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ABSTRACT 

This thesis presents the development of a novel method to generate an accurate, metric spatial 

database of a large multi storied building during construction. The algorithm uses the 3D CAD 

model of the building and the video of the structure captured by an Unmanned Aircraft System 

(UAS). The spatial database is then used to perform several inspection procedures such as, metric 

data analysis, spatial query for images, visualization through 3D textured model. The video is 

processed using a simultaneous localization and mapping (SLAM) system. SLAM generates a 

sparse 3D map of the environment. Our algorithm registers the 3D map with the 3D CAD model 

to generate the accurate metric spatial database. The user can click on the desired part of the CAD 

model for inspection and the image of that part will be shown by using the spatial indexing between 

the CAD model and the spatially distributed images. The image returned by the spatial query can 

be used to extract metric information. The spatial database is also used to generate a 3D textured 

model which provides a visual as-built documentation. The metric data calculation and textured 

model reconstruction methods have been compared to the state of the art Pix4D software (Latest 

Release (Version 3.1)). The proposed method has a mean squared error (MSE) of 31.9 cm2 and 

standard deviation of 4.28 cm where Pix4D had a higher MSE of 45.6 cm2 and standard deviation 

of 4.91 cm. Using statistical t-test and ANOVA tests we have shown that we are statistically 99% 

confident that the proposed algorithm has performed better than Pix4D.  
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CHAPTER I 

INTRODUCTION 

Generation of as-built documentation requires engineers to search through large amount of video 

of the construction site for a specific region of interest. This is time-consuming and a very 

inefficient method. The objective of the proposed system is to reduce the amount of labor and time 

required to collect important construction site information, and enable engineers to generate as-

built documentation of building elements. The proposed system provides a credible solution to that 

problem by aligning a SLAM generated 3D map to the 3D CAD model generating an accurate 

metric 3D spatial database. The registration facilitates spatial query for the images from the spatial 

database. This is done by allowing the user to click on the region of interest on the 3D CAD model. 

The system takes a previously generated 3D CAD model and the images collected with the UAS 

which may be processed by a variety of keyframe based SLAM [1,2,3] systems as input. The 

SLAM system is used to estimate camera poses and generate a 3D point cloud map of the 

structure.  Each map point in the point cloud stores the 3D pose in world coordinate mw, its index, 

and a reference to the index of the source keyframe where it was first detected. Tagging the index 

of the 3D point to the index of the keyframe provides the spatial index of the database. The 

proposed system takes the point cloud map and aligns it to the 3D CAD model to update the 

geometry of the spatial database. This allows the user to perform a spatial query through the 3D 

CAD model by use of mouse clicks on the model to search for the desired images. The proposed 

system also provides a metric data analysis tool to analyze that queried image. Finally, a textured 

3D model of the structure is generated to serve as an overall visual as-built documentation of the 

structure.  
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Building inspection for quality assurance often involves analyzing images and detecting any 

anomaly or defect in the construction. For a multi-storied large building, it is necessary that the 

images are collected from a close range for proper visualization and inspection. Using a UAS is 

one way that allows users to collect high resolution building images with better fidelity. It is 

necessary, as ground based images would not be able to provide the required fidelity to perform 

accurate building inspections. This work acknowledges the necessity and increasing use of small 

UAS in construction process and opens a new door for computer vision based systems to become 

more intimate with this advancement. There have been more than a million small UAS sold in the 

United States over the past few years per news reports [4, 5]. As the use of small UAS grows the 

need for cost-effective methods for accessing and processing data will grow. The goal of this 

project is to address that need by creating novel technologies to facilitate the use of small UAS to 

inspect structures as they are built. 

Our contributions are listed below: 

   Accurate Metric Spatial Database Generation: The proposed system generates an accurate 

metric spatial database by taking the 3D CAD model of the building and a video of the building 

as an input. The video is processed by a SLAM system to generate a 3D map. The SLAM generated 

map is registered to the 3D CAD model to produce the spatial database. The spatial database is 

used for inspection purposes. The spatial database has metric units which enables users to extract 

metric information from the database.   

Spatial Query for Images: The generated spatial database allows a user to perform an efficient 

spatial query for images by clicking on the 3D CAD model. The user may easily visualize the 3D 

CAD model, making our implementation convenient for anyone locate images of a particular 
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feature. The user simply clicks on the 3D model to find the relevant image without having to search 

through time intensive videos.  

Metric Data Analysis: Our system accurately calculates the distance between any two places 

of the structure, and gives a comparison between the 3D CAD model distance and the as-built 

structure. A 3D CAD model- image correspondence is used to ensure the robustness of the 

calculation. 

Visualization through 3D textured model: The proposed system also generates a 3D textured 

model with high-resolution images to create a virtual reality of the scene. The virtual reality is 

visualized with an OpenGL window implemented with a moving camera to allow the user to move 

around the scene. The 3D textured model enables engineers or facility mangers visually assess the 

building and track construction progress. 

To understand the need of engineers, our team worked with construction engineers who helped 

with a detailed checklist of specific requirements for inspection. The system was developed to 

solve the problems identified in the checklist. 

Contractors are already using small UAS to gather information about their worksite and inspect 

structures. In [6, 7] small UASs are used to construct a detailed 3D map of work sites. Others have 

used small UAS to inspect existing structures [7]. In [6] they used a UAV from 75 meters elevation 

and only used 64 images which is not enough to get accurate measurement. To have a usable spatial 

query for images is not possible because of the low number of images too. Their approach gives 

an elevation map using orthophotos which is 2.5D. The height map is scale consistent but is not 

absolute. In [8] they outline the potential applications of UAS in the new construction such as 

monitoring the build process, creating “as-built” documentation and automated defect detection. 

However, unfortunately they do not mention how much error do they have and mainly explain 
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how to use the software. They used a laser scanner to collect the point cloud which is registered to 

the ground truth model. As they used laser scanner, the do not have a visual as built documentation 

and cannot do spatial query through images nor can the extract metric data from images. Laser 

scanners have been a popular tool for construction quality control as in [9, 10] and tracking various 

components [11,12]. They have also been used for progress monitoring in [13,14]. Researchers are 

currently working on creating the algorithms needed to exploit this potential. One such system 

presented in [15] was used to aid in the creation of “as-built” documentation. Their work generated 

reasonable output, but the dimensions had more than 5% error. 

The D4AR modeling [16] uses an unordered collection of images of the structure to generate the 

underlying geometric model by using a Structure-from-Motion (SfM). They solve the similarity 

transform between the model and 3D point cloud found from the SfM using minimum user inputs 

to transform the SfM coordinate system to the 3D CAD model’s coordinate system to allow the 

aligning the SfM photos to the CAD model. They do not perform a spatial query for images too 

and do not extract measurement data. There are popular methods being used to create 3D mesh 

models by using images. Photo Tourism [17] has used unordered photo collection to create a mesh 

model. The system has not been tested on a large-scale structure. There are other limitations too 

such as, they mentioned that their system does not guarantee production of metric scene 

reconstruction. The system also does not consider lens distortion which generates more errors. In 

[18] Debevec et al proposed a modeling and rendering pipeline for architectural structures from 

photographs. The purpose of that research was visualization and does not handle metric data 

calculation. Sinha et. al [19] took such an approach for scene reconstruction. They mention that, 

their automatic view selection did not work all the time and users had to manually assign additional 

source images which is a significant disadvantage. This system is also used for visualization 
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purposes and does not extract images from spatial data and do not provide metric data output. In 

[20] Xu et al. proposed a photo-inspired model driven method for 3D object modeling. Their 

algorithm is shown to work on small models. Another disadvantage of their system is, the user 

must pick a base image from a set of images and manually segment the desired object out fro the 

first frame. This is almost an impossible task for a large-scale structure. Such methods have been 

used in [21] too. 

A different approach was taken by [22]. Instead of creating 3D mesh model using images, they 

rely on an existing semantic 3D CAD model known as Building Information Model (BIM). This 

modeling is widely available nowadays to facilitate easier construction as it provides prior detailed 

information about the building  or structure to be constructed [22].  

However, none of the methods above does an image query for analysis of as-built structure. L. 

Klein et al. [15] is an effective step towards metric data analysis of as-built structures.  

 Methods described in [16, 17, 18, 19, 20, 21] use images to create underlying geometry. Such 

methods are not useful for construction sites because it only provides visual information of an 

already built structure. Construction sites require a pre-designed CAD model to be able to have a 

ground truth for the construction and compare it to the as-built structure to detect anomalies. 

Considering this, our method uses a 3D CAD model designed with AutoCAD Revit as [22].  

In this work, out design considerations are governed by the need of the engineers on a 

construction site. The checklist provided by the construction engineers specifically pointed that, 

the need for an accurate metric data analysis is a priority. Another important tool required in that 

checklist was the need for a user-friendly tool for searching for originally taken images through 

the 3D CAD model. Our system enables the user to search for images through spatially indexing 

images onto the model. Metric data analysis and crack detection might be performed on the queried 
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image through our provided tools. Moreover, our visualization tool enables the user to move freely 

throughout the scene providing a better visualization experience. 
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CHAPTER II 

GENERATION OF AN ACCURATE, METRIC SPATIAL DATABASE OF A LARGE 

MULTI STORIED BUILDING 

2.1 System Overview 

Figure 2.1 outlines the system. First the visual data is read frame by frame from a video as 

sequential images. The user specifies the region of interest for inspection from the model. The 

system leverages user input to register the first keyframe to the 3D CAD model. The proposed 

system prompts the user to specify a four-point correspondence between the model and the 1st 

keyframe at the beginning to aid the registration process. This registration aids in finding the pose 

of the UAS in model coordinate by solving a Perspective-Three-Point (p3p) problem. The visual 

input is then processed by a SLAM system. The SLAM system generates a scalable point cloud 

map from the visual input. The SLAM generated 3D map has a point cloud which is refined with 

a random sample consensus (RANSAC) based plane-fitting algorithm. A similarity transform is 

applied to the 3D map to transform the map to the 3D CAD model coordinate system. All the 

images are then aligned with the 3D mesh model to update the geometry of the spatial database. 

The updated spatial database uses the spatial index to run a query for images of the desired region 

which is specified by the user. The image returned from the spatial query may further be used to 

evaluate distance in the as-built structure. For accurate metric calculation, the proposed system, 

runs an automated window detection and updates scale of the queried area by taking window size 

information from the 3D CAD model. 

To generate the 3D textured model, the proposed system finds images on the planes and stitches 

them together to texture map those images to the specified zone of the textured model. The metric 
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information is mainly intended to find dimensions of various entities in the as-built structure. The 

user must click on the different corners of the model to inspect the size of that specific entity i.e. 

windows, doors, the length of the column etc. After clicking on the model, the corresponding 

image of that area will be seen, and the user will specify the desired dimension with mouse clicks. 

A user guide has been provided in the APPENDIX, for the convenience of the users.   

2.2 Methodology 

The proposed system requires eight manual clicks from the user as inputs for creating the initial 

correspondence between the CAD model and the first image. In this section, the methodology of 

the system has been described. The image registration process, generation of metric spatial 

database, and spatial query for images has been explained in detail. A plane fitting is performed 

on the registered point cloud to refine the spatial database which facilitates further processing such 

as 3D textured reconstruction, metric information extraction, and crack detection.  

Visual Input (Video)  

Image Registration to 3D CAD model 

Generating a 3D Map using SLAM 

Metric Data Analysis Spatial Query for 

Plane Fitting 

Generation of Metric Spatial Database 

Figure 2.1: The process flow chart for system overview.  
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2.2.1 Image Registration to 3D CAD Model 

The location and orientations of the camera are arbitrary in the camera or SLAM coordinate 

system. In this case the CAD model provides the ground truth and a global coordinate system. To 

facilitate alignment of SLAM and 3D CAD model coordinate systems our system uses an input 

from the user. The user must provide four 3D-2D point correspondences between the 3D CAD 

model and the first keyframe. The approach described in [23] is used to solve the p3p problem to 

determine the position and orientation of the camera while capturing the first keyframe in the 

model coordinate system. The solution described in [23] for the p3p algorithm provides up to four 

solutions which are disambiguated by using a fourth point. The user clicks on four corners of an 

entity such as a window from the model. That entity must be seen in the first keyframe so that the 

user can then click on corresponding four corners of the same entity from the image in a sequential 

order. Figure 2.2 shows a representation of the process. 

2.2.2 Generating a 3D Map using SLAM: 

In a large-scale application, such as this one, range sensors such as RGB-D cameras, stereo 

cameras or laser range finders are not very effective because of limited range. To tackle this 

Figure 2.2: Image registration to 3D CAD model  (a) Selected four corners of the window shown in red from CAD model (b) 

Corresponding four corners selected in the first keyframe of the red marked window.  

 

(a)                                                                           (b) 
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problem a monocular Simultaneous Localization and Mapping system has been used. However, 

the monocular SLAM system comes with its own challenges. The main issue with monocular 

SLAM systems is that the metric scale cannot be measured with a single camera. To recover scale 

additional metric information must be provided by another sensor or by the user. The SLAM 

system continuously updates the 6 degrees of freedom camera pose while creating a keyframe 

based parallel tracking and mapping framework. The generated 3D point cloud map consists of a 

collection of feature points 𝑀 in the world coordinate system 𝑊. Each map point stores the 3D 

world coordinate 𝑚𝑤, its index, a reference to the source keyframe where it was first detected 

along with the indices of the detector and descriptor in the source frame. Each map point also 

stores a list of keyframes, where each keyframe stores the corresponding vector of keypoints and 

their descriptors computed from all levels of image pyramid. Camera pose associated with each 

keyframe is represented as a coordinate system 𝑇𝑊𝐶  where 𝐶 and 𝑊 are camera and world 

coordinate systems respectively. Each keyframe also stores the list of indices of the map points 

that are visible in the keyframe along with their corresponding image positions.    

2.2.3 Plane Fitting 

Typically, buildings are composed of planes, so we extract planes from the 3D point map created 

by the SLAM system. A RANSAC [24] based plane fitting method was developed that uses a 

voting scheme for assigning points in the 3D point cloud to individual planes. For a set of 3D data 

points {𝑃𝑖(𝑥𝑖, 𝑦𝑖 , 𝑧𝑖); 𝑖 = 1,… . , 𝑁}, where 𝑁 is total number of 3D points in the point cloud, the 

plane equation has been defined as, 𝑎𝑥 + 𝑏𝑦 + 𝑐𝑧 + 𝑑 = 0                                                             (2.1) 

where, 𝑎, 𝑏, 𝑐 are slope parameters and 𝑑 is the distance of the plane from the origin. 

  Planes are extracted by randomly constructing different planes from point cloud data. The 
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minimum number of points needed to determine a plane are three. Three random points are 

sampled from the point cloud and checked for collinearity. If we define those three points as 𝐴(𝑥1, 𝑦1), 𝐵(𝑥2, 𝑦2), 𝐶(𝑥3, 𝑦3). If those points are non- coincidental and creates a triangle of area 

zero that proves those points are collinear. So, the condition of collinearity is, 𝑥1(𝑦2 − 𝑦3) + 𝑥2(𝑦3 − 𝑦1) + 𝑥3(𝑦1 − 𝑦2) = 0.                                (2.2) 

 However, it is highly unlikely to be exactly zero. If the value is less than 0.001, it is considered 

to be collinear from an implementation perspective. If the points selected are collinear or 

coincident, new points are considered for hypothesis proposal. This process is repeated for 𝑁 

number of times. The number 𝑁 is selected in a way to ensure probability 𝑝 of finding at least one 

set of random samples is without an outlier. 𝑝 is chosen to be 0.99. Let 𝑖 is the probability of any 

selected point out of 𝑚 number of points is an inlier of the hypothesis and 𝑜 = 1 − 𝑖 is the 

probability of finding an outlier gives, 1 − 𝑝 = (1 − 𝑖𝑚)𝑁.                                                        (2.3) 

Rearranging the above equation to solve for 𝑁 gives, 

𝑁 = log(1 − 𝑝)log(1 − 1 − 𝑜𝑚)                                                            (2.4) 

 The resulting candidate planes are scored against all points in the cloud to validate the candidate 

plane. The scoring process is based on votes from the point cloud. In a candidate plane, the points 

that falls onto that plane, votes for the plane. The total vote for a candidate plane is the score of 

that plane. The quality of a plane is determined by its score. After a predefined number of trials, 

the candidate plane having the highest score is validated as a plane. Points voting for the valid 

plane are tagged to that plane and removed from the plane fitting consideration. These points form 

that plane and not considered to vote for other plane hypotheses. The procedure is then repeated 

on the rest of the point cloud to find subsequent planes. The planes are finally made robust using 
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least-square constrains. After fitting the planes, the point cloud is refined. All the points not 

included in any plane are considered as outliers and removed from the cloud. Figure 2.3 shows the 

output point cloud after plane fitting.   

2.2.4 Generation of Metric Spatial Database 

Spatial databases are used to represent data in space. The space can be a geographic space, a 

man-made building space or even a user defined coordinate. A spatial data system must at least be 

able to query for a data from a large collection of objects from a particular area without searching 

through the whole dataset. A spatial query is A statement or logical expression that selects 

geographic features based on location or spatial 

relationship. Spatial indexing is a way to organize the space and the objects in that 

space so that only part of the space and related objects answer to a spatial query.  Generation of a 

metric spatial database will be explained in this section. 

The camera pose while capturing the first keyframe is set to the identity in SLAM coordinate 

system. The 3D CAD model coordinate system is set while designing it in AutoCAD Revit. As the 

proposed system takes a sequential photo collection, the user defined entity as stated in 2.2.1 

Figure 2.3: Refined point cloud after plane fitting: (Left) Orthographic view (Right) Top view 
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should appear in the second keyframe. The keyframes are generated by the SLAM system. In this 

implementation, there were 12,000 images from which 4654 keyframes were generated by the 

SLAM. The proposed system creates small 11×11 patches around the clicked points of the first 

keyframe. Then a normalized cross-correlation based matcher finds the corresponding four corners 

in the second keyframe providing a 2D-2D correspondence between both keyframes. This also 

creates a 3D-2D correspondence of the 3D CAD model to the second keyframe. These 

correspondences are used to compute the scale factor and transformation from the world coordinate 

system to the model coordinate system.  

The proposed system uses the user-provided 3D-2D correspondence between the 3D CAD 

model and the first two keyframes to find the scale factor. The pose of UAS for first two keyframes 

according to the world coordinate, PW1 and PW2 are found from the SLAM generated 3D map, as 

the map stores the pose of the camera during generating the point cloud. Corresponding 3D poses 

Figure 2.4: Selected region for inspection in CAD model 
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for the model coordinate system PModel1 and PModel2 are found by solving the p3p problem as 

described in section 2.2.1. The location of the four user-defined 2D points in the image plane of 

the first keyframe 𝑝11, 𝑝12, 𝑝13, 𝑝14 and the location of the four corresponding 2D points in second 

keyframe  𝑝21, 𝑝22, 𝑝23and 𝑝24 are projected to the camera plane. Assuming a calibrated linear 

camera, the intrinsic parameter matrix, 𝐾 is known. The principal point, 𝐶 in pixels and the focal 

length, 𝑓 in pixels, are used to find the projected point, 

𝑝𝑝𝑟𝑜𝑗 = 1 𝑓⁄ ×(𝑝𝑖𝑗 − 𝐶),                                                          (2.5) 

where, 𝑝𝑖𝑗 is the point being mapped on the camera plane. The projected point is in the 

homogeneous coordinate system and expressed as, 𝑝𝑝𝑟𝑜𝑗 = [𝑥 𝑦 1]𝑇.The transformation matrix 

between pose of second keyframe to first keyframe is, 

𝑇21 = 𝑇𝑊1 (𝑇𝑊2 )−1,                                                                      (2.6) 

where 𝑇𝑊1  and 𝑇𝑊2  denotes first and second camera poses in world coordinate system. A simple 

linear triangulation method is applied to find 3D location, 𝑃𝑖𝑗 , where i is either World or Model 

and j =1, 2, 3, 4. If M and M’ are homogeneous camera projection matrices for first and second 

keyframes respectively then, 𝑝𝑝𝑟𝑜𝑗1 = 𝑀× 𝑃𝑖𝑗 , where 𝑝𝑝𝑟𝑜𝑗1 homogeneous image point is seen 

from the first image and 𝑃𝑖𝑗 is 3D world point in homogenous coordinate system. Similarly, the 

corresponding image point in second keyframe is denoted as  𝑝𝑝𝑟𝑜𝑗2 = 𝑀′× 𝑃𝑖𝑗. In practice this is 

found by evaluating the last column of  𝑇21. These equations are combined into a form  𝐴×𝑃𝑖𝑗 = 0, 
this equation is linear in 𝑃𝑖𝑗. After eliminating the homogeneous scale factor by a cross product 𝑝𝑖𝑗×𝑃𝑖𝑗 = 0 the equation of form 𝐴×𝑃𝑖𝑗 = 0 can be composed where, 
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𝐴 = [  
 𝑥𝑀3𝑇 − 𝑀1𝑇𝑦𝑀3𝑇 − 𝑀2𝑇𝑥′𝑀′1𝑇 − 𝑀′1𝑇𝑦′𝑀′3𝑇 − 𝑀′2𝑇]  

 .                                                         (2.7) 

 

Solving the previous equation gives 3D coordinate of the image point [25]. In this manner, all four 

3D points corresponding to the four corners of the entity from the images are generated as 𝑃𝑖𝑗. For 

the world coordinate the 3D points are 𝑃𝑊1, 𝑃𝑊2, 𝑃𝑊3, and 𝑃𝑊4and for the model coordinate 

system the generated points are 𝑃𝑀1, 𝑃𝑀2, 𝑃𝑀3, and 𝑃𝑀4. Then the average distance of the 3D points 

is calculated as 𝑑𝑤𝑜𝑙𝑟𝑑 and 𝑑𝑚𝑜𝑑𝑒𝑙 for world and model coordinate system respectively. Finally, 

the scale factor, 

 

𝑠 =  𝑑𝑚𝑜𝑑𝑒𝑙𝑑𝑤𝑜𝑙𝑟𝑑 ,                                                                (2.8) 

is calculated. 

The pose of first keyframe in world and model coordinate are, 𝑇𝑊1  and, 𝑇𝑀1 which are used to find 

the transformation between world to model coordinate, 

𝑇𝑊𝑀 = (𝑇𝑊1 )−1𝑇1𝑀.                                                                 (2.9) 

If 𝐴 and 𝐵 are two matrices, they are similar if 𝐵 = 𝑃−1𝐴𝑃, where 𝑃 is the similarity transform. 

In this case the similarity transform is, 

 

𝑇 =  [ 𝑅 𝑡0  0  0 𝑠] ,                                                              (2.10) 
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is applied to the point cloud as, 

𝑃𝑀 =  𝑇×𝑃𝑊,                                                                    (2.11) 

where 𝑃𝑀 and 𝑃𝑊 are points on model and world coordinates respectively, to align the point cloud 

to the model coordinate system. With the completion of the registration process, a spatial databse has 

been generated. 

2.2.5 Spatial Query for Images 

As the source keyframes are tagged along with each point in the cloud, a spatial index of images 

is used for efficient spatial image query. The entries in the spatial index depend on the vertices 

location in the model coordinate system. 

The user must click on the area or entity on the visualization window to run the spatial query for 

image of that particular area. A ray casting method is used to select the 3D location of the mouse 

click in the model. For ray casting, a 3D ray is projected from the mouse into the CAD model 

space through the OpenGL visualization window. If the ray intersects with any object, the 3D 

location of the intersection in CAD coordinate system is calculated. The calculations will be done 

in CAD coordinate which is the global coordinate in this case. So, the origin of the ray is the 3D 

location of the OpenGL camera expressed as 𝑂. Our ray casting will be done on world coordinate, 

so in this case ray origin 𝑂 is in the 𝑥, 𝑦, 𝑧 position in the world coordinate system. If the direction 

normal of the ray is expressed as �̂� then any point on the ray can be expressed as  𝑅(𝑡) = 𝑂 +  �̂� ∗ 𝑡,                                                          (2.12) 

where   𝑡 is the distance of the point from origin  𝑂. If there are multiple planes the nearest plane 

to the camera is considered.  

 For selecting a point of the 3D CAD model the user has to simply click on the model with mouse 
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pointer. The pixel location has 𝑥_𝑚𝑜𝑢𝑠𝑒 and 𝑦_𝑚𝑜𝑢𝑠𝑒 coordinates and the range of 𝑥_𝑚𝑜𝑢𝑠𝑒 is 

from 0 to width of the viewport and 𝑦_𝑚𝑜𝑢𝑠𝑒 has a range of height to 0. Then the 𝑥_𝑚𝑜𝑢𝑠𝑒, 𝑦_𝑚𝑜𝑢𝑠𝑒 coordinate is transformed into normalized device coordinate. In normalized 

device coordinate the range of 𝑥, 𝑦 𝑎𝑛𝑑 𝑧 will be from -1 to 1 and the center of the coordinate 

system will be the center of the viewport. In normalized device coordinat e the new 𝑥, 𝑦 𝑎𝑛𝑑 𝑧 will 

be as follows, 

𝑥 = 2 ∗ 𝑥𝑚𝑜𝑢𝑠𝑒𝑤𝑖𝑑𝑡ℎ − 1                                                                   (2.13) 

𝑦 = 1 − 2 ∗ 𝑦𝑚𝑜𝑢𝑠𝑒ℎ𝑒𝑖𝑔ℎ𝑡                                                              (2.14) 

𝑧 = −1.                                                                       (2.15) 

In OpenGL coordinate system 𝑦_𝑚𝑜𝑢𝑠𝑒 was downwards and the direction is switched upwards in 

normalized device coordinate. 𝑧 is assumed to be -1 because the ray is supposed to point forwards 

which is negative in OpenGL coordinate system. Now, the 𝑥, 𝑦, 𝑧 is in Euclidian plane. To convert 

it to projective plane the coordinate system must be in homogeneous coordinate system. To do that 

we added a 𝑤 to get a 4D vector. To get the ray in camera coordinate system we multiply the 

inverse of projective matrix with the ray in homogeneous coordinate. To express the ray in world 

coordinate we multiply the ray in camera coordinate with the inverse of the view matrix and finally 

normalize the ray vector.  

The CAD model is mostly planar. We parameterize the CAD model as various planes and the 

intersection between the plane and ray would provide the intersecting 3D location in the CAD 

coordinate.  

 The selected 3D point of the model is snapped to the nearest vertex, so that the user does not 

have to click precisely. The nearest point of the point cloud to the selected vertex is selected as the 
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entry to spatial index for query. As the SLAM stores all the source keyframes of each of the points 

in the point cloud, the associated source keyframe to entry point is returned. 

2.2.6 Metric Data Analysis 

The proposed system assumes the user wants distance from one vertex to another to check the 

dimensions of different entities. By using the spatial query for an image, the user finds the image 

of the entity to be inspected.  

First the image is converted into a grayscale image. Then a canny edge detection is done to find 

edges on the image. Canny uses a Gaussian blur at the beginning of the algorithm, which seems to 

eliminate noise and aids in the correct classification of most images. In this implementation, a 5×5 

Gaussian filter was used to with σ = 1.4. The filter was applied on image 𝐴 to find filtered image,  

𝐵 =  1159 ||2 4 5 4 24 9 12 9 45 12 15 12 54 9 12 9 42 4 5 4 2|| ∗ 𝐴                                          (3.16) 

where, (*) denotes convolution operation. 

Then it determines the intensity gradient for the image by applying a pair of convolutional masks 

in both the x and y directions in the form  

Gx =  [ −1 0 1 − 2 0 2 − 1 0 1 ]                                          (3.17) 

and Gy =  [ −1 − 2 − 1 0 0 0 1 2 1 ].                                         (3.18) 

Then the gradient strength,  

G =  √ 𝐺𝑥2  + 𝐺𝑦2,                                                          (3.19) 
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alongside the gradient direction,  

θ =  atan2( 𝐺𝑦, 𝐺𝑥 )                                                        (3.20) 

is calculated and rounded to either 0, 45, 90, or 135 degrees. Non-maximum suppression is applied 

to remove all pixels not considered as the edge leaving only thin candidate line edges. The final 

step involves hysteresis that uses two upper and lower thresholds. If a pixel gradient is higher than 

the upper threshold it is accepted as an edge, below the lower threshold it is rejected as an edge, 

and between the two thresholds it is accepted as an edge if it is connected to a pixel above the 

upper threshold but removed otherwise. Here, the thresholds were set as 100 for the lower and 200 

for the higher threshold. With the edge pixels found, any pixel above a zero-intensity value were 

set to the maximum 255 to provide a binary image with the background pure black and all edges 

to be considered pure white. Each white pixel was then stored in a vector of points to be considered 
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in the line detection algorithm [27]. Figure 2.5 shows one output of canny edge detection. 

 

Contours are curves joining continuous points having same color or intensity. Contours are 

found by using OpenCV’s implementation of [27] on the binary image. This method stores all 

the contour points. If there are two subsequent points (𝑥1, 𝑦1) and (𝑥2, 𝑦2) of the contour. Those 

points will either be vertical, horizontal or diagonal neighbors. Figure 2.6 show detected contours 

on Figure 2.5 overlaid on the source image.

Figure 2.5: Canny edge detection 
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After finding all the contours, OpenCV’s implementation of Doughlas-Peucker [28] algorithm 

has been used to find rectangular shapes from the contours found. This algorithm approximates 

polygonal curves with the specified vertices. In this implementation, input curves were the 

detected contours found by using the findContours() function. The epsilon value was selected to 

be the length of the contour which was found by arcLength() function of OpenCV. The boolean 

value was to true to detect closed contours only to determine the rectangles. The approxCurve 

was returned which has a member function size() which returns how many corners are there is 

the returned polygon. If it is equal to 4 it was detected as a rectangle. Figure 2.7 shows detected 

rectangles on figure 2.6. It detects even very small rectangles which do not represent any 

meaningful features. To get better output, 

Figure 2.6: Contour detection 
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the rectangular contour area is calculated by using OpenCV’s contourArea() function to make 

sure that the area is big enough to be considered as a window. Figure 2.8 shows windows 

detected in a queried image by this method. The actual height of the window is taken during 

Figure 2.8: Detected windows in an image  

Figure 2.7: Detected rectangles using Doughlas-Peucker algorithm 
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alignment of the spatial database to the 3D CAD model. The pixel distance of the height of the 

window then sets a scale factor. The user clicks on two points of the image to find the 3D 

distance and the nearest windows scale factor is used to find the 3D distance. A magnifier has 

been implemented to aid the accuracy of clicking on the image. To implement the magnifier, 

OpenCV’s pyrUp() function has been used. Figure 2.9 shows the magnifier. 

2.2.7 Textured Model Generation 

All the keyframes for each plane are then stored in a vector to be stitched together. OpenCV’s 

image stitching is very slow and due to large image size in this dataset the default OpenCV’s 

stitcher could not stitch more than 6 images. However, OpenCV has a stitching_detailed.cpp 

implemented which was modified as [29] which uses OpenMP to speed up the stitching process. 

That also had some limitations. It was not able to stitch more than 22 images. Finally, OpenPano 

Figure 2.9: The magnifier for accurate clicking 
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was used which is also used by Autostitch. OpenPano is an open-source C++ implementation of 

[30] which successfully stitches all the images supplied. To get high quality images, it requires 

images to be rectified before giving them as input. Before running the SLAM all the images are 

rectified after being loaded, so that problem does not occur in our case. Also, the exposure 

parameters are constant for better blending. Multiple parameters have been used to get better 

output from OpenPano. First, stitching mode has been set to camera estimation mode which gives 

better output as it performs pairwise matching. As the images are collected from a video, we 

assume the input images are ordered. To avoid any irregularities from the stitching process, the 

output image was cropped. In OpenPano, to stitch images, SIFT features were extracted from the 

images to be stitched. Then using a k-dimentional tree 10 nearest neighbors for each feature were 

found. Images that have the most feature matches to each image are selected. A pairwise matching 

was done among those images using RANSAC to solve for homography. Then a probabilistic 

model was used to verify these matches. Connected components in image matches are then found. 

A bundle adjustment to solve for the rotation and focal length of the camera is performed for each 

connected component. The final panorama is rendered using multi-band blending. Because of a 

high number of key-points our system takes in every tenth image from the keyframe vector and 

stitches them together. During the image registration to the 3D mesh model the user specifies the 

required area to be inspected. That process takes in the boundaries for each plane in the specified 

region. That boundary is used to texture map the stitched image to its corresponding plane. A 

photorealistic 3D texture model is created in this manner. 
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CHAPTER III 

DATA COLLECTION PROCESS 

 

Figure 3.1 provides images of data being collected with a UAS. The UAS used in this application 

was the DJI Spreading Wings S1000+ model. One of the most important features of the S1000+ is 

a low gimbal mounting bracket which enables a wide range of possible shooting angles and camera 

motions [30]. 

 It was fully compatible with the Zenmuse Z15 camera gimbals from DJI which stabilizes the 

camera to the desired orientation during flight. A Canon EOS 5D Mark III camera has been used 

to capture video of the scene. The camera has a 22.3 Megapixel CMOS n sensor. High-Definition 

video with a resolution of 1920×1040 was collected at 30 frames per second.  

 

The SLAM requires a calibrated camera system. Calibration images were taken before every 

flight. Figure 3.2 shows the calibration image collection at the project site. The 3D CAD model 

used was loaded in the system using Open Asset Import Library (Assimp) and OpenGL. 

Figure 3.1: Random Images during data collection  
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Camera calibration is a process to estimate the parameters of a lens and image sensor of a 

camera. These parameters can be used to correct distortions in an image, to measure the size of 

an object in world or to locate the camera in the world.  

 

Camera parameters include, 

i) Intrinsic camera parameters 

ii) Extrinsic camera parameters 

iii) Distortion Coefficients. 

Estimation of camera parameters requires 3D-2D correspondence of an object. Generally, a 

camera calibration pattern (Checker Board Pattern) is used to find those correspondences. The 

camera model that has been used in this work is based on Pinhole Camera model. The camera 

parameters are expressed by a 4×3 matrix known as a Camera Matrix. The camera matrix maps 

Figure 3.2: Calibration Image collection 
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the 3D world scene in a 2D image plane. The extrinsic parameters represent camera poses during 

each image capture in 3D world.  

 Calibration of Canon EOS 5D Mark III camera was done using OpenCV’s camera calibration 

code that is provided within OpenCV’s source library [33]. This camera calibration code provides 

several algorithms to compute the intrinsic and distortion properties found in pinhole cameras. 

Distortion is typically caused by symmetry found in the lens used with the camera [33]. OpenCV 

takes into account both radial and tangential distortion that can be found in cameras. Radial 

distortions are classified as barrel, pincushion, or a combination of the two which cause straight 

lines to no longer appear straight in distorted images. In barrel distortion, lines appear to bend 

away from the center of the image in a “fish-eye” effect whereas pincushion distortion causes lines 

to bend towards the camera. The following formulas provides the equations  used in OpenCV for 

correction of the radial distortion [33]  𝑥𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 = 𝑥(1 + 𝑘1𝑟2 + 𝑘2𝑟4 + 𝑘3𝑟6)                                         (1)  𝑦𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 = 𝑦(1 + 𝑘1𝑟2 + 𝑘2𝑟4 + 𝑘3𝑟6)                                        (2)  
This states that for a pixel at location (𝑥, 𝑦) coordinates in the input image, the corrected output 

image without distortion will be the new (𝑥𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑, 𝑦𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑) coordinates [33].  

Tangential distortion is caused by the camera lenses not being perfectly parallel to the imaging 

plane. This is corrected as  𝑥𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 = 𝑥 + 2( 𝑝1 𝑥𝑦 + 𝑝2(𝑟2 + 2𝑥2))                                     (3) 𝑦𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 = 𝑦 + 2( 𝑝1 (𝑟2 + 2𝑦2) + 𝑝2𝑥𝑦)                                    (4) 

 The five parameters listed are provided by OpenCV once the camera calibration is finished and 

presented as a one row matrix with 5 columns in an .xml file as 𝐷𝑖𝑠𝑡𝑜𝑟𝑡𝑖𝑜𝑛𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑠 = (𝑘1𝑘2𝑝1𝑝1𝑘3)                                          (5) 
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 Intrinsic parameters include parameters inherent to the camera itself. These include the focal 

length of the camera and the image offset. The focal length is the distance from the center of a lens 

and its focus and represents how strongly the system converges the light onto the optical sensor. 

Image offset which represents the optical center of the camera in pixel coordinates. OpenCV 

creates a camera matrix of these unknown parameters as the 3-by-3 matrix below 

[𝑥𝑦𝑧] =  [𝑓𝑥 0 𝑐𝑦0 𝑓𝑦 𝑐𝑥0 0 1 ] [𝑋𝑌𝑍]                                                   (6) 

Where 𝑓𝑥 and 𝑓𝑦 represent the focal lengths in the x and y directions, 𝑐𝑦 and 𝑐𝑥 represent the image 

offset, and w is simply used to homography the coordinate system. Solving all the unknown 

parameters mentioned previously is accomplished through the calibration.  

OpenCV solves these unknowns through a series of several geometric equations using a known 

calibration object or pattern [33]. The patterns supported by OpenCV’s algorithm include 

chessboards, circular grids, and asymmetrical grid patterns. OpenCV first locates the corners or 

circles of the pattern and determines where that plane lies in 3D space in relation to the camera. 

Knowing the 3D location of the object provides 6 parameters for rotation and translation. 

 

OpenCV solves the distortion and camera parameters separately, focusing first on the distortion 

parameters [33]. Due to distortion parameters being tied to the 2D geometry of how the image is 

warped, a known calibration pattern can provide the information necessary to solve these 

parameters. Technically a simple three corner pattern providing 6 pieces of information would 

provide enough information to solve the distortion parameters but more are needed for robustness.  

 

Intrinsic parameters are also solved through use of the calibration pattern. For each view of the 
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calibration pattern 6 unknown values for the extrinsic parameters are developed due to the rotation 

and translation of the object along with the previously mention 4 intrinsic parameters. To solve for 

these 10 unknowns, a pattern of N corners or circles can be used to provide 2NK constraints, where 

K is the number of images, due to each point having an x and y position. Solving this series of 

equations then requires that 2NK≥6K+4. This does require multiple images though due to one 

image only providing 4 corners worth of information since that is all that is needed to describe a 

plane. So, a pattern with enough point and multiple images can be used to solve the intrinsic 

parameters [33].  
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CHAPTER IV 

EXPERIMENTAL RESULTS AND DISCUSSION 

 

In this section, the proposed algorithm is compared against the latest version of the state of 

the art Pix4D mapper (version 3.1) [31]. The primary focus of this research is to incorporate a BIM 

to access the point cloud which provides us a prior knowledge on how the building was intended 

to be constructed. The CAD model provides entry to the spatial database eliminating the need to 

perform a dense reconstruction as Pix4D. Despite not having a dense reconstruction the proposed 

algorithm outperformed Pix4D in metric data calculation and textured 3D model generation.  
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Spatial Query: 

The point cloud generated by the SLAM have been aligned to the 3D CAD model by a 

similarity transform. Each point has a keyframe associated with it, which creates the spatial index 

of images. The user clicks on the desired entity. The nearest point from the point cloud to the 

vertex is selected, working as an entry to the spatial index for query and efficiently searches for 

the spatial image data. Figure 4.1 shows some of the outputs using the spatial query. 

After a query the user may choose to check dimensions of various entities which is the 

metric data analysis in our system.  

 

Figure 4.1. Spatial query: The window to be inspected in the model is marked with blue square and the image of 

that region found through the spatial query. 
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Metric Data Analysis:  

The proposed algorithm’s dimensional calculations have been compared to Pix4D’s 

calculations. The proposed system showed significant improvements over Pix4D in metric data 

extraction. However, Pix4D requires geotagged images to assign scale and orientation. It is not 

always possible to have geotag information with images, so this algorithm was developed keeping 

this in mind and geotags was not included. As the proposed system does not require geotagged 

images, the scale was provided manually to Pix4D. To apply a scale constraint into Pix4D, the 

recommended process is to click on both vertices from the dense point cloud that Pix4D generates 

and provide the accurate metric distance. Moreover, it is recommended by Pix4D to correct the 

vertices in at least two of the corresponding images. The proposed system applies scale by using 

two consecutive images.  

As a direct comparison, a scale was applied to the Pix4D model using the dense point cloud and 

two images. Pix4D does recommend more scale constraints as it will provide better accuracy. This 

is true for both Pix4D, as well as the proposed algorithm. Figure 4.2 below shows the process to 

apply scale using Pix4D mapper. 
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After applying scale constraints, the height and width of 15 windows providing 60 total distances 

for each method have been tested. For verification, these same distances were manually measured. 

The actual width and height were 2.012 meters(m) (6.6 feet) and 1.829 meters(m) (6 feet). The 

CAD model provides these distances as 1.829 meters for both width and height. The scale was 

applied based on the height of the windows, as provided by the CAD model, on both the proposed 

model and Pix4D. The proposed system and Pix4D both determined the building was not 

constructed per the CAD model dimensions. 

    The proposed model resulted in a mean squared error (MSE) of 31.9 cm2 whereas Pix4D 

mapper’s MSE was of 45.6 cm2. For Pix4D’s width calculation, it has a standard deviation of 4.92 

cm, as opposed to the proposed system’s standard deviation of 4.28 cm. For height calculation, 

Pix4D’s standard deviation resulted in 4.17 cm, where the proposed algorithm provided a standard 

deviation of 3.27 cm. Pix4D had a combined standard deviation of 6.45 cm where the proposed 

Figure 4.2. Applying scale constraint on Pix4D mapper. 

 



 

34 

 

algorithms combined standard deviation was 5.39 cm. Figure 4.3 provides the width and height 

calculations along with the actual. 

    A t-test was performed on the width and height averages to verify the statistical significance 

of the calculated errors. The t-test is a statistical hypothesis test where test statistics follow a 

student’s t-distribution if the null hypothesis is true. In a one sample t-test, a value is specified as 

null hypothesis and the mean is tested to verify if it matches with the null hypothesis. In case of a 

two-sample t-test, the null hypothesis assumes the means of two populations are the same. The 

first step in a statistical hypothesis test is deciding on the significance level known as ∝. It is the 

probability of rejecting the null hypothesis even when it is true. The p-value is calculated and 

compared to ∝ to accept or reject the null hypothesis. The p-value is the probability of obtaining 

a result which is equal or better than actually observed result under the null hypothesis. If 𝑋 is a 

continuous random variable where 𝑥 is an observed instance, p-value is probability of 𝑋 > 𝑥 (right 

Figure 4.3. Dimensions calculated with Pix4D and Proposed Algorithm along with their actual  values. 
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tail event) or 𝑋 < 𝑥 (left tail event) or both (two tail event) under the null hypothesis. The null 

hypothesis is rejected if p-value is less than a pre-defined ∝.    

Tables 4.1 and 4.2 show the resulting t-tests from the two-sample width and height data assuming 

unequal variances. In both cases, an ∝ of 0.01 was used. This shows we are 99% confident that the 

proposed method is statistically better than Pix4D. The null hypotheses for both cases were set as 

there are no significant difference. 

 

Table 4.1. t-test results on two sample widths assuming unequal variances 

  

 Pix4D Width (meters) Proposed Algorithm Width 

(meters) 

Mean 1.97673 2.04084 

t Stat -5.38338 

t Critical 2 tail 2.66487 

P two-tail 1.4E-06 
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Table 4.2. t-test results on two sample heights assuming unequal variances 

 

 Pix4D Height (meters) Proposed Algorithm Height 

(meters) 

Mean 1.75758 1.82494 

t Stat -6.95956 

t Critical 2 tail 2.66822 

P two-tail 4.4E-09 

 

Due to the 𝑝𝑣𝑎𝑙𝑢𝑒 for both resulted in a much lower value than the ∝ value, the null hypothesis 

can be rejected. We can therefore state that the mean average in the proposed algorithm were 

significantly closer to the actual values than Pix4D. 

An analysis of variance (ANOVA) was performed on the variances of the data analyses to verify 

the statistical significance of the sample variables. Table 4.3 provides the ANOVA output. 

 

Table 4.3. Two-factor ANOVA with replication results on both width and height with ∝ = 0.01    

Source of Variation F P-value F Critical 

Sample  73.39466 5.25E-14 6.858521 

Width/Height  803.691 5.6E-54 6.858521 

Interaction  0.044844 0.832588 6.858521 
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Pix4D and the proposed algorithm are represented as the two samples. The 𝑝𝑣𝑎𝑙𝑢𝑒 (𝑠𝑎𝑚𝑝𝑙𝑒) 
was lower than ∝. The 𝐹𝐶𝑟𝑖𝑟𝑡𝑖𝑐𝑎𝑙 (𝑠𝑎𝑚𝑝𝑙𝑒) is lower than 𝐹(𝑠𝑎𝑚𝑝𝑙𝑒) showing both samples have 

significant differences. The second row in Table 4.3 represents the effect of both samples on width 

and height calculations and the 𝑝𝑣𝑎𝑙𝑢𝑒(𝑤𝑖𝑑𝑡ℎ/ℎ𝑒𝑖𝑔ℎ𝑡) is much less than ∝. Therefore, we can 

reject the null hypothesis and conclude both systems are significantly different on the width and 

height calculations. The 𝑝𝑣𝑎𝑙𝑢𝑒 (𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛) calculated a value greater than ∝, showing we can 

conclude the interaction between width and height have no significant difference, meaning the 

effect of width or height does not depend on one another.  

 

    We can therefore assume the proposed algorithm provides significantly more accurate results 

than Pix4D data analysis.  
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3D Textured Model Generation: 

    Another tool developed was for visualization through 3D textured model. To visualize the 3D 

texture model, the OpenGL library was used with a moving camera implementation. This allows 

the user to roam through the 3D textured model to look for any visual anomalies. We have 

compared the proposed system to Pix4D mapper’s textured reconstruction. For a fair comparison, 

Figure 4.4: 3D texture model with mipmapping from various camera positions 
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we have selected the high-resolution texture mapping option for Pix4D. Figure 4.4 shows some of 

the images taken from the proposed systems 3D textured modelling. 

Figure 4.5(a) shows the texture map using linear filtering. Thus, it has visible artifacts due to 

aliasing. A mipmap filter has been used to remove the artifacts (Figure 4.5(b)). 

Figure 4.5. Texture Mapping (a) with linear filtering (b) with mipmap filtering 

 

(a)                                                                                  (b)  
  

Figure 4.6. Textured model comparison: (Left): Pix4D’s textured model  (Right): Proposed Algorithm’s 
textured model 
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Figure 4.6 shows the differences between the proposed system and Pix4D’s 3D texture models. 

 Pix4D’s textured reconstruction results in clearly visible holes and artifacts. Windows are not 

realistic and provide visible anomalies. Straight lines are distorted resulting in wavy lines, unusable 

for detailed visual inspections. The proposed method does not have any of these artifacts resulting 

in a photorealistic rendition.   

Moreover, the visualization and movement of the camera is recorded in a video and so that it 

can be played back in a virtual reality mode to be visualized using a VR headset. It makes the user 

experience more immersive.  

Figure 4.7 shows the parallax going on during visualization  

 

 

 

 

 

 

Figure 4.7. Visualization through VR headset  
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Limitations: 

The SLAM systems use loop closure for better pose estimation. However, as our dataset 

comprises a very high amount of repetitive brick patterns the loop closure had to be turned off. 

Figure 4.8 shows some images where brick patterns are too repetitive that loop closure provides 

wrong output. 

Another major problem was very large reflective surfaces various sections of the building. The 

reflections are not static as SLAM assumes and that’s why SLAM fails to generate a reliable point 

cloud at that region.    

 

Figure 4.9 shows some of the very large specular surfaces where reliable feature finding was too 

difficult and SLAM failed to continue. Taking the video from a greater distance could be a possible 

solution as it would capture more area where reliable static features could have been found. An 

attempt was made but was not possible because of the limitation of the flying region.  

 

Figure 4.8: Repetitive brick pattern throughout the dataset. 
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Figure 4.10: Narrow road from building to the fence 

 

Figure 4.10 shows the reason of failure in the attempt to go further away from the building to take 

images. We were not allowed to fly beyond the fence due to FAA regulations and the problematic 

images were taken from the furthest position possible.  

  

Figure 4.9: Large Lambertian surfaces in the building under inspection 
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CHAPTER V 

CONCLUSION AND FUTURE WORK 

 

Conclusion: 

This system has successfully demonstrated spatial query into the spatial database through the 

provided 3D CAD model. The spatial query for images will significantly improve the inspection 

process because of easy and fast access to image data. The images have been used to extract metric 

data. The proposed system has a mean squared error of 31.9 cm2 and a standard deviation of 4.28 

cm for width calculation and 4.17 cm for height calculation. The metric data extraction method 

has outperformed the state of the art Pix4D mapper. Statistical tests have been performed to verify 

that the above outputs are statistically significant. Two t-tests followed by an analysis of variance 

(ANOVA) was done on the data collected by our system and Pix4D mapper. Although traditional 

t-tests or ANOVA uses an α value of 0.05 to ensure 95% confidence, α value of  0.01 has been to 

be 99% confident statistically that this system has generated better results in terms of metric data 

calculation. The proposed algorithm is the only one using a spatial query for images to extract 

metric data. 3D CAD models have been used, which is a unique system as other systems uses 

different sources to work as the prior such as, GPS data for finding pose of the UAV or geotagged 

images. Introducing 3D CAD model to provide the prior information about dimensions is 

definitely a valuable addition to the inspection process because in all modern construction the CAD 

model is almost always available and it can be used without the aid of extra sensors. However, 

other sensors can be used and the data extracted by using the CAD model can be used to refit the 

output to get a better result. Using a monocular camera system also played a crucial part as the 

system was not bound by a fixed baseline of a stereo camera and could operate with a larger depth 
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range. Metric data analysis along with visualization through a 3D textured model have been 

performed. A comparison with the state of the art Pix4D mapper was given where the proposed 

system has been proven to significantly improve the metric data analysis and provided better and 

photorealistic 3D textured model. The 3D textured model was generated to provide an overall view 

of the structure under inspection. An OpenGL camera has been implemented to enable the user to 

move around the structure and visualize the as-built model. The viewport is recorded in a playable 

video format and can be visualized using a VR headset. The textured reconstruction is 

photorealistic and compared to Pix4D produces a lot less anomalies. The proposed system is easy 

to use and does not require the user to have any previous knowledge of visualization, rendering or 

CAD software.  

Future works:  

Detecting all the windows would make the metric data calculation better and robust. Deep 

convolutional neural networks could be possible solution to detect all the windows in each frame. 

Another interesting step towards further research could be automatic scheduling monitoring and 

temporal navigation using the 3D CAD model. Creating a temporal database would allow the user 

visit through time and access as-build documentation. Combining spatial and temporal database 

will enable users to inspect the construction using the CAD model. The user will be able to click 

on the CAD model and the spatial query will return all the images with associated timestamp of 

that interest area. Real time implementation of the algorithm could be another future work to make 

inspection real time. Optimizing the system to implement on an on-board environment or mobile 

devices will let users inspect the building using their phone or any mobile device.  
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APPENDIX 

    User Guide 

The user first needs to specify locations of the folders containing the sequential images and the 3D 

CAD model. The executable is located in the build folder. To run the program the user must type 

the following command in the terminal. 

  

Then the 3D CAD model will load and displayed along with the first image of the image sequence. 

The user must specify the planes which are to be inspected by clicking once anywhere on the plane 

for each plane. After selecting the desired planes the user should select any window or specific 

entity that is also seen in the 3D CAD model from the first image. User must click on the four 

corners of that window both in the images and the CAD model and then press “ENTER”.  

The SLAM will run and generate a 3D point cloud and the spatial database will automatically be 

generated. It will also generate the stitched images and a text file named ‘plane_boundaries.txt’ in 

the ‘Output’ folder.  

After the spatial database is generated, the user can click anywhere in the inspection area to see 

the relevant image of that location. After the image is shown, the user can click on different places 

on the image to check the metric distance. To visualize any other area, the user must click “ESC” 

first and then click again on the CAD model. User can repeat this process as many times as they 

want.  

To get the textured visualization, the user should run the following command in the terminal 

  This command will use the ‘plane_boundaries.txt’ and the stitched images from the ‘Output’ 

folder and load the textured visualization. Pressing ‘q’ during both program executions will 

. /main  path/to/3D/CAD/Model  path/to/image/folder 

./visualizeCa
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terminate the program.  

Spatial Database 

Spatial database means data related to space. The space in this case can be a geographic space, a 

man-made building space, a user defined coordinate space or even a layout of a VLSI design for 

example. The need for managing a large number of data present in the space has gotten a lot of 

interest with the advent of relational database systems. A spatial data system must at least be able 

to query for a data from a large collection of objects from a particular area without searching 

through the whole dataset.  

Modeling of Spatial Database 

Spatial databases can be of many types. The following are the components who represent a 

spatial database: 

(i) Data in space: Distinct entities are arranged in space with their own geometric 

description. 

(ii) Space: The space where the data is stored must be defined. 

 

Spatial Query 

 A statement or logical expression that selects geographic features based on location or spatial 

relationship. For example, a spatial query might find which points are contained within a 

polygon or set of polygons, find features within a specified distance of a feature, or find features 

that are adjacent to each other. There can be two main types of operations for manipulating sets 

of database elements with spatial attributes. Such as: 

(i) Spatial Selection 

(ii) Spatial Join 
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Spatial Selection 

Spatial selection is an operation that returns a set of elements fulfilling the predicates from the 

spatial database. Finding all state parks in North Dakota in a map is an example of spatial 

selection. 

Spatial Join 

Spatial join begins with a spatial selection and comparing different domains of elements in that 

selected space. For example, if a person is looking for fishing opportunities in state parks of North 

Dakota. A spatial selection can bring up all the state parks in North Dakota. Then considering 

fishing opportunities in those state parks is a spatial join. State park is a domain and fishing is 

another but in this case, they share the same spatial predicates. A spatial query must be supported 

by spatial indexing.  

Spatial Indexing 

Spatial indexing is mainly a support for spatial selection, spatial join or finding objects in space 

closest to the query value. Spatial indexing is a way to organize the space and the objects in that 

space so that only part of the space and related objects answer to a spatial query [32].  

 

 

 

 

 

 

Camera Calibration 
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Camera calibration is a process to estimate the parameters of a lens and image sensor of a 

camera. These parameters can be used to correct distortions in an image, to measure the size of 

an object in world or to locate the camera in the world.  

 

Camera parameters include, 

iv) Intrinsic camera parameters 

v) Extrinsic camera parameters 

vi) Distortion Coefficients. 

Estimation of camera parameters requires 3D-2D correspondence of an object. Generally, a 

camera calibration pattern (Checker Board Pattern) is used to find those correspondences. The 

camera model that has been used in this work is based on Pinhole Camera model. The camera 

parameters are expressed by a 4×3 matrix known as a Camera Matrix. The camera matrix maps 

the 3D world scene in a 2D image plane. The extrinsic parameters represent camera poses during 

each image capture in 3D world.  

 Calibration of Canon EOS 5D Mark III camera was done using OpenCV’s camera calibration 

code that is provided within OpenCV’s source library [33]. This camera calibration code provides 

several algorithms to compute the intrinsic and distortion properties found in pinhole cameras. 

Distortion is typically caused by symmetry found in the lens used with the camera [33]. OpenCV 

takes into account both radial and tangential distortion that can be found in cameras. Radial 

distortions are classified as barrel, pincushion, or a combination of the two which cause straight 

lines to no longer appear straight in distorted images. In barrel distortion, lines appear to bend 

away from the center of the image in a “fish-eye” effect whereas pincushion distortion causes lines 

to bend towards the camera. The following formulas provides the equations  used in OpenCV for 
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correction of the radial distortion [33]  𝑥𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 = 𝑥(1 + 𝑘1𝑟2 + 𝑘2𝑟4 + 𝑘3𝑟6)                                         (1)  𝑦𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 = 𝑦(1 + 𝑘1𝑟2 + 𝑘2𝑟4 + 𝑘3𝑟6)                                        (2)  
This states that for a pixel at location (𝑥, 𝑦) coordinates in the input image, the corrected output 

image without distortion will be the new (𝑥𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑, 𝑦𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑) coordinates [33].  

Tangential distortion is caused by the camera lenses not being perfectly parallel to the imaging 

plane. This is corrected as [27]  𝑥𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 = 𝑥 + 2( 𝑝1 𝑥𝑦 + 𝑝2(𝑟2 + 2𝑥2))                                     (3) 𝑦𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 = 𝑦 + 2( 𝑝1 (𝑟2 + 2𝑦2) + 𝑝2𝑥𝑦)                                    (4) 

 The five parameters listed are provided by OpenCV once the camera calibration is finished and 

presented as a one row matrix with 5 columns in an .xml file as 𝐷𝑖𝑠𝑡𝑜𝑟𝑡𝑖𝑜𝑛𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑠 = (𝑘1𝑘2𝑝1𝑝1𝑘3)                                          (5) 

 Intrinsic parameters include parameters inherent to the camera itself. These include the focal 

length of the camera and the image offset. The focal length is the distance from the center of a lens 

and its focus and represents how strongly the system converges the light onto the optical sensor. 

Image offset which represents the optical center of the camera in pixel coordinates. OpenCV 

creates a camera matrix of these unknown parameters as the 3-by-3 matrix below 

[𝑥𝑦𝑧] =  [𝑓𝑥 0 𝑐𝑦0 𝑓𝑦 𝑐𝑥0 0 1 ] [𝑋𝑌𝑍]                                                   (6) 

Where 𝑓𝑥 and 𝑓𝑦 represent the focal lengths in the x and y directions, 𝑐𝑦 and 𝑐𝑥 represent the image 

offset, and w is simply used to homography the coordinate system. Solving all the unknown 

parameters mentioned previously is accomplished through the calibration.  

OpenCV solves these unknowns through a series of several geometric equations using a known 



 

50 

 

calibration object or pattern [33]. The patterns supported by OpenCV’s algorithm include 

chessboards, circular grids, and asymmetrical grid patterns. OpenCV first locates the corners or 

circles of the pattern and determines where that plane lies in 3D space in relation to the camera. 

Knowing the 3D location of the object provides 6 parameters for rotation and translation. 

 

OpenCV solves the distortion and camera parameters separately, focusing first on the distortion 

parameters [33]. Due to distortion parameters being tied to the 2D geometry of how the image is 

warped, a known calibration pattern can provide the information necessary to solve these 

parameters. Technically a simple three corner pattern providing 6 pieces of information would 

provide enough information to solve the distortion parameters but more are needed for robustness.  

 

Intrinsic parameters are also solved through use of the calibration pattern. For each view of the 

calibration pattern 6 unknown values for the extrinsic parameters are developed due to the rotation 

and translation of the object along with the previously mention 4 intrinsic parameters. To solve for 

these 10 unknowns, a pattern of N corners or circles can be used to provide 2NK constraints, where 

K is the number of images, due to each point having an x and y position. Solving this series of 

equations then requires that 2NK≥6K+4. This does require multiple images though due to one 

image only providing 4 corners worth of information since that is all that is needed to describe a 

plane. So, a pattern with enough point and multiple images can be used to solve the intrinsic 

parameters [33].  
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Solution of Perspective Three-Point (P3P) Problem 

Solution of P3P problem is used to estimate the position and orientation of an object relative to 

the position and orientation of the camera or vice versa.  

With four given 3D/2D correspondences where points in 2D are defined in image coordinate 

system and 3D points are given in model coordinate system (𝐴 ↔  𝑢,  𝐵 ↔  𝑣,  𝐶 ↔  𝑤,  𝐷 ↔ 𝑧), 

three points (𝐴, 𝐵, 𝐶) are used to solve P3P equations. The solution gives up to 4 possible sets of 

distances. All the solutions are converted into pose configurations (up to four) and the fourth 

point 𝐷 is used for disambiguation [23].  

 

Figure I: Image Projection: A, B, C projected in u, v, w [34] 
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The main principle behind this algorithm is the law of cosines [28]. Using angles, it expresses the 

length of each sides of a triangle. If a triangle ABC is the triangle which being used to solve the 

P3P problem and P is the camera optical center, and u, v are projections of A and B respectively, 

triangle ABP gives,  

 𝑃𝐴2 + 𝑃𝐵2 − 2×𝑃𝐴×𝑃𝐵×𝑐𝑜𝑠𝛼𝑢,𝑣 = 𝐴𝐵2.                                          (7) 

 

So, applying this law of cosines the P3P equation system becomes, 

 𝑃𝐵2 + 𝑃𝐶2 − 2×𝑃𝐵×𝑃𝐶×𝑐𝑜𝑠𝛼𝑣,𝑤 − 𝐵𝐶2 = 0                                 (8) 𝑃𝐴2 + 𝑃𝐶2 − 2×𝑃𝐴×𝑃𝐶×𝑐𝑜𝑠𝛼𝑢,𝑤 − 𝐴𝐶2 = 0                                 (9) 𝑃𝐴2 + 𝑃𝐵2 − 2×𝑃𝐴×𝑃𝐵×𝑐𝑜𝑠𝛼𝑢,𝑣 − 𝐴𝐵2 = 0.                              (10) 

Dividing these equations with 𝑃𝐶2 and letting 𝑦 = 𝑃𝐵/𝑃𝐶 and 𝑥 = 𝑃𝐴/𝑃𝐶, 

𝑦2 + 1 − 2×𝑦×𝑐𝑜𝑠𝛼𝑣,𝑤 − 𝐵𝐶2𝑃𝐶2 = 0                                          (11) 

𝑥2 + 1 − 2×𝑥×𝑐𝑜𝑠𝛼𝑢,𝑤 − 𝐴𝐶2𝑃𝐶2 = 0                                          (12) 

Figure II: Law of cosines in 2D (u & v denote A & B projections on the image plane) [34] 
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𝑥2 + 𝑦2 − 2×𝑥×𝑦×𝑐𝑜𝑠𝛼𝑢,𝑣 − 𝐴𝐵2𝑃𝐶2 = 0                                     (13) 

are obtained. Finally, introducing 𝑣 = 𝐴𝐵2𝑃𝐶2  , 𝑎𝑣 =  𝐵𝐶2𝑃𝐶2 and 𝑏𝑣 = 𝐴𝐶2𝑃𝐶2 we get, 𝑦2 + 1 − 2×𝑦×𝑐𝑜𝑠𝛼𝑣,𝑤 − 𝑎𝑣 = 0                                            (14) 𝑦2 + 1 − 2×𝑥×𝑐𝑜𝑠𝛼𝑢,𝑤 − 𝑏𝑣 = 0                                            (15) 𝑥2 + 𝑦2 − 2×𝑥×𝑦×𝑐𝑜𝑠𝛼𝑢,𝑣 − 𝑣 = 0.                                        (16) 

Replacing  𝑣 = 𝑥2 + 𝑦2 − 2×𝑥×𝑦×𝑐𝑜𝑠𝛼𝑢,𝑣 

in first two equations, a simplified version of P3P equation system is obtained as, (1 − 𝑎)𝑦2 − 𝑎𝑥2 − 𝑐𝑜𝑠𝛼𝑣,𝑤𝑦 + 2𝑎𝑐𝑜𝑠𝛼𝑢,𝑣𝑥𝑦 + 1 = 0                         (17) (1 − 𝑎)𝑦2 − 𝑎𝑥2 − 𝑐𝑜𝑠𝛼𝑣,𝑤𝑦 + 2𝑎𝑐𝑜𝑠𝛼𝑢,𝑣𝑥𝑦 + 1 = 0                        (18) 

Above equations can be solved by using the Wu Ritt’s zero decomposition method [35]. 
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