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ABSTRACT 

This work presents a novel system utilizing previously developed convolutional 

neural network (CNN) architectures to aid in automating maintenance inspections of the 

dead-end body component (DEBC) from high-tension power lines. To maximize resolution 

of inspection images gathered via unmanned aerial systems (UAS), two different CNNs 

were developed. One to detect and crop the DEBC from an image. The second to classify 

the likelihood the component in question contains a crack. The DEBC detection CNN 

utilized a Python implementation of Faster R-CNN fine-tuned for three classes via 270 

inspection photos collected during UAS inspection, alongside 111 images from provided 

simulated imagery. The data was augmented to develop 2,707 training images. The 

detection was tested with 111 UAS inspections images. The resulting CNN was capable of 

97.8% accuracy in detecting and cropping DEBC welds. To train the classification CNN if 

the DEBC weld region cropped from the DEBC detection CNN was cracked, 1,149 

manually cropped images from both the simulated images, as well images collected of 

components previously replaced both inside and outside a warehouse, were augmented to 

provide a training set of 4,632 images. The crack detection network was developed using 

the VGG16 model implemented with the Caffe framework. Training and testing of the 

crack detection CNNs performance was accomplished using a random 5-fold cross 

validation strategy resulting in an overall 98.8% accuracy. Testing the combined object 

detection and crack classification networks on the same 5-fold cross validation test images 

resulted in an average accuracy of  73.79%.  
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CHAPTER I 

INTRODUCTION 

Infrastructure in the United States is a multi-trillion-dollar industry, of which the 

electrical grid makes up a significant portion [1,2,3]. These costs are often estimated 

based on installation costs [2]. Installation costs of new transmission lines have been 

estimated to range from $150,000 to $2 million per mile [2,3]. Maintenance of these 

transmission lines, including inspections, is estimated as three percent of the installation 

cost [2]. To reduce costs and extend the life of existing transmission lines, some electric 

generation and transmission cooperatives have begun to implement unmanned aircraft 

systems (UAS) to lower cost and provide higher resolution inspection imagery [4]. Using 

these high-resolution images gathered from UAS, this work provides an initial study on 

the effectiveness of convolutional neural networks (CNNs) and their potential in 

automated inspections of high tension power line dead-end body components (DEBCs). 

This work aims to reduce inspection costs of DEBCs by developing software utilizing 

deep learning CNNs capable of automatically detecting the DEBC from UAS imagery of 

high tension power lines, and then classifying if the component in question contains a 

defect in the form of a crack. While the individual CNN architectures used in this work 

have been developed previously, the approach to implementing them for use in power-

line inspections is new. 

The DEBC is a full tension device used to attach the conductor to the power line 

structure [5]. The component becomes energized in a live power-line to transmit power 
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through jumper connections. This component consists of an outer aluminum sleeve with a 

four-bolt pad welded to one end, a steel forging with a steel eye, and an aluminum insert. 

The outer aluminum sleeve grips the aluminum strands of the power line, while the inner 

aluminum inserts grip the inner aluminum matrix core wires separately. The eye of the 

steel forging is connected to the insulator string on the dead-end tower or substation 

allowing for physical connection to the tower while insulating the tower from becoming 

energized. Energized jumper connectors attach to the outer sleeve pad and are used to 

connect pairs of powerline conductors. To aid inspection and maintenance of the DEBC, 

the weld portion of the component was detected with a bounding box annotation allowing 

for segmentation and analysis of possible partial failure due to cracks in the weld [5]. 

Figure 1 provides a representation of the DEBC with the jumper terminal attached [54].  

Figure 1: DEBC assembly with jumper attached. 
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Before the implementation of UAS in inspections, maintenance inspections were 

performed with people either in bucket trucks, or manned vehicles such as helicopters [6, 

7]. As can be expected, regularly sending either of these larger crafts to all high-tension 

powerline structures can be more expensive, more dangerous, and provide lower quality 

images than could be obtained with a small UAS. It has been estimated that the total cost 

of power line inspections using UAS is approximately half that of a manned helicopter 

inspection [55]. Small UAS can fly closer to the components to be inspected and may be 

outfitted with high quality camera sensors as can be seen in Figure 2 above. Even in the 

event of a small UAV crash there would be little to no damage to the infrastructure or 

operator [8, 9]. A disadvantage to the use of UASs is the large amount of data they can 

generate, and the time needed to analyze the data. For example, a UAS mission that 

Figure 2: Image of UAS collecting DEBC inspection images. Regions in red contain 

DEBCs. 
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collected 15,000 images took a team of two to four analysts over 400 hours, or 18 days to 

process [51].  Therefore, methods to combat the big data problem UAS pose [10] must be 

developed.   

This work provides a method of utilizing CNNs to automatically detect the DEBC 

weld, then evaluating whether the component contains a partial failure due to cracks. This 

work attempted to achieve an accuracy of greater than 90% in the detection of the DEBC, 

while maintaining a greater than 80% accuracy in identifying cracked DEBC welds. 

Combining the two systems should provide an overall accuracy of greater than 72%.  

Background 

Previous work in automatic inspections of transmission lines has taken many 

forms. This paper broadly separates these fault detection methods as current fault location 

methods and visual fault detection. Current fault location methods in power transmission 

lines involve impacted distribution systems such as broken power lines or other failures 

in which the distribution of electricity is measurably impacted. Visual fault detection 

focuses on methods using image-based detections, either human or computer algorithm 

based.  

Current Fault Detection. The types of faults detected in these systems include 

series, and more generally shunt faults [35, 38]. A series fault is defined as a fault where 

the conductor is disconnected at one location as would occur when the power system 

network contains broken lines [35]. Shunt faults occur when a connection between the 

power line core and sheath occurs, often due to old or damaged insulation. There have 
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been many methods developed to automatically detect these faults, however in [35] they 

have been subdivided into conventional techniques or those employing artificial 

intelligence methods. Conventional techniques include travelling wave and impedance-

based methods, while artificial intelligence methods include artificial neural networks, 

support vector machines, fuzzy logic, genetic algorithms, or a matching approach. Each 

of these techniques will be expanded on below.  

The travelling wave method is based on the transmission and reflection of 

traveling waves found between the fault location and the line terminal [35]. This method 

requires high speed data acquisition devices to capture the transient waveform allowing 

for fault location. This method has been used more widely in transmission. The advantage 

of this method is that it is independent of the network configuration and installed devices 

[35]. A disadvantage to this method is the need to capture the transient waveform which 

requires expensive high-speed data acquisition devices consisting of sensors, fault 

transient detectors, and Global Positioning Systems (GPS) [39].  

Impedance based methods use the impedance value from a measurement node to 

calculate the fault location using voltage and current data [35]. One advantage of the 

impedance method is that it is simpler and less expensive than the travelling wave 

method [35]. However, many impedance-based inspections suffer from increased 

uncertainty due to calculation errors [40].   

Methods using various forms of artificial neural networks have been used for 

locating faults in distribution systems by relating patterns in the voltage phase and angle 
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to network faults [35]. Many different neural network architectures have been proposed 

for the task of fault detection in distribution systems including but not limited to modular 

artificial neural networks [41], feed forward artificial neural network [42], and CNNs 

[43]. The advantage of artificial neural networks is that they are simple to implement; 

however, they are highly dependent on quality and quantity of the training data. Artificial 

neural networks are also very time consuming to train as the process is slow to converge. 

Furthermore, network parameters must be identified on a trial and error basis, and the 

algorithm must be re-trained whenever the system undergoes any change.  

Support vector machines (SVM) have been used in the task of detecting 

transmission line faults by developing a classification between two classes as class 1 and 

class 0. The SVM model treats training data as points in space marked by their voltage 

and phase angle values. The SVM attempts to separate the two different classes by a gap 

that is maximized to be as wide as possible between the classes. The advantages of SVM 

use for distribution line fault detection includes the speed for detection and lower 

requirement for heuristics.  

Fuzzy logic has been used for fault detection with the basic idea that the 

likelihood of a fault existing is based on mathematical models of vagueness using degrees 

of truth, and probability as a mathematical model of ignorance. Both degrees of truth and 

probability are represented by a number between zero, completely impossible, and one, 

entirely possible. The fuzzy logic-based classification takes a measurement of the 

fundamental current signals to calculate the characteristic features as input for the fuzzy 
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logic system [35], and then classifies based on both the angular differences among 

sequence components of the fundamental fault current, as well as the relative magnitudes 

of the fundamental phase current [44]. Fuzzy logic systems have been shown to provide 

accurate classification results when there is a lack of sufficient statistical information. 

The disadvantage to fuzzy logic systems includes determining the global minimum using 

the fuzzy membership functions and that feature definition and extraction must be 

enhanced for the algorithm to classify properly. 

The genetic algorithm method locates faults by treating the faulty section as an 

optimization problem by mimicking natural selection [35]. This algorithm works by 

evolving initially random parameters through selecting random individuals from the 

population, evaluating the individual’s fitness through a fitness function, storing the 

fittest parameters, and randomly mutating the parameters iteratively until classification is 

acceptable. Advantages of the genetic algorithm for this task are the potential for 

increased simulation speed and the ability to reduce the dimension of possible solutions. 

The disadvantage to using the genetic algorithm for fault location for distribution systems 

is that results are not consistent due to the randomized process the algorithm relies on and 

may produce inaccurate results [35].  

The matching approach makes a comparison between measured and simulated 

data through use of large databases for fault location identification [35]. Typically, the 

voltage sag or current data is recorded to identify the location of a fault. An Advantage of 

the matching method was its economical nature as it considers only measurement node 
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voltage sags data. The disadvantage of the matching approach was the dependency on the 

simulation data stored in the database to match the data with actual fault data [35].  

Visual Based Inspections. Electric power companies typically perform visual 

inspections of transmission lines for maintenance and inspections. Previously these visual 

inspections were often performed using helicopters equipped with various camera sensors 

[47]. Companies have been moving to UAS due to lower costs, some estimating half the 

cost of a manned helicopter [55], as well as reduced potential dangers to both crew 

members and infrastructure [8 ,47].  

Many methods have been developed that automatically detect potential faults to 

reduce costs and time needed to review camera sensor images. Our focus is to detect 

minor faults at the component level to prevent larger faults in the distribution systems 

later. These detections are performed through automating visual inspections of 

components and detecting component partial failures before larger faults can occur. 

Multiple algorithms have been previously developed to detect such faults and will be 

expanded on below.  

In [34], power line insulators are visually recognized, and faults visually detected 

using a variety of computer vision techniques. The insulators are detected using 

Difference of Gaussian (DoG) keypoints and grouped using a k-Nearest Neighbor (kNN) 

classifier, and then using a RANSAC method to fit the classified keypoints to a bounding 

box for the insulator. Faults were found using a local outlier factor (LOF) which provides 

a dissimilarity score through use of the distance of a descriptor to the kNN as an estimate 
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of the local descriptor density. While less computationally expensive, kNNs do not 

generalize well and are not robust to noisy data due to not performing any learning. This 

lack of generalization is also a disadvantage for future use as expanding the number of 

classes to classify would be difficult. The LOF method was also rejected for fault 

classification as the cracks found in the welds were highly variable including minor 

cracks that are similar to non-cracked components.  

The algorithm used in [36] focused on detecting power lines with a cluttered 

background for use with UAVs. This method developed a pulse connected neural network 

(PCNN) filter to remove the background clutter allowing for a Hough line transform to 

detect straight lines, and finally using a K-means clustering approach to discriminate 

power lines from other linear objects. A Drawback of this method include the apparent 

requirement for the UAV to fly directly above the power line. This method is also 

susceptible to detecting false positives from other features that appear as straight lines 

parallel to the power line.  

Photogrammetric methods alongside low cost UAS were used in [45] to provide 

3D mapping of power lines to enable power line maintenance regarding line sag. This 

method uses several aerial images tagged with spatial coordinates provided from an 

inertial measurement unit (IMU) and global navigation satellite systems (GNSS). The 

data is processed with bundle adjustment to optimize for accurate pose estimation. A filter 

was then applied to enhance the power line while reducing background noise. A cubic 

grid of points in 3D object space was then generated around targeted power lines and 
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each grid point was projected to multiple aerial images. If the number of images was 

larger than a predetermined threshold, the grid point was classified as a power line point. 

With all power line points created, the 3D represented power line was generated by 

interpolating the point cloud using the parabola equation. This method was found to 

reconstruct the power line to allow power line sag measurements to within a few 

centimeters.  

The method proposed in this paper includes and expands on the algorithm 

provided in [37]. This algorithm uses the Faster R-CNN algorithm with the VGG16 

network architecture as its backbone to identify and locate any potential DEBCs found in 

an image through use of a bounding box annotation. The algorithm in [37], while 

achieving high accuracy in detection of the DEBC weld (97.8%), does not perform actual 

inspection tasks. To add a method to inspect the detected component, the proposed 

algorithm segments the bounding box annotation as a separate image and uses a CNN to 

classify the image regarding potential partial failures due to cracks in the DEBC weld. 

The use of a separate CNN to classify the cracks instead of adding a new class to the 

Faster R-CNN algorithm containing cracked DEBC welds was to increase the resolution 

of the classification images which is addressed in Chapter III. 

While not directly related to power transmission lines, the method in [48] was 

developed to use images to detect potential cracks in nuclear power plant components. 

This method used images from videos taken in a raster scan pattern of the nuclear power 

plant components, along with the GoogLeNet architecture CNN [49], to fine-tune a CNN 
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to classify the image patches generated as either containing a crack or not. This method 

achieved a true positive rate of 0.93 and false positive rate of 0.06 in detection of nuclear 

power plant component cracks. Notably, this method was able to detect many subtle 

cracks such as those within welds, scratches, and grind marks. While the cracks found in 

nuclear power plant components do not match and thus cannot accurately detect potential 

cracks found in the toe-weld cracks this paper focuses on, the method in [48] does 

provide an example of the successful use of CNNs for crack detection.  

CNNs were selected in this study as they been shown as the state of the art 

method in general object classification as shown by several object classification 

challenges. Figure 3 provides an example of one object classification challenge, the 

Figure 3: Top performance via mean average precision (mAP) in PASCAL VOC object 

detection, a yearly general object recognition challenge. As can be seen progress had 

slowed and leveled off before convolutional neural networks were utilized making year 

after year progress. Recovered from [46]. 
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PASCAL Visual Object Classes challenge [13], over several years showing the potential 

CNNs have in recognizing general object classes in images. Due to the success CNNs 

have shown in such challenges, this work focuses on using them for detecting and 

classifying the DEBC weld for possible partial failure due to cracks.   
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CHAPTER II 

CONVOLUTIONAL NEURAL NETWORKS 

The convolutional neural network architecture using the Faster R-CNN [18] 

algorithm, along with the VGG16 architecture [11], was chosen for the purposes of aiding 

inspections in this work. These CNN architectures were used as they were among the 

state of the art in object detection available, as evidenced by the Pascal VOC 2007 

challenge. Faster R-CNN was an object detection network which adds a region proposal 

network, as explained later, that determines the location of specified objects within an 

image with a bounding box annotation and classifies the object with another CNN as the 

backbone of the entire architecture. In this work, the VGG16 network, named so after the 

Visual Geometry Groups 16-layer CNN who developed it, was used as the backbone for 

Faster R-CNN. The same VGG16 network was also utilized in training and classifying 

potential cracks that may exist on the DEBC weld. The pretrained deep VGG16 model 

was implemented due to its high precision and public availability, as shown in [11].  

Convolutional neural networks (CNNs) were used extensively in this work, and in 

this chapter, we will describe in detail what they are and how they work. Due to the 

complexity of CNNs, we will describe first what the building block of CNNs, the 

artificial neuron, is then describe a much simpler artificial neural network (ANN), before 

expanding to a full CNN. 
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Artificial Neuron  

The artificial neuron is the building block all ANNs, including CNNs, are created 

from. An artificial neuron is provided inputs (either the data input to the neural network 

or the output from a previous neuron) that are adjusted by multiplying the weights of the 

neuron [50]. Neural networks often contain a bias as represented as b in Figure 4 which 

are summed alongside the weighted inputs. This bias is used to help shift the neurons 

output to the desired range. After summing the weighted inputs to the artificial neuron, 

they are provided as input to an activation function. The activation function is used to 

represent if the neuron in question activates or fires in regard to the input data, similar to 

biological neurons in mammalian brains. The resulting activations are then provided as 

the output of the neuron, which can be provided as input to more neurons, or presented as 

the output of the neural network. Figure 4 provides a visual representation of a general 

Figure 4: Visualization of an artificial neuron. 
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artificial neuron. Training a neural network to learn to perform a new task or adjust any 

of the ANN characteristics is performed in a process called backpropagation, where the 

weights and bias are adjusted to provide the desirable output/s given the relevant input. 

Backpropagation will be described in a later section [50].  

Activation functions can take many different forms. However, due to the use of 

the rectified linear unit (ReLU) in this study, we will focus our efforts on describing the 

ReLU function. The output for the ReLU activation as 𝑦 is represented as 

 𝑦 = max{0, 𝑥}, (1) 

 

in which 𝑥 represents the input [11, 12]. The output is therefore the nonlinear value of the 

maximal value as either zero, or the value of the input. The ReLU activation function 

provides several times faster training than previous neural network models utilizing other 

activation functions [11, 12, 16]. The ReLU activation also has the desirable property that 

normalization is not necessary to prevent saturation [11, 12, 15, 16].  

Simple Artificial Neural Network 

 With the process of individual artificial neurons explained above, we will 

describe a simple artificial neural network (ANN) to help understand the more 

complex CNN described later. An ANN is a series of interconnected artificial 

neurons arranged in a specific format or architecture, often composed of several 

layers [12, 15, 16, 50].  
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 There are three general types of ANN layers [12, 15, 16]. The first is the 

outside inputs provided to the ANN called the input layer. Next are the collection 

of artificial neurons which are hidden from the outside world and are likewise 

called the hidden layers. There may be anywhere from zero to many hidden layers 

depending on the ANN architecture. Last, there is a single output layer which 

provides the transference of the total computational output of the ANN.  

 The simple ANN we describe here is representative of a two-hidden layer 

fully connected network. A fully connected network is defined as an ANN 

arranged such that all artificial neurons connect or provide output to all artificial 

neurons in the next layer [12, 15, 16, 50]. The architecture of this ANN is shown 

visually in Figure 5. These ANNs are used and manipulated with two different 

Figure 5: Simple fully connected ANN with one input layer, two hidden layers, and one 

output layer. The variables denote the input  𝒙𝒊 at position 𝒊, the weights as arrows 

labeled as 𝒘𝒊,𝒋(𝒍)
 at layer 𝒍 connecting the 𝒋𝒕𝒉 position, the neuron activation as 𝒂𝒊(𝒍) and the 

final output as 𝒚ෝ [52]. 
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algorithms known as forward propagation and backpropagation. These two 

algorithms are explored in depth in the following sections. 

 Forward Propagation. The forward propagation algorithm is a process in 

which the ANN is provided input and provides a predicted output based on the 

input provided [12, 15, 16, 50]. With a trained ANN, forward propagation is used 

to predict desired outputs from the types of data the ANN was trained with. To 

train a new ANN or fine-tune an existing one to improve or predict new outputs, 

forward propagation is used alongside backpropagation as explained later.  

Forward propagation is accomplished moving from the left to the right in 

Figure 5 [12, 15, 16, 50]. Starting with the input layer, the ANN first calculates 

the total input to the activation function for all artificial neurons in each layer as  

 𝑍[𝑙] = 𝑊[𝑙]𝐴[𝑙−1] + 𝑏[𝑙], (2) 

 

where 𝐴[𝑙] is a matrix containing all activations from all artificial neurons at layer 𝑙 where the input layer is the zeroth layer. These inputs are computed from a 

series of matrix computations. The combined weights in each layer as 𝑊[𝑙] is an 𝑛[𝑙] by 𝑛[𝑙−1] sized matrix where 𝑛 is the number of hidden units or artificial 

neurons at the specified layer. The matrix 𝑊[𝑙] is multiplied by all the activations 

of the previous layer stored in an 𝑛[𝑙−1] by 𝑚 matrix 𝐴[𝑙−1] where 𝑚 is the 

number of inputs from the entire dataset. This product can then have the bias 
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vector 𝑏[𝑙] of size 𝑛[𝑙] added to it. The activation of the artificial neuron is then 

calculated through the process 

 𝐴[𝑙] = 𝑔[𝑙](𝑍[𝑙]), (3) 

 

where  𝑔[𝑙] is the activation function defined for that layer. The input layer uses 

the input data itself as activations in the 𝐴0 position. The output of the ANN is 

then the last activation performed by the final output layer [12, 15, 16, 50].  

Several activation functions can be used for each layer such as the 

activation function ReLU provided in equation 1, however for binary 

classification, the output layer often uses a sigmoid activation function [11, 12, 

15, 16]. The sigmoid activation function for a single artificial neuron is 

represented as  

 

�̂� = 11 + 𝑒𝑥 , (4) 

 

where �̂� is the output of the activation, and 𝑥 the input. This activation function is 

often used for binary classification due to the fact it exists between zero and one 

and therefore provides a probability of the output being classified as either of the 

two binary classes. Once the output is calculated, it can either be provided to a 
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user or other system or utilized in backpropagation to adjust the weights and 

biases throughout the ANN to either improve or train it for new purposes.  

 Backpropagation. Backpropagation is the process by which the weights 

and biases of the artificial neurons in the ANN are adjusted to learn new tasks, 

improve existing predictions, or fine-tune similarly known tasks [12, 15, 16, 50]. 

This process of backpropagation for an ANN follows a supervised learning 

process. Supervised learning consists of known, already classified training data. 

The ANN takes the input training examples and performs forward propagation. 

After forward propagation, a comparison of the output of forward propagation 

with the desired output as determined from the labeled training example is 

performed, and the weights and biases are adjusted to better match the desired 

output. A more detailed explanation of this process in the sections below 

beginning with the loss function. 

  Cost Function. After calculating the output for a forward pass with the 

known training data, this output and the known labeled training data is compared. 

A single training example is compared using a loss function, whereas the entire 

training set is compared with the cost function. We will begin by describing the 

loss function. 

There are many ways to calculate the loss function, but for a simple binary 

classification the logistic regression loss function   
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𝐿(�̂�, 𝑦) = −(𝑦 ∗ log �̂� + (1 − 𝑦) ∗ log(1 − �̂�)), (5) 

 

is commonly used [11, 15]. In equation 5, 𝐿 represents the loss function 

measuring how well the overall forward propagation output �̂� matches the ground 

truth label 𝑦. In binary classification 𝑦 is set as either one or zero.  

 The cost function is represented as,  

 

𝐽(𝑊, 𝑏) = 1𝑚 ∑𝐿(�̂�𝑖 , 𝑦𝑖)𝑚
𝑖=1 , (6) 

 

where 𝐽(𝑊, 𝑏) is the cost 𝐽 applied to the ANN parameters 𝑊 and 𝑏, and 𝑚 the 

number of training samples in the training set with 𝑖 the individual training 

samples [11, 15, 53]. This cost function provides the average loss for the entire 

training set. To adjust or improve the ANN, the parameters 𝑊 and 𝑏 are adjusted 

to minimize 𝐽 through a process called gradient descent. 

 Gradient Descent. Through an iterative process, the gradient descent 

algorithm adjusts the weights and biases of ANNs to converge to or close to a 

global optimum by minimizing the cost function [11, 12, 15, 16, 50, 53]. The 

parameters of each of the ANNs layers are adjusted starting from the last layer 

and working backwards to the first layer by calculating the derivatives of the loss 

function. These derivatives are computed as  
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 𝜕𝐿𝜕𝑍[𝑙] = 𝑊[𝑙+1]𝑇 ⋅ 𝜕𝐿𝜕𝑍[𝑙+1] ∗ 𝜕𝐿𝜕𝐴[𝑙] , (7) 

 𝜕𝐿𝜕𝑊[𝑙] = 1𝑚 𝜕𝐿𝜕𝑍[𝑙] ⋅ 𝜕𝐿𝜕𝐴[𝑙−1]𝑇 , (8) 

 

and 

 𝜕𝐿𝜕𝑏[𝑙] = 1𝑚 ∑ 𝜕𝐿𝜕𝑍[𝑙][𝑖]𝑛
𝑖=1 , (9) 

 

where 𝑛 is the number of artificial neurons in layer 𝑙. The ideal weights and biases 

will exist at the global minimal cost function 𝐽. To achieve these weights and 

biases, these parameters are adjusted using the previous gradients though the 

equations 

 

𝑊𝑙 = 𝑊𝑙 − 𝛼 𝜕𝐽(𝑊, 𝑏)𝜕𝑊 , (10) 

 

and 
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𝑏𝑙 = 𝑏𝑙 − 𝛼 𝜕𝐽(𝑊, 𝑏)𝜕𝑏 , (11) 

 

where α represents the learning rate, a pre-defined hyperparameter. This process is 

performed iteratively until the cost function converges to its minimum, or the 

ANN performance matches the intended goals. This process uses the batch 

gradient descent algorithm which utilizes the entire training set for each iteration 

of backward propagation.  

Convolutional Neural Networks 

This work utilized a more complex ANN, the much deeper and more complex 

CNNs. These CNNs were chosen for the task of inspecting the DEBC as they have made 

a resurgence in general visual recognition tasks in recent years, overtaking other methods 

in image classification challenges [15, 23]. This was further exemplified by the 

previously mentioned Pascal VOC challenge, a yearly challenge from 2005-2012, with 

the goal of recognizing objects from several visual object classes through a supervised 

learning process [13]. The challenge has commonly been used as a comparison between 

different object detection networks [23]. CNNs have consistently outperformed other 

methods and have demonstrated increased precision of detection in the Pascal Visual 

Object Classes (VOC) challenge.  

A CNN is a form of ANN which was developed for general object classification 

from images [11, 12, 14, 15, 16]. CNNs follow the same basic principles as described in 
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the section above with ANNs but are much more complex adding many different 

techniques to improve performance. In the following sections, these differences will be 

described in detail starting from the adjustments to images as input, and as the different 

layer types as convolutional, max pooling, and final fully connected with SoftMax layers. 

Input. With a focus on images, the input to a CNN differs in key areas. Due to the 

typical focus of CNNs working with images, the input to the network is provided as the 

raw pixel values of the image as three dimensions. These three dimensions are 

represented as the number of pixels in an images width, height, and depth where a depth 

of three provides the three red, green, and blue color channels. A CNN requires a specific 

size image, therefore each image provided to the CNN must be scaled to the specified 

size by  

 

[𝑥′𝑦′1 ] = [𝑠𝑥 0 00 𝑠𝑦 00 0 1] [𝑥𝑦1] , (12) 

 

where 𝑥′ and 𝑦′ are the desired width and height in pixels, 𝑥 and 𝑦 the provided width 

and height in pixels, and 𝑠𝑥 and 𝑠𝑦 the scaling factors for the width and height 

respectively. Once the image is resized to the new size, a method to interpolate the pixel 

intensity values is often used to estimate pixel values in unknown locations. Bicubic 

interpolation is among the most precise methods resulting in smooth gradations and was 

used in this work [31]. Bicubic interpolation computes a weighted average considering a 
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four by four sized area or sixteen pixels. This is accomplished through use of a filter 

kernel computed as  

ℎ(𝑥) = {1 − (𝑎 + 3)𝑥2 + (𝑎 + 2)|𝑥|2𝑖𝑓|𝑥| < 1𝑎(|𝑥| − 1)(|𝑥| − 2)2 𝑖𝑓1 ≤ |𝑥| < 20 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒, (13) 

 

where 𝑎 represents the derivative at 𝑥 = 1, often set to -0.5 producing a quadratic 

reproducing spline [31]. 

To aid in training performance, the input to the CNN is adjusted by subtracting 

the image mean. To subtract the image mean, the image mean must first be calculated by 

 

𝑥𝜇 = ∑ ∑ ∑ 𝑥𝑖,𝑗,𝑑𝐷𝑑=0𝑊𝑗=0𝐻𝑖=0 𝑁 , (14) 

 

where 𝑖 and 𝑗 are the current image coordinates in the 𝑥 and 𝑦 position and 𝑑 the depth as 

one of the three image color channels with 𝐻,𝑊, and 𝐷 the maximal height, width, and 

depth of the image respectively. The term 𝑁 in equation 13 represents the total number of 

pixels in the image in all three of the color channels. Once the image is scaled to the 

desired size and the image mean for the entire training data set is computed, the image 

mean is subtracted as  

 𝑥 = 𝑥 − 𝑥𝜇 , (15) 
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from all images provided to the CNN.   

Convolutional Layers. The convolutional layers use regions of locally connected 

neurons and are the workhorse of CNNs by acting as large banks of learnable 

convolutional filters. Convolutional filters are a type of neighborhood operator that may 

be applied to images in which the output pixel intensity value is determined by the local 

weighted sum from the pixel input values [31]. The weighed values and size of the local 

neighbors are defined by a kernel or mask which follows a sliding window approach 

through all elements of the original image. This convolutional process can be expressed 

as  

 𝑔𝑖,𝑗 = ∑𝑓(𝑘, 𝑙)ℎ(𝑖 − 𝑘, 𝑗 − 𝑙)𝑘,𝑙 , (16) 

 

in which 𝑔𝑖,𝑗 represents the new element of the image at location (i, j) of the image in 

which convolution is being performed, and ℎ the convolutional kernel. Convolutional 

kernels are capable of a wide variety of effects with simple kernels capable of blurring, 

sharpening, and detecting edges in images. With CNNs using large numbers of learnable 

convolutional filters, they can learn to identify large numbers of features of an object in 

an image, and if enough of these features are found, classify said image as that class of 

objects. A singular pixel example of convolution on an image can be found in Figure 6. 
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The first layer after the input image typically consists of the convolutional layer 

[11, 12, 14, 15, 16, 17, 53]. During forward propagation, these spatially connected 

regions are then convolved over the previous layer, mathematically represented as  

 

𝑦𝑖𝑙+1,𝑗𝑙+1,𝑑 = ∑∑ ∑ 𝑓𝑖,𝑗,𝑑𝑙 ∗ 𝑥𝑖𝑙+1+𝑖,𝑗𝑙+1+𝑗,𝑑𝑙𝑙𝐷𝑙
𝑑𝑙=0

𝑊
𝑗=0

𝐻
𝑖=0 , (17) 

 

and then provided to the next layer, effectively creating learnable convolutional filters. In 

the above equation, 𝑓 represents all the kernels in layer 𝑙 where 𝐻, 𝑊, and  𝐷𝑙 represent 

the total height, width, and depth of the previous layer respectively. This is implemented 

in practice by  

 

Figure 6: Visual interpretation of a convolutional filter enacted upon a single pixel of an 

image. 
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𝑣𝑒𝑐(𝑦) = 𝑣𝑒𝑐(𝑥𝑙+1) = 𝑣𝑒𝑐(𝜙(𝑥𝑙)𝐹), (18) 

 

in which 𝑣𝑒𝑐 represents the vectorization operator converting a higher dimensional tensor 

into a column-first order vector. Therefore, 𝑣𝑒𝑐(𝑦) becomes a vector containing the 

output from the convolutional layer, 𝜙(𝑥𝑙) represents a matrix containing all inputs from 

the previous layer, and F a matrix containing all filter kernels as a fourth order tensor 

with 𝐻𝑊𝐷𝑙 rows and 𝐷 columns.  Each convolutional layer typically contains many 

(potentially hundreds) of different filters, combines the results, and can be stacked with 

multiple convolutional layers following the current layer. The output from a 

convolutional filter provides a feature map that has the same height and width as the 

previous layer but increases the depth proportional to the number of learnable filters 

specified for that layer [11, 12, 14, 15, 16, 17, 53].  

To adjust the weights in the convolutional layers to train the CNN, the loss 

function representing the cost the image matches the annotated training image calculated 

after a full forward pass, as described later, is minimized similarly to the ANN above, by 

adjusting weights throughout the CNN [11, 12, 14, 15, 16, 17, 53]. To adjust the weights 

of each layer in the CNN, two sets of gradients are computed and backpropagated 

through the CNN. These two gradients include the partial derivatives of a loss function 𝑧, 

as explained later, with respect to each layer’s parameters, and the layers input. Adjusting 

the weights of the convolutional layers was performed computing the two derivatives as 
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vectors where the gradient to update the convolution kernels was provided as 𝜕𝑧𝜕𝑣𝑒𝑐(𝑓) and 

the gradient with respect to the input as 𝜕𝑧𝜕𝑣𝑒𝑐(𝑥𝑙). The gradient to update the convolution 

kernel parameters is provided as  

 𝜕𝑧𝜕𝑣𝑒𝑐(𝑓) = 𝜙(𝑥𝑙)𝑇 𝜕𝑧𝜕𝑣𝑒𝑐(𝑦)), (19) 

 

and is used to update the parameters in the l-th layer. The gradient with respect to the 

input can be calculated by 

 

[ 𝜕𝑧𝜕𝑣𝑒𝑐(𝑥𝑙)](𝑖𝑙,𝑗𝑙,𝑑𝑙) = ∑ [ 𝜕𝑧𝜕𝑣𝑒𝑐(𝑦) 𝐹𝑇](𝑝,𝑞)(𝑝,𝑞)∊𝑚−1(𝑖𝑙,𝑗𝑙,𝑑𝑙) , (20) 

 

where 𝑚 represents the mapping of the index (𝑝, 𝑞) in 𝜙(𝑥𝑙) in which 𝑝 = 𝑖𝑙+1 +(𝐻𝑙 − 𝐻 + 1)∗ 𝑗𝑙+1, and 𝑞 = 𝑖 + 𝐻 ∗ 𝑗 + 𝐻 ∗ 𝑊 ∗𝑑𝑙 [11, 12, 14, 15, 16, 17, 53]. With 

all the information necessary to both utilize and train the convolutional layers provided, 

the pooling layer can be described.  

 Pooling Layers. The purpose of the pooling layer is to reduce the dimensionality 

of the feature maps [11, 12, 14, 15, 16, 17, 53]. Decreasing the dimensionality reduces 

the amount of information and is generally performed several times throughout the CNN 

architecture to reduce the number of parameters and computation in the network, while 
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also helping to control overfitting. Pooling layers operate independent on each depth slice 

of the input and resizes the feature maps, often using the max operation. In max pooling, 

the pooling operator maps a subregion, generally a 2x2 convolutional window with a 

stride of two, to the maximum value in that subregion. The stride controls the number of 

pixels skipped per subregion to prevent overlap of the kernel. Mathematically this is 

expressed as  

 𝑦𝑖𝑙+1,𝑗𝑙+1,𝑑 = max0≤𝑖<𝐻,0≤𝑗<𝑊 𝑥𝑖𝑙+1∗𝐻+𝑖,𝑗𝑙+1∗𝑊+𝑗,𝑑𝑙 , (21) 

 

in which 0 ≤ 𝑖𝑙+1 < 𝐻𝑙+1, 0 ≤ 𝑗𝑙+1 < 𝑊𝑙+1, and  0 ≤ 𝑑 < 𝐷𝑙+1 = 𝐷𝑙. Due to max 

pooling being a local operator, the computation is relatively simple for the forward pass 

[11, 12, 14, 15, 16, 17, 53]. 

 Pooling layers do not require any parameters, and therefore performs no learning 

[11, 12, 14, 15, 16, 53]. During backpropagation, this results in the gradient with respect 

to the parameters, 𝜕𝑧𝜕𝑓 = 𝑛𝑢𝑙𝑙. The gradient with respect to the input must still be 

calculated to adjust any layers performing any learning before the pooling layers. This is 

performed by  

 𝜕𝑧𝜕𝑣𝑒𝑐(𝑥𝑙) = 𝑆(𝑥𝑙)𝑇 𝜕𝑧𝜕𝑣𝑒𝑐(𝑦) , (22) 
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where 𝑆(𝑥𝑙) is an indicator matrix in which a triplet of indices (𝑖𝑙+1, 𝑗𝑙+1, 𝑑𝑙+1) specifies 

the row in 𝑆, and the column is specified by (𝑖𝑙, 𝑗𝑙, 𝑑𝑙), and is defined as 𝑆(𝑥𝑙) ∊ ℝ(𝐻𝑙+1,𝑊𝑙+1,𝐷𝑙+1)𝘹(𝐻𝑙,𝑊𝑙,𝐷𝑙). This creates a very sparse matrix with exactly one nonzero 

entry per row and the location of the nonzero entries are recorded for use in the previous 

layer during backpropagation [11, 12, 14, 15, 16, 53].  

 Fully Connected with SoftMax Layers. Once the defined convolutional and 

pooling operations are completed, the fully connected layers are utilized, often with 

softmax, for generating the output for the defined classes the CNN predicts [11, 12, 14, 

15, 16, 17, 53]. Fully connected layers work as described in the ANN above where the 

computation of any element for the output of 𝑥𝑙+1 requires all elements from the input 𝑥𝑙. 
For simplicity, the fully connected layers can be calculated as a convolutional layer 

whose convolutional kernels are the same as the input where a convolutional kernel of 

size 𝐻𝑙 𝘹𝑊𝑙𝘹𝐷𝑙 is used for the input layer size 𝑥𝑙 = 𝐻𝑙 𝘹𝑊𝑙𝘹𝐷𝑙. With 𝐷 kernels, this 

creates a fourth order tensor with an output as 𝑦 ∈ ℝ𝐷. With this information, the learning 

rules for the fully connected layers can utilize the same ones provided in the 

convolutional layers above. The final layer provides the probability that the image in 

question belongs to a set of defined classes and generally utilizes a softmax layer due to 

using the softmax activation function [11, 12, 14, 15, 16, 17, 53]. 

 The VGG16 CNN architecture used in this work utilizes a softmax layer that 

performs a multinomial logistic regression objective to calculate the loss function 

representing the error in the classification [11, 12, 14, 15, 16, 17, 53]. Due to the need to 
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perform multi-class classification, we define the output as a hypothesis that given a test 

input 𝜃 (in this instance an image), we estimate the probability the class label taking 𝐾 

different possible values or 𝑃(𝑦 = 𝑘|𝑥) for each value of 𝑘 = 1,… , 𝐾. The softmax 

activation effectively provides the sigmoid activation described previously over many 

different classes as opposed to the binary classification scheme previously proposed. This 

output provides a normalized 𝐾-dimensional vector providing the 𝐾 probabilities 

estimated. This hypothesis is described as 

  

𝑦 =
[  
   
𝑃(𝑦 = 1|𝜃; 𝑥)𝑃(𝑦 = 2|𝜃; 𝑥)...𝑃(𝑦 = 𝐾|𝜃; 𝑥)]  

   = 1∑ exp(𝑥(𝑗)𝑇𝜃)𝐾𝑗=1 [  
   
 exp(𝑥(1)𝑇𝜃)exp(𝑥(2)𝑇𝜃)...exp(𝑥(𝐾)𝑇𝜃)]  

   
 , (23) 

 

for a given test image. As mentioned previously, a cost function is utilized to update the 

CNN parameters throughout the architecture. This loss function takes the form of, 

 

𝑧 = − [∑ ∑ 1{𝑦(𝑖) = 𝑘}𝑙𝑜𝑔 exp(𝑥(𝑘)𝑇𝜃)exp(𝑥(𝑗)𝑇𝜃)𝐾
𝑘=1

𝑛
𝑖=1 ] , (24) 

 

where 𝑛 represents the annotated samples and 1{…} is an indicator function so that 1{atruestatement} = 1 and 1{afalsestatement} = 0. This is similar to the softmax 



32 

 

regression loss function  

 

𝑃(𝑦(𝑖) = 𝑘|𝜃𝑖; 𝑥) =  exp(𝑥(𝑘)𝑇𝜃𝑖)∑ exp(𝑥(𝑗)𝑇𝜃𝑖)𝐾𝑗=1 , (25) 

 

which we sum over all K different potential values of the class label. An iterative 

optimization method must be used to solve for the parameters providing the minimal  𝑧 

for Equation 25 above due to the inability to solve it analytically. Taking the partial 

derivative, the gradient  

 𝜕𝑧𝜕𝑣𝑒𝑐(𝑥𝑘) = −∑(𝜃(𝑖)(1{𝑦(𝑖) = 𝑘} − 𝑃(𝑦(𝑖) = 𝑘|𝜃𝑖; 𝑥))𝑛
𝑖=1 , (26) 

 

can be determined. The softmax layer contains no parameters, therefore 𝜕𝑧𝜕𝑣𝑒𝑐(𝑓) = 𝑛𝑢𝑙𝑙 
[11, 12, 14, 15, 16, 17, 53].  

 The iterative optimization method utilized the mini-batch stochastic gradient 

descent algorithm [11, 12, 14, 15, 16]. A mini-batch is a variant of the batch gradient 

descent described previously in which the training set is divided into discrete smaller 

batches of samples selected stochastically.  The SGD algorithm, represented as  
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𝑣𝑒𝑐(𝑓𝑙) = 𝑣𝑒𝑐(𝑓𝑙−1) − 𝜆 𝜕𝑧𝜕𝑣𝑒𝑐(𝑓𝑙) , (27) 

 

where 𝜆 was the learning rate, and the parameters are updated by the loss function from 

the set of examples from the mini-batch [11, 12, 14, 15, 16, 53]. 

Convolutional Neural Networks Architectures Used 

To alert maintenance engineers of partial weld failures due to cracks of a DEBC, 

the ability to detect the weld portion of the DEBC was first required. It was assumed 

images in which the DEBC was to be detected were of inspection images collected via 

small UAS. Once the DEBC weld was detected, the region encompassing that weld was 

cropped, and the resulting segmented image was then evaluated on its condition as either 

cracked, or in good condition. To accomplish this, both the detected DEBC weld portion, 

and crack evaluation were performed using CNNs.  

To first locate any potential DEBC welds in a given image using an object 

detection network, the Python reimplementation of Faster R-CNN was obtained from 

[18]. As previously mentioned, Faster R-CNN incorporates a small region proposal 

network that shares a common set of convolutional layers with a standard detection 

network and was built using the Caffe framework [24]. This region proposal network 

takes an image of any size as input, and outputs rectangular object proposals with a 

binary objectness score, or in other words, a measurement of belonging to a set of defined 

object classes vs. the general background. Training the layers specific to the region 
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proposal network was accomplished through assigning a binary classification as positive 

for an object or negative for not an object to anchor boxes introduced by Faster R-CNN.  

Anchors are the predicted bounding boxes given by Faster R-CNN to provide the 

region proposal for classification. These anchors are assigned as positive or containing an 

object of interest when they either have the highest Intersection-over-Union (IoU) overlap 

with a ground truth box, or IoU overlap greater than 0.7 with any ground truth box during 

training. Otherwise they are set as negative. Non-positive anchors do not contribute to 

training. The RPNs loss function for an image, 

 

𝐿({𝑝𝑖}, {𝑡𝑖}) = 1𝑁𝑐𝑙𝑠 ∑𝐿𝑐𝑙𝑠(𝑝𝑖, 𝑝𝑖∗) + 𝜆 1𝑁𝑟𝑒𝑔 ∑𝑝𝑖∗𝐿𝑟𝑒𝑔(𝑡𝑖, 𝑡𝑖∗)𝑖𝑖 , (28) 

 

is minimized to generate a trained RPN. In the loss function, i was the anchor index in a 

mini batch, 𝑝𝑖 the predicted probability of the i’th anchor being an object. 𝑝𝑖∗ represents 

the ground-truth label and was set to 1 for a positive anchor, and 0 if negative. 𝑡𝑖 provides 

the vector representation of the four parameterized coordinates of the predicted bounding 

box, with 𝑡𝑖∗ the ground-truth box associated with the positive anchor. The classification 

loss 𝐿𝑐𝑙𝑠 represents the log loss over the two object vs. non-object classes. The regression 

loss 𝐿𝑟𝑒𝑔 = 𝑠𝑚𝑜𝑜𝑡ℎ𝐿1(𝑡𝑖 − 𝑡𝑖∗) where 𝑠𝑚𝑜𝑜𝑡ℎ𝐿1(𝑥) =  {0.5𝑥2𝑖𝑓|𝑥| < 1|𝑥| − 0.5𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒. The 𝐿𝑐𝑙𝑠 

and 𝐿𝑟𝑒𝑔 functions are normalized with 𝑁𝑐𝑙𝑠 as the number of anchors in a minibatch 
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(512), 𝑁𝑟𝑒𝑔 as the number of total anchors, and the balancing weight λ. Faster R-CNNs 

RPN generates approximately 2,400 different anchor positions. Each anchor position was 

tested at three different aspect ratios as 1:1, 2:1, and 1:2, and at three different scales as 

128, 256, and 512. This leads to 21,600 anchor positions. These are reduced by removing 

cross-boundary anchors along with non-maximum suppression. Cross boundary anchors 

remove any anchors that extend beyond the image size. Non-maximum suppression 

removes any overlapping anchors with less IoU values than the highest one with the 

ground truth bounding box leaving 𝑁𝑟𝑒𝑔 as ~2,000. The classification of the region can 

then be performed once the regions for the object detected are determined. In this work, 

the VGG16 model was used to perform this classification. 

The VGG16 model utilizes a total of 16 convolutional and max pooling layers, 

along with three fully connected layers, and ending with a soft-max layer [17]. This 

architecture was arranged by alternately stacking two convolutional layers followed by a 

max pooling layer twice, then increasing the stack of convolutional layers to three for the 

next three sections. The last layers comprise the three fully connected layers which feed 

into the final soft-max layer representing the class designations [17]. 

To classify if a DEBC detected from above contained a partial failure due to 

cracks, the Caffe [24] implementation of the VGG16 CNN architecture [17] was utilized. 

This VGG16 model matches the classifier portion of Faster R-CNN above for DEBC 

detection but lacks the region proposal network to detect the component. The method of 

using two different CNNs to locate the DEBC weld and to classify cracks in that region 



36 

 

was to reduce the amount of down sampling involved with Faster RCNN’s overall 

resizing due to Faster RCNN resizing the original image to 1000x600 or 600x1000 

pixels, depending on the original image size [18]. With Faster R-CNNs RPN sharing 

computation with the object detection network (VGG16), the classification would occur 

on the detected region found in the resized image of 1000x600 pixels. To illustrate this 

difference in resolution, Figures 7 and 8 on the following pages provide sample images of 

two different DEBC welds cropped from the same region of both the original images of 

size 6000x1000, as well as the 1000x600 size images Faster R-CNN uses. As can be seen 

the welds from the smaller Faster R-CNN resized images are of lower quality and do not 

contain the same resolution as the original images making small cracks more difficult to 

detect. All image resizing used the binomial interpolation method as described above in 

Equation 13. Cropping the detected DEBC from the original image allows larger cropped 

sections and therefore potentially more information before resizing the image to the 

VGG16 required image size of 224x224 pixels.  

The next section contains an overview of other CNN architectures that were 

considered other than that described above. These other CNN architectures were not used 

in the following work as the VGG16 architecture with the Faster R-CNN algorithm was 

found to outperform these other methods. This next section will provide comparisons in 

image classification challenges to provide comparisons on ability to recognize objects in 

images. 
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Figure 7: Images illustrating differences in resolution where red regions containing 

cracks of (a) Original image (b) DEBC weld region of original image (c) DEBC weld 

region of resized 1000x600 image Faster R-CNN uses. 
 

(a) 
  

(b) 
  

(c) 
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(a) 
  

(b) 
  

(c) 
  Figure 8: Images illustrating differences in resolution of (a) Original image (b) DEBC 

weld region of original image (c) DEBC weld region of resized 1000x600 image Faster 

R-CNN uses. 
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CNN Architectures Considered 

To determine the most effective object detection CNN available, several different 

object detection CNN’s were considered including R-CNN [19], SPPnet [20], YOLO 

[21], and Faster R-CNN [18]. Due to the post processing focus of the proposed algorithm, 

accuracy and precision were the main considerations for each network. A direct 

comparison of each network on the Pascal VOC 2007 [13] dataset as represented by the 

mean average precision (mAP) attained on the challenge by each network can be found in 

Table 1 below.  

Faster R-CNN was the latest improvement over R-CNN and introduced Region 

Proposal Networks (RPN) that share convolutional layers with the object detection 

network [18]. Region proposals are specific regions in the image determined as an object, 

previously provided by a separate algorithm per both R-CNN and Fast R-CNN [19, 22], 

and performing a convolutional network forward pass for each proposed region. Input 

images are resized to either 1000x600 or 600x1000 depending on whether the original 

image was taller or wider. The region proposals are created by adding two additional 

convolutional layers. The first layer encodes each convolutional feature map position into 

Table 1: mAP of each detection network considered. 

CNN Considered mAP in Pascal VOC 
2007 

R-CNN 58.5% 

SPPnet 60.9% 

YOLO 63.4% 

Faster R-CNN 73.2% 
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a feature vector. The second layer outputs an objectness score and regressed bounds for 𝑘 

region proposals, relative to various scales and aspect ratios, at each convolutional map 

position. These added layers create a fully-convolutional network that can be trained end-

to-end for the task of generating detection proposals. Faster R-CNN also developed a 

training scheme that alternates between fine-tuning for the region proposal task, and fine-

tuning for object detection with the proposals fixed. Faster R-CNN was chosen for our 

purposes as it achieved the highest mAP of all methods considered at 73.2% [18]. 

R-CNN was the first successful object detection algorithm utilizing a CNN, and 

increased mAP of the previous state of the art method by over 30% [19]. This was done 

by utilizing region proposals as provided by a separate algorithm. Although originally 

successful, there are many drawbacks to the region-based convolutional neural network. 

First, training was a multi-staged pipeline requiring finetuning the CNN on object 

proposals generated separately, then fitting a support vector machine (SVM) to the CNN 

features, and performing bounding box regression. Second, training was expensive in 

both hard drive space and time spent during training. The SVM and bounding box 

regression training requires storing features extracted from each object proposal to disc 

which may require storing hundreds of gigabytes of data. Third, detection was slow as 

features are extracted from each object proposal in each test image. Methods considered 

below improve both speed and precision over this implementation [19]. 

Spatial Pyramid Pooling (SPP-net) was proposed to speed up R-CNN by sharing 

computation [20]. SPP-net first computes a convolutional feature map for the entire input 
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image, then classifies each object proposal using a feature vector from the shared feature 

map. Features are extracted through max pooling the portion of the feature map inside the 

proposal into a fixed output size. Training was still multi staged, as it must extract feature 

vectors, fine tune the network with log loss, train an SVM, and finally fit bounding box 

regressors. SPPnet cannot update the convolutional layers preceding the spatial pyramid 

pooling limiting accuracy of deep networks [20]. 

You only look once (YOLO), was a real-time object detection CNN [21]. This 

method applies a single neural network to the full image at test time to provide global 

context, divides the image into equally spaced regions, and predicts bounding boxes and 

probabilities for each region. This method provides a fast object detection that runs in real 

time, up to forty-five FPS, for the more computationally expensive and accurate model. 

As stated in [21], this network provides a mAP of approximately 10% less than Faster R-

CNN. 

 

 

 

 

  



42 

 

CHAPTER III 

METHODS 

This chapter details all methods used to accomplish the goals of this work. In the 

goal to identify and classify partial failures of DEBC welds due to toe-weld cracking, two 

different previously developed CNN architectures, Faster R-CNN with a VGG16 

backbone to locate and crop any DEBC welds from UAS inspections imagery, and 

another purely VGG16 CNN to classify the likelihood the cropped DEBC welds contain 

a partial failure due to toe-weld cracks, were trained/fine-tuned for the new task. This 

work involved slightly altering the two different CNNs to reduce the number of classes 

considered, collecting many images of the component in question and potential failures 

for training datasets, data augmentation of the images to provide invariance to different 

component conditions, and altering parameters including the amount of training iterations 

of the CNNs to improve performance. When tested the resulting CNNs provided a 97.8% 

accuracy to locate and crop the DEBC welds, 98.8% accuracy in a 5-fold cross validation 

strategy to classify cracked components, and an overall 73.8% accuracy with both CNNs 

combined on a difficult dataset. Each of the methods to train/fine-tune the new CNNs is 

expanded in detail in the following sections.  

Data Collection 

The original data to train and test the DEBC detection that was used to locate and 

crop DEBC welds from images was provided from two local businesses. The first 

provided by Field of View provided data from a study gathering simulated imagery [25], 
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and the second provided by SkyScopes was of UAS inspections test flights. The provided 

simulated images collected data to determine multiple parameters for use onboard a UAS 

including the optimal camera sensor, viewing angle, and distance for a human to be able 

to identify potential maintenance concerns. Using that information, the UAS inspections 

test flights followed the recommendations provided and gathered live powerline 

inspections images of DEBC welds using UAS to test the effectiveness of UAS 

inspection flights for the purpose of identifying DEBC partial failures due to toe-weld 

cracks. This data provided images ideal for the purposes of this work.  

In the provided simulated images, the cameras used to collect the data include the 

Sony NEX-7 [26], and a Sony a6000 [27] sensor converted to perform as a multispectral 

camera. Figure 9 provides a comparison of images provided by the two camera sensors. 

The converted Sony a6000 sensor provided 700-800nm wavelength light along with the 

standard visible light. Each image was of size 6000x4000 pixels. Two different DEBC’s, 

one which contained a cracked weld and one that did not, were attached to a forklift and 

lifted to the test height ranging from 4m to 12m from the camera height and tested under 

Figure 9: Images of DEBCs on bright sunny day 12m from visible Sony NEX-7 (left), 

and Sony a6000 multispectral (right) camera sensors. 
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four different weather conditions. These weather conditions include a cloudless sunny 

day, a cloudless sunny day with the sun in view of the camera, a cloudy day, and a dark 

cloudy day. It was found that the differences in the Sony NEX-7 and converted 

multispectral Sony a6000 images were negligible for inspection purposes [25]. An 

example of each of the different weather conditions can be found in Figure 10. A total of 

111 images from the simulated images, each of which contained two different DEBCs, 

were provided.  

Figure 10: Images of each weather condition at varying distances/heights that simulated 

images were collected in including (a) sunny day (b) sunny day with sun in view (c) 

cloudy day (d) dark cloudy day. 
 

(a) 
  

(b) 
  

(c) 
  

(d) 
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From the UAS test flight, images were collected on live high voltage power lines 

which was accomplished using the FreeFly Alta 8 aircraft [28]. Thirty images were first 

collected from a test flight in which the UAS flew approximately 40m away. An 

additional 270 images were collected in which the UAS flew approximately 15-20m from 

the DEBCs imaged. The same Sony a6000 model camera [27] not converted to a 

multispectral sensor, as tested by Field of View with a 210mm lens, was used for data 

collection. For our purposes, only images with the DEBC within view were considered. 

From the UAS test flight, 30 training images were collected. A sample image of a FreeFly 

Alta 8 UAS that was utilized can be found in Figure 11 below.   

Figure 11: Image of a FreeFly Alta 8 UAS as used for inspection imaging of live DEBCs. 
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   Due to a very small number of inspections imagery collected containing 

any crack features, a larger number of images containing DEBC welds were manually 

collected from previously replaced components, to ensure enough cracked images to train 

the crack classifier CNN were provided. An addition of 1,061 images were collected, 

both indoors and out, with varying distances and view angles. Examples of said images 

can be found in Figure 12. Due to the provided simulated images [25] containing direct 

comparisons between a cracked and non-cracked component, these images were also 

used. The provided simulated images also provided a direct comparison of cracked vs 

non-cracked DEBC welds under similar and variable lighting conditions aiding in 

lighting invariance. These images used the same non-modified Sony a6000 camera as 

above with a 210mm lens. Seven different welds were imaged in which five of the welds 

contained toe-weld cracks. Images were collected by manually holding the component 

Figure 12: Example images from manually collected training data for crack 

classification. Top images collected outdoors, bottom images collected inside warehouse. 
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above the camera at varying distance and view angles of the weld. While taking images, 

each welded component was also rotated at least 360º. This larger data set provided many 

of the possible angles and distances the component could be viewed from.  

Given a total of 416 images, the training data set required a large amount of data 

augmentation to be performed to allow for a sufficiently large training set. As a 

comparison, the Pascal VOC [13] training dataset provides close to 5,000 images per 

category to be considered. The addition of another class of images considering insulators 

was added to help the network differentiate between insulators and DEBCs. Inclusion of 

the insulator class was due to background insulators causing a high number of false 

positive detections as discussed in Chapter IV. Sample images of the original training 

images provided can be found in Figure 13 below.  

 

Figure 13: Example images from training data. Top images from simulated imagery, 

bottom images from test flight. 
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Data Augmentation 

 To generate enough data to properly train the two different CNNs to accurately 

detect the DEBC and then classify if the detection contains a crack, a series of simple 

image processing techniques were performed. All image processing methods were 

completed using OpenCV functions [29]. Due to the small number of images provided 

for the DEBC detection, most data augmentation was performed only for the DEBC 

detection training dataset. 

The first data augmentation method was only performed on the data used in the 

DEBC detection and involved manually cropping the DEBC from each original image. 

Due to the Faster R-CNN algorithm automatically resizing all input images to 1000 pixels 

on the larger side, and 600 pixels on the smaller side, the cropped images allowed for 

increasing the robustness of the network to differences of scale. The cropped images were 

also used for multiple data augmentations as described below. 

To account for various viewing angles in which the DEBC may be oriented, each 

cropped image from before was manipulated to create a series of rotations. These rotations 

were only performed on the DEBC detection training images. Rotations were performed 

using an SO(3) rotation matrix in degrees [30]. The rotation matrix as  

 𝑅𝑧(𝜃) = [cos(𝜃) − sin(𝜃) 0sin(𝜃) cos(𝜃) 00 0 1] (28) 

 

was applied to the image with 𝑅𝑧 being a counterclockwise rotation about the z-axis. 
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Rotations were applied using inverse warping where each intended pixel location in the 

rotated image was computed, then the corresponding location in the original image was 

sampled [31]. The cropped images were rotated from their original position in 15º intervals 

to a total of 60º. The images were then cropped to remove the resulting black corners of 

the image from the rotations. 

To account for possible out of focus or grainy images, two different morphological 

operations were performed on the images. Again, these operations were performed only on 

DEBC detection training datasets. These morphological operations included minor dilation 

and erosion [31]. This process was done by convolving a kernel (β) over the image I. β has 

a defined anchor point at the center of the kernel. For dilation, kernel β was convolved over 

the image and the maximal pixel value overlapped by β was computed and replaced by the 

image pixel in the anchor points position with that maximal value. This causes bright 

regions within an image to expand. Erosion was done similarly but instead uses the minimal 

pixel value for the anchor point causing bright regions. For our purposes, β was chosen to 

be of size [3x3] with only a single pass for slight erosion and dilation operations. Each of 

the above images were then flipped horizontally.  

The last method performed on the DEBC detection data involved cropped 

1000x1000 pixel sized patches in a raster scan pattern with 50% overlap from the original 

6000x4000 images. This technique was performed to create translations of the DEBC, as 

well as allow for edge cases where the DEBC would be only partially visible due to being 

truncated at the edge of the cropped image. The 50% overlap was used to ensure parts of 
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the image would always be visible. Lastly, the total images had to be manually sorted to 

remove images without the DEBC visible.  

A total of 2,437 images were developed from these techniques to train the DEBC 

detection network from the original 111 simulated images provided. Sample images of the 

developed augmented images can be found in Figure 14 above. Along with the additional 

270 UAS inspection images, this provided enough images to train the DEBC detection 

Figure 14: Example augmented data images (a) original image from simulated images (b) 

crop of left DEBC weld (c) rotation of component (d) dilation of component (e) erosion 

of component (f) horizontal flip of translation of component (g) translation through raster 

scan cropping 
 

(a) 
  

(b) 
  

(c) 
  

(d) 
  

(e) 
  

(f) 
  

(g) 
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CNN. With a severe lack of cracked components, many of these images were not used for 

the crack classification CNN as the number of non-cracked components would oversaturate 

the cracked ones.  

 Due to the larger number of true non-augmented images, the crack classification 

network performed less data augmentation than the DEBC detection images. To represent 

the cropped images from the DEBC detection, all components found in each image were 

manually cropped ensuring full visibility of the weld. These cropped images were 

developed to closely match the images the DEBC detection network would detect and 

segment as shown in the next section under Annotations. Due to the VGG16 CNN model 

utilizing only square 224x224 image sizes [17], the cropped images were created by 

determining if the height or width was larger, then setting the smaller side to the same value 

as the larger ensuring a square image. Each cropped image was then subjected to simple 

vertical and horizontal flips to increase the number of view angles. With all augmentations, 
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a total of 4,618images were created and used for training this CNN. Figure 15 below 

provides a sample of the data augmentations performed for the crack classification CNN 

training dataset.   

Annotation 

 Training both CNN models required all cases of the intended object categories to 

be annotated. The Faster R-CNN model required both the bounding box location, and 

object class for each component to be detected [18]. Bounding box locations were 

designated from the four coordinates as  

 

Figure 15: Example images from of data augmentation for crack classifying CNN (a) 

original image (b) cropped image of weld portion (c) horizontal flip of cropped image (d) 

vertical flip of cropped image (e) horizontal and vertical flip of cropped image 
 

(a) (b) (c) 

(d) (e) 
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𝑡𝑥 = (𝑥 − 𝑥𝑎)𝑤𝑎 , 𝑡𝑦 = (𝑦 − 𝑦𝑎)ℎ𝑎 ,𝑡𝑤 = log ( 𝑤𝑤𝑎) , 𝑡ℎ = log ( ℎℎ𝑎) ,𝑡𝑥∗ = (𝑥∗ − 𝑥𝑎)𝑤𝑎 , 𝑡𝑦∗ = (𝑦∗ − 𝑦𝑎)ℎ𝑎 ,𝑡𝑤∗ = log (𝑤∗𝑤𝑎) , 𝑡ℎ∗ = log (ℎ∗ℎ𝑎)
(29) 

 

where the 𝑥, 𝑦, 𝑤, and ℎ represent the bounding box’s center (x, y) coordinate, and the 

width and height respectively. The 𝑥, 𝑥𝑎, and 𝑥∗ represent the predicted bounding box, 

anchor box, and ground truth box respectively, similarly for the 𝑦,𝑤, and ℎ values as 

well. For the object classes, two classes were considered outside the background class, a 

catch all for all non-defined objects, as the DEBC weld, and finally background 

insulators. Each annotation for the DEBC weld was created to encompass the entire weld 

portion of the DEBC while limiting all other features. The second class, which 

considered the insulators often found in the background, was annotated, and added to the 

training set by encompassing the entire string of insulators as one object. With Faster R-

CNN developed to train on the Pascal VOC dataset, the annotations performed matched 

the format using the LabelImg software [32]. The Pascal VOC format stores each 

bounding box annotations location, class, and image location on file in xml format [13]. 

All annotations were manually selected, and an annotation sample with highlighted 
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bounding boxes is provided in Figure 16.  

 To annotate the crack classification CNN, all images of the cropped DEBC welds 

developed as described in the data augmentation section above were annotated in a binary 

classification method. Each image was reviewed and identified manually as either 

containing a cracked component or considered a weld in good condition. All images 

designated as in good condition were labeled as “0”, while all welds designated as 

cracked were labeled as “1”. These annotations were provided in a text file containing the 

image name followed by the numeric designations on one line for each image used. The 

VGG16 network [17] was then adjusted to perform the binary classification on just two 

image classes.  

Testing Data 

Images to test the network performance were necessary to evaluate the two CNNs 

once trained. Test images were kept separate from training data as doing otherwise would 

Figure 16: Example images of bounding box annotations for one image (a) DEBC welds 

(b) insulator 
 

(a) (b) 
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artificially increase metrics for the CNN as the CNN in question would already have been 

trained on that image specifically [11, 13, 14, 15]. The two different CNNs developed 

were tested using two different methods, due to the availability of image data. 

To test the DEBC weld detection CNN, newer inspection images were provided 

by the company who performed inspection test flights. This test data included 111 images 

which include 115 total DEBCs taken from a closer range and viewing angle in which the 

DEBC was easier to view. Examples of these images can be found in Figure 17. These 

test images were kept separate from the training data.  

The crack classification CNN was both trained and validated by performing a 

random 5-fold cross validation strategy [33]. After randomizing the training set of 

images, the entire set of images was separated into equally sized portions called folds. 

Five different networks were trained by training with four of the folds and using the 

remaining for validation and testing. The fold used for validation and testing was 

alternated so that each fold was used as validation once and only once. This produces five 

different trained networks and the resulting accuracy of each was then averaged to 

determine the approximate overall precision the total network would have had it been 

Figure 17: Example images of DEBC weld detection test images 
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trained with the entire training set. Each crack classification network therefore contained 

approximately 3,694 training images, and 924 validation images.  

Training 

All training for each of the CNNs developed were trained utilizing a Titan X 

GPU. As per [18] the combined region proposal network with the complex VGG16 

model requires approximately 11GB of GPU memory. The Titan X GPU was ideal as it 

provides 12GB of GPU memory. 

To train the DEBC weld detection CNN, training was performed using the 

alternating optimization method per [5]. This method performed a 4-step training to learn 

shared features between the region proposal network, with the VGG16 model as a 

separate detection network for classification. First, the RPN was trained as above. This 

was accomplished by minimizing the objective function from equation 24 following 

multi-task loss. Second, the detection network, utilizing the VGG16 architecture, was 

trained separately without sharing layers. Third, the detection network was used to 

initialize the region proposal network training but fixed the shared layers, fine-tuning 

only the region proposal network layers. The final stage shared the convolutional layers, 

keeping them fixed, and fine-tuned the fully connected layers, which formed a unified 

network.  

 The DEBC weld detection networks evaluated were fine-tuned from an ImageNet 

pre-trained VGG16 model over differing numbers of iterations, and numbers of images 

following the methods in [14]. The learning rate was set as 0.0001 for 60k minibatches 
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and 0.00001 for the next 20k minibatches, momentum as 0.9, and weight decay as 0.0005 

as provided by the VGG16 model. Multiple networks were developed while varying the 

number of training iterations from 40,000 to 150,000, often alternating the higher number 

of iterations in the first and third stage, and the lower number of iterations in the second 

and fourth. These alternating numbers of iterations were done as the default iterations 

were set to alternate from 80,000 to 40,000. The most visually accurate networks based 

on the number of iterations run were chosen for a full evaluation of the network. Results 

of these more accurate networks can be found in Chapter IV. Time training the network 

was heavily dependent on the number of iterations but took approximately three to seven 

days of nonstop training.  

 The crack classification network also utilized the VGG16 network architecture. 

Output from the soft-max layer was adjusted to perform a binary classification as either a 

cracked component, or component in good condition. The CNN was then trained using a 

5-fold cross validation strategy. Randomizing the training set of images, one fifth of the 

training set was removed to be used for validation and testing and repeated five times for 

each fold. This produces five different trained networks and the resulting accuracy of 

each was then averaged to determine the approximate overall precision of the total 

network. Each network was trained using a batch size of 32, learning rate of 0.001, 

momentum of 0.9, and weight decay of 0.0005. The networks were all trained to a 

maximum of 30,000 iterations.  
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Algorithmic Process 

Once both networks were trained and adequately tested, they were combined as a 

singular system. To classify possible DEBC partial failures due to toe weld cracks, the 

algorithm developed used the two different CNNs developed above to detect and crop the 

DEBC weld portion of UAS inspections imagery and classify the likelihood the cropped 

image contains a crack or not. A flowchart of the entire algorithm can be found in Figure 

18 and will be explained in further depth below. 

Once the algorithm begins, the user is prompted to provide input for the location 

of an input and output folder for the inspections images. The input folder is expected to 

contain all inspection images to be classified, whereas all outputs from the algorithm will 

be later stored in the output folder. The algorithm then loops through images existing in 

the input folder, and if there exists an image that has not been considered, the algorithm 

makes a temporary resized image to the Faster RCNNs required size of 1000x600 pixels 

of the original image to detect DEBCs. The DEBC detection CNN is then loaded and 

using the temporary resized image, any detected DEBC weld regions is found in the 

image from the DEBC detection CNN output. That same region is then found in the 

original sized image and a square region is cropped from the original sized image using 

the largest side as the height and width of the new image, and then the new image is 

stored in the output folder. A new temporary image is created from the newly cropped 

image and resized to the VGG16 crack classification CNN size of 224x224. Using the 

new 224x224 pixel sized cropped image, the crack classification CNN is loaded and the  
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Figure 18: Flowchart diagram for entire algorithm with both CNNs used. 
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probability of the weld containing a crack is provided and grouped as either red, yellow, 

or green. The red classification is considered as most likely cracked, yellow is considered 

as questionable, and green as most likely not cracked. This classification is stored in a 

text file for each group with the name of the new image, and its classification. The 

algorithm then loops to the next image in the input folder to continue classifying all 

images in the input folder if more exist. 
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CHAPTER IV 

RESULTS 

The resulting fully trained CNNs, developed as explored in Chapter III, were tested 

with their respective testing data. First, the results of the DEBC weld detection CNN will 

be described, as tested on the 111 test images provided through UAS inspection test flights. 

Next the results of testing the crack classification CNN as tested with the 5-fold cross 

validation will be detailed. Lastly, the two networks combined was examined and the 

effectiveness of both CNNs working in conjunction was determined. 

The 111 test images developed in Chapter III’s Testing data section were used to 

evaluate several differently trained networks while varying both the number of iterations 

the network was trained with, and the number of training images to ensure a robust DEBC 

weld detection CNN. ROC and Precision-Recall curves were developed for each trained 

network to determine network accuracy. Data for the curves was generated by setting the 

threshold for detection to the value of 0.1 and storing all detections and confidence 

intervals. 

Both the ROC and Precision-Recall curves for the DEBC weld detection CNNs 

were developed by recording the true positives, true negatives, false positives, and false 

negatives for the 111 test images while varying the threshold from 0.1 to 1 in 0.05 intervals. 

True positives were classified as matches if the detection appeared visually correct 

allowing for the user to easily view and evaluate the vast majority of the DEBC weld and 

its condition within the detected bounding box. True negatives were only considered from 
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the list of false positives. As the threshold increased and the false positives were no longer 

detected, they became true negatives. False positives were defined as any detections that 

were not of a DEBC weld or did not contain the entire weld visible from the image. False 

negatives were tallied for any DEBC weld not detected in the dataset. Both ROC and 

Precision Recall curves were developed by calculating the recall/true positive rate (TPR), 

the false positive rate (FPR), and precision as 𝑟𝑒𝑐𝑎𝑙𝑙/𝑇𝑃𝑅 = 𝑇𝑃𝑇𝑃+𝐹𝑁, 𝐹𝑃𝑅 =  𝐹𝑃𝑇𝑁+𝐹𝑃,and 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  𝑇𝑃𝑇𝑃+𝐹𝑃 respectively. The ROC curve for all three networks considered was 

plotted using the TPR, and FPR, whereas the Precision Recall curve was plotted using the 

precision and recall at each threshold value. After finding a high rate of false positives due 

to detecting insulators as DEBC’s, an additional 270 images from UAS inspections images 

were included in the network “with insulators” as a separate class. The network was 

retrained with the more successful number of iterations, 100,000, 80,000, 100,000 and 

80,000.  

As per [15], a curve only dominates in the ROC space if it also dominates in the 

precision recall space. The DEBC weld detection CNN trained with 100,000, 80,000, 

100,000, and 80,000 iterations for the four training stages, includes insulators as a 

separate class, and was also trained with the additional 270 images dominates in both 

ROC and Precision-Recall space, especially at higher threshold values. Using the CNN 

corresponding to this curve. The ideal threshold was found by use of the F-measure. 
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Figure 19  provides both the ROC and Precision-Recall Curves. 

The general formula for the F-measure as, 

 

𝐹𝛽 = (1 + 𝛽2) 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙(𝛽2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛) + 𝑅𝑒𝑐𝑎𝑙𝑙 , (30) 

 

represents a measure for the effectiveness of retrieving the intended information with β 

times as much importance to recall than to precision. A β value of two was chosen to 

determine the threshold value to use as false negatives were deemed as worse than 

potential false positives. The 𝐹2 measure provided the ideal threshold as 0.85, the highest 𝐹2 measure, and was found as  𝐹2 = 0.6168. The confusion matrix for this CNN, when 

evaluated with the 111 test inspection images with a threshold of 0.85, can be found in 

Figure 19: (a) ROC curve of five different networks, numbers list the iterations of each 

stage of training for that network (in thousands). The curve with insulators includes 

additional images and a separate class considering insulators, the curve without insulators 

includes the additional images, but not the separate insulator class. (b) Precision Recall 

curve for the same five networks in (a) 

 

(a) (b) 
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Table 5. From this data and threshold, the accuracy, 𝑎𝑐𝑐. = 𝑇𝑃+𝑇𝑁𝑇𝑜𝑡𝑎𝑙 , was also found. 

Accuracy was determined as 97.8% while maintaining a precision of 99.1%. As can be 

seen, the DEBC weld detection CNN performed remarkably well with only two false 

negatives, and one false positive from the possible 115 DEBC welds found in the test 

data set. Figure 20 above provides a few examples of how the network accurately located 

Table 5: Confusion matrix for network 100, 
80, 100, 80 (in thousands) with additional 
images and insulator class, threshold 0.85. 
 Predicted 

Negative 

Predicted 
Positive 

Total 

Actual 
Negative 

TN: 22 FP: 1 23 

Actual 
Positive 

FN: 2 TP: 113 115 

Total 24 114 138 

 

Figure 20: Example results of successful DEBC detections.  
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the DEBC weld in a variety of postions and poses, including DEBC welds truncated by 

the edge of the image. Figure 21 provides the failed detections.  

Though there were very few DEBC weld detection failures in this test dataset, 

some limitations of the CNN were found. False negatives were attributed to poor views 

of the welds. As can be seen in both false negatives, the weld was either heavily occluded 

as shown in Figure 21 (a), or partially truncated in (c). The DEBC weld detection CNN 

appeared to occasionally fail without full view of the weld. The false positive occurred 

due to a general rounded shape due the edge of a truncated damper on the powerline. 

Figure 21: Failures in detection. (a) Occluded DEBC weld not detected. (b) False positive 

detection on far right due to truncated damper (c) Top truncated DEBC weld not detected 

(a) (b) 

(c) 
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DEBC weld detection CNNs trained without insulators as a separate class also had 

several false positives due to insulators. This shows false positives may appear due to 

other rounded shapes the CNN was not trained to identify.  

Results for the crack classifcation CNN were found through a 5-fold cross 

validation method. First each of the five folds were trained over 30,000 iterations to 

determine the optimal amount of training. This optimal amount should coincide with a 

minimum loss calculated on the test data. The data used for testing during each of the five 

folds had both the accuracy and loss determined after every 1000 iterations of training. 

Figure 22 provides a graph of both the loss and accuracy of the test data over the entire 

30,000 training iterations. From the graph found in Figure 22 (a), it can be seen that the 

average minimal test loss was achieved at 16,000 iterations, and was calculated as 

0.12372. The accuracy at 16,000 iterations was found to be 97.55%, close to the 

maximum accuracy found.  

Figure 22: Metrics determined for every 1000 iterations during training each of the 5-

folds (a) Loss calculated (b) Accuracy  

(a) (b) 
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A few sample failures of the crack classification CNN can be found in Figure 23. 

The main sources of failures were found in edge cases where the crack was hardly 

visible, blurred images, and minor cracks that are hard to see at the reduced resolution.  

Figure 23: Failures in crack classification with confidence level object is cracked (a) edge 

case classified as cracked (1.0 confidence) whereas human identified otherwise (b) 

difficult to see crack classified as not cracked (0.0097) (c) difficult to see crack classified 

as not cracked (0.04055) (d) blurred photo misclassified as cracked (0.85661) 

(a) (b) 

(c) (d) 
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With both the DEBC weld detection and crack classification CNNs developed, the 

two networks were combined and tested. To accomplish this, the bounding box detection 

from the DEBC weld detection CNN was cropped from the original image, then the 

resulting cropped images were provided to the crack classification CNN. Both the 

cropped image, and crack classifiction were saved. The data the combined system was 

tested on included the original, unaltered, non simulated images contained in the test set 

for each of the five folds the crack classification was tested with. The use of these images 

was due to them being a difficult dataset to test with, providing many different view 

angles, and the only remaining images that the combined dataset had not been trained 

with. Results for the combined network were calculated similarly to the five-fold cross 

validation performed on the crack classification CNN due to the configuration of the test 

data and trained crack classificaiton networks. 

The results for the combined system were determined and analyzed through use of 

ROC and precision recall curves for each of the five folds of test data. The curves were 

calculated by comparing the annotated data as a cracked DEBC weld image or not, and 

the result of the combined CNN networks. The resulting output as the cropped images of 

DEBC weld detections, and text file of crack classificaitons for each detection were 

manually determined to account for false positive weld detections. Due to using only the 

original non augmented images, and not including any images from the provided 

simulated images, an average of 185 test images per fold were tested. The resulting ROC 
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and Precision Recall curves can be found in Figure 24. 

Both ROC and Precision-Recall curves were developed as before. The DEBC 

weld detection CNN threshold was set to 0.85 as found previously, while varying the 

crack classification threshold to determine the ideal value. The thresholds were set for 

three levels of severity as Red, Yellow, and Green. Images classified as Red were 

considered likely cracked and maintanence of the component due to cracks should be 

considered. Images falling in the Yellow classification were considered questionable, and 

a human operator should view the component to determine component status. Images 

classified Green were likely in good condition and not in need of maintanence. The 

threshold for the Red classification was found starting at an upper bound of 1.0 and using 

the largest average 𝐹0.5-measure, which weights the precision higher, as 0.5127 

corresponding to a threshold of 0.95 for the lower bound. At the threshold of 0.95, the 

Figure 24: Curves of the combined DEBC weld detection and five different crack 

classification CNNs as tested on the crack classification test data (a) ROC curve of the five 

different combined networks (b) Precision-Recall curve for the same five networks in (a) 

 

(a) (b) 
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average accuracy and precision was found as 72.21% and 59.89%. The 𝐹2-measure was 

used to find the lower bound of the Yellow classification with the highest 𝐹2 score as 𝐹2 = 0.6198 corresponding to the threshold of 0.1. The average accuracy and precision 

at this threshold was 65.66% and 47.70%. Green was set for all values lower than the 

lower bound of Yellow. 

With the above threshold values, the resulting confusion matrix averages for the 

five networks tested was found and shown in Table 6 and Table 7. Table 6 provides the 

threshold for the Red classification, while Table 7 provides the images classified as either 

Red or Yellow. The Red classification provided propotionaly less false positives, while 

the combined Red and Yellow detected a higher portion of the cracks, but also contained 

more false positives. This data set provided a larger sample of negative images, which the 

combined CNNs were able to accurately determine many of the non-cracked welds. 

Many of the false positives cracks were detected from false DEBC weld detection false 

positives.  Sample images of accurately detected and classified cracked welds can be 

found in Figure 25.  

Table 6: Confusion matrix for combined 
DEBC weld detection and crack 
classification labeled as Red only. 
 Predicted 

Negative 

Predicted 
Positive 

Total 

Actual 
Negative 

TN: 113.6 FP: 18.2 131.8 

Actual 
Positive 

FN: 31.8 TP: 27.2 59 

Total 145.4 45.4 190.8 

 

Table 7: Confusion matrix for combined 
DEBC weld detection and crack 
classification labeled as Red and Yellow. 
 Predicted 

Negative 

Predicted 
Positive 

Total 

Actual 
Negative 

TN: 90.2 FP: 40.4 130.6 

Actual 
Positive 

FN: 18.6 TP: 41.6 60.2 

Total 108.8 82 190.8 
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 As can be seen from Figure 24, Table 6, and Table 7 previously, the combined 

networks performed worse than seperately. This was largely due to both false negatives 

and false positives due to the DEBC weld detection CNN. On this new test data, the 

Figure 25: Success in DEBC weld detection and crack classification (a) Original image 

(b) Cropped DEBC weld detection of (a) successfully detected and classified as cracked 

at 0.99132 confidence (c) Original image (d) Cropped DEBC weld detection of (a) 

successfully detected and classified as cracked at 0.99999 confidence 

(a) 

(b) 

(c) 

(d) 
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DEBC weld detection CNN struggled to identify a number of DEBC welds, while 

providing several false positives. This was attributed to the newer data coming from a 

different distribution of data from what the DEBC detection CNN was trained with. False 

negatives typically consisted of view angles to the weld in which the DEBC weld 

detection was not trained for. The main source of these errors occurred when the DEBCs 

were viewed upside down as shown in Figure 26. During practical inspections, the weld 

would not be viewed from these angles. The false positive DEBC weld detections were 

mostly found as artifacts due to the data collection process. Due to the images being 

collected by someone manually holding the DEBC above the camera, many images 

contained artifacts such as gloves, sleeves, and other typically round objects the DEBC 

weld detector mistook as DEBC welds. These artifacts seen in the data collection would 

typically not be found in standard inspection images. As both of these cases would not 

occur in the typical inspection process, the actual practical application may achieve 

higher results. Examples of the DEBC weld detector providing false positives due to such 

Figure 26: Example images in which the DEBC weld detector failed to detect the weld. 
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artifacts can  be found in Figure 27. 

Of the DEBC welds that were accurately detected, the crack classification CNN 

also had some failures. Most failures were, as previously, difficult edge cases and minor 

difficult to see cracks. The classifier did appear to struggle to identify cracks more than 

previously tested, possibly due to being more translationly variant as the training images 

were centered about the weld, more so than the images provided through the DEBC weld 

detection CNN. Examples of failed crack classifications can be found in Figure 28.  

 

 

Figure 27: Example images of false positive DEBC weld detections cause by a glove to 

the left and the sleeve of a jacket to the right. 



74 

 

  

Figure 28: Example images of failed crack classification on accurate DEBC weld 

detections (a) Slight crack difficult to see classified as crack 0.00003 confidence (b) Poor 

view of larger crack classified as crack at 0.00042 confidence (c) Minor difficult to see 

crack at 0.01128 confidence (d) Large crack difficult to see classified as crack 0.08601 

(d) 

(a) 

(c) 

(b) 
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CHAPTER V 

DISCUSSION 

In this work, deep convolutional neural networks were applied and evaluated 

based their capability of the detection of DEBC’s from dead end high tension power lines 

and to classify the components condition as either cracked, or in good condition. Two 

different CNNs were trained and utilized, one to detect the DEBC weld from images and 

crop that region, the second was used to classify the resulting cropped image as either in 

good condition or if they contained a partial failure due to a toe-weld crack. The two 

CNNs developed were first evaluated separately. Evaluation of the DEBC weld detector 

was performed on 111 UAS test inspection images. Due to the very limited number of 

cracks found in live high-tension power lines, a few previously replaced DEBCs were 

manually imaged and a 5-fold cross validation strategy was performed to both train and 

evaluate the crack classification CNN. Once the two CNNs were combined, the same test 

set used in the 5-fold cross validation for the five developed crack classifiers was utilized 

as that was the only remaining data not used in training of either CNN.  

The DEBC weld detection CNN was developed by using the Faster R-CNN 

algorithm and implemented with the VGG16 model. The CNN was trained using a total 

of 416 original images from provided simulated images and UAS test inspection images 

that were augmented to a total of 2,707. Training was accomplished by fine-tuning the 

CNNs following the four-stage alternating optimization method as per [46] using an 

ImageNet pretrained model. After training multiple CNNs for this task while varying 
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different parameters, such as the amount of training iterations, learning rates, and number 

of object classes, and threshold values for detection, it was determined the ideal amount 

of training for this dataset and CNN model was at 100,000, 80,000, 100,000, and 80,000 

for the four stages of training and included three different object classes as a DEBC weld, 

insulators, and a general background class. The ideal threshold for detection was found as 

0.85. The CNNs were tested on 111 images of UAS test inspection images and achieved 

an accuracy of 97.8% and precision of 99.1%. This CNN was used to detect possible 

DEBC welds found in an image and crop the relevant portion out for further inspections 

by the second CNN to classify the components condition.  

The cropped DEBC weld image was then saved for the user to review and 

provided to the crack classification CNN. The crack classifier utilized the same VGG16 

model and was trained end-to-end. Due to a lack of cracked DEBC welds found during 

the inspections process, several images of a select few previously replaced DEBCs 

containing cracks were manually imaged. A total of 1,095 images were created by 

cropping the weld portion from each image, and slight data augmentations generated a 

total of 4,632 training images. Both training and testing were performed using a 5-fold 

cross validation strategy. Training was performed for 30,000 iterations while testing the 

validation data every 1,000 iterations. It was found that 16,000 iterations were the ideal 

amount of training for this dataset and network model. Averaging the results of the 5-fold 

cross validation resulted in an accuracy of 97.55%.  

The two networks were then combined and tested. Due to using all the cracked 
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DEBC images during training, the five CNNs developed for the 5-fold cross validation 

were tested using the same orignal images. First, the DEBC weld detection CNN was 

utilized to crop all detected welds found in the crack classification data and the images 

were separated by the validation data for each of the five folds utilized for the crack 

classification network. For each of the corresponding validation data, the resulting 

cropped image was classified and saved to a text file. Thresholds for the liklyhood of a 

crack were develop as Red, Yellow, and Green where Red was most likely cracked, Green 

most likely not cracked, and Yellow questionably cracked. Once evaluated, the combined 

CNNs provided an average of  73.79% accuracy and 59.92% precision in detecting 

cracks via the Red classification. Combining both Red and Yellow classifications 

provided accuracies of 69.08% and precision of 50.73%. Failures were largely due to the 

difficult views the images provided in this dataset as many of the welds were in 

orientations that would not occur in practice, as well as minor difficult to see cracks. 

This algorithm using the combined CNNs trained to detect and classify the DEBC 

of high tension powerlines provides among the first applications of CNNs to the task of 

maintenance inspections in power line infrastructure. The proposed algorithm provides a 

faster way for inspection engineers to quickly supply images to classify and quickly 

receive compenent failure classifications due to toe-weld cracking. The intent of this 

work was to reduce time and cost for inspections of high tension power lines by working 

towards automation of the DEBC weld. 
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Conclusions and Future Work 

The goal of this work was to develop an algorithm capable of detecting the weld 

portion of a DEBC from UAS inspections imagery of high voltage power lines at an 

accuaracy greater than 90%, and then identifying if that detected component contained a 

partial failure due to toe-weld cracking at a greater than 80% accuracy. Combined the 

system was to have an overall accuracy of greater than 72%. The intended purpose of 

such an algorithm was to aid inspections engineers reviewing the large amount of data a 

UAS may produce during maintanence inspections by providing a step towards 

automating the expensive process of performing maintanence inspections. 

The developed algorithm used two different CNNs to accomplish the goals listed 

above. The first CNN utilized the Faster R-CNN architecture with the VGG16 backbone 

and was trained to locate and identify the location of the DEBC weld in a given 

inspections image. A new image containing the DEBC weld was created from a cropped 

section of the detected component weld region found from the first CNN. The second 

CNN received the new image of the cropped DEBC weld portion and used the VGG16 

architecture to classify the likelihood the component was cracked as three different levels 

listing priority as Red, Yellow, or Green. The Red classification was considered as most 

likely cracked and should be considered for maintanence, the Yellow classification was 

considered as questionable and should be further reviewed for possible maintanence, and 

a Green classification was considered as most likely in good condition.   

The accuracy and precision of the algorithm was found for both CNNs separately, 
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as well as combined. The accuracy and precision of the first CNN as the DEBC detection 

CNN in identifying the weld portion of DEBCs was determined as 97.8% and of 99.1% 

respectively when tested on 111 UAS test inspection flight images. The accuracy of the 

crack classification was determined as 97.55% found through a 5-fold cross validation 

strategy of the second CNN. Combining the two CNNs provided an accuracy of 73.79% 

and a precision of 59.92% when testing on the same difficult 5-fold cross validation 

images. These results match or exceed the original goals set forth to detect both the 

component and failure classifications.  

Future improvements to the network are suggested. CNNs are currently an active 

and heavily researched topic with improvements to the architecture consistently provided. 

Utilizing newer models such as [21] could increase not only accuracy of the detections, 

but also processing speed. Per [16], removing difficult training images may increase the 

effectiveness of the algorithm. The training data from the simulated imagery study 

provided several images where the DEBC was difficult to see due to situations such as 

the sun in the direct background. The data generated for the crack classification also 

contained many poor view angles to the cracks, as well as some very small and difficult 

to see cracks. With the evidence shown in this work that inclusion of image classes that 

provide large number of false positives, adding additional classes and training images 

may help to reduce false positives further. This could also increase the utility of the 

proposed algorithm as it could search for several other components or maintenance 

concerns.   
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GENERAL INFORMATION 

 

1.1 System Overview 

 

This software is an aid to automatically detect welds of dead-end body component (DEBC) images and 
classify if they contain a partial failure due to cracking. The software provides the following:  
 

• A software system compatible with the Windows 10 platform. 

• Easy to use graphical user interface. 

• Saves automatically cropped detections of the DEBC weld for your review and records.  

• Records classification of potential partial failures of the cropped DEBC weld due to cracking.  

• Saves three levels of severity of possible cracked partial failures in the DEBC weld as red, yellow, 

and green, each in a separate text file. 

• Red: Likely a cracked component and should be reviewed and considered for maintenance. 

• Yellow: Potentially cracked, requires human expertise to ensure if component is in good 

condition or not. 

• Green: Likely in good condition and not in need of maintenance. 

• System name or title: DEBC Crack Detection 

• System category: 

− Application:  performs clearly defined functions for which there is a readily identifiable 

consideration and need 

• Operational status: 

− Operational  
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1.2 Project References 

 

References that were used in preparation of this document in order of importance to the end user. 
 

https://chrome.google.com/webstore/detail/chrome-remote-
desktop/gbchcmhmhahfdphkhkmpfmihenigjmpp?hl=en 

1.3 Authorized Use Permission 

 

1.4 Points of Contact 

 
Below is a list of Points of Contacts relevant to this project: 
 

Contact 
Name 

Contact 
Type 

Department  Telephone 
Number 

Email Oversight 
Function 

Ian 
Nordeng 

Student 
Developer  

Mechanical 
Engineering 

(920) 427-
2795 

Ian.nordeng@und.edu Project 
Developer 

Jeremiah 
Neubert 

Associate 
Professor 

Mechanical 
Engineering 

(701) 777-
2107 

Jeremiah.neubert@engr.und.edu Advisor 

 

1.4.1 Information 

 
The points of organizational contact (POCs) that may be needed by the document user for informational 
and troubleshooting purposes are currently not available. 

1.4.2 Coordination 

 
The list of organizations that require coordination between the project and its specific support function (e.g., 
installation coordination, security, etc.) are currently not available. 

1.4.3 Help Desk 

 
Help desk information including responsible personnel phone numbers for emergency assistance is 
currently not available. 

1.5 Organization of the Manual 

 
User’s Manual v0.01. 

1.6 Acronyms and Abbreviations 

 
Acronyms and abbreviations used in this document and the meaning of each. 
 

App:  Application 

MS: Microsoft 
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DEBC: dead-end body component 

CNN: Convolutional Neural Network 

GUI: Graphical user interface
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SYSTEM SUMMARY 

 
This software is intended for use with inspection images of a high-voltage powerline component, the 
DEBC, and is to be used to aid in the automatic classification of potential partial failures due to cracks in 
the weld. The system utilizes two different CNNs. The first CNN is used to detect possible DEBC welds 
in the image and crop them out for classification and saves them in a designated folder. The second CNN 
classifies if the cropped component detected previously contains a crack or partial failure. These 
classifications are designated by severity through either red, yellow, or green where red likely contains a 
crack, yellow is a possible crack, and green is likely in good condition. A simple graphical user interface 
is provided to allow ease of use to provide images to classify, designate where to save the output, and 
easily use the developed CNNs. 

2.1 System Configuration 

 
The GUI for the automated DEBC crack classification project is based upon Python 2.7. The user interface 
is built using the Tkinter libraries. These libraries were tied in with the two different CNNs developed to 
both detect DEBC welds, and to classify if the welds contain cracks or not. 

2.2 Data Flows 

 
Users interact with the system through a clickable interface. This interface is used for the user to provide 
the necessary information to the algorithm, while also providing feedback to the user as to the status of the 
algorithm. 
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GETTING STARTED 

 
This software provides a basic GUI consisting of a title screen, file choosers, and progress bars. The title 
screen provides the ability to choose where the images you wish to classify reside on your hard drive, as 
well as where you wish to store the output of the CNNs. Supported image formats include jpg and png 
files. Once these are provided, the two CNNs developed can be initiated, and the images are cropped as 
DEBC welds are detected, and then classified by severity of the DEBC condition due to cracking. 
Progress of the classification is provided through a progress bar to alert you how long the process may 
take. A help button is also provided to give basic instructions to use the software. An exit button is used to 
exit the software.  

3.1 Requirements 

 
Hardware: 

• Video Card (Tested with Nvidia Titan X and Nvidia GeForce GTX 1080Ti) 

o Minimum 4GB of memory.  

o CUDA support 

• Hard Drive: 4 GB 

 

Software: 
• Windows (Tested on Windows 10) 

o Microsoft Visual Studio 2015 with C++ programming language 

o CUDA 8.0 

o Python 2 with Microsoft C++ compiler package 

o OpenCV 

o Cmake  

o Git 

3.2 Installation 

 
It is assumed you have properly installed the dependent software listed above and ensured the cv2.py 
located in the opencv\build\python\2.7\x64 is placed in the Python27\Lib\site-packages folder.  
 

To install the DEBCCrackNet, you must run the build_win.cmd contained in the py-faster-rcnn/caffe-fast-
rcnn/scripts folder in the command prompt. To accomplish this: 
 

1. Start the windows command prompt and navigate to the folder py-faster-rcnn/caffe-fast-

rcnn/scripts/ which contains the build_win.cmd script.  

2. Type build_win.cmd and the installation process should commence. This will install the 

required CNN software, along with many other dependent software libraries packaged with 

this software.  

 

3.3 System Menu 

 
To run the software, you must run the “DEBC_crack_detection” file contained in the py-faster-rcnn 
folder. Once started the main menu is shown as: 
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The top button of the main menu, represented as “Import Folder”, is to provide the path where the images 
you intend to classify exist on the computer’s hard drive. Clicking on the “Import Folder” button brings 
up a new window to select the desired folder in which the intended image to classify resides as shown as: 
 

  
The “Export Folder” button performs a similar action but is instead used to select the folder you wish to 
store the cropped images of the DEBC weld as detected by the system, and the resulting classification text 
files of crack severity of said welds. Both the “Import Folder”, and “Export Folder” options must be selected 
before continuing with the “Start” button. If either import or export folders are not selected, an error 
message will prompt you to select the desired missing information. This is shown as either: 
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Once both an “Import Folder” and “Export Folder” are selected, you may click on the “Start” button. The 
“Start” button starts by initializing the DEBC detection CNN. Once initialized a set of two progress bars 
will appear and are displayed in the window: 
 

 
 

The top progress bar represents the amount of the total images contained in the input folder which have 
been considered by the DEBC detection network. The program creates a new image for any detected DEBC 
weld as a cropped segment of the original image containing only the weld. The cropped images are saved 
in the folder provided as the export folder and are named after the original image with an appended “_” 
followed by a digit. For example, with an original image titled DSC00015.jpg, a new cropped detection 
would be saved as DSC00015_0.jpg in the designated export folder. The digit represents the number of 
detected DEBC welds contained in the original image starting from 0. The process can be stopped at stopped 
at any time to return to the main menu by clicking the “Cancel” button. Supported image formats include 
jpg and png files. Once the DEBC detection is complete for all images in the input folder, the crack 
classification CNN is initialized and all images in the export folder are considered. This CNN reads all 
detected welds from the previous CNN, and outputs three different text files as Red, Yellow, and Green. A 
sample of the output of both the saved cropped detected images, as well as the text files from the detections 
is shown as:  
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Each text file stores the name of each image with the corresponding crack classification next to it as a 
number from zero to one with one being the highest probability of the cropped image containing a crack. 
The three designations of Red, Yellow, and Green represent the severity of a potential crack where Red 
represents a high likelihood the component contains a crack, Yellow may contain a crack, and Green 
likely in good condition. These color designations are split by threshold values in which Red thresholds 
are set by default as greater than or equal to 0.9, Yellow less than 0.9 and greater than or equal to 0.15, 
and Green anything less than 0.15. These thresholds are set from the config_thresh.txt file located in the 
py-faster-rcnn folder and can be altered as you see fit. 
 
A “Help” button is also provided to aid you in how to use the system as well as what is required. The help 
button brings up a new window with text describing much of the system and shown as: 
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3.4 Exit System 

 
To exit the system, click the exit button on the bottom of the main menu. 
 

3.5 Demo Example 

 
To fully introduce the intended process for classifying potential DEBC weld cracks, a demo has been 
created as a guide for the system. The following provides step-by-step instructions to show you how to 
use the software to analyze the demo images. 
 

Step 1: 
After completion of the installation process, navigate to the main folder titled py-faster-rcnn where it was 
installed. Inside this folder you will find a file titled “DEBC_crack_detection”. Double click this file. This 
will bring up a command prompt that will run in the background, as well as the main menu.  
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Step 2: 
In the main menu click on the “Import Folder” button on the top of the menu. This will provide a file 
dialog choosing window. Navigate inside this window to the demo folder contained in the py-faster-rcnn 
folder and select the demo_images folder and click “OK”.  

This folder contains three sample demo images which we will be classifying. The file dialog chooser will 
disappear after clicking “OK”. 
 

Step 3: 
Click on the “Export Folder” button 2nd from the top of the main menu. This will open another file dialog 
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chooser. Inside the new window, navigate to the same demo folder contained in the py-faster-rcnn folder 
and select the demo folder, then click “OK”.  
 
This will select the demo folder as the output where the cropped DEBC detected images will be stored, as 
well as the classifications of potential cracks in three separate text files.  
 

Step 4: 
With both an import and export folder created, you may then click on the “Start” button, which is located 
third from the top in the main menu. You will see the background command prompt provide information 
on loading the CNN used, and a window containing two progress bars will appear.  

The top progress bar will fill first representing the number of images considered for detection of the 
DEBC weld from the folder selected from Step 2 above or the import folder (demo_images in this case). 
Any detected DEBC weld will be cropped and saved to the export folder selected from Step 3 above, the 
demo folder in this instance. Once the top progress bar is filled the next stage of classifying the crack 
severity is performed. Next the crack classification will generate three text files in the demo folder, also 
selected in the “Export Folder” section, as Red, Yellow, and Green. All cropped images now in the demo 
folder will be considered, and the confidence level of a crack will be stored in one of the three text files 
based on the risk of a crack detected with Red being a likely crack, Yellow a potential crack, and Green 
likely in good condition. This step is completed when the second progress bar is full. 
 

 

Step 5: 
Classification of the demo images is now complete. To exit the progress bar window, you may click on 
either the “Cancel” button in the bottom right, or the “X” in the top right to close the progress bar 
window. 
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Step 6: 
You may now exit the program by either Clicking on the “exit” button on the bottom of the main window, 
or the “X” in the top right of the main window. The main window will then exit, and you may press any 
key on the remaining command prompt to fully exit the system. 
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USING the SYSTEM (Online) 

 
For remote use, the system is compatible with Google’s remote desktop application. Google remote 
desktop is an extension to Google Chrome which allows you to control one computer from another 
remotely over the internet. With images being provided to the computer running this software 
obtaining images, you may use this remote desktop extension to provide a portable system that can 
be implemented in the field.
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