
University of North Dakota

UND Scholarly Commons

Theses and Dissertations Theses, Dissertations, and Senior Projects

January 2017

Failure Analysis Of Rotating Equipment Using
Vibration Studies And Signal Processing
Techniques
Ashkan Nejadpak

Follow this and additional works at: https://commons.und.edu/theses

This Thesis is brought to you for free and open access by the Theses, Dissertations, and Senior Projects at UND Scholarly Commons. It has been

accepted for inclusion in Theses and Dissertations by an authorized administrator of UND Scholarly Commons. For more information, please contact

zeineb.yousif@library.und.edu.

Recommended Citation
Nejadpak, Ashkan, "Failure Analysis Of Rotating Equipment Using Vibration Studies And Signal Processing Techniques" (2017).
Theses and Dissertations. 2297.
https://commons.und.edu/theses/2297

https://commons.und.edu?utm_source=commons.und.edu%2Ftheses%2F2297&utm_medium=PDF&utm_campaign=PDFCoverPages
https://commons.und.edu/theses?utm_source=commons.und.edu%2Ftheses%2F2297&utm_medium=PDF&utm_campaign=PDFCoverPages
https://commons.und.edu/etds?utm_source=commons.und.edu%2Ftheses%2F2297&utm_medium=PDF&utm_campaign=PDFCoverPages
https://commons.und.edu/theses?utm_source=commons.und.edu%2Ftheses%2F2297&utm_medium=PDF&utm_campaign=PDFCoverPages
https://commons.und.edu/theses/2297?utm_source=commons.und.edu%2Ftheses%2F2297&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:zeineb.yousif@library.und.edu


 

 

 

 

 

FAILURE ANALYSIS OF ROTATING EQUIPMENT USING VIBRATION STUDIES 

AND SIGNAL PROCESSING TECHNIQUES 

 

by 

 

Ashkan Nejadpak 

 

 

A Thesis 

Submitted to the Graduate Faculty 

Of the 

University of North Dakota 

in partial fulfillment of the requirements 

 

 

for the degree of 

Master of Science 

 

 

 

Grand Forks, North Dakota 

June  

2017 

 

 

 



i 

 

 

This thesis, submitted by Ashkan Nejadpak in partial fulfillment of the requirements 

for the Degree of Master of Science from the University of North Dakota, has been read 

by the Faculty Advisory Committee under whom the work has been done and is hereby 

approved. 

__________________________________________ 

Cai Xia Yang, Chair 

__________________________________________ 

Marcellin Zahui 

__________________________________________ 

Meysam Haghshenas 

This thesis is being submitted by the appointed advisory Committee as having met 

all of the requirements of the School of Graduate Studies at the University of North 

Dakota and is hereby approved. 

____________________________________________ 

Wayne Swisher 

Dean of the School of Graduate Studies 

 

_______________________________________________ 

Date 

 

 

 

 



ii 

 

 

 

 

PERMISSION 

 

Title  Failure Analysis of Rotating Equipment Using Vibration Studies and     

Signal Processing Techniques 

Department          Mechanical Engineering 

Degree       Master of Science 

 

In presenting this thesis in partial fulfillment of the requirements for a graduate 

degree from the University of North Dakota, I agree that the library of this University 

shall make it freely available for inspection. I further agree that permission for extensive 

copying for scholarly purposes may be granted by the professor who supervised my 

thesis work or, in her absence, by the Chairperson of the department or the dean of the 

School of Graduate Studies. It is understood that any copying or publication or other use 

of this thesis or part thereof for financial gain shall not be allowed without my written 

permission. It is also understood that due recognition shall be given to me and to the 

University of North Dakota in any scholarly use which may be made of any material in 

my thesis. 

 

 

 

 

Signature

 _________________________________ 

Date _________________________________ 

 

 

 

 

Arash
Typewritten Text
Ashkan Nejadpak

Arash
Typewritten Text
6/21/2017

Arash
Typewritten Text

Arash
Typewritten Text

Arash
Typewritten Text

Arash
Typewritten Text



iii 

 

TABLE OF CONTENTS 

LIST OF FIGURES ………………………………………………………...……………vi 

LIST OF TABLES ……………………………………………………………………….ix 

ACKNOWLEDGEMENTS ……………………………………..………….…………….x 

ABBREVIATIONS ……………………………………………………..……………….xi 

ABSTRACT …………………………………………………………………….………xii 

CHAPTER 

 1. INTRODUCTION ………………………………………………………..1 

  1.1. Overview ……………………………………………………..…..1 

  1.2. Objectives ………………………………………………………...3 

  1.3. Orientation …………………………………………………..……5 

 2. LITERATURE REVIUEW …………………………………..…………..7 

  2.1. Overview ………………………………………………………….7 

  2.2. Condition Monitoring ………………………………….…………7 

   2.2.1. Vibration Analysis ………………………………………..8 

   2.2.2. Infrared Thermography ……………………………..…….9 

   2.2.3. Acoustic Emissions ……………………………….…..…..9 

   2.2.4. Electrical Monitoring ………………………….……….…9 



iv 

 

   2.2.5. Lubricant Analysis ……………………………...……….10 

  2.3. Statistical Analysis ……………………………………….….…..10 

  2.4. Novel Condition Monitoring and Data Analysis Methods …..….11 

  2.5. Chapter Summary …………………………………………….…12 

 3. VIBRATION DATA ANALYSIS ………………………….….………..13 

  3.1. Overview …………………………………………….………..…13 

  3.2. The Experiment Setups ………………………………...………..14 

  3.3. Failure Analysis ……………………………………...………….17 

   3.3.1. Healthy Condition ……………………..…...……………18 

   3.3.2. Unbalanced Condition ……………………….…...……..21 

   3.3.3. Bearing Faults ……………………………...………..…..24 

   3.3.4. Mechanical Looseness …………………………………..28 

   3.3.5. Damaged Wires ……...………………………………..…30 

   3.3.6. Shaft Misalignment ……….……………………………..32 

  3.4. Chapter Summary ………………………………………….……34 

 4. FAULT CORRECTION ………………………………………………...35 

  4.1. Overview ………………………………………..……………….35 

  4.2. Balancing Technique ……………………………………………35 



v 

 

  4.3. Edge Detection ………………………………………....………..38 

  4.4. Line Detection ………………………………………………..….40 

  4.5. Machine Vision Based Balancing Method ……………….……..42 

  4.6. Different Faults Correction …………………………..…….……48 

  4.7. Chapter Summary ………………………………………….……50 

 5. STATISTICAL ANALYSIS OF VIBRATION DATA ………..……….51 

  5.1. Overview …………………………………………………..…….51 

  5.2. Principal Components Analysis …………………………..……..51 

  5.3. Singular Value Decomposition ………………………….………63 

  5.4. K-Nearest Neighbor ……………………………………………..63 

  5.5. Chapter Summary ………………………………….……………66 

 6. CONCLUSIONS AND FUTURE WORK ………………………..…….67 

  6.1. Conclusions and Discussions …………...………………….……67 

  6.2. Future Work ……………………..………………………………68 

REFERENCES …………………………………………………..……….……………..70 

 

 

 



vi 

 

LIST OF FIGURES 

Figure 3.1: The experiment setup for obtaining vibration data …………………………15 

Figure 3.2: Vibration and current monitoring setup …………………………………….16 

Figure 3.3: Machinery fault simulator used as third condition monitoring setup ……….17 

Figure 3.4: Vibration response of the healthy condition in time domain ……………….18 

Figure 3.5: Vibration response of healthy condition in frequency domain ……………..19 

Figure 3.6: Frequency response of the healthy condition in logarithmic scale ………....20 

Figure 3.7: STFT of healthy condition ……………………………………………….…21 

Figure 3.8: Frequency response of the unbalanced condition in logarithmic scale ……..22 

Figure 3.9: Frequency response of the unbalanced condition in linear format ………….22 

Figure 3.10: Current graph for unbalanced condition …………………………………...23 

Figure 3.11: The damaged bearing ……………………………………………………...26 

Figure 3.12: Vibration graph for damaged bearing condition ………………………..…27 

Figure 3.13: Current Graph for damaged bearing condition …………………………....28 

Figure 3.14: Vibration response due to mechanical looseness ……………………….…29 

Figure 3.15: Machine’s vibration response to damaged stator’s windings condition …...31 

Figure 3.16: Electric current response of the damaged windings condition ……..……...32 

Figure 3.17: Vibration response of the misaligned shaft ………………………………..33 



vii 

 

Figure 4.1: Edge detection methods ……………………………………………………..39 

Figure 4.2: The Hough lines detected on the marker …………………………………....41 

Figure 4.3: Vibration response of the healthy condition in time domain ……………….42 

Figure 4.4: Vibration response of unbalanced condition in time domain ……………….42 

Figure 4.5: Phase angle of the unbalanced flywheel ………………………………….....43 

Figure 4.6: A trial mass added on the flywheel …………………………………………44 

Figure 4.7: Vibration response of the system when a trial mass is added ………………45 

Figure 4.8: Phase angle when the trial mass is added …………………………………...45 

Figure 4.9: The orientation vectors on polar coordinates ……………………………….46 

Figure 4.10: The balanced flywheel vibration response ……………………...................47 

Figure 4.11: The frequency response of the investigated conditions …………..………..47 

Figure 4.12: Shaft alignment gauge attached to the shafts ………………………...……49 

Figure 5.1: The flywheel used to simulate unbalance …………………………….……..54 

Figure 5.2: Dial used for introducing misalignment …………………………...………..54 

Figure 5.3: Accelerometer 1 PCA ……………………………………………………….56 

Figure 5.4: Accelerometer 2 PCA …………………………………………..…………...57 

Figure 5.5: Accelerometer 3 PCA …………………………...…………………………..57 

Figure 5.6: Accelerometer 4 PCA …………………………………………………….…58 



viii 

 

Figure 5.7: Accelerometer 1, 3 dimensional PCA …………………….………………...59 

Figure 5.8: Accelerometer 2, 3 dimensional PCA ………………………………………60 

Figure 5.9: Accelerometer 3, 3 dimensional PCA ……………………….……………...60 

Figure 5.10: Accelerometer 4, 3 dimensional PCA ……………………………………..61 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



ix 

 

LIST OF TABLES 

Table 1.1: Frequency limit for accelerometer measurements based on mounting methods 

……………………………………………………………………………………………..4 

Table 3.1: Bearing defect frequencies …………………………………………………..26 

Table 5.1: An unknown vibration data ……………………………………………….....64 

Table 5.2: Vibration dataset for KNN analysis ……………………………………….....65 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



x 

 

ACKNOWLEDGEMENTS 

 I would like to thank my advisor, Dr. Cai Xia Yang, for her guidance, generous 

support, and patience over the course of the past two years. I would also like to express 

my sincere appreciation to Dr. Marcellin Zahui, and Dr. Meysam Haghshenas for serving 

as my thesis committee. 

 Special Thanks to my parents and my brother for their continuing support, and 

encouragement. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



xi 

 

ABBREVIATIONS 

FFT  Fast Fourier Transform 

STFT  Short Time Fourier Transform 

RMS  Root Mean Square 

PCA  Principal Components Analysis 

KNN  k_Nearest Neighbor 

SVD  Singular Value Decomposition 

MFS  Machinery Fault Simulator 

AE  Acoustic Emissions 

MCSA  Motor Current Signature Analysis 

ANN  Active Neural Network 

MMF  Magnetic Motive Force 

BPFO  Ball Pass Frequency of Outer Ring 

BPFI  Ball Pass Frequency of Inner Ring 

FTF  Fundamental Train Frequency 

BSF  Ball Spin Frequency 

TIR  Total Indicator Reading 

AI  Artificial Intelligence 

FMEA  Failure Mode and Effects Analysis 

 

 

 

 

 

 

 

 

 



xii 

 

ABSTRACT 

This thesis focuses on failure analysis of rotating machines based on vibration 

analysis and signal processing techniques. The main objectives are: identifying machine’s 

condition, determining the faults specific response, creating methods to correct the faults, 

and investigating available statistical analysis methods for automatic fault detection and 

classification. In vibration analysis, the accelerometer data is analyzed in time and 

frequency domain which will determine the machine’s condition by identifying the 

characteristic frequencies of the faults. These fault frequencies are specific for each type 

of machine’s faults. Therefore, they are referred to as faults’ signatures. The most 

common faults of the rotating machines are unbalanced load torque, misaligned shaft, 

looseness, and bearing faults. The second objective is to find correction methods for 

rectifying the faulty situations. Therefore, correction methods for the unbalanced 

condition are comprehensively studied and a novel method for balancing an unbalanced 

rotor is developed which is based on image processing methods and results in lowering 

machine’s vibrations. Another objective of this research is to collect huge amount of 

vibration data and implement statistical data analysis methods to categorize different 

machine’s conditions. Therefore, principal components analysis, K-nearest neighbor, and 

singular value decomposition are implemented to identify different faults of the rotating 

machines automatically. The statistical methods have demonstrated high precision in 

classifying different faulty situations. Fault identification at early stages will enhance 

machine’s health and reduces the maintenance costs significantly. The statistical methods 

are easy to implement, and have disaffected the need for an expert maintenance engineer 

and will identify the machine’s fault automatically.  



1 

 

 

 

CHAPTER 1 

INTRODUCTION 

 

1.1 Overview 

Rotating machines are widely used in various fields of industry. Condition 

monitoring of these equipment is vital in order to avoid catastrophic failures. Condition 

monitoring via vibration analysis is one of the most accurate and cost effective 

techniques for determining the state of the equipment [1]. Excessive vibrations would 

cause fatigue and affect the performance of the machine. Therefore, it’s desired to reduce 

the machine’s vibrations as much as possible. The structural vibration is measured with 

electronic sensors called accelerometers. There are other transducers available such as 

displacement and velocity probes. However, acceleration data can be analyzed in high 

frequencies up to 20 KHz, while the displacement and velocity data can be analyzed in 

lower frequencies in range of 1500Hz. The accelerometer data presents the vibration 

response of the system in time domain. Vibration data in time domain provides valuable 

information about vibration’s maximum amplitude, period, and decay rate. However, 

using solely the time domain data, it is not possible to identify the type of machine’s 

faults precisely. Therefore, using signal processing methods, the vibration data is 

analyzed in frequency domain. The most common signal processing method is Fourier 
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Transform. Fourier Transform indicates that any periodic signal can be represented as a 

series of sine waves [2]. Fast Fourier Transform (FFT) is an optimized version of Fourier 

Transform which is mainly used through this thesis. FFT has some advantages compared 

to other techniques; it can be used for analyzing larger amounts of data and it is more 

computationally intensive. There is one drawback though, FFT only demonstrates the 

results in frequency domain and it does not provide any information about the vibration 

data in time domain. Therefore, Short Time Fourier Transform (STFT) is used to display 

the vibration data in time and frequency domain and therefore can be used to analyze 

transient signals [3]. The effects of different faults on vibration response of the system 

are investigated using the proposed signal processing methods.  

Motor’s faults can be categorized into two groups of mechanical and electrical 

faults.  Mechanical faults can be investigated thoroughly using accelerometer data. 

However, electrical faults are not identified precisely using solely the accelerometer data, 

and could be mistaken with other types of faults, a specific case is studied in chapter 

three which demonstrates that a damaged winding could be mistaken for a lenient 

unbalanced situation [4]. In order to achieve high accuracy in the measurements, the 

experiment setups have been designed to provide adequate repeatability when introducing 

different electrical or mechanical faults to the machine. 

In this thesis, the frequency spectrums of different faults are investigated. Correction 

methods for reducing machine’s vibrations are presented. Different statistical methods 

are implemented to categorize the system’s faults. The final conclusions are made based 

on the fault’s characteristic frequencies and the statistical approaches. 
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1.2 Objectives 

The main objective in this research is to identify the faults present in the rotating 

machines. For this purpose, various condition monitoring techniques are studied. The 

comparisons between different monitoring techniques are made based on their accuracy 

in identifying the most common faults of rotating machines and the convenience of the 

employed monitoring equipment. The results demonstrate that vibration analysis has high 

level of accuracy in finding failure types with inexpensive accelerometer sensors 

available.  

The most basic form of vibration monitoring is to consider the trend of the overall 

vibration data in time domain to look for increases or instability in vibration’s 

amplitudes. In order to find the exact corresponding failure in the machine, the data 

should be studied in frequency domain. Therefore, the second objective is to find a signal 

processing method which is easier to implement, and provides most comprehensive 

information on the condition of the machine. Nowadays, the dynamic signal analyzers 

provide real-time processing of the acquired signals. It is not accurate to use only one 

signal processing method for all types of faults diagnosis. For different inquiries, Fourier 

Transform is implemented because it can determine the characteristic fault frequencies 

accurately. 

It is important to design permanent experiment setups to be able to take the 

measurements repetitively in equivalent settings. There are two settings that have to be 

initiated for each experiment. First one is the software settings. In this study, National 

Instrument Sound and Vibration Assistant software is used for data analysis. Averages of 

the acquired data are taken to improve the quality of measurements and suppress the 
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background noise. A Hanning window is applied to cover for ‘leakage’, which is referred 

to the effect of signal energy fading in a wide frequency range when the signal is not 

periodic. The vibration amplitude is represented in Root Mean Square (RMS) units. The 

RMS value is expressed from zero to 70.7 % of the peak amplitude for a single 

frequency. Second setting is associated with modifying operating speed of the machine, 

introducing the exact amounts of failures, whether it is the amount of unbalanced mass to 

the extent of misalignment created. Moreover, there are different mounting methods for 

the accelerometers which affect the measurements. The frequency limit of each mounting 

method is presented in Table 1.1 [5]. 

Table 1.1: Frequency limit for accelerometer measurements based on mounting methods 

Mounting Method Frequency Limit (Hz) 

Hand held 500 

Magnet 2000 

Adhesive 2500-4000 

Stud 6000-10,000 

 

Another objective is to find some methods to categorize different faults 

automatically. A method which can identify an unknown situation based on the training 

datasets recorded. As we are facing large amount of data, different statistical methods are 

investigated to find best procedure that can classify different faulty conditions with high 

accuracy. Three approaches are implemented and modified so they can precisely achieve 

the main goal of this research which is fault detection of rotating machines. Investigated 

statistical methods include: Principal Components Analysis (PCA), K-Nearest Neighbor 
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(KNN), and Singular Value Decomposition (SVD). The applicability of these methods is 

investigated thoroughly in the text. Moreover, in faults correction section, a balancing 

method is developed based on accelerometer data and videos recorded from the rotating 

shaft. Using image processing methods, the exact amount and location of the correction 

mass is obtained. Results demonstrated that the developed method has high levels of 

precision. The future plan is to commercialize this balancing technique via developing a 

smart phone application. 

1.3 Orientation 

The thesis includes six chapters. In first chapter a brief overview of condition 

monitoring via vibration analysis and objectives of the research are presented. In chapter 

2, a comprehensive literature review on condition monitoring, vibration studies, novel 

condition monitoring approaches, and implementation of different statistical methods in 

vibration analysis and fault diagnosis are conducted. 

In chapter 3 three experiment setups used for condition monitoring of rotating 

machines are discussed. One setup is the Machinery Fault Simulator (MFS). This 

simulator has the opportunity to model all mechanical faults, however, is mainly used to 

model the misalignment condition. The others setup was used to model both mechanical 

and electrical faults. Next, the acquired signals processed through NI Sound and 

Vibration Assistant software are investigated to find the characteristic fault frequencies 

corresponding to each faulty situation. 

Chapter 4 provides vibration control methods for the unbalanced condition. A novel 

methodology based on image processing techniques is developed. The vibration data is 
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recorded twice; one from the original unbalanced situation, another after a test mass is 

added to the rotor. From these data, the maximum vibration’s amplitude is provided. In 

both vibration recording phases, a video is also captured from the rotating shaft. The 

video is analyzed to find the location of a randomly marked area when the sinusoidal 

vibration signal reaches maximum. Based on two marker locations and the accelerometer 

data, the amount and location of the correction mass can be found. 

In chapter 5, vibration data is analyzed using different statistical methods such as 

PCA, KNN, and SVD. It is demonstrated that using these methods, it is possible to 

categorize and identify the failure types and predict their severities. The conclusions, 

contributions, and the scope for future research in area of condition monitoring and 

vibration analysis are discussed in chapter 6. 
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CHAPTER 2 

LITERATURE REVIEW 

 

2.1 Overview 

In this chapter, an extensive literature review on condition monitoring of rotating 

machines is performed. The topics studied mainly include different condition monitoring 

methods such as vibration analysis, infrared thermography, acoustic emissions, and 

electric current monitoring. Moreover, novel developments in this field are investigated. 

These developments include exploring new vibration analysis methods using image 

processing techniques or implementing machine learning algorithms for fault detection. 

2.2 Condition Monitoring 

In industrial applications the upkeep of the machine can be enhanced through 

equipment’s condition monitoring. While the condition of the machine is known at all 

times, the unexpected process halts due to machine’s failures can be avoided, therefore, 

the efficiency of the production process will increase significantly. Moreover, it is 

possible to plan for maintenance way before the machines fail [6]. There are several 

condition monitoring methods available. Vibration analysis, lubricant analysis, infrared 

thermography, electrical monitoring, and acoustic emissions are the most common 
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monitoring techniques available [7]. The most effective condition monitoring approach 

would be when two or more of the mentioned techniques are integrated and used 

together.  

2.2.1 Vibration Analysis 

All machines vibrate, whether they are in healthy condition or when a fault is present 

in the machine. These vibrations are related to a periodic occurrence in the machine. 

Vibration analysis has some advantages compared to other monitoring techniques. First, 

it demonstrates the occurring failure immediately. Second, the major signal processing 

methods can be applied to the vibration signals [8]. The last and most important 

advantage is that the mechanical procedures in the rotating machine each produce 

energies at different frequencies. Therefore, the frequency spectrum of vibration data can 

display more detailed information on condition of different parts of the machine [7]. A 

vibration analysis system consists of the following parts [9]: a vibration signal transducer 

(accelerometer, displacement or velocity probes), a dynamic signal analyzer, analysis 

software, and finally a computer for data analysis and storage. Overall, vibration analysis 

can be used to improve the machine’s reliability, by providing detailed information on 

health condition of machine’s components. Randall [10] investigated vibration analysis to 

study gear and bearing fault frequencies. Investigating the vibration response of 

misaligned rotor of different machines using signal processing methods [11, 12]   

demonstrates that vibration analysis has achieved decent precision in identifying the most 

common machine faults. 
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2.2.2 Infrared Thermography 

Electrical machines have benefited from this monitoring method significantly. With 

thermal imaging cameras it is possible to create a temperature map for machine’s 

components like bearings and couplings. One advantage of this method is that it requires 

less training dataset compared to other methods [7]. Moreover, it’s a non-contact 

condition monitoring tool and can be used to identify mechanical and electrical faults. 

However, it suffers from high cost of infrared cameras. Lim et. al. [13] used infrared 

thermography to identify the rotating machineries failures and found satisfactory levels of 

accuracy compared to vibration monitoring methods. 

2.2.3 Acoustic Emissions 

Ultrasonic and acoustic emissions (AE) use similar approaches as vibration analysis; 

even the transducers are mounted on the same location as the accelerometer sensors. 

Acoustic signals are studied to identify defects in bearings [14] and investigating gear 

failures [15]. Loutas et. al. [16] argued that the combination of vibration analysis and AE 

would result in a more effective condition monitoring of rotating machinery. 

2.2.4 Electrical Monitoring 

Electrical condition monitoring methods such as current or voltage monitoring 

provide the most precise data about the electrical faults present in the system. However, 

they lack accuracy for identifying and distinguishing different mechanical faults [4]. 

Neelam Mehala [17] has discussed electrical monitoring based on Motor Current 
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Signature Analysis (MCSA) for most electrical faults and bearing faults of the induction 

motors. 

2.2.5 Lubricant Analysis 

Lubricant analysis is a very common technique in condition monitoring. However, 

for condition monitoring of electric motors, it does not provide decent results exclusively. 

This method becomes more useful when combined with other monitoring techniques 

such as vibration analysis and acoustic emissions [16]. 

2.3 Statistical Analysis 

When the vibration data is collected from the machine, using signal processing 

methods, the vibration data can be analyzed in frequency domain. After recording 

frequency responses of different healthy and faulty conditions with various severities and 

operating under different rotational speeds, a massive database is collected. Therefore, it 

is necessary to define feature extraction methods to accelerate fault diagnosis and be able 

to automatically detect machine’s condition. Consequently, in recent studies the statistical 

approaches are considered to find the best classifying technique. 

Plante et. al. [18] and Lachouri et. al. [19] used Principal Components Analysis 

approach to categorize rotating machine’s faults based on failures types and their 

severities. PCA is a statistical approach mainly used in image processing when large 

amount of data is present.  
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The motors faults are investigated based on their acoustic signals using K-Nearest 

Neighbor in [20]. Lei et. al. [21] identified the crack levels of the gears based on KNN 

classifiers. Safizadeh et. al. [22] studied bearing fault diagnosis based on accelerometer 

data which achieved more accurate precision in fault detection using KNN classifiers. 

Another feature extractor studied is Singular Value Decomposition technique. Yang 

et. al. [23] used wavelet transform of the vibration data with the SVD method to detect 

different bearing faults. Using the singular value decomposition technique, the failure on 

different complex structures can be identified at early stages [24]. Based on the three 

methods discussed, it’s clear that in recent years more studies are performed on using 

different statistical methods for failure detection and classification.  

2.4 Novel Condition Monitoring and Data Analysis Methods 

As mentioned before, the statistical methods implementation for data analysis is 

amongst the recent developments within condition monitoring and vibration analysis 

studies. Several studies have studied the combinations of the monitoring tools to achieve 

the best condition monitoring technique [16]. 

Other researchers have focused on fault diagnosis based on Artificial Neural 

Network (ANN). ANNs have been commonly implemented for fault diagnosis of rotating 

machines [25]. Artificial neural networks can be used for condition monitoring of gear 

boxes [26] and for fault diagnosis of rolling element bearings [27]. 

Machine vision applications have increased significantly during the past few years. 

In image processing applications, feature detection and extraction are among the most 
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useful tools which can be related to fault diagnosis methods. Zhang et. al. [28] used 

morphology for diagnosis of different types of bearing failures. The most recent studies 

have focused on amplifying small motions and color variations [29-31]. This technique 

uses different image processing methods to identify the smallest amounts of motion. The 

motions are then amplified, and the results could be used to achieve the vibration 

response of the system without the accelerometer sensors. Based on their developed 

method, different types of diagnostic tools can be developed, Davis et. al. [32] identified 

material properties based on the motions detected in the captured video. 

2.5 Chapter Summary 

In this chapter, a literature review for the most common condition monitoring 

methods is presented. Different statistical methods were investigated to be implemented 

for development of an automatic fault detection scheme. Finally, the latest advanced 

condition monitoring techniques are investigated. Recent developments in computer 

vision and image processing techniques have demonstrated high accuracy in 

identification of smallest vibrations not with accelerometer sensors but using solely the 

video recorded by a camera. An important remark from literature review was the high 

necessity of a low-cost and reliable condition monitoring technique to ensure the 

operation consistency of the induction machines. 
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CHAPTER 3 

VIBRATION DATA ANALYSIS 

 

3.1 Overview 

Scheduled and break down maintenances are commonly used by industries, but both 

tend to incur much higher costs. Predictive or Condition-Based Maintenance based on 

known condition is used to predict (and therefore assist in avoiding) unplanned 

equipment failures. During observation of the vibration modes, a relationship was found 

between the ranges of natural frequency of vibration and the failure modes. By measuring 

and analyzing measured vibration data, engineers are able to retrieve valuable 

information on the status of the equipment, and predict machine failure patterns and plan 

timely maintenance operations. To progressively extend the time between failures for the 

monitored equipment, the trend of vibration in frequency domain needs to be observed 

frequently. The trend of the spectrum will provide information on what type of faults are 

present within the system, the severity of the fault, and could be implemented to 

determine the remaining lifespan of the faulty component. 

Understanding the concepts behind vibration data allow engineers to detect faults 

and predict failures caused by equipment defects, or deterioration such as unbalanced 

rotors, bearing defects, a lack of lubrication, coupling issues, and misaligned axles before 
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they lead to catastrophic failure. To understand how vibration analysis can be used to 

identify motor faults, one must first understand that all mechanical systems vibrate. This 

vibration retains a unique signature which, given proper analysis, can tell an operator 

how the system is responding to its operating conditions. Altering operating conditions 

may reveal different signatures yet, at the same time, patterns emerge suggesting a 

specific problem within the system. Over time, certain patterns can become more evident 

suggesting a fault is likely to occur if left uncorrected. Recognizing and categorizing 

these patters before equipment failure is the objective of fault detection and predictive 

maintenance, and allows corporations and industries to reduce spending in equipment 

repair and replacement. This concept correlates to the method of predictive based 

maintenance. 

In this chapter, three experiment setups are employed to acquire vibration signal for 

different faults and a setup is designed for acquiring the electrical signals from the 

induction machine. Next the acquired signals are analyzed using signal processing 

techniques and the characteristic frequencies corresponding to the machine’s faults are 

investigated. 

3.2 The Experiment Setups 

In this section, three experiment setups are designed and described. The first setup 

can be used to collect vibration data for the unbalanced rotor condition, bearing faults and 

looseness. This setup is shown in figure 3.1. 
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Figure 3.1: The experiment setup for obtaining vibration data. 

The experimental setup shown in figure 3.1 consists of a three phase, 4 poles 

induction motor, an AC drive for the motor, an analog to digital converter (ADC), an 

accelerometer, and a NI PXIe 1073 data acquisition (DAQ) board. The output data was 

analyzed using a NI-PXI 4498 module on the DAQ board. The rotor was initially set to 

run at 30 Hz (1800 RPM). Several failure conditions, such as: damaged bearing, 

unbalanced load on shaft, and machine’s looseness were investigated and their effects on 

the motor’s vibration were analyzed and compared to the healthy condition. The data was 

analyzed using NI Sound and Vibration Assistant Software. 

The second setup is used for obtaining electrical signal from the stator’s current to 

investigate then effects of damaged stator’s windings on both vibration and electrical 

current signals. This setup is shown in figure 3.2. 
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Figure 3.2: Vibration and current monitoring setup. 

Figure 3.2 displays the experiment setup for acquiring both vibration and electrical 

current data. Here, a current sensor, a variable resistor, and a power supply for current 

sensor is added to the previous setup. The effects of the damaged bearing, bad wiring, 

and unbalanced condition on the motor’s vibration and the stator’s currents were 

analyzed and compared to the healthy condition. 

The third setup has great potential in modelling several mechanical faults. Basically, 

the first two setups were only used because the machine’s components were more 

accessible. Figure 3.3 displays the Machinery Fault Simulator (MFS). This setup is 

mainly used to investigate the effects of misaligned rotor on vibration signals. 
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Figure 3.3: Machinery fault simulator used as third condition monitoring setup. 

In next section, different mechanical and electrical faults are inspected and their 

corresponding vibration responses are investigated. 

3.3 Failure Analysis  

The goal of this experiment was to find evidence regarding vibration patterns 

associated with specific electric motor faults. Specifically, the objective of the 

experiment was to determine the validity of using vibration analysis to conduct predictive 

based maintenance. Based on previous research, there are several common motor faults 

that can be identified using vibration analysis such as imbalance, mechanical looseness, 

and bearing faults [33]. Each faulty condition’s severity and type can be assessed based 

on the amplitudes of the corresponding peaks as well as their respective locations on the 
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frequency spectrum. Additionally, certain types of faults can be determined based on the 

location where data was recorded on the equipment. In other words, some faults display a 

higher level of severity when the accelerometer is placed on various locations of the 

motor. To demonstrate the effects, different faults have on the motor’s corresponding 

vibration levels, multiple tests were conducted on a three phase inverter duty induction 

AC motor. 

3.3.1 Healthy Condition 

First, the vibration data of a motor when there are no faults present in the machine is 

investigated. Figure 3.3 displays the vibration response of the healthy machine operating 

at 30 Hz. 

 

Figure 3.4: Vibration response of the healthy condition in time domain. 

Figure 3.4 displays the vibration response in time domain, as mentioned before, the 

vibration data expressed in time domain provides information on maximum vibration’s 
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amplitude, and period. It is clear that the maximum vibrations in healthy condition are 

quite low. In order to identify the condition of the machine, using FFT vibration data is 

brought to frequency domain. Figure 3.5 displays the linearized data in frequency 

domain. 

 

Figure 3.5: Vibration response of healthy condition in frequency domain. 

Figure 3.5 shows the vibration response of the machine at healthy condition. This 

data resembles the acceleration signal measured in radial axis and it is not scaled or 

shifted. It is important to note that the magnitude is displayed in g rms units. This graph 

displays that the highest amplitude (0.025 g rms) arises at the operating speed of the 

machine which was 30 Hz. In this study, the machine’s faults generate high vibration 

amplitudes at their characteristic frequencies and therefore throughout the text the data is 

mainly studied in linear form. This linear representation of the vibration data does not 

display the minor vibrations 
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Figure 3.6 displays the vibration data in logarithmic scale. The logarithmic spectrum 

can visualize the smallest vibrations that cannot be seen in linear format.  

 

Figure 3.6: Frequency response of the healthy condition in logarithmic scale. 

In linear form of figure 3.5 the vibration’s amplitudes at multiples of operating speed 

are not shown in details.  However, Figure 3.6 demonstrates how the smallest vibrations 

can be magnified in logarithmic scale. The decibel is the ratio of one level with respect to 

the reference level. For the case above, the reference is set to 1 g. 

Considering the frequency spectrum via FFT method has a disadvantage which is 

lack of provided information regarding vibration data in time domain. Therefore, Short 

Time Fourier Transform (STFT) is implemented to provide a 3 dimensional vibration 

spectrum. Figure 3.7 displays the vibration data via STFT. 
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Figure 3.7: STFT of healthy condition. 

Figure 3.7 displays both time and frequency information of machine’s vibrations in 

healthy condition. The third dimension provides the power amplitudes. The distinguished 

waves are noticed at the vibration peaks at multiples of operating speed.  

3.3.2 Unbalanced Condition 

To study the unbalanced rotor condition, a steel bolt was mounted to one end of a 

flywheel located on the rotating shaft. According to previous research, a motor with an 

unbalanced rotor will display a large amplitude peak at one times the running speed [33]. 

Operating at 30 Hz, the motor’s vibration data was recorded using an accelerometer in 

radial axis. Figures 3.8 and 3.9 display the frequency response of the unbalanced 

situation. 
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Figure 3.8: Frequency response of the unbalanced condition in logarithmic scale. 

 

Figure 3.9: Frequency response of the unbalanced condition in linear format. 

Based on figures above, several peaks appear to be present. The most notable peak is 

the one at 30 Hz. The 30 Hz peak correlates to the running frequency of the motor drive 

axle and has an amplitude of approximately 0.26 g rms. Compared to the 30 Hz peak of 

0.025 g for the healthy condition. The 30 Hz peak of unbalanced situation vibration 
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response shows a substantial increase in amplitude. This observation outlines the 

unbalance condition. Because the motor’s balanced state was the only condition altered 

during this experiment, it can be stated that the differences between two graphs of figure 

3.9 support the presence of unbalance within the system. Therefore, it is realized that the 

unbalance fault condition can be associated with a large increase in the operating speed 

frequency. Now, let’s investigate the effects of the unbalanced condition on stator’s 

current. Figure 3.10 displays the corresponding current signal due to unbalanced 

condition. 

 

Figure 3.10: Current graph for unbalanced condition. 

Figure 3.10 depicts the current transducer data; it is demonstrated that the 

unbalanced load condition has slightly (22 mVrms) affected the amplitude of frequency 

response of the stator currents at 60 Hz. This demonstrates that the unbalanced rotor 

condition is recognized inefficiently using an electric current transducer. It is important to 

note that this 60 Hz value is corresponding to the speed set on the AC Drive, as the motor 

has four poles, its operating speed would be 30 Hz. The main reasons the current sensor 
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has not detected much change in the system is that the unbalanced load’s weight is 

insignificant compared to the rotor’s weight. Moreover, the system stays electrically 

balanced and the voltage of all three phases increases by 22 mVrms. Therefore, it is driven 

from this experiment that the current data has not provided results as precise as the 

vibration data. 

3.3.3 Bearing Faults   

Bearing faults are considered the most common case when maintaining rotating 

machinery. Rolling elements bearings do not generate frequencies that are multiples of 

operating speed and unlike more basic faults, bearing faults appear in four stages. During 

stage one, bearings operate at normal conditions, and can be considered undamaged. At 

stage two, bearing defect frequencies begin to appear as peaks on the frequency 

spectrum. According to the article “Rolling Element Bearing Analysis” by Brian Graney 

and Ken Starry, bearing defect frequencies can be calculated using equations (3.1) 

through (3.4) [34]. The amplitudes of these frequencies hint toward the conditions of the 

bearing, and often increase over time. As the bearing deteriorates, it reaches stage three 

where multiples of the bearing defect frequencies begin to appear as peaks in the 

frequency spectrum. It is common practice to replace these bearings after reaching this 

stage. Finally, at stage four, bearing defect frequencies will be replaced by random noise 

in the frequencies between 2-5 KHz [35]. At this stage, the bearing is at the risk of 

undergoing catastrophic failure which can cost companies thousands in machine repair 

and/or replacement. By replacing damaged bearings before they fail, industries can 

drastically reduce the cost of replacing vital machinery therefore outlining the importance 

of predictive based maintenance on high value equipment. 
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The bearing defect frequencies were also calculated for the motor’s 6203-2RS 

bearing. When the inner race of the bearing rotates the defect frequencies including ball 

pass frequency of the inner race and outer race (BPFI and BPFO), fundamental train 

frequency (FTF), and ball pass frequency (BPF) can be calculated using the following 

equations: 

                      (3.1) 

                      (3.2) 

                   (3.3) 

             (       )   (3.4) 

Where N is number of bearing balls, F denotes shaft frequency (Hz), B represents 

ball diameter (mm), P is the pitch diameter (mm), and   is the contact angle. The above 

fault frequencies can be approximately calculated using equations 3.5 through 3.8: 

                 (3.5) 

                 (3.6) 

              (3.7) 

                (3.8) 

Using a bearing from a three phase induction motor, a defect was created on bearing 

cage. Figure 3.11 shows the generated defect on the motor’s bearing. 
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Figure 3.11: The damaged bearing 

Table 3.1 shows the calculated values for each bearing fault. The motor was 

operated at 30Hz. By doing this, it was predicted the bearing’s corresponding frequency 

spectrum would exhibit traits correlating to one of four stages of bearing failure thus 

supporting the validity of using vibration analysis to conduct predictive based 

maintenance. The spectrum plots that have been used in this analysis is based on the 

algorithm proposed in [36] and [37]. 

Table 3.1: Bearing defect frequencies 

Bearing Frequency Types Frequency (Hz) 

Shaft Speed Frequency 30 

Inner race defect frequency (BPFI) 144 

Outer race defect frequency (BPFO) 96 

Fundamental Train Frequency (FTF) 12 

Ball spin frequency (BSF) 48 
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Figure 3.12 displays the vibration data taken from the machine operating with the 

damaged bearing shown in figure 3.11. Same as previous situations, the vibration data is 

recorded using an accelerometer located on the radial axis of the motor. 

 

Figure 3.12: Vibration graph for damaged bearing condition. 

Several notes can be taken from Figure 3.12. For instance, the vibration spectrum 

displays a raised noise floor as well as a number of low amplitude peaks appearing in the 

higher frequencies; however, what is interesting to note is that none of these frequencies 

appear to be whole number multiples of the running speed, or the bearing fault 

frequencies, yet it is obvious the motor’s vibration data has been affected by the damaged 

bearing. Comparing these results to the healthy situation, shows how the motor’s 

vibration data has undergone substantial change. The vibration data in frequency domain 

predicts stage four of bearing failure. Stage four of bearing failure displays large amounts 

of noise in higher frequencies. Should this be the case, depending on the significance of 

the motor’s application, it is important to replace the bearing immediately. It is common 

practice to prevent machine bearings from reaching stage four of bearing failure, 
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otherwise the bearing is at the risk of experiencing catastrophic failure resulting in 

damage to vital machine components. 

 

Figure 3.13: Current Graph for damaged bearing condition. 

Figure 3.13 illustrates the frequency response of the stator’s current. From the 

recorded data, it has been observed that the defected bearing will affect the stators 

current, slightly. Comparing current responses of unbalanced condition and damaged 

bearing situation, it is observed that the unbalanced load has affected the current response 

more than the damaged bearings. 

3.3.4 Mechanical Looseness 

Vibration patterns resulting from mechanical looseness were also studied. By 

loosening mounting bolts on the three phase electric motor, the body of the motor was 

allowed to move more freely therefore altering the motor’s vibrational patterns. On the 

frequency spectrum, peaks corresponding with mechanical looseness are considered to 
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appear as several multiples of the motor’s operating speed. Similar to previous 

experiment, the three phase motor’s vibration data was operated at 30Hz. 

 

Figure 3.14: Vibration response due to mechanical looseness. 

Figure 3.14 displays several peaks appearing in the low frequency spectrum. What is 

most notable of these peaks is that their frequency values are multiples of the running 

speed. Additionally, these peaks possess a variety of amplitudes each large enough to be 

considered hazardous to the motor’s overall health. If allowed to operate over longer 

periods of time, it is likely the motor’s lifespan will be reduced. Fortunately, mechanical 

looseness is often easy to address. In this case, simply tightening the bolts on the motor’s 

mounting feet resolves the issue. These differences between the healthy condition and 

mechanical looseness prove that the presence of mechanical looseness condition appears 

as several multiples of the motor’s running frequency as well as a raised noise floor in the 

spectrum and therefore agree with the conditions stated in [33]. 
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3.3.5 Damaged Wires 

When the motor is confronted to a high pulsed load torques and/or surge currents 

enforced from the AC drive, the stator wiring will be overloaded. This overload condition 

may increase the temperature of the wires. As a result, the resistance of the wires would 

increase. This increase will lead to a decrement in the current level of the defected phase 

of the motor, due to Ohm’s law. Therefore, an unbalanced circulating electromagnetic 

filed will rotates around the rotor, which will increase the vibration generated in the 

machine. 

Considering a three phase electric machines with main phase current variables 

symbolized as IA, IB and IC; the motor current Vector components in stationary 

framework (ID, IQ) are as follows [17]: 

                                     (3.9) 

                          (3.10) 

Under ideal conditions, the motor supply currents constitute a positive-sequence and 

the stationary vectors have the components described in (3.11) and (3.12). 

   (   )                (3.11) 

                          (3.12) 

Where     is the maximum value of the current positive sequence (A),    denotes the 

angular supply frequency (rad/s), and t denotes the time variable (s). 
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Under abnormal conditions, (3.11) and (3.12) are no longer valid, because the motor 

supply current will contain other components besides the positive-sequence component. 

In these conditions, the current D and Q vectors will contain a dominant harmonics, 

whose existence is directly related to the asymmetries either in the motor or in the voltage 

supply system [38]. The aforementioned asymmetry in the motor’s current components 

will result in excessive vibration in the motor. 

Figure 3.15 shows the effect of bad wiring on the vibration of the motor. In this 

condition, the motors vibration is slightly increased as compared to normal condition. In 

other words, as the increased resistance would decrease the magnetic motive force 

(MMF) in one of the wires, this would act like an unbalanced load torque. However, the 

vibration spectrum shown in  

 

Figure 3.15: Machine’s vibration response to damaged stator’s windings condition. 

Figure 3.15 depicts a very minor increase in the vibration’s amplitude at the 

operating speed which is very insignificant compared to other faults such as unbalanced 

condition. Figure 3.16 displays the electric current response of the damaged windings. 
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Figure 3.16: Electric current response of the damaged windings 

Figure 3.16 shows how the damaged windings have affected the current response of 

the motor. The increased resistance of the wires would result in the current drop due to 

ohm’s law. This faulty condition has not merely changed the vibration response of the 

machine which is due to the closed loop control system within the AC drive. The drive 

would modify the current for other windings which would result in a balanced situation. 

The damaged windings affect the protection system within the drive and would result in 

machine’s complete shutdown. This experiment proves that the best monitoring method 

is a combination of the available monitoring techniques. 

3.3.6 Shaft Misalignment 

In this section, using the machinery fault simulator a shaft misalignment condition is 

investigated. The healthy condition of the machinery fault simulator has similar vibration 

response as the 3 phase induction machine of setup number one. 
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Good shaft alignment practice is a vital step in maintenance procedure of rotating 

machines. Some symptoms of a misaligned shaft are [39]: loose or broken foundation 

bolts, oil leakage at bearing seals, loose or broken coupling bolts, shafts breaking or 

cracking, and increased temperature on different components of the machine such as 

bearings or couplings. In this experiment, in order to stimulate the parallel misalignment, 

the shaft was moved 20 mils and the vibration data from one end of shaft is measured. 

 

Figure 3.17: Vibration response of the misaligned shaft. 

Figure 3.17 displays the vibration response of the misaligned shaft. The case of 

parallel misalignment is very noteworthy; in this case the vibration’s amplitude at the 

operating speed has increased mildly and the 2X operating speed is showing larger 

amplitudes. As a matter of fact, these harmonics are known as the characteristic 

frequency responses corresponding to the parallel misalignment condition. Moreover, it’s 

noteworthy that the amplitudes at 6, 7, and 8X operating speed have also increased 

significantly for the misaligned condition. 



34 

 

3.4 Chapter Summary 

The results from each of the tests support the use of vibration analysis in predictive 

based maintenance. By comparing the vibration data for each failure case to the healthy 

condition, the patterns corresponding with each fault condition are outlined. This shows 

how certain faults in rotating mechanical systems can be determined using vibration 

analysis. Additionally, vibration analysis can also determine the severity of these faults 

and help engineers predict when machinery will fail. Identifying these faults can help 

companies reduce the cost of maintenance and repair of high value machinery. The 

electric current was also measured to investigate the effects of damaged winding on the 

vibration response of the machine. Moreover, the current signal was also investigated 

while mechanical faults such as damaged bearing or unbalanced rotor are present. The 

result proves that the current data does identify the present fault; however, it cannot 

categorize the type of failure precisely. 
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CHAPTER 4 

FAULT CORRECTION 

 

4.1 Overview 

In this chapter, correction methods for different faults studied in chapter 3, are 

investigated. The main content of this chapter inspects the unbalanced rotor. The 

vibrations due to unbalanced situation can be controlled by adding a correction mass to 

the flywheel. However, the location where this mass is added to has the most significant 

effect on the vibrations of the machine. For this purpose, a novel approach which uses 

image processing methods to find the corresponding location of the correction mass is 

developed. 

4.2 Balancing Technique 

Here, a novel computer vision approach developed for balancing of rotating 

machines is discussed. Different methodologies are investigated to stabilize the 

unbalanced rotor. First, a method is discussed which will eliminate the need for the 

balancing equipment, and the exact location of the balancing mass is identified using 

solely the accelerometer data and intricate vibration theories. Considering a rotor 

supported on two bearings, the trial masses can be added to each of the two planes on 
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each side of this rotor which are called planes A and B. The governing equations to find 

the trial mass are: 

          (    )  (   )    
(   )  (   )         (4.1) 

    √(   )  (     )          (4.2) 

    √(   )  (     )          (4.3) 

         (    )           (   )                (4.4) 

    √(   )  (     )          (4.5) 

    √(   )  (     )          (4.6) 

Where A represents the vibration magnitude on bearing A for the unbalanced rotor,    is the phase angle on bearing A for the unbalanced rotor,     is the additional 

vibration magnitude when the trial mass is added to plane A,     is the additional 

vibration magnitude when the trial mass is added to plane B [40].  

Similarly, B,   ,    ,     are defined. The correction factors which define the 

location of the mass are defined by the following equations: 

                           (4.7) 

                           (4.8) 

                           (4.9) 
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                        (4.10) 

The required balancing mass is the product of correction factors and the trial mass. 

The proposed method provides accurate results. However, it requires 8 different 

measurements while a trial mass is added to four different angles on each of the two 

planes of the rotor. Therefore, it requires taking more intricate measurements and while 

there is a lack of accessibility to the rotor, this method cannot be implemented. In the 

methodology developed, the phase angle is measured based on combination of the 

accelerometer data along with a video recording of the rotating flywheel. This method 

only requires two measurements, one from the original unbalanced condition, another one 

after adding a trial mass to a marked location on the rotor. The rotor is being recorded 

during this process. The goal is to identify the position of the marked area whenever the 

amplitude of the sinusoidal vibration response reaches the maximum.  

In this experiment the motor is set to run at 20 Hz (1200 RPM), the operating speed 

can be set lower to ease detecting features on the marker. Results achieved at lower 

speeds can be verified at higher operating speeds. It is important to find a speed to make 

sure the features detected have high intensity values that can be used for a proper edge 

and line detection scheme. In this experiment for capturing the video of the rotating shaft 

the IPhone 6 camera is used in slow motion mode which results in capturing 240 frames 

per second.  
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4.3 Edge Detection 

Edge detection is a tool for finding boundaries of the objects in an image. These 

boundaries at which the image brightness changes significantly are identified as edges. 

There are multiple edge detection methods available such as Sobel, Roberts and Canny 

edge detectors. Canny edge detector is the most efficient edge detector [41]. Here, 

different edge detectors are investigated to find the best edge detection method. Sobel 

edge detectors use the following 3X3 kernels which are used to convolve the image and 

calculate the horizontal and vertical changes [42]. 

   [            ]     [            ]   (4.11) 

  √       
     (4.12) 

                  (4.13) 

Where    is the horizontal kernel,    is the vertical kernel, G is the gradient 

magnitude, and   is the gradient’s direction. The areas which have high gradients are 

identified as edges. Roberts edge detectors use the following two kernels [43]: 

   [     ]     [      ]    (4.14) 

The Canny edge detector use the following process: First a Gaussian filter is 

implemented to smooth the image. Then it finds the intensity gradients of the image and 

applies a non-maximal suppression. Next it defines specific thresholds automatically to 

determine the edges and tracks them using hysteresis [41]; it is possible to modify the 
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threshold but was not necessary as the results were satisfactory for line detection. The 

edge detection procedures are available as MATLAB functions. The results of 

implementing different edge detectors are demonstrated in figure 4.1.  

 

                                         (a)                                             (b) 

 

                                        (c)                                              (d) 

Figure 4.1: Edge detection methods. (a) Original image, (b) Sobel edges, (c) Roberts 

edges, (d) Canny edges. 
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From figure 4.1, it is shown that Canny edge detectors (d) have detected more edges 

compared to Sobel (b) or Roberts (c) edge detectors. This is verified visually and 

numerically based on their histograms, which verifies that the Canny edge detectors have 

identified more white pixels. On a 2448*3264 pixels image Canny has identified 385250 

white pixels compared to 61878 and 65687 white pixels for Sobel and Roberts 

respectively. 

4.4 Line Detection 

In order to detect the location of the marker on the flywheel, a line detection 

algorithm is implemented. RANSAC and Hough transform [44] are the most common 

line detection algorithms available. Here, Hough transform is implemented to detect the 

marker line and subsequently the slope of this line is identified for an automatic 

balancing scheme. Note that to achieve the perfect line detection algorithm the thresholds 

for Hough peaks are considered low. The threshold is modified to show one single line on 

the marker and avoid the unnecessary noises. Moreover, an algorithm can be developed 

to refit lines based on based on strength of the Hough peaks. More importantly, in this 

study the effects of camera distortion were not considered effective on the final results. 

However, for more precision, it is recommended to calibrate the camera, and undistort the 

images based on camera parameters [45]. 

Figure 4.2 displays the marker lines detected on the image taken from the flywheel. 

Later on, the lines will be detected on the frames of the captured video of rotating 

flywheel. 
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Figure 4.2: The Hough lines detected on the marker. 

Figure 4.2 displays the Hough line detected on the marker. The corresponding phase 

angle here is 0 degrees, which is considered as a reference point (It will be called 12 

o’clock as a reference position). As mentioned earlier the video is recorded from camera 

on slow motion mode which can grab 240 frames per second. When motor is operating at 

20 Hz (1200 RPM) 20 peaks in the vibration spectrum are observed per second that 

means for each one full rotation of the flywheel, 12 frames will be recorded. If more 

accuracy is desired, the operating speed of the motor could be reduced or a more 

advanced camera should be used.  
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4.5 Machine Vision Based Balancing Method 

Vibration response of the healthy system is measured in radial axis. Next an external 

mass is added to the flywheel to stimulate the unbalanced rotor situation. Figures 4.3 and 

4.4 display the vibration response of the healthy and unbalanced conditions in time 

domain.  

 

Figure 4.3: Vibration response of the healthy condition in time domain. 

 

Figure 4.4: Vibration response of unbalanced condition in time domain. 
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Comparing figures 4.3 and 4.4, it is clear that by adding the external mass the overall 

vibrations of the system has increased significantly (as mentioned in chapter 3), because 

the machine is affected by an increased force of: 

             (4.15) 

Where F represents the unbalanced force, m is the unbalanced mass, e represents the 

distance from the unbalanced mass to the center of rotation, and   is the operating speed 

of the machine. 

The recorded video and the vibration response in time domain are investigated 

together to determine the position of the marker when the sinusoidal vibration response 

reaches maximum. It is clear that the marker stays at the same spot when the vibration 

amplitudes reach the next maxima.  The marker location is shown in figure 4.5.  

 

Figure 4.5: Phase angle of the unbalanced flywheel. 
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Figure 4.5 shows that the Hough line is pointing toward 11 o’clock meaning the 

phase angle is about 30 degrees. The maximum amplitude of the vibrations in this 

situation derived from figure 4.4 is 0.133 g. Moreover, when other lines are detected in 

the image, a weighted average of the most significant lines is used to avoid the pointless 

lines detected around the region of interest. 

Next, a trial mass weighing 63.6 gram is added to a random location on the flywheel 

as seen of figure 4.6.  

 

Figure 4.6: A trial mass added on the flywheel. 

The vibration data and the video is recorded for the second time. The vibration data 

is shown in figure 4.7. 
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Figure 4.7: Vibration response of the system when a trial mass is added. 

Figure 4.7 shows that the maximum vibration when a trial mass is added to the 

unbalanced rotor is 0.213 g which is identified using MATLAB. As seen on figure 4.8, 

the phase angle is measured as 120 degrees (line pointing toward 8 o’clock).  

 

Figure 4.8: Phase angle when the trial mass is added. 

Based on the values derived from the videos and accelerometer data, two vectors are 

identified.  ⃗ is defined by maximum vibrations amplitude value and phase angle of the 
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original unbalanced flywheel.  ⃗⃗ is defined by maximum vibrations amplitude and phase 

angle of the flywheel after the trial mass is added to it. Figure 4.9 demonstrates the 

vectors on the polar coordinates. 

 

Figure 4.9: The orientation vectors on polar coordinates. 

In figure 4.9,  ⃗ is defined as: 

 ⃗   ⃗⃗   ⃗     (4.16) 

Here the objective is to find the amount of angle   which is the angle shown 

between   ⃗ and   ⃗  and it denotes how much the trial mass has to be rotated with respect 

to the center. Based on the values measured, with simple math based vector analysis, 

adjustment angle of   is calculated 58 degrees. While the accuracy was identified in 30 

degrees increments,   value is considered 60 degrees. Therefore, the trial mass is rotated 

60 degrees and the following vibration response shown in figure 4.10 is achieved. 
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Figure 4.10: The balanced flywheel vibration response. 

Figure 4.10 demonstrates the vibration response of the system when the trial mass is 

added to the correct location on the unbalanced flywheel. Notice that the vibrations 

amplitude has decreased compared to both previous unbalanced situations. Figure 4.11 

shows the frequency response of all investigated conditions using FFT in linear form. 

 

Figure 4.11: The frequency response of the investigated conditions. 
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Figure 4.11 confirms how the vibrations of the system have reduced significantly 

after it was stabilized by adding the trial mass to the correct location on the flywheel. 

This system can become completely balanced when the correct mass of   derived from 

equation (4.17) is added to the determined location. 

    ⃗⃗ ⃗⃗    ⃗⃗⃗⃗               (4.17) 

                                  (4.18) 

Therefore, the adjusted trial mass of 33.68 grams would have resulted in making the 

rotor completely balanced. It is important to note that the original unbalanced mass was 

30.77 grams, 2.91 grams difference (%9.45) from the calculated value. 

4.6 Different Faults Correction 

In rotating machine’s failure correction, the unbalanced situation is provided with a 

correction method that does not necessarily require to remove and replace the rotating 

components. However, other methods are not improvised as simple as the unbalanced 

situation. When the characteristic frequency of the machine points toward mechanical 

looseness, the only approach is to recover machine’s health situation by connecting it 

sturdier to its base. This process does not always require machine’s stoppage and could 

be achieved instantaneously.  

When damaged wires are identified, the machine has to be shut down immediately 

and the stator’s wires have to be replaced. Bearing faults correction is more interesting, 

when the bearing failure frequencies such as BPFO, BPFI, and etc. are identified, the 
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machine is not stopped; however, it’s more frequently monitored to identify the faults 

development patterns. The moment the random noise at frequencies between 2-5 KHz 

appears. The machine’s operation has to be stopped and the bearings must be replaced.  

A misaligned shaft puts strain on the rotating machine and can damage the bearings, 

couplings, mounting bolts and other machine components. Therefore, the manufacturing 

companies have identified maximum allowable tolerances of misalignment for the 

machines based on their operating speed, this tolerance simply decreases by higher 

operating speeds. For correcting misalignment, the shafts have to be aligned in both 

vertical and horizontal planes. For shaft alignment the dial gauges are used as shown in 

figure 4.12. 

 

Figure 4.12: Shaft alignment gauge attached to the shafts. 

Based on total indicator readings (TIR), the dial gauge is set to zero at a specific 

location such as the one shown on figure 4.12, and then roll it 180 degrees and read the 
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gauge value. The actual offset of the shaft is half of the value shown on the dial gauge. 

Another method is to use validity rule which the readings on the gauge are taken at 90 

degree intervals. The validity rule says the sum of the values recorded on top and bottom 

is equal to the sum of the values taken from the sides. This helps when there exists lack 

of accessibility to one side; in other words, the third value can be calculated based on the 

other three. Therefore, when the amount of misalignment is measured the shaft will be 

moved on the two planes to achieve a completely collinear system. 

4.7 Chapter Summary 

In this chapter the correction methods for the common rotating machine’s faults are 

studied. The main content of this chapter was to develop a method for reducing vibrations 

due to unbalanced condition. A method was developed which uses the accelerometer data 

combined with a video taken from the machine to identify the amount of correction mass 

and its corresponding location on the flywheel. This method reduces the need for using 

advanced equipment, and does not require taking so many measurements from the 

machine. Basically, this method is developed to create a smartphone application. The 

reliability of the application is depending on the quality of the camera and sensitivity of 

mobile phone’s accelerometers. 

The correction methods for other types of failures such as damaged bearings and 

stator’s wires, and misalignment are also briefly discussed.  
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CHAPTER 5 

STATISTICAL ANALYSIS OF VIBRATION DATA 

 

5.1 Overview 

In this chapter different statistical methods are investigated to find and categorize the 

present faults in the system. These statistical methods include Principal Components 

Analysis (PCA), K-Nearest Neighbor (KNN), and Singular Value Decomposition (SVD). 

The methods implemented have categorized system failures based on their signature 

responses and severities.  

5.2 Principal Components Analysis 

Due to substantial improvements in computer processing, the concept of autonomous 

pattern recognition has become more effective. One of these processes is known as 

principal component analysis (PCA). This process would reduce the training needed by 

analyst and hopefully increase the accuracy of predictive maintenance. Rather than 

analyze vibration data manually, PCA can be used computationally to find the patterns 

associated with mechanical faults. For example, one misaligned motor can be grouped 

with other motors that share the same fault condition. The same principal applies for 

other types of mechanical faults. This notion points towards the automation of the 
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vibration analysis process which, in turn, will reduce a large portion of the costs 

associated with the maintenance industry. For this reason, an experiment was conducted 

to apply PCA towards fault detection and determine if this method could be deemed both 

efficient and reliable enough to merit further study and perhaps see an application within 

an industrial setting.  

Principal component analysis is a statistical approach for separating large amounts of 

data with multiple variables. In other words, PCA is a feature extraction technique 

capable of distinguishing data values based on their respective variance to the rest of the 

data set [46]. This is done by calculating the amount of variance between several data sets 

and assigning each variable its own dimension to determine which variables have the 

largest impact on variance within the data [47]. By doing this, data of different types are 

separated into “groups” which can then be recognized by identifying one data set within 

that group. This is commonly used to find patterns in statistical information as seen in 

[48], which explains the application of PCA to organize a large number of cells into 

groups based on the genes they possess. The mathematical equation to derive the 

principal components is described in [49]. 

Fault detection, in its nature, involves the identification of vibration patterns. This 

section explores how PCA could be applied to determine these patterns computationally 

without the need of manual data analysis. By comparing large numbers of data sets, PCA 

can be used to group known vibration patterns based on their relevant trends. At which 

point, unknown data can be introduced so it can be grouped into their respective fault 

categories. This provides a new method of maintenance within industrial applications and 

could stand as the foundation for future research regarding this application. 
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For any operating condition of a motor, a change in spectral patterns can be observed 

in the frequency response when a system experiences varying degrees of fault severity. 

To account for the variance in vibration data in the PCA method, fault severity was 

altered for every test. Since a healthy motor cannot experience different degrees of 

healthiness, additional load was added to the motor under healthy conditions in order to 

change the response of the spectral pattern, thus simulating changing circumstances. 

Although load does not directly create a larger fault severity, for the purpose of this 

experiment it was assumed that an increased severity or load would intensify the response 

in the vibration data. 

These tests involved three operating conditions of a typical axle system connected to 

an induction motor. The axle itself was under load supported by two bearing couples 

whose respective vibration data was recorded using a set of accelerometers mounted at 

several locations. Resultant FFT data was processed using PCA which helped outline any 

patterns that emerged from the experimental data. The validity of these patterns were 

tested using several unknown data sets to determine if they could be identified correctly. 

For the series of healthy system tests, washers were added uniformly around the 

rotor to increase the amount of load applied to the system. This was done in multiples of 

four, starting zero and going until there were a total of 20. Unbalanced tests were 

conducted by adding washers in sets of two, starting at zero and going to 20. Figure 5.1 

shows the rotor used to add load and simulate unbalance.  



54 

 

 

Figure 5.1: The flywheel used to simulate unbalance. 

Misalignment was simulated via the misalignment dial in place on the MFS as seen 

on figure 5.2. These tests increased by five milli-inches (mils) starting at 10 mils and 

ending at 35 mils.  

 

Figure 5.2: Dial used for introducing misalignment. 

By changing the severity of the faults and the load of the healthy condition, the 

robustness of the PCA method was tested. This was done to determine if PCA could 

correctly group faults of the same type together that had different operating conditions. 

This is the main reason other failure types were not investigated in this study. It was not 
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possible to define different bearing fault severities and damaged wirings had little effect 

on the vibration data.  

As mentioned earlier, the operating conditions of the motor tested were healthy, 

misalignment, and rotor unbalance. The healthy data set was taken to act as a control 

group for the other test sets. The fault conditions studied were tested to determine if the 

PCA method could correctly group the operating conditions by type and identify fault 

severity. With that said, the severity of one fault compared with another, was not 

investigated in this study. Instead, the intention of this experiment was to evaluate the 

trend of each fault group individually. For example, the most severe instance of 

misalignment cannot be compared with the most severe instance of unbalanced because 

the systems were operating under different conditions. Rather, it was intended that for 

each fault, a trend in fault severity would emerge. This would allow for an unknown test 

set to have the severity of its fault estimated. 

A series of unknown vibration data were investigated to demonstrate the robustness 

of this statistical method. The unknown healthy test was taken with nine washers 

arranged uniformly the rotor. The unknown unbalanced test was taken with seven 

washers. The unknown misalignment test was conducted at 27 mils. Because each 

recorded test was controlled, the location of unknown tests could be compared to that of 

each known test by creating a region in which the fault was known. By doing this, 

unknown tests could be identified by determining if the test lied within the proximity of 

the region specific to that fault condition. 

The vibration data is recorded on four accelerometers two of which are mounted on 

each bearing housings radially. The processed data sets for each accelerometer are 
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represented in figures 5.3-5.6. Each data set displays both the scores (red) and loadings 

plot of the PCA. In short, the square plot is represented by a large number of points each 

of which represents a single frequency value in the graph. On the other hand, the points 

representing the loadings portion of the graph are each a single test (unbalance, healthy, 

etc.). Additionally, each point in the loadings portion of the graph are marked with either 

an “h” (healthy), a “u” (unbalanced), or an “m” (misalignment) as well as the test number 

for that fault type in order of occurrence. 

 

Figure 5.3: Accelerometer 1 PCA. 
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Figure 5.4: Accelerometer 2 PCA. 

 

Figure 5.5: Accelerometer 3 PCA. 
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Figure 5.6: Accelerometer 4 PCA. 

Figures 5.3-5.6 demonstrate how the mechanical faults have been categorized with 

respect to their corresponding vibration signature. It was expected that the healthy 

situations will not have too much variance and therefore, they have been located very 

close to each other. The unbalanced situation has a direct relation to the amount of 

unbalanced mass added to the rotating flywheel and therefore, a pattern based on failure 

severity is recognized within all accelerometers data. This trend is not recognized with 

the misaligned shaft as all the corresponding characteristic frequencies do not have a 

direct relationship with the amount of misalignment. It is clear from the figures that the 

unknown vibration data was in fact determined correctly. 

The data shown on figures 5.3-5.6 are based on the first two components. It is seen 

on the figures that the region around the healthy condition is noisy and separating the 
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faulty and healthy conditions are not precisely possible. Therefore, the third component is 

taken into consideration. Figures 5.7 through 5.10 represent the same data presented in 

the previous section of this report. The only difference is that a third principal component 

is added thus adding another dimension of reference to the graphs. Besides this however, 

the data is presented in the same manner with both the loadings and score plot displayed 

in each figure. 

 

Figure 5.7: Accelerometer 1, 3 dimensional PCA. 
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Figure 5.8: Accelerometer 2, 3 dimensional PCA. 

 

Figure 5.9: Accelerometer 3, 3 dimensional PCA. 



61 

 

 

Figure 5.10: Accelerometer 4, 3 dimensional PCA. 

Based on the data presented in figures 5.7 through 5.10, it can be concluded that 

PCA is capable of detecting mechanical faults based on the processed vibration data. 

Within the loadings plot of each graph, each of the fault conditions can be seen grouped 

together with other points of the same fault type. It is clear from these figures that with 

the third principal component added into consideration the data patterns are distinguished 

more precisely.  

As for the score data, there is less transparency about the information shown 

compared to the loading plot. This is because each point represents a single amplitude 

value with respect to each data set. Within figures 5.7-5.10, the addition of a third PC 

dimension shows a distinct improvement in the grouping of each fault condition. 

Compared to the previous graphs involving only two PC dimensions, the misaligned and 
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healthy groups in figures 5.7-5.10 do not lie within the same region. Instead, each fault 

group becomes more distinct with the addition of a third PC dimension and would be 

easier to recognize computationally. This concept is explained further by the 

incorporation of unknown data sets in each fault grouping.  

Considering figures 5.7-5.10, the unknown data sets, represented by unk1-unk3, can 

be seen near or within each fault group. This proves that the unknown situations can be 

precisely identified using principal components analysis. 

In summary, PCA can be used to distinguish between motor faults of varying types. 

This, of course, is done in conjunction with several accelerometers as the use of 

supplementary data can provide a more in-depth look at the data. By comparing data 

from multiple accelerometers, steps can be taken towards automating the fault 

identification process. This is further supported by the similarities between the unknown 

data set and the other fault tests. Additionally, when dealing with a system running at a 

constant speed, the data has shown a correlation between the faulty data set’s severity and 

its respective position in the PCA graph. Meaning that the fault severity of an unknown 

data set could be potentially estimated. With that said, PCA provides a simple and 

inexpensive alternative to current maintenance techniques. Not only can industries 

become more efficient by reducing production costs, but they may also see an increase in 

productivity by avoiding unplanned plant shutdowns thus improving the industry as a 

whole. 
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5.3 Singular Value Decomposition 

Another method investigated for fault classification, is singular value decomposition. 

This approach follows similar path as principal components analysis. This method is 

commonly used in signal processing and statistics. Basically, SVD is a more general 

model of PCA. In order to get the PCA plots, the mean value of the vibration amplitudes 

is calculated and then subtracted from the amplitudes.  The resulting value is then divided 

buy the standard deviation of the original vibration data. In many applications the 

features ought to be detected have positive values, whether it’s the intensity of a pixel or 

the maximum vibration’s amplitude. Typically, the remarkable features that can be used 

in the classification scheme, have higher magnitudes. In PCA, when the mean is 

subtracted, the uninteresting insignificant amplitudes get a negative value, in some cases, 

possibly with high magnitudes. In other words, the unimportant features are now 

identified as the key features used for classification. This is the most significant 

difference between PCA and SVD. However, in this study the mean value is very close to 

zero and does not slightly affect the vibration data.  Therefore, in this case, SVD achieves 

same results as the PCA.  

5.4 K-Nearest Neighbor 

In this section a fault detection and classification technique for the faulty conditions 

of misaligned shaft and unbalanced rotor is presented. This method is based on vibration 

analysis and K-Nearest Neighbor (KNN) classifiers. In KNN method used, the output is a 

class membership belonging to one of the health conditions of the machine. An unknown 
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dataset will be classified based on a majority vote of its neighbors. KNN method is 

considered as the simplest of all machine learning algorithms. 

In this method the Euclidean distance is calculated for to define the category in 

which the unknown condition falls in. This method can also be used for severity 

estimations. However, it relies heavily on the training dataset and therefore it is 

recommended to have a very large training data set to avoid the errors raised from noisy 

measurements.  

The training dataset for KNN is generated through controlled predetermined amount 

of unbalanced load and misalignment at different levels, as well as ideal situation. The 

key features are selected based on the characteristic frequencies derived from spectrum 

analysis. To improve classification accuracy, features selected from training dataset were 

weighted according to their influence levels on distinguishing fault types. 

Considering there is an unknown vibration data shown in Table 5.1.  

Table 5.1: An unknown vibration data 

Feature 1 Feature 2 Feature 3 Feature 4 Feature 5 Feature 6 Situation 

0.3401 0.0035 0.0022 0.0034 0.002 0.0014 Unknown 

 

Table 5.2 displays the vibration amplitudes of the training data sets used in principal 

components analysis. It is demonstrated how an unknown data set is categorized based on 

the trained data. 
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Table 5.2: Vibration dataset for KNN analysis 

Feature1 Feature2 Feature3 Feature4 Feature5 Feature6 Rank 

Euclidean 

Distance 

Category 

0.0463 0.0041 0.0048 0.0028 0.0013 0.0022 11 0.197087 Health 

0.0461 0.0041 0.0045 0.0025 0.0009 0.0022 12 0.197221 Health 

0.0465 0.0041 0.0049 0.0021 0.0012 0.0021 9 0.196953 Health 

0.0465 0.0041 0.0051 0.0032 0.0015 0.0021 10 0.196953 Health 

0.0474 0.0042 0.0049 0.0023 0.001 0.0021 8 0.196349 Health 

0.0507 0.0041 0.0052 0.0025 0.0011 0.0022 7 0.194136 Health 

0.1517 0.0025 0.0047 0.0024 0.0015 0.0024 4 0.126383 Unbalance 

0.0724 0.0034 0.0048 0.0022 0.0014 0.002 6 0.179579 Unbalance 

0.2734 0.0047 0.0066 0.0035 0.0018 0.0026 1 0.04475 Unbalance 

0.2048 0.001 0.0046 0.0023 0.0017 0.0022 3 0.090762 Unbalance 

0.1129 0.0028 0.0039 0.0027 0.0013 0.0024 5 0.152411 Unbalance 

0.2423 0.0028 0.0056 0.0022 0.0021 0.0024 2 0.065608 Unbalance 

0.0419 0.0065 0.0037 0.005 0.002 0.0067 17 0.200064 Misalignment 

0.0432 0.0065 0.0035 0.0052 0.0012 0.0034 15 0.199169 Misalignment 

0.0429 0.0061 0.0048 0.0053 0.0017 0.0045 16 0.199375 Misalignment 

0.0411 0.0067 0.0037 0.0037 0.0029 0.0063 18 0.200596 Misalignment 

0.0453 0.0033 0.0024 0.0041 0.0012 0.0033 13 0.197761 Misalignment 

0.044 0.0052 0.0022 0.0034 0.002 0.0014 14 0.198632 Misalignment 

 

Table 5.2 demonstrates how an unknown health condition can be determined based 

on KNN analysis. The Euclidean distances are calculated for the unknown vibration data 

and the trained dataset, and then the distances were ranked to find the closest distance to 

the unknown situation. The highlighted vibration data has the lowest distance. Therefore, 

the unknown situation is classified as unbalanced. 
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5.5 Chapter Summary 

In this chapter, the statistical methods used in machine learning algorithms are 

implemented to classify the failure type automatically. For this purpose, principal 

components analysis, singular value decomposition, and K-nearest neighbor approach 

were investigated. The results verified that these simple models have provided an 

inexpensive and cohesive method for failure detection and categorization. 

For rotating machines fault classification based on vibration data, PCA has provided 

the most valuable information. KNN relies heavily on the trained data and cannot be used 

to estimate the faults severity. Moreover, there is no need for feature extraction in PCA 

which enables this method to become more general in identifying different faulty 

situations even if the faulty condition does not lie within the trained dataset.  
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CHAPTER 6 

CONCLUSIONS AND FUTURE WORK 

 

6.1 Conclusions and Discussions 

Vibration analysis is a multipart discipline that helps increase quality, reliability and 

cost efficiency in so many different industries, including but not limited to electric 

machines manufacturing, automobile industries, aerospace, transportation, medical and 

etc. Analyzing and addressing typical vibration problems requires a basic knowledge of 

theoretical models, time and frequency domain analysis, measurement techniques and 

equipment, vibration suppression techniques, and modal analysis. Although the theory of 

frequency response analysis on the data acquired by accelerometer sensors and vibration 

measurement apparatus has been studied since the advent of accelerometer sensors. 

However, these methodologies have yet to gather into a single tool in the hands of an 

electro-mechanical technician in industry to perform complex diagnostic analysis. 

Therefore, the efforts of this project were focused on performance analysis of a rotating 

machine using its vibration profile.  

In this thesis, vibration responses of different faulty conditions were investigated. 

The faults studied include: Unbalanced rotor condition, shaft misalignment, damaged 

stator’s wirings, damaged bearings, and mechanical looseness. An induction motor’s 
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vibrations were measured and analyzed using fast Fourier transform signal processing 

method. The characteristic frequencies which are considered as the signature response of 

the faulty conditions were revealed. Next, the correction methods for the faulty 

conditions were discussed. An automatic balancing method based on computer vision 

applications was developed. Finally, using statistical approaches from machine learning 

algorithms the faults were classified based on their signature responses and their 

severities. 

In this project, the validity of the results obtained through vibration measurement 

have been proven and verified as an effective diagnostic and prognostic tool for failure 

modes of any critical parts in a system (in this study it was specifically applied on 

electrical rotating machines).  

6.2 Future Work 

As a continuation of this research, the possibility of application of Artificial 

Intelligence (AI) and machine learning on evaluation of big data captured by the sensors 

or the sensory network on the rotating devices could facilitate the failure mode analysis 

and predictions on moving mechanical systems and parts. Moreover, the findings 

assorted in this project along with the data analysis tool can come together to form a 

handheld prototype that can be used in industry for health monitoring of any equipment 

and instrumentation of this type. 

The data obtained from this methodology can be expanded to lifetime estimation 

(End of life prediction), failure modes and effects analysis (FMEA), reliability tests, 

standard compliance test (ISO 1940/ANSI S2-19), and etc.  
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New monitoring methods are being developed based on the advancements is 

machine vision technologies. The methods can be used to correct other faults such as 

misalignment. It is estimated that with developments in cameras, and image processing 

methods, the monitoring techniques will move toward failure analysis based on the 

captured videos of the rotating machines. 
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