions of the piezoelectric shell continuum. To find these, the first step that 

must be looked at is the variation of kinetic energy and followed by energies associated 

with electric enthalpy H , as well as electric charge Q . Hence a final variation equation is 

derived, which leads to all electromechanical system equations and boundary conditions 

[31]. The variation of kinetic energy K̂  is given by  
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        (2.36) 

Note that the kinetic energy variation was preceded by integration by parts. 

Next, the variation of electric enthalpy is inclusive of two components: mechanical 

strains 𝑆𝑖𝑗 and electric fields 
jE . The variation of electric-field energy is derived as: 
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          (2.37) 

Applying integration by parts, the first term becomes: 
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        (2.38) 

Proceeding with all terms in Eq. (2.37) yields: 
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(2.39)
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With variation of electrical potential energy in the variational equation gives:  
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         (2.40) 

Thus, carrying out the electrical components of variations. Then derivations of 

system equations of the piezoelectric shell continuum can proceed. To obtain the charge 

equation, Eq. (2.41), simply take the fourth term of Eq. (2.39) inside the integral giving, 
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       (2.41) 

The last three terms of the electromechanical equations are yield by substituting all 

energy variation terms into Hamilton’s equation (but only observing the electric boundary 

conditions). 
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38 

 

The electric field value is defined along the material interface as the electric 

boundary conditions are defined on the outside surfaces of the piezoelectric shell. 

  3
15 13 11 1 1 2

2

1 0e S E Q A
R

 
    

 
         (2.43a) 

  3
15 23 11 2 2 1

1

1 0e S E Q A
R

 
    

 
      (2.43b) 

   3 3
31 11 31 22 33 33 33 3 3 1 2

1 2

1 1 0e S e S e S E Q A A
R R

   
        

  
  (2.43c) 

It can be seen that the electric displacements D
 
on the surfaces are equal to the 

densities of surface charges , from Eqs. (2.43-a, b, c), which is defined as the amount of 

electric charge q
 
that is present on a surface of given area A . 

All 31i

i

A
R

 
 

 
 and 3 3

1 2

1 2

1 1A A
R R

   
   

  
 terms can be eliminated since 31 0i

i

A
R

 
  

 
 

and 3 3
1 2

1 2

1 1 0A A
R R

   
    

  
, because i

A  cannot be zero, and 3  nor i
R  can be a negative 

number. Thus, 

 15 13 11 1 1 0e S E Q          (2.44a) 

 15 23 11 2 2 0e S E Q          (2.44b) 

 31 11 31 22 33 33 33 3 3 0e S e S e S E Q          (2.44c) 

The transverse shear deformations and rotary inertias are neglected as the 

piezoelectric shell continuum is thin. The transverse shear strains are considered negligible, 

i.e., 13 0S   and 23 0S  . In-plane electric fields 1E  and 2E  are neglected too, with only 
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the transverse electric field 3E  discernible; Eq. (2.41), the charge equation of electrostatics, 

can be written as [15]: 

  3 3
31 11 32 22 33 3 1 2

3 1 2

1 1 0e S e S E A A
R R

 


  
         

    (2.45) 

The curvature effect can be neglected since 3 i
R  : 

31 1
iR

 
  

 
          (2.46) 

In sensor applications and open-circuit condition it is assumed there are no externally 

applied electric boundary conditions: 

31 11 32 22 33 3 0e S e S E           (2.47) 

Integrating over the piezoelectric layer thickness: 

  
3 3

31 11 32 22 3 33 3 3 0e S e S d E d
 

           (2.48) 

The electric potential after integrating the electric field 𝐸3, is given by: 
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3 3 3E d


            (2.49) 
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         (2.50) 

The total signal output 
3

S , for spatially distributed piezoelectric shell sensor 

continuum with an effective surface electrode area e
S  is given as: 
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Note: 3
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Neglecting curvature effect and taking the surface average over the entire electrode area 

e
S gives: 

 
 

3
31 11 32 22 1 2 1 2 3

3

33

eSS

e

e S e S A A d d d

S


  




 


 
       (2.52) 

Note that

 

3 3
1 2 1 21 1

e

e

S
A A d d S

R R

         
   .i.e. effective electrode area. In case of a 

thin shell continuum, normal strains can be further divided into two strain components: 

membrane strains, 
iiS
 and bending strains, 

ii
 :        

 
11 11 3 11S S             (2.53) 

 
22 22 3 22S S             (2.54) 

Throughout the thickness of a shell, plate, or beam the membrane strain is defined 

as average strain and occurs during in-plane expansion and contraction. During bending 

applications, bending strain occurs and is calculated by determining the relationship 

between the force and the amount of bending which results from it. In case of distributed 

sensors made of symmetrical hexagonal piezoelectric materials, the piezoelectric constants 

31 32e e . Thus, the sensor output signal is given by: 

   
3

3 31 11 22 3 11 22 1 2 1 2 3

33

1 S

e

h
S

e S
e S S A A d d d

S 
                    (2.55) 

The membrane strains

 

and bending strains represented by 
iiS
  and 

ii
 , respectively,

 

can be further expressed as a function of three neutral-surface displacements,
1u , 

2u , and 

3u , in the three axial directions: 
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31 2 1
11

1 1 1 2 2 1

1 uu u A
S

A A A R 
  
  

 
      

 (2.56) 

32 1 2
22

2 2 1 2 1 2

1 uu u A
S

A A A R 
  
  

 
        (2.57) 

3 31 2 1
11

1 1 1 1 1 1 2 2 2 2 2

1 1 1 1u uu u A

A R A A A R A


   
     

            
     (2.58) 

3 32 1 2
22

2 2 2 2 2 1 2 1 1 1 1

1 1 1 1u uu u A

A R A A A R A


   
     

            
     (2.59) 

Substituting Eq. (2.56), (2.57), (2.58), and (2.59) into Eq. (2.55) gives the general sensor 

equation: 

3

31 2 1
3 31

33 1 1 1 2 2 1

3 31 2 1
3

1 1 1 1 1 1 2 2 2 2 2

32 1 2
32
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32
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S
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S

e S

uu u A
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e
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31 2
1 2 1 2 3

2 1 1 1 1

1 uu A
A A d d d

R A
  

 

              

  (2.60) 

Note the Lamé parameters, the 
i

A s, and radii of curvatures, the 
i

R s, are geometry 

dependent, e.g., for a rectangular plate 
1 2 1A A   and 

1 2R R  ; for a cylindrical shell 

1 1A  , 
2A R , 

1R   , and 
2R R . Thus, further simplification of the sensor equation 

is based on these four parameters defined for the geometries.  Certain shaping functions 

can be used to specify the sensor shape and is introduced in next section. 
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2.2 Distributed Sensing of Elastic Shells 

Excess observations in a control system can give unwanted dynamic responses. Thus, 

it is necessary that sensors only monitor those modes which need to be controlled, so that 

spillover is prevented. However, sensors respond to the controlled as well as the modes 

uncontrolled residual modes. Their occurrence can be reduced by implementing certain 

techniques like; one such method is to use spatially distributed modal sensors which only 

respond to a structural mode or group of modes. The detailed electromechanics of generic 

distributed shell sensors/actuators for modal sensing and control are studied under next 

section. 

2.2.1 Generic Shape 

A piezoelectric film is bonded to a flexible shell continuum and covers the entire 

surface of the structure in the generic case. The piezoelectric film is perfectly coupled with 

the shell continuum but does not affect its dynamic characteristics, such as natural 

frequencies and mode shapes. The top piezoelectric layer on the generic shell distributed 

sensor/actuator system acts as a distributed sensor. A distributed sensing theory based on 

the direct piezoelectric effect and the shell strains/deformations is presented in this section. 

It is assumed that the distributed piezoelectric layer is very thin in comparison to the shell 

structure. Therefore, the piezoelectric strains are the same as the outer surface strains of 

the shell continuum. The transverse electric field 
3E  is considered for such thin film, and 

thus the voltage across the electrodes can be obtained by integrating the electric field over 

the thickness of the piezoelectric sensor layer as shown in Eq. (2.61). 

3 3

Sh

E d             (2.61) 
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where piezoelectric sensor thickness is defined by S
h . Using Figure 2.1, Eq. (2.61) can be 

expressed in terms of normal strains for the sensor: 
11

S
S  and 

22

S
S  in the direction of 

1  and 

2 , respectively, and dielectric displacement 
3D . 

 3 31 11 32 22 33 3

S S S
h h S h S D            (2.62) 

where 
33  and 

ijh  denote the impermeability and the strain charge coeffiecients of the 

piezoelectric sensor, respectively. It is assumed that the piezoelectric material is insensitive 

to in-plane twisting shear strain 
12S . The shell being thin, the transverse shear strains 

13S  

and 
23S  are neglected. The piezoelectric sensor layer when coupled with the elastic shell; 

the normal strains in the sensor layer can be estimated by: 

3 31 2 1 1
11 1

1 1 1 2 2 1 1 1 1 1 1

31 2

1 2 2 2 2 2

1 1 1

1 1

S Su uu u A u
S r

A A A R A R A

uA u

A A R A

   

 

                     
        

    (2.63) 

3 32 1 2 2
22 2

2 2 1 2 1 2 2 2 2 2 2

32 1

1 2 1 1 1 1

1 1 1

1 1

S Su uu u A u
S r

A A A R A R A

uA u

A A R A

   

 

                     
        

    (2.64) 

where 
1

S
r  and 

2

S
r  refer to the distances measured from the neutral surface to the mid-plane 

of the sensor layer. Rearranging Eq. (2.62), the electric displacement 
3

S
D  can be written 

as: 

3
3 31 11 32 22

33

1S S S

S
D h S h S

h




    
 

        (2.65) 
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Since 
3

S
D  is defined as the charge per unit area, Eq. (2.64) can be integrated over the 

electrode surface e
S  to estimate a total surface charge. By setting the charge zero, an open-

circuit voltage 
S  condition can be obtained: 
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e
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        (2.66) 

Substituting the strains into Eq. (2.65) yields the distributed sensor output  1 2,S    in 

terms of displacements and other system parameters. 

  31 2 1
1 2 31

1 1 1 2 2 1

3 31 1 2
1

1 1 1 1 1 1 2 2 2 2 2

3 32 1 2 2
32 2

2 2 1 2 1 2 2 2 2 2

1
,

1 1 1 1

1 1 1

e
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S

e S

S

S

uu u Ah
h

S A A A R

u uu A u
r

A R A A A R A

u uu u A u
h r

A A A R A R A

  
 

   

   

          
                      

             



2

32 1

1 2 1 1 1 1

1 1 euA u
dS

A A R A 

  
  

 
         

    (2.67) 

Eq. (2.67) relates the piezoelectric film ouput charge to the dynamic of the substrate shell 

structure and from this equation, many sensors and actuators have been developed using 

experimental, simplified analytical, and finite element approaches. The sensor design goal 

is the development of a technique that uses a combination of numerical and experimental 

methods for sensors or actuators design.  

2.2.2 Spatial Thickness Shaping 

Distributed piezoelectric shell layers can be both surface bonded or embedded with 

a flexible elastic shell and the layers are used as distributed sensors. In case of a spatially 
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distributed piezoelectric shell convolving sensor, a weighting function  1 2,W    and a 

polarity function  3 1 2sgn ,U      can be added to the generic shell sensor equation, Eq. 

(2.67). Also, a  sgn   denotes a signum function can be used to change the piezoelectric 

polarity, in which  sgn 1   when   0  , 0 when   0  and 1  when   0  . 

 3 1 2,U    denotes a transverse modal function, mode shape function. Weighting 

functions discussed are: thickness shaping and surface shaping. It is assumed that the 

thickness of the piezoelectric shell is a spatial function for thickness shaping.   

 

Figure 2.2: Spatial Thickness Shaping 

The sensor thickness varies over the effective sensor area for spatial thickness 

shaping. Thickness shaping of distributed shell sensors is illustrated in the Figure 2.2. The 

piezoelectric shell sensor thickness is a spatial function  1 2,
t

W   . Thus, the sensor 

equation, Eq. (2.51), becomes: 
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                (2.68) 

effective sensor area or electrode area denoted by  e
S and 1r  is the distance measured from 

the shell neutral surface to the bottom of the piezoelectric sensor layer. The first term inside 

the second set of square brackets is contributed by the membrane strains and the second by 

the bending strains. The total output signal of the sensor is contributed by the sum of 

membrane and bending strains.  

2.2.3 Spatial Surface Shaping 

The piezoelectric shell thickness is assumed constant in the second case. The 

substrate flexible shell structure surface is not usually covered by piezoelectric film 

entirely. The film is in fact shaped such that the output charge represents the desired 

dynamic characteristics of the structure. Surface shaping of a shell sensor is illustrated in 

Figure 2.3. Weighting shape function  1 2,
S

W    can be used in designing sensor shape.  

     

1 2

1 2

3 3
3 1 2 1 2

1 2

1 2 3 1 2 31 11 31 22

33

3 3
1 2 1 2 3

1 2

1 1

1
, sgn ,

1 1

e

S

S
S

A A d d
R R

W U e S e S

A A d d d
R R

 

 

   

   

    

  
   

  

     

  
    
  

 

       (2.69)  

The film covers the whole structure as the generic sensor equation does not 

include a shape function. The film covers a certain area of the structure as for the shaped 

sensor equation, it does have a shape function.  
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Figure 2.3: Spatial Surface Shaping 

Considering   Eq. (2.67) as the output of the piezoelectric film analytical calculations 

for simple structures such as beams, plates, and cylinders can be done if 1u , 2u , 3u  are 

known. However, for complicated structures and boundary conditions, an analytical 

solution is impossible, but with help of numerical integration, the charge   could be 

calculated. Here, it is assumed that the structure displacement field can be obtained either 

experimentally or with finite element analysis. Before the numerical integration, the spatial 

double derivatives are computed. Further, the generic sensor shaping theory is applied to a 

cylindrical shell, plate, and beam. 

2.3 Cylindrical Shell 

The generic sensor theory is also applicable to other geometries with curvature, such 

as a cylinder, sphere, ring, cylindrical shell, etc. a cylindrical shell is discussed here. A 

cylindrical shell is defined by a three tri-orthogonal axes 1 , 2 , and 3 . In terms of 

cylindrical coordinate system the cylindrical shell can be defined as; the z-axis 1( )  is 

aligned with the length, the second axis  2( ) defines the circumferential direction and the 
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third axis 3( )  is normal to the neutral surface. In case of a generic sensor, the sensor 

would cover the entire outer surface of the shell; Figure 2.4 illustrates the cylindrical shell 

with a piezoelectric shaped sensor attached to the top half of the structure. 

 

Figure 2.4: Cylindrical Shell with a Shaped Sensor Adhered 

It has Lamé parameters: 1 1A   and 2A R , and radii of curvatures: 1R    and 

2R R . Substituting these four parameters into the generic shell sensor equation Eq. (2.67) 

gives:  
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Simplifying Eq. (2.70), where 
 

 
1,3

2

1
1, 0

u




 
 

 gives: 



49 

 

  1 2
1 2 31

1

3 32
1

1 1 2

3 32 1 2
32 2

2 1 2 2

3

1 1

,

1 1

1 1 1

1

e

S
S

e S

S

S

e

u uh
h

S R

u uu
r

R R R

u uu u uR
h r

R R R R R R

uR
dS

R

  


  

   

 

       
                     

                     
         



     (2.71) 

Conversion from curvilinear to cylindrical coordinates gives: 
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Where 0, 0R
u u

R z

 
 


 and multiplying through gives: 
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Thus, can be expanded to: 
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     (2.75) 

It is observed that the transverse direction, exhibits greater displacement than that of 

the other two directions when the cylindrical shell is under loading. Thereby, it is proposed 

that the shape of the cylindrical shell can be observed as the shape of a plate to visualize 

the shape of the sensor. Hence, 
2( )F k x Lx 

 
for a beam by Lee and Moon [34],  is also 

used for the shaping function of the piezoelectric sensor for a cylindrical shell, because 

shaping function can correctly capture the dynamic of the structure; verified by the 

previous research on the shaped film [34]. 

2.4 Plate Substrate 

A plate is a zero-curvature shell case. The general sensor equation is applicable here 

as well. The development of the generic sensor output charge equation for a plate is 

presented in this section. The Lamé parameters are derived from the fundamental equation 

         2 2 2 2 2
1 1ds dx dy   and therefore 1 2 1A A  and 1 2R R  . Substituting 

these values into Eq. (2.67), the piezoelectric film output charge is given as:  
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Simplifying Eq. (2.76), where 
 

1,2,3
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gives: 
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     (2.77) 

The plate as defined in a coordinate system where the x-axis 1( )  is aligned with 

the length, the y-axis 2( ) defines the width and the third axis 3( )  is normal to the neutral 

surface. Eq. (2.77)  on further simplification, where the plate, shown in Figure 2.6, 

experiences only a transverse vibration, where 
1 2

1 2

0
u u
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    (2.78) 

The generic sensor output charge equation for a plate is given by: 
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        (2.79) 

According to the research done on known film shapes for a plate by Zahui and Wendt [35], 

they proposed the following equation: 
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     (2.80) 

Where x
L  and yL  refer to the dimensions of the plate in the x  and y  directions, 

respectively. ( , )
s

W x y  is the surface shaping function of the plate where h  is given by the 

following equation: 

2

p sh h
h


            (2.81) 

Where plate and sensor thicknesses are defined by ph  and s
h , respectively. 

 

Figure 2.5: A Rectangular Plate Bonded with a Piezoelectric Sensor 

The equation for the shape of a beam as proposed by Lee and Moon [34], can be applied 

to a plate to develop the shaped sensor for the plate.  
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2.5 Beam Substrate 

The general sensor equation can be applied to a beam structure too. In this section, 

the generic  sensor output charge equations for a beam are presented [31]. Note that the 

plate structure can be reduced to a beam structure by considering only one effective axis, 

in this case, the x-direction. Thus, the generic sensor output equation, Eq. (2.67)  can be 

written as: 
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                              (2.82) 

where b  is the beam width. 
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CHAPTER III 

3 SENSOR DEVELOPMENT 

3.1 Sensor Design 

3.1.1 Beam Displacement Sensor Design 

3.1.1.1 Sensor Equation 

When multiple patches of the beam are to be used with n segments of film, output 

charge for the 𝑖𝑡ℎ patch can be derived from Eq. (2.6): 

 

 

(2.83) 

On further simplifying Eq. (2.83), we get: 

 

 

(2.84) 

Now considering the 𝑖𝑡ℎ patch and assuming the slope of the deflected beam to be constant 

at the patch. Variable 𝑎𝑖 represents the slope, Eq. (2.84) can be written as; 

 

 

(2.85) 

Sensor general equation is represented by Eq. (2.85).  

The output signal obtained from the 𝑖𝑡ℎ patch is directly proportional to its slope. 

Hence the slope of the patch considered can be represented in form of the charge 𝜙𝑖 
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(2.86) 

Hence, the slope of the deflected beam can be calculated at the sensor patch from above 

equation. 

3.1.1.2 Beam lateral displacement equation 

In the figure 2.6, 𝑧 represents the defelction of the beam and can be evaluated at 

points that lie left and right of the center point 𝑥 of 𝑖𝑡ℎ patch. The central-difference formula 

is applied to determine the slope at the center of the patch. 

 

 
(2.87) 

 

Figure 3.1: Beam with PVDF film and deflection curve. 

 

Now substituting 𝑧𝑖 =  𝑧(𝑥 + ∆𝑥) = 𝑧(𝑥𝑖),  𝑧𝑖−1 = 𝑧(𝑥 − ∆𝑥) = 𝑧(𝑥𝑖−1) and 2∆𝑥 = 𝑥𝑖 −𝑥𝑖−1 , hence Eq. (2.87) can be written as:          
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 (2.88) 

The value of slope obtained from Eq. (2.86) is substituted in Eq. (2.88) to obtain 

Eq. (2.89). Here we assume the piezoelectric film patches to be of equal length and 

fabricated from the same material of uniform thickness. 

 

, ,  . 
(2.89) 

The beam lateral displacement equation: 

 

 

(2.90) 

The above equation requires displacement of beam from one end. For clamped, 

cantilever and simply supported boundary conditions the ends those are stationary will 

have zero displacements, whereas a point sensor can be used to determine the displacement 

at other points.    

3.1.2 Plate Displacement Sensor Equation 

For the plate vibration displacement sensor, plate substrate and Eq. (2.79) is 

considered.  If multiple patches of the film are used as shown in Fig. (2.6) with n m

patches of films, the ij  patch output charge can be written as:  
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The charge ij  can be calculated by separating the equation into two: 
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The integration of Eq. (2.92) along x -direction and Eq. (2.93) along the y -direction yields 

the following equations: 
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  (2.95) 

 

If the slopes 
ij

xz z x    in the x-direction and 
ij

y
z z y    in the y-direction are 

respectively assumed constant at the location of the th
i  patch.  These equations are similar 

in form to Eq. (2.83) however, their dependency on the gradient in the y -direction 

complicates the integration. In practice sensor strips output charges that account more for 

strains in the x -direction than in the y  -direction. Therefore, multiple beam sensors could 

be used to measure the transverse vibration displacement curve of a plate. In the next 

section, we will derive equations that will prove this assertion. 

 Using Raleigh formulation, the mode shapes of a plate can be written as the product 

of beam functions: 

      ,W x y X x Y y  (2.96) 

Where and  Y y  are chosen as the fundamental mode shapes of beams having the 

boundary conditions of the plate. This formulation works well for all plates boundary 

condition except for free edges where the approximate solution is required.  Therefore, the 
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following discussion will focus on plates with clamped or simply supported edges. First, 

we will consider a case where the plate is vibrating at one of its fundamental frequency 

and second we will derive equations for the general case of plate vibration. 

3.1.2.1 Plate Lateral Fundamental Vibration Displacement curve  

Using Raleigh formation and Figure 3.7 the sensor strips respectively along the x  

and y direction, the output charges can be written as: 
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Based on the beam sensor theory, the plate deflection 
x

iz  and 
y

iz along the PVDF 

strips can be written as 

 
1 1( )x i x

i x i i iz z x x z     (2.99) 

   

 
1 1(y )y i y

i y i i iz z y z     (2.100) 

Where and 
i

xz   are respectively calculated from 
x

i  and 
y

i . The following 

equation gives the resulting deflection of the plate. The above equation is only valid when 

the plate is vibrating at one of its fundamental frequencies. At resonance, the shape of 

the plate along the  

  , x y
z x y z z  (2.101) 
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x direction remains constant across the y direction while the shape of the plate 

along the y direction remains constant across the x direction.  For a random 

vibration of the plate, these two sensor strips will only capture the deflections at their 

locations and Eq. 2.101 cannot be used. 

3.2 Numerical Simulation  

3.2.1 Beam Sensor 

3.2.1.1 Numerical Simulation Equations  

The forced lateral vibration steady-state response of a beam can be formulated in 

modal superposition form as shown in Eq. (3.1)  

 𝑧(𝑥) = ∑ 𝑊𝑘𝛹𝑘(𝑥)𝑚
𝑘=1  (3.1) 

Where 𝑘 is the 𝑘𝑡ℎmode number, 𝑊𝑘 is the modal participation factor, 𝛹𝑘 the 𝑘𝑡ℎmode shape, and 𝑚 the maximum number of modes used in the approximation. The 

output of the 𝑖𝑡ℎ patch can be written using Eqs. (2.83), (2.89), and (3.1) as: 

 𝜙𝑖 = 𝑛ℎ𝑓ℎ𝑏ℎ312𝑙 ∑ 𝑊𝑘 ∫ 𝜕2𝛹𝑘𝜕𝑥2 𝑑𝑥𝑥𝑖
𝑥𝑖−1

𝑚
𝑘=1  (3.2) 

To perform the numerical simulation, we will assume that the beam is excited by a 

general force vector {𝑓} of unity magnitude applied at a node and rewrite Eq. (3.1) in 

discretized form as: 

 {𝑧} ≅ {𝛹𝑘}{𝛹𝑘}𝑇{𝑓}𝜔𝑘2 − 𝜔2 + 𝑗ƞ𝑘𝜔𝑘2 (3.3) 
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Where 𝜔is the excitation frequency, ƞ𝑘is the structural damping factor of the 𝑘𝑡ℎmode, 𝜔𝑘 the 𝑘𝑡ℎnatural frequency, and √𝑗2 = −1. It can be shown that  

 𝑊𝑘 ≅ {𝛹𝑘}{𝛹𝑘}𝑇𝜔𝑘2 − 𝜔2 + 𝑗ƞ𝑘𝜔𝑘2 (3.4) 

Equation (3.3) is used to calculate the response of the beam and the mode 

participation factor 𝑊𝑘 to a unit input force. The output charge of each patch is then 

calculated using modal coordinates 𝑊𝑘 in Eq. (3.4).  These output charges are then used in 

Eq. (2.86) to calculate the slopes 𝑎𝑖 at the center of each patch before calculating the bean 

deflection using the central-difference equation (Eq. (2.88)). The deflection calculated 

from the sensor output charge and referred to as “Measured” is compared to the deflection 

calculated from the mode superposition equation and referred to as “Actual”. The results 

of the numerical simulation are discussed in the next section.  

3.2.1.2 Numerical Simulation Results 

The numerical simulation was performed for simply supported, clamped-clamped, 

and clamped-free boundary conditions. Low frequency (about 800𝐻𝑧) excitation was 

applied to the beam using the data of Table 3.1.  The admittance of each beam was 

calculated from Eq. (3.3) (we will refer to this as an actual response) and plotted against 

the admittance calculated from the sensor output using Eq. (2.90) (refer to this as a 

measured response).  The admittance data was further process to extract the response of 

the beam at resonance for the first four modes. These four modes were selected arbitrary 

for brevity. The results are shown in Figs. (3.1-3.6) for the three types of boundary 

conditions considered for the beam.  
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           Table 3.1: Simulation data for beam. 

Aluminum Beam PVDF 𝑙 = 0.3556 (𝑚) ℎ𝑓 = 50𝑒−6 (𝑚) 𝑏 = 0.0254 (𝑚) ℎ31 = 0.4𝑒9 ( 𝑉𝑚𝑚 /𝑚) ℎ𝑏 = 0.003175 (𝑚) 𝜌 = 1789 (𝑘𝑔/𝑚2) 𝜌 = 2767.849 (𝑘𝑔/𝑚3) 𝐸 = 8.4𝑒9(𝑁/𝑚2) 𝐸 = 71𝑒9 (𝑁/𝑚2) 𝑣 = 0.18 ƞ = 0.002  

 

         
Figure 3.2: Beam (S-S) first and second mode response (Continuous= Actual; Dot=Sensor) 

 

     
Figure 3.3: Beam (S-S) third and fourth mode response (Continuous= Actual; Dot=Sensor) 

Mode 1 Mode 2 

Mode 3 

Mode 4 
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Figure 3.4: Beam (C-C) first and second mode response (Continuous= Actual; Dot=Sensor) 

 

 
Figure 3.5:Beam (C-C) third and fourth mode response (Continuous= Actual; Dot=Sensor) 

 

 

Figure 3.6: Beam (C-F) first and second mode response (Continuous= Actual; Dot=Sensor) 

Mode 1 Mode 2 

Mode 3 Mode 4 

Mode 1 Mode 2 
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Figure 3.7: Beam (C-F) first and second mode response (Continuous= Actual; Dot=Sensor) 

 

3.2.1.3 Frequency Calculations by using MATLAB 

In this section we calculate the theoretical natural frequencies of the beam to utilize 

these frequencies to set the approximate boundary conditions on the beam in the 

experimental setup and measure the experimental natural frequencies. The vibration of the 

beam is referred to as a continuous system. The equations of motion defining the 

continuous systems are the partial differential equations. There are numerous cases of 

continuous systems such as longitudinal vibration of a bar, the transverse vibration of tight 

stretched cable or string, torsional vibration of shaft or rod, lateral vibration of beams; 

derived by considering an infinitesimally small element of the continuous system through 

the free-body diagram and applying Newton’s second law of motion. The relevant 

boundary conditions of the system are used to obtain the vibration solution of the system 

giving infinite natural frequencies and mode shapes.  

In distributed or continuous systems, it is not possible to distinguish between 

masses, springs, and dampers. In such cases we must assume that each infinite number of 

points of the system can vibrate. Hence a continuous system also referred to a system of 

Mode 3 Mode 4 
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the infinite degree of freedom. The frequency of beam with common boundary conditions 

(in rad/s) is given by: 

 𝜔𝑛 = (𝛽𝑛𝑙)2√ 𝐸𝐼𝜌𝐴𝑙4  (3.9) 

Converting to Hz, we get the natural frequency as: 

 
 𝑓𝑛 = 𝜔𝑛2𝜋 

(3.10) 

 

MATLAB code was written to calculate the natural frequencies of the beam. The 

physical and material properties of the beam were assigned to parameters in the MATLAB 

code. Constants for the boundary conditions and the modes shapes function for different 

boundary conditions of the beam were used from Table 3.2 [2]. 

Table 3.2: Boundary Condition and characteristics of the vibrating beam 

Sr. 

No. 

Configuration 

of beam 

Frequency 

Equation 

Mode Shape Value of 𝛽𝑛𝑙 
1. Pined-Pined sin𝛽𝑛𝑙=0 𝑊𝑛(𝑥) = 𝐶𝑛[𝑠𝑖𝑛𝛽𝑛𝑥] 𝛽1𝑙= π 𝛽2𝑙= 2π 𝛽3𝑙= 3π 𝛽4𝑙= 4π 

2. Fixed-Fixed cos𝛽𝑛𝑙. 
cos𝛽𝑛𝑙=1 

𝑊𝑛(𝑥)= 𝐶𝑛[𝑠𝑖𝑛ℎ𝛽𝑛𝑥 − 𝑠𝑖𝑛𝛽𝑛𝑥+ 𝛼𝑛(𝑐𝑜𝑠ℎ𝛽𝑛𝑥 − 𝑐𝑜𝑠𝛽𝑛𝑥)] 
 

Where 𝛼𝑛=(
𝑠𝑖𝑛ℎ𝛽𝑛𝑙−𝑠𝑖𝑛𝛽𝑛𝑙𝑐𝑜𝑠𝛽𝑛𝑙−𝑐𝑜𝑠ℎ𝛽𝑛𝑙) 

𝛽1𝑙= 4.730041 𝛽2𝑙= 7.853205 𝛽3𝑙= 10.994757 𝛽4𝑙= 14.137165 

3. Fixed-pinned tan𝛽𝑛𝑙-
tanh𝛽𝑛𝑙 = 0 

𝑊𝑛(𝑥)= 𝐶𝑛[𝑠𝑖𝑛𝛽𝑛𝑥 − 𝑠𝑖𝑛ℎ𝛽𝑛𝑥+ 𝛼𝑛(𝑐𝑜𝑠ℎ𝛽𝑛𝑥 − 𝑐𝑜𝑠𝛽𝑛𝑥)] 
 

Where 𝛼𝑛=(
𝑠𝑖𝑛ℎ𝛽𝑛𝑙−𝑠𝑖𝑛𝛽𝑛𝑙𝑐𝑜𝑠𝛽𝑛𝑙−𝑐𝑜𝑠ℎ𝛽𝑛𝑙) 

𝛽1𝑙= 3.926602 𝛽2𝑙= 7.068583 𝛽3𝑙= 10.210176 𝛽4𝑙= 13.351768 

.  
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Table 3.3: Natural Frequencies of Beam with boundary conditions 

No. of 

Modes 
CC SS CF 

1 129.6944 56.8243 20.5347 

2 360.2623 227.2972 128.6897 

3 706.1141 511.4188 360.3282 

4 1167.2 909.1889 706.1174 

5 1743.7 1420.6 1167.2 

 

3.2.2 Plate Sensor 

3.2.2.1 Numerical Simulation Equations  

The validity of Eqs. 2.101 is tested using numerical simulation with MATLAB. The data 

from Then using the layout of Figure.3.7, the charges 
x

i  and 
y

i  are calculated from Eq. 

2.82 before the deflections 
x

ijz  and 
y

ijz are calculated from Eqs. 2.99 and 2.100.  

Table 3.4 below is used in the simulation. For the case of the plate vibration at one of the 

fundamental frequencies, we arbitrarily selected modes        1,1 , 1,2 , 2,1 ,& 2,2   to 

calculate the “actual” deflections of the plate using Eq. 3.5 for the simply supported plate 

and Eq. 3.6 for the clamped plate. 
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Then using the layout of Figure.3.7, the charges 
x

i  and 
y

i  are calculated from Eq. 2.82 

before the deflections 
x

ijz  and 
y

ijz are calculated from Eqs. 2.99 and 2.100.  

Table 3.4: Simulation data for plate. 

Aluminum Plate PVDF 𝑙 = 0.610 (𝑚) ℎ𝑓 = 50𝑒−6 (𝑚) 𝑏 = 0.381 (𝑚) ℎ31 = 0.4𝑒9 ( 𝑉𝑚𝑚 /𝑚) ℎ𝑏 = 4.76𝑒−3 (𝑚) 𝜌 = 1789 (𝑘𝑔/𝑚2) 𝜌 = 2767.849 (𝑘𝑔/𝑚3) 𝐸 = 8.4𝑒9(𝑁/𝑚2) 𝐸 = 71𝑒9 (𝑁/𝑚2) 𝑣 = 0.33 

The “measured” deflections of the plate are calculated from Eq. 2.101. Figures (3.8-

3.11) show the plots of the “Actual” and “Measured” deflections. The results indicate that 

PVDF sensor strips can be used to validate the Raleigh formulation of the mode shape of 

plates and the measurement of deflection curve theory presented for vibration at resonance.  
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Figure 3.8: Layout of the PVDF sensor across plate for measuring plate deflection curve   

at resonance  
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Figure 3.7 describes the process to place the PVDF films in such a way to measure 

the deflection of the vibrating plate at resonance. The blue section represents the PVDF 

film along x-axis of the plate whereas the green section represents PVDF film along the y-

axis of the plate. Only two films are enough the measure deflection across the plate because 

at resonance the deflection along the x-axis is constant along the y-axis and the deflection 

along the y-axis is constant along the x-axis for the plate. Implementing multiples film 

along x & y-direction will yield same results. Hence, only two films are employed to 

measure the plate deflection.      

3.2.2.2 Numerical Simulation Results 

The numerical simulation was performed for simply supported, clamped-clamped, 

and clamped-free boundary conditions. Low frequency (about 800𝐻𝑧) excitation was 

applied to the beam using the data of Table 3.4. The admittance of each beam was 

calculated from Eq. (3.3) (we will refer to this as an actual response) and plotted against 

the admittance calculated from the sensor output using Eq. (3.5 & 3.6) (refer to this as a 

measured response).  The admittance data was further process to extract the response of 

the beam at resonance for the first four modes. These four modes were selected arbitrary 

for brevity. The results are shown in Figs. (3.8-3.11) for the three types of boundary 

conditions considered for the beam.  
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Figure 3.9: Plate (S-S) first and second mode response (Continuous= Actual; Dot=Sensor) 

 

   

Figure 3.10: Plate (S-S) third and fourth mode response (Continuous= Actual; Dot=Sensor) 

 

   
Figure 3.11: Plate (C-C) first and second mode response(Continuous= Actual; Dot=Sensor) 

 

Mode 1 

(1,1) 
Mode 2 

(1,2) 
 

Mode 3 

(2,1) 
Mode 4 

(2,2) 

Mode 1 

(1,1) 
Mode 2 

(1,2) 
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Figure 3.12: Plate (C-C) third and fourth mode response (Continuous= Actual;Dot=Sensor) 

 

3.2.3 Multiphysics Simulation 

Multiphysics modeling bridges the gap between the real-life problems involving 

physical phenomenon and simulations to acquire most accurate results. ANSYS 

Workbench was used for conducting finite element analysis. Finite element analysis serves 

needs to several streams in engineering sectors like static, dynamic, heat flow, fluid flow, 

electromagnetics and coupled field problems. A Multiphysics analysis is a combination of 

analyses, involving different streams of engineering to solve a global engineering problem 

Load acts over surfaces or volume according to the input parameter provided by the user. 

The solution obtained on finite elements basis is always an approximate solution, and one 

needs to decide whether it is a good or bad solution. However, in the presence of 

experimental or analytical results, it is easy to verify finite element results.  Simulations 

involve the structural model constraining with required boundary conditions to obtain the 

desired output. The finite analysis steps involve pre-processing, solution and post-

processing.  

Mode 3 

(2,1) 
Mode 4 

(2,2) 
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3.2.3.1 Preprocessing 

Preprocessing step consist of defining the real constant such as geometrical and 

material parameter of the beam. ANSYS Workbench 16.0 is the tool used for modal analysis 

purpose. Select Modal analysis section in workbench to perform modal analysis of the plate 

and beam. Define material properties like Young’s Modulus; select aluminum as material 

from the available Engineering data section under Modal analysis.   

3.1.1.1.1  Geometry 

Under Geometry construct the plate and beam with line element for modal analysis 

purpose and choose the rectangular cross-section. Line elements selection surpasses the 

classic solid element not only possess displacement degree of freedom, but also rotations. 

Elements are available in ANSYS according to the Timoshenko theory and Bernoulli 

theory. Shear stresses are calculated for Timoshenko theory and not for Bernoulli theory. 

Therefore, we prefer the latter through use of line element. Bending stresses are available 

for both theories. Use the Properties tabs to assign length, width and height as 0.3556m, 

0.0254m and .00375m respectively for the beam. These parameters correspond to the actual 

specimen dimension. The beam dimensions are same for various boundary conditions; 

hence one geometry can be assigned to different modal analysis with respective boundary 

conditions prevailing. Similarly construct the model for plate. Figure 3.13 shows beam 

geometry in ANSYS. 
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Figure 3.13: Geometry of beam in ANSYS  

 

3.1.1.1.2 Mesh Size 

Now we need to define the mesh size of the structures. Meshing is the process that divides 

the structure component into small elements uniformly distributed the load applied on the 

component. Components can be analyzed without or with meshing; the latter is preferred. 

After meshing the entire structure is divided into some elements and each element has its 

own stiffness while loading. Adding all those elements stiffness’s, derive the global 

stiffness matrix which helps in calculating the stress developed in structure. Without 

meshing the load distribution is not uniform which causes irregular or faulty results.  Mesh 

size used in this analysis is 0.05. Lower the mesh size used, finer are the results. With low 

mesh size, results of natural frequencies are closer to the ones’ calculated by MATLAB in 

section 3.3.2  
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Assign aluminum material which was earlier specified in the engineering data. 

Three different modal analysis is performed due to three boundary conditions of the beam 

i.e. simply supported, clamped-clamped and clamped-free, i.e. clamped-clamped. The 

boundary conditions are applied at the ends of the beam for the respective modal analysis.  

3.2.3.2 Numerical Solution and results 

As we do modal analysis, it is also necessary to specify the number of modes for 

the vibrating plate and beam, to display the mode shapes. Out of the different modal 

analysis setups, select either of the setups and here we select three modes of vibration. To 

solve the analysis setup, give the generate command which returns three natural 

frequencies for three modes for vibrating beam. Select the natural frequencies and solve 

them to generate mode shapes of respective frequencies. Figure 3.14, Figure 3.15 and 

Figure 3.16: S-S Beam third mode of vibration at frequency 519.53 Hz shows modes 

shapes for the first three modes of vibration for simply supported boundary conditions of 

the beam. Figure 3.17, Figure 3.18and Figure 3.19, represent modes shapes for the first 

three modes of vibration for clamped-clamped boundary conditions of the beam. Figure 

3.20, Figure 3.21 and Figure 3.22 illustrate modes shapes for the first three modes of 

vibration for clamped free boundary conditions of the beam. 
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Figure 3.14: S-S Beam first mode of vibration at frequency 56.672 Hz 

 

Figure 3.15: S-S Beam second mode of vibration at frequency 230.77 Hz 

 

 

 

Figure 3.16: S-S Beam third mode of vibration at frequency 519.53 Hz 
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Figure 3.17: C-C Beam first mode of vibration at frequency 129.44 Hz 

 

 

 
Figure 3.18: C-C Beam second mode of vibration at frequency 358.88 Hz 

 

 

 
Figure 3.19: C-C Beam third of vibration at frequency 706.64 Hz 
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Figure 3.20: C-F Beam first mode of vibration at frequency 20.771 Hz 

 

 
Figure 3.21: C-F Beam second mode of vibration at frequency 130.04 Hz  

 

 
Figure 3.22: C-F Beam third mode of vibration at frequency 364.41 Hz 
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3.2.3.3 Post-processing and results 

The final step for Multiphysics simulation comprises of verification and validation 

of the results obtained from simulation. The simulation frequencies are substituted in the 

final solution to observe the modes shapes and structural deformations visually. Thus, 

confirming the boundary conditions applied are correct. Firstly, for our verification, we 

focus on first three modes of vibration. However, the reason for considering first five 

modes is because for the sixth mode of vibration and onwards the frequency goes beyond 

1000Hz and we are considering frequencies less than 1000Hz for verification purpose. The 

frequencies acquired in post-processing are compared to the frequencies calculated through 

MATLAB and are represented in Table 3.5 and Table 3.6 below represents frequencies 

acquired form numerical calculations and Multiphysics simulation and the percentage error 

in comparing the frequencies respectively.  

The error percentage is mostly less than 2% and the in some cases for S-S boundary 

condition is above 2%, but the error is well in limits to consider the results to be a good 

match. Here it is to be noted that ANSYS beam element formulation used is Timoshenko 

beam theory whereas MATLAB calculation is based on Euler-Bernoulli theory. As the 

number of modes increases, there are discrepancies observed between the frequencies 

derived from MATLAB and ANSYS. The reasons can be described as the mesh size; need 

to find the adequate mesh size and the two-different process (MATLAB and ANSYS) 

return results prescribed on different theories. ANSYS simulation results are an 

approximation of the natural frequencies based on Timoshenko beam theory which 

includes shear -deformation effect, which is neglected in Euler-Bernoulli theory. 
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Table 3.5: Theoretical and finite element beam natural frequencies 

 

 Theoretical Natural Frequencies 

(Hz) 

Finite Element Natural 

Frequencies (Hz) 

Mode 

Number 

S-S C-C C-F S-S C-C C-F 

1 56.8243 129.6944 20.5347 57.672 129.44 20.771 

2 227.2972 360.2623 128.6897 230.77 358.88 130.04 

3 511.4188 706.1141 360.3282 519.53 706.64 364.41 

4 909.1889 1167.2 706.1174 924.22 1172 710.41 

5 1420.6 1743.7 1167.2 1445 1754.8 1171.36 

 

 

Table 3.6: Percentage error for analytical and simulation calculation. 

Sr. No. % Error 

No. of Modes S-S C-C C-F 

1 1.541567037 -0.196153419 1.13764383 

2 1.756051176 -0.383692659 1.038372808 

3 2.015787255 0.074478048 1.120111962 

4 2.219878903 0.411240576 1.292020801 

5 2.276948476 0.636577393 1.493796945 

 

  This comparison is a vital part of the experimental setup that was built later. When 

the MATLAB and ANSYS natural frequencies confirm a match, thus lay the foundation of 

practical demonstration of measuring the deflection curve by observing the natural 

frequencies through the experimental setup. Match in natural frequencies from MATLAB 

calculations and ANSYS simulation triggers the process of implementing the boundary 

conditions for the actual experimental setup. In other words, the experimental setup to be 

built should be as close as possible to the ANSYS model regarding boundary conditions. 
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  CHAPTER IV 

4 EXPERIMENTAL DISPLACEMENT MEASUREMENT 

4.1 Beam Experimental Displacement Measurement 

To validate the results of theoretical calculations, an experiment was conducted. A 

set-up accommodating all three boundary conditions was constructed. The set-up was 

constructed in such way that no boundary condition was permanently applied to the 

specimen (as a permanent application of boundary condition will force us to construct 

multiple set-ups) as we must experiment with varying boundary conditions on the same 

base construction saving time and material required for multiple set-ups. The clamped- 

 

Figure 4.1: Setup for Clamped-Clamped boundary condition of the beam. 

clamped boundary conditions refer to no rotational, lateral or longitudinal movement of the 

beam in either direction at the boundary and hence the plates are bolted as shown in 
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Figure 4.1. When the bolts are tightened, it must be taken care that excess tightening will 

result in bending of the beam. This deformation beyond a point is detrimental to the beam 

hence adequate tightening of the bolts is recommended. Hence, we had to monitor the 

natural frequency readings on the digital analyzer and keep tightening the bolts up to the 

point where the readings on the analyzer screen have an approximate match to the 

theoretically calculated frequencies. For such supporting of the beam between the bolted 

plates, the beam had to be longer than 14 inches as supporting with exact length was 

impractical.  The longer beam was taken, but the distance between the supporting pillars 

was maintained to 14 inches, limiting the beam length to be within 14 inches. 

Setup for simply supported boundary conditions on either side of the beam is shown 

in Figure 4.2. The simply supported boundary conditions on either side of the beam was an 

intricate task. Rotational, lateral and longitudinal motion are prevented. A peculiar 

characteristic design was adopted which included rectangular shapes small structures 

supporting the beam on top and bottom on either side creating knife edges. Lastly, the 

 

Figure 4.2: Setup for Simply Supported boundary condition of the beam. 
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clamped free boundary condition is reflected in Figure 4.3. Material and geometrical 

properties of the beam are shown in Table 4.1. Before the sensor was attached to the beam, 

an accelerometer was used to measure the deflection curve of the beam. This task was 

accomplished by mapping the area on the beam surface. 

 

Figure 4.3: Setup for Clamped-Free boundary condition of the beam. 

 

Table 4.1: Properties of the test specimen. 

Sr. 

No. 
Properties Values Units 

1. Material Aluminum - 

2. Density 2767.849 (𝑘𝑔/𝑚3) 

3. Young’s Modulus 71 𝑥 109 - 

4. Length (L) 0.3556 m 

5. Breadth (b) 0.0254 m 

6. Height (h) 0.003175 m 
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The measurement procedure is described in detail, in section 4.1.2. The data 

acquisition system is comprised of Hewlett Packard (HP) Dynamic Signal Analyzer (DSA) 

(model 35670 A).  An electrodynamic shaker (model ET-132-2) by Techron power 

amplifier (model 5507) was the excitation source for the beam specimen. Fundamental 

resonance for the electrodynamic shaker is 7500 Hz which is above the frequency limit of 

our measurement of 800 Hz, as we focus on the first three modes.  PCB Piezoelectric 

accelerometer was used to acquire the vibration reading and signals were passed through a 

PCB signal conditioner (model 480E09). 

4.1.1 Sensor shaping and fabrication 

The sensor layout is first designed in SolidWorks and then printed on a self-

adhesive vinyl sheet. This sensor layout is then cut from the self-adhesive with the help of 

printer-cutter, thus generating a sensor template as shown in Figure 4.4. Here the template 

represents the sensor design, having slits at regular intervals of 1 inch. The template is laid 

on top of the film, as shown in Figure 4.5(a) before an etching ink is applied in the slits. 

The etching solution is applied with the help of a brush, as shown in Figure 4.5(b), therefore 

corroding the PVDF film’s piezoelectric property. This etching solution can stay on the 

film for about a day and then the template is removed from the film hence forming a 

distributed PVDF film sensor with 14 PVDF segments and the corroded portion 

differentiating between the PVDF film segments on one side and a continuous electrode 

on the others side of the film. A multimeter is used to ensure the patches are electrically 

isolated from each other shown in Figure 4.5(c), therefore serving the purpose of the 

distributed sensor.  
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Figure 4.4: Sensor template. 

 
(a) (b) (c) 

Figure 4.5: Sensor fabrication details. 
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4.1.2 Experimental Measurement Procedure for beam  

The beam length was kept constant throughout the experimental procedure.  The 

experiment to calculate the deflection curve of the vibrating beam was first done with an 

accelerometer. The schematic diagram for experimental setup of the beam is shown in 

Figure 4.6.  For this, the beam was divided equally into 14 parts, each measuring 1 inch, 

as shown in Figure 4.7. The accelerometer was placed individually on each of the 14 parts 

(as shown in Figure 4.7) recording the acceleration measurement per part. The shaker was 

placed beneath the beam with the stringer (on the shaker) just touching the beam. The 

shaker was connected to the amplifier, which in turn was connected to the input port of the 

Dynamic Signal Analyzer. The force gauge, on the other hand, is connected to a signal 

conditioner which was connected to Channel 1 of Dynamic Signal Analyzer. The frequency 

supplied by the shaker was set within a range of 0-800 Hz through the analyzer. As 

mentioned earlier, we focus our attention on response with a frequency less than 800 Hz 

and data recorded beyond 800 Hz though measured will be not be considered in evaluating 

the sensor accuracy. The accelerometer is connected to the PCB signal conditioner for 

signal conditioning before it is connected to the Channel 2 of the Dynamic Signal Analyzer. 

Fast Fourier Transform (FFT) program was selected from the Digital Signal Analyzer for 

processing the measurements. The shaker is turned on and the amplifier is used to adjust 

the volume of the vibration to a level that’s easily perceived by human ears. Then the 

accelerometer was placed at each of the 14 parts on the beam measuring the acceleration 

of each part individually. Here, wax was used to attach the accelerometer to the beam. 

These measurements were stored in the Digital Signal analyzer for a range over 0-800Hz 

and were saved in the form of data points to be analyzed later. Each of the 14 data points 
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(measured from the 14 parts of the beam) consist the average of 20 acceleration 

measurements at a point on the beam, i.e., a single data point is the average of 20 

measurements. The measurements recorded through the analyzer were extracted through a 

floppy drive and processed through MATLAB.    

 

Figure 4.6: Beam Experimental Setup using an accelerometer 

While recording these measurements for the beam, we need to vary the boundary 

conditions but the process of measuring the frequency is same. For C-C boundary condition 

the beam accounts for 14 measurements whereas the two supporting columns on either side 

account for 2 measurements. This forms the first observation set for C-C boundary 

condition comprising of 16 measurements. A similar process is adopted for the S-S 

boundary condition leading to second observation set with again 16 measurements. For the 

C-F boundary condition there is only one supporting column, hence the third observation 

set consist of 15 measurements (14 measurements form the sensor film while 1 

measurement from the supporting column). Therefore, 3 different observation sets with 

different boundary conditions are obtained, though the measurement procedure was same. 
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It is to be noted that once measurement process has started for a given boundary condition 

of the beam, a complete set of readings must be recorded for that boundary condition before 

switching off the equipment. (shaker, analyzer, filter & amplifier)  

The experiment to measure the deflection curve of the vibrating beam with PVDF 

sensor is similar in approach as mentioned above with a difference that etched PVDF film 

replaces the accelerometer. Solutions like dilute phosphoric acid and ammonia water with 

sandpaper were used to cleanse the beam surface from any dirt and wax. Then follows the 

task to adhere the sensor to the beam top surface. Following the etching process mentioned 

in section 4.1.1, the sensor was then bonded to the beam surface with the help of double-

sided tape (Letraset dual Tack, 50 mm wide). The sensor film width extension is vital from 

a wiring point of view. If the sensor film width were exact as that of the beam, it would 

have been impossible to reach the surface beneath the sensor (i.e., the electrode on the other 

side of the sensor film), as one surface serves as a positive electrode and other as negative. 

For the wiring, it is important that these electrodes be completely isolated from each other. 

The PVDF film on beam was etched on one side and consisted of a continuous electrode 

surface on the other. Therefore, one wire will always be in contact with the continuous 

electrode surface while we need to change the location of the wire connected to the etched 

electrode surface. As the etched electrode surface has multiple PVDF segments isolated 

from each other, each PVDF segment will have one terminal with a common electrode 

surface. The sensor film is connected to the data acquisition unit with the alligator clips 

(attached to the sensor) at one end and the BNC connectors are connecting to the Channel 

2 of the Dynamic Signal Analyzer. The back side of each clip is isolated with a tape. 
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Figure 4.7: Beam divided into 14 sections for accelerometer measurements. 

Ensuring the PVDF sensors accuracy and functioning each sensor readings were to 

be verified with the accelerometer readings, thereby comparing the deflection curve of the 

beam obtained by the accelerometer to that obtained by distributed PVDF sensors. Hence 

these sets of measurements by PVDF sensor/accelerometer denote the deflection curve of 

the vibrating beam.  

4.1.3 Experimental Results for the beam. 

Figures (4.8-4.13) show the response of the sensor over the frequency ranging from 

0-800Hz, for each boundary condition the beam represents, the sensor accurately measures 

the vibration amplitude apprehending all the resonance frequencies within the excitation 

signal. Moreover, the figures(4.8-4.13) shows the sensor correctly matches the actual 

response of the beam over the frequency of interest. Therefore, matching the actual lateral 

displacement response of the structure with actual lateral displacement response of the 

sensor is a critical task in sensor development. The results presented in Figures (4.8-4.13) 
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show the actual lateral displacement curves of the beam and actual lateral displacement 

curve of the sensor at the first, second, third and fourth modes of vibration. The deflection 

curve measured with the beam measured through accelerometer coincides with the 

deflection curve of the PVDF sensor. However, there is a noticeable decline in sensor 

accuracy as we move to a higher frequency which can be explained with the error innate 

to the central difference approximation and the approximation of the actual deflection with 

mode superposition as related to the number of modes included in the computational 

process.  

 
 

Figure 4.8: Beam (S-S) first and second mode response (Continuous= Actual; Dot=Sensor) 

 
Figure 4.9: Beam (S-S) third mode r esponse(Continuous= Actual; Dot=Sensor) 
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Figure 4.10: Beam (C-C) first and second mode response (Continuous= Actual; Dot=Sensor) 

 

Figure 4.11: Beam (C-C) third mode response (Continuous= Actual; Dot=Sensor) 

 

 

Mode 1 

120 Hz 

Mode 2 

280 Hz 

Mode 3 

552 Hz 

(in) (in) 

(in) 



89 

 

       

Figure 4.12: Beam (C-F) first and second mode response (Continuous= Actual; Dot=Sensor) 

 

Figure 4.13: Beam (C-F) third mode response (Continuous= Actual; Dot=Sensor) 

 

4.2 Plate Experimental Displacement Measurement. 

In case of the plate, a grid formation with a resolution of 15 𝑥 24 was 

implemented where the plate was divided into 360 equal parts and shaker was place 

beneath the plate for random excitation as shown in Figure 4.14. The plate should be 

firmly bolted to the supports otherwise will cause irregularities in the experimental 

results. The schematic diagram for plate experimental setup in shown in Figure 4.15. The 

accelerometer is placed on these 360 sections individually to obtain the surface  
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Figure 4.14: Plate with the grid mapping. 

 

acceleration of the vibrating plate. One must be careful while placing the accelerometer 

on the sections for measuring, as placing the accelerometer should follow a pattern of 

the grid. Example, if you start measuring from left corner to right corner of the plate for 

a row in the grid, the next row should be measuring from right corner to left corner of the 

plate. A particular pattern should be followed because when a sensor film is placed on 

the plate surface, the film will measure the stress from one corner to another. One section 

(one of the 360 divisions) missed on the grid by the accelerometer will induce error in the 

measurement as the film covering the entire row and column will not miss any section on 

the plate. Thus, it is highly recommended to follow a pattern rather than randomly 

measuring with the accelerometer. Like the beam in section 4.1.2 the measurements are 

obtained through the accelerometer and processed through MATLAB to obtain the 

deflection curve of the vibrating plate. Then, the plate surface is cleaned with dilute 

phosphoric acid and ammonia water and polished using sandpaper. The ¾” width dual  
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Figure 4.15: Plate Experimental Setup using an accelerometer. 

side tape is placed along plate length and width, and then the 1” width PVDF film is 

attached to the tape along the plate length whereas another film along the plate width. ¾” 

of the PVDF film is in contact with the tape measuring the stress acting along the plate 

whereas the remaining ¼” film is utilized for wiring purpose. Multi-meter is used to check 

that the film is completely isolated and there is no charge leakage. In this case, we measure 

the deflection of the plate for resonance condition only. Hence two PVDF films are 

implemented (one along the length and another along width). Here, to follow a different 

methodology, instead of proceeding with an etching process to obtain distributed PVDF 

sensors, we use a blade to cut the PVDF film along its length forming 1" 𝑥 1" distributed 

patches across the plate length and width.   

The wiring procedure for the PVDF segments in case of the plate is different as 

compared to the one in beam procedure. For the plate, the PVDF film is cut instead of 

etching. Hence, the PVDF segments are completely independent of each other and have no 

common electrode surface as in case of the beam. Each PVDF segment will have two 

terminals as there is no common electrode surface as in case of the beam.    
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   As described in section 2.7 and [36], designing a sensor to measure the deflection 

curve for vibrating plate is a challenging task as this involves stress acting along the 𝑥 and 𝑦  directions (when the plate vibrates in off-resonance state) whereas the sensor fabricated 

in section 4.1.1 is capable of measuring stress along 𝑥-direction for the beam (the stress 

along 𝑦-direction is assumed to be neligible). 

4.2.1 Experimental Results for the plate. 

Figures (4.16-4.19) show the response of the sensor over the frequency ranging 

from 0-800Hz. For each boundary condition the plate represents, the sensor accurately 

measures the vibration amplitude apprehending all the resonance frequencies within the 

excitation signal. Moreover, the figures (4.16-4.19) shows the red grid representing the 

measured lateral displacement of sensor correctly matches the actual response of the plate 

represented by black grid, over the frequency of interest. Therefore, matching the lateral 

displacement response of the structure with lateral displacement response of the sensor is 

a critical task in sensor development. The results presented in Figures (4.18-4.119) show 

the lateral displacement curves of the plate and actual lateral displacement curve of the 

sensor at the first, second, third and fourth modes of vibration. The deflection curve of the 

plate measured through accelerometer coincides with the actual deflection curve of the 

PVDF sensor, where the red dot representing the measured lateral displacement of sensor 

are in good match with the black continuous line representing the actual lateral 

displacement pf plate. However, there is a noticeable decline in sensor accuracy as we 

move to a higher frequency which can be explained with the error innate to the central 

difference approximation and the approximation of the actual deflection with mode 

superposition as related to the number of modes included in the computational process.  
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Figure 4.16: Plate (S-S) first and second mode response (Continuous= Actual; Dot=Sensor) 

 

Figure 4.17: Plate (S-S) third mode response (Continuous= Actual; Dot=Sensor)  

   

Figure 4.18: Plate (C-C) first and second mode response (Continuous= Actual; Dot=Sensor) 

 

Z
 Z
 

Z
 

(in) (in) 

(m
) 

(m
) 



94 

 

 

Figure 4.19: Plate (C-F) third mode response (Continuous= Actual; Dot=Sensor) 
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CHAPTER V 

5 CONCLUSION AND RECOMMENDATIONS 

5.1 Conclusion 

As mentioned throughout this thesis, the goal of this research is to develop a 

distributed sensor using polyvinylidene Fluoride film that will accurately measure the 

deflection curve of a vibrating beam and plate. In past, experimental research has been 

conducted to measure only the displacement of the beam with piezoelectric material and 

measuring the plate displacement with piezoelectric material was described as intrinsic 

task, hence only theoretical work was presented regarding vibrating plate. But in this work, 

we propose to proceed with a constant shape PVDF film sensor measuring the vibrating 

plate displacements experimentally. Moreover, best of author’s knowledge, this is the first 

recorded research relating to measuring deflection curve of vibrating plate with proposed 

sensor design.  

 This research began reviewing the work of others to gain insight on measuring 

deflection curves of beam and plate. The review clearly stated that all previous researchers 

had the charge equation derived by Lee and Moon [34] based on novel development of 

distributed piezoelectric laminates for control and sensing of bending vibration of flexible 

beams and plates. This was used as the starting point of sensor design process. The well-

established one-dimensional output charge equation of polyvinylidene Fluoride or PVDF 

helped in deriving equations regarding lateral vibration displacement of the sensor. The 

accelerometer was used to measure the beam deflection curve. Followed was the sensor 
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fabrication process for forming PVDF patches across the film through etchings  bands 

across  the width  of the sensor  film. The output charge of the PVDF patch is proportional 

to the slope of the beam deflection curve at a respective location on the beam. In the 

numerical analysis, the slopes were substituted in central-difference equations to compute 

the vibration deflection curve, and the truncation error associated with central-difference 

method helped derive sensor accuracy.   

The proposed sensor was verified through numerical simulation and experimental 

analysis. The numerical simulation proceeded with mode superposition and discretized 

models computing the forced vibration responses of the beam over a broadband frequency. 

Hence deducing the deflection curves and these deflection were compared to the charges 

calculated from PVDF charge equation (for individual PVDF film patches). The 

experimental procedure carried out to verify sensor performance as accelerometer readings 

were used to verify the sensor results. The most prominent source of error is the sensor 

construction and placement procedure itself; including spilling of the etching solution over 

the sensor patches tampering the readings, air bubbles getting trapped between the double-

sided tape and sensor film, and misalignment of the sensor film concerning beam structure. 

Other error includes loosening of the bolts (used to impose boundary conditions on the 

beam) due to vibration.  

 In conclusion, the goal of the research was accomplished with encouraging results 

through the use of distributed PVDF sensor measuring the deflection curve of vibrating 

beams and plates. Though variation in structural displacement where clearly observed 

through the naked eye, the fact that the sensor was fabricated and placed on the beam by 

hand clearly justifies the errors induced in experimental readings. Due to the low output 
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voltage from the PVDF patches, it necessitates implementation of multiple patches at the 

same location, to sum up the charges. This thesis sets the trend to use distributed PVDF 

film sensor to measure the complete deflection curve of flexible objects such as beams 

rather than measuring deflection at particular sections only and measuring deflection curve 

of plates at resonance, and it is the belief of the author that more accurate data could be 

extracted with more exact methods exercised.  

5.2 Recommendation for Future Work 

To make the sensor inexpensive manual work was incorporated in sensor 

fabrication. Many of the issues regarding the error dealt with the PVDF material itself. 

Inherent error was inculcated into the sensor while cutting, fabricating and placing the 

sensor on the beam. In this work, the sensor was first fabricated and then attached to the 

beam, but in future work, the PVDF film could be placed on the beam first and then the 

fabrication process can be carried out. This method might help reduce the sensor 

misalignment on the beam substrate. Controlled brushing of etching solution on to the 

sensor to prevent spillover.  

Gorilla Epoxy Clear was used instead of dual sided tape for attaching the PVDF 

film on the plate. This, attempt to use a different medium of contact between the plate and 

PVDF film was a failure as the epoxy substance did not prove to be a good insulation layer; 

PVDF film charge was leaked. The different medium should be used instead on dual sided 

tape as slight misalignment in sticking the tape on structural surface results in misalignment 

of PVDF film being attached on the tape. Thus, resulting error in measurements acquired 

when structure undergo deflection. 
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The film is cut along the length when unwrapped from the roll hence makes it easier 

to be attached to the beam concerning its directional properties, coefficients such as 𝑒31 

and 𝑒32. In case of designing a sensor for the plate, the question raised on how 𝑒31 and 𝑒32 

properties could be distinguished. When the material is unwrapped, and cut from the roll, 

it is unknown what direction each coefficient lies. These properties should be marked or 

labelled, elsewise they could easily be reversed. No such apparatus to test the PVDF 

properties is yet constructed hence markings need to be made on the film.  

PVDF sensor must be fabricated for measuring the deflection curve of the plate for 

the off-resonance condition. This work demonstrated the sensor measuring deflection 

curve of plate vibrating at resonance only. Now, to measure the deflection curve during 

off-resonance condition multiple PVDF film need to be attached along the length and width 

of the plate, covering the entire plate surface. In case of resonance, two PVDF film was 

used (one along the length & one along the width), whereas off resonance case requires 39 

PVDF films (15 along the length and 24 along the width).  
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APPENDIX A 

MATLAB CODE TO CALCULATE THE NATURAL FREQUENCIES OF BEAM 

WITH DIFFERENT BOUNDARY CONDITIONS 

%% Beam Simply Supported At Both Ends 

clc 

close all; 

clear all; 

bm=0.0254;                        %breath of the model 

hm=0.003175;                      %thickness of the model 

lm=0.3556;                        %length of the model 

Am=bm*hm;                         %area of the model 

dm=2767.849;                      %density of model 

mm=dm*Am;                         %mass per unit length of model 

a1=1.875;                         %constant 

Em=69*10^9;                       %elasticity of the model material 

Im=(bm*hm^3)/12;                  %moment of inertia of model                     

]%shows the constant values for 10 nodes  

 for a=[3.1416,6.2832,9.4248,12.5664,5*pi,6*pi,7*pi,8*pi,9*pi,10*pi] 

    SIM_SUPPORT=(a^2)*(sqrt((Em*Im)/(mm*lm^4))) *0.5/pi 

 end  
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%% Beam Fixed At Both Ends  

clc 

close all; 

clear all; 

bm=0.0254;                        %breath of the model 

hm=0.003175;                         %thickness of the model 

lm=0.3556;                        %length of the model 

Am=bm*hm;                         %area of the model 

dm=2767.849;                          %density of model 

mm=dm*Am;                         %mass per unit length of model                           

Em=71*10^9;                       %elasticity of the model material 

Im=(bm*hm^3)/12;                  %moment of inertia of  model                 

shows the constant values for 10 nodes   

 for z=[4.730041,7.853205,10.9955,14.137165] 

         FIX_FIX=(z^2)*(sqrt((Em*Im)/(mm*lm^4)))*0.5/pi 

     end 

     c=5:10; 

for i=1:length(c) 

    constant=((2*c(i)-1)*pi)/2; 

    for a=[constant] 

        FIX_FIX=(a^2)*(sqrt((Em*Im)/(mm*lm^4)))*0.5/pi 

    end 

end 
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%% Beam Fixed Support At One End  

clc 

close all; 

clear all; 

bm=0.0254;                        %breath of the model 

hm=0.003175;                      %thickness of the model 

lm=0.3556;                        %length of the model 

Am=bm*hm;                         %area of the model 

dm=2767.849;                          %density of model 

mm=dm*Am;                         %mass per unit length of model 

Em=71*10^9;                       %elasticity of the model material 

Im=(bm*hm^3)/12;                 %moment of inertia of  model                     

%shows the constant values for 10 nodes  

 for n=[1.875104,4.694091,7.854757,10.995541];      

CANTILEVER=(n^2)*(sqrt((Em*Im)/(mm*lm^4)))*0.5/pi 

end 

c=5:10; 

for i=1:length(c) 

    constant=((2*c(i)-1)*pi)/2; 

    for a=[constant] 

        CANTILEVER=(a^2)*(sqrt((Em*Im)/(mm*lm^4)))*0.5/pi 

    end 

end 
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APPENDIX B 

MATLAB CODE TO CALCULATE THE MODE SHAPES OF BEAM WITH 

DIFFERENT BOUNDARY CONDITIONS 

 

%% Calculate the first two modes shapes for Simply supported-Simply supported 

boundary condition. 

clear all;  

close all; 

clc;                   

%First Constant for first mode shape 

B1=pi                  

%Define range over x-axis    

x = .01:0.01:1;        

%Calculate mode shape for first mode 

W1 = (sin(B1*x))   

%Second Constant for second mode shape        

B2=pi*2                

%Calculate mode shape for second mode 

W2 = (sin(B2*x))   

%Define figure number  

figure(1)                  
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%Plot the modes shape for first mode 

plot(x,W1)   

%Define figure number  

figure(2) 

%Plot the modes shape for second mode 

plot(x,W2) 

%% Calculate the first two modes shapes for Fixed-Fixed boundary condition. 

clear all;  

close all; 

clc; 

%First Constant for first mode shape 

B1_l=4.730041                             

%Evaluate the coefficients for mode shape 

a1=(cosh(B1_l)-cos(B1_l))/(sinh(B1_l)-sin(B1_l));                       

%Define range over x-axis   

B1l = .01:0.01:1                                                        

%Calculate mode shape for first mode 

W1 =(cosh(B1_l*B1l)-cos(B1_l*B1l))-a1*(sinh(B1_l*B1l)-sin(B1_l*B1l));   

%Second Constant for second mode shape 

B2_l=7.853205                                                           

%Evaluate the coefficients for mode shape 

a2=(cosh(B2_l)-cos(B2_l))/(sinh(B2_l)-sin(B2_l));                       

%Define range over x-axis   
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B2l = .01:0.01:1                                                        

%Calculate mode shape for second mode 

W2 =(cosh(B2_l*B2l)-cos(B2_l*B2l))-a2*(sinh(B2_l*B2l)-sin(B2_l*B2l));   

%Define figure number 

figure(3)                                                               

%Plot the modes shape for first mode 

plot(B1l,W1)                 

%Define figure number 

figure(4)                                                               

%Plot the modes shape for second mode 

plot(B2l,W2)               

%% Calculate the first two modes shapes for Clamped-Free boundary condition. 

clear all;  

close all; 

clc; 

%First Constant for first mode shape          

B1_l=1.875104                                                               

%Evaluate the coefficients for mode shape 

a1=(sin(B1_l)-sinh(B1_l))/(cos(B1_l)+cosh(B1_l));                           

%Define range over x-axis   

B1l = .01:0.01:.5                                                           

%Calculate mode shape for first mode 

W1=(sin(B1_l*B1l)-sinh(B1_l*B1l)-(a1*(cos(B1_l*B1l)-cosh(B1_l*B1l))));      
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%Second Constant for second mode shape 

B2_l=4.694091                                                               

%Evaluate the coefficients for mode shape 

a2=(sin(B1_l)-sinh(B1_l))/(cos(B1_l)+cosh(B1_l));                           

%Define range over x-axis   

B2l=.01:0.01:1                                                              

%Calculate mode shape for second mode      

W2=(a1*(sin(B2_l*B2l)-sinh(B2_l*B2l))-(a2*(cos(B2_l*B2l)-cosh(B2_l*B2l)))); 

%Define figure number 

figure(5)                                                                   

%Plot the modes shape for first mode 

plot(B1l,W1)                                                                

%Define figure number 

figure(6)                                                                   

%Plot the modes shape for second mode 

plot(B2l,W2)                                                                

%end of program. 
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