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ABSTRACT 

The following thesis discusses the in-depth research pertaining to flow through square and 

rectangular miniature channels with abrupt expansions, contractions, and flow through porous 

media.  Fifty five previously published sources pertaining to the research were closely examined.  

A closed flow testing loop was designed, constructed, and calibrated to provide the ability to test 

a wide variety of single and multi-phase Newtonian and non-Newtonian fluids in miniature 

channels.  Over 250,000 data points were collected during the study.  Single-phase water flow 

through 1.59 mm aluminum square channels with abrupt 4 to 1 area ratio expansion and 

contraction were tested for differential pressure at volumetric flow rates ranging from 1-300 

ml/min.  Sinle-phase water flow through 1.59 x 3.18 mm porous media test sections were also 

tested for differential pressure at volumetric flow rates ranging from 1-300 ml/min.  The flow 

was driven by a highly accurate and precise syringe pump with 10 individual 0-690 kPa 

Honeywell pressure transducers reading local pressure at key locations along the channels 

allowing differential pressure to be calculated for multiple locations.  Detailed analysis yielded 

results for a wide variety of parameters including: required power, required energy, form drag, 

viscous drag, correction factor selection by determining the onset of turbulence using modified 

Reynolds numbers, and many other critical details for accurately predicting theoretical 

differential pressure and overall flow behavior through a variety of miniature channels with 

abrupt changes in channel cross-sectional area.    
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NOMENCLATURE 
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cp  specific heat capacity at constant pressure [J/kg-K]  
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k  thermal conductivity [W/m-K]  

K permeability coefficient 

Kc contraction correction coefficient 

Ke expansion correction coefficient  

ṁ  mass flow rate [kg/s] [g/s] xx  

mm millimeters  

nf  nanofluid  

Nu  Nusselt number  

OD  outer diameter  

δE/δt power [W]  
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P pressure [N/m2]  

PP  pumping power  

q  amount of heat per unit time per unit area [W/m2]  

Q  amount of heat that flows through a body in unit time [W]  

r  radius [m]  

r2 correlation strength of data to best-fit line 
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α  thermal diffusivity [m2/s]  
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β volumetric quality 

λ modified porous material Reynolds number γ̇  rate of shear strain [1/s]  

ρ  density [kg/m3]  

σ area ratio of expansion or contraction 

τ  shear stress [N/m2]  

ν  kinematic viscosity [m-s]  ∅  particle volume fraction  

Φ Percentage of overall drag caused by viscous effects using: viscous drag / (viscous + form 

drag) in porous material 

Λ Volume of fluid (m3) 
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CHAPTER 1 

1.1 INTRODUCTION 

Fluid flow has been studied for centuries, but still has not been completely solved with modern 

computing and modeling technology.  Studying flow in miniature channels with irregular cross-

sectional geometry allows further understanding of the complex flow behavior and allows 

optimization of current and future applications.  Flow through porous materials has a number of 

practical applications including: porous media heat exchangers, pathological blood flow when 

accumulations of fatty plaques of cholesterol and blood clots increase in the cavity of the 

coronary artery, fuel cell design and optimization, optimizing space-related miniature flow 

utilization, and many other applications.  Utilizing flow through small passages increases the 

surface area to volume ratio and increases heat transfer efficiency.  Using an experimental setup 

including: a highly accurate and precise syringe pump, test sections, pressure transducers, 

thermocouples, data acquisition hardware, and a titanium dioxide porous media sample produced 

by Dr. Gupta, many conclusions can be made about the flow behavior.  Differential pressure and 

power required to flow the fluid through the test sample are essential to proper design and can be 

predicted by measuring the permeability and form coefficient of the porous media.  Similar 

predictions can be made modeling rapid contractions and expansions using theoretical 

predictions derived from Navier-Stokes momentum equations and correction factors from 

empirical evidence.
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1.2 Objectives 

This thesis was created to look into several main objectives in areas of interest that have not been 

sufficiently studied.  The first goal was to study the power, differential pressure, and total energy 

needed to flow single-phase, Newtonian, distilled water through rectangular 4 to 1 area ratio 

expansions and contractions.  Since the flow rates studied range from fully laminar from 0-2300 

Reynolds numbers to the onset of turbulence, but not fully turbulent at 2300-3500 Reynolds 

numbers, a determination should be made if the flow at Reynolds numbers ranging from 2300-

3500 should be modeled as laminar or turbulent.  Then, the results should be compared to the 

power and energy needed to flow through channels with titanium dioxide porous material 

inserted mid-channel.  The study also looked to review the effect of volumetric flow rate through 

porous, expansion, and contraction channels on required power and energy consumption.  The 

study also is intended to discover a way to accurately characterize the flow through the titanium 

dioxide porous material.  To characterize the flow properly, an accurate method of predicting 

differential pressure is needed.  An alternative method of producing Reynolds numbers for 

porous media is also essential to characterizing flow.  The thesis will discuss the best way to 

produce these values.  Since Reynolds numbers depend on the velocity in the channel and a rapid 

expansion and contraction channel have two different velocities, a determination will be made as 

to which velocity will provide the most accurate results for calculations involving velocity. 

Finally, the amount of power produced by the pump will be compared with the amount required 

to move the water through just the porous material. 
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1.3 Scope of Study 

Due to time and money constraints, the study had to be limited to studying single-phase, 

Newtonian, distilled water flow through miniature expansion, contraction, and porous media 

channels at volumetric flow rates ranging from 0-300 ml/min and Reynolds numbers from 0-

3500.  The channels are part of a circulating flow loop that is assumed to be isothermal due to no 

heat flux being applied and the differential temperature being monitored at the channel inlet and 

outlet being negligible.  Due to pumping limitations, fully turbulent conditions could not be 

achieved.  Although, from 200-300 ml/min, Reynolds numbers range from 2300-3500 in the 

smaller channel cross-sectional area, and there is an onset of turbulence in the channel.  The 

study can predict if the flowrates from 200-300 ml/min should be modeled as laminar or 

turbulent, but cannot make an accurate prediction above 300 ml/min or Reynolds numbers above 

3500. 
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CHAPTER 2 

LITERATURE REVIEW 

2.1 Flow in a Horizontal Rectangular Channel 

Valinčius et al. (2011) conducted a study that centered on understanding how condensation can 

affect two-phase flow stability by experimentally investigating and modeling two-phase flow.  

They also considered rapid condensation conditions as a centerpiece of the study.  In addition, 

they looked at previous work on correlations for two-phase flow completed in the twentieth 

century (Taitel and Dukler, 1976; Kang and Kim, 1993; Brauner and Maron, 1993).  They also 

go into detail discussing uniform void fraction measurements with differential pressure 

measurements and wall shear stresses (Valincius, et al., 2008).  According to Valinčius et al. 

(2011), “The current task is to identify parameters of interfacial instabilities, which can cause 

condensation to reinforce itself. Positive feedback mechanism can take place when steam flow 

starts generating waves at the interface and thus increases the direct contact condensation area.”  

Valinčius et al. (2011) used an experimental setup with a length of 0.843 meters, height of 0.075 

meters for gas phase and 0.025 meters for liquid phase, a width of 0.02 meters and a cross-

sectional area of 0.002 meters squared with equivalent hydraulic diameter of 0.033 meters.  An 

illustration can be seen in Figure 1 below explaining the setup  
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Figure 1:   Experimental setup shown: 1—rectangular channel; 2—windows, 3—flow equalizer; 
4—inlet pipe; 5—flow control measurement; 6—differential pressure measurement; (Valinčius 

et al, 2011) 
 

 

Another interesting parameter measured by Gasiunas and Seporaitis (2008) is pressure drop.  

Pressure drop is critical for many measurements in fluid flow and has an impact on power 

required to flow the fluid through the channel.     

The pressure drop measurements based on gas velocity can be seen below in Figure 2.   

 

Figure 2:  Pressure drop (Pa) vs gas velocity (m/s) (Valinčius et al., 2011) 
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Valinčius et al. (2011) also found the pressure drop when no condensation occurs is due to the 

friction at the interface and the wall friction.  Below in Figure 3, the shear stresses due to the 

interface are shown.  

 

Figure 3:  Shear stresses calculated at the interface (Valinčius et al., 2011) 

 

The results from the experiment were very reasonable and seemed accurate for single and multi-

phase flow.  The authors did run into a bit of trouble trying to model the two-phase flow because 

they could not maintain a water depth at high velocities.  Valinčius et al. (2011) believe “Further 

work will consider evaluation of interfacial friction in condensable two-phase flow and influence 

of condensation to interface stability.” 
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2.2 Two-Phase Flow Patterns 

Choi et al. (2011) conducted an interesting research experiment pertaining to two-phase flow that 

was published in the International Journal of Heat and Mass Flow.  A main purpose of the 

experiment was to study how a parameter known as an abstract ratio affects flow pattern, void 

fraction, and pressure drop of an experiment (Choi et al., 2011).  They used the widths and 

heights of rectangular microchannels that were 510 μm × 470 μm, 608 μm × 410 μm, 

501 μm × 237 μm, and 503 μm × 85 μm. Therefore, the aspect ratios of the rectangular 

microchannels were 0.92, 0.67, 0.47 and 0.16; and the hydraulic diameters of the rectangular 

microchannels were 490, 490, 322 and 143 μm, respectively. Channel size selection can have a 

large effect on flow characteristics (Chung and Kawaji, 2004; Kawahara et al., 2009).  The 

experimental ranges conducted by Choi et al. (2011) were liquid superficial velocities of 0.06–

1.0 m/s and gas superficial velocities of 0.06–71 m/s.  They also assert an important parameter of 

the experiment is the flow type.  There can be many different forms of bubbles in two-phase flow 

(Squires and Quake, 2005; Serizawa et al., 2002).  Using a camera to determine what flow is 

happening in each situation is critical to predicting performance.  They found bubble flow was 

dominant when the aspect ratio was increased.  This was due the thickness of the film in the 

corner was reduced and the confinement was increased due to the reduced volume to surface area 

ratio (Moriyama and Inoue, 1992).  They also found when the aspect ratio is reduced along with 

liquid film thickness the flow becomes more homogeneous.  They also found the pressure drop 

due to friction in rectangular channels was highly correlated to the flow pattern (Choi et al., 

2011).  Kandlikar (2002) has many correlations for flow boiling including relating nucleate 

boiling to heat transfer values.  Using the research done by Kandlikar (2002) on miniature and 

microchannel flow boiling, Choi et al. (2011) were able to add to the scientific knowledge of two 
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phase flow even though the research was not completely similar to the work done by Kandlikar 

(2002).   Choi et al. (2011) found in microchannel applications, a bubble has a tendency to 

elongate because the channel is not wide enough for the bubble to take a spherical form and keep 

the needed volume.  They also included some useful diagrams explaining the procedure and 

equipment used.  The experimental equipment and process can be seen in Figure 4 below.   

   

 

Figure 4:  Experimental setup for the two-phase microchannel flow experiment (Choi et al., 

2011). 

 

Flow patterns were a key aspect of this experiment (Wong et al., 1995).  The flow classifications 

determined by Choi et al. (2011) can be seen below in Figure 5. 
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Figure 5:  Rectangular microchannel flow classifications (Choi et al., 2011). 

 

Choi et al. (2011) looked at increasing the gas velocity while maintaining the liquid velocity and 

determining the effects on the flow pattern.  In Figure 6, JG is the gas superficial velocity and JL 

is the liquid superficial velocity.  They found when the JG reached 1 m/s, there was a transition 

from elongated bubble toward liquid ring (Choi et al., 2011).  It was not a full transition, just a 

midpoint between the two classifications.   
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Figure 6:  Gas superficial velocity effect on development of two-phase flow pattern for          

AR = 0.92 at jL = 0.20 m/s (0.06 m/s < jG < 49.66 m/s) (Choi et al., 2011). 

 

The researchers also found similar results as Valinčius et al. (2011) when determining the liquid 

film thickness.  The results showed the liquid film thickness decreased when the aspect ratio was 

increased (Choi et al., 2011).  Pressure drop was also considered in the experiment and is an 

essential part of understanding multiphase flow.  Important aspects from this experiment were 

discovered because of research done by predecessors over six decades ago as well as a few years 

ago.  This exemplifies the fact that research is an ongoing process and can prove to be valuable 

for many decades in the future (Lockhart and Martinelli, 1949; Agostini et al., 2008).  The 

bubbly, elongated bubble, and liquid slug areas were considered in the experiment and the results 

can be seen in Figure 7. 
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Figure 7:  Typical trend of pressure drop in a rectangular microchannel: (I) bubbly, liquid slug 

and elongated bubble flow regimes, (II) multiple flow regime (transition regime) and (III) liquid 
ring flow regime (Choi et al, 2011) 

 

This experiment also covered void fraction calculations for rectangular microchannel flow which 

has been shown to be of high importance (Triplett et al., 1999).  They used a simple equation 

stating void fraction is equal to gas superficial velocity divided by bubble velocity (Choi et al., 

2011).   

Α = jG / uB      (2.2.1)  

Figure 8 below shows a correlation between void fraction and volumetric quality (β).  Also 

included in the image are previous researchers work and how closely the previous data correlates 

to (Choi et al., 2011).   
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Figure 8:  Void fraction versus volumetric quality (Choi et al., 2011) 

 

The researchers also noted the work of Kawaji (2008) who did research into unique properties of 

two phase flow in adiabatic microchannels.  This work was used a valuable resource in providing 

relatively recent discoveries in the field that were published in a peer-reviewed journal.  

Adiabatic flow was also looked at in the early 1990’s by Ali et al. (1993) using flow between 

two parallel plates.  This brings a unique perspective because the flow is then between two flat 

plates instead of a traditional round pipe or channel (Ali et al., 1993).   Using the information 

from these discoveries made over two decades ago assisted Choi et al. (2011) in making 

experimentation in the 21st century.  Mishima et al. (1993) also looked at flow in rectangular 

ducts, but chose a narrow passage cross-sectional area.  This provided unique properties and a 
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higher contact surface area to passage area ratio.  This increased the shear stress per unit volume 

and allowed a different perspective on fluid flow to be considered.   

2.3 Choi, Yu and Kim Main Results 

Choi et al. (2011) found a few main results from their research with high speed cameras on 

transparent rectangular microchannel two-phase flow testing.  They found as the aspect ratio 

decreased, the bubble area was increased and the liquid area was reduced.  As the hydraulic 

diameter decreased, the two-phase interaction also decreased.  The dominant parameter in the 

void fraction calculation is the aspect ratio, not the hydraulic diameter.  As the aspect ratio 

decreases, the flow becomes more homogeneous.  Aspect ratio and hydraulic diameter both have 

an impact on microchannel two-phase flow so independent experiments must be conducted to 

fully understand the flow (Choi et al., 2011).   

2.4 Void Fraction Measurement 

Jaworek and Krupa (2010) have looked into the different ways of measuring a void fraction in 

two-phase flow.  Void fraction calculation is a key component of many calculations critical to 

understanding two-phase flow (Harvel et al., 1996; Wang et al., 2008; Abouelwafa and Kendall, 

1980).  There have been numerous strategies in past publications on how to determine the void 

fraction.  Jaworek and Krupa (2010) studied the ability of different sensors to measure void 

fractions in two-phase flow.  The capacitance sensor uses two electrodes that essentially are put 

on the outside of a dielectric pipeline where the two-phase flow to be measured is flowing 

(Jaworek and Krupa, 2010).  As the flow passes through the pipe, the capacitance will change 

based upon how much gas and liquid is present at that time.  It is based solely on a percentage.  

Studying two-phase flow using capacitance seems to be a common theme among researchers in 
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the mid 1980’s studied the outside versus inside sensors to calculate void fraction (Stott et al., 

1985).  There was also experimentation a short time later by   

Huang et al. (1988a) looking into using capacitance measurements using a charge transfer 

method.  Also, Huang et al. (1988b) looked into using a transducer for industrial applications that 

at the time was new while the same research group wrote a similar paper on studying low 

capacitance values using transducers (Huang et al., 1988a).  Various researchers looked into 

different ways to utilize capacitance in measuring void fraction from 1998 to 1999 (Tollefsen 

and Hammer, 1998; Jaworski et al., 1999; Keska and Williams, 1999).  This paved the way for 

the following researchers to investigate further in the 2000’s. Many investigators continue 

research in 2010 to find new ways to measure void fraction and they utilized a phase shift 

between sinusoidal signal passing the capacitance sensor and reference signal instead of old 

methods (Jaworek and Krupa, 2004; Jaworek et al., 2004; Caniere et al., 2007; Caniere et al., 

2008; Ahmed and Ismail, 2008).  The phase shift allowed Jaworek and Krupa (2004) to measure 

void fraction instead of measuring capacitance.  They also wanted to understand how void 

fraction is correlated with effective permittivity of a medium. 

 

To better understand the correlation between void fraction and effective permittivity,  Jaworek 

and Krupa (2004) included a graph that can be seen in Figure 9.  This data clearly shows the best 

method is parallel capacitances for providing the most accurate void fraction determination.    
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Figure 9:  Effect of void fraction in water on effective relative permittivity for various models 
(Jaworek & Krupa, 2010) 

 

To visualize what is happening in a capacitance measurement to determine void fraction, Figure 

10 shows an excellent illustration.  Notice the capacitance sensor is on the left, the top right is a 

cross-sectional view of the pipe, and lower right showing the capacitance circuit.   
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Figure 10:  Capacitance sensor. (a) Scheme of the electrodes placed on the dielectric pipe. (b) 

Equivalent circuit. 2Cw is the wall capacitance, Cs is stray capacitance, Ce is an effective 
capacitance representing the medium within the pipe, Re is an effective resistance of the medium 

within the pipe (Jaworek & Krupa, 2010). 

 

Jaworek and Krupa (2010) ultimately determined the void fraction using a phase shift model for 

two-phase flow.  They ran two separate measurements and ultimately were able to calculate the 

results as shown in Figure 11.   
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Figure 11:  Phase shift and relative frequency deviation vs. void fraction in a vertical pipe of 

32 mm I.D. and 40 mm O.D., electrodes length 10 mm. Liquid: distilled water. Voids in annular 
flow were simulated with polyamide rods of various diameters (Jaworek & Krupa, 2010). 

 

Jaworek and Krupa (2010) found the main conclusions of this article are a model for detecting 

two-phase void fraction was determined by using a response signal from a capacitance sensor 

and reference sensor were shown theoretically and experimentally.  They found the phase shift 

was extremely proportional to the phase shift (Jaworek and Krupa, 2010).  They also state their 

method using the response function eliminates many intermediate steps used in other capacitance 

meters.  The paper was published in 2010 and to the authors best knowledge, this was the first 

time anyone had used detection of phase shift between two signals for measuring void fraction in 

two-phase flows (Jaworek and Krupa, 2010).   

2.5 Fuel Cell Application 

Steinbrenner et al. (2011) have done research pertaining to two-phase microchannel flow.  They 

were particularly interested in the effects of this flow on fuel cell applications.  Previous studies 
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done in the 2000’s by Li et al. (2007), (Barbir et al. (2005), Cha et al. (2004), and Nguyen and 

Knobbe (2003) were instrumental in providing a baseline of information on flow in fuel cell 

microchannels to assist the new research.  According to Steinbrenner et al. (2011), “An 

important function of the gas delivery channels in PEM fuel cells is the evacuation of water at 

the cathode. The resulting two-phase flow impedes reactant transport and causes parasitic losses. 

There is a need for research on two-phase flow in channels in which the phase fraction varies 

along the flow direction as in operating fuel cells.”  Steinbrenner et al. (2011) decided to study 

flow that pertained to fuel cells by using a porous CDL wall in channel lengths of 0.6 meters 

long using a distributed water injection procedure.  They also produced low maps using flow 

rates of local gas and liquids.  The researchers also hoped to bridge the gap between the 

theoretical increased performance of proton exchange membrane fuel cells that utilize micro 

channels and the real-world underperforming microchannel practical systems.  Steinbrenner et al. 

(2011) state, “While the performance of the membrane depends on ample humidification, liquid 

water in the microporous layer, gas diffusion layer (GDL), and/or gas delivery channels impedes 

the flow of reactant gases to catalyst sites and cripples cathodic reaction rates. Two-phase flow 

phenomena have been identified as concerns for flooding-induced performance degradation, cell 

voltage hysteresis, increased parasitic pumping losses, and the absence of predicted performance 

improvements.”  The researchers believe one of the main reasons for this real-world 

underperformance is increased flooding in channels of smaller size where surface tension can 

become a relatively large contributor of force when compared to the pressure, viscous, and 

inertial forces.  They feel the experiment with porous walls and long channel lengths will help 

them discover characteristics of fuel cells and help them increase their efficiency.  Steinbrenner 

et al. (2011) used a serpentine channel with a square cross channel of 500 micrometers wide and 
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0.6 meters long to conduct the experiment.  It also had four short turns and five long segments 

(Steinbrenner et al., 2011).  The layout can be seen below in Figure 12. 

 

Figure 12: Channel assembly. The following layers are sandwiched together to create a sealed 
serpentine channel with distributed water injection through the porous GDL layer: (a) 

connections to air tubing and pressure transducers, (b) 1/4 m cast acrylic with 500 cm×500 
cm×60 cm channel, (c) 190 cm thick×2mm wide Toray Carbon Paper GDL (0 or 10 wt% 

Teflon), (d) latex gasket, (e) 1/4 m thick cast acrylic with 300–500 mm diameter water injection 
holes (Steinbrenner et al., 2011). 

 

This set up was complimented with a syringe pump pressure measurement device, and flow rate 

meters.  They also used a camera to capture images of the moving flow.  The flow can be seen 

below in representative images of Figure 13.  
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Figure 13: Representative images of two-phase flow structures: (a) slug, (b) plug, and 

(c) stratified (Steinbrenner et al., 2011). 

 

Figure 14: Schematic of the researchers’ experimental setup (Steinbrenner et al., 2011). 
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Steinbrenner et al. (2011) found in the results the channel geometric configuration has a large 

impact on the local flow conditions.  They found the liquid flow portion of the two-phase flow 

varies based on local conditions and parallel flow channels while the gas flow is proportional to 

the length of the test channel during the experiment.  They also found using parallel channels had 

a number of effects (Steinbrenner et al., 2011). They found parallel channels negatively affect 

water expulsion by reducing the overall differential pressure for the system given a set flow rate 

and also found the water to air flow rate will change much quicker because of the smaller flow 

length (Steinbrenner et al., 2011).  There is another downside to using multiple channels 

according to the researchers.  They found instabilities in the flows of multiple channels because 

of the small geometric anomalies from inherent variations due to introduction of liquid water 

droplets.  This can cause instability in fuel cell microchannels (Steinbrenner et al., 2011).  Using 

fewer parallel channels can have some positive effects such as higher gas velocity in the channel 

and allowing for better mass transport and removal of water from the channels, and benefits from 

a larger differential pressure over the length of the channel (Steinbrenner et al., 2011).  The 

researchers also point out correctly there will usually be more turns in an application with less 

parallel channels.  More turns will cause liquid to accumulate and films to form in the channels 

Steinbrenner et al. (2011) close their paper by mentioning the results of their research show 

water evacuation will be reduced with increased corners because of the films that will be created 

in the corners   They also say the increased differential pressure will help remove water from the 

channels.  They hope this research will help provide useful information in creating more efficient 

proton exchange membrane fuel cells in the future.    
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2.6 Two-Phase Flow with T-Junction 

Zhao et al. (2013) recently did an investigation into the effects on microchannel flow.  They 

specifically studied two-phase flow with a T junction.  They used studies from many past 

researchers including Coleman and Garimella (1999), Cubaud et al. (2006), Kawahara et al. 

(2002), and Triplett et al. (1999).  The studies published from the late 90’s to the 2000’s 

provided an essential background for the work done by (Zhao et al., 2013).  They used a 

deionized water and nitrogen combination with the T junction to look for specific flow patterns.  

They also used a variety of pressures ranging from 0.1 to 5 MPa.  This allowed the researchers to 

analyze the flow using Weber numbers and looked for different varieties of flow patterns.  They 

found the following flow patterns: bubbly flow, slug flow, unstable slug flow, parallel flow, slug-

annular flow, annular flow, and churn flow (Zhao et al., 2013).  Using a channel with a cross-

section of 300 μm by 600 μm and a hydraulic diameter of 400 μm (Zhao et al., 2013) were able 

to perform various tests and confirm the test section was gas-tight and ready for applications up 

to 7 MPa.  The test section can be seen in Figure 15. 
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Figure 15: Components of T-junction microchannel for gas–liquid two-phase system at elevated 

pressure. (a) Construction of T-junction microchannel, and (b) actual picture of T-junction 
microchannel (Zhao et al., 2013). 

 

The experiment also featured some additional hardware and can be seen below in Figure 16. 

 

Figure 16: Schematic of the experimental setup for gas–liquid two-phase system at elevated 
pressure. (A), N2 Cylinder; (B), filter; (C), pressure relief valve; (D), mass flow controller; (E), 

one-way valve; (F), water tank; (G), Series II digital pump; (H), liquid damper; (I), CCD high-
speed camera; (J), illumination system; (K), gas–liquid separator; (L) high pressure stop valve; 

(M), back pressure regulating valve; (R) T-shaped microchannel; and (S), shooting zone (Zhao et 
al., 2013). 
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To record the flow patterns of the experiment, Zhao et al. (2013) used a camera system with a 

high performance 1000 frames per second recording capability.  They used a shooting length of 

15mm and it was set at the T junction as well as the area downstream of the T junction (Zhao et 

al., 2013).  This was useful for capturing the superficial velocities that ranged from 0.062 to 

23.15 meters per second.  

  The researchers found during their testing the gas Weber numbers will vary from 1.70×10−3 to 

70.32 at elevated pressure and 1.37×10−5 to 3.46 at atmospheric pressure of around 100 kPa 

(Zhao et al., 2013).  They found similar flow patterns will show a different set of details based on 

the flow pressure.  They stipulate this may cause different gas-liquid mass transfer and reaction 

performance (Zhao et al., 2013).  To summarize their work, Zhao et al. (2013) drew several 

conclusions from their experimental research.  The first is different details and characteristics are 

shown in the same characterization of flow patterns such as: bubbly flow, slug flow, unstable 

slug flow, parallel flow, slug-annular flow, annular flow and churn flow.  This is mainly due to 

adjusting the pressure at which they were measured and observed (Zhao et al., 2013).  The 

researchers also discussed how Weber numbers can adjust based on changing pressures. Zhao et 

al. (2013) state, “The hydrodynamic characteristics of gas–liquid two phases are mainly affected 

by the interfacial tension of gas–liquid two phases, the gas inertia force and the liquid inertia 

force.  The flow pattern maps are divided into five regions using WeGS and WeLS as coordinates 

based on their formation mechanisms. The transition lines shift to higher WeGS and lower WeLS 

at elevated pressure compared to the atmospheric pressure. The transition line, from zone I to II, 

shifts to higher WeGS and lower WeLS when the operating pressure increases from 1.0 MPa to 

5.0 MPa. Other transition lines from zone II to III, from zone III to IV, and from zone III to V 

almost remain unchanged at elevated pressure.”  
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2.7 Branch Angles 

Chen et al. (2013) have explored microchannel flow in their research.  They explored some 

similar aspects related to this experimental study and are worthy contributions to the world of 

science and two-phase microchannel flow.  The researchers in this particular paper discussed 

gas-liquid two-phase flow splitting at microchannel junctions with different branch angles.   

Many past researchers (Azzi et al., 2010; Azzopardi and Whalley, 1982; Chung and Kawaji, 

2004; Hsieh et al., 2004) provided publications completed from the early 1980’s all the way to 

the 2010’s that proved to be essential to the development of the study by Chen et al. (2013).  

Azzi et al. (2010), Azzopardi and Whalley (1982), Chung and Kawaji (2004), Hsieh et al. (2004) 

and many others should be acknowledged for the instrumental work on previous projects leading 

to the information acquired on this project.   

The researchers in 2013 used a setup including square microchannel cross-sections of 0.5mm by 

0.5mm.  They also assumed a completely adiabatic condition for the experiment.  Chen et al. 

(2013) used five varying branch angles between 30 and 150 degrees.  They used much faster 

velocities for the Nitrogen gas used than the pure water.  The water was between 0.019 to 0.356 

meters per second while the nitrogen was varied from 0.8 to 21.3 meters per second (Chen et al., 

2013).  Because of the high flow rates, the researchers had to use a high speed recording 

technique just as many other research experiments have needed in order to provide accurate 

results.  This recording took place specifically at the junction at which the micro channel flow 

split.  Chen et al. (2013) also discussed the surface area being a major factor in microchannel 

flow.  When the size of the channels is reduced, the total surface area increases in order to carry 

the same mass flow rate.  This increase in surface area will affect flow in multiple ways and can 

also increase heat transfer as discussed previously in the literature review.  This is one major 
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reason for the heightened research happening in microchannel flow.  The researchers used 

multiple pieces of equipment in their experimental setup.  A diagram showing all the features 

and allowing for a visual description can be seen in Figure 17. 

 

 

Figure 17:  Schematic diagram of the experimental setup (Chen et al., 2013). 

 

The researchers also provided information on the superficial velocities of both the gas and liquid 

and how this would affect the flow pattern for their particular experiment.  This information can 

be seen below in Table 1. 

Table 1: Gas and liquid superficial velocities and the corresponding flow patterns (Chen et al., 

2013). 
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Case USG USL Flow pattern 

1 0.8 0.356 Slug flow 

2 2.0 0.356 Slug flow 

3 4.667 0.189 Slug-annular flow 

4 7.333 0.104 Slug-annular flow 

5 13.33 0.053 Slug-annular flow 

6 23 0.033 Annular flow 

7 23 0.019 Annular flow 

 

As you can see in Table 1, as the velocity difference between the gas and the liquid increases, the 

flow pattern tends to turn from slug flow to annular flow (Chen et al., 2013).  The research team 

also took several valuable images of their experimental procedures.  These can be seen below in 

Figure 18, Figure 19, and Figure 20.  
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Figure 18: Time trace of liquid phase before and after the junction for each sub-flow pattern, 

fraction of gas taken off=0.5 (Chen et al., 2013). 
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Figure 19: Probability of appearance of different sub-flow patterns of slug–annular flow for 

Cases 3–5 (Chen et al., 2013). 

 

Figure 20:  Captured images of film stop at junctions with different branch angles and the 

corresponding sketches of secondary flow (Chen et al., 2013). 
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2.8 Branch Angle Main Points 

Chen et al. (2013) summarized three main focus points in their conclusion.  The first point they 

mention is the flow patterns have a significant effect on the phase split at microchannel 

junctions.  The researchers go on to say, “When the inlet is slug flow, gas phase preferentially 

flows into the branch while at inlet of annular flow more liquid is diverted into the branch, which 

is consistent with the previous study of mini- and macro-size junctions. However, for slug–

annular flow, its phase split curve does not simply take on a transitional characteristic. 

Specifically, it gets farther away from the equal split line at first but moves up towards the liquid 

rich zone gradually” (Chen et al., 2013).  The second focal point their main conclusion is 

increasing the branch angle does not guarantee an increase in liquid taken off the branch (Chen et 

al., 2013).  During slug flow, they found as the angle was increased from 30 to 150 degrees, the 

amount of liquid separated out decreases due to liquid inertia (Chen et al., 2013).  During annular 

flow, the maximum amount of liquid separation occurred at 90 degrees due to the strongest 

secondary flow (Chen et al., 2013).  They found a transitional characteristic during slug-annular 

transitional flow when the angle was changed.  The third and final point made in the summary of 

work by the research team shows more liquid is taken off the branch when using microchannel 

branches than with mini or macro channels (Chen et al., 2013).  They believe this is attributed to 

phase misdistribution in microchannel junction applications.  They also state that annular flow 

has a worse distribution than slug flow (Chen et al., 2013).   
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2.9 Flow through Porous Media 

In the book “Essentials of Heat and Fluid Flow in Porous Media,” Narasimhan (2013) describes 

the essentials to understanding flow through porous media.    In Chapter 3 of the book, 

Narasimhan (2013) begins by laying out the scientific history of studying fluid flow through 

porous media.  He discusses past contributors such as Newton, Dupuit, Hazen, and Darcy.  He 

then explains how they made discoveries important to research being conducted today.  One of 

the equations created by Darcy’s Law allows differential pressure, length, viscosity, 

permeability, and fluid velocity to be related (Narasimhan, 2013).  This was a big step in 

understanding fluid flow, but did not account for the losses created by form drag.  To account for 

these losses, the Hazen-Dupuit-Darcy Model was created.  This used the Darcy Model but also 

added a form coefficient as well as density and a square velocity term to account for both the 

linear effects of the viscous drag and the parabolic effects of the form drag (Narasimhan, 2013).  

Narasimhan (2013) also discusses Newton’s impact on the discovery and the study of form drag.  

To accurately determine the form and permeability constants, Narasimhan (2013) discusses using 

an experimental setup involving a gravity-fed system providing a mass flow rate of water 

through porous media.  A differential pressure is then made across the porous media and divided 

by the distance the differential pressure is measured.  The velocity is then varied and the results 

can be plotted with the velocity on the x-axis and the differential pressure divided by distance on 

the y-axis.  The linear portion of the best-fit line can be then used to solve for the permeability 

constant and the squared term can be used to solve for the form constant.  The form constant is in 

1 divided by meters and the permeability constant is in meters squared (Narasimhan, 2013).  

Using a relatively similar experimental method is the key to solving for both of the constants 

needed to model the flow through the porous media in question.  In order to channel must be 
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straight and having a constant cross-sectional area.  This is key to allowing the minimization of 

other effects besides viscous drag to be measured when determining the permeability.  To reduce 

the uncertainty, it is also helpful to assume the wall effects are minimal for a practical 

experiment.  In theory, they will not be zero, but this will allow the permeability to be calculated 

much easier.  Since the flow can be either driven more by the viscous drag or the form drag, it is 

important to model where the flow transitions from each flow regime.  Traditionally when 

studying internal flow, a Reynolds number can be used to determine when the flow has left the 

laminar stage of low velocity and entered the turbulent stage with relatively high velocity.  When 

studying flow through porous media, the traditional Reynolds number cannot be used.  A 

traditional Reynolds number uses a velocity, unit distance, and a viscosity.  Narasimhan (2013) 

suggests using the square root of the permeability as the unit distance for calculating a modified 

Reynolds number based on permeability.  This does not account for the form drag portion of the 

flow (Narasimhan, 2013).  Narasimhan (2013) uses a lambda term to compare the form to 

viscous drag.  The lambda term is a modified Reynolds number using also including the form 

constant explained previously.  When lambda is greater than one, form drag is dominating the 

flow and when it is less than one, viscous drag is dominant (Narasimhan, 2013).  The graph 

Narasimhan (2013) created to show the percentage of drag viscous and form effects are having 

on the flow can be seen in the results and discussion chapter of the thesis.  Narasimhan (2013) 

also states that the previous calculations were all under the assumption of isothermal flow.  
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2.10 Turbulent Flow Through Porous Media 

Barr (2001) discussed flow through porous media and different factors that influenced the flow.  

One of the first factors considered is whether the flow is considered to be laminar or turbulent 

(Barr, 2001).  According to Barr, the pressure driving the flow through porous media when 

laminar or turbulent must be equal to the resistance of the fluid to flowing.  When the flow is 

laminar, the resistance to flow will be entirely due to viscous forces.  These forces are a result of 

the viscosity of the fluid and the zero wall velocity (Barr, 2001).  When the flow is turbulent, the 

resistance to flow will come from two different sources.  The first source is the viscous force, 

which is also found in laminar flow.  The second source is from inertial resistance.  Barr (2001) 

goes on to explain there are many instances where turbulence can occur in porous media.  A few 

examples are a low viscosity liquid or a gas is used as the medium.  Traditional water can also 

become turbulent under many circumstances.  Barr (2001) elaborates on this issue and explains 

courser porous media can cause the water to become turbulent much easier than a smooth porous 

media.  Barr found experimentally the turbulence begins for the porous media and fluid tested at 

a head gradient of about 0.1 (Barr, 2001).  Another conclusion drawn from this research shows 

the equation for permeability in laminar flow depends on density and viscosity of the fluid and 

porosity and hydraulic radius of the pores (Barr, 2001).  Barr also used separate expressions to 

model both laminar and turbulent forces.  When flow was determined to be laminar, Equation 

2.10.1 represents B as the ratio of viscous resistance to driving pressure force through porous 

media.  Equation 2.10.2 represents E as the ratio of inertial resistance to the driving pressure 

through porous media.  Finally, Equation 2.10.3 represents a general expression for flow through 

porous media and is applicable to flow in laminar and turbulent regimes where the hydraulic 

radius cannot be determined (Barr, 2001).  I should always equal 1 for this equation. 
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B = 5μV/ρgαm2 (h/l)     2.10.1 

E = 20.5V2/α2g(h/l)3m     2.10.2 

I = 5μV/ρgαm2 (h/l) + 20.5V2/α2g(h/l)3m  2.10.3  

 

Figure 21 Plot of sum of B + E should equal 1.  The plot of sum splits according to particle shape 
in the turbulent range (Barr, 2001). 

 

Figure 22:  Dimensionless number E vs Reynolds number (Barr, 2001). 
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2.11 Using Porous Media Approximation to Model Microchannel Heat Sinks 

Lim et al. (2010) used a technique of modelling the microchannels of a heat sink application as a 

porous media heat transfer application.  This was then applied to a full three dimensional CFD 

simulation.  The researchers found the simulation agreed well with the findings of previous 

methods of analytical and experimental research findings (Lim et al., 2010).  The methodology 

was also found to be quite useful because the results were not dependent on the assumption of 

fully developed flow both thermally and hydraulically (Lim et al., 2010).  This allows many 

more developing flow applications to be analyzed.  There were also less computational 

requirements using this method versus previous methods making it an increasingly attractive way 

to model in CFD.  Both microchannels and porous media have a very high surface area to 

volume ratio making the modeling as a porous media an effective means of measurement.   

 

Figure 23:  Schematic diagram of the microchannel heat sink (Lim et al., 2010). 
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Figure 24:  Temperature distribution of porous media microchannel (Lim et al., 2010). 

 

2.12 Nanofluid Technology Overview 

Throughout history, many people have been using nanotechnology for the benefit of their 

respective civilizations and cultures.  They had no idea they were utilizing the technology, they 

just knew if they followed a specific procedure, the outcome would produce a favorable device 

with performance characteristics more advanced than the current equipment.  An example of this 

is the Lycurgus cup.  Today, we are constantly learning more about science at the nanoscale and 

using it to our advantage.  We are trying to understand specific concepts and principles behind 

nano-behavior, and use them to develop new technology to advance our society.  Much of the 

advance in nanoscience has been due to the advent of imaging devices such as the scanning 

electron microscope.  This has allowed scientists to visually understand key concepts, and apply 

them to useful pieces of nanotechnology. 

2.13 Nanofluid Properties 

One of the exciting new advances stemming from new research in nanoscience is nanofluid 

technology.  Nanofluids by definition are fluids with nanoparticles suspended in the fluid 
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(Pastore et al., 2012).  The particles are less than or equal to 100 nanometers in diameter. The 

particles are typically made from substances much denser than the fluid in which they are 

suspended.  If the particles are to remain suspended and not settle out eventually, there must be a 

driving force to keep them in place for long periods of time.  To provide this force, a much 

higher surface area to volume ratio is needed (Pastore et al., 2012).  As the diameter of 

spherically shaped particles decreases, the ratio of surface area to volume increases dramatically.  

Take for example a one meter diameter spherical ball.  The total surface area of the ball will pi 

meters squared and the total volume will be 0.5236 m3. This gives a surface area to volume ratio 

of about 6 to 1.  If a total volume of .5236 meters cubed nano-sized particles of 100 nanometer 

diameter were used instead of the one large sphere, the total surface area would be π x 107 meters 

squared.  This would result in a total surface area to volume ratio of 6 x 107.  The significance of 

this fact cannot be overstated.  Increased surface area is vital to keeping enough attractive forces 

on the suspended nanoparticles to overcome the gravitational force trying to displace the fluid 

and bring the denser particles to the bottom of the reservoir (Xuan and LiHigdon, 2000).  This 

term paper will allow me to show in detail some of the truly remarkable advances in nanofluid 

technology using some of the research of engineering researchers.  I will now go into depth 

showcasing a few revolutionary advances in this developing field. 

2.14 Shear-Thickening Nanofluid Applications 

Pastore et al. (2012) have been working on a new revolutionary way to help protect people or 

objects from high velocity penetration and damage. Their idea utilizes the unique properties of 

nanofluids to help make this a reality.  For many decades, the best approach to stopping a high 

velocity projectile in a short distance is using a high strength fiber known as Kevlar.  This 

material is one of only a few recently discovered materials that have the strength to stop a bullet 
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from penetrating a human, without making the human incredibly immobile and uncomfortable.  

The key to the success of Kevlar lies in the strength to weight ratio.  Pastore et al. (2012) tried to 

improve upon the previous generation technology by incorporating a combination of Kevlar and 

shear-thickening nanofluids.  Many fluids we use commonly in day-to-day life are known as 

Newtonian fluids.  This essentially means the shear rate versus shear stress model will provide 

linear results.  The slope of this line is known as the viscosity of the fluid.  Viscosity is the 

parameter in fluid mechanics used to describe the resistance of a fluid to flowing.  Calculating 

the viscosity of Newtonian fluids is quite simple because of their linear characteristics.  

However, many substances do not follow this linear pattern of behavior.  They are referred to as 

non-Newtonian fluids.  There are two different varieties of said fluids: shear thickening and 

shear thinning.  The viscosity of a shear thickening fluid will increase when a higher shear rate is 

applied.  A shear thinning fluid will do the exact opposite of a shear thickening fluid.  A majority 

of fluids that are non-Newtonian are the shear thinning variety.  Nanofluids can be shear-

thickening property making them highly unique and useful for a number of applications.  To 

better understand this principle, Figure 25 shown below illustrates this principle well.  



 

39 

 

 

Figure 25:  Shear rate vs. shear stress for shear thickening, Newtonian, and Shear thinning fluids, 
and Bingham plastic (Pastore et al., 2012). 

 

Pastore et al, (2012) decided to compare different weight percentages of nanosilica for their 

experiment.  They demonstrated the Non-Newtonian behavior shown in Figure 25.  Notice how 

the viscosity increases as the weight percentage of nanosilica increases in their tests (Pastore et 

al., 2012).   
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Figure 26:  Logarithmic scale of viscosity vs shear rate for multiple percentage weights of 

nanosilica (Pastore et al., 2012). 

 

The nanosilica selected had an average diameter of 70 nanometers.  This was specifically 

selected for the tremendous surface area to weight ratio as mentioned above.  The experimental 

setup consisted of a shear-thickening nanofluid used in conjunction with Kevlar fibers to test the 

durability of the lightweight test material.  The projectiles were accelerated with an 

electromagnetic accelerating device known as a coil gun (Pastore et al., 2012).  They went into 

depth discussing the electrical engineering behind the coil gun, but for our intents and purposes, I 

will focus on the results and how the shear-thickening nanofluid performed.  A major 

performance parameter of how well the fluids performed is relative absorbed energy.  The article 

compared the performance in this key characteristic for a number of low and high energy 

applications at various concentrations.  This information is tabulated in Figure 27 below.  Notice 
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how the relative absorbed energy increases in all four cases as the concentration increases. The 

equation describing the absorbed energy in the tests is: ΔE= (Einc – EF) /Einc where:     ΔE = 

absorbed energy, Einc = incident bullet’s energy, EF = Friction physical work (Pastore et al., 

2012). 

 

Figure 27:  Relative absorbed energy vs. shear-thickening fluid concentration (Pastore et al., 
2012). 

 

Upon conclusion of the testing, several recommendations were made by the researchers 

responsible for the interesting data.  The first is reinforcing the Kevlar test samples with a silicon 

oxide shear-thickening nanofluid increased the ability of the test samples to resist a high velocity 

projectile under a number of different energy tests (Pastore et al., 2012).  They also were able to 

produce a higher relative absorbed energy than with Kevlar alone.  The second major conclusion 
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drawn by the researchers was a higher weight percentage of the silicon oxide will produce a 

higher relative absorbed energy and will ultimately provide a better barrier for stopping high 

speed projectiles.  Future testing on shear-thickening nanofluids recommended by the researchers 

would be the investigation of flexibility for practical prototypes instead of using a stiff model in 

the lab.  Once the flexible models have been perfected, real-life armor could be produced for 

helping a variety of soldiers, law enforcement, and other people in need of lightweight, high 

performance bulletproof materials.

 

Figure 28: Thermal conductivity vs. Temperature of common liquids (Bergman et al., 2011). 
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2.15 Nanofluid Heat Transfer 

Over the past 150 years, people across the earth have been exploring ways to manipulate the 

transfer of heat.  The ability to efficiently transfer heat and energy is still being explored in 

cutting edge research (Xuan and LiHigdon, 2000).  The use of nanofluids has opened the door to 

new fluids capable of transferring heat at a faster rate with less material (Xuan and LiHigdon, 

2000).  
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Figure 29: Thermal conductivity vs. Temperature of common solids (Bergman et al., 2011). 

In general, fluids such as oil and water are able to hold much more heat than metallic materials, 

but metals are generally much better at quickly transferring the heat to another substance (Xuan 

and LiHigdon, 2000). The rate at which a material can transfer heat is known as thermal 

conductivity (Bergman et al., 2011).  In Figure 28 and Figure 29, the thermal conductivities of 
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several materials are shown.  Notice the difference between the liquids and the solids is 

significantly larger.  In some cases, the solids have 500-1000 times higher thermal conductivity 

(Bergman et al., 2011). Nanofluids aim to combine the characteristics of both materials.  This 

has had an impact on a number of industries, with the potential for many more future 

applications (Xuan and LiHigdon, 2000).  Nanofluid heat transfer could be highly relevant for 

use in potential NASA applications.  Regulating heat transfer is highly important because of the 

thermally rapidly fluctuating environment of space. Cooling and heating applications are used on 

many missions.  The development of a smaller and lighter cooling device could be utilized on a 

variety of missions.  This would eliminate excess mass, allowing for the usage of: a smaller fuel 

cell, more onboard scientific equipment, ability to capture more material in mining applications, 

and a larger acceleration for faster travel.  The data obtained from research could also lead to the 

design of a more efficient space suit.  This could increase the reliability and decrease the mass of 

the suit.  The comfort of the astronaut completing the mission would also be enhanced with a 

more consistent operating temperature, leading to better performance in high-stress situations. 

Heat transfer is also important in many power system applications (Xuan and LiHigdon, 2000).  

Transformers used in the power industry allow voltages to be changed.  However, there is wasted 

energy and a cooling liquid is needed to enhance heat transfer.  Xuan and LiHigdon (2000) 

researched the ability of nanofluids to be used in transformers to increase the thermal 

conductivity of the oil inside the transformers.  They found the thermal conductivity increased 

significantly when the oil was replaced with a nanofluid, as shown in Figure 30 (Xuan and 

LiHigdon, 2000). 
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Figure 30 Conductivity ratio vs Particle volume fraction of a few selected nanofluids (Xuan and 
LiHigdon, 2000). 

 

2.16 Nanofluid Societal Impacts 

Many researchers have provided valuable data showing how nanofluids can have a lasting 

impact on society.  Increasing the ability of substances to transfer heat is of high importance to 

current research (Xuan and LiHigdon, 2000).   Xuan and LiHigdon (2000) state, “Low thermal 

conductivity of process fluid hinders high compactness and effectiveness of heat exchangers, 

although a variety of techniques is applied to enhance heat transfer. Improvement of the thermal 

properties of energy transmission fluids may become a trick of augmenting heat transfer.”  

Mangalgiri (1999) states, “The importance of stopping high speed projectiles should not be 

overlooked.  In the last decades the research on composite materials have been acquiring 

importance due to the possibility of increasing the material mechanical performances while 

contemporary decreasing both mass and volume of the structures. Mass lowering is a “must” 
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especially in military and space applications, since aircraft aerodynamic profile needs to be 

optimized and because of the high costs of launch and launcher and payload mass constraints.” 

Exploring new substances such as nanofluids is opening a new field for engineers to research and 

develop products that can help solve modern-day engineering problems.  With more research and 

development, we will see many more advances in the years to come.   
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CHAPTER 3 

EXPERIMENTAL SETUP AND METHODOLOGY 

3.1 Overview 

To fully understand the process of the experiment, I will first go into detail describing the 

experimental setup.  The first physical feature of the process is our pumping system.  The pump 

drives the flow in the process and allows for a continuous flow of water or any fluid that would 

be desirable to analyze.  After considering many options, the decision was made to utilize a 

syringe pump for this specific application.  Syringe pumps in general have many advantages.  

The first advantage is the ability to precisely apply a constant and specific mass flow rate of 

liquid through our system.  Further analysis of syringe pumps indicated they are also an excellent 

option for unique fluids.  There is currently a significant amount of interest in studying 

nanofluids. These fluids can be a challenging substance with which to work primarily because of 

the size of the particles suspended in the fluid.  The particles on a nano scale will slip by 

traditional seals and can build up in unwanted locations.  This can produce unwanted friction and 

wear down equipment extremely quickly.  Using a syringe pump will reduce this effect 

significantly because the driving motor never comes in contact with the nanofluids.  The 

nanofluid will be contained within relatively inexpensive syringes that can be disposed and 

replaced by new syringes when a new fluid is to be studied.  Both of these reasons provide 

significant advantages over traditional pumping units.  Peristatic pumps would also be a good 

choice for reducing the wear and tear of using unique or exotic fluids.  The large downfall of 

using a peristatic pump is the pumping power and mass flow rates are too small for these 
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applications.  Syringe pumps on the other hand will provide the system with enough pumping 

power to create laminar or flows with the onset of turbulence in the channel which will give the 

experiment testing flexibility.  The experiment for this thesis will be primarily conducted using 

water in a single-phase flow, but having the flexibility to use the same experimental setup and 

compare the data to a nanofluid application with equivalent testing parameters will enable future 

work to be conducted without having to purchase new equipment.  This will undoubtedly save 

time and money.   

3.2 Syringe Pump 

The syringe pump chosen for the experiment is the Nexus 3000 with a continuous flow rack 

attachment and can be seen below in Figure 31.  

 

Figure 31:  Nexus 3000 syringe pump with optional continuous flow rack and four 140 mL 

Monojet syringes installed 
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The Nexus 3000 is built by Chemyx and has specifications ideal for this particular application.  

The range at which the Nexus 3000 can provide accurate mass flow rates is quite exceptional.  

The flow rates can range from 0.00001 microliters per minute all the way to 300 milliliters per 

minute.  This range is not only ideal for the relatively high volumetric flow rates of the current 

testing, but also for continued research into extremely slow flow rates resulting in laminar flow.   

The Nexus 3000 is also programmable for continuous flow applications, along with a series of 

settings allowing unique flow pattern options.  It also provides a relatively high accuracy and 

reproducibility performance metrics of plus or minus 0.35% and 0.05%, respectively.  To ensure 

our flow rates were accurate, an uncertainty analysis was performed on the pump.  The 

uncertainty analysis procedures described by Kline and McClintock (1953) and Moffat (1988) 

were utilized to quantify the uncertainties encountered in this experimental study.  The first step 

was to program the Nexus 3000 for a series of volumetric flow rates.  The flow was then 

measured in a 10 milliliter graduated cylinder for low flow rates and a 50 milliliter graduated 

cylinder for relatively high flow rates.  Volumetric flow rates measured varied from 2 milliliters 

per minute to 300 milliliters per minute.  To ensure the analysis was valid, each individual test 

was rerun for a total of five runs per flow rate.  Once this data was recorded, the uncertainty 

analysis was conducted taking into account the uncertainty of the data from the analyzed data, 

the pump, and the graduated cylinder.  The final volumetric flow rate uncertainty was determined 

to be plus or minus 1.704 milliliters per minute or in terms of percentage, an average of plus or 

minus 1.17% with a 95% confidence level.  Figure 32 below illustrates linearity of the 

uncertainty analysis. 
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Figure 32:  Claimed vs calculated syringe pump flowrate of +- 1.703828 ml/min and average 
error of +-1.17% with an R2 value of 0.9999. 

 

Flexible plastic tubing was then connected to the syringe valves that allow a continuous flow by 

having one set of syringes withdrawing and the other infusing at the same time.  When the pump 

changes direction, the valves then switch from infusing to withdrawing or from withdrawing to 

infusing depending on the direction of force and which syringe is being analyzed.  The infusing 

flow then is sent to the test section being analyzed.   

3.3 Flow Test Sections 

There are a total of three different test section orientations that will be analyzed.  The first 

section that was analyzed was a square 1.59 mm channel with an abrupt expansion to a 1.59 mm 

by 6.35 mm rectangular channel.  This allowed for two unique experiments to be considered with 

the exact same infrastructure by simply changing the side in which the flow is infused. A picture 

of the test section can be seen below in Figure 33 
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Figure 33: Image of test expansion and contraction test section.  The square section is on the left 
side of the image and the rectangular, larger channel is on the right side. 

 

This test section was developed with Creo 3D product development software and produced with 

a computer numerical control machining device.  The raw material was made from 6061 

aluminum and produced with the assistance of Jay Evenstad.  The test section features a round 

inlet and outlet diameter of 1.5 millimeters.  A 3D image of the test section viewed on Creo 

Parametric software can be seen below in Figure 34. 

 

Figure 34:  Creo Parametric 3D model top view of the expansion and contraction test section. 
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The test section also has the ability to study thermodynamic effects using a constant heat flux 

attached to the opening on the bottom of the test section.  Thermal effects were not studied for 

this specific experiment, but will be studied in depth during testing at a later date.  The constant 

heat flux can then be measured with the openings for thermocouples as seen in Figure 34.  This 

will allow further exploration into the heat transfer rate and other notable areas of interest during 

subsequent testing. The inlet and outlet also have a thermocouple sensor to relay the temperature 

to the computer and allow the density of the fluid to be recorded independently for each run.  

There are also 10 pressure taps machined into the top of the test section to allow the static 

pressure at each location to be analyzed.  These taps were carefully designed to allow the 

pressure to be accurately measured and the flow to be minimally impeded, resulting in accurate 

and precise pressure measurements.  Each round pressure tap hole directly touching the flow 

along the channel has a diameter of 0.8 millimeters but then quickly expands to 1.6 millimeters 

for ease of connecting and sealing the pressure taps to the plastic tubing.  The second test section 

allows testing of flow through a porous medium.  The setup is similar to the previous test section 

except this test section is symmetrical and will allow flow in both directions with the same 

results.  The test section is comprised of a base, middle and top sections.  A picture of the 

unassembled base test section can be seen in Figure 35.  
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Figure 35:  3D model created with Creo Parametric software 

 

The porous media was then added to the base section in the cylindrical hole in the middle of the 

flow passage.  The porous media was then carefully manufactured and filed to fit well inside the 

passage.  A 3.175 by 1.5875 mm rectangular extrusion was then manufactured from the top of 

the test section to provide a precise fit for the middle section slot seen below in Figure 37 and 

Figure 38   The middle section with the porous media in the designated slot can be seen below in 

Figure 36.  
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Figure 36: Base section with porous media inserted into testing slot 

 

The middle section is a simple plate with a channel cut in the middle to provide a 3.18 mm 

passage for water to flow through.  The height of the channel is 1.59 mm giving the channel a 

rectangular flow passage.  This design also allowed sharp edges to be created that would not 

have been possible had the passage been integrated into the base test section given the rounded 

nature of the bits used in the CNC manufacturing process.  This design also allows for future 

testing flexibility due to the replaceable nature of the middle test section.  The middle piece can 

be seen below in Figure 37.   
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Figure 37 Image of middle test section used in the porous medium testing. 

 

 

Figure 38: Image of middle piece created with Creo Parametric software 

 

The top test section allows for 10 pressure transducers to be attached to pressure taps 1.5875 mm 

in diameter.  The diameter is changed to 0.876 mm diameter at the interface between the fluid 

flow and the top test section to ensure there is minimal influence by the pressure taps on the 

flow.  During the testing the flow is assumed to be unaffected by the small pressure holes 
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touching the flow surface.  A 3D Creo Parametric image of the top piece can be seen below in 

Figure 39. 

 

Figure 39: Top view of the top piece created with Creo Parametric Software 

 

There is a reservoir on both the entrance and exit side of the flow.  This is connected to the inlet 

and outlet by a 6.35 mm diameter hole and can be seen in Figure 40.   
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Figure 40:  Inlet and outlet hole connecting the reservoir to the system tubing. 

 

3.4 Porous Media 

The porous media insert is comprised of titanium dioxide and was produced by Dr. Gupta who is 

a professor of mechanical engineering at the University of North Dakota.  His area of expertise is 

material science and generously provided the test section for the experiment.  He developed a 

new way to synthesize titanium dioxide and allowed fluid flow testing of his material.  It is 

developed from polyethylene, graphite, and titanium and sintered at 1450 degrees C.  The 

material has a porosity of 60 percent and microstructure is anisotropic due to the use of flaky 

graphite particles as pore formers (Gupta & Riyad, 2014).  The material can be seen below in 

Figure 41. 
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Figure 41: SEM micrographs of (a) fractured surface of the cross section of the green body of 
Composition C (Table 1), (b) fractured surface of the cross section of Composition C, (c) 
fractured surface of the cross section of Composition E (Table 1), and (d) top surface of the 

composition E after heat treatment at 1450 °C for 4 hours (Gupta & Riyad, 2014). 

 

3.5 Uniqueness of Porous Media Experiment 

A critical aspect of the experimentation involving the titanium dioxide porous media insert is the 

unlikeness of any experimentation found during the research for the literature review.  This is 

mainly due to the fact the titanium dioxide sintering process was recently patented by Dr. Gupta 

(Gupta & Riyad, 2014).  In addition, the material has never been tested in this manner when 

produced with Dr. Gupta’s sintering methods.  Discovering new materials and methods of 

producing them allows the previously perceived limits of science and engineering to be broken.  

Producing materials with more advanced material properties allows products to be made for 
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previously unachievable goals.  Using a titanium dioxide ceramic material is also intriguing for 

use in high temperature environments due to the relatively high melting point of 1843 degrees 

Celsius.  Titanium dioxide ceramics also has a relatively high electrical resistivity of 1 x 1011 

ohm meters while having a respectable thermal conductivity of around 10 Watts/meter Kelvin.  

This has a number of applications including high temperature heat exchangers.  Traditional steel 

and aluminum alloys would melt at very high temperatures, but ceramics can withstand the 

temperature and allow heat transfer to occur in these applications.  Further study of ceramics 

such as titanium dioxide will allow new applications to be developed in the future.   

3.6 Microscope 

Additional magnified views were made possible by the Amscope microscope seen below in 

Figure 42.  This microscope has a total magnification of 225 times and allows for easily moving 

the viewing glass with an extendable booming feature.  The microscope also allows digital 

images to be rendered with the optional digital camera included in the experimental setup.  This 

will also be extremely useful for future experiments because of the ability to take live pictures of 

two-phase flow to study the formation of gas flow and determine which bubble type is being 

implemented.  A picture of the microscope can be seen below in Figure 42. 
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Figure 42:  Amscope microscope with boom and optional digital camera. 

 

3.7 Pressure Transducers 

Plastic tubing then connects the pressure taps along the line to the Honeywell PX2 series 

pressure transducers.  One of the 10 transducers can be seen below in Figure 43.  This 

configuration allowed for 5 transducers to be placed upstream and 5 downstream of the abrupt 

change and allowed for 25 unique differential pressure measurements to be made. 
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Figure 43:  Honeywell 100 PSIA (690,000 Pa) PX2 series heavy duty pressure transducer 

 

The Honeywell PX2 series are a high performance line of pressure transducers that are marketed 

as heavy duty.  Honeywell states the PX2 will have a minimum life span of 10 million cycles.  

This will ensure the product has an extremely low probability of wearing out within the life of 

the experiment and also help ensure the data recorded is accurate and precise.  The PX2 also 

features six sigma design standards which provides extra assurance the product is made properly 

and without inexpensive and unreliable manufacturing methods.  Keeping a consistent set of 

pressure measurement infrastructure is a key to keeping the variability within experiments 
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minimized and maintain precise and reliable testing methodology.  Having reliable equipment 

that will have a low probability of failure is one key to our testing infrastructure.  Table 2 shown 

below lists the performance specifications for the Honeywell PX2 pressure transducer.   

 

Table 2: Performance Specifications for the Honeywell PX2 pressure transducer. 

 

3.8 Pressure Transducer Calibration 

The 10 pressure transducers were then calibrated with a Fluke pressure calibrator by increasing 

the pressure incrementally from the zero pressure reading all the way to 90% of the total pressure 

reading capacity.  This was done individually for all 10 pressure transducers and allowed the data 

to be automatically adjusted and recorded using the Keysight data acquisition system.  A picture 

of the Fluke pressure calibrator can be seen below in Figure 44. 
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Figure 44: Fluke pressure calibrator used to calibrate the Honeywell PX2 pressure transducers. 

 

The Keysight data acquisition system has several key features.  It has the ability to capture two 

data points per second on each channel utilized.  The experiment utilized 10 pressure traducers 

and two thermocouples allowing for 24 data points per second to be measured.   

3.9 Data Acquisition 

The Keysight system also allowed for quick and easy setup for subsequent testing with the 

ability to save previous calibration settings.  A picture of the data acquisition system can be seen 

below in Figure 45. 
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Figure 45: Keysight data acquisition system used in testing. 

 

To summarize the experimental setup, a simple diagram is included in Figure 46 to help 

understand the process.  The flow begins at the pump and flows to the inlet of the test section.  

The flow temperature is then measured and flows past 10 pressure transducers shown in black.  

The flow temperature is then measured once again before exiting the test section and then flows 

back to the pump to complete the cycle.  The temperatures and pressures are recorded twice per 

second and stored on a computer for analysis.   
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Figure 46:  Process flow diagram of the experimental setup. 
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CHAPTER 4 

RESULTS AND DISCUSSION 

4.1 Overview 

When exploring the results of the miniature channel testing one of the most basic and 

fundamental results relate to the differential pressure readings.  The differential pressure readings 

are the basis for how a multitude of calculations are made.  Calculating how much power, what 

type of drag is dominant, important coefficients, and many other useful pieces of information 

would not be possible without differential pressure readings. 

4.2 Porous Media Testing 

In Figure 47 below, differential pressure is plotted versus volumetric flow rate.  Notice how as 

the flowrate increases, the differential pressure readings also increase.  These differential 

pressure readings were taken from the beginning and end of the channel and include the flow 

through the whole porous media sample.  
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Figure 47:  Differential pressure vs volumetric flow rate for independent porous test run #1 

 

 

Figure 48:  Differential pressure vs volumetric flow rate for independent porous test run #2. 
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Differential pressure was independently measured a second time for verification reasons.  The 

same sample was used and the pressure transducers were used at the same location upstream and 

downstream from the sample.  The results can be seen in Figure 48.  Notice the results from 

Figure 47 and Figure 48 follow approximately the same trend line and the equations used are 

extremely similar.  This shows the high repeatability of the experiment.  Differential pressure 

was also measured at the reservoirs as discussed in the experimental methods chapter.  These 

pressure readings were used in determining the calculations mentioned throughout the results.  In 

order to produce results with a high repeatability, the raw data was plotted from both the first and 

second set of runs with an average line plotted on the graph.  The differential pressures were then 

normalized to create a zero datum at zero flow rate to counteract the small amount of static 

differential pressure present at zero flow rate.  These results can be seen in Figure 49 below.  

 

Figure 49:  Reservoir differential pressure vs volumetric flow rate using ΔP from runs one and 
two averaged and plotted with best-fit line. 
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As shown in Figure 49, the r squared value indicates a strong correlation of the data to the 

regression line.  The equation also indicates the differential pressure growth is a combination of 

both parabolic and linear equations.  This will be discussed in more detail later in the results 

section.   

4.3 Porous Media Differential Pressure by Location 

As previously stated, it can be observed the differential pressure growth can be seen in  

Figure 47, Figure 48, and Figure 49.  To highlight this growth further, Figure 50 and Figure 51 

below show the local differential pressure of four sections on the flow path.  The pressure was 

measured on two independent test runs of flow rates at 1, 150, and 300 ml/min.  The graphs 

clearly indicate the local differential pressure is growing quickly and further highlights the 

nonlinearity of the differential pressure growth.  Notice the repeatability of the experiment and 

the y-axis spacing between 1 and 150 ml/min is smaller than the y-axis spacing between 150 and 

300 ml/min.   
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Figure 50:  Test run #1 of local differential pressure vs position from the inlet reservoir showing 

repeatability and non-linear DP growth. 

 

Figure 51: Test run #2 of local differential pressure vs position from the inlet reservoir showing 
repeatability and non-linear DP growth.. 
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4.4 Form and Viscous Drag 

Now that the differential pressure flow curves have been established for flow through the sample 

of porous material provided by Dr. Gupta of the University of North Dakota, further analysis of 

these results can be presented.  According to Narasimhan (2013), in the book, “Essentials of Heat 

and Fluid Flow in Porous Media,” there are a variety of ways to model flow through porous 

media.  Narasimhan (2013) begins by discussing Darcy’s Law which models flow through 

porous media by relating differential pressure, length of the flow passage, viscosity of the fluid, 

permeability of the media, and velocity of the fluid.  He goes on to explain the Darcy model only 

incorporates a linear equation to explain differential pressure and based on the experimental data 

shown in the previous figures this is not highly accurate.  Darcy’s Law can be seen below in 

Equation 4.4.1 (Narasimhan, 2013):   

ΔP/L = (μ/K) U,    (4.4.1) 

To create a model that reflects the parabolic nature of the differential pressure growth, 

Narasimhan discusses the Hazen-Dupuit-Darcy model.  This model includes a velocity squared 

term along with density of the fluid and a C coefficient that describes the form factor of the 

porous media.  This coefficient will vary based on the physical form of the media, even if the 

material properties are kept the same.  The Hazen-Dupuit-Darcy model can be seen below in 

Equation 4.4.2 (Narasimhan, 2013). 

ΔP/L = (μ/K)*U + C*ρ*U2,    (4.4.2) 

Narasimhan went on to discuss an experimental procedure to evaluate the differential pressure 

using a gravity-fed system.  The experimental procedure outlined in the previous chapter 

discusses the setup for obtaining differential pressure in great detail.  He also displayed the 
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results from previous work to obtain the permeability and form coefficients of K and C 

respectively.  His plot showing three different porous materials and the graph to obtain the 

coefficients can be seen below in Figure 52. 

 

Figure 52: Chart showing usage of HDD model to determine K and C coefficients using: ΔP/L = 
(μ/K)*U + C*ρ*U2 (Narasimhan, 2013). 

 

Using the data obtained experimentally in Figure 49, a similar series of charts were formulated to 

determine the permeability and form coefficients needed to predict flow through the porous 

media.  To show repeatability, two independent sets of data were used and can be seen 

graphically in Figure 53 and Figure 54 below. 
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Figure 53:  First independent data set showing differential pressure/length vs velocity to 
determine permeability and form coefficients using ΔP/L = (μ/K)*U + C*ρ*U2. 

 

Figure 54:  Second independent data set showing differential pressure/length vs velocity to 
determine permeability and form coefficients using ΔP/L = (μ/K)*U + C*ρ*U2. 
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The data was then compiled and a best-fit line was created using the two independent data sets.  

This can be seen below in Figure 55.  

 

 

Figure 55:  Best-fit line created using two independent sets of data for finding permeability and 
form coefficients using ΔP/L = (μ/K)*U + C*ρ*U2 

 

Using the equation generated in Figure 55 and the properties of water during our experiment, the 

permeability coefficient was calculated to be 5.28 x 10-9 m2.  The form coefficient was solved 

using the same procedure and was found to be 236 m-1.   

4.5 Reynolds Number Calculations 

Reynolds number is a highly used parameter in traditional fluid flow applications.  It can be used 

in determining a transition from laminar to turbulent flow for a variety of internal and external 
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flow applications.  A Reynolds number consists of a velocity, characteristic length, and viscosity.  

Typically, the onset of turbulence begins at a Reynolds number equal to 2,300 for internal flow 

applications.  Full turbulence does not set in until a 10,000.  Narasimhan suggests using a 

modified version for porous media to determine when flow is transitioning from viscous based 

drag to form based drag (Narasimhan, 2013).  One modified Reynolds number based on 

permeability allows this calculation to be made based on using the square root of permeability 

for the characteristic length.  This can be seen below in Equation 4.5.1. 

Rek = U ρ K0.5/μ    (4.5.1) 

Based on experimental data produced by (Ward, 1964) and other researchers, the conclusion that 

transition began when the modified Reynolds number is of the order of 10 (Narasimhan, 2013).  

Using experimental data, a Reynolds number versus flow rate chart was created and can be seen 

below in Figure 56. 
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Figure 56:  Reynolds number based on permeability vs volumetric flow rate using Rek = U ρ 
K0.5/μ. 

 

This Reynolds number did not include the coefficient for form drag, so using this model will not 

accurately represent the transition.  As previously discussed, determining the coefficients of 

permeability and form are critical to correctly modeling the flow (Narasimhan, 2013).  

Narasimhan discussed a key parameter to determining if the flow is dominated by viscous or 

form drag.  This key parameter is represented as lambda.  This is a Reynolds number created 

using both K and C coefficients.  It is a linear correlation involving the permeability coefficient, 

form coefficient, viscosity of the liquid used, velocity of the liquid used and density of the liquid 

used.  This equation can be seen below in Equation 4.5.2 (Narasimhan, 2013). 

λ = (ρ*C0*K0/μ0)*U     (4.5.2) 
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4.6 Determining Dominant Drag 

The key to understanding Equation 4.5.2 is determining if lambda is less than or greater than 

one.  When the flow is at a relatively low velocity, the flow will be dominated by viscous drag 

and can be modeled with relative accuracy and precision with the Darcy flow equation.  At this 

relatively low velocity, lambda will be much less than one.  When the velocity of the fluid is 

increased, lambda will eventually equal one.  At this point, viscous and form drag are then 

equivalent and will have the same proportion of drag on the flow.  Once lambda increases past 1, 

the flow is then dominated by form drag.  This ultimately means as the flow velocity increases, 

the differential pressure versus velocity curve will become more parabolic and less linear.  As the 

flow velocity and volumetric flow rate decrease, the curve will become more linear and less 

parabolic.  This effect can be seen in the previous figures representing the observed data.  As 

previously noted, lambda increases linearly.  This can be seen below in Figure 57. 
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Figure 57:  λ vs velocity with averaged trend line from all data points of first and second runs 
using λ = (ρ*C0*K0/μ0)*U. 

 

Figure 57 clearly shows the lambda value using the experimental results never reaches above 1.0.  

The highest point lambda reaches on the trend line average is 0.66.  This indicates the flow is 

still viscous dominated.  This also shows the flow differential pressure growth is more linear 

based than parabolic.  This is reflected in the experimental data shown above in the previous 

figures.  By visually inspecting the differential pressure versus volumetric flow rate and 

differential pressure/length versus flow velocity, the flow curve is clearly more linear than 

parabolic.  This is especially true at lower velocities and volumetric flow rates, but still 

ultimately valid at the highest rates completed in this experiment.  In order to discover the exact 

percentage the form and viscous drag are each contributing to the flow, the following chart 

provided by Narasimhan in Figure 58 allows the calculated lambda value to be correlated to the 

respective percentage of form and viscous drag.   
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Figure 58:  Viscous and form drag contributions vs lambda (Narasimhan, 2013) 

 

Using Figure 57 and Figure 58 together, the drag contributions of form and viscous drag can be 

determined quite easily.  When the flow velocity is below 0.2 m/s, the lambda value is less than 

0.1, and using the chart in Figure 58, it can be determined over 90% of the drag is caused by 

viscous effects and less than 10% of the drag is caused by form drag.  When the flow velocity is 

at 0.5 m/s, lambda is 0.35.  Again, using Figure 58 shows viscous drag is responsible for 75% of 

the total drag and form is responsible for 25%.  Finally, at 1 m/s lambda is 0.65 and correlates to 
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40% form drag and 60% viscous drag.  Understanding if form or viscous effects are ultimately 

causing the drag can help design engineers produce more efficient designs of products involving 

fluid flow through porous media.  Due to our limitations on pumping volumetric flowrate 

capacity, the velocity could not be increased to exceed an average lambda value of 0.65.  The 

results for the coefficients and equations are however valid for flows above the tested flow 

regime.  In order to achieve a 50% balance of viscous and form drag the fluid velocity would 

need to be increased to 1.55 m/s.  This could easily be achieved with a pump providing a higher 

volumetric flow rate capacity.  To reach 1.55 m/s, the volumetric flow rate would have to be 

equal to 466 ml/min which is 166 ml/min or 55% higher than the maximum of the syringe pump 

used in the experiment.   

4.7 Energy and Power Usage 

Now that the drag dominance has been established, another key parameter in porous media flow 

can be discussed.  The power needed to produce a specific flow rate through a porous media 

sample can be calculated using differential pressure and volumetric flow rate.  This is extremely 

important for sizing pumps and determining the amount of energy that will be consumed by a 

process over a period of time.  Since power is energy divided by time, simply multiplying the 

power by the time the process was completed will provide the amount of energy consumed. 

Below in Figure 59 is a graph of power versus flow rate for flow through the titanium dioxide 

porous media using two independent test runs.  The trend line shows the average of all the 

compiled data.  Notice the high correlation of the data to the trend line.     
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Figure 59:  Power required vs volumetric flow rate through titanium dioxide porous media using 

Power (W) = ΔP * Volumetric flow rate 

 

The power required is a function of volumetric flow rate to the cubed exponent.  The power 

required increases much faster as a function of velocity than differential pressure, because as 

discussed previously, differential pressure grows with a velocity squared function.  Since the 

higher flow rates require much more power, the total amount of fluid that can be pumped 

through the porous material with a fixed amount of energy is much lower at the higher flow 

rates.  This also means the lower flow rates can pump much more fluid with a fixed amount of 

energy.  Many applications involving performance in space are severely limited based on a fixed 

amount of energy.  If an application involving flow through the porous media test sample had 

only 1000 Joules of energy to utilize, at 1 ml/min the total fluid pumped would be 3,967,309 ml.  

Using the same 1000 Joules of energy pumping at 300 ml/min would only allow for 108,225 mL 

to be pumped.  Pumping at 1 ml/min would allow for 36.65 times more fluid to be pumped than 
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300 ml/min.  This is a direct result of the power required to pump the fluid growing with the 

cube.  Figure 60 below shows this effect with a chart of ml pumped with 1000 Joules versus flow 

rate. 

 

Figure 60:  Volume of water in ml pumped with 1000 Joules vs flow rate (ml/min) through the 

titanium dioxide porous media using Energy = Power * time. 

 

Using this information gained can provide some insights into optimizing the pumping efficiency.  

Since flowrates increase linearly with time and power required versus flowrate increases with the 

cube, it can be said that minimizing the flowrate is the best way to maximize total fluid pumped 

per unit of energy.   
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4.8 Square Non-Porous Channel Expansion and Contraction Flow 

Studying flow through expanding and contracting channels is a much easier to model than flow 

through porous channels because of the relative simplicity and predictability of the geometry.  

Porous media on a micro level has a great deal of random passages making the fluid flowing 

through it change directions with a degree of uncertainty.  On a macro level, the unpredictability 

of these passages can be negated by studying the overall effect of the flow through the sample as 

long as the overall properties of the samples are consistent.  With a simple expansion or 

contraction, modeling the macro effects are quite similar to porous media.  They both have a 

reduction in cross-sectional area available in the channel for the fluid to flow.  They both allow 

for a differential pressure measurement to be made at individual flow rates.  They both also have 

a transitioning effect based on a Reynolds number calculation.  Using the exact same 

experimental setup as the porous media except for changing out the porous sample with a square 

channel expansion and contraction with an expansion ratio of 4/1, a comparison can be made 

between the two test sections.   

4.9 Expansion Theoretical Differential Pressure 

Using the expansion flow direction detailed in the experimental methods section, a theoretical 

differential pressure can be calculated.  The theoretical differential pressure is based on the area 

ratio, density of the fluid, and velocity of the fluid.  The equation to solve this differential 

pressure can be seen below in Equation 4.9.1 (Kays and London).  

ΔPe = (A1/A2)*(1- (A1/A2))*ρ*V2    (4.9.1) 

Using Equation 4.9.1 and the experimental data obtained through methods explained in the 

experimental methods section, a graph showing theoretical differential pressure versus 
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experimental data obtained through several independent test runs was produced.  This graph can 

be seen below in Figure 61. 

 

 

 

 

Figure 61:  4/1 area ratio rapid expansion theoretical trend line using ΔPe = (A1/A2)*(1- 
(A1/A2))*ρ*V2 and experimental data for differential pressure vs volumetric flow rate. 
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contraction.  Power required to move a liquid or fluid through an expansion can also be modeled.  

Equation 4.10.1 below clearly shows how differential pressure and volumetric flow rate can be 

multiplied to obtain the power required to move fluid through a contraction or expansion.   

Power (W) = ΔP * Volumetric flow rate  (4.10.1) 

 

 

Figure 62:  Expansion power required (W) vs volumetric flow rate (ml/min) for a 4/1 area ratio 
expansion with theoretical power required trend-line using Power (W) = ΔP * Volumetric flow 

rate and ΔPe = (A1/A2)*(1- (A1/A2))*ρ*V2. 

 

A theoretical power requirement can be calculated using the theoretical differential pressure 

shown in Equation 4.8.1 and multiplied by the volumetric flow rate.  The theoretical line can be 

seen above in Figure 62 and is a solid blue.  The orange and grey data points are experimental 

data taken from location just before and after the expansion.  As you can see above, the data 

y = 1E-10x3 - 2E-21x2 + 7E-19x

R² = 1

0

0.0005

0.001

0.0015

0.002

0.0025

0.003

0.0035

0.004

0.0045

0 50 100 150 200 250 300 350

P
o

w
e

r 
R

e
q

u
ir

e
d

 (
W

)

Volumetric Flow Rate (ml/min)

Theoretical

Observed

data set 1

Observed

data set 2



 

87 

 

follows the theoretical curve relatively well.  Comparing the results of the power required for 

expansion in a square channel and power required for contraction through the porous media, 

there is a difference of about 8.5 times more power required for the porous media contraction 

than the non-porous expansion testing.   

4.11 Total Fluid Moved with 1000 Joules 

Total fluid moved with a set amount of energy can also be modeled for flow through a rapid 

expansion.  The total amount of fluid moved with 1000 Joules of energy at different flowrates 

can be seen in Figure 63.  This clearly shows the importance of using as slow of a flowrate as 

possible to maximize the total volume of fluid moved.   

 

Figure 63:  Total Liters of water moved with 1000 Joules of energy through a 4/1 area ratio rapid 

expansion using Energy = (P)*(t) vs volumetric flow rate (ml/min). 
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4.12 Square Channel Diameter 

Traditionally, internal flow Reynolds numbers are calculated using a velocity, diameter, and 

viscosity.  The diameter is assumed to be calculated for a round pipe, so adjustments must be 

made for the square and rectangular channels in the expansion test section.  To create a usable 

diameter, Equation 4.12.1 is used below. 

D = 4*A/P     (4.12.1) 

The area is the cross sectional area and the perimeter used is the wetted perimeter.  When using a 

square channel, the diameter used will be the length of any side of the square.  A calculation 

must be made when using a rectangular channel because using either the short or long side will 

yield incorrect results.  The correct Reynolds number equation needed for internal flow can be 

seen below in Equation 4.12.2. 

Re= ρ*V*D/μ     (4.12.2) 

4.13 Determining Laminar and Turbulent Flow 

A crucial determination of whether the flow is laminar or turbulent must be made from the 

Reynolds number calculation.  In a traditional channel with no abrupt changes, the flow is fully 

laminar from Reynolds numbers of 0 to 2300.  When it increases from 2300 to 10000 it is 

partially turbulent with some areas of the flow becoming turbulent and falling back to laminar 

states.  Once the flow is above 10000, it is considered fully turbulent.  When using a channel 

with an abrupt change in area and in the intermittent zone of Reynolds numbers between 2300 

and 10000, it can be tricky to model the flow correctly.  Using the traditional Reynolds number 
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equation for both the small and large channel area will yield different results.  Below in Figure 

64, the large area of the flow is considered.  The Reynolds number is shown versus the 

volumetric flow rate.  Notice this is a linear correlation. 

 

Figure 64:  Reynolds number using Re= ρ*V*D/μ vs volumetric flow rate for the large area of 

the expansion channel. 

 

The Reynolds number for the small square section is also considered below in Figure 65.  Notice 

how it is much higher than the large area because of the higher velocity needed to maintain the 

same volumetric flow rate.  The correlation between Reynolds number and volumetric flow rate 

is still linear.   
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Figure 65:  Reynolds number using Re= ρ*V*D/μ Volumetric flow rate for the smaller square 
cross sectional area expansion channel 

 

4.14 Contraction Theoretical Differential Pressure 

As explained in the experimental setup chapter of the thesis, the expansion test section was 

reversed to form a contraction test section.  Just as we were able to model the theoretical 

differential pressure with the expansion, we can also use a different equation to model the 

contraction.  It can be seen in Equation 4.14.1.  

ΔP = (0.5ρV2/gc)[(1-σ2)+Kc]     (4.14.1) 

The contraction ratio of ¼ is used to represent sigma and Kc is represented by a constant shown 

in Figure 66.   
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Figure 66:  Chart showing correction coefficients (Kc) for turbulent and laminar flows using 
contraction and expansions. 

 

4.15 Selecting Kc 

Selecting the proper Kc has a large effect on the calculation shown in Equation 4.14.1.  As seen 

in Figure 66, there are many possibilities for the coefficient.  Modeling the flow as laminar or 

turbulent will have a significant impact on the accuracy of the differential pressure prediction.  
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To determine if the flow is laminar or turbulent, the Reynolds number calculations used for the 

expansion must again be used for contraction.  The results can be seen in Figure 67 and Figure 

68 below.   

 

Figure 67:  ¼ area ratio contraction Reynolds number using Re= ρ*V*D/μ vs volumetric flow 
rate for the small area of the channel. 
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Figure 68:  ¼ area ratio contraction Reynolds number using Re= ρ*V*D/μ vs volumetric flow 
rate for the large area of the channel. 

 

4.16 Contraction Theoretical Differential Pressure Modeling 

Notice how the Reynolds numbers for both the expansion and contraction did not change 

because the exact same volumetric flow rates were used for both experiments.  Another 

important realization to make is the large area Reynolds number never reaches the onset of 

turbulence threshold of 2300, but the small area easily surpasses 2300 and increases all the way 

to 3500 at the volumetric flow rate of 300 ml/min.  This further complicates matters because 

making a selection of laminar or turbulent will affect the results significantly.  When using the 

chart in Figure 66, the Kc for laminar flow is dependent on the calculation of 4(L/D)/Re.  The 

calculation yields 0.07 meaning at a sigma of 0.25, the Kc should be calculated at around 0.78.  If 
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turbulent flow is assumed, the Kc should be calculated around 0.43.  This is not exact because the 

coefficient depends on the Reynolds number that fluctuates depending on the flow rate selected. 

 

Figure 69:   Contraction theoretical differential pressure using large area velocity, turbulent 

Kc=0.4 assumption, and ΔPc = (0.5ρV2/gc)[(1-σ2)+Kc] vs volumetric flow rate plotted with 
experimental data 

 

Above in Figure 69 theoretical differential pressure is plotted using the slower velocity from the 

large cross sectional area of the channel before the contraction.  The Kc is also assumed to be 

turbulent.  These assumptions are obviously incorrect because the data does not correlate well 

with the predicted differential pressure.  These assumptions are most likely the worst to make as 

well because traditionally the fastest velocity in the channel is selected and the Reynolds number 

never reaches the onset of turbulence in the wide area of the channel.   
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Figure 70: Contraction theoretical differential pressure using large area velocity, laminar 
Kc=0.78 assumption, and ΔPc = (0.5ρV2/gc)[(1-σ2)+Kc]vs volumetric flow rate plotted with 

experimental data 

 

Above in Figure 70 is a plot of the theoretical differential pressure plotted with a blue line.  This 

pressure was calculated using the velocity in the wide part of the channel with a slower velocity 

than the narrow channel.  As stated before, this assumption is probably incorrect and is reflected 

in the data.  This differential pressure was also assumed to be laminar.  This did improve the 

reliability of the calculation versus the turbulent assumption seen in Figure 69, but not a huge 

improvement.   
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Figure 71:  Contraction theoretical differential pressure using small area velocity, turbulent 
Kc=0.4 assumption, and ΔPc = (0.5ρV2/gc)[(1-σ2)+Kc]vs volumetric flow rate plotted with 

experimental data. 

 

Above in Figure 71 is a theoretical plot of differential pressure created using the velocity in the 

contraction portion of the test section and a turbulent Kc.  As clearly shown in the data, this is a 

much better estimate of the test data acquired for the experiment.  It is under predicting the 

pressure slightly, but is still a substantial improvement of the representation of data.  
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Figure 72:  Contraction theoretical differential pressure using small area velocity, laminar 
Kc=0.78 assumption, and ΔPc = (0.5ρV2/gc)[(1-σ2)+Kc]vs volumetric flow rate plotted with 

experimental data. 

 

The blue line as shown above in Figure 72, the theoretical differential pressure for the 

contraction test section using the velocity in the smaller channel cross sectional area and laminar 

Kc provides the best estimate for predicting the experimental differential pressure measured 

before and after the contraction.  To summarize the findings of the differential pressure testing 

for the contraction orientation, the main component to correctly predicting the theoretical 

differential pressure is selecting the highest velocity within the channel.  Determining if the flow 

is laminar or turbulent will have a major effect on the results, but both will provide a decent 

rough estimate.  Using a similar experimental setup with the onset of turbulence only in the 

contraction portion of the test section and Reynolds numbers never exceeding 3500, the best 
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prediction of differential pressure will come from using a laminar Kc and the velocity in the 

contraction portion of the test section with Equation 4.14.1. 

 

Figure 73:  Contraction theoretical power required (W) using large area velocity, turbulent 

Kc=0.4 assumption, ΔPc = (0.5ρV2/gc)[(1-σ2)+Kc], and δE/δt = Volumetric flow rate*ΔP  vs 
volumetric flow rate plotted with experimental data. 

 

4.17 Contraction Theoretical Power Modeling 

Theoretical power needed to move the fluid through a contraction test section can also be 

modeled with the differential pressure data.  The theoretical power can also be predicted using 

Equation 4.14.1 and substituting the results into Equation 4.10.1 previously listed.  Just as the 

theoretical differential pressure had four different outcomes using two different turbulence and 

velocity profiles, the power needed also can be modeled with both.  The predicted power 

outcomes are quite similar to the predicted differential pressures.  The main difference is the 
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power needed grows with the cube and the differential pressure grows with the square. Above in 

Figure 73, it is clearly seen the lower velocity and turbulent assumptions are incorrect.  These 

assumptions again provide the worst prediction of power needed.   

 

Figure 74:  Contraction theoretical power required (W) using large area velocity, laminar 

Kc=0.78 assumption, ΔPc = (0.5ρV2/gc)[(1-σ2)+Kc], and δE/δt = Volumetric flow rate*ΔP vs 
volumetric flow rate plotted with experimental data. 

 

Again in Figure 74, it is quite clear from the data that the assumption of laminar flow coupled 

with the lower velocity before the contraction does not provide a reasonable prediction, even 

though it is slightly better than assuming low velocity and turbulent conditions.   
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Figure 75:  Contraction theoretical power required (W) using small area velocity, turbulent 

Kc=0.4 assumption, ΔPc = (0.5ρV2/gc)[(1-σ2)+Kc], and δE/δt = Volumetric flow rate*ΔP vs 

volumetric flow rate plotted with experimental data. 

 

Using the velocity in the smaller section creates a large increase in the predictability of the power 

needed as shown in Figure 75.  Using a turbulent model still under predicts the power needed, 

but is a much better representation of the data obtained experimentally.   
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Figure 76:  Contraction theoretical power required (W) using small area velocity, laminar 

Kc=0.78 assumption, ΔPc = (0.5ρV2/gc)[(1-σ2)+Kc], and δE/δt = Volumetric flow rate*ΔP vs 

volumetric flow rate plotted with experimental data. 

 

4.18 Modeling Conclusions 

Using the relatively large velocity in the contracted portion of the channel and the laminar K c 

clearly provides the best prediction of power needed to move the fluid at all volumetric 

flowrates.  This is true for the experimental data in the experiment because the pump is limited to 

a maximum of 300 ml/min.  If a pump was brought in with a higher pumping capacity, the 

correlation would probably be better predicted with the turbulent coefficient assumption.  In 

order to ensure a fully turbulent environment, a maximum velocity of 5.7 m/s would need to be 

achieved or a pumping rate of 861 ml/min.  It should be noted this would require a pump with a 
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remarkably high pumping force in order to create such a large velocity in a short and narrow 

channel.   

4.19 Total Volume Moved with 1000 Joules 

The total amount of volume moved with a set amount of energy can be easily modeled for the 

contraction test as well.  The results of the contraction test are similar to the expansion test, but 

there is less fluid moved at the same flowrate.  This is due to the higher amount of power input 

needed to move the fluid at a set volumetric flow rate.  This is quite evident when comparing the 

results of the contraction and expansion flow.  The results can be seen in Figure 77.  Notice how 

the Liters of water moved can be modeled with a negative 2 power function.  The amount of 

Liters pumped severely drops off around a flowrate of 50 ml/min. 

 

Figure 77:  Liters pumped with 1000 Joules through the contraction channel using: Energy = P*t, 

ΔPc = (0.5ρV2/gc)[(1-σ2)+Kc], and δE/δt = Volumetric flow rate*ΔP vs volumetric flow rate 
(ml/min). 
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4.20 Summary of Expansion and Contraction Testing 

When looking at the overall outcome of the pressure and power results for porous media, 

expansion, and contraction channels, several key realizations can be made.  The first key point is 

flowing through the contraction orientation requires 3 times more power than the expansion at 

300 ml/min.  This is critical to understanding how to create an efficient design in industry for 

miniature channel applications.  The flow through the porous test section needed 2.8 times more 

power than the contraction channel and 8.5 times more power than the expansion test section at 

300 ml/min.  It is also important to note the porous test section was 4 times shorter than the 

expansion and contraction test sections.  To flow through an equivalent length of porous material 

would have needed much more power and energy.  It is also important to note the comparison 

between the porous material and the expansion and contraction test section orientations is not 

completely valid because they are made from different materials.  The expansion and contraction 

test section is made from 6061 aluminum as stated in the experimental setup chapter, and the 

porous material is made of aluminum dioxide, which is a much rougher, course surface.  The 

comparison between the expansion and contraction is extremely valid, because the only variable 

in the experiment was the direction of flow.    

4.21 Hydrodynamic Development 

Another topic closely pertaining to the expansion and contraction miniature channel flow is the 

hydrodynamic development.  When the flow is coming in from the reservoir and first touches the 

channel, there is a uniform velocity throughout the flow.  As the viscous friction begins to the 

flow at the walls, the middle of the flow is beginning to move faster.  Once the flow is 

hydrodynamically developed, the zero wall velocity assumption can be made (Bergman et al., 
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2011).  The flow velocity will also take on a parabolic form.  Until the flow is fully developed, 

there will be a transient velocity pattern.  This is illustrated in Figure 78 below.  

 

Figure 78:  Hydrodynamic development of flow through a channel (Bergman et al., 2011) 

 

To determine if the flow is hydro-dynamically developed when the flow is not fully turbulent, 

but the onset of turbulence has begun, Equation 4.21.1 below allows the calculation to be made.  

It is a function of hydraulic diameter and Reynolds number (Bergman et al., 2011):   

Xfd,h = 0.05*D*Red,     (4.21.1) 

Using the hydraulic diameter and traditional Reynolds number for the wide and narrow sections 

of the expansion and contraction test section, the flow will become fully developed in the narrow 

section at the exit when the Reynolds number is below 400.  The flow will become fully 

developed at the exit of the wide channel when the Reynolds number is below 450.  It should be 

mentioned this is an assumption based on traditional flow channels and does not take into effect 

the separation that takes place around the abrupt change in cross sectional area.  To ensure that 
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the flow is fully developed at both the small and large cross sectional areas, a Reynolds number 

of 400 or less should be used.     
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CHAPTER 5 

CONCLUSION AND RECOMMENDATIONS 

5.1 Conclusion 

Upon conclusion of the research thesis, several conclusions can be made.  The first and most 

obvious conclusion is the power and energy needed to flow through the titanium dioxide porous 

material is much greater than the square channel expansion and contraction test sample.  The 

porous media required 8.5 times more power than the expansion test section and 2.8 times more 

power than the contraction test section.  This is due mainly to the cross-sectional area of the flow 

area in the porous material being much smaller than the expansion and contraction sample due to 

the insert in the channel.  The more flow-intrusive porous material shape causes form drag, 

especially with increasing velocity.  There is also much more drag in the porous material channel 

due to the increased surface area to volume ratio.  The viscous drag effects of the increased 

surface area on the fluid also increase the total drag at all velocities, causing increased power and 

energy needed to move the liquid through the channel.  A second conclusion drawn from 

analysis of the data indicates minimization of volumetric flow rate is essential to reducing power 

and energy needed to move a fluid through the channel.  When using miniature channel heat 

exchangers, the amount of heat transferred is maximized at relatively high flowrates.  When 

designing heat exchangers with a limited amount of pumping power and energy available; such 

as many space-related applications, a balance between increased velocity with increased heat 
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transfer and energy saving slower velocity flow must be achieved.  The porous material made of 

titanium dioxide was found to have a permeability coefficient of 5.28 x 10-9 m2 and a form 

coefficient of 236 m-1.    These can be used to model the flow at volumetric flow rates under 300 

ml/min and predict the amount of form and viscous drag provided with Equation 4.5.2 and 

Figure 58.  The final simplified equation to accurately determine differential pressure in the 

titanium dioxide porous material using standard metric units is Equation 5.1.1. 

ΔPporous = (L/gc)*[(1.9*108 m-2)*μ*U + 236 m-1*ρ*U2] (5.1.1) 

Analyzing the data from the expansion and contraction test runs reveals several key points.  The 

flow through the expansion channel required much less power and total energy than the 

contraction channel.  To model the flow through the expansion channel, Equation 4.9.1 yielded 

accurate predictions of differential pressure test data.  Equation 5.1.2 is the simplified version of 

4.9.1 and provided the most accurate results in predicting differential pressure for the 4 to 1 area 

expansion ratio channel tested. 

    ΔPe = (0.19/gc)*ρ* U 2     (5.1.2) 

To model flow through the 4 to 1 area ratio contraction test section, 4.14.1 yielded accurate 

results and the final simplified equation can be seen below in Equation 5.1.3. 

    ΔPc = (0.86/gc)*ρ* U 2     (5.1.3) 

The required energy to flow single phase liquid through the porous material, rapid expansion, 

and rapid contraction test sections can be seen in equations (5.1.4), (5.1.5), and (5.1.6) 

respectively along with required power in (5.1.7), (5.1.8), and (5.1.9).   

    Eporous = (L/gc)*Λ*[(1.9*108 m-2)*μ*U + 236 m-1*ρ*U2] (5.1.4) 

 

    Ee = Λ*(0.19/gc)*ρ* U 2     (5.1.5) 
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    Ec = Λ*(0.86/gc)*ρ* U 2     (5.1.6) 

 

    δE/δtporous = (L/gc)*[961*μ*U2 + 0.0012 m*ρ*U3]  (5.1.7)  

 

    δE/δte = (4.9*10-7 m2)* (ρ/gc)* U 3    (5.1.8) 

 

    δE/δtc = (2.2*10-6 m2)* (ρ/gc) * U 3    (5.1.9) 

         

Flow was studied from completely laminar conditions to partially turbulent flow up to a 

Reynold’s number of 3500.  Traditional round channel flow without expansions or contractions 

dictates a laminar zone using Reynold’s numbers ranging from 0-2300, partially turbulent from 

2300-10000 and fully turbulent when above 10000.  Since the experiment used a sudden 

contraction coupled with a square channel at multiple Reynold’s number values, a determination 

was made based on empirical results as to which velocity to choose and whether the flow should 

be modeled as laminar or turbulent. As discussed in the results and discussion chapter, to provide 

the most accurate model of the contraction flow, a Kc using the relatively higher velocity in the 

contracted portion of the channel coupled with laminar flow assumptions from Figure 66 must be 

used.  Using a turbulent assumption will slightly underestimate the differential pressure and the 

relatively slower velocity in the wide cross sectional area will drastically underestimate the 

differential pressure.  It is also advised the results of the experiment be used for laminar 

applications and flow with Reynold’s numbers below 3500.  Due to limitations on volumetric 

pumping capacity, the results could not be tested at Reynold’s numbers higher than 3500.  

Previous literature suggests the flow can be accurately modeled as turbulent when a Reynold’s 
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number reaches 4000 in traditional channels, which supports the empirical data and analysis 

showing laminar flow up to 3500 in this study for rapidly expanding and contracting channels.  

The total linear pushing power of the syringe pump is 1.25 Watts and since both withdrawal and 

infuse are simultaneous, the infuse side only has 0.625 Watts of maximum power.  The flow 

through the porous material at the maximum flow rate of 300 ml/min yielded a needed power of 

0.0475 Watts.  Only 7.6% of the available power was used to move the fluid through the porous 

material.  When running the pump, it occasionally stalled due to lack of power, showing that 

most of the available power was being utilized.  This clearly indicates the system inefficiencies 

accounted for most of the power usage during testing. Experiments with less porous material or 

more viscous fluid would require modifications such as: a more powerful syringe pump, a 

system setup without inlet and outlet reservoirs which require additional pumping power, or 

removal of the convenient withdrawal syringes to reduce the pumping requirements.
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5.2 Recommendations 

One major component of the overall project was the development of a testing system capable of 

testing a wide variety of fluids in miniature channels for the University of North Dakota.  As 

stated in the literature review chapter, nanofluids provide faster transfer of heat than traditional 

fluids by using nano-sized particles with a higher thermal conductivity than the bulk fluid.  The 

nano-sized particles can cause traditional pumps and seals to fail because the extraordinarily 

small particles can get into cavities and bearings and cause friction and wear.  The system 

designed with the syringe pump for the thesis is capable of testing nanofluids without excessive 

wear due to the nanofluid being contained away from moving parts susceptible to damage.  This 

gives the University of North Dakota the ability for tremendous fluid testing selection flexibility.   

With this in mind, the research going forward should build upon the work done in this thesis with 

research comparing the Newtonian water data, results, and analysis with non-Newtonian 

nanofluids and colloids for noncircular microchannel flow through porous and nonporous abrupt 

expansions and contractions.  Analysis of pumping power and energy requirements should be 

analyzed and compared with the theoretical additional heat transfer provided with using 

nanofluids.  Once this comparison is made, an energy and power savings analysis versus using 

only water bulk fluid can be completed.   

This project focused primarily on single-phase flow.  Future research should also look into the 

effects of using an inert gas flowing with water to create a two-phase flow on noncircular 

miniature channel flow with porous and nonporous abrupt expansions and contractions.  The 

water can also be substituted for a nanofluid and the same experiment can then be run again to 

compare and contrast both runs.  The pumping power and energy required should be compared to 

each other and a correlation of pumping power increase versus void fraction can be obtained.  
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Using the previous recommended experiments, the permeability and form constants of porous 

media should be determined and see if they fluctuate based upon the fluid being run through it.  

If the constants do change, a correlation could then be calculated to test porous media with a 

two-phase fluid, non-Newtonian fluid, or two-phase non-Newtonian fluid, and convert the results 

back to the original results of single-phase, Newtonian flow constants. 

Using the future experiments outlined above would allow one variable to be changed at a time 

and compared to the original data obtained in this thesis.  Once the results of energy and power 

requirements, losses, and other valuable data is compiled, an experiment testing heat transfer for 

the previous work could then be completed.  This would allow engineers designing porous media 

heat exchangers to be able to optimize the amount of heat transferred while minimizing the 

required energy and pumping power.  These results could dramatically help designers of heat 

exchangers where pumping energy needs to be conserved.  When designing space-related heat 

exchangers, using many small channels will provide a significantly higher surface area to volume 

ratio than a few large channels at an equivalent mass flow rate.  This increase will be magnified 

further by using porous media inserts.  When using a pump with a defined mass flow rate, using 

many small channels with porous media inserts will also conserve pumping energy. The 

individual channel mass flow rate will be smaller using lower velocity through many small 

channels than using a relatively high flow rate through a few small channels.  Using many small 

channels decreases the fluid velocity and form drag as shown in Figure 58, therefore saving 

energy.  When using a Newtonian fluid as a heat exchanging medium, many miniature channels 

with porous media inserts should be utilized to increase heat transfer and reduce the pumping 

energy required.  The porous media used in the experimentation was not flexible.  However, 

applications such as space suits would require a flexible porous media to allow astronauts to 
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have flexibility and mobility.  Developing a flexible porous media would be necessary to utilize 

the advantages of porous media heat exchangers for this application.  However, many other 

applications such as heat exchangers for a space station would be rigid, allowing relatively non-

flexible porous media to be utilized.  Hopefully the future experiments coupled with this thesis 

will bring further insight into the world of fluid flow.   
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