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ABSTRACT 

In this work, fatigue behavior of glass fiber composite has been being investigated at different 

stress ratios and compared them with some previous model from literature. Ten layers of 

unidirectional glass fibers are used. Glass fibers and resin were supplied by LM Wind Power, a 

leading manufacturer of wind turbine blades. The plates were made by the VARTM (Vacuum 

Assisted Resin Transfer Molding) process to control fiber volume fraction and void content. 

Specimens were then post cured. Volume fraction was determined by burn off test and material 

strength by 4 point bending static testing. Four point bending fatigue tests were conducted at 

different stress ratios (min stress/max stress). S-N curve analysis, stiffness degradation analysis, 

model fit with desirable fatigue model and image processing has performed. This research is 

showing a transition of failure mechanism with the variation of maximum applied stress.  



 

 

CHAPTER ONE: INTRODUCTION 

 

There are four basic categories in structural materials: metals, polymer, ceramics and composites 

[1]. Composites can be made by various combinations of the three other material classes, which 

results in different properties. The earliest composite materials used by humans, were in 

macroscopic range. As the technology has improved the size of the phases in composite 

materials are decreasing. Today, nano-composite materials play a vital role in research and 

industry. Carbon nanoparticles, nano-fibers, nanotubes are well-renowned materials for their 

unique properties.  

Fiberglass is one of the first modern composite materials which is used in boat hulls, sports 

equipment, etc. Fiberglass reinforcement is very effective as many materials are stronger and 

stiffer in fiber form than in bulk form. Griffith [1] showed that as the rods and fibers got thinner 

they got stronger. The reason of this phenomenon is thinner rods and fibers are less diameter 

which causes less probability of failure that arises from surface cracks. Composite materials 

typically comprise two basic components, one is matrix and other is reinforcements. 

Metallic Oxides and silica are two raw materials for making glass fibers [1]. Mixture of these 

two are heated drawn by mechanically through a small orifice. E-glass is popular for its electrical 

properties and is commonly used in industry. For matrix materials polymers, metals and 

ceramics can be used. The matrix protects fibers from structural damage, hold them and 

distributes the applied or external load to the fibers. Ductility, toughness, and electrical insulation 

are common necessary properties for matrix materials depending upon their uses. To avoid 

unexpected reactions between matrix materials and fibers, they should be chemically compatible.  
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Examples of composite uses include automotive, aerospace, marine, architectural structure, and 

consumer products as skis, golf clubs, and tennis rackets [1]. They are widely used in aerospace 

industry because their specific strength and stiffness are higher than conventional metals.  

When a material is selected for design for a particular application, the properties of this material 

must be known. Various test methods are available to measure the properties according to their 

application and material. Static tests give an idea about the materials strength but almost all 

practical applications have some degree of variable load conditions. To design properly, it is 

needed to know the properties, strength or fracture behavior of a material in relevant loading 

conditions.  

Structural materials commonly fail by fatigue [2]. Fatigue is a phenomenon in which failure is 

observed at cyclic stress below the yield point. To induce fracture, some portion of local cyclic 

stresses must be tensile [2]. Applications like aircraft parts, rotating axle of automobiles, and 

turbine blades are all prone to fatigue. Some applications may not seem to experience cyclic 

loading but actually they do. An example is a bridge after a long service period. The varying load 

in the bridge may be the self-weight or different traffic density. Dealing with fatigue in 

engineering designs still is a challenging job and the only option to overcome this challenge is 

test the design material under cyclic loading.  
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CHAPTER TWO: BACKGROUND 

 

To determine a material’s service life, one must first define when the life will end or the part will 

fail. This requires the choice of failure criterion. For composite materials, this is more 

complicated than for conventional metals. Failure in composites can depend on fiber direction, 

volume fraction, materials type, etc. For example, unidirectional and woven composites give 

different failure stress values for the same loading condition. Also, different number of ply gives 

different strength. Tsai-Hill, Tsai-Wu [1] are the common failure criteria for composite 

materials. From the properties of matrix and fiber, ply stress can be determined for a particular 

loading condition. These ply stresses need to be compared with a failure criteria. Minimum 

safety factor among the ply stress give the maximum allowable stress for the material.    

 

2.1 Previous works on composite fatigue 

One of the main reasons to study the fatigue behavior of materials to find a model that can be 

applied in engineering applications. However, fatigue damage mechanism and failure prediction 

is not simple.   

Various researches has been done in the field of fatigue testing of different materials, including 

composite materials. Examples include fatigue life assessment [3, 4], damage modeling and 

propagation of failure [5, 7, 8, 11-15], effect of stress in off-axis fibers [6], Failure Criteria [5, 9], 

developing models for fatigue life prediction [16, 19-21].   
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2.1.1. Computational Work 

 

Eric Hanus and Torsten Ericsson have discussed computational modeling of fatigue in composite 

[10]. According to the authors, in the engineering design field, the safety factor is used for 

composite materials are almost same as metal. But composite materials are not as homogeneous 

as metals due to reasons like fiber misalignment, void, porosity, technician’s faults, etc. So it is 

necessary for design with composite materials to know the life cycle in fatigue [10]. Makeev and 

Nikishkov [3] presented an approach to know the fatigue life of composites without destroying 

them.   They use CT (Computed Tomography) which is a non-destructive evaluation technology 

to determine the manufacturing defects including wrinkles and voids. There are some several 

assumptions that were used to calculate the dimensions of different defects [3]. A finite element 

model was developed after the detection of defects. As composite materials are highly 

anisotropic, a three dimensional stress-strain relationship was required for this modeling.  

Makeev et al [29] shows a method called simple short-beam shear (SBS) test which is capable to 

determine 3D consecutive properties with the help of Digital Image Controller. To inform the 

aerospace industry about this new method that identify defects and find life time based upon this 

study, is one of the main objectives of authors [3]. The main success of this work is the very few 

samples needed for SBS test which can characterize the materials. Among various critical issues 

in aerospace industry, to design and built a part at the first time that would be sustaining fatigue. 

First time yield for designs is around 20%-30% and 70%-80% in production [3]. That means 

around 20%-30% designs have passed at first time after design and 70%-80% have passed in the 

production phase. This is really difficult for designers as there is no particular tool or method for 

this. This method developed by the authors will successfully predict the fatigue life. 
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Lifetime in fatigue also can be determined by progressive damage modeling (PDM). Labeas and 

others discussed a method based on a similar procedure [5]. In conventional PDM, a large 

amount of post-processing is required this is impractical for large-scale structures. The study of 

Lubeas et al. a small-scale damage topology was compared with large structure and appropriate 

modifications of this data were used with classical PDM methodology. In the large-scale 

structure, numerical modeling required a large amount of computational effort. After the initial 

numerical results are achieved, post-processing takes significant time due to a large number of 

DOF’s. For this reason, there is no published works that demonstrate this large computation in a 

large structure. Lubeas et al. presented a method to overcome this problem with large structure 

[5]. Proper modifications have been made in the classical PDM methodology in order to apply 

damage initiation and progression in the large composite structure. Stress analysis is performed 

by a sub modeling technique. The proposed modification in the PDM applies generic shear 

joints. One key conclusion is that to determine large scale structural behavior damage evolution 

is crucial and it is impractical to identify damage evolution without the proposed method [5]. 

2.1.2 Influence of Mean Stress 

 

Kawai and Suda [6, 19] demonstrated the influence of mean stress on unidirectional composites. 

To perform experiments, they used carbon epoxy coupons. 

  Mean stress = (Max Stress +Min Stress)/2    Eqn (2.1) 

A model to determine the number of cycles was proposed: 

   n (R) = A exp(
���� )       Eqn (2.2) 

Where A is a material constant and the absolute value of R should be less than 1. 
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The results of the study support the idea that the relative fatigue strength of a particular type 

material becomes lower with the decreasing stress ratio [6].  

2.1.3 Cumulative Damage Model 

 

Subramanian et al. [11] proposed a cumulative damage model to predict fatigue life. They 

conducted experiments on a composite laminate with a (0,903) layup. They found that most of 

the stiffness degraded after 10% of the life of a sample. Below 10%, most of the crack growth 

occurs in the 90 degree ply. After that, fatigue life depends mostly on the 0 degree ply. A pre-

defined S-N curve for the 0 degree ply provided data for further investigations. The authors 

proposed Eqn (1.3) to be used to calculate the changes in interfacial efficiency with cycles. The 

term interfacial efficiency is used to model the degradation of the interface under fatigue loading 

[11]. The change in the efficiency is a function of cycles that estimated from Stiffness reduction 

data.  

    �= 0.76- e7 log(n)      Eqn (2.3) 

A damage parameter can be calculate by the following equation 

    D(n)= 1-(E(n)/Eo)      Eqn (2.4) 

Where, n is the no of cycles, E(n) is stiffness after n cycles, and Eo initial stiffness.  

2.1.4 CG Method 

 

A new methodology for predicting fatigue of fiber reinforced plastic (FRP) laminates based on 

the evolution of the center of gravity (CG) of the hysteresis loop has been proposed [4,17]. This 

method can be applied by testing only one sample. The CG method is an alternative approach to 

S-N curve to finding the fatigue life [4]. 
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Hysteresis loop evolution is an important indicator of the degradation of a material’s properties 

during fatigue testing. Displacement, stiffness and dissipated energy can be summarized from 

HL. If the evolution of the HL can be studied during fatigue testing then any sudden change in 

the evolution can be determined. This can be linked to the failure of the coupons.  

The HL evolution curve has been identified as a new parameter to determine the degradation 

properties. Momenkhani and Sarkani [4, 17] introduced a new method, the CG method that is 

very useful to determine damage accumulation. For every HL, there is point that has influence at 

every point upon this graph and this is called CG of this particular HL. Equation [] can be used to 

find the CG of each HL curve.  

   XCG =
������	YCG =

���
��	         Eqn (2.5) 

where, A is area under the HL curve. 

After getting all the CG of every HL and connecting them there is a trend line will be observed. 

Several straight lines can be drawn by connecting the CGs; each line represents a particular 

stress ratio. Fatigue damage of FRPs can be determined by studying these straight lines. Each 

curve can be created by testing only one specimen.  

The CG method is not dependent on the number of cycles. To correlate the no of cycles between 

CG, it is necessary to plot a graph. The graph would be X component of the CG at the failure 

points at different stress level Vs the no of cycles at failure. Figure [2.1] represents the graph. 
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Figure 2.1 : X component of CG vs Number of cycles [4] 

Fatigue life of untested stress ratio can be predicted by the relationship among the x component 

of CG at specific points vs. the no of cycles according to: 

   Log(N) =a e0.0762/X
CG     Eqn(2.6) 

where, a represents a model parameter that can be obtained from experimental data. 

By testing only one sample at each stress level all information can be calculated. The DL is first 

identified for a low stress level. After DL line is created, the test can be stopped and can be 

performed at another stress level. Repeating this procedure to low to high stress ratios allows the 

CG method to be applied. 

2.1.5 Power Law Model 

In the field of fatigue of analysis, the power law model [30] is extensively used for the metals. 

This model can also be used for composite materials in some cases. The power law model is 

shown in Eqn (2.7). 



9 

 

    N Sm=K      Eqn (2.7) 

Here, S and N represent stress and cycle respectively. K and m are material properties. They can 

be determined from experimental data by linear regression of log(S) and log (N). Figure [2.2] 

shows a typical S-N curve.  

 

Figure [2.2]: Typical S-N curve [2] 

 

A modified power law relationship has been used for FRP; it is called the Manson-Coffin 

relation and is shown in Eqn (2.8).  

    sNd=c       Eqn (2.8) 

where, d and c are model parameters and s is ratio of applied stress and the ultimate strength: 

   s = S / Sult     

2.1.6 Inverse Power Law Model 

Hwang and Han [4] proposed another relationship of S-N curve model which the referred to as 

the inverse Power low model. 
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    N= [B (1-S)]1/c      Eqn (2.9) 

Where, B and c are fitting parameters. Observations made from the data of Hwang and Han [26] 

fitted best with the model in the low cycle (105) fatigue region. Howson et al. [27] shows the data 

range that fit is more than 105 and less than 106.  

 

2.1.7 Stiffness Degradation 

When a material undergoes fatigue loading there is some cracking and fracture initiated at the 

microscopic scale. This can be happen for a number of reasons including matrix cracking, fiber 

de-bonding, fiber fracture and ply delamination. As a result, some reduction occurs in the 

stiffness of this material. Yang et al [28] shows an approach called the residual stiffness 

approach. The assumption of this approach is that degradation of the stiffness can be expressed 

as a power function of the number of cycles. The expression is shown in Eqn (2.10). 

   
���� =-E0Qvnv-1      Eqn (2.10) 

Where, E0 and ��represent the initial stiffness and stiffness after n cycles, respectively. Q and v 

are model parameters that depend on loading frequency, stress ratio, applied stress and the 

environment.  

2.1.8 Fatigue Damage model 

Fuqiang and Weixing [12] presented a fatigue damage model of composites based on the 

stiffness degradation method using two parameters. The relationship between the parameters and 

the fatigue life of the composite is proportional and inversely proportional, respectively, with the 

fatigue loading level. Fatigue loading level is the combination of maximum stress and ratio. The 

authors propose that the residual fatigue life can be determined from 4 sets of two level 
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experimental data. Under cyclic loading, structural changes develop at the micro-scale in 

composite and cannot be reversed. When the number of cycles increases continuously structural 

changes also increases and initiate a failure. As the micro-scale change increase, the strength and 

material stiffness also change. The authors assumed that when the initial load is applied to the 

composite a crack first developed in the matrix region and, with increasing load cycles, this 

matrix crack grows into fiber region. As a result, the material suddenly fails. To determine the 

changes of Young’s modulus, a stiffness degradation technique can be applied. Using this 

stiffness degradation model, one can find the fatigue life at the middle or at end of life of a 

composite material. The proposed model of the damage is showing in Eqn (2.11): 

  D (n)= (E0-E(n))/(E0-Ef) = 1-(1-(n/N)B)A    Eqn (2.11)  

Where, E0= initial Young’s modulus, Ef= failure Young’s modulus, N is the fatigue life, n is the 

life cycle at an instant time. A and B are model parameters and they are determined statistically 

from experimental data. D(n) is a damage development parameter.  

At every cycle, this parameter depends on the previous load cycle. The authors proposed a 

cumulative damage accumulation parameter ni. 

  D(ni) = 1- �1 − ������,����� ������     Eqn (2.12) 

  ni,i-1 = Ni�1 − �1 − ����������,������� ������������  � ��!
   Eqn (2.13) 

	", 	"��, #", #"�� are the parameters under the ith and (i-1)th fatigue loading, respectively. 

$"and$"���are the cycles under the ith and (i-1)th loading cycles. %"and%"�� are the fatigue lives 

corresponding to the ith (i-1)th applied loadings. 
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Another damage model was presented by Mao and Mahadevan [13]. They proposed:  

   D = q(
��)m

1 +(1-q) ( 
��)m

2     Eqn (2.14) 

where, D is normalized accumulated damage and q, m1, m2 are material dependent parameter. n 

is the number of applied loading cycles and N is the fatigue life. 

2.1.9 Strength Degradation Concept 

Both the strength as well as elastic moduli decrease with fatigue damage. Halpin et al. [31] 

suggest a method to find of damage of composites by residual strength. Yang et al. [32, 33] and 

Yang and Jones [34] have done a lot of work on a residual strength approach. Eqn (1.15) is 

suggested by Yang and jones [34]. 

    Dsr/dn=-ASr
1-p/P     Eqn (2.15) 

where A and P are model parameters. Researchers suggest that there is a dependency of A upon 

the applied stress at the nth cycle and initial ultimate strength.  

2.1.10 Damage Mechanics Model 

Wenjing et al. [14], present a model by which fatigue life of fiber reinforced polymer can be 

found. A continuum damage evolution equation has been developed analytically and coefficients 

of that equation were determined by the fatigue testing of 0° and 90° unidirectional laminates. 

Fatigue test data were generated for off-axis unidirectional laminates and was compared with 

model data. E-glass fiber and polyester resins GT200(GFRP) were used. 30° and 45° fiber 

orientations were used for the samples and the fatigue test was conducted under tensile stress 

with ratio R=0.1.  

To derive this continuum model, the authors first assume is that damage of the composite lamina 

can be represented as damage of the fibers and of the matrix. They included two independent 



13 

 

variables; one is damage degree of fibers and other is damage degree of matrix. Then the overall 

stiffness matrix for the lamina was established with these two parameters and other properties of 

the fibers and matrix. The authors used a thermodynamic relation [14] where the damage driving 

force is claimed as a thermodynamic relationship. After some algebraic manipulation, a relation 

was developed for fibers and matrix separately. This equation is called the damage evolution 

equation and parameters of this equation can be determined by experiment. 

The damage evolution equation’s parameters for the matrix and fibers were determined by the 

fatigue experiments. It is assumed by the authors that in a 90° unidirectional laminate the fatigue 

life mainly depends on the matrix. The up and down method was used for the fatigue limits. Up 

and down method is a statistical technique. By this method if one sample sustain in a loading 

condition then that sample tested further by increasing the applied stress [35].  The same 

procedure was used for finding the parameters of the damage evolution equation for the fibers. 0° 

unidirectional laminate were used by assuming that fatigue life of that entirely depend on fiber 

life.  

After finding the parameters of all the model equations, fatigue life prediction was made by 

making additional assumptions and setting a failure criterion. The first assumption was that 

influence of & on the damage degree of fiber causes the fiber breakage. The second assumption 

was &is perpendicular to the fiber so there is no effect this is on the fiber breakage. So the matrix 

is under multi-axial state of stress. For the failure criterion, the authors used the unit value for 

damage coefficient for both fiber and matrix breakage. 

Finally, experimental data and model data is presented with comparison and the error values, 

which showed good agreement. Experiments indicate that, at the same cyclic loading fatigue 
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lives decrease as the angle of the fiber axis increases. The failure behaviors also follow in a 

similar fashion which is after matrix failure, fiber failure has occurred.   

Owen and Howe [15] presented another damage model. According to the authors, fatigue 

damage in chopped strand matrix polymer is non-linear and stress independent. Miner rule 

cannot be applied for chopped strand composite due to non-linearity. They represented an 

equation for fatigue: 

   �= �{ B ( 
����) –C ( 

����)2 }      Eqn (2.16 ) 

Here, � is 1 at failure. $" And %" are the number of cycles endured and the number of cycles to 

failure, respectively. 

2.1.11 Empirical Model 

Epaarachchi and Clausen [16] presented an empirical model for various test frequencies and 

stress ratios in fatigue. For a specific composite this model needs a large amount of experimental 

data. Final model glass fiber composite is below 

  � '(')*+ − 1� ( '(')*+)0.6-�|sin �| �(��∅)�.0�ἠ234 ᶿ �6  = �*(N-1)   Eqn (2.17) 

A single graph can be drawn for a material irrespective of stress ratio, R, and test frequencies, f.  

2.1.12 Slaughter Model 

The compressive strength of fiber reinforced composites is relatively low; the value of 

compressive strength is sometimes less than 60% of tensile strength. This failure mechanism 

under compressive loading in polymer composites is called micro-buckling and occurs not only 

static loading but also in fatigue. Slaughter and Fleck presented a theoretical model [20, 21] 

which describes compressive fatigue micro-buckling.  
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The authors presented their model for monotonic compressive loading for fiber composite. They 

assume that a structure has developed imperfections during manufacturing due to initial 

misalignment of the fiber. This band of misaligned fibers is responsible for the micro-buckling. 

This misalignment is called a kink band angle, denoted by � in Figure [2.3]. Kink band angle is 

measured from the direction normal to the fiber and has a width w. 7stands for initial kink band. 

After summing all the forces in �2 direction, following Eqn (2.18) is obtained. 

 

Figure 2. 3: Kink band geometry and notation [21] 

 

  &8 cos < sin(7 + 7) = A cos(β −7 − 7) + &C sin(β −7 − 7)             Eqn 

(2.18) 

 

where, &8 stands for pure axial compression, A stands for shear stress in ∈�E− ∈FE coordinate 

system, &C is normal stress in the 2 direction.  Assuming 7,7 are very small we can write 
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��������������������������������������������������������������������&8 ≈ H�'I JKLMN�N      Eqn 

(2.19)  

  ��������������������������������������������O ≈ ∅                                                     Eqn 

(2.20) 

According to Budiansky and Fleck, critical micro-buckling stress can be evaluated by previous 

Eqn (2.20). Assuming quadratic yield criteria,  

   (�/ �y)
2+( 	t/	ty)

2 = 1      Eqn (1.21) 

where, �y and 	ty are the plain strain yield stresses in pure shear and pure transverse tension, 

respectively. � and 	t are the applied stress in shear and transverse direction, respectively.  

Now a new parameter is introduced, R= 	Ty/�ywhich stands for eccentricity of the yield ellipse. 

Plastic strain rates and plastic shear strain are expressed in terms of effective shear stress.  The 

effective plastic strain is defined: 

     ET/G=R2      Eqn (2.22) 

  ����������������������������O = � A/QRAS      Eqn (2.23) 

                      ������OS=T∅       Eqn (2.24) 

    OU = AU/Q      Eqn (2.25) 

where, 

    T = V1 + WFXY$F<     Eqn (2.26) 

From the equation of pure shear, OU = AU/Q, equation (A) can be written as following 
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�����������������������������������������������������������Z8 = [\�]      Eqn (2.27) 

where, Z8 = &8/Q∗, X = AS/AU, _ = OS/OUand` = 7/OU∗. 
��������������������������������������������������aQ∗ = TFQOU∗ = OU/Tb      Eqn (2.28) 

Batdrof and Ko (1987) suggested and Budiansky and Fleck developed a Considere diagram that 

can be drawn like below on behalf of Eqn (2.27) where _ = �Q QRc X 

Figure 2. 4: Graphical representation for calculating critical micro-buckling stress under 

monotonic loading [21] 

 

From Figure [2.4], Eqn (2.29) can presented 

b ����������������������������������������������������������[def ghij(��)k�/�����������������������������������������������������������������������ldme �
�n�jg��/� hi���(��)/

o     Eqn (2.29) 

where n is the material parameter, tc is strain component and Sc
� is stress component. 

During a compression-compression loading cycle, first the initial load is increased to Smax
� then 

it is decreased to Smin
� . Here R= Smin

� /Smax
�. Figure [1.5] represents the loading cycle.  



 

Figur

 

Effective stress and strain, t and

phase. Peak stress and strain, t2 an

stress strain history. 

Figure 2.6
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When load is reduced from maximum to minimum, the Mroz multi-yield surface hardening rule 

can be used to determine the composite constitutive behavior. Eqn (2.30) can be used to 

determine the effective stress in the kink band during unloading phase:  

    _ = _2-  
Fpp�([�q�[)/F((XF − X)   Eqn (2.30) 

Using Eqn (2.30) for minimum and maximum stress, the difference between these two values are 

calculated. Using Eqn (2.31), the difference in effective strain also can be determined from the 

difference in effective stress.  

  

�������������������������������������������������������Δη = tu (Δt/2)L                              Eqn (2.31) 

∆_p can be found in terms of yz{|8 , yz"�8 , ` and n. The following equations are solved for root.  

������������������������������������������������XF − Zz{|8 �XF + }u XF� + ì� = 0���������������������������������������������Eqn (2.32) 

�����������������������������������∆X − �1 − l)�ml)*+m � XF + Zz"�8 �∆X + tu (∆X)� + ì� = 0����(�)����       Eqn (2.33) 

As the power of this equation is n, so there is n no solutions, but among them smallest positive 

real solutions is our interests. After solving the other parameters we can find the no of cycle for 

particular stress condition by the following equation.  

���������������������������������������������������������������������∆]F = ���U� (2%�)�                             Eqn (2.34) 

 

In this paper there are remaining two chapters. Materials were test methods were discussed in 

second chapter including brief description. Third chapter is belonging to results and discussion 

with test data and analysis. Besides the S-N curve stiffness degradation analysis, adequate model 

fit and image processing analysis with appropriate image has been discussed.   
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CHAPTER THREE: MATERIALS, TEST METHODS and ANALYSIS 

 

3.1 Materials  

To conduct this study, E-glass fiber and polyester resin were used. Reinforcement and matrix 

materials were supplied by LM Windpower. LM Windpower is a leading wind turbine 

manufacturer. Unidirectional E-glass fibers were used in this research. Chopped strand fibers 

were attached to one side of the fiber sheet. The amount of chopped strand is approximately 6% 

of total fiber by weight [18]. Table [3.1] represents the properties of fibers.   

Table 3.1: Properties of E-Glass fiber [18] 

E-Glass Fiber 

Property Value Unit 

Tensile Strength 1700-3500 MPa 

Density 2490 kg/m3 

Modulus 73 GPa 

Shear Modulus 30 GPa 

Poisson’s Ratio 0.23  

 

Resin used here was POLYLITE® 413-575 The properties are in Table [3.2] given below.  

Table 3. 2: Properties of POLYLITE® 413-575 [18] 

POLYLITE® 413-575 

Property Value Unit 

Tensile Strength 40-90 MPa 

Compressive Strength 90-250 MPa 

Shear Strength 45 MPa 

Density 1100-1500 kg/m3 

Modulus 3.2-3.5 GPa 

Shear Modulus 0.7-2.0 GPa 

Poisson’s Ratio 0.3-0.35  
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3.2 Plate Fabrication  

For this study, plates were fabricated by Vacuum Assisted Resin Transfer Molding (VARTM). 

Details the fabrication process are in below. Figure [3.1] shows the E-glass fibers. 

 

Figure 3.1: Images of fiber reinforced used during this study 

 

There are two faces of fiber in the Figure [3.1]. Left side of the red marking represents clean 

surface and right side represents surface with chopped strands. The reason of name termed as 

clean surface is this surface is free of chopped strands.  

Figure [3.2] shows the supporting materials for making plate. 
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Figure 3. 2: Supporting materials for vacuum bagging 

 

3.3 Steps in manufacturing process 

o Clean the metal work surface. 

o Place two sided sealing tape at the approximate boundary of vacuum bagging.  

o Apply release agent (wax) to work surface.  

o Stack fiber. At the mid-plane clean side were facing each other.  
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Figure [3.3] shows the drawn diagram for 10 layers lay-up of fibers. 

 

Figure 3. 3: Sequential lay-up of 10 layers plies. 

 

o After stacking 10 layers of fibers, peel ply was placed above them. 

o Square perforated plates were placed above the peel ply. 

o Breather ply was placed above the rectangular plate. 

Figure [3.4] shows the sequential lay-up of supporting materials with fibers. 
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Figure 3. 4: Sequential lay-up of all supporting materials with fibers 

 

o Spiral tube was attached with suction tube of resin and the spiral tube was placed 

above the breather.  

o Another spiral tube was attached to the resin exhaust tube below the peel ply and 

above a two sided tape.  

o Plastic vacuum bagging was placed in a fashion that four wrinkles will be 

necessary. To make wrinkles four extra identical vertical sealing tape was 

attached in flat tape.  

o Inlet tube was bent and taped to make airtight. Outlet tube was attached with resin 

collector which was attached with the vacuum pump.  
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o Vacuum pump was started then to check the pressure. It is required to maintain   

(-) 27 kPa. Need to locate out any potential leaks that will cause a reduction in 

vacuum level.  

o After confirming the vacuum pressures, resin infusion can be started.  

3.3.1 Resin Infusion 

o Weigh a plastic pot with stirrer.  

o Pour approximate quantity of resin in that pot (W1). 

o Weigh again the pot with resin (W2). 

o Subtract the 1st weight from 2nd one (W3=W2-W1). 

o Calculate 1.5% of subtracted value (W4=1.5%of W3). 

o Calculate the display value of pot+ resin+ stirrer+ desired initiator 

(W5=W4+W2). 

o Slowly pour initiator into the resin; if needed, use dropper. 

o Write down the time immediately after pouring initiator. 

o Mix properly, alternating clockwise and anticlockwise; make 8 CW and make 8 

CCW. All the steps should be done minimum 30 sec 

o Place the pot with mixture (Top surface of the mixture need to be at 16-20 cm 

below from the surface of the metal plate in which fiber is placed). 

o Bend the inlet pipe properly then dip into the resin. Make sure no air bubble are 

going into the pipe (if needed, use tape to bend the pipe). 

o Unbend the pipe and vacuum infusion will start. 

o Check with eye that is there are not any bubbles coming from any side of the 

taping. 

o Wait for resin to reach the vacuum side spiral tube at all points. 
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o Reduce the pressure 30%. 

o After 10 min, cut off the resin transfer. 

o Wait for curing 24 hr (standard time). 

o Remove the plate from the vacuum bagging; place in oven at 65°C for 14 hr (post 

-cure). 

3.4 Test Sample Preparation  

After room temperature curing and post-curing, test samples were cut from the plate.  

Approximately 15-18 samples can obtained from 610 mm wide plate. According to ASTM 

D6272 [25] standard dimensions of each sample 203.2 mm x 25.4 mm x thickness. The plate was 

cut to the dimension: 254 mm x 25.4mm x thickness. The extra portion have taken in the 

longitudinal direction to keep some extra portion outside of support span. Cutting was done by 

table saw and marked instantly. A diamond saw blade was used for cutting.   

3.5 Hardness Test Result 

After cutting all the samples, hardness was measured by shore hardness tester manufactured by 

CheckLine. The name of this equipment is DD-100. The resolution of this machine is 0.1. 

Hardness data are in Appendix A. The average value of the hardness for plate A is 89.1, for plate 

B is 88.2 and for plate D is 88.4. 

3.6 Static Test  

Static 4-point bending tests were performed using a 50-kN SHIMADZU AG-IS universal testing 

machine. Figure [3.5] shows the free body diagram of 4-point bend test.  
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Figure 3. 5: Free body diagram of 4-point bend test 

 

here, 

o P= Load 

o L= Acting length (Support Span) of the beam 

For both static and fatigue, L can be chosen. In this study, L was taken as 203.2 mm. Load span 

was taken here one third of support span. The test was conducted under displacement control; 

applied load was monitored. The crosshead speed varied sample to sample and was calculated by 

using Eqn (3.1) from the ASTM D6272 [25]. 

   R=0.185ZL2/d       Eqn (3.1) 
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here, 

o R= rate of crosshead motion [mm/ min] 

o L= support span [mm] 

o d= depth of beam [mm] 

o Z=0.01 

To calculate the strength of the composite, Eqn [3.2] was used. This equation is valid when the 

support span to depth rations greater than 16. 

 �S = (PL/bdF)�1 + 4.70(DF/LF) − (7.04Dd/LF)�                Eqn (3.2) 

Here, 

o B = width of beam [mm] 

o D = Maximum deflection of the center of the beam [mm] 

3.7 Fatigue Test  

Fatigue testing was performed using a Bose Electroforce 3510 testing machine. The theoretical 

capacity of that machine is 7.5 kN. But this depends on the average applied load: heat generated 

by the magnetic actuators reduces the actual capacity. For these tests, the maximum load 

capacity was set for 7.1kN. Figure [3.6] shows the experimental setup for the fatigue test. 
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Figure 3. 6: Pictorial view of fatigue test set-up. 

 

 This jig is only applicable for a positive load ratio. It is not able to pull the sample upwards.  

  Load Ratio, R = Minimum Load/Maximum Load  Eqn (3.3). 

Prior to fatigue testing, the control parameters must be identified (i.e. the system must be tuned).  

Samples were placed in the jig with proper way. Load control was specified and sinusoidal 

loading curve was chosen. The Tune IQ function was used to determine the PID control settings. 

 

3.8 Determination of Volume Fraction 

After conducting fatigue tests, volume fraction of fiber of each plate have determined according 

to ASTMD3171 [24]. A thin portion was cut from the samples to conduct the burn off test. The 

approximate dimension was for the thin portion was 6 mm x 25.4 mm x thickness of each 
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sample. A water filled test-tube was used to measure the volume of samples. Samples were 

placed in the test-tube and the increasing in volume was measured. Then mass of each sample 

and the mass of crucible was measured. The samples were placed in the oven for four hours at 

600°C to burn off all the resin. After cooling the crucible the mass of the remaining fibers was 

measured. Finally, Eqn [3.4] was used to calculate the fiber volume fraction of each sample.  

V.F = (Mfiber/Mcomp)*100*(Densitycomp/Densityfiber)      Eqn (3.4) 

Table [3.3] shows the average fiber volume fraction of each plate.  

Table 3. 3: Fiber volume fraction results 

Plate Volume Fraction 

A 59.4 ± 0.44 

B 56.4 ± 0.78 

D 55.8 ± 2.31 

 Overall Mean 57.22 ± 2.065 

 

Fiber volume fraction is a properties that depends on the manufacturing process. Hand layup and 

VARTM process gives different values of volume fraction of fiber. Sadeghian et al [23] stated in 

their article that they found 43% volume fraction for the glass fiber composite by VARTM 

process. Reimbayev, M. [18] did similar type of study with similar material as this study. He 

found around 58.9% fiber volume fraction of 8 layers of plate with the VARTM process.  

3.9 Stiffness Degradation Analysis 

When a beam deforms under fatigue loading, deflection of that beam increases as the no of cycle 

increases. That means the stiffness of the beam decreases with the increasing no of cycle. In this 

work, stiffness degradation of every sample has calculated and then plotted them in a same 
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fashion to find any co relation. Following figure represents the free body diagram of four point 

bending tests that was used here.  

To find the stiffness following Eqn [3.5] is used [9]. 

  Ebend= P*a* (4a2-3L2)/(48DI)      Eqn (3.5)  

All of the parameters of above equation are constant for a particular sample without load, P and 

deflection, D. These two parameters can be found from the data file that was stored in the 

computer connected with fatigue test machine. At every hundred cycle of a fatigue test computer 

stored load and deflection data for that particular cycle in a file. With this data and from above 

equation, stiffness of every hundred cycle has calculated. After normalizing the stiffness and no 

of cycle, they are plotted. Plotting details is in result and discussion section.  

3.10 Image processing 

When a sample fails in fatigue test, it observed fracture in it’s surface. Sometime fracture occurs 

only in compression or tension surface, sometimes in both surfaces. To quantify this surface 

fracture in both surface and finding a relation with maximum applied stress or any other factor, 

image processing of failed samples has done. To perform the image processing picture was taken 

for all the samples in an isolated condition. Isolation means here same lighting, same distance 

from surface, same angle of camera. After getting picture of every sample in a same fashion, 

they processed in Image J software. But to perform various level of thresh holding and also 

making compare with other software, Matlab function was used. All of data are presented in 

result section to show the co relation. An image is transferred to gray picture from RGB picture. 

When it was converted in gray form, all the pixels are marked in 20 to 200 numerical value of 

color range. Then for thresh holding application the algorithm is select a numerical value of color 

between the previous range. The this value has applied in such a way that, below this value all 
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the pixels are converted to black region and above this value all the pixels are converted to white 

region.  

  

3.11 Failure or stopping Criteria 

The stopping criteria of each fatigue test in this study are chosen maximum life-time and 

maximum crosshead displacement. Maximum infinite life-time was 2 million cycle for this 

study. That means the test topped after reaching the two millions cycles for a particular sample if 

that sample was not failed. But those samples were failed before two million cycles, the stopping 

criteria for those sample were maximum displacement. The maximum displacement was 23 mm. 

The reason of choosing 23mm as limit of maximum displacement is that in the static test all the 

samples failed before 22mm.  
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CHAPTER FOUR: RESULTS AND DISCUSSIONS 

 

4.1 Static Test Result 

Five samples from single plate were tested statically under the procedure of ASTM standard 

D6272 [25]. The test method was 4 point static bending test. According to the standard all 

coupons were cut 254-280 mm long parallel to the fibers and 25.4 mm wide in the transverse 

direction. The support span was used as 203.2 mm and load span was one third of support span. 

After measuring all the dimensions of a particular sample, the crosshead rate was calculated 

using Eqn (3.1). Load and crosshead displacement were captured during the test. Maximum fiber 

stress and maximum strain were calculated according to Eqn (3.2) and Eqn (3.3), respectively. 

The Table [4.1] shows the calculated data for every sample in static testing. 

Table 4. 1: Static test result 

Sample  

Name 

Width  

(mm) 

Depth 

(mm) 

Rate of 

Cross 

Head, R 

(mm/min) 

Deflection 

At max 

load, D 

(mm) 

Strain 

(mm/mm) 

Maximum Fiber Stress, S 

(MPa) 

A3 25.1 8.44 9.05 19.5 .019 769 

A6 25.28 8.51 8.978 22.21 .022 821 

A9 25.63 8.54 8.941 20.52 .02 792 

A12 25.75 8.56 9.923 20.53 .02 781 

A15 25.72 8.5 8.986 20.67 .021 790 

Average 790.6 

Standard Deviation 19.27 
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The average flexural strength was determined to be 790.6 MPa with the standard deviation of 

19.3 MPa. Figure [4.1] shows the applied force vs displacement of the samples. It can be seen 

that the behavior of every sample in static test was similar. All samples failed by 

buckling/delamination on the compressive surface of the beam.  

 

Figure 4. 1: Force ( kN) vs Displacement (mm) graph of static testing 

 

Figure 4. 2: Stress (MPa) vs Strain (mm/mm) of static testing. 
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Figure [4.2] shows the relationship between the stress and strain of each sample. 

Flexural modulus /slope have been calculated from this curve. 

 Flexural modulus= 
l[�SRR��l[�SRR�l[�{"���l[�{"�� = 

t���}��.�����.��uF = 4.1 GPa 

 

Figures [4.3-4.4] show the images of the compressive and tensile faces of the specimens.

 

Figure 4. 3: Compression surface of failed samples from static test 
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Figure 4. 4: Tension surface of failed samples from static test 

 

All samples from Figure [4.3] shows the failure is in compression. On the other hand, all samples 

of Figure [4.4] show only little edge fracture in tension surface. But the edge fracture in last 

sample is slightly bigger than other four. 

4.2 Fatigue Test Result 

After determining the maximum average strength from static testing, fatigue testing was started. 

Various values of stress ratio, R, were chosen for the fatigue testing. Here, 

R= (Min Stress)/ (Max Stress)      Eqn (4.1) 

R=0.1, 0.3, 0.5, 0.7 for these tests. Dimensions of fatigue samples were the same as for static 

testing. The maximum applied fatigue load was approximately 90% of the maximum static load. 
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Then maximum applied load was decreased as R was held constant to create an S-N plot for each 

value of R. Tests were conducted under the load control and failure criteria was defined by two 

conditions. One is displacement of the load span which is same for the test coupon. The value of 

the maximum displacement was given to 22 mm. Decision was made from the observation of 

static test. The second criteria was number of cycle in the test as 2 million. Table [4.2] shows the 

results of all fatigue tests. 

Table 4. 2: Fatigue Test Data 

 

Load Ratio, 

R 

Sample 

Name 

Length, 

L (mm) 

Thickness 

(mm) 

Width 

(mm) 

Maximum 

Stress   

(MPa) 

Minimum  

Stress 

(MPa) 

Cycles to 

failure 

0.1 D14 203.2 8.83 25.82 666.2 66.6 540 

D2 203.2 8.87 25.82 600.2 60.0 1502 

D10 203.2 8.66 25.84 576.7 57.7 13809 

D17 203.2 8.69 25.40 529.7 53.0 33630 

D12 203.2 8.68 25.51 475.7 47.6 108390 

D13 203.2 8.73 25.53 365.5 36.6 594720 

D18 203.2 8.69 25.88 259.9 26.0 2000002 

 

0.3 A13 203.2 8.54 25.76 711.0 213.3 76 

A7 203.2 8.57 25.60 702.5 210.7 852 

A16 203.2 8.56 25.54 651.5 195.4 4736 

A18 203.2 8.52 25.51 603.5 181.1 13772 
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A8 203.2 8.55 25.60 542.9 162.9 43323 

A17 203.2 8.50 25.60 494.4 148.3 44248 

A11 203.2 8.54 25.57 381.4 114.4 583926 

A4 203.2 8.47 25.76 274.9 82.5 2000002 

  

0.5 A5 203.2 8.64 25.69 699.3 349.7 192 

F3 203.2 8.55 25.59 675.4 337.7 2984 

B17 203.2 8.77 25.72 616.3 308.2 61773 

B18 203.2 8.76 25.72 566.2 283.2 88838 

B16 203.2 8.87 25.70 502.5 251.2 182779 

B13 203.2 8.87 25.70 452.2 226.1 614581 

B8 203.2 8.83 25.54 357.1 178.6 2000002 

  

0.7 B6 203.2 8.84 24.62 697.1 488.0 3636 

A14 203.2 8.67 26.26 648.5 454.0 16317 

B11 203.2 8.90 25.74 598.0 418.6 48164 

B7 203.2 8.87 24.81 572.5 400.8 136019 

B14 203.2 8.91 25.66 498.7 349.1 706351 

B9 203.2 8.81 25.52 461.6 323.1 2000002 

 

Sample, A17, is showing low life cycle from the other samples of R=0.3. An experiment was 

replicated at this condition that is in the end of this chapter.  

Figure [4.5] shows the combined S-N curves for all ratios.  
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Figure 4. 5: S-N curve with static test result 

 

Each value of R shows a similar form of S-N curve. Fatigue life at a given level of maximum 

stress is increasing with the increasing R. However, fatigue life difference between two ratios at 

a level of maximum stress is different in below than above of the 500 MPa. Above of the 500 

MPa the difference is larger than the below. Furthermore, below of the 500 MPa, apparently 

there is no difference between the R value of 0.1 and 0.3. Finally, there is a difference in the 

sample of 600 MPa for R=0.1, which seems to be slightly out of place. 

4.5 Modulus Degradation 

Displacement and load data were stored throughout each fatigue test. An effective flexural 

modulus was calculated by Eqn (4.2). 

  Ef=P*a*(4a2-3L2)/(48DI)      Eqn (4.2) 
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Here, 

• P = Load 

• L = Length of the beam 

• a = Load Span= L/3 

• D = Deflection   

• I = Moment of Inertia 

 Figures [4.6-4.9] show the normalized flexural modulus vs normalized lifetime throughout the 

fatigue test for each sample. The normalized flexural modulus and lifetime are defined according 

to Eqn (4.3) and Eqn (4.4), respectively. 

Normalized instantaneous flexural modulus= 
������K���������������K����������KJ�����J�����     Eqn (4.3) 

Normalized lifetime= 
¡��¢ ���£����� �����¤� J �¡��¢ ���£����� ��KJ�£K����       Eqn (4.4) 

Figure 4. 6: Normalized flexural modulus vs normalized cycles to failure for R=0.1 
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Figure 4. 7: Normalized flexural modulus vs normalized cycles to failure for R=0.3 

Figure 4.8: Normalized flexural modulus vs normalized cycles to failure for R=0.5 
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Figure 4. 9: Normalized flexural modulus vs normalized cycles to failure for R=0.7 

It can be concluded that most of the degradation in the flexural modulus occurs after 

approximately 80%-85% of the fatigue life is completed for all values of R. 

4.4 Model Fit Calculations 

For the low cycle fatigue region the Slaughter-Fleck model has been used. The model description 

is presented in Chapter 1. The model parameters are presented the Table [4.3].  

Table 4. 3: Parameters of Slaughter-Fleck model calculations. 
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Parameter Value with Unit Remarks 

&∝ 792MPa Maximum stress found from static test  

&CU  50MPa [18] 

tan(�)=tan(20) 0.364 [21] 

Kink band angle 0.069778 radian Initial Kink Band in radian ( 4˚) 

�y 30.83 MPa Experimental measurement 

R 1.62  Eccentricity of the yield ellipse from  
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Using these values, model parameters were determined for all stress ratios. This procedure was 

also described in Chapter 1. Tables [4.4-4.6] and Figures [4.10-4.12] show the resulting models 

for R=0.1, 0.3 and 0.5. For R=0.7, XFand ¦X have no real solution. This is why there is no 

comparison with Slaughter-Fleck’s model for R=0.7.  

Table 4. 4: Calculated fatigue life of Slaughter’s model for R=0.1 

 

R=0.1 No of Cycles 

Max Stress 

 

(MPa) 

Zz{|
8

 

 

 

Zz"�
8

 

 

 

XF 

 

 

¦X 

 

 

¦_ 

 

 

Model 1  

§ = .2 

 
O�

¨

©U

= 1 

Model 2  

§ = 0.3 

 
O�

¨

©U

= 1 

Model 3  

§ = 0.3 

 
O�

¨

©U

= 2 


 1.16 From Eqn (2.25)  

G 2.93GPa [18] 

�y 0.0105 From Eqn (2.24) 

G* 3.95 From Eqn (2.27) 

�y
* 0.009 From Eqn (2.27) 

Sc
* 0.2 From Eqn (2.28) 

ì 7.7 From Eqn (2.26) 

n 2.17 Root Solution of Eqn (2.28) 
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712.8 0.1804 0.0180 2.21 1.76 0.6520 136 21 211 

705 0.1784 0.0178 2.15 1.72 0.6207 174 25 249 

700 0.1772 0.0177 2.12 1.69 0.5978 210 28 282 

690 0.1746 0.0175 2.05 1.64 0.5606 289 35 350 

675 0.1708 0.0171 1.96 1.56 0.5037 494 50 500 

625 0.1582 0.0158 1.7 1.36 0.3755 2143 132 1330 

550 0.1392 0.0139 1.39 1.11 0.2431 18833 562 5663 

500 0.1265 0.0127 1.2 0.96 0.1782 89037 1583 15952 

Figure 4. 10: Comparison of three model data with experimental data for R=0.1 

 

In Figure [4.10] model 1 is matching properly with the experimental data. Only one point is 

slightly out of the curve. Also from the model adequacy analysis, model 1 is showing least error 

fit with the experimental data. 

0

100

200

300

400

500

600

700

800

1.E+00 1.E+01 1.E+02 1.E+03 1.E+04 1.E+05 1.E+06 1.E+07

M
a

x
im

u
m

 S
tr

e
ss

 (
M

P
a

)

No of Cycle

Experimental

Model 1

Model 2

Model 3



45 

 

Table 4. 5: Calculated fatigue life of Slaughter’s model for R=0.3 

R=0.3 No of Cycles 

Max Stress 

 

(MPa) ) 

Zz{|
8

 

 

 

Zz"�
8

 

 

 

XF 

 

 

¦X 

 

 

¦_ 

 

 

Model 1  

§ = .3 

 
O�

¨

©U

= 1 

Model 2  

§ = 0.6 

 
O�

¨

©U

= 4 

Model 3  

§ = .7 

 
O�

¨

©U

= 15 

712.8 0.1804 0.0541 2.21 1.02 0.2029 1027 228 629 

705 0.1784 0.0535 2.15 0.99 0.1903 1271 254 689 

700 0.1772 0.0531 2.12 0.98 0.1862 1366 263 711 

690 0.1746 0.0524 2.05 0.94 0.1704 1839 306 808 

675 0.1708 0.0513 1.96 0.9 0.1552 2508 357 922 

625 0.1582 0.0475 1.7 0.77 0.1112 7631 623 1486 

550 0.1392 0.0418 1.39 0.61 0.0675 40199 1429 3029 

500 0.1265 0.0380 1.2 0.52 0.0480 125531 2525 4935 
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Figure 4. 11: Comparison of three model data with experimental data for R=0.3 

In Figure [4.11] model 1 is matching properly with the experimental data. Only one point is 

slightly out of the curve. Also from the model adequacy analysis, model 1 is showing least error 

fit with the experimental data. 

 

Table 4. 6: Calculated fatigue life of Slaughter’s model for R=0.5 
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712.8 0.1804 0.0902 2.21 0.37 0.0232 2250 331 1977 

705 0.1784 0.0892 2.15 0.35 0.0206 2816 377 2256 

700 0.1772 0.0886 2.12 0.34 0.0193 3166 404 2417 

690 0.1746 0.0873 2.05 0.32 0.0170 4044 467 2792 

675 0.1708 0.0854 1.96 0.29 0.0138 6018 590 3528 

625 0.1582 0.0791 1.7 0.22 0.0076 18360 1138 6804 

550 0.1392 0.0696 1.39 0.15 0.0034 86193 2829 16915 

500 0.1265 0.0633 1.2 0.11 0.0017 301543 5915 35364 

Figure 4. 12: Comparison of three model data with experimental data for R=0.5 

In Figure [4.12] model 1 is matching properly with the experimental data. Experimental points 

are slightly in and out form the model curve with similar slope. Also from the model adequacy 

analysis, model 1 is showing least error fit with the experimental data. 
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Among all of this graph best fit are selected for each ratio. Model adequacy checking was done 

for the best fit. Eqn (4.5) was used for model adequacy [22]. 

              e= | � (yi – yj) |      Eqn (4.5) 

Here, yi stands for experimental value and yjfor model value. 

Table 4. 7: Best parameters for each ratio, R=0.1, 0.3, 0.5 

R C O�
¨

©U

 
e   

0.1 0.2 1 20080 

0.3 0.3 1 
 

90300 

0.5 0.53 1 
 

110280 

From this table we see that as the value of ratio increases, C also increases with a constant value 

of  
��

�

U�
 .  

4.5 Power Law Model 

The Power law model for high cycle fatigue data is shown in Eqn (4.6)  

���������������������������������������������������������������Z = 	%��������������������������������������������������������������Eqn (4.6) 

In logarithmic form  

®¯° Z = $®¯°%� + <������                                                                             Eqn (4.7)   

where, 

����������������������������������������������������������������������������	 = 10M                               Eqn (4.8)   



49 

 

�����������������������������������������������������������������������������$ = T���������������                    Eqn (4.9)           

From the experimental data, regression analysis is desirable. 

Table 4. 8: Regression analysis of each R. 

 

R Coef-
ficients 

Standard 
Error 

t Stat P-value 
Lower 
95% 

Upper 
95% 

Lower 
95.0% 

Upper 
95.0% 

0.1 
� 

3.523 0.142 24.838 0.002 2.913 4.133 2.913 4.133 

� 
-0.172 0.026 -6.596 0.022 -0.284 -0.060 -0.284 -0.060 

 

0.3 
� 

3.439 0.136 25.234 0.002 2.853 4.025 2.853 4.025 

� 
-0.155 0.025 -6.121 0.026 -0.264 -0.046 -0.264 -0.046 

 

0.5 
� 

3.452 0.092 37.396 0.001 3.055 3.849 3.055 3.849 

� 
-0.141 0.016 -8.554 0.013 -0.212 -0.070 -0.212 -0.070 

 

0.7 
� 

3.118 0.031 101.160 0.000 2.986 3.251 2.986 3.251 

� 
-0.072 0.006 -12.872 0.006 -0.096 -0.048 -0.096 -0.048 

After the regression analysis, with the value of 
 and � for each ratio predicted S-N curve was 

drawn. They are shown in following Figures [4.13-4.16]. 
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Figure 4. 13: Power Law model with experimental value for R=0.1 

Figure 4. 14: Power Law model with experimental value for R=0.3 
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Figure 4. 15: Power Law model with experimental value for R=0.5 
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Figure 4. 16: Power Law model with experimental value for R=0.7 

Figures [4.17-4.19] show the high cycle (Power Law model) and low cycle (Slaughter-Fleck’s 

model) with experimental data for each value of R. 

 

Figure 4. 17: Both high and cycle model with experimental data of R=0.1 

In Figure [4.17], Salughter-Fleck’s model for R=0.1, is showing a good agreement with 

experimental data as discussed for Figure [4.10]. 
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Figure 4. 18: Both high and cycle model with experimental data of R=0.3 
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Figure 4. 19: Both high and cycle model with experimental data of R=0.5 

Figures [4.17-4.19] show the both low and high cycle model with experimental data. Both 

models are showing good agreement with the experimental data of their cycle region. Low cycle 

region that represents compressive failure and high cycle region that represents tensile failure are 

coinciding at around 500 MPa.    

4.6 Image Processing 

Pictures were taken of the compression and tension surface of all samples after fracture. Image 

processing was used to assess the amount of damage on both the tensile and compression faces. 

Pixels of each picture were converted into gray value. Thresholding was then applied to each 

picture. Figure [4.20-4.21] show the compression and tension surfaces of R=0.1. In each figure, 

images at the left show the actual specimen surface and the images at right side show the 

processed image. They are presented from the highest maximum stresses at the top of the figure 

to lowest maximum stress at the bottom.  
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Figure 4. 20: Compression surface for R=0.1 

      

Figure 4. 21: Tension surface for R=0.1 

Fractured surface failure in Figure [4.20] is larger in Samples from 666 MPa to 572 MPa than in 

samples from 475 MPa to 365 MPa. Tension surface in Figure [3.21], the samples from 529 MPa 

to 365 MPa are containing larger fracture than in the samples from 666 MPa to 576 MPa. The 

middle sample of 529 MPa are containing a significant amount of fracture both in tension and 

compression surface. 
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Figure 4. 22:  Compression surface for R=0.3 

 

Figure 4. 23: Tension surface for R=0.3 

Fractured surface failure in Figure [4.22] is larger in Samples from 711 MPa to 651 MPa than in 

samples from 603 MPa to 494 MPa. Tension surface in Figure [4.23], the samples from 603 MPa 

to 494 MPa are containing larger fracture than in the samples from 711 MPa to 651 MPa.  
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Figure 4. 24:  Compression surface for R=0.5 
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Figure 4. 25: Tension surface for R=0.5 

Fractured surface failure in Figure [4.24] is larger in Samples from 699 MPa to 616 MPa than in 

samples from 566 MPa to 452 MPa. Tension surface in Figure [4.25], the samples from 616 MPa 

to 452 MPa are containing larger fracture than in the samples from 699 MPa to 675 MPa. The 

sample of 616 MPa are containing a significant amount of fracture both in tension and 

compression surface. 

 

                   

Figure 4. 26:  Compression surface for R=0.7 
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Figure 4. 27: Tension surface for R=0.7 

Fractured surface failure in Figure [4.26] is larger in Samples from 697 MPa to 572 MPa than in 

sample of 498 MPa. Tension surface in Figure [4.27], the samples from 597 MPa to 498 MPa are 

containing larger farcture than in the samples of 697 MPa. The samples of 597 MPa and 572 

MPa are containing a significant amount of fracture both in tension and compression surface. 

Figures [4.20-4.27] show a relation between applied stress and fractured area in each sample. 

When the applied stress is decreased fracture observed on the compression surface also 

decreases. However, the transition is not smooth and not in same stress region for ration to ratio. 

Image processing was done in Matlab. Black area represents non-fractured material and white 

regions represent fractured/delaminated area in the Figures [4.20-4.27]. From Matlab, the no of 

pixels in each area (Black, White) can be determined. Figures [4.28-4.36] show the fractured 

area fraction vs Maximum stress. The portion of the samples that were taken for image 

processing is the area between the load span. 

 Fractured area Fraction = no of pixels for black area/total no of pixels for the original                                

picture           Eqn (4.10). 
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Figures [4.28-4.29] stand for compression and tension surface, respectively, of R=0.1. 

Figure 4. 28: Fractured area fraction of compression surface for R=0.1 vs imaging 

threshold value 

 

Figure 4. 29: Fractured area fraction of tension surface for R=0.1 vs imaging threshold 

value 
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Figure 4. 30: Fractured area fraction of compression surface for R=0.3 vs imaging 

threshold value 

 

Figure 4. 31: Fractured area fraction of tension surface for R=0.3 vs imaging threshold 

value 
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Figure 4. 32: Fractured area fraction of compression surface for R=0.5 vs imaging 

threshold value 

 

Figure 4. 33: Fractured area fraction of tension surface for R=0.5 vs imaging threshold 

value 
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Figure 4. 34: Fractured area fraction of compression surface for R=0.7 vs imaging 

threshold value 

 

 

Figure 4. 35: Fractured area fraction of tension surface for R=0.7 vs imaging threshold 

value 
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The observation that has already discussed for Figures [4.21-4.26] is supporting by these Figures 

[4.27-4.35]. The quantifying value for fractured in surface area has determined approximately by 

threshold value of 0.5. The processed pictures of each samples was shown is Figures [4.21-4.27] 

are processed by this value of threshold.  

Additional graph has drawn to total damage in surface that is summation of fracture quantity of 

tension and compression surface. Figures [4.36-4.39] are representing the overall fracture for 

each ration for 0.5 threshold parameter as it is the best threshold value. 

 

Figure 4. 366: Fractured area fraction of both surface for R=0.1 vs imaging threshold value 

From Figure [4.36-4.39], it can be concluded that each sample for any stress were contain around 

43%-450% surface failure combined in tension and compression surface. 
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Figure 4. 377: Fractured area fraction of both surface for R=0.3 vs imaging threshold value 

 

 

 

Figure 4. 388: Fractured area fraction of both surface for R=0.5 vs imaging threshold value 
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Figure 4. 399: Fractured area fraction of both surface for R=0.7 vs imaging threshold value 

 

4.7 Replication 

After all the analysis completed, we have tested four samples for replication at R=0.3 below 

table is showing that data 

Table 4. 9: Fatigue data for replicates  

Ratio,R 
Sample 
Name 

Length,L 
(mm) 

Thickness,b 
(mm) 

Width, d 
(mm) 

Maximum 
Stress (MPa) 

Cycle 

0.3 

F12 203.2 8.70 25.76 626.5 8131 

F13 203.2 8.71 25.51 381.9 412381 

F7 203.2 8.62 24.98 546.7 57467 

F2 203.2 8.51 25.65 492.0 151424 

S-N curve for R = 0.3 with the replication values are in below. 
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Figure 4.40: S-N curve with replicate 

Replication values are showing good similarities with the previous data of R=0.3. On an average 

to make this data set more plausible at each point at least three data should be replicated. For this 

replication it would be best option to design an experiment with 5-7 stress level and 3 replicates. 

Before started this study design of experiment was not applied here due to lack of knowledge. 

After findings it is not convenient in time respect to replicate all the data. But obviously for 

future study it will be wise decision to conduct a design of experiment with proper replication 
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CHAPTER FIVE: CONCLUSION 

 

The purpose of this study was to study the fatigue behavior of glass fiber composites in four 

point bending. The materials used here were supplied by LM Wind Power. Sample beams were 

fabricated by VARTM (Vacuum Assisted Resin Transfer Molding). To make the samples 

compatible with the capacity of fatigue test machine, ten layers of fiber are used. The goal was to 

conduct 4 point bending fatigue tests for positive load ratios. Load ratios used were 0.1, 0.3, 0.5, 

and 0.7. All the fatigue tests were run at the same loading frequency (5 Hz) and using a 

sinusoidal curve.  

From this study designers can give insights about the fatigue of glass fiber composites that can 

be applied their products after a certain period of time. The conclusions in this study are 1) 

fracture under tensile stress is more likely than buckling under compression stress in bending 

dominated high life cycle product design, 2) two empirical models from the literature, one each 

for low cycle and high cycle fatigue region, can be used to predict fatigue lifetime for 

corresponding maximum stress and stress ratio without full experiment investigations and 3) 

from stiffness degradation analysis, predictions about the service lifetimes of products can be 

made.  

This study shows that at high stress, close to ultimate flexural strength of a material, product’s 

failure is prone to buckling at the compression surface by local bending stress. Designers or 

fatigue inspectors can get an idea about the loading condition after investigating failures of parts. 

May be that loading condition was not included in the design and also maybe the loading 



69 

 

condition was not frequent. With the result of this study and inspection results, a designer can 

start further investigations to find out the potential loading behavior that should not be in the 

actual application. This work showed the transition from compression surface failure to tension 

surface failure occurred in between 67% to 78% of ultimate flexural strength of the composite 

materials.   

From the stiffness degradation analysis, engineers can predict when a material is going to fail for 

a particular design condition if there is no other uncertainty.  Flexural stiffness was calculated 

throughout the fatigue test. Normalized Flexural Modulus vs Normalized Cycle to Failure plot 

shows that the change in stiffness is very slow in the first 80%-90% of the fatigue life of each 

sample. After that, the stiffness decreases very fast throughout the rest of life. If we know the 

design stress and corresponding lifetime then we can say for this particular condition the material 

is safe for at least 80% of its predicted lifetime.  

When the data was stored in computer, the sampling frequency must be defined. For this study it 

was 1 in 100/cycle. My recommendation is for the high cycle-low stress region it is enough but 

for low cycle-high stress region each cycle should be stored. The reason is that in the low cycle-

high stress region the stiffness is degraded in the 50 cycle-100 cycles. If all data is not stored 

then it will be difficult to construct the full degradation curve. 

Finally, the associated empirical models will be valuable to predict fatigue lifetimes. High cycle 

fatigue region and low cycle fatigue region is divided here by the approximate maximum applied 

stress 500 MPa. There is a different characteristic equation for each region of the fatigue curve 

equations. Low cycle fatigue can be predicted by Slaughter Fleck’s model and high cycle fatigue 

by the power law model.  



70 

 

Further study can be done for reverse load ratios, different numbers of plies, different initiator 

percentages and different support and load span. Also, there are some potential recommendations 

for the future findings to improve the results and process. It will be good to take an image of 

each surface from each sample before and after the fatigue test. This will give better comparison 

data in the image analysis packages. Applying a design of experiments methodology will be 

great for any further study. It will be minimize the replication quantity and increase confidence 

in the data and findings.   
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Appendix A 

 

Sample Name Hardness Sample Name Hardness Sample Name Hardness 

A1 85.2 B1 87.0 D1 90.2 

A2 85 B2 90.3 D2 88.7 

A3 87.7 B3 86.3 D3 91.8 

A4 91.8 B4 92.2 D4 86.5 

A5 91.1 B5 85.5 D5 89.6 

A6 91 B6 90.2 D6 88.4 

A7 88 B7 89.6 D7 84.8 

A8 89 B8 86.4 D8 90.9 

A9 86.2 B9 85.2 D9 85.4 

A10 88.7 B10 89.3 D10 85.9 

A11 88.6 B11 87.4 D11 88.3 

A12 91.0 B12 88.5 D12 91.8 

A13 89.5 B13 84.8 D13 86.9 

A14 88.7 B14 90.2 D14 90.8 

A15 91.6 B15 89.7 D15 87.5 

A16 91.6 B16 90.2 D16 85.8 

A17 91.7 B17 89.7 D17 90.3 

A18 87.9 B18 85.7 D18 86.9 
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