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Abstract

Mechanized reasoning has proved effective in avoiding serious mistakes
in software and hardware, and yet remains unpopular in the practice ofmath-
ematics. My thesis is aimed at making mechanization easier so that more
mathematicians can benefit from this technology. Particularly, I experimented
with higher-dimensional types, an extension of ordinary types with a hierarchy
of stacked relations, andmanaged tomechanizemany important results from
classical homotopy theory in the proof assistant Agda. My work thus sug-
gests higher-dimensional types may help mechanize mathematical concepts.

Ki'hâihuà thuilí í'king ē'tàng pībián nńgthé kap ngē'thé tiong giâmtiōng
ê tshò'ngōo, tsóng--sī tī sòoha̍k giánkiù sıt̍bū iáu hántit iōng. Pún lūnbûn ê
tsongtsí sī beh sú ki'hâihuà khah khuài hōo sòoha̍kka sú'iōng. Siôngsè lâi kóng,
guá sú'iōng ko'uî luīhîng (higher-dimensional types), iā tsiūsī tī itpuann ê luīhî-
ng tíngkuân ka'thiam to'kai'tsân ê kuanhē, tsiong kóotián tônglûn lílūn (clas-
sical homotopy theory) ê kuí'nā hāng tiōng'iàu ê sîngkó, tī tsìngbîng hú'tsōo
kangkhū Agda lāi'té sūnlī ki'hâihuà. Guá ê giánkiù sîngkó hiánsī ko'uî luīhîng
kiámtshái ē'tàng pangtsōo sòoha̍k khàiliām ê ki'hâihuà.
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Preface

This thesis serves as a progress report of my five-year journey in mecha-
nizing mathematical theorems using higher-dimensional types. It has been
quite a unique experience to expand the frontier of the human knowledge
with numerous friendly fellows, and the goal of this report is to help anyone
who also hungers for knowing the unknown.

Therefore, much emphasis is on the possibilities in the future, the reflec-
tions from the past, but not the perfection of the present; although I wish my
writing could be a guide for someone’s next journey, I have been avoiding
asserting that the paths not travelled must be technically inferior. The ratio-
nale behind many of my decisions will be provided for the benefits of future
explorers, but I will also be delighted to know if, one day, my arguments
against alternative paths no longer stand.

To better serve the subsequent journeys, including my own, I have been
trying to identify abstract principles from the current technical development,
hoping to better suit other related but different contexts—especiallywhen the
actual theories and tools employed in my work become outdated. The disad-
vantage is that some concepts may appear duplicated, with one being more
abstract and one more concrete. I hereby would like to ask every reader to
bearwithme andmaintain an openmind about other choiceswe couldmake,
especially during the discussion of the principles of higher-dimensional types.

Hope you will find this report useful, and good luck with your journeys!

Favonia, 2017/02/13
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Overview

This thesis demonstrates how a particular abstraction may help the mech-
anization of mathematics in computer systems; in particular, it consists of
several important theorems mechanized in the proof assistant Agda. The
abstraction in discussion here is higher-dimensional types, or types extended
with higher-dimensional structures. The mechanization is focused on homo-
topy theory, the study of topological spaces up to continuous deformation. To
begin with, here is my thesis statement:

Higher-dimensional types provide novel abstraction that facilitates
the mechanization of homotopy theory.

This thesis is organized as follows: Chapter 1 discusses the motivation,
the idea and the current development of higher-dimensional types. Chap-
ter 2 introduces the type theory that will be used in chapter 3 to present my
work with higher-dimensional types. Chapter 4 discusses some technical de-
tails of using the proof assistant Agda for mechanization. Finally, chapter 5
concludes the thesis with a brief note.
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Chapter 1

Mechanization with
Higher-Dimensional Types

1.1 Mechanization and Mathematics
The active pursuit of formal mathematical languages starting from the 19th century
could be seen as an attempt to evade logical gaps or inconsistencies in more and more
abstract developments ofmathematics. Through resolving arduous issues in the founda-
tion ofmathematics, we largely regained the confidence of absoluteness and correctness.
However, I would like to argue that computer systems today are ready to provide yet
another layer of protection, further strengthening our faith in modern mathematics con-
sisting of even more abstract developments than one century ago.

Mechanized reasoning, or computer-aided reasoning, refers to the use of computer sys-
tems to encode, verify or execute logical reasoning. It has been extensively applied to
different kinds of software and hardware, probably because many software or hardware
bugs with grave consequences keep emerging. Notable verification projects include the
kernel seL4 [79], the C compiler CompCert [85] and floating-point units [36, 63, 64, 124].

The worry about correctness in modern mathematics is also real; for example:

• The four-dimensional case of the Busemann–Petty problem was disproved and
then proved by the same mathematician Gaoyong Zhang [149, 150].

• A “theorem”by Jan-ErikRoos [121]was found false [107] only after almost 40 years.
A proof of a more restricted version was published afterwards [122].

• The Schur multiplier of the Mathieu group 𝑀􏷡􏷡 [103, 104] has been incorrectly cal-
culated as three [33] and then six [34] and is currently believed to be 12 [76].

As a response to the worry about correctness, there have been many mechanization
projects, notably:

1



• the Flyspeck project [61], which mechanized the Kepler conjecture in the proof
assistants HOL Light and Isabelle/HOL; and

• the mechanization [57] of the odd order (Feit–Thompson) theorem in the proof
assistant Coq; and

• a fully mechanized proof [56] of the four-color theorem in the proof assistant Coq,
unlike previous ones which require manual verification of the combinatorial argu-
ments and computer programs specifically written for this theorem.

However, mechanized proofs never enjoyed wide acceptance despite valid correctness
concerns and impressivemechanization projects. AsDonaldMacKenzie pointed out [98,
p. 98],

Mathematicians also showed little interest, however, in the less highly
automated but more capable “proof checkers”. These are systems that are
provided with a full (or nearly full) formal proof, constructed by a human
being, and that check whether this proof is indeed a correct one. [… ] For
example, L. S. van Benthem Jutting, a student of de Bruĳn, translated into
AUTOMATH and automatically checked the proofs from Edmund Landau’s
text, Grundlagen der Analysis.

Such achievements, however, aroused little enthusiasm among mathe-
maticians. [… ]

One major cause, in my opinion, is the fear of mechanized proofs being lengthy and
involving excess details. Donald MacKenzie also made a similar observation [98, p. 99]:

The difficulty and length of formal proofs are certainly a major cause of the
absence of any widespread adoption by mathematicians of automated proof
checkers. [… ]

I believe this concern is partially due to current technical limitations and can be ad-
dressed by using abstraction, which should be able to help suppress unwanted details,
support high-level reasoning, and therefore reduce the obstacles to mechanization.

In an ideal world, mechanized proofs are not just accepted by but also understand-
able to human beings. There are already signs that this could be the future. For exam-
ple, during the Institute for Advanced Study (IAS) special year on the univalent foun-
dations of mathematics [137], many proofs were first done mechanically and then “un-
mechanized” to engage a wider audience. Also, recently mathematician Charles Rezk
read my mechanized proof of the Blakers–Massey theorem, wrote a proof in a more
traditional style [117] which in turn inspired new research in mathematics [8]. The sig-
nificance of these events is that ideas can flow from mechanized proofs to conventional,
non-mechanized proofs, contrary to common wisdom.

2



1.2 Preference for Types

Before diving into the ocean of higher-dimensional types, I should describe what types
are and why types were preferred: Generally speaking, type theories are foundations of
mathematics alternative to set theories; types expressmathematical concepts as sets in set
theory; terms in type theories are the syntax of programs, proofs or realizers “fulfilling”
the types, depending on how exactly the type theories are designed. In the literature,
there are two distinct philosophies regarding types:

Ontological types. A type is an ontological classification assigned to associated terms.
Every term has a type and its type determines its available operations. Operational se-
mantics, if any, is given after defining the types.

Behavioral types. The operational semantics of terms is first given, and then a type is
a mathematical verification property on operational semantics. A term satisfies a type if
its operational behavior satisfies the type.

The ontological sense is also called the intrinsic interpretation of types or the Church
style, while the behavioral sense is the extrinsic interpretation or the Curry style. Note
that it is entirely possible for a type theory to have both kinds of types, and in such a
type theory the behavioral types are sometimes called type refinements as they refine the
ontological types. Moreover, although one can claim that behavioral type theory has one
single ontological type, it is also possible to build a new ontological type theory based
on behavioral type theory by turning selected properties into ontological classifications.
Therefore, no particular typing principle is more “fundamental” than the other.

The focus of my thesis was set on ontological types, mainly because the fate of be-
havioral types with higher-dimensional structures was unclear. Future mechanization
projects, however, should revisit the applicability of behavioral types. The reasons why
such behavioral types were considered challenging will be discussed in later sections.

The remaining issue is why types were chosen instead of sets, or more precisely, ZF
material sets.1 At first glance, sets are arguably more prevalent in traditional mathemat-
ics, which is exactly what this thesis is aiming at, and it seems odd to choose a different
foundation. However, there seem to be at least two advantages of types for the purpose
of mechanization:

1. Types provide formal abstraction.

2. Type theory is (selectively) proof relevant.
1In this thesis I view structural sets as types providing the structure of set theory, leaving the term “sets”

to material sets as in the ZF theory.
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Formal abstraction. Abstraction is a powerful mental tool to grasp the complexity of
the real world. For example, it would be off-putting to work on number theory if each
step had to be carried out in terms of the axioms of the ZF theory. As a result, mathe-
maticians usually do not directly work on set-theoretic definitions of numerals, but on
some abstract notion of natural numbers. Types provide a formal language to express
(and enforce) such abstractions so that it becomes impossible, not just morally undesir-
able, to inspect the encoding of numerals. With types, such abstraction that was once
purely conventional can be easily checked by computers, which fits nicely to the practice
of mechanization.

Proof relevance. Secondly, proof relevance is the principle of making (formal) proofs
or realizers first-class citizens in theory. Formal proofs or realizers becomemathematical
objects that can be examined andmanipulated directly. This is convenient for mechaniz-
ing existing proofs in informal mathematics because it is common for a later proof to
cite some construction within a previous proof. With proof relevance, the construction
which manifested as a mathematical object is immediately available for later usage (in
the system for mechanization). It also suits computer science better because it creates a
seamless integration between theorem proving and programming.

Note that it is possible to suppress some proofs and mimic the proof-irrelevant rea-
soning in type theory if necessary; thus proof relevance is actually more general than
otherwise.

In sum, due to formal abstraction and proof relevance, types appear to be a better
choice than sets for mechanization, and due to historical accidents, ontological types
were chosen over behavioral ones.

1.3 Higher-Dimensional Types

In either the ontological or behavioral typing, a collection of terms “associated” with
each type, or simply elements of a type, may be identified; it is not uncommon to assume
that types may be represented solely by its elements.

This thesis demonstrates that it might be desirable to drop this assumption and equip
a typewith higher structures on top of its elements. The first approximation is to include
a binary relation among elements as an inherent part of a type. An immediate example is
a quotient, which can be viewed as a collection of elements equippedwith an equivalence
relation. A suitable framework of these “types with relations” will require all constructs
to respect inherent relations in types; in other words, functions are functors that map
related elements to related elements.

If, in some framework, a piece of evidence of relations can be internalized as a term,
then we may consider yet another binary relation among pieces of evidence that relate
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the same two elements. The next layer would be a binary relation among pieces of evi-
dence relating two pieces of evidence relating the same two elements. This may go up
to infinity; in the most general case we have countably infinite indexed binary relations
stacked on top of elements.

Such a hierarchy of relations enables us to represent with ease mathematical objects
inherently with many layers of relations. I call these stacked relations higher-dimensional
structures, where dimension refers to the distance from the elements at the zeroth dimen-
sion; the relation among elements is at the first dimension, the next level at the second,
and so on. A higher-dimensional type is a type equipped with higher-dimensional struc-
tures, and a higher-dimensional type theory is a type theory compatible with types with
non-trivial higher-dimensional structures.

Note that these higher-dimensional structures need not be equivalence relations. In
fact, there are motivating examples to consider non-symmetric relations. Unfortunately,
higher-dimensional structures other than equivalence relations are still underdeveloped
at the time of writing.

1.4 Applications of Higher-Dimensional Types
What are the immediate applications of higher-dimensional types? In this section I will
review four known applications: univalent set-theoretic reasoning, patch theory, homo-
topy theory and quotients.

Univalent reasoning. Informal mathematics usually assumes that if a group (as an al-
gebraic structure) satisfies some property, so do other isomorphic groups. For example,
if a group is abelian, so are other isomorphic ones. The univalence principle formally as-
serts that every two isomorphic structures are the same and thus every property must
respect structural equivalence (such as group equivalence). Moreover, because there can
be more than one equivalence between two structures, there can be more than one way
in which two structures can be identified. If one adopts the proof relevance principle as
we did, there will be different identification proofs between two structures.

An easy way to represent such a universe of structures with identification is to assign
structural equivalence to the higher-dimensional structures of the universe. This waywe
have a univalent universe of structures.

Patch theory. It has been shown [10] that we can formulate patch theories as higher-
dimensional types. Here a patch (such as “adding a file”) represents a change to a repos-
itory, and it only applies in certain patch contexts (such as “the file being added does not
exist”). There are also patch laws, the equations the patches must obey. Carlo Angiuli,
EdwardMorehouse, Dan Licata and Robert Harper demonstrated how to wrap all these
components of a patch theory into one single higher-dimensional type, where elements
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are patch contexts, relations between elements are patches, and relations betweenpatches
are patch laws.

Notice that if we can drop the widely-assumed symmetry of higher-dimensional
structures, irreversible patches can be modeled more elegantly.2 This research direction
remains open at the time of writing.

Homotopy theory. Homotopy theory is the study of topological spaces up to continu-
ous deformation (homotopy), and these homotopies naturally fit into higher-dimensional
structures. The idea here is to use type theory as the language for (well-behaved) topo-
logical spaces up to homotopy equivalence. With homotopies internalized as an inherent
part of types, every element (as a formal proof) must respect homotopies, which leads
to a more general theorem that holds in various models with homotopy structures. This
line of research has been fruitful [16, 19–21, 29, 51, 78, 87, 94, 106, 135, 138, 146], and my
thesis work is following this approach.

Remark 1.4.1. This methodology is called synthetic homotopy theory because it uses no
open sets, as synthetic geometry uses no coordinates. Instead, new spaces are built from
primitive spaces and combinators.3

There are also considerable efforts [7, 17, 44, 123] in mechanizing topological objects
without internalizing homotopies or using higher-dimensional types. These could even-
tually lead to, for example, full verification of the program Kenzo [136] which imple-
ments many algorithms for computing algebraic structures of topological spaces. The
advantage of this approach is that the proofsmay incorporate non-homotopy-preserving
methods but then the disadvantage is that some constructions such as loop spacesmight
need more work and the resulting proofs admit fewer models.

Quotients. Finally, higher-dimensional structures enable us to define quotients, a preva-
lent construct in mathematics. A prominent example is Cauchy real numbers, which are
usually defined as the quotient of Cauchy sequences [138]. Roughly speaking, Cauchy
reals are intended to be the completion of rational numbers under Cauchy sequences,
sequences in which for any distance, there always exists a suffix whose numbers do
not differ by more than that given distance. A proper definition of real numbers thus
needs to identify two Cauchy sequences “approaching the same number”, and higher-
dimensional types are able to bundle such identification.

These four examples show the potential of higher-dimensional types in providing
better abstractions for mechanization of mathematics.

2In Angiuli et al. [10] the authors tackle irreversibility by encoding complete patch histories as patch
contexts.

3More precisely, the homotopy classes of topological spaces.
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Judgmental equality Internalized equality Identification

Common usage
↳ such as [67]

definitional equality extensional identity intensional identity

Common usage
↳ such as [138]

judgmental equality (not used) propositional equality
and identity

Martin-Löf (1975) definitional equality (not used) identity

Martin-Löf
↳ (1982, 1984)

definitional equality
(intensional)

propositional equality
(extensional)

(not used)

NuPRL [41] equality equality (not used)

Table 1.1: Rosetta Stone for identification and equality.
NuPRL terminology does not line up with others’ well.

Readers are recommended to consult the documentation of NuPRL directly.

1.5 Examples of Higher-Dimensional Type Theories
At the time of writing there are already many higher-dimensional type theories as de-
fined in this thesis. In the following these icons are used to mark the features of individ-
ual type theories: { } means cubical, {≡} means having internalized equality as types and
{ } means guarded (see below).

Martin-Löf ontological type theory with identification types. Martin-Löf ontological
type theory with identification types (the variant at year 1975 [100]) is already higher-
dimensional in the sense that every type comes with a hierarchy of iterated identifica-
tion. In practice, however, additional axioms or other extensions are needed to force the
existence of types with non-trivial higher-dimensional structures. More details will be
discussed in chapter 2.
Remark 1.5.1. The name identification types is used to emphasize that they are fundamen-
tally different from equality types and signify the action of identifying two things. Other
common names are shown in table 1.1.
Remark 1.5.2. There is a misconception that behavioral types have no interesting higher-
dimensional structures was partially due to the failure of mimicking iterated identifi-
cation: behavioral typing almost always validates equality types, equality and identi-
fication types appear similar, but equality types are always trivial. However, higher-
dimensional structures in behavioral type theories need not be equality types, as shown
in some type theories listed below.

Univalent type theory with higher inductive types (UniTT+hit) (syntax of homotopy
type theory). This type theory extends the above theory with the univalence axiom and
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higher inductive types and is the theory in use for the thesis work. Both extensions are mo-
tivated by homotopy theory and will be discussed in chapter 2. Suitable mechanization
tools are introduced in chapter 4.
Remark 1.5.3. I use the name univalent type theory instead of homotopy type theory for two
reasons: Firstly, depending on the speaker and the context, homotopy type theorymay refer
to the entire research area, the type theory, or the type theory combinedwith a particular
interpretation into homotopy theory. Secondly, although all of my thesis work indeed
follows this particular interpretation (see chapters 2 and 3), some applications of the
type theory in computer science [10] seem unrelated to homotopy theory. People also
call this type theory the book HoTT, referring to the type theory defined in the appendix
of the book Homotopy Type Theory: Univalent Foundations for Mathematics.

Homotopy type system [141] {≡}. This type theory proposed by Vladimir Voevodsky
extends the univalent type theory UniTT with a new layer with internalized equality.
The two-layer structure consists of fibrant types which respect homotopy equivalence,
and non-fibrant types which may not. The new layer of non-fibrant types makes it pos-
sible to “break” homotopy equivalence and define for example simplicial types, which
seem impossible without this feature. There is a proof checker prototype by Daniel R.
Grayson [58].

Two-level system [5]. This type theory by Thorsten Altenkirch, Paolo Capriotti and
Nicolai Kraus is heavily inspired by the homotopy type system by Vladimir Voevod-
sky, but replaces the outer (non-fibrant) layer by Martin-Löf type theory with a version
of identification obeying the principle of uniqueness of identification proofs (UIP). Al-
though I will not talk about this two-layer system, the principle of UIP will be discussed
in section 2.3. There is no implementation of this type theory to the best of my knowl-
edge.

Real-cohesive homotopy type theory [125, 128]. This type theory, mainly by Michael
Shulman andUrs Schreiber, extendsUniTT furtherwith synthetic topological reasoning.
Formally, a new context containing crisp variables was introduced to take into account
possibly discontinuous mappings. This new context, along with several new modal op-
erators, makes it possible to use the direct arguments of synthetic homotopy theory to
yield non-homotopical conclusions. Unfortunately, there is still no implementation for
this type theory to date.

Two-dimensional type theory [92]. This was one of the early efforts by Dan Licata
and Robert Harper to fill in missing computational contents of the univalence axioms
and higher inductive types. The type theory was, in retrospect, a step toward ontolog-
ical cubical type theory, but it was unclear then how to extend the technique to higher
dimensions, and there is no known implementation at the time of writing.
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Cubical type theories [6, 39, 74, 90, 110] { }. Progress in modeling univalent type the-
ory UniTT in cubical sets [23] has inspired Thorsten Altenkirch and Ambrus Kaposi;
Guillaume Brunerie and Dan Licata; Cyril Cohen, Thierry Coquand, Simon Huber and
AndersMörtberg; Valery Isaev; and IanOrton andAndrewM. Pitts to build several onto-
logical type theories with explicit cubical structures. Higher-dimensional structures are
made explicit at the judgmental level. There are an experimental implementation [45]
and a formalization in NuPRL [24] in progress.

Guarded cubical type theory [25] { , }. This type theory byLars Birkedal, Aleš Bizjak,
Ranald Clouston, Hans Bugge Grathwohl, Bas Spitters and Andrea Vezzosi combines
features of the above cubical type theories and the guarded dependent type theory [25]
such as later types and delayed substitution. It also has a prototype checker [60].

Computational higher-dimensional type theory [9] { }. Another line of research led
by Carlo Angiuli, Robert Harper and Todd Wilson, also inspired by cubes, constructs a
behavioral cubical type theory by extending theNuPRL semantics to higher dimensions.
An experimental implementation is in progress as well [131].

1.6 Relationship with the Univalent Foundations
Recently, Vladimir Voevodsky has been actively promoting the univalent foundations as
new foundations of mathematics. It emphasizes the need of mechanization in math-
ematical practice and promotes ∞-groupoids and homotopy types4 as the organizing
principles. Currently the main development following Vladimir Voevodsky’s ideas is
the UniMath library [145] of the proof assistant Coq. The history and philosophy of
the foundations can be found in the 2014 Paul Bernays Lectures [142] given by Vladimir
Voevodsky and also the review paper by Álvaro Pelayo and Michael A. Warren [112].

Remark 1.6.1. The sameness of homotopy types and ∞-groupoids was already pointed
out by the great mathematician Alexander Grothendieck [59]:

[… ] One comment is that presumably, the category of∞-groupoids (which
is still to be defined) is a “model category” for the usual homotopy category;
this would be at any rate one plausible way to make explicit the intuition
referred to before, that a homotopy type is “essentially the same” as an ∞-
groupoid up to ∞-equivalence. [… ]

This thesis is very close to Vladimir Voevodsky’s vision about the univalent founda-
tions program. We share the view that ideally mechanization should be part of mathe-
matical proving. We both promote higher-dimensional structures and none of us insist

4See chapter 2 on page 11 for the definition of homotopy types.
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on a particular type theory. Moreover, this thesis aims to improve the current technol-
ogy of mechanization, and Vladimir Voevodsky once expressed “a lot of wishes in terms
of getting this proof assistant to work better” [143].

That said, I am hesitant to accept the philosophical belief that (in terms of this the-
sis) higher-dimensional structures should be symmetric relations (as∞-groupoids), and
thus I cannot place my thesis under the univalent foundations. This is partially due to
my background in computer science: Computation in most systems is inherently an irre-
versible process, usuallymodeled as a non-symmetric partial order among elements. Im-
portant ideas in computer science such as normalization, bisimulation and fixed points
all expect the non-symmetric nature of computation. The study of patch theory [10]
also suggests non-symmetric higher-dimensional structures could be useful. While this
thesis is focusing on mechanization of mathematics, I do hope that higher-dimensional
types can find their applications in computer science as well.
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Chapter 2

Univalent Type Theory

Homotopy theory is an important part of algebraic topology, which studies topological
spaces up to homotopy equivalence. Intuitively, two spaces are homotopy equivalent, or of
the same homotopy type, if one space can deform to the other continuously. Although the
holy grail of topology is to classify all spaces up to the stricter homeomorphism, it turns
out that many interesting topological properties respect homotopy equivalence, and so
this coarser partition often suffices.

The book Homotopy Type Theory: Univalent Foundations for Mathematics [138] presents
a type theory that is capable of capturing homotopy-theoretic concepts. It drew many
ideas from different researches, among them the following two threads are the most
influential:

• Steve Awodey and Michael A. Warren gave a model of type theory in abstract ho-
motopy theory [16, 146]. Benno van den Berg and Richard Garner published a
paper addressing the coherence issue [21].

• Vladimir Voevodsky gave a model of type theory in the concrete homotopy theory
of simplicial sets and proposed the novel univalence axiom [139, 140] (also see [78]).

Collectively I summarize these models as the identification-as-path interpretation, sig-
nifying their treatment of higher-dimensional structures. These ideas, along with many
other considerations, lead to a univalent type theory (UniTT) with higher inductive types
(HIT), or UniTT+hit for short.1 UniTT is essentially a variant of the Martin-Löf type
theory plus the univalence axiom. Higher inductive types were invented at the Ober-
wolfach meeting in 2011 during the discussions between Andrej Bauer, Peter LeFanu
Lumsdaine, Michael Shulman and Michael A. Warren [95] and then further developed
by many people [138, note of chap. 6]. The following is a brief and incomplete introduc-
tion to UniTT+hit; a more comprehensive account can be found in the book Homotopy
Type Theory: Univalent Foundations for Mathematics [138].

1See remark 1.5.3 on page 8 for the reason why this is not called homotopy type theory.
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2.1 Martin-Löf Type Theory
Per Martin-Löf has published many different type theories, and the most relevant one
here is probably the paper [100] at 1975. The UniTT is morally the formal system in that
paper (as an ontological type theory) extended with a schema for inductive types and
a ramified hierarchy of cumulative universes. For the rest of this section, this particular
variant is referred to as the Martin-Löf type theory.

TheMartin-Löf type theory is a type theory aimed at serving as a foundation for con-
structive mathematics. It provides basic building blocks such as sum types (∑ types),
function types (∏ types), identification types, inductive types and universes; each cap-
tures a fundamental concept in mathematics and together they form a powerful lan-
guage. Here is a complete list of the available components:

Sum types A sum type ∑𝑥∶𝐴 𝐵(𝑥) is the union of a family of types 𝐵 indexed by another
type 𝐴. An element of the sum type∑𝑥∶𝐴 𝐵(𝑥) is a pair of the index 𝑎 of type 𝐴 and
an element of the type instance 𝐵(𝑎). The binary product type of two types 𝐴 and
𝐵, written 𝐴×𝐵, is defined to be the sum type∑ ∶𝐴 𝐵where 𝐵 does not depend on
𝐴.

Function types Again with a family of types 𝐵 indexed by a type 𝐴, an element of the
function type ∏𝑥∶𝐴 𝐵(𝑥) is a 𝜆-function 𝜆(𝑥∶𝐴).𝑏 sending an element 𝑎 of type 𝐴 to
the element 𝑏[𝑎/𝑥] of the corresponding type instance 𝐵(𝑎). The arrow type from
type 𝐴 to type 𝐵, written 𝐴 → 𝐵, is defined to be the function type ∏ ∶𝐴 𝐵 where
𝐵 does not depend on 𝐴.

The unit type The unit type 𝟙 with only one element unit.2

Identification types Given a type𝐴 and two elements 𝑎 and 𝑏 of type𝐴, an identification
type 𝑎 =𝐴 𝑏 collects identifications between elements 𝑎 and 𝑏.

Inductive types Inductive types represent inductively defined structures, which include
the empty type, binary coproduct types, natural numbers and many others. See
section 2.4 for more details.

Universes A universe is, informally, a special type of all types. A ramified hierarchy of
cumulative universesU􏷟,U􏷠, … is introduced to avoid Girard’s paradox [54, 73].

For brevity, the type 𝐴 in 𝜆-expressions 𝜆(𝑥∶𝐴).𝑏, identification types 𝑎 =𝐴 𝑏, sum types
∑

𝑥∶𝐴 𝐵(𝑥), function types ∏𝑥∶𝐴 𝐵(𝑥) may be omitted when clear from the context. How-
ever, the argument type may be additionally marked as 𝑓(𝑥∶𝐴) for clarity.

2If the unit typewere defined as an inductive type as described later in section 2.4, it would not validate
the (judgmental) uniqueness rule.
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Remark 2.1.1. A family of types indexed by type𝐴 in this thesis is defined to be a function
from 𝐴 to some universeU 𝑖, and thus the above description of function types is circular
and not a real definition. The description of sums also unnecessarily depends on the
concept of functions. See the formal rules below, which avoid such circularity.
Remark 2.1.2. Function types are also called dependent product typeswhere the arrow types
are called function types. I chose to avoid the word product because the sum types were
once called dependent product types (as a generalization of binary products) and this
has led to serious confusion. I cautiously limited the usage of theword dependent because
itsmeaningwas alsomuddled. The terminology in this thesis is still undesirable because
the word sum does not match the word function, but at least it is clear.

Given an ambient logical framework with substitutions and structural rules properly
set up, each type constructor (except universes) can be formalized using five kinds of
rules: type formation, introduction and elimination of elements of that type, computation of
matching introducers (constructors) and eliminators (also called 𝛽-rules), and sometimes
uniqueness of elements (also called 𝜂-rules). The ambient framework consists of three
forms of judgments with the following English reading:

• Γ ctx. The variable context Γ, a finite list of variables names and their types, is
valid in the sense that the type of every variable belongs to some universe with
respect to preceding variables (that is, the prefix of Γ before that variable).

• Γ ⊢ 𝑎 ∶ 𝐴. The context Γ is valid, and with respect to that context, the 𝐴 is a type in
some universeU 𝑖 and the element 𝑎 is of the type 𝐴.

• Γ ⊢ 𝑎 ≡ 𝑏 ∶ 𝐴. The context Γ is valid, and with respect to that context, the 𝐴 is a
type in some universeU 𝑖 in the context Γ, the elements 𝑎 and 𝑏 are of the type 𝐴,
and they are considered synonyms.

With these three forms of judgments, sum types ∑𝑥∶𝐴 𝐵, function types ∏𝑥∶𝐴 𝐵 and the
unit type 𝟙 can be formalized as figs. 2.1 to 2.3, respectively; other typeswill be discussed
in later sections. The point is that the entireMartin-Löf type theory can be defined using
rules.

2.2 Identification
Shown in fig. 2.4, identification types can be formalized in a similar fashion as sums,
functions and the unit (butwithout the uniqueness rule). As hinted in the previous chap-
ter, the presence of identification types immediately grants us certain kinds of higher-
dimensional types. Given any type 𝐴, the relation at the first dimension can be identi-
fication types 𝑎 =𝐴 𝑏 indexed by two elements 𝑎 and 𝑏, and the relation at the second
dimension can be identification types 𝑝 =𝑎=𝐴𝑏 𝑞 indexed by two identifications 𝑝 and 𝑞
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Γ ⊢ 𝐴 ∶U 𝑖 Γ, 𝑥∶𝐴 ⊢ 𝐵 ∶U 𝑖

Γ ⊢ ∑
𝑥∶𝐴 𝐵 ∶U 𝑖

∑-formation

Γ, 𝑥∶𝐴 ⊢ 𝐵 ∶U 𝑖 Γ ⊢ 𝑎 ∶ 𝐴 Γ ⊢ 𝑏 ∶ 𝐵[𝑎/𝑥]
Γ ⊢ ⟨𝑎; 𝑏⟩ ∶ ∑𝑥∶𝐴 𝐵

∑-introduction

Γ, 𝑧∶∑𝑥∶𝐴 𝐵 ⊢ 𝐶 ∶U 𝑖 Γ, 𝑥∶𝐴, 𝑦∶𝐵 ⊢ 𝑐 ∶ 𝐶[⟨𝑥; 𝑦⟩/𝑧] Γ ⊢ 𝑠 ∶ ∑𝑥∶𝐴 𝐵
Γ ⊢ elim∑[𝑧.𝐶](𝑥.𝑦.𝑐; 𝑠) ∶ 𝐶[𝑠/𝑥]

∑-elimination

Γ, 𝑧∶∑𝑥∶𝐴 𝐵 ⊢ 𝐶 ∶U 𝑖
Γ, 𝑥∶𝐴, 𝑦∶𝐵 ⊢ 𝑐 ∶ 𝐶[⟨𝑥; 𝑦⟩/𝑧] Γ ⊢ 𝑎 ∶ 𝐴 Γ ⊢ 𝑏 ∶ 𝐵[𝑎/𝑥]

Γ ⊢ elim∑[𝑧.𝐶](𝑥.𝑦.𝑐; ⟨𝑎; 𝑏⟩) ≡ 𝑐[𝑎, 𝑏/𝑥, 𝑦] ∶ 𝐶[⟨𝑎; 𝑏⟩/𝑧]
∑-computation

Γ ⊢ 𝑠 ∶ ∑𝑥∶𝐴 𝐵
Γ ⊢ 𝑠 ≡ ⟨fst𝐴;𝑥.𝐵(𝑠); snd𝐴𝑥.𝐵(𝑠)⟩ ∶ ∑𝑥∶𝐴 𝐵

∑-uniqueness

fst𝐴;𝑥.𝐵 ∶≡ 𝜆􏿴𝑠∶∑𝑥∶𝐴 𝐵􏿷.elim∑􏿮 .𝐴􏿱(𝑥. .𝑥; 𝑠)
snd𝐴;𝑥.𝐵 ∶≡ 𝜆􏿴𝑠∶∑𝑥∶𝐴 𝐵􏿷.elim∑􏿮𝑠.𝐵[fst𝐴;𝑥.𝐵(𝑠)/𝑥]􏿱( .𝑦.𝑦; 𝑠)

Figure 2.1: Rules of sum.

Γ ⊢ 𝐴 ∶U 𝑖 Γ, 𝑥∶𝐴 ⊢ 𝐵 ∶U 𝑖

Γ ⊢ ∏
𝑥∶𝐴 𝐵 ∶U 𝑖

∏-formation
Γ, 𝑥∶𝐴 ⊢ 𝑏 ∶ 𝐵

Γ ⊢ 𝜆(𝑥∶𝐴).𝑏 ∶ ∏𝑥∶𝐴 𝐵
∏-introduction

Γ ⊢ 𝑓∶∏𝑥∶𝐴 𝐵 Γ ⊢ 𝑎 ∶ 𝐴
Γ ⊢ 𝑓(𝑎) ∶ 𝐵[𝑎/𝑥]

∏-elimination

Γ, 𝑥∶𝐴 ⊢ 𝑏 ∶ 𝐵 Γ ⊢ 𝑎 ∶ 𝐴
Γ ⊢ (𝜆(𝑥∶𝐴).𝑏)(𝑎) ≡ 𝑏[𝑎/𝑥] ∶ 𝐵[𝑎/𝑥]

∏-computation

Γ ⊢ 𝑓 ∶ ∏𝑥∶𝐴 𝐵
Γ ⊢ 𝑓 ≡ (𝜆(𝑥∶𝐴).𝑓(𝑥)) ∶ ∏𝑥∶𝐴 𝐵

∏-uniqueness

Figure 2.2: Rules of I/O.
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Γ ctx

Γ ⊢ 𝟙 ∶U􏷟
𝟙-formation

Γ ctx

Γ ⊢ unit ∶ 𝟙
𝟙-introduction

Γ, 𝑥∶𝟙 ⊢ 𝐶 ∶U 𝑖 Γ ⊢ 𝑐 ∶ 𝐶[unit/𝑥] Γ ⊢ 𝑢 ∶ 𝟙
Γ ⊢ elim𝟙[𝑥.𝐶](𝑐; 𝑢) ∶ 𝐶[𝑢/𝑥]

𝟙-elimination

Γ, 𝑥∶𝟙 ⊢ 𝐶 ∶U 𝑖 Γ ⊢ 𝑐 ∶ 𝐶[unit/𝑥]
Γ ⊢ elim𝟙[𝑥.𝐶](𝑐; unit) ≡ 𝑐 ∶ 𝐶[unit/𝑥]

𝟙-computation

Γ ⊢ 𝑢 ∶ 𝟙
Γ ⊢ 𝑢 ≡ unit ∶ 𝟙

𝟙-uniqueness

Figure 2.3: Rules of being alone.

Γ ⊢ 𝐴 ∶U 𝑖 Γ ⊢ 𝑎 ∶ 𝐴 Γ ⊢ 𝑏 ∶ 𝐴
Γ ⊢ 𝑎 =𝐴 𝑏 ∶U 𝑖

=-formation

Γ ⊢ 𝑎 ∶ 𝐴
Γ ⊢ refl𝑎 ∶ 𝑎 =𝐴 𝑎

=-introduction

Γ, 𝑥∶𝐴, 𝑦∶𝐴, 𝑧∶(𝑥=𝑦) ⊢ 𝐶 ∶U 𝑖 Γ, 𝑥∶𝐴 ⊢ 𝑐 ∶ 𝐶[𝑥, 𝑥, refl𝑥/𝑥, 𝑦, 𝑧]
Γ ⊢ 𝑎 ∶ 𝐴 Γ ⊢ 𝑏 ∶ 𝐴 Γ ⊢ 𝑝 ∶ 𝑎 =𝐴 𝑏

Γ ⊢ elim=[𝑥.𝑦.𝑧.𝐶](𝑥.𝑐; 𝑎; 𝑏; 𝑝) ∶ 𝐶[𝑎, 𝑏, 𝑝/𝑥, 𝑦, 𝑧]
=-elimination

Γ, 𝑥∶𝐴, 𝑦∶𝐴, 𝑧∶(𝑥=𝑦) ⊢ 𝐶 ∶U 𝑖
Γ, 𝑥∶𝐴 ⊢ 𝑐 ∶ 𝐶[𝑥, 𝑥, refl𝑥/𝑥, 𝑦, 𝑧] Γ ⊢ 𝑎 ∶ 𝐴

Γ ⊢ elim=[𝑥.𝑦.𝑧.𝐶](𝑥.𝑐; 𝑎; 𝑎; refl𝑎) ≡ 𝑐[𝑎/𝑥] ∶ 𝐶[𝑎, 𝑎, refl𝑎/𝑥, 𝑦, 𝑧]
=-computation

Figure 2.4: Rules of identification.
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identifying the same two elements 𝑎 and 𝑏, and so on. See the work [20, 94] by Benno van
den Berg, Richard Garner and Peter LeFanu Lumsdaine for more discussions about the
structures formed by identification types. Also see remark 1.6.1 on page 9 for Alexander
Grothendieck’s insight. In retrospect, the identification-as-path interpretation relate the
following three concepts:

1. higher-dimensional structures, and

2. iterated identification types, and

3. (homotopy classes of) paths and homotopies in homotopy theory.

In other words, types are understood as spaces, elements of a type as points in a space,
identifications as paths in a space, identifications of identifications as paths between
paths (path homotopies), functions as continuous maps, families of types as fibrations,
and so on.3 To see functions of type𝐴 → 𝐵 indeed carry over all the higher-dimensional
structures in the domain 𝐴, preserving all identifications in 𝐴, one can define the appli-
cation to identification ap𝑓(𝑝) for any function 𝑓 ∶ 𝐴 → 𝐵 and any identification 𝑝 ∶ 𝑎 =𝐴 𝑏:

ap𝑓(𝑝) ∶≡ elim=􏿮𝑥.𝑦. .𝑓(𝑥) =𝐵 𝑓(𝑦)􏿱(𝑥.refl𝑓(𝑥); 𝑎; 𝑏; 𝑝), (2.1)

which witnesses the identification in the image. The correspondence between type the-
ory and homotopy theory will be further explored in chapter 3.

Note that the elimination rule in fig. 2.4 indicates that it is sufficient to prove the
reflexivity case despite all possible non-trivial identifications! The intuition is that, in
the first premise of the elimination rule

Γ, 𝑥∶𝐴, 𝑦∶𝐴, 𝑧∶(𝑥=𝑦) ⊢ 𝐶 ∶U 𝑖

two end points of the identification, 𝑥 and 𝑦, are “free” and thus the identification 𝑧
can be continuous shrunk to reflexivity. In other words, proofs for the reflexivity case
can be continuously extended to cover all possible identifications. In general, we need
at least one free end point for this extension argument to apply. Indeed, there are two
equivalent eliminators for identification with either one end fixed (without showing the
accompanying computation rules) [138, §1.12.1]:

Γ ⊢ 𝑎 ∶ 𝐴 Γ, 𝑥∶𝐴, 𝑦∶(𝑎=𝑥) ⊢ 𝐶 ∶U 𝑖
Γ ⊢ 𝑐 ∶ 𝐶[𝑎, refl𝑎/𝑥, 𝑦] Γ ⊢ 𝑏 ∶ 𝐴 Γ ⊢ 𝑝 ∶ 𝑎 =𝐴 𝑏

Γ ⊢ elim𝑎=[𝑥.𝑦.𝐶](𝑐; 𝑏; 𝑝) ∶ 𝐶[𝑏, 𝑝/𝑥, 𝑦]
=-elimination (left end fixed)

Γ ⊢ 𝑎 ∶ 𝐴 Γ, 𝑥∶𝐴, 𝑦∶(𝑥=𝑎) ⊢ 𝐶 ∶U 𝑖
Γ ⊢ 𝑐 ∶ 𝐶[𝑎, refl𝑎/𝑥, 𝑦] Γ ⊢ 𝑏 ∶ 𝐴 Γ ⊢ 𝑝 ∶ 𝑏 =𝐴 𝑎

Γ ⊢ elim=𝑎[𝑥.𝑦.𝐶](𝑐; 𝑏; 𝑝) ∶ 𝐶[𝑏, 𝑝/𝑥, 𝑦]
=-elimination (right end fixed)

3Again, the terminology borrowed from topology should be understood as homotopy classes of such
mathematical objects.
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Γ ⊢ 𝐴 ∶U 𝑖 Γ ⊢ 𝑎 ∶ 𝐴 Γ ⊢ 𝑏 ∶ 𝐴
Γ ⊢ Eq𝐴(𝑎; 𝑏) ∶U 𝑖

Eq-formation

Γ ⊢ 𝑎 ∶ 𝐴
Γ ⊢ ⟨⟩ ∶ Eq𝐴(𝑎; 𝑎)

Eq-introduction
Γ ⊢ 𝑝 ∶ Eq𝐴(𝑎; 𝑏)
Γ ⊢ 𝑎 ≡ 𝑏 ∶ 𝐴

Eq-elimination

Γ ⊢ 𝑝 ∶ Eq𝐴(𝑎; 𝑏)
Γ ⊢ 𝑝 ≡ ⟨⟩ ∶ Eq𝐴(𝑎; 𝑏)

Eq-uniqueness

Figure 2.5: Rules of internalized equality.

These forms, called based identification eliminators, are commonly attributed to Christine
Paulin-Mohring [111]. Due to their equivalences I might not distinguish them from the
original eliminator during a complex proof in later chapters. Soonwewill see yet another
elimination rule for identification types that does not validate such extension and in fact
kill all non-trivial higher-dimensional structures.

2.2.1 Equality Types

Another similar-looking type constructor, equality types, was frequently compared to
identification types, but they are nonetheless fundamentally different. Equality types,
unlike the identification types, were justified by the meaning explanation, and the com-
parison on formal presentations could be out of context.

In any case, equality types internalize judgmental equality as types, denoting the
sameness in meaning (as synonyms) that may be used in arbitrary substitution. There-
fore, a piece of evidence of such type can and should be reflected as a judgmental equal-
ity, and its content is and should always be trivial. Identification proofs, on the other
hand, may be non-trivial and there can be more than one identification between two ele-
ments. Technically, one could base higher-dimensional structures upon equality types,
but the entire hierarchy would become trivial.

Internalized equality may be formalized as rules in fig. 2.5, with notable omission of
the computation rule; the omission is due to the judgmental equality in the elimination
rule not depending on the (trivial) proof of the equality type, and it being senseless even
to try to talk about equality between two judgments.

It can be shown that if all the formal rules of internalized equality and identification
in figs. 2.4 and 2.5 are naïvely placed into the same type theory, then the two notions
collapse. That is, identification can also be reflected as judgmental equality. To see this,
consider the following function of type (𝑥 =𝐴 𝑦) → Eq𝐴(𝑥; 𝑦), which turns identification
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into internalized equality:

𝜆(𝑝∶𝑥=𝑦).elim𝑥=􏿮𝑦. .Eq𝐴(𝑥; 𝑦)􏿱(⟨⟩; 𝑦; 𝑝).

Combined with the elimination rule of the equality type in fig. 2.5, any identification
proof can then be reflected as a judgmental equality. I believe this collapse should be
viewed as a symptom of the deeper problem that the meaning explanation, where equal-
ity types emerged andwhere formal rules are secondary, is philosophically incompatible
with various mathematical interpretations of a type theory with non-trivial identifica-
tion (presented in the above form). In other words, the meanings of these two types are
different but they happen to have similar formal presentations. Having separate layers
with distinct interpretations of types, like [141] by Vladimir Voevodsky, is one way to
mitigate the conflict.

2.3 Univalence Principle
The name univalence, according to Vladimir Voevodsky [144], came from 1. the Russian
translation of faithful functor—унивалентныйфунктор (in its normative case)—which can
be transliterated as univalentnyj funktor,4 and 2. the wordplay of universal without versal,
referring to the supposed universal property, which consists of existence and unique-
ness, without the existence part when modeling universes by fibrations. Therefore, I be-
lieve the intention is to have a faithful viewpoint on mathematics through foundations
honoring some uniqueness principle in the universe.

Technically speaking, the uniqueness principle says that equivalent things should be
identified. This principle can be traced back to the universe extension for the groupoid
model constructed by Martin Hofmann and Thomas Streicher [67]. The current form
for the identification-as-path interpretation originates from Vladimir Voevodsky et al.’s
work on simplicial sets [78, 139, 140]. The principle, manifested as an extra axiom, asserts
that type identification in a universe is equivalent to equivalence between types.5 This
principle recognizes new instances of identification between two types in the universe
that cannot be derived from the formal rules in fig. 2.4, and has profound implications
in type theory as described below.

Before higher-dimensional structures gained wide appreciation, there was a time
where the uniqueness of identification proofs (UIP) remained open, and Thomas Stre-
icher [132] had proposed an additional rule for identification types—K, which is equiv-
alent to the UIP.6 Following our notation, the rule and its accompanying computation

4This transliteration follows the standards ISO 9:1995 [75] and GOST 7.79 System A [151]. There are
other systems such as the scientific transliteration but the differences can be ignored here.

5More precisely, it asserts the canonical function from type identification to type equivalence is itself
an equivalence. See section 2.3.2.

6I assume the rule K was named after the original elimination rule, which was named J.
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rule can be presented as follows:

Γ, 𝑥∶𝐴, 𝑦∶(𝑥=𝑥) ⊢ 𝐶 ∶U 𝑖
Γ, 𝑥∶𝐴 ⊢ 𝑐 ∶ 𝐶[𝑥, refl𝑥/𝑥, 𝑦] Γ ⊢ 𝑎 ∶ 𝐴 Γ ⊢ 𝑝 ∶ 𝑎 =𝐴 𝑎

Γ ⊢ K[𝑥.𝑦.𝐶](𝑥.𝑦.𝑐; 𝑎; 𝑝) ∶ 𝐶[𝑎, 𝑝/𝑥, 𝑦]
=-elimination (K)

Γ, 𝑥∶𝐴, 𝑦∶(𝑥=𝑥) ⊢ 𝐶 ∶U 𝑖 Γ, 𝑥∶𝐴 ⊢ 𝑐 ∶ 𝐶[𝑥, refl𝑥/𝑥, 𝑦] Γ ⊢ 𝑎 ∶ 𝐴
Γ ⊢ K[𝑥.𝑦.𝐶](𝑥.𝑦.𝑐; 𝑎; refl𝑎) ≡ 𝑐[𝑎/𝑥] ∶ 𝐶[𝑎, 𝑝/𝑥, 𝑦]

=-computation (K)

Notice how the first premise of the elimination rule

Γ, 𝑥∶𝐴, 𝑦∶(𝑥=𝑥) ⊢ 𝐶 ∶U 𝑖

locks up two ends of 𝑦 and thus does not enjoy the identification extension argument on
page 16 as the original elimination rule does.

The groupoidmodel later constructed byMartinHofmann andThomas Streicher [67]
showed that the UIP and the new rule are not provable, answering the open problem.
The univalence axiom refutes the UIP because the newly recognized instances of iden-
tification in the universe are not unique between types. A quick example is to observe
that there are two provably distinct equivalences between Booleans (the identity func-
tion and the negation function) and hence two provably distinct identification proofs
between the Boolean type by the univalence principle.

For the same reason the univalence axiom refutes the law of excluded middle (LEM)
in full generality, that is, for any type we know either it is inhabited or any element of it
leads to contradiction:

LEM ∶ 􏾟
𝐴∶U𝑖

𝐴 + (𝐴 → 𝟘).

(See section 2.4 for coproduct types𝐴+𝐵 and the empty type 𝟘.) The reason is that such
LEM precludes non-trivial higher-dimensional structures [66] and thus contradicts with
the rich structures postulated by the univalence axiom. Nonetheless, a limited version
of the LEM may be safely introduced [138, §3.4].

Somewhat surprisingly, the univalence axiom also implies functional extensionality
and a proof may be found in [138, §4.9].

The exact formulation of the univalence principle in UniTT is quite involved, as we
have to define equivalence before stating that equivalence is equivalent to identification
between types. The remainder of this section will give a precise formulation of equiva-
lence and then the univalence axiom, the last rule in fig. 2.6.

2.3.1 Equivalence in stuvac
Informally, an equivalence between two types𝐴 and 𝐵 is a function admitting an inverse
function; that is, it should contain the following four components:
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Γ ctx

Γ ⊢U 𝑖 ∶U 𝑖+􏷠
U -introduction

Γ ⊢ 𝐴 ∶U 𝑖

Γ ⊢ 𝐴 ∶U 𝑖+􏷠
U -cumulation

Γ ⊢ 𝐴 ∶U 𝑖 Γ ⊢ 𝐵 ∶U 𝑖

Γ ⊢ univalence𝑖(𝐴; 𝐵) ∶ is-equiv􏿴𝜆(𝑝∶𝐴=U𝑖𝐵).coerce-equiv(𝑝)􏿷
U -univalence

Figure 2.6: Rules of a faithful матрёшка doll with infinite layers.

1. a function 𝑓 of type 𝐴 → 𝐵, and

2. its supposed inverse function 𝑔 of type 𝐵 → 𝐴, and

3. a proof 𝛼 of type ∏𝑎∶𝐴 𝑔(𝑓(𝑎)) =𝐴 𝑎 showing that 𝑔 is a left inverse of 𝑓, and

4. a proof 𝛽 of type ∏𝑏∶𝐵 𝑓(𝑔(𝑏)) =𝐵 𝑏 showing that 𝑔 is a right inverse of 𝑓.

This seems to suggest the following (undesirable) definition of equivalence types:

𝐴 ≃′ 𝐵 ∶≡ 􏾜
𝑓∶𝐴→𝐵

is-equiv′(𝑓)

is-equiv′􏿴𝑓∶𝐴→𝐵􏿷 ∶≡ 􏾜
𝑔∶𝐵→𝐴

􏿶􏿵􏾟
𝑎∶𝐴

𝑔(𝑓(𝑎)) =𝐴 𝑎􏿸 × 􏿵􏾟
𝑏∶𝐵

𝑓(𝑔(𝑏)) =𝐵 𝑏􏿸􏿹.

Unfortunately, this definition works poorly because there could be different equivalence
proofs of 𝐴 ≃′ 𝐵 for the same function 𝑓 ∶ 𝐴 → 𝐵. Ideally, we wish to define 𝐴 ≃ 𝐵 such
that there is at most one choice of 𝑔, 𝛼 and 𝛽 for the same 𝑓; in other words, being an
equivalence should be a mathematical property that carries no additional data beyond
its existence. One way to achieve this is to demand that 𝛼 and 𝛽 are coherent in the sense
that the following two ways to identify 𝑓(𝑔(𝑓(𝑎))) and 𝑓(𝑎),

ap𝑓(𝛼(𝑎)) ∶ 𝑓(𝑔(𝑓(𝑎))) =𝐵 𝑓(𝑎)

𝛽(𝑓(𝑎)) ∶ 𝑓(𝑔(𝑓(𝑎))) =𝐵 𝑓(𝑎)

are themselves identified; more precisely, we demand an additional proof 𝜖 of type

􏾟
𝑎∶𝐴

ap𝑓(𝛼(𝑎)) =𝑓(𝑔(𝑓(𝑎)))=𝐵𝑓(𝑎) 𝛽(𝑓(𝑎))

demonstrating that 𝛼 and 𝛽 are coherent. It can be proved that there is a unique choice
of 𝑔, 𝛼, 𝛽 and 𝜖 for each function 𝑓 up to identification. Putting these together, here is one
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working definition of equivalence:
𝐴 ≃ 𝐵 ∶≡ 􏾜

𝑓∶𝐴→𝐵
is-equiv(𝑓)

is-equiv􏿴𝑓∶𝐴→𝐵􏿷 ∶≡ 􏾜
(𝑔∶𝐵→𝐴)

􏾜
(𝛼∶∏𝑎 𝑔(𝑓(𝑎))=𝑎)

􏾜
(𝛽∶∏𝑏 𝑓(𝑔(𝑏))=𝑏)

􏾟
𝑎∶𝐴

ap𝑓(𝛼(𝑎)) = 𝛽(𝑓(𝑎)).

This definition is called half adjoint equivalence because the coherence condition is one of
the two adjunction conditions; see [138, chap. 4] for other good definitions of equiva-
lence.
Remark 2.3.1. Even though is-equiv′(𝑓) is not a good definition of equivalence, it rep-
resents the standard recipe of establishing an equivalence: given any 𝑔, 𝛼 and 𝛽 that
may violate the coherence condition, it is possible to tweak only 𝛼 or only 𝛽 to satisfy
the coherence condition. In practice, we rarely care about the value of 𝛼 or 𝛽, and such
repairing is handled by some lemma or some library code.
Remark 2.3.2. A curious fact is that if we explicitly added the other adjunction condition

𝜂 ∶ 􏾟
𝑏∶𝐵

ap𝑔(𝛽(𝑏)) =𝑔(𝑓(𝑔(𝑏)))=𝐴𝑔(𝑎) 𝛼(𝑔(𝑏))

as the sixth component of equivalence, thenwewould have toworry about the coherence
between these two coherence conditions themselves; it seems odd numbers of coherence
conditions give rise to the right definitions. This observation has been circulated during
the Institute for Advanced Study special year.

2.3.2 Univalence Axiom
The univalence principle, manifested as an axiom, asserts equivalence between equiv-
alence and identification. Note that there is already a canonical function from identi-
fication to equivalence; more precisely, there is a coercion function between any two
identified types,

coerce􏿴𝑝∶𝐴=U𝑖𝐵􏿷 ∶ 𝐴 → 𝐵
coerce􏿴𝑝∶𝐴=U𝑖𝐵􏿷 ∶≡ elim𝐴=[𝑥. .𝐴 → 𝑥](𝜆(𝑦∶𝐴).𝑦; 𝐵; 𝑝)

which can be shown to be an equivalence by considering the reflexivity case:

coerce-equiv􏿴𝑝∶𝐴=U𝑖𝐵􏿷 ∶ 𝐴 ≃ 𝐵
coerce-equiv􏿴𝑝∶𝐴=U𝑖𝐵􏿷 ∶≡ 􏾉coerce(𝑝);

elim𝐴=[𝑥.𝑦.is-equiv(coerce(𝑦))](idf-is-equiv(𝐴); 𝐵; 𝑝)􏽼

idf-is-equiv􏿴𝐴∶U 𝑖􏿷 ∶ is-equiv(𝜆(𝑥∶𝐴).𝑥)

idf-is-equiv􏿴𝐴∶U 𝑖􏿷 ∶≡ 􏾋𝜆𝑥.𝑥; 􏾊𝜆𝑥.refl𝑥; 􏾉𝜆𝑥.refl𝑥; 𝜆𝑥.reflrefl𝑥􏽼􏽽􏽾.
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The univalence axiom then states that the function coerce-equiv ∶ (𝐴 = 𝐵) → 𝐴 ≃ 𝐵 is
itself an equivalence for any types 𝐴 and 𝐵 inU 𝑖:

Γ ⊢ 𝐴 ∶U 𝑖 Γ ⊢ 𝐵 ∶U 𝑖

Γ ⊢ univalence𝑖(𝐴; 𝐵) ∶ is-equiv􏿴𝜆(𝑝∶𝐴=U𝑖𝐵).coerce-equiv(𝑝)􏿷
U -univalence

.

Practically, the most used part of the axiom is the inverse function of coerce-equiv,
which recognizes equivalence as identification, and the application of this inverse func-
tion is commonly noted as “by the univalence axiom”. However, it should be clear now
that the univalence axiommeansmore than the existence of a function from equivalence
to identification.

2.4 Inductive Types
An inductive type categorizes inductively defined structures generated by a finite collec-
tion of constructors and it admits inductive reasoning. For example, coproduct types
𝐴 + 𝐵 are freely generated by the two injections from 𝐴 and 𝐵, the empty type is gen-
erated by no constructors, and the type of natural numbers is generated by the “zero”
and “successor” constructors; Booleans, finite lists andmany others are also examples of
inductive types, and they undoubtedly play an important role in mathematics. Proving
theorems about these types involves case analysis on their generators, which is called
induction. Each inductive type can also be formalized in the same way as we did for
sum types, function types, the unit type and identification types in figs. 2.1 to 2.4; as
examples, the rules of coproduct types, the empty type and the natural number type are
shown in figs. 2.7 to 2.9.

The rules of the empty type in fig. 2.8 are somewhat degenerate because there are
no introduction rules and thus no computation rules. On the other hand, the presen-
tation of natural numbers in fig. 2.9 is vastly more complicated due to their recursive
nature: To prove a theorem about natural numbers (that is, using the eliminator of ℕ),
one considers the zero (zero) case and the successor (succ) case, for every natural num-
ber must be generated by either zero or succ. This is commonly known as mathematical
induction. Moreover, in the case of succ, we shall be able to access the proof for the
predecessor, and thus the eliminator has to recur, as shown in the computation rule
for succ in fig. 2.9. Due to this the eliminator of an inductive type such as ℕ, written
elimℕ[𝑥.𝐶](𝑐zero; 𝑥.𝑦.𝑐succ; 𝑛), is sometimes called a recursor. It is the recursive nature of
succ that adds complexity to these formal rules.

A general schema for inductive types and their extensions has been extensively stud-
ied [18, 43, 47, 49, 99, 108, 111] but is out of the scope of this short introduction. The
key point to remember is that almost all imaginable inductive structures can be defined
following the same pattern of the rules of natural numbers.
Remark 2.4.1. A common misconception is that theW -type [102], which represents well-
founded trees, can encode and thus replace these inductive types. It is only a half-truth:
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Γ ⊢ 𝐴 ∶U Γ ⊢ 𝐵 ∶U
Γ ⊢ 𝐴 + 𝐵 ∶U

+-formation
Γ ⊢ 𝐵 ∶U Γ ⊢ 𝑎 ∶ 𝐴

Γ ⊢ inl(𝑎) ∶ 𝐴 + 𝐵
+-introduction (inl)

Γ ⊢ 𝐴 ∶U Γ ⊢ 𝑏 ∶ 𝐵
Γ ⊢ inr(𝑏) ∶ 𝐴 + 𝐵

+-introduction (inr)

Γ, 𝑥∶𝐴+𝐵 ⊢ 𝐷 ∶U Γ, 𝑥∶𝐴 ⊢ 𝑑inl ∶ 𝐷[inl(𝑥)/𝑥]
Γ, 𝑥∶𝐵 ⊢ 𝑑inr ∶ 𝐷[inr(𝑥)/𝑥] Γ ⊢ 𝑐 ∶ 𝐴 + 𝐵
Γ ⊢ elim+[𝑥.𝐷](𝑥.𝑑inl; 𝑥.𝑑inr; 𝑐) ∶ 𝐷[𝑐/𝑥]

+-elimination

Γ, 𝑥∶𝐴+𝐵 ⊢ 𝐷 ∶U Γ, 𝑥∶𝐴 ⊢ 𝑑inl ∶ 𝐷[inl(𝑥)/𝑥]
Γ, 𝑥∶𝐵 ⊢ 𝑑inr ∶ 𝐷[inr(𝑥)/𝑥] Γ ⊢ 𝑎 ∶ 𝐴

Γ ⊢ elim+[𝑥.𝐷](𝑥.𝑑inl; 𝑥.𝑑inr; inl(𝑎)) ≡ 𝑑inl[𝑎/𝑥] ∶ 𝐷[inl(𝑎)/𝑥]
+-computation (inl)

Γ, 𝑥∶𝐴+𝐵 ⊢ 𝐷 ∶U Γ, 𝑥∶𝐴 ⊢ 𝑑inl ∶ 𝐷[inl(𝑥)/𝑥]
Γ, 𝑥∶𝐵 ⊢ 𝑑inr ∶ 𝐷[inr(𝑥)/𝑥] Γ ⊢ 𝑏 ∶ 𝐵

Γ ⊢ elim+[𝑥.𝐷](𝑥.𝑑inl; 𝑥.𝑑inr; inr(𝑏)) ≡ 𝑑inr[𝑏/𝑥] ∶ 𝐷[inr(𝑏)/𝑥]
+-computation (inr)

Figure 2.7: Rules of being constructive or non-constructive.

Γ ctx

Γ ⊢ 𝟘 ∶U􏷟
𝟘-formation

Γ, 𝑥∶𝟘 ⊢ 𝐶 ∶U 𝑖 Γ ⊢ 𝑒 ∶ 𝟘
Γ ⊢ elim𝟘[𝑥.𝐶](𝑒) ∶ 𝐶[𝑒/𝑥]

𝟘-elimination

Figure 2.8: There are zero rules.
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Γ ctx

Γ ⊢ ℕ ∶U􏷟
ℕ-formation

Γ ctx

Γ ⊢ zero ∶ ℕ
ℕ-introduction (zero)

Γ ⊢ 𝑛 ∶ ℕ
Γ ⊢ succ(𝑛) ∶ ℕ

ℕ-introduction (succ)

Γ, 𝑥∶ℕ ⊢ 𝐶 ∶U 𝑖
Γ ⊢ 𝑐zero ∶ 𝐶[zero/𝑥] Γ, 𝑥∶ℕ, 𝑦∶𝐶 ⊢ 𝑐succ ∶ 𝐶[succ(𝑥)/𝑥] Γ ⊢ 𝑛 ∶ ℕ

Γ ⊢ elimℕ[𝑥.𝐶](𝑐zero; 𝑥.𝑦.𝑐succ; 𝑛) ∶ 𝐶[𝑛/𝑥]
ℕ-elimination

Γ, 𝑥∶ℕ ⊢ 𝐶 ∶U 𝑖
Γ ⊢ 𝑐zero ∶ 𝐶[zero/𝑥] Γ, 𝑥∶ℕ, 𝑦∶𝐶 ⊢ 𝑐succ ∶ 𝐶[succ(𝑥)/𝑥]
Γ ⊢ elimℕ[𝑥.𝐶](𝑐zero; 𝑥.𝑦.𝑐succ; zero) ≡ 𝑐zero ∶ 𝐶[zero/𝑥]

ℕ-computation (zero)

Γ, 𝑥∶ℕ ⊢ 𝐶 ∶U 𝑖 Γ ⊢ 𝑐zero ∶ 𝐶[zero/𝑥]
Γ, 𝑥∶ℕ, 𝑦∶𝐶 ⊢ 𝑐succ ∶ 𝐶[succ(𝑥)/𝑥] Γ ⊢ 𝑛 ∶ ℕ

Γ ⊢ elimℕ[𝑥.𝐶](𝑐zero; 𝑥.𝑦.𝑐succ; succ(𝑛))
≡ 𝑐succ[𝑛, elimℕ[𝑥.𝐶](𝑐zero; 𝑥.𝑦.𝑐succ; 𝑛)/𝑥, 𝑦] ∶ 𝐶[succ(𝑛)/𝑥]

ℕ-computation (succ)

Figure 2.9: Rules of betrayal of revisionism.
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in the Martin-Löf type theory we consider, the encodings of inductive types inW -type
would not validate all judgmental equality rules we expect from the general schema, not
even for natural numbers. See [14, 48, 97, 129] for more discussions.

2.5 Higher Inductive Types
One limitation of inductive types is that they only have trivial higher-dimensional struc-
tures; with the identification-as-path interpretation, it is natural to ask how to present
in type theory some basic spaces with non-trivial higher-dimensional structures from
homotopy theory. Higher inductive types are one promising answer.

An (ordinary) inductive type, as discussed in section 2.4, is a type defined by element
generators. For example, the two generators of natural numbers, zero and succ, all work
on elements. Higher inductive types generalize ordinary inductive types by allowing not
only element generators but also generators for identification between elements, identifi-
cation between identification proofs, or more iterated identification. In other words, we
may stipulate generators for the stacked relations of the higher-dimensional types being
defined. The simplest example is the circle (𝕊􏷠), which can be characterized by a point
and a loop illustrated in this diagram:

base

loop

The base is an element generator and the loop is a generator for the identification be-
tween base and itself. We can also formalize such a higher inductive type as rules, but
only after defining the following two pieces of apparatus: identification over an identifica-
tion and dependent application to identification. Identification over an identification is for
the elimination rule, and dependent application is for the computation rules.

Identification over an identification [89]. Imagine a higher inductive type 𝑋 with two
element generators 𝑎 and 𝑏 and an identification generator 𝑝 of type 𝑎 =𝑋 𝑏, and we are
interested in some theorem 𝐶 about 𝑋, which is formally a family of types indexed by
the higher inductive type 𝑋.

𝑎

𝑏
𝑝

𝑐𝑎

𝑐𝑏
𝑐𝑝

𝑋 𝐶

Following the schema for inductive types, if we wish to prove the theorem 𝐶, the inputs
to the supposed eliminator elim𝑋[𝑥.𝐶(𝑥)](𝑐𝑎; 𝑐𝑏; 𝑐𝑝; 𝑥) should include these three compo-
nents:
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1. 𝑐𝑎 of type 𝐶(𝑎) for the generator 𝑎, and

2. 𝑐𝑏 of type 𝐶(𝑏) for the generator 𝑏, and

3. 𝑐𝑝 of type ?? for the generator 𝑝.

What should be the type of 𝑐𝑝? The element 𝑐𝑝 functions as a heterogeneous identification
between 𝑐𝑎 and 𝑐𝑏 of different types, and thus what we are looking for is an identifica-
tion type between 𝑐𝑎 and 𝑐𝑏 over the base identification 𝑝. This can actually be defined by
applying the identification eliminator to 𝑝; the key observation is that the heterogeneous
identification reduces to an ordinary one when the base identification 𝑝 is reflexivity.
Formally, let us write 𝛼 =𝑥.𝐵

𝛾 𝛽 as the heterogeneous identification type between 𝛼 of
type 𝐵[𝑢/𝑎] and 𝛽 of type 𝐵[𝑣/𝑥] across the family 𝜆(𝑥∶𝐴).𝐵 over the base identification 𝛾
of type 𝑢 =𝐴 𝑣; the type can be defined as follows:

𝛼 =𝑥.𝐵
𝛾 𝛽 ∶≡ elim𝑢=[𝑥. .𝐵 →U 𝑖](𝜆𝛽.(𝛼 =𝐵[𝑢/𝑥] 𝛽); 𝑣; 𝛾)(𝛽)

which states that the type reduces to an ordinary identification typewhen 𝛾 is reflexivity.
Now we can say the type of the input 𝑐𝑝 should be 𝑐𝑎 =𝑥.𝐶(𝑥)

𝑝 𝑐𝑏. See [89] for further
generalizations of this idea to higher dimensions.

Dependent application to identification. Once the eliminator is defined with identifi-
cation over an identification, the next step is to specify its accompanying computation
rules for all generators. The value of the eliminator of an element generator can be sim-
ply referred to as function application, but that of an identification generator demands
some operator to make reference to its functorial behavior. Here I write apd𝑓(𝑝) as the
result of one-dimensional application of 𝑓 ∶ ∏𝑥∶𝐴 𝐵 to the base identification 𝑝 of type
𝑎 =𝐴 𝑏, which will be of type 𝑓(𝑎) =𝑥.𝐵

𝑝 𝑓(𝑏). Following the above example about proving
the theorem 𝐶 of the higher inductive type 𝑋, we wish for the following rule:

Γ ⊢ apd𝜆𝑥.elim𝑋 [𝑥.𝐶(𝑥)](𝑐𝑎;𝑐𝑏;𝑐𝑝;𝑥)
(𝑝) ≡ 𝑐𝑝 ∶ 𝑐𝑎 =

𝑥.𝐶(𝑥)
𝑝 𝑐𝑏.

It is actually unclear whether this judgmental equality rule should be included due to
theoretical and practical concerns. In any case, before continuing the discussion I should
finish the definition of the operator apd:

apd𝑓(𝑝) ∶≡ elim𝑎=[𝑥.𝑦.𝑓(𝑎) =𝑥.𝐵
𝑦 𝑓(𝑥)](refl𝑓(𝑎); 𝑏; 𝑝).

With heterogeneous identification and dependent application at hand, we are ready
to formalize the circle as rules in fig. 2.10. Note that the computation rule for loop, unlike
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Γ ctx

Γ ⊢ 𝕊􏷠 ∶U􏷟
𝕊􏷠-formation

Γ ctx

Γ ⊢ base ∶ 𝕊􏷠
𝕊􏷠-introduction (base)

Γ ctx

Γ ⊢ loop ∶ base =𝕊􏷪 base
𝕊􏷠-introduction (loop)

Γ, 𝑥∶𝕊􏷠 ⊢ 𝐶 ∶U 𝑖
Γ ⊢ 𝑐base ∶ 𝐶[base/𝑥] Γ ⊢ 𝑐loop ∶ 𝑐base =𝑥.𝐶

loop 𝑐base Γ ⊢ 𝑠 ∶ 𝕊􏷠

Γ ⊢ elim𝕊􏷪[𝑥.𝐶](𝑐base; 𝑐loop; 𝑠) ∶ 𝐶[𝑠/𝑥]
𝕊􏷠-elimination

Γ, 𝑥∶𝕊􏷠 ⊢ 𝐶 ∶U 𝑖
Γ ⊢ 𝑐base ∶ 𝐶[base/𝑥] Γ ⊢ 𝑐loop ∶ 𝑐base =𝑥.𝐶

loop 𝑐base
Γ ⊢ elim𝕊􏷪[𝑥.𝐶](𝑐base; 𝑐loop; base) ≡ 𝑐base ∶ 𝐶[base/𝑥]

𝕊􏷠-computation (base)

Γ, 𝑥∶𝕊􏷠 ⊢ 𝐶 ∶U 𝑖
Γ ⊢ 𝑐base ∶ 𝐶[base/𝑥] Γ ⊢ 𝑐loop ∶ 𝑐base =𝑥.𝐶

loop 𝑐base
Γ ⊢ loop𝛽 ∶ apd𝜆𝑥.elim 𝕊􏷪 [𝑥.𝐶](𝑐base;𝑐loop;𝑥)

(loop) =𝑐base=𝑥.𝐶loop𝑐base
𝑐loop

𝕊􏷠-computation (loop)

Figure 2.10: Rules of 360 degrees.
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the one for base, is stated as identification instead of judgmental equality due to various
(temporary) concerns. The version with judgmental equality would be the following:

Γ, 𝑥∶𝕊􏷠 ⊢ 𝐶 ∶U 𝑖
Γ ⊢ 𝑐base ∶ 𝐶[base/𝑥] Γ ⊢ 𝑐loop ∶ 𝑐base =𝑥.𝐶

loop 𝑐base
Γ ⊢ apd𝜆𝑥.elim 𝕊􏷪 [𝑥.𝐶](𝑐base;𝑐loop;𝑥)

(loop) ≡ 𝑐loop ∶ 𝑐base =𝑥.𝐶
loop 𝑐base

𝕊􏷠-computation (loop)

One theoretical concern is that there are actually many ways to define heterogeneous
identification and apd, and there was no good reason for computation rules to favor
particular definitions. However, progress in modeling higher inductive types such as
[96] may eventually remove these doubts. Another practical concern is that no popular
proof assistants (notably Agda and Coq) were able to support such judgmental equal-
ity for type checking and the current ones adopted the more conservative presentation.
Again, this obstacle may eventually be lifted by new computer software, for example
the new Agda features discussed in section 4.1.6. See [138, chap. 6] for a more detailed
discussion about the hesitation to accept the judgmental equality rule. See also [4, 129]
for efforts in giving general syntax of higher inductive types.

Note that, if the motive of an eliminator (𝐶 in elim[𝑥.𝐶](…)) actually does not depend
on the higher inductive type, which is commonwhen building a family of types indexed
by that type, then there is a derivable, much simpler eliminatorwithout using dependent
application apd or identification over an identification. Take the circle 𝕊􏷠 for example,
the following rules are admissible:

Γ ⊢ 𝐶 ∶U 𝑖
Γ ⊢ 𝑐base ∶ 𝐶 Γ ⊢ 𝑐loop ∶ 𝑐base =𝐶 𝑐base Γ ⊢ 𝑠 ∶ 𝕊􏷠

Γ ⊢ elim-nd𝕊􏷪[𝐶](𝑐base; 𝑐loop; 𝑠) ∶ 𝐶
𝕊􏷠-elimination (non-dependent)

Γ ⊢ 𝐶 ∶U 𝑖 Γ ⊢ 𝑐base ∶ 𝐶 Γ ⊢ 𝑐loop ∶ 𝑐base =𝐶 𝑐base
Γ ⊢ elim-nd𝕊􏷪[𝐶](𝑐base; 𝑐loop; base) ≡ 𝑐base ∶ 𝐶

𝕊􏷠-comp. (non-dep.) (base)

Γ ⊢ 𝐶 ∶U 𝑖 Γ ⊢ 𝑐base ∶ 𝐶 Γ ⊢ 𝑐loop ∶ 𝑐base =𝐶 𝑐base
Γ ⊢ loop-nd𝛽 ∶ ap𝜆𝑥.elim-nd 𝕊􏷪 [𝐶](𝑐base;𝑐loop;𝑥)

(loop) =𝑐base=𝐶𝑐base 𝑐loop
𝕊􏷠-comp. (non-dep.) (loop)

Due to its simplicity, non-dependent elimination for higher inductive types is usedwhen-
ever possible.

The derivation of non-dependent eliminators from general ones is based on the fol-
lowing two equations, which state that heterogeneous identification and dependent ap-
plication reduce to ordinary ones when the family is constant:

(𝑢 = .𝐵
𝑝 𝑣) = (𝑢 =𝐵 𝑣)

apd𝑓∶𝐴→𝐵(𝑝) = ap𝑓(𝑝)
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which can be proved by identification elimination on 𝑝. In practice, however, it makes
little difference whether the non-dependent eliminator is derived or not.

To see what we can dowith the circle (𝕊􏷠) defined above, let’s count all identifications
between base and itself, which under the identification-as-path interpretation are paths
from base to itself. A good metaphor of such a path is a rope circling around a pillar;
for example, the path on the left, below, can be regarded as the rope on the right. Our
magical rope can cross itself but not the pillar, and two configurations are identified if
one can be transformed into the other without cutting the pillar.

It is then equivalent to count distinct ways to tie a pillar. A key observation is that clock-
wise and counterclockwise loops will cancel each other after pulling the rope tight, and
the remaining part must be composed of only clockwise loops or only counterclockwise
ones. Hence, we can establish a correspondence to integers based on the final configura-
tions of rope tying: staying at base (leaving the pillar untouched) corresponds to zero,
circling clockwisely 𝑛 times corresponds to positive 𝑛, and circling counterclockwisely 𝑛
times corresponds to negative 𝑛. (This integer representation is called the winding num-
ber.) Let 𝐴 ≃ 𝐵 be the equivalence type between types 𝐴 and 𝐵. This intuitive theorem
can be formally stated as

(base =𝕊􏷪 base) ≃ ℤ
and is one of the early milestones of UniTT+hit [93]. This also lends some justification
to the formal rules in fig. 2.10.

Many more higher inductive types can be defined in the same manner and a wide
range of theorems have been proved and mechanized. More can be found in chapter 3
and the book Homotopy Type Theory: Univalent Foundations for Mathematics [138]. While a
precise criterion of higher inductive types remains open, all instances in this thesis are
widely accepted as essential. See section 3.6 for a summary of the use of higher inductive
types inmy thesis. In general, the research so far has affirmed that higher inductive types
are capable of capturing many important homotopy-theoretic concepts, which would be
difficult or impossible without them.

29



30



Chapter 3

Homotopy Theory in
Univalent Type Theory

The introduction of this chapter incorporates some text from my manuscript [69].
Many components in the univalent type theory with higher inductive types (UniTT+hit)
have homotopy-theoretic reading, following the identification-as-path interpretation briefly
described in section 2.2 summarized in table 3.1. In this chapter I will demonstrate more
how UniTT+hit may capture homotopy-theoretic concepts.

Using the interpretation, awide range of homotopy-theoretic results have been devel-
oped in UniTT+hit and mechanized in proof assistants such as Agda [29, 109], Coq [19,
134, 135] and Lean [106], for example homotopy groups of spheres [27, 88, 93, 138],
the Seifert–van Kampen theorem [72], the Eilenberg–Mac Lane spaces [91], the Blakers–
Massey theorem [71], the Mayer–Vietoris sequences [35], the Cayley–Dickson construc-
tion [32], the double groupoids [115] and many more [89, 118, 138].

Over the years I have contributed to this program the following results:

• covering spaces in UniTT+hit and Agda (joint work with Robert Harper with help
from Guillaume Brunerie, Daniel R. Grayson and Chris Kapulkin) [69]; and

• the Seifert–van Kampen theorem in Agda (based on the proof byMichael Shulman
in UniTT+hit) [72]; and

• the Blakers–Massey theorem in Agda (based on the proof by Peter LeFanu Lums-
daine, Eric Finster and Dan Licata in UniTT+hit) [71]; and

• a lemma for reformulating ordinary Eilenberg–Steenrod cohomology theories in
UniTT+hit and Agda (joint work with Ulrik Buchholtz).

All these examples show that UniTT+hit, as a higher-dimensional type theory, is
a promising framework for mechanizing homotopy theory, which constitutes a strong
evidence for my thesis statement; see section 3.6 for a reflection on the use of the new
features introduced in UniTT+hit. The new techniques presented in our work on the
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Type theory Homotopy theory

𝐴 type space
𝑎 ∶ 𝐴 element point
𝑓 ∶ 𝐴 → 𝐵 function continuous mapping
𝐴 → 𝐵 arrow type function space
𝐴 →U family of types fibration
𝐵(𝑎) instance of a family of types fiber
𝑏(𝑥) ∶ 𝐵(𝑥) conditional element section
∑

𝑥∶𝐴 𝐵(𝑥) sum type total space
∏

𝑥∶𝐴 𝐵(𝑥) function type space of sections
𝑎 =𝐴 𝑏 identification path

Table 3.1: The identification-as-path interpretation.

Blakers–Massey theorem even sparked new research back in the community of mathe-
matics [8, 117] as mentioned in chapter 1; this shows that the new framework is not only
suitable for mechanizing existing proofs but also for inventing new ones.

My work has been surrounding two important constructs in homotopy theory: ho-
motopy groups and cohomology groups; both are powerful algebraic tools to distinguish
homotopically different spaces. Homotopy groups are about the ways to fold the 𝑛-
dimensional sphere into a space, and cohomology groups are about the maps from 𝑛-
dimensional cycles in a space to an abelian group, where the 𝑛th homotopy or cohomol-
ogy group refers to the group for the dimension 𝑛. The first homotopy groups, which are
also called fundamental groups, are fairly well understood, but higher homotopy groups
are in general extremely difficult to compute; this difficulty partly led to the popularity
of cohomology groups, which are usually easier to calculate for the spaces of interest.

As we will see, covering spaces can be succinctly expressed in UniTT+hit and have
deep connection with fundamental groups; the Seifert–van Kampen enables a divide-
and-conquer technique to compute the fundamental group of a larger space from those
of smaller ones; the Blakers–Massey theoremprovides one of the few available devices to
calculate higher homotopy groups. These three results represent important instruments
for homotopy groups in the classical theory.

The last result takes the newer direction to expand this collaborative program to coho-
mology theory, which still remains largely unexplored in UniTT+hit. Ulrik Buchholtz’s
and my contribution is a step toward linking several different cohomology theories in
UniTT+hit.

This chapter is organized as follows: section 3.1 will cover the basics of homotopy
theory in UniTT+hit, sections 3.2 to 3.5 will go through my four pieces of work, and
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finally sections 3.6 and 3.7 provide some ending thoughts.

Remark 3.1. I choose to present my contribution in UniTT+hit instead of mechanized
proofs because of a more beautiful typesetting in XƎLATEX when mixed with English
words in proportional fonts. Nonetheless, see chapter 4 for a direct translation of all
notations in this thesis to Agda code. There is no intrinsic reason beyond aesthetic con-
sideration to present my work in UniTT+hit, because I always start working in proof
assistants such as Agda for this thesis. This is possible because of the synthetic nature
of the identification-as-path interpretation.

Remark 3.2. Terminology and notation in this chapter will be closer to the Agda mech-
anization than the book Homotopy Type Theory: Univalent Foundations for Mathematics to
better connect the mechanized proofs. A notable exception is refl𝑥, which corresponds
to idp (identity path) in the Agda mechanization. This unfortunate mismatch is due
to the timing that reflexivity identification was introduced before the identification-as-
path interpretation, and the Agdamechanization starts out with emphasis on homotopy
theory.

3.1 Basics
This section incorporates some text from my manuscript [69].
This goal of this section is to prepare readers for the presentation of the homotogy-
theoretic results in following sections. I will also review some notational conventions
adopted in this chapter.

3.1.1 Sums and Records

Nested sum types will be presented as records types with labels (like label). A label is
also used as the projection function that projects out the corresponding component from
a record. Record types are directly supported in Agda and are often more desirable than
the raw, nested sum types. The notational convention adopted here matches the Agda
practice perfectly. See chapter 4 for more discussion.

3.1.2 A Short Note on Functions

Multi-argument application 𝑓(𝑎􏷠)(𝑎􏷡) … (𝑎𝑛) iswritten 𝑓(𝑎􏷠, 𝑎􏷡, … , 𝑎𝑛). Moreover, the paren-
theses may be omitted if the argument already comes with delimiters (such as 𝑓⟨𝑎; 𝑏⟩).
Nested function types with the same domain such as∏𝑎∶𝐴

∏
𝑏∶𝐴 𝐵may be abbreviated as

∏
𝑎,𝑏∶𝐴 𝐵; similarly 𝜆(𝑥,𝑦∶𝐴).𝑏 stands for 𝜆(𝑥∶𝐴).𝜆(𝑦∶𝐴).𝑏.

33



3.1.3 Identification Revisited
The concatenation is (in the diagram order) written 𝑝 � 𝑞 and the inverse identification as
𝑝−􏷠. These functions can be easily defined by identification elimination:

𝑝 � 𝑞 ∶≡ elim=𝑏[𝑥. .𝑥 =𝐴 𝑐](𝑞; 𝑎; 𝑝)
𝑝−􏷠 ∶≡ elim𝑎=[𝑥. .𝑥 =𝐴 𝑎](refl𝑎; 𝑏; 𝑝)

and they satisfy all groupoid laws.
For a family of types 𝐵 indexed by a type 𝐴, an identification 𝑝 ∶ 𝑎 =𝐴 𝑏 will force

an identification and an equivalence between corresponding fibers 𝐵(𝑎) and 𝐵(𝑏). The
identification, written ap𝑓(𝑝), is already defined in eq. (2.1) on page 16; the accompanying
equivalence (as a function) is called transport, written transport[𝑥.𝐵(𝑥)](𝑝; 𝑢), meaning
the transport of 𝑢 ∶ 𝐵(𝑎) along 𝑝 ∶ 𝑎 =𝐴 𝑏 across the family 𝐵 to the fiber 𝐵(𝑏); formally,

transport[𝑥.𝐵(𝑥)](𝑝; 𝑢) ∶ 𝐵(𝑏)
transport[𝑥.𝐵(𝑥)](𝑝; 𝑢) ∶≡ coerce(ap𝑓(𝑝))(𝑢).

It is also functorial in 𝑝 in the sense that it preserves reflexivity and concatenation.
Note that there are actually two alternative definitions of heterogeneous identifica-

tion introduced in section 2.5 based on transport:

𝑢 =𝑥.𝐵
𝑝 𝑣 ∶≡′ transport[𝑥.𝐵](𝑝; 𝑢) = 𝑣

𝑢 =𝑥.𝐵
𝑝 𝑣 ∶≡″ 𝑢 = transport[𝑥.𝐵](𝑝−􏷠; 𝑣).

The intuition is to decompose such an identification into the “horizontal” part induced
by the base identification and the “vertical” part within the same fiber, as visualized
in fig. 3.1. All these definitions (including the one in this thesis) are equivalent to each
other. In practice, the asymmetric nature of transports often clouds the essence of het-
erogeneous identification and it is best to keep the notion abstract. That said, we will
need this conversion function later in this chapter:

to-transp ∶ 𝑢 =𝑥.𝐵
𝑝 𝑣 → transport[𝑥.𝐵](𝑝; 𝑢) = 𝑣.

3.1.4 A Very Short Note on Universe Levels
In this chapter I will suppress all universe levels, pretending there is only one universe
writtenU .

3.1.5 Truncation Levels
Truncation levels denote the dimension above which a type is trivial: a type is at level −2 if it
is contractible, whichmeans it is equivalent to the unit type and is trivial at all dimensions;
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𝑢

𝑣

𝑢′

𝑣′

Figure 3.1: Heterogeneous identification and transports.
The element 𝑢′ is 𝑢 transported to the fiber the element 𝑣 lies in, and the element 𝑣′ vice versa.

a type is at level (𝑛 + 1) if its identification types lie at level 𝑛. A type at level −1 is called
a mere proposition, where any two elements are identified, and a type at level 0 is called
a set, where any two parallel identifications are identified. Equivalences between sets
are called isomorphisms. It can be shown that types at different truncation levels form
a cumulative hierarchy, in addition to the existing one based on their universe levels
(which are suppressed in this chapter).

Formally, a new type of truncation levels, TLevel, is introduced; see fig. 3.2. It is
essentially natural numbers but starting at −2. For convenience, we will overload the nu-
meric literals to represent natural numbers, truncation levels and integers, and assume
an obvious implementation of addition written +. We can then define all the proper-
ties mentioned above as follows: is-contr(𝐴) means that the type 𝐴 is contractible in
the sense that there is a center from which there is an identification to any element, and
has-level𝑛(𝐴) means the type 𝐴 has truncation level 𝑛.

is-contr(𝐴∶U ) ∶≡ 􏾜
𝑎∶𝐴

􏾟
𝑥∶𝐴

𝑎 =𝐴 𝑥.

has-level𝑛(𝐴∶U ) ∶≡ elimTLevel[ .U ](is-contr(𝐴); 𝑥.𝑦.􏾟
𝑎∶𝐴

􏾟
𝑏∶𝐴

has-level𝑥(𝑎 = 𝑏); 𝑛)

is-prop(𝐴∶U ) ∶≡ has-level−􏷠(𝐴) ≡ 􏾟
𝑥∶𝐴

􏾟
𝑦∶𝐴

is-contr(𝑥 =𝐴 𝑦)

is-set(𝐴∶U ) ∶≡ has-level􏷟(𝐴) ≡ 􏾟
𝑥∶𝐴

􏾟
𝑦∶𝐴

is-prop(𝑥 =𝐴 𝑦).

Remark 3.1.1. The overloading of numeric literals perfectlymatches our Agdamechaniza-
tion, but the addition of truncation levels in mechanized proofs is

𝑚 +̂ 𝑛 ∶≡ (𝑚 + 𝑛) + 2

instead of the plain + to prevent overflowing; for example (−2) + (−2) would fall out
of range. However, in this chapter, I will still use the traditional + to better match the
classical theory. This discrepancy will affect lemma 3.1.3 and theorem 3.4.1.

An 𝑛-type is a type at truncation level 𝑛. The type Set is the type of all 0-types, or
∑

𝐴∶U is-set(𝐴). An 𝑛-truncation of a type𝐴 is, intuitively, the best 𝑛-type approximation
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Γ ctx

Γ ⊢ TLevel ∶U
TLevel-formation

Γ ctx

Γ ⊢ −2 ∶ TLevel
TLevel-introduction (−􏷡)

Γ ⊢ 𝑡 ∶ TLevel
Γ ⊢ succ(𝑡) ∶ TLevel

TLevel-introduction (succ)

Γ, 𝑥∶TLevel ⊢ 𝐶 ∶U Γ ⊢ 𝑐−􏷡 ∶ 𝐶[−2/𝑥]
Γ, 𝑥∶TLevel, 𝑦∶𝐶 ⊢ 𝑐succ ∶ 𝐶[succ(𝑥)/𝑥] Γ ⊢ 𝑡 ∶ TLevel

Γ ⊢ elimTLevel[𝑥.𝐶](𝑐−􏷡; 𝑥.𝑦.𝑐succ; 𝑡) ∶ 𝐶[𝑡/𝑥]
TLevel-elimination

Γ, 𝑥∶TLevel ⊢ 𝐶 ∶U
Γ ⊢ 𝑐−􏷡 ∶ 𝐶[−2/𝑥] Γ, 𝑥∶TLevel, 𝑦∶𝐶 ⊢ 𝑐succ ∶ 𝐶[succ(𝑥)/𝑥]

Γ ⊢ elimTLevel[𝑥.𝐶](𝑐−􏷡; 𝑥.𝑦.𝑐succ; −2) ≡ 𝑐−􏷡 ∶ 𝐶[−2/𝑥]
TLevel-computation (−􏷡)

Γ, 𝑥∶TLevel ⊢ 𝐶 ∶U Γ ⊢ 𝑐−􏷡 ∶ 𝐶[−2/𝑥]
Γ, 𝑥∶TLevel, 𝑦∶𝐶 ⊢ 𝑐succ ∶ 𝐶[succ(𝑥)/𝑥] Γ ⊢ 𝑡 ∶ TLevel

Γ ⊢ elimTLevel[𝑥.𝐶](𝑐−􏷡; 𝑥.𝑦.𝑐succ; succ(𝑡))
≡ 𝑐succ[𝑡, elimTLevel[𝑥.𝐶](𝑐−􏷡; 𝑥.𝑦.𝑐succ; 𝑡)/𝑥, 𝑦] ∶ 𝐶[succ(𝑡)/𝑥]

TLevel-comp. (succ)

Figure 3.2: Revival of non-naturalism.
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Γ ⊢ 𝐴 ∶U Γ ⊢ 𝑛 ∶ TLevel
Γ ⊢ ‖𝐴‖𝑛 ∶U

‖−‖-formation

Γ ⊢ 𝐴 ∶U Γ ⊢ 𝑛 ∶ TLevel
Γ ⊢ ‖𝐴‖𝑛-level ∶ has-level𝑛‖𝐴‖𝑛

‖−‖-formation (leval)

Γ ⊢ 𝑎 ∶ 𝐴 Γ ⊢ 𝑛 ∶ TLevel
Γ ⊢ |𝑎|𝑛 ∶ ‖𝐴‖𝑛

‖−‖-introduction

Γ, 𝑥∶‖𝐴‖𝑛 ⊢ 𝐶 ∶U Γ, 𝑥∶‖𝐴‖𝑛 ⊢ 𝐶-level ∶ has-level𝑛(𝐶(𝑥))
Γ, 𝑥∶𝐴 ⊢ 𝑐|−| ∶ 𝐶[|𝑥|𝑛/𝑥] Γ ⊢ 𝑡 ∶ ‖𝐴‖𝑛

Γ ⊢ elim‖−‖[𝑥.𝐶; 𝑥.𝐶-level](𝑥.𝑐|−|; 𝑡) ∶ 𝐶[𝑡/𝑥]
‖−‖-elimination

Γ, 𝑥∶‖𝐴‖𝑛 ⊢ 𝐶 ∶U Γ, 𝑥∶‖𝐴‖𝑛 ⊢ 𝐶-level ∶ has-level𝑛(𝐶(𝑥))
Γ, 𝑥∶𝐴 ⊢ 𝑐|−| ∶ 𝐶[|𝑥|𝑛/𝑥] Γ ⊢ 𝑎 ∶ 𝐴

Γ ⊢ elim‖−‖[𝑥.𝐶; 𝑥.𝐶-level](𝑥.𝑐|−|; |𝑎|𝑛) ≡ 𝑐|−|[𝑎/𝑥] ∶ 𝐶[|𝑎|𝑛/𝑥]
‖−‖-computation

Figure 3.3: Rules of the least truncated.

of the type 𝐴, written ‖𝐴‖𝑛, where the projection of 𝑎 ∶ 𝐴 into the truncation is written
|𝑎|𝑛. See fig. 3.3 for the formal rules of truncation; the truncation ‖𝐴‖𝑛 is an 𝑛-type with
the universal property that there is a unique extension of any function of type 𝐴 → 𝐵 to
‖𝐴‖𝑛 for any 𝑛-type 𝐵, as shown in the following diagram. The 𝑛-truncation of an 𝑛-type
is equivalent to the 𝑛-type itself.

𝐴 𝐵

‖𝐴‖𝑛

|−|𝑛 for any 𝑛-type B.

A (−1)-truncation of a typematches the notion of existence in the classical logic, repre-
senting the idea that we know the existence of a proof but not its content. The existence
of (−1)-truncation in UniTT+hit makes it trivial to mimic proof-irrelevance as hinted
on page 4.1 The adverb merely may be used to indicate the use of (−1)-truncation; for
example, there merely exists an element of type 𝐴 if we have an element of type ‖𝐴‖−􏷠.

1In many systems supporting proof-irrelevance, there is an erasure operator to drop irrelevant parts. It
may be non-trivial to support automatic erasure of (−􏷠)-truncated proofs, but we then have lemmas 3.1.6
and 3.1.7 that utilize (−􏷠)-truncated contents, which would be impossible in systems enforcing a naïve
segregation policy.
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A 0-connected space. A 1-connected space.

Figure 3.4: Examples of connected spaces without structures above dimension 1.
The space on the left is not 􏷠-connected because paths between points
are not unique. Conversely, a 􏷠-connected space is always 􏷟-connected.

3.1.6 Connectivity
Connectivity is the dual of truncation level in the sense that an 𝑛-connected type is triv-
ial (sufficiently filled) below or at the dimension 𝑛. See fig. 3.4 for a visualization of 0-
connected and 1-connected spaces. In this thesis we critically rely on the fact that, for
any two elements in an 𝑛-connected type, there is an (𝑛 − 1)-truncated identification in
between. Technically, an 𝑛-connected type is defined to be a type whose 𝑛-truncation is
contractible, meaning that it can only have non-trivial structures above dimension 𝑛:

is-connected𝑛(𝐴∶U ) ∶≡ is-contr ‖𝐴‖𝑛.

3.1.7 Homotopy Fibers
Given a function 𝑓 from type 𝐴 to type 𝐵, there is a family of types 𝐵 → U , called
(homotopy) fibers of 𝑓, which at an element 𝑏 ∶ 𝐵 is the generalized preimage under 𝑓, as it
reduces to the ordinary preimage when both 𝐴 and 𝐵 are sets. Formally, let the fiber be

hfiber𝑓∶𝐴→𝐵(𝑏∶𝐵) ∶≡ 􏾜
𝑎∶𝐴

𝑓(𝑎) =𝐵 𝑏,

which makes the following dimagram commute:

∑
𝑏∶𝐵 hfiber𝑓(𝑏) 𝐴

𝐵.

𝑓
fst

This diagram demonstrates that families of types and arrow types are essentially the
same; a function of an arrow type can be turned into a family of types by considering
hfiber𝑓, and a family of types can be treated as a projection function from its total space.
The only difference is the judgmental equality they admit. This dualitymakes it possible
for users of UniTT+hit to choose what is most convenient.
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Similarly to connectivity of types, we can also say a function 𝑓 from𝐴 to 𝐵 has connec-
tivity 𝑛 if 𝑓 is surjective below or at dimension 𝑛+1. Note that being surjective at dimensions
𝑘+1 implies being injective at dimension 𝑘, because the identification between structures
at dimension 𝑘, which will be at dimension 𝑘 + 1, will be reflected back to the domain
by surjectivity. This means a function with connectivity 𝑛 is actually isomorphic for di-
mension below or at 𝑛; as an example, it induces group isomorphisms between homotopy
groups of the domain and the codomain.

This can be equivalently defined as connectivity of its fiber; that is,

has-conn-fibers𝑛(𝑓∶𝐴→𝐵) ∶≡ 􏾟
𝑏∶𝐵

is-connected𝑛(hfiber𝑓(𝑏)).

The intuition is that, if 𝑓 is an equivalence, then each fiber will be contractible, or loosely
speaking “∞-connected”. Having 𝑛-connected fibers means 𝑓 behaves like an equiva-
lence up to dimension 𝑛, matching our intuition discussed above.

Connectivity of types can also be defined in terms of connectivity of functions: a type
𝐴 is equivalent to the (unique) fiber of the function 𝜆( ∶𝐴).unit from 𝐴 to 𝟙, and thus
the connectivity of𝐴 can be defined to be the connectivity of the function from𝐴 to 𝟙. It
also means matching the trivial type 𝟙 up to dimension 𝑛, which is exactly our intuition
of connectivity of types.

Although it is clear that 𝑓 is surjective if it is (−1)-connected, a simpler definition for
this special case is given due to its frequent usage: a function is surjective if we know
each fiber is merely inhabited; that is,

is-surj(𝑓∶𝐴→𝐵) ∶≡ 􏾟
𝑏∶𝐵

􏿎hfiber𝑓(𝑏)􏿎−􏷠.

It can be shown that has-conn-fibers−􏷠 and is-surj are equivalent, justifying the above
special definition.

3.1.8 Set Quotients

Let 𝐴 be a type and 𝑅 ∶ 𝐴 → 𝐴 → U a family of types doubly indexed by 𝐴. We write
𝐴/𝑅 as the set quotient of𝐴 by 𝑅, [𝑎] as the equivalence class of 𝑎 ∶ 𝐴, and quot-rel(𝑟) for
𝑟 ∶ 𝑅(𝑎, 𝑏) as a witness of [𝑎] =𝐴/𝑅 [𝑏]. The family 𝑅 need not be an equivalence relation
itself, but the set quotient in type theory effectively takes the reflexive, symmetric and
transitive closure of 𝑅. Formalization as a higher inductive type is in fig. 3.5.

Remark 3.1.2. Wedid not require𝑅 to be a family ofmere propositions as in the book [138]
because in theory it makes little difference and in practice it is convenient not to be con-
cerned about truncation levels.
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Γ ⊢ 𝐴 ∶U Γ ⊢ 𝑅 ∶ 𝐴 → 𝐴 →U
Γ ⊢ 𝐴/𝑅 ∶U

/-formation

Γ ⊢ 𝐴 ∶U Γ ⊢ 𝑅 ∶ 𝐴 → 𝐴 →U
Γ ⊢ 𝐴/𝑅-level ∶ is-set(𝐴/𝑅)

/-formation (level)

Γ ⊢ 𝑅 ∶ 𝐴 → 𝐴 →U Γ ⊢ 𝑎 ∶ 𝐴
Γ ⊢ [𝑎] ∶ 𝐴/𝑅

/-introduction ([−])

Γ ⊢ 𝑅 ∶ 𝐴 → 𝐴 →U
Γ ⊢ 𝑎 ∶ 𝐴 Γ ⊢ 𝑏 ∶ 𝐴 Γ ⊢ 𝑟 ∶ 𝑅(𝑎, 𝑏)

Γ ⊢ quot-rel(𝑟) ∶ [𝑎] =𝐴/𝑅 [𝑏]
/-introduction (quot-rel)

Γ, 𝑥∶𝐴/𝑅 ⊢ 𝐶 ∶U
Γ, 𝑥∶𝐴/𝑅 ⊢ 𝐶-level ∶ is-set(𝐶(𝑥)) Γ, 𝑥∶𝐴 ⊢ 𝑐[−] ∶ 𝐶[[𝑥]/𝑥]

Γ, 𝑥∶𝐴, 𝑦∶𝐴, 𝑧∶𝑅(𝑥, 𝑦) ⊢ 𝑐quot-rel ∶ 𝑐[−] =𝑥.𝐶
quot-rel(𝑧) 𝑐[−][𝑦/𝑥] Γ ⊢ 𝑞 ∶ 𝐴/𝑅

Γ ⊢ elim/[𝑥.𝐶; 𝑥.𝐶-level](𝑥.𝑐[−]; 𝑥.𝑦.𝑧.𝑐quot-rel; 𝑞) ∶ 𝐶[𝑞/𝑥]
/-elimination

Γ, 𝑥∶𝐴/𝑅 ⊢ 𝐶 ∶U
Γ, 𝑥∶𝐴/𝑅 ⊢ 𝐶-level ∶ is-set(𝐶(𝑥)) Γ, 𝑥∶𝐴 ⊢ 𝑐[−] ∶ 𝐶[[𝑥]/𝑥]

Γ, 𝑥∶𝐴, 𝑦∶𝐴, 𝑧∶𝑅(𝑥, 𝑦) ⊢ 𝑐quot-rel𝑐[−] =𝑥.𝐶
quot-rel(𝑧) 𝑐[−][𝑦/𝑥] Γ ⊢ 𝑎 ∶ 𝐴

Γ ⊢ elim/[𝑥.𝐶; 𝑥.𝐶-level](𝑥.𝑐[−]; 𝑥.𝑦.𝑧.𝑐quot-rel; [𝑎]) ≡ 𝑐[−][𝑎/𝑥] ∶ 𝐶[[𝑎]/𝑥]
/-computation ([−])

Γ, 𝑥∶𝐴/𝑅 ⊢ 𝐶 ∶U
Γ, 𝑥∶𝐴/𝑅 ⊢ 𝐶-level ∶ is-set(𝐶(𝑥)) Γ, 𝑥∶𝐴 ⊢ 𝑐[−] ∶ 𝐶[[𝑥]/𝑥]

Γ, 𝑥∶𝐴, 𝑦∶𝐴, 𝑧∶𝑅(𝑥, 𝑦) ⊢ 𝑐quot-rel ∶ 𝑐[−] =𝑥.𝐶
quot-rel(𝑧) 𝑐[−][𝑦/𝑥]

Γ ⊢ 𝑎 ∶ 𝐴 Γ ⊢ 𝑏 ∶ 𝐴 Γ ⊢ 𝑟 ∶ 𝑅(𝑎, 𝑏)
Γ ⊢ quot-rel𝛽 ∶ apd𝜆𝑥.elim/[𝑥.𝐶;𝑥.𝐶-level](𝑥.𝑐[−];𝑥.𝑦.𝑧.𝑐quot-rel;𝑥)(quot-rel(𝑟))

=𝑐[−] [𝑎/𝑥]=𝑥.𝐶quot-rel(𝑟)𝑐[−] [𝑏/𝑥]
𝑐quot-rel[𝑎, 𝑏, 𝑟/𝑥, 𝑦, 𝑧]

/-comp. (quot-rel)

Figure 3.5: Rules of squashing the second dimension.
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𝐴 𝐵

𝐶

𝑐

𝑓(𝑐) 𝑔(𝑐)

glue(𝑐)

Figure 3.6: Pushouts as two spaces glued together.

3.1.9 Fundamental Groups and Groupoids
As mentioned earlier, iterated identification forms the structure of ∞-groupoids. The 0-
truncation of identification thus gives ordinary groupoids, called fundamental groupoids.
If we only focus on truncated identification at some particular element, then they reduce
to fundamental groups. As an example, we have seen the argument in section 2.5 that the
fundamental group of 𝕊􏷠 is ℤ.

Formally, for any type𝐴, the fundamental groupoid of𝐴writtenΠ􏷠(𝐴) is formed by
𝜆(𝑎,𝑏∶𝐴).‖𝑎 =𝐴 𝑏‖􏷟 being the arrows of the groupoid2 along with concatenation as com-
position and reflexivity as the unit. Given a distinguished element 𝑎 ∶ 𝐴, the fundamental
group of the type 𝐴 at 𝑎, written 𝜋􏷠(𝐴, 𝑎), is the set ‖𝑎 = 𝑎‖􏷟 with the same operators.

Technically speaking, the concatenation, reflexivity, inversion operators and ap𝑓 on
0-truncated identifications are different from those on untruncated identification, but
regardless I will reuse the symbols for a cleaner presentation; however, the distinction is
still important and the transport along a 0-truncated identification across a family of sets,
written transport􏷟[𝑥.𝐵(𝑥)](𝑝; 𝑎), will have a subscript 0 denoting the truncation level.

3.1.10 Pushouts and Friends
A (homotopy) pushout is a type made of two types 𝐴 and 𝐵 glued together by adding
identifications (as bridges) across the two sides; the additional identifications, written
glue, are indexed by another type 𝐶, along with functions 𝑓 ∶ 𝐶 → 𝐴 and 𝑔 ∶ 𝐶 → 𝐵
denoting the end points of glue(𝑐). See fig. 3.6 for a visualization. In type theory, the
pushout is written 𝐴 ⊔𝐶;𝑓;𝑔 𝐵, with inclusions from 𝐴 and 𝐵 written as left and right,
respectively; see fig. 3.7 for its formal rules. The 𝑓 and 𝑔 in 𝐴 ⊔𝐶;𝑓;𝑔 𝐵 may be omitted
when clear from the context. Category-theoretically speaking, a pushout is a colimit of
the span

2More precisely, this is a pregroupoid because the object type 𝐴 may not be a 􏷠-type. A proper funda-
mental groupoid should have ‖𝐴‖􏷪 as its object type and 𝜆(𝑎,𝑏∶‖𝐴‖􏷪).𝑎 =‖𝐴‖􏷪 𝑏 as its arrow family. However,
for any 𝑎, 𝑏 ∶ 𝐴 there is an equivalence between ‖𝑎 =𝐴 𝑏‖􏷩 and |𝑎|􏷪 =‖𝐴‖􏷪 |𝑏|􏷪 and in practice ‖𝑎 =𝐴 𝑏‖􏷩 seems
easier to work with. See Rezk completion (or stack completion) in [138, §9.9, 3].

41



𝐴 𝐶 𝐵
𝑓 𝑔

or equivalently the following is a commuting square (called the pushout square) with
initiality toward the bottom-right corner.

𝐶 𝐵

𝐴 𝐴 ⊔𝐶;𝑓;𝑔 𝐵

𝑓

𝑔

left

right

Many types of homotopy-theoretic interest can be obtained by the pushout construc-
tion, including the circle, truncations, set quotients, suspensions, cofibers or even the
expressive cellular complexes. See [46, 81, 119] for implementing truncations and set
quotients using only pushouts. The following are suspensions and cofibers:

Suspension types. The suspension of a type𝐴 is intuitively the type𝐴 being suspended
with “strings” pinned at two poles (north and south below). Formally, they can be de-
fined as follows:

susp(𝐴) ∶≡ 𝟙 ⊔𝐴 𝟙
north ∶≡ left(unit) ∶ susp(𝐴)
south ∶≡ right(unit) ∶ susp(𝐴)

merid(𝑎∶𝐴) ∶≡ glue(𝑎) ∶ north = south

𝐴 𝟙

𝟙 susp(𝐴)
𝜆 .north

𝜆 .south

Cofiber types. The cofiber of a function 𝑓 ∶ 𝐴 → 𝐵 is the dual of fiber, intuitively the
domain 𝐵 with the image of 𝑓 contracted; formally, it consists of these elements:3

cofiber(𝑓) ∶≡ 𝟙 ⊔𝐴;𝜆 .unit;𝑓 𝐵
cfbase ∶≡ left(unit) ∶ cofiber(𝑓)

cfcod(𝑏∶𝐵) ∶≡ right(𝑏) ∶ cofiber(𝑓)
cfglue(𝑎∶𝐴) ∶≡ glue(𝑎) ∶ cfbase = cfcod(𝑓(𝑎))

3The prefix cf stands for “cofiber” and cod stands for “codomain”.
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Γ ⊢ 𝑓 ∶ 𝐶 → 𝐴 Γ ⊢ 𝑔 ∶ 𝐶 → 𝐵
Γ ⊢ 𝐴 ⊔𝐶;𝑓;𝑔 𝐵 ∶U

⊔-formation

Γ ⊢ 𝑓 ∶ 𝐶 → 𝐴 Γ ⊢ 𝑔 ∶ 𝐶 → 𝐵 Γ ⊢ 𝑎 ∶ 𝐴
Γ ⊢ left(𝑎) ∶ 𝐴 ⊔𝐶;𝑓;𝑔 𝐵

⊔-introduction (left)

Γ ⊢ 𝑓 ∶ 𝐶 → 𝐴 Γ ⊢ 𝑔 ∶ 𝐶 → 𝐵 Γ ⊢ 𝑏 ∶ 𝐵
Γ ⊢ right(𝑏) ∶ 𝐴 ⊔𝐶;𝑓;𝑔 𝐵

⊔-introduction (right)

Γ ⊢ 𝑓 ∶ 𝐶 → 𝐴 Γ ⊢ 𝑔 ∶ 𝐶 → 𝐵 Γ ⊢ 𝑐 ∶ 𝐶
Γ ⊢ glue(𝑐) ∶ left(𝑓(𝑐)) =𝐴⊔𝐶;𝑓;𝑔𝐵 right(𝑔(𝑐))

⊔-introduction (glue)

Γ, 𝑥∶(𝐴⊔𝐶;𝑓;𝑔𝐵) ⊢ 𝐷 ∶U
Γ, 𝑥∶𝐴 ⊢ 𝑑left ∶ 𝐷[left(𝑥)/𝑥] Γ, 𝑥∶𝐵 ⊢ 𝑑right ∶ 𝐷[right(𝑥)/𝑥]

Γ, 𝑥∶𝐶 ⊢ 𝑑glue ∶ 𝑑left[𝑓(𝑥)/𝑥] =𝑥.𝐷
glue(𝑥) 𝑑right[𝑔(𝑥)/𝑥] Γ ⊢ 𝑝 ∶ 𝐴 ⊔𝐶;𝑓;𝑔 𝐵

Γ ⊢ elim⊔[𝑥.𝐷](𝑥.𝑑left; 𝑥.𝑑right; 𝑥.𝑑glue; 𝑝) ∶ 𝐷[𝑝/𝑥]
⊔-elimination

Γ, 𝑥∶(𝐴⊔𝐶;𝑓;𝑔𝐵) ⊢ 𝐷 ∶U
Γ, 𝑥∶𝐴 ⊢ 𝑑left ∶ 𝐷[left(𝑥)/𝑥] Γ, 𝑥∶𝐵 ⊢ 𝑑right ∶ 𝐷[right(𝑥)/𝑥]
Γ, 𝑥∶𝐶 ⊢ 𝑑glue ∶ 𝑑left[𝑓(𝑥)/𝑥] =𝑥.𝐷

glue(𝑥) 𝑑right[𝑔(𝑥)/𝑥] Γ ⊢ 𝑎 ∶ 𝐴
Γ ⊢ elim⊔[𝑥.𝐷](𝑥.𝑑left; 𝑥.𝑑right; 𝑥.𝑑glue; left(𝑎))

≡ 𝑑left[𝑎/𝑥] ∶ 𝐷[left(𝑎)/𝑥]

⊔-computation (left)

Γ, 𝑥∶(𝐴⊔𝐶;𝑓;𝑔𝐵) ⊢ 𝐷 ∶U
Γ, 𝑥∶𝐴 ⊢ 𝑑left ∶ 𝐷[left(𝑥)/𝑥] Γ, 𝑥∶𝐵 ⊢ 𝑑right ∶ 𝐷[right(𝑥)/𝑥]
Γ, 𝑥∶𝐶 ⊢ 𝑑glue ∶ 𝑑left[𝑓(𝑥)/𝑥] =𝑥.𝐷

glue(𝑥) 𝑑right[𝑔(𝑥)/𝑥] Γ ⊢ 𝑏 ∶ 𝐵
Γ ⊢ elim⊔[𝑥.𝐷](𝑥.𝑑left; 𝑥.𝑑right; 𝑥.𝑑glue; right(𝑏))

≡ 𝑑right[𝑏/𝑥] ∶ 𝐷[right(𝑏)/𝑥]

⊔-computation (right)

Γ, 𝑥∶(𝐴⊔𝐶;𝑓;𝑔𝐵) ⊢ 𝐷 ∶U
Γ, 𝑥∶𝐴 ⊢ 𝑑left ∶ 𝐷[left(𝑥)/𝑥] Γ, 𝑥∶𝐵 ⊢ 𝑑right ∶ 𝐷[right(𝑥)/𝑥]
Γ, 𝑥∶𝐶 ⊢ 𝑑glue ∶ 𝑑left[𝑓(𝑥)/𝑥] =𝑥.𝐷

glue(𝑥) 𝑑right[𝑔(𝑥)/𝑥] Γ ⊢ 𝑐 ∶ 𝐶
Γ ⊢ glue𝛽 ∶ apd𝜆𝑥.elim⊔[𝑥.𝐷](𝑥.𝑑left;𝑥.𝑑right;𝑥.𝑑glue;𝑥)(glue(𝑐)) = 𝑑glue[𝑐/𝑥]

⊔-computation (glue)

Figure 3.7: Rules of gluing.
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𝐴 𝐵

𝟙 cofiber(𝑓)

𝑓

𝜆 .cfbase

cfcod

To see the duality, note that a fiber over 𝑏 ∶ 𝐵 is the following pullback:

hfiber𝑓(𝑏) 𝐴

𝟙 𝐵𝜆 .𝑏

𝑓

3.1.11 Pointed Types and Wedges

A pointed type is a type with a distinguished element, or more precisely a pair of type
∑

𝐴∶U 𝐴. To better present the results, we have specialized projections carrier and pt

for pointed types:

carrier ∶ 􏾜
𝐴∶U

𝐴 →U pt ∶ 􏾟
𝑋∶∑𝐴∶U 𝐴

→ carrier(𝑋)

carrier ∶≡ fst pt ∶≡ snd

Let 𝑋 and 𝑌 be two pointed types. We have pointed arrow types from 𝑋 to 𝑌, written
𝑋 ⋅→ 𝑌, which collect functions that preserve the distinguished element; it is defined as

𝑋 ⋅→ 𝑌 ∶≡ 􏾜
𝑓∶carrier(𝑋)→carrier(𝑌)

𝑓(pt(𝑋)) = pt(𝑌).

Note that the type 𝑋 ⋅→ 𝑌 could be made pointed with the constant function 𝜆 .pt(𝑌),
but my Agda experience shows that making pointed arrow types pointed would only
make proofs clumsier, especially without the implicit coercion.

Many types defined so far have a natural choice of their distinguished element. For
example, the distinguished element of a pushout 𝐴 ⊔𝐶 𝐵 comes from the distinguished
element of 𝐴 (if pointed); so are those of the types defined in terms of pushouts. For
these types, I will recycle the symbols for their pointed counterparts. In particular, the
pointed variants cofiber(𝑓) for pointed arrows 𝑓 and susp(𝑋) for pointed types 𝑋 will
be used in section 3.5.
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In addition, we can define the binary wedge of two pointed types 𝑋 and 𝑌, written
𝑋 ∨ 𝑌, as a pushout with two distinguished elements identified; that is,

𝑋 ∨ 𝑌 ∶≡ carrier(𝑋) ⊔𝟙;𝜆 .pt(𝑋);𝜆 .pt(𝑌) carrier(𝑌)
winl􏿴𝑥∶carrier(𝑋)􏿷 ∶≡ left(𝑥) ∶ 𝑋 ∨ 𝑌
winr􏿴𝑦∶carrier(𝑌)􏿷 ∶≡ right(𝑦) ∶ 𝑋 ∨ 𝑌

wglue ∶≡ glue(unit) ∶ winl(pt(𝑋)) = winl(pt(𝑌))

𝟙 carrier(𝑌)

carrier(𝑋) 𝑋 ∨ 𝑌

𝜆 .pt(𝑌)

𝜆 .pt(𝑋)

winl

winr

There is a canonical function from 𝑋 ∨ 𝑌 to carrier(𝑋) × carrier(𝑌), which sends
winl(𝑥) to ⟨𝑥; pt(𝑌)⟩ and winr(𝑦) to ⟨pt(𝑋); 𝑦⟩. An intriguing fact is that if carrier(𝑋)
is 𝑚-connected and carrier(𝑌) is 𝑛-connected, then for any family of (𝑚 + 𝑛)-types 𝑃
indexed by carrier(𝑋)×carrier(𝑌), functions from the wedge 𝑋 ∨𝑌 to 𝑃 extend along
the canonical function to carrier(𝑋) × carrier(𝑌).

𝑋 ∨ 𝑌 𝑃

carrier(𝑋) × carrier(𝑌)

This can be made precise as follows; for easier use, the pointed types are decomposed
into the carriers and the distinguished elements, 𝑃 is curried and the function from𝑋∨𝑌
to 𝑃 is broken into the individual data fed into the eliminator of wedges.

Lemma 3.1.3 (wedge connectivity). Suppose 𝐴 is an 𝑚-type with a distinguished element 𝑎􏷟
and 𝐵 an 𝑛-type with 𝑏􏷟 where 𝑚, 𝑛 ≥ −1. Given the data

𝑃 ∶ 𝐴 → 𝐵 →U
𝑃-level ∶ 􏾟

𝑎∶𝐴
􏾟
𝑏∶𝐵

has-level𝑚+𝑛(𝑃(𝑎, 𝑏))

𝑓 ∶ 􏾟
𝑎∶𝐴

𝑃(𝑎, 𝑏􏷟)

𝑔 ∶ 􏾟
𝑏∶𝐵

𝑃(𝑎􏷟, 𝑏)

𝛼 ∶ 𝑓(𝑎􏷟) =𝑃(𝑎􏷩,𝑏􏷩) 𝑓(𝑏􏷟)
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there is a function 𝑝 ∶ ∏𝑎∶𝐴
∏

𝑏∶𝐵 𝑃(𝑎, 𝑏) such that there are elements 𝑞, 𝑟 and 𝑠 of these types:

𝑞 ∶ 􏾟
𝑎∶𝐴

𝑝(𝑎, 𝑏􏷟) = 𝑓(𝑎)

𝑟 ∶ 􏾟
𝑏∶𝐴

𝑝(𝑎􏷟, 𝑏) = 𝑔(𝑏)

𝑠 ∶ 𝑞(𝑎􏷟)−􏷠 � 𝑟(𝑏􏷟) = 𝛼.

Proof. See [138, lemma 8.6.2]. (The lemma works for 𝑚 = −1 or 𝑛 = −1 despite the range
stated in the book.)

Remark 3.1.4. As noted in remark 3.1.1, the mechanized version replaces 𝑚 and 𝑛 by
succ(𝑚) and succ(𝑛), respectively, replaces 𝑚 + 𝑛 by 𝑚 +̂ 𝑛, and drops the condition
𝑚, 𝑛 ≥ −1.

In addition to binary wedges, for a family of pointed types 𝑋 indexed by 𝐴, there
is a general wedge of 𝑋 with all distinguished elements in all fibers identified, written
⋁

𝑎∶𝐴𝑋(𝑎), with bwbase being the center to which the distinguished elements are identi-
fied, bwin being the inclusion and bwglue being the identification from bwbase.4

bwbase

pt(𝑋(𝑎􏷟))

pt(𝑋(𝑎􏷠))

pt(𝑋(𝑎􏷡))

carrier(𝑋(𝑎􏷟))

carrier(𝑋(𝑎􏷠))

carrier(𝑋(𝑎􏷡))

This can again be defined as a pushout (or the cofiber of 𝜆𝑎.⟨𝑎; pt(𝑋(𝑎))⟩):

⋁
𝑎∶𝐴𝑋(𝑎) ∶≡ 𝟙 ⊔𝐴;𝜆 .unit;𝜆𝑎.⟨𝑎;pt(𝑋(𝑎))⟩ ∑𝑎∶𝐴 carrier(𝑋(𝑎))
bwbase ∶≡ left(unit) ∶ ⋁𝑎∶𝐴𝑋(𝑎)

bwin􏿴𝑎∶𝐴, 𝑥∶carrier(𝑋(𝑎))􏿷 ∶≡ right􏿴⟨𝑎; 𝑥⟩􏿷 ∶ ⋁𝑎∶𝐴𝑋(𝑎)
bwglue(𝑎∶𝐴) ∶≡ glue(𝑎) ∶ bwbase = bwin(𝑎, pt(𝑋(𝑎))).

𝐴 ∑
𝑎∶𝐴 carrier(𝑋(𝑎))

𝟙 ⋁
𝑎∶𝐴𝑋(𝑎)

𝜆𝑎.⟨𝑎; pt(𝑋(𝑎))⟩

𝜆 .bwbase

𝜆𝑠.bwin(fst(𝑠), snd(𝑠))

We will see the usage of this type in section 3.5.
4The prefix bw stands for “big wedge”.
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Γ ctx

Γ ⊢ 𝟚 ∶U􏷟
𝟚-formation

Γ ctx

Γ ⊢ true ∶ 𝟚
𝟚-introduction (true)

Γ ctx

Γ ⊢ false ∶ 𝟚
𝟚-introduction (false)

Γ, 𝑥∶𝟚 ⊢ 𝐶 ∶U 𝑖
Γ ⊢ 𝑐true ∶ 𝐶[true/𝑥] Γ ⊢ 𝑐false ∶ 𝐶[false/𝑥] Γ ⊢ 𝑏 ∶ 𝟚

Γ ⊢ elim𝟚[𝑥.𝐶](𝑐true; 𝑐false; 𝑏) ∶ 𝐶[𝑏/𝑥]
𝟚-elimination

Γ, 𝑥∶𝟚 ⊢ 𝐶 ∶U 𝑖
Γ ⊢ 𝑐true ∶ 𝐶[true/𝑥] Γ ⊢ 𝑐false ∶ 𝐶[false/𝑥]

Γ ⊢ elim𝟚[𝑥.𝐶](𝑐true; 𝑐false; true) ≡ 𝑐true ∶ 𝐶[true/𝑥]
𝟚-computation (true)

Γ, 𝑥∶𝟚 ⊢ 𝐶 ∶U 𝑖
Γ ⊢ 𝑐true ∶ 𝐶[true/𝑥] Γ ⊢ 𝑐false ∶ 𝐶[false/𝑥]

Γ ⊢ elim𝟚[𝑥.𝐶](𝑐true; 𝑐false; false) ≡ 𝑐false ∶ 𝐶[false/𝑥]
𝟚-computation (false)

Figure 3.8: Rules of 1/0.

3.1.12 Booleans as the Zeroth Sphere
The good old Boolean type 𝟚 can be formalized as rules in fig. 3.8. An interesting fact
is that the suspension of the Boolean type, susp(𝟚), is equivalent to 𝕊􏷠; moreover, the
suspension of 𝕊􏷠, with the circle being the equator, gives the 2-dimensional sphere.

north

false

south

true

southnorth

In general, the suspension of the 𝑛-dimensional sphere gives the (𝑛 + 1)-dimensional
sphere, and this leads to the following definition of spheres as iterated suspensions; for
convenience we may just call 𝟚 as 𝕊􏷟 because 𝕊􏷠 is the suspension of 𝟚.

𝕊𝑛 ∶≡ elimℕ[ .U ](𝟚; .𝑠.susp(𝑠); 𝑛).

Remark 3.1.5. Therefore, there are two equivalent definitions of 𝕊􏷠! In our Agda mech-
anization, the circle is defined to be the suspension of the Boolean type, which means
the rules in fig. 2.10 (including judgmental equality) are actually implemented by other
rules. Due to this, I intentionally use the same symbol for both 𝕊􏷠’s in this thesis.

47



3.1.13 Constancy Extension Lemmas
Following the discussion about truncation level, a (−1)-truncated proof can only be used
within a context at level −1, but often the context is at the level 0. For example, in group
theory many theorems are at the set level but a surjectivity condition only asserts a wit-
ness in the domain at the −1 level. Fortunately, such a level gap can be filled by a con-
stancy condition; the intuition is that if a function does not depend on the value of the
input but only its existence, a (−1)-truncated input should suffice. This is formulated as
the following lemma:

Lemma 3.1.6 (extension by weak constancy). Let 𝐴 be a type and 𝐵 a set. For any function
𝑓 ∶ 𝐴 → 𝐵 with 𝑓-is-const ∶ ∏𝑥,𝑦∶𝐴 𝑓(𝑥) =𝐵 𝑓(𝑦), there exists a function 𝑔 ∶ ‖𝐴‖−􏷠 → 𝐵 such
that 𝑓 ≡ 𝑔 ∘ |−|−􏷠.

Because I proved this lemma, Nicolai Kraus et al. have significantly generalized the
result and considered the cases from mere propositions to types at arbitrary levels; see
[80, 82, 83]. The following is a short proof of lemma 3.1.6:

Proof of lemma 3.1.6. Given a function 𝑓 from 𝐴 to 𝐵 satisfying the constancy condition,
define 𝐶 ∶≡ 𝐴/𝑅 where

𝑅(𝑎, 𝑏) ∶≡ 𝑓(𝑎) =𝐵 𝑓(𝑏).
One can then show that the function 𝑓 factors through 𝐶. Since 𝐶 is provably a mere
proposition, the function 𝑓 can be extended to the (−1)-truncation of 𝐴. The judgmental
equality is derived from the computation rules of truncation and set quotients.

There is another version of lemma 3.1.6 that generalizes the truncation projection
|−|−􏷠 to any surjective function and replace the weak consistency by what I call relative
constancy. As far as I understand, this lemma is new. Here is its formulation:

Lemma 3.1.7 (extension by relative constancy). Let 𝐴 and 𝐵 be two types and 𝐶 be a family
of sets indexed by 𝐵. For any surjective function 𝑓 ∶ 𝐴 → 𝐵 and any function 𝑔 ∶ ∏𝑎∶𝐴 𝐶(𝑓(𝑎))
such that

𝑔-is-const ∶ 􏾟
𝑎􏷩,𝑎􏷪∶𝐴

􏾟
(𝑝∶𝑓(𝑎􏷩)=𝑓(𝑎􏷪))

𝑔(𝑎􏷟) =
𝑥.𝐶(𝑥)
𝑝 𝑔(𝑎􏷠),

there exists a function ℎ ∶ ∏𝑏∶𝐵 𝐶(𝑏) such that ∏𝑎∶𝐴 ℎ(𝑓(𝑎)) = 𝑔(𝑎).

This is saying that if 𝑔 gives the same result for all pairs equated by 𝑓, then 𝑔 extends to
𝐵. Wewill find the usage of this lemma in section 3.3. Pictorially, this can be summarized
as follows:

𝐴 ∑
𝑏∶𝐵 𝐶(𝑏)

𝐵

𝑔

𝑓
ℎ
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Proof. A direct proof is to consider the fibers of 𝑓 for each 𝑏, and invoke lemma 3.1.6
to break the truncation restriction in the surjectivity condition. More precisely, for any
𝑏 ∶ 𝐵, let

ℎ̂ ∶ 􏾟
𝑏∶𝐵

hfiber𝑓(𝑏) → 𝐶(𝑏)

ℎ̂ ∶≡ 𝜆(𝑏∶𝐵).𝜆􏿴𝑠∶hfiber𝑓(𝑏)􏿷.transport[𝑥.𝐶(𝑥)]􏿴snd(𝑠); 𝑔(fst(𝑠))􏿷

and apply lemma 3.1.6 to the function

ℎ̂(𝑏) ∶ hfiber𝑓(𝑏) → 𝐶(𝑏)

where the constancy condition is given by applying identification elimination on the
second component of 𝑠􏷠:

𝜆􏿴𝑠􏷟,𝑠􏷠∶hfiber𝑓(𝑏)􏿷.elim𝑓(fst(𝑠􏷪))=􏿮𝑏.𝑝.∏𝑞∶fst(𝑠􏷩))=𝑏
ℎ̂􏿴𝑏, ⟨fst(𝑠􏷟); 𝑞⟩􏿷 = ℎ̂􏿴𝑏, ⟨fst(𝑠􏷟); 𝑝⟩􏿷􏿱􏿵

to-transp􏿴𝑔-is-const(fst(𝑠􏷟), fst(𝑠􏷠), 𝑞)􏿷; 𝑏; snd(𝑠􏷠)􏿸(snd(𝑠􏷟)) ∶ 􏾟
𝑠􏷩,𝑠􏷪

ℎ̂(𝑏, 𝑠􏷟) = ℎ̂(𝑏, 𝑠􏷠).

Lemma 3.1.6 will give a function ℎ′ ∶ ‖hfiber𝑓(𝑏)‖−􏷠 → 𝐶(𝑏); the desired function ℎ is
then the composition of the surjectivity (as a function) and ℎ′:

ℎ ∶≡ ℎ′ ∘ 𝑓-is-surj ∶ 􏾟
𝑏∶𝐵

𝐶(𝑏).

The computational content comes from the fact that all elements in ‖hfiber𝑓(𝑓(𝑎))‖−􏷠, as
amere proposition, are identified and among them the particular element |⟨𝑎; refl𝑓(𝑎)⟩|−􏷠
will make the function ℎ′ run.

3.1.14 Implicit Coercion
To further reduce notational clutter, I will adopt more implicit coercion when no confu-
sion would occur. For example, a group may be implicitly coerced into its underlying
set, or a pointed type 𝑋 into its underlying type carrier(𝑋).

3.2 Covering Spaces
This is joint work with Robert Harper and this section incorporates text from my manuscript [69].
Covering spaces are one of the important constructs in homotopy theory, and given
the connection between type theory and homotopy theory, a natural question to ask
is whether such a notion can be stated in type theory as well. It turns out that we can
express covering spaces (up to homotopy) concisely as follows.
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𝑣𝑢 𝑣𝑢 0
1

set: {𝑢, 𝑣}
action: 𝑢 ↦ 𝑣

𝑣 ↦ 𝑢

set: {𝑢, 𝑣}
action: 𝑢 ↦ 𝑢

𝑣 ↦ 𝑣

set: ℤ
action: 𝑖 ↦ (𝑖 + 1)

Figure 3.9: Covering spaces and sets equipped with a group action.
Note that the actions are represented by how they act on the generator loop.

Definition 3.2.1. A covering space of a type 𝐴 is a family of sets indexed by 𝐴.

That is, the type of covering spaces of 𝐴 is simply 𝐴 → Set. The classical definition
is significantly longer [65], though to be fair the classical theory does not take homotopy
equivalence classes as we do in UniTT+hit through the identification-as-path interpre-
tation.

How do we know this definition really defines covering spaces? A characteristic fea-
ture of covering spaces of a type 𝐴 in the classical theory is that they are represented
by sets with a group action of the fundamental group of 𝐴. Therefore, we may justify
our definitions by proving this theorem, as we will in section 3.2.1. See fig. 3.9 for some
examples of the correspondence between covering spaces and such sets. Moreover, con-
sidering the category of pointed covering spaces where morphisms are fiberwise func-
tions, we also know there should be an initial covering space (named the universal cov-
ering space) and it should be represented by the fundamental group itself through the
representation theorem stated above.5 We alsomanaged to show these results as demon-
strated in section 3.2.2.

3.2.1 Representation Theorem
The first main result of this section is that covering spaces of a 0-connected, pointed type
𝐴 are represented by sets equipped with a group action of the fundamental group of 𝐴, which
is to say there is an equivalence between covering spaces and such sets. The intuition is
that everything in UniTT+hit must respect identification, and the fact that the base type
𝐴 is 0-connected indicates that there is a (−1)-truncated identification between any two
elements and thus a (−1)-truncated isomorphism between any two fibers. Therefore, it
is represented by one copy of these isomorphic sets and a description of how they are
isomorphic, encoded as an action of the fundamental group.

5See section 3.2.2 for a more precise statement.
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Formally, a set with a group action of 𝐺 is called a 𝐺-set, a functor from the group 𝐺
(treated as a category with one object and elements in 𝐺 as morphisms) to the category
of sets up to isomorphism; a group set is a 𝐺-set without the group 𝐺 being specified. In
type theory, a 𝐺-set is a record with the following components:

• El: a set.

• 𝛼: a (right) group action of type El → 𝐺 → El.

• 𝛼-unit: a proof of the property that 𝛼 preserves the group identity:

􏾟
𝑥∶El

𝛼(𝑥, unit(𝐺)) =El 𝑥.

• 𝛼-comp: a proof of the property that 𝛼 preserves the group composition:

􏾟
𝑥∶El

􏾟
𝑔􏷪,𝑔􏷫∶𝐺

𝛼(𝑥, comp(𝐺)(𝑔􏷠, 𝑔􏷡)) =El 𝛼(𝛼(𝑥, 𝑔􏷠), 𝑔􏷡).

The representation theorem is then about covering spaces of 𝐴 being represented by
𝜋􏷠(𝐴, 𝑎)-sets, which can be formally stated as follows:

Theorem 3.2.2 (representation by group sets). For any 0-connected type 𝐴 with an element
𝑎, we have (𝐴 → Set) ≃ 𝜋􏷠(𝐴, 𝑎)-Set.

An argument (provided by Steve Awodey) proceeds as follows: In the context of
𝐴 → Set, because the codomain Set is itself a 1-type (as the type of all 𝑛-types is an (𝑛+1)-
type [138, theorem 7.1.11]), structures at dimension higher than 1 in the domain 𝐴 are
irrelevant, which means that (𝐴 → Set) ≃ (‖𝐴‖􏷠 → Set). (This can also be argued from
the universal property of the 1-truncation of𝐴.) Moreover, the 1-truncation of a pointed,
0-connected type 𝐴 can be represented by its fundamental group 𝜋􏷠(𝐴, 𝑎)where 𝑎 is the
distinguished element,6 and so the type ‖𝐴‖􏷠 → Set is really the collection of functors
from 𝜋􏷠(𝐴, 𝑎) (as a category) to Set, or simply 𝜋􏷠(𝐴, 𝑎)-sets. However, this argument
relies on several components that were not available at the time of development; the
following is a more elementary type-theoretic proof:

Proof. The standard methodology to show equivalence in UniTT+hit is to establish two
functions inverse to each other. That is, wewant to establish two functions from covering
spaces 𝐴 → Set to group sets 𝜋􏷠(𝐴)-Set and vice versa, and show that the round-trips
are the identity function.

The direction from covering spaces 𝐴 → Set to group sets 𝜋􏷠(𝐴)-Set is relatively
straightforward: the group set should capture a representative fiber with isomorphisms

6The equivalence between ‖𝐴‖􏷪 and the Eilenberg–Mac Lane space 𝐾(𝜋􏷪(𝐴, 𝑎), 􏷠) was mechanized by
Floris van Doorn in the library of Lean [106]. We are not aware of any publication regarding this result in
UniTT+hit at the time of writing.

51



between fibers. Since the base type 𝐴 is 0-connected, every fiber is equally qualified,
and so we choose the one over the distinguished element 𝑎. Moreover, recall that the
isomorphism forced by an identification in the base type, as discussed in section 3.1, is
the transport function. Putting these together, we can define a 𝜋􏷠(𝐴)-set from a covering
space 𝐹 ∶ 𝐴 → Set by taking

El ∶≡ 𝐹(𝑎)
𝛼 ∶≡ 𝜆𝑥.𝜆𝑔.transport􏷟[𝑥.𝐹(𝑥)](𝑔; 𝑥)

with properties 𝛼-unit and 𝛼-comp derived from functoriality of transports. The reason
that we only have to record the automorphisms of 𝐹(𝑎) forced by loops at 𝑎 (instead of
all isomorphisms between all fibers) is because 𝐴 is 0-connected; intuitively, one can
continuously merge all the points in a 0-connected type into 𝑎, leaving only loops at 𝑎,
which force those automorphisms.

The other direction, from group sets 𝑋 ∶ 𝜋􏷠(𝐴)-Set to covering spaces, is more tech-
nically involved. A good guide is to focus on a group set generated from some covering
space 𝐹′ ∶ 𝐴 → Set through the above process; if the theorem is true, we should be able
to recreate a covering space 𝐹 equivalent to 𝐹′. A key observation is that every element
in any fiber of 𝐹′ is a result of transporting some element in 𝐹′(𝑎) to that fiber, and 𝑋 was
exactly defined to be the source fiber 𝐹′(𝑎). Thus, one idea is to populate the new family
𝐹 with formal transports from 𝑋 quotiented by the supposed functoriality of transports and the
agreement with 𝛼, in the hope to mimic the real transports in 𝐹′. Formally, we say 𝐹 is a
family of set quotients

𝐹 ∶≡ 𝜆𝑏.(𝑋 × ‖𝑎 =𝐴 𝑏‖􏷟)/ ∼𝑏

by some relation ∼𝑏 to be defined. It turns out that the functoriality of transports and
the agreement with 𝛼 can be succinctly summarized as

⟨𝛼(𝑥, ℓ); 𝑝⟩ ∼𝑏 ⟨𝑥; ℓ � 𝑝⟩

for any 𝑥 ∶ 𝑋, ℓ ∶ ‖𝑎 = 𝑎‖􏷟 and 𝑝 ∶ ‖𝑎 = 𝑏‖􏷟. This completes the construction of the new
covering space 𝐹.

The next step is to show that these two functions are indeed inverse to each other.
The most interesting part lies in proving that the covering space 𝐹 reconstructed above
is indeed equivalent to the original 𝐹′: Following the standard recipe of equivalence, two
functions back and forth are needed for the equivalence between two covering spaces.
While the direction from 𝐹 to 𝐹′ is simply realizing the formal transports, the other direc-
tion is somewhat unclear—given an element 𝑦 in the fiber 𝐹′(𝑏), how shall we locate an
element 𝑥 in 𝐹(𝑎) and compute a truncated identification 𝑝 such that 𝑦 will be the result
of transporting 𝑥 along 𝑝?

Recall that the connectivity of 𝐴 implies that there is a (−1)-truncated identification
between any two elements. That is, for any element 𝑏 ∶ 𝐴 we have a truncated identifi-
cation 𝑝 ∶ ‖𝑎 =𝐴 𝑏‖−􏷠. One attempt is then to transport 𝑦 along the inverse of 𝑝 to some
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element 𝑥 in 𝐹(𝑎), for transporting 𝑥 back along 𝑝 should cancel the opposite transporta-
tion and recover 𝑦; the pair ⟨𝑥; 𝑝⟩ in 𝐹(𝑏) then corresponds to 𝑦.

The only problem is that the identification is (−1)-truncated but the above construc-
tion is at the set level. This is where lemma 3.1.6 comes to rescue: we can show that dif-
ferent choices of identifications between 𝑎 and 𝑏 result into pairs related by the quotient
relation imposed on 𝐹(𝑏), and then by lemma 3.1.6 we can extend the above construction
to (−1)-truncated identifications.

In the remainder of this section, we will carefully construct the function from 𝐹′ to 𝐹
sketched above. For any point 𝑏 ∶ 𝐴, we have a function 𝑓𝑏 ∶ 𝐹′(𝑏) → (𝑎 =𝐴 𝑏) → 𝐹(𝑏) as

𝑓𝑏 ∶≡ 𝜆𝑦.𝜆𝑝.􏿰􏾊transport􏷟[𝑥.𝐹
′(𝑥)]􏿴|𝑝|􏷟−􏷠; 𝑦􏿷; |𝑝|􏷟􏽽􏿳,

which transports 𝑦 to some point in 𝐹(𝑎). It is the second argument to the function 𝑓𝑏 that
is at the mismatched truncation level. We want to show lemma 3.1.6 applies to 𝑓𝑏(𝑦, −)
for any 𝑦 ∶ 𝐹′(𝑏) so that a (−1)-truncated identification suffices. To satisfy the constancy
condition in lemma 3.1.6, it is sufficient to demonstrate that for any two identifications
𝑝, 𝑞 of type 𝑎 =𝐴 𝑏

􏾊transport􏷟[𝑥.𝐹
′(𝑥)]􏿴|𝑝|􏷟−􏷠; 𝑦􏿷; |𝑝|􏷟􏽽 ∼𝑏 􏾊transport􏷟[𝑥.𝐹

′(𝑥)]􏿴|𝑞|􏷟−􏷠; 𝑦􏿷; |𝑞|􏷟􏽽

where∼𝑏 is the quotient relation of 𝐹(𝑏) and thus 𝑓𝑏(𝑦, 𝑝) =𝐹(𝑏) 𝑓𝑏(𝑦, 𝑞). This can be proved
by the groupoid laws of identification and the definition of ∼𝑏; we have

􏾊transport􏷟[𝑥.𝐹
′(𝑥)]􏿴|𝑝|􏷟−􏷠; 𝑦􏿷; |𝑝|􏷟􏽽

= 􏾊transport􏷟[𝑥.𝐹
′(𝑥)]􏿴|𝑝|􏷟−􏷠; 𝑦􏿷; |𝑝|􏷟 � |𝑞|􏷟−􏷠 � |𝑞|􏷟􏽽

∼𝑏 􏾋𝛼􏿵transport􏷟[𝑥.𝐹
′(𝑥)]􏿴|𝑝|􏷟−􏷠; 𝑦􏿷, |𝑝|􏷟 � |𝑞|􏷟−􏷠􏿸; |𝑞|􏷟􏽾

≡ 􏾋transport􏷟[𝑥.𝐹
′(𝑥)]􏿵|𝑝|􏷟 � |𝑞|􏷟−􏷠; transport􏷟[𝑥.𝐹

′(𝑥)]􏿴|𝑝|􏷟−􏷠; 𝑦􏿷􏿸; |𝑞|􏷟􏽾

= 􏾊transport􏷟[𝑥.𝐹
′(𝑥)]􏿴|𝑝|􏷟−􏷠 � |𝑝|􏷟 � |𝑞|􏷟−􏷠; 𝑦􏿷; |𝑞|􏷟􏽽

= 􏾊transport􏷟[𝑥.𝐹
′(𝑥)]􏿴|𝑞|􏷟−􏷠; 𝑦􏿷; |𝑞|􏷟􏽽.

This means 𝑓𝑏(𝑦, −) is (pairwise) constant, and thus by lemma 3.1.6 there exists an exten-
sion 𝑔𝑏,𝑦 ∶ ‖𝑎 =𝐴 𝑏‖−􏷠 → 𝐹′(𝑏) to the constant function 𝑓𝑏(𝑦, −). Putting these together, we
have the following function of type 𝐹′(𝑏) → 𝐹(𝑏):

𝜆𝑦.𝑔𝑏,𝑦􏿴𝑝(𝑎, 𝑏)􏿷
where 𝑝(𝑥, 𝑦) is the (−1)-truncated identification between 𝑥 and 𝑦 derived from the con-
nectivity of 𝐴. This concludes the two functions between 𝐹′(𝑏) and 𝐹(𝑏); the remaining
parts of the equivalence proof are a routine calculation.
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Figure 3.10: The lack of a canonical equivalence.

3.2.2 Universal Covering Spaces
In addition to the representation theorem, we also mechanize several well-known prop-
erties about a special covering space, the universal covering space, which is intuitively the
most general or the most “unfolded” covering space over a type. It has two equivalent
definitions, one based on connectivity and one based on initiality (and hence the name
universal). In addition to the two definitions, when the base type is 0-connected it is also
represented by the fundamental group—which is itself a 𝜋􏷠(𝐴, 𝑎)-set—through the rep-
resentation theorem in section 3.2.1; this argument was implicitly used in for example
the calculation about the fundamental group of the circle in [93] and here we show a
general result.

In this subsection the base type is fixed to be a type 𝐴 with a distinguished point 𝑎.

Definition 3.2.3 (pointed covering space). A pointed covering space is a covering space
whose fiber over 𝑎 is pointed.

Definition 3.2.4 (universal covering space). A universal covering space is a pointed cover-
ing space whose total space is 1-connected.

The reason we stipulated a point in the specific fiber over the specific point is to
make available a canonical choice among fiberwise equivalents. Considering the helix
in fig. 3.10, the universal covering space over the circle whose fundamental group is ℤ,
there are multiple different equivalences betweenℤ and any fiber of the helix, and there
is no canonical choice—until we pin down a particular point in the helix and demand it
be mapped to zero. To fit the notion of fiberwise equivalences, distinguished points of
different covering spaces should be in the matching fibers, and thus we further demand
the distinguished point lie in the fiber over the point 𝑎.

As hinted above, the following definition should be equivalent.

Definition 3.2.5 (alternative definition of universal covering space). A universal covering
space is a covering space that is (homotopy) initial in the category of pointed covering
spaces with point-preserving fiberwise functions as morphisms.

The main observation to unify all these properties and simplify the proving is that
the covering space consisting of 0-truncated identifications from the distinguished point

𝑃 ∶≡ 𝜆𝑏.􏿎𝑎 =𝐴 𝑏􏿎􏷟
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with its owndistinguished point refl𝑎 in𝑃(𝑎) is the universal covering space. Thismeans
that it suffices to show the covering space 𝑃 is the one and only pointed covering space
satisfying the two definitions of universal covering spaces, and that it is represented by
the fundamental group. In fact, its correspondence to the fundamental group is trivial
because its fiber over the distinguished point 𝑎 is exactly (the underlying set of) the fun-
damental group, and it is not difficult to prove the group action is the concatenation.
The rest of the section is dedicated to the two equivalent definitions.

First of all, we will show 𝑃 is the one and only 1-connected covering space.

Lemma 3.2.6. The total space of 𝑃 is 1-connected.

Proof. To show that the total space is 1-connected, by definition it suffices to show that
the 1-truncation of ∑𝑏∶𝐴 𝑃(𝑏) is contractible, which means the 1-truncation is inhabited
and there is an identification to any element in that truncation. The truncated pair
|⟨𝑎; refl𝑎⟩|􏷠 is clearly an inhabitant, and the identification between |⟨𝑎; refl𝑎⟩|􏷠 and some
other truncated pair |⟨𝑏; 𝑝⟩|􏷠 can be established by applying the identification elimination
on 𝑝.

Lemma 3.2.7. Any pointed covering space whose total space is 1-connected is equivalent to 𝑃.

Proof. Let 𝐹 be a pointed covering spacewhose total space is 1-connected. Once againwe
will follow the recipe of equivalence by establishing two functions inverse to each other.
The direction from 𝑃 to 𝐹 can be done fiberwise by transports; that is, for any 𝑏 ∶ 𝐴, we
can define a function from 𝑃(𝑏) to 𝐹(𝑏) as evaluating the transport of the distinguished
point in 𝐹(𝑎) along the input in 𝑃(𝑏) (which is a truncated identification from 𝑎 to 𝑏) to
the fiber 𝐹(𝑏). Formally, it is

𝜆𝑝.transport􏷟[𝑥.𝐹(𝑥)]􏿴𝑝; 𝑎
∗
𝐹􏿷

where 𝑎∗𝐹 is the distinguished point of 𝐹 over 𝑎. The other direction is to exploit the 1-
connectivity: for any point 𝑦 in the total space of 𝐹, there is a 0-truncated identification
from the distinguished point ⟨𝑎; 𝑎∗𝐹⟩ to 𝑦 in the total space, which can then be “projected
down” to the base type as a 0-truncated identification from the point 𝑎 to the point over
which 𝑦 is. The projection of the 0-truncated identification is done by applying ap

fst
. It

can then be shown that these two functions are inverse to each other.

Lemmas 3.2.6 and 3.2.7 tell us 𝑃 is the only 1-connected universal covering space.
Thus the remaining step is to prove that 𝑃 is the initial object in the category up to ho-
motopy. Note that we did not explicitly define the category but directly talked about its
morphisms.

Lemma 3.2.8. For any pointed covering space 𝐹, there exists one and only one point-preserving
fiberwise function from 𝑃 to 𝐹.
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Figure 3.11: Identifications in a pushout.

Proof. The existence is again by transporting the distinguishedpoint of 𝐹 along the points
in 𝑃, which are themselves 0-truncated identifications. The uniqueness is by applying
the identification elimination on points in the total space 𝑃, which suggests we only have
to consider the case refl𝑎, the distinguished point of 𝑃. However, a point-preserving
function must send refl𝑎 to the distinguished point of 𝐹, and thus all such functions
must agree.

Now we can conclude this section by the following theorem:

Theorem 3.2.9. The covering space 𝑃 with refl𝑎 as its distinguished point is the universal cov-
ering and is represented by the fundamental group of the base type if the base type is 0-connected.

Proof. By Lemmas 3.2.6 to 3.2.8 and the definition of 𝑃.

3.3 The Seifert–van Kampen Theorem
This is based on the joint work with Michael Shulman [72] but the text was rewritten.
The Seifert–van Kampen theorem computes the fundamental groupoid of a pushout 𝑃 ∶≡
𝐴 ⊔𝐶;𝑓;𝑔 𝐵 from those groupoids of individual parts 𝐴, 𝐵 and 𝐶; the fundamental group
of a pushout is then a corollary of the theorem. The significance comes from the fact that
many types of homotopy-theoretic interest can be constructed from pushouts.

Recall that a fundamental groupoid is essentially the 0-truncated identification. The
intuition is that a (0-truncated) identification in a pushout must be an identification
touching either side alternatively, as shown in fig. 3.11. To make this precise, a family
of sets code ∶ 𝑃 → 𝑃 →U will be defined in a way that each fiber is obviously a type of
alternative sequences of identifications connected by bridges generated by 𝐶, and then I
will show why code(𝑎, 𝑏) and ‖𝑎 =𝑃 𝑏‖􏷟 are isomorphic.

The family of sets code is actually the pushout in the category of groupoids, and thus
the theorem can be summarized nicely as the commutativity between the fundamental
groupoid functor and pushout construction. However, the combinatorial description is
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probably more useful for calculation, and I did not mechanize that code indeed forms
a pushout partly due to insufficient development of groupoid theory in our Agda code-
base. Mechanizing this fact should not be too difficult with proper library support.

We also showan improvedversion, where the apex of the pushout span𝐶 is equipped
with a surjective function ℎ from some set 𝐷 to 𝐶, and the connecting bridges shown in
fig. 3.11 are restricted to the ones indexed by ℎ(𝑑) for some 𝑑 ∶ 𝐷. The motivation is to
make more explicit the hidden complexity of the naïve code from higher-dimensional
structures in 𝐶. For example, when 𝐶 is 𝕊􏷠, one can select 𝟙 as 𝐷 and 𝜆 .base as ℎ,
which forces all bridges in code to be indexed by base and further reveals the higher-
dimensional structures generated by loop.

It turns out the improved theorem works even if 𝐷 might not be a set, as long as ℎ
stays surjective; in particular, the naïve version can be recovered by choosing 𝐶 itself as
𝐷 and the identity function of 𝐶 as ℎ. In the following sections, however, we will still
discuss the naïve version first and then show the improved version.

Since the naïve version can be recovered from the improved one, only the latter re-
mains in the final version of mechanization. Overall, the structure of the Agda mecha-
nization follows closely the informal argument. The combinatorial description code is
defined in 600 lines of Agda code, and the entire mechanization is of roughly 1,200 lines.

Remark 3.3.1. There are many different theorems called Seifert–van Kampen in the clas-
sical literature, for example some assuming 𝐶 ∶≡ 𝟙 and calculating the fundamental
groups. Our version, especially the improved one, should match most versions up to
homotopy (or be more powerful).

Remark 3.3.2. The section uses lemma 3.1.7 to reorganize the proofs in our paper [72] so
that only standard higher inductive types are used: pushouts, truncation and set quo-
tients. The mechanization was also redone accordingly.

3.3.1 The Naïve Version

Let 𝑓 ∶ 𝐶 → 𝐴 and 𝑔 ∶ 𝐶 → 𝐵 be given functions and 𝑃 ∶≡ 𝐴 ⊔𝐶;𝑓;𝑔 𝐵 be their pushout.
The first step is to define a family of sets code ∶ 𝑃 → 𝑃 → U that should match the
0-truncated identification. By applying the univalence axiom and the (non-dependent)
pushout elimination on both arguments, we need to consider several base cases and the
coherence conditions among them induced by glue. There are four base cases:

• code(left(𝑎􏷟), left(𝑎􏷠)) representing identifications from 𝐴 to 𝐴, and

• code(left(𝑎􏷟), right(𝑏􏷠)) representing identifications from 𝐴 to 𝐵, and

• code(right(𝑏􏷟), left(𝑎􏷠)) representing identifications from 𝐵 to 𝐴, and

• code(right(𝑏􏷟), right(𝑏􏷠)) representing identifications from 𝐵 to 𝐵,
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each being a set quotient of raw alternative sequences by some quotient relation making
raw sequences behave like identifications. The coherence conditions, by the univalence
axiom, include four equivalences,

􏾟
𝑎∶𝐴

􏾟
𝑐∶𝐶

code(left(𝑎), left(𝑓(𝑐))) ≃ code(left(𝑎), right(𝑔(𝑐)))

􏾟
𝑏∶𝐴

􏾟
𝑐∶𝐶

code(right(𝑏), left(𝑓(𝑐))) ≃ code(right(𝑏), right(𝑔(𝑐)))

􏾟
𝑎∶𝐴

􏾟
𝑐∶𝐶

code(left(𝑓(𝑐)), left(𝑎)) ≃ code(right(𝑔(𝑐)), left(𝑎))

􏾟
𝑏∶𝐴

􏾟
𝑐∶𝐶

code(left(𝑓(𝑐)), right(𝑏)) ≃ code(right(𝑔(𝑐)), right(𝑏)),

and a final coherence condition on these equivalences concerning the commutativity of
the following square for all 𝑐􏷟, 𝑐􏷠 of type 𝐶:

code(left(𝑓(𝑐􏷟)), left(𝑓(𝑐􏷠))) code(left(𝑓(𝑐􏷟)), right(𝑔(𝑐􏷠)))

code(right(𝑔(𝑐􏷟)), left(𝑓(𝑐􏷠))) code(right(𝑔(𝑐􏷟)), right(𝑔(𝑐􏷠))).

Our plan is to define these quotients separately and then show they satisfy all coherence
conditions imposed by glue.

Four base cases. It turns out to be easier to define two raw sequences at once as mutu-
ally recursive inductive types. More precisely, let precode

AA
∶ 𝐴 → 𝐴 →U be the family

of raw sequences for the first case and precode
AB

∶ 𝐴 → 𝐵 → U for the second case;
they can be defined with these three generators by considering the last bridge crossed
(if any):

• A generator meaning an identification without crossing:

startAA ∶ 􏾟
𝑎􏷩∶𝐴

􏾟
𝑎􏷪∶𝐴

‖𝑎􏷟 = 𝑎􏷠‖􏷟 → precode
AA
(𝑎􏷟, 𝑎􏷠)

• Two generators meaning the last bridge is indexed by 𝑐:

append
AA

∶ 􏾟
𝑎􏷩∶𝐴

􏾟
𝑐∶𝐶

􏾟
𝑎􏷪∶𝐴

precode
AB
(𝑎􏷟, 𝑔(𝑐)) → ‖𝑓(𝑐) = 𝑎􏷠‖􏷟 → precode

AA
(𝑎􏷟, 𝑎􏷠)

append
AB

∶ 􏾟
𝑎􏷩∶𝐴

􏾟
𝑐∶𝐶

􏾟
𝑏􏷪∶𝐵

precode
AA
(𝑎􏷟, 𝑓(𝑐)) → ‖𝑔(𝑐) = 𝑏􏷠‖􏷟 → precode

AB
(𝑎􏷟, 𝑏􏷠)
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Then, the families of set quotients code(left(−), left(−)) and code(left(−), right(−)) are
constructed with respect to some relations

precode-rel
AA

∶ 􏾟
𝑎􏷩∶𝐴

􏾟
𝑎􏷪∶𝐴

precode
AA
(𝑎􏷟, 𝑎􏷠) → precode

AA
(𝑎􏷟, 𝑎􏷠) →U

precode-rel
AB

∶ 􏾟
𝑎􏷩∶𝐴

􏾟
𝑏􏷪∶𝐵

precode
AB
(𝑎􏷟, 𝑏􏷠) → precode

AB
(𝑎􏷟, 𝑏􏷠) →U .

The intuition is that crossing a bridge and then immediately traveling back should be
identified as not moving; this is obviously true for real identification and is enough to
make the raw sequences behave as identification. Let

[𝑎􏷟, 𝑝􏷟, 𝑐􏷟, 𝑞􏷟, 𝑐′􏷟, … , 𝑝𝑛, 𝑎􏷠] and [𝑎􏷟, 𝑝􏷟, 𝑐􏷟, 𝑞􏷟, 𝑐′􏷟, … , 𝑞𝑛, 𝑏􏷠]

be the convenient flat-out notation for alternative sequences, where data at even posi-
tions, 𝑝𝑖’s and 𝑞𝑖’s, are 0-truncated identifications, and data at odd positions refer to end
points of adjacent identifications. The above intuition can be phrased as the following
two equations:

[… , 𝑝𝑖, 𝑐𝑖, refl𝑔(𝑐𝑖), 𝑐𝑖, 𝑝𝑖+􏷠, …] = [… , 𝑝𝑖 � 𝑝𝑖+􏷠, …]
[… , 𝑞𝑖, 𝑐′𝑖 , refl𝑓(𝑐′𝑖 ), 𝑐

′
𝑖 , 𝑞𝑖+􏷠, …] = [… , 𝑞𝑖 � 𝑞𝑖+􏷠, …]

This can be viewed as removing the crossing of the same bridge twice in a row:

𝐴 𝐵
𝐶

𝑐𝑖
𝑔(𝑐𝑖)

𝑓(𝑐𝑖)
=

𝐴 𝐵
𝐶

𝑔(𝑐𝑖)

By the elimination rules of identification and truncation, it suffices to consider the cases
where 𝑝𝑖 or 𝑞𝑖 is reflexivity; in other words, it is sufficient to remove any two consecutive
reflexivity identifications:

[… , 𝑞, 𝑐, refl𝑓(𝑐), 𝑐, refl𝑔(𝑐), 𝑐, 𝑝, …] = [… , 𝑞, 𝑝, …]
[… , 𝑝, 𝑐, refl𝑔(𝑐), 𝑐, refl𝑓(𝑐), 𝑐, 𝑞, …] = [… , 𝑝, 𝑞, …]

This can be visualized as the cases where the same bridge is crossed three times in a row:

𝐴 𝐵
𝐶

𝑐

𝑔(𝑐)𝑓(𝑐)
=

𝐴 𝐵
𝐶

𝑐

𝑔(𝑐)𝑓(𝑐)
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Formally, this quotient can be implemented by populating the quotient relations with
the following four generators.

• Two generators for the removal of two reflexivity identifications at the very end:

refl-reflAA ∶ 􏾟
𝑎􏷩∶𝐴

􏾟
𝑐∶𝐶

􏾟
(𝛼∶precode

AA
(𝑎􏷩,𝑓(𝑐)))

precode-rel
AA
(append

AA
(𝑐, append

AB
(𝑐, 𝛼, refl𝑔(𝑐)), refl𝑓(𝑐)), 𝑝𝑐)

refl-reflAB ∶ 􏾟
𝑎􏷩∶𝐴

􏾟
𝑐∶𝐶

􏾟
(𝛽∶precode

AB
(𝑎􏷩,𝑔(𝑐)))

precode-rel
AB
(append

AB
(𝑐, append

AB
(𝑐, 𝛽, refl𝑓(𝑐)), refl𝑔(𝑐)), 𝑝𝑐)

• Two generators for congruence:

cong
AA

∶ 􏾟
𝑎􏷩∶𝐴

􏾟
𝑐∶𝐶

􏾟
𝑎􏷪∶𝐴

􏾟
(𝛽􏷩∶precodeAB(𝑎􏷩,𝑔(𝑐)))

􏾟
(𝛽􏷪∶precodeAB(𝑎􏷩,𝑔(𝑐)))

􏾟
(𝑝∶‖𝑓(𝑐)=𝑏􏷪‖􏷩)

precode-rel
AB
(𝑎􏷟, 𝑔(𝑐), 𝛽􏷟, 𝛽􏷠) → precode-rel

AA
(𝑎􏷟, 𝑎􏷠, appendAA(𝑐, 𝛽􏷟, 𝑝), appendAA(𝑐, 𝛽􏷠, 𝑝))

cong
AB

∶ 􏾟
𝑎􏷩∶𝐴

􏾟
𝑐∶𝐶

􏾟
𝑏􏷪∶𝐵

􏾟
(𝛼􏷩∶precodeAA(𝑎􏷩,𝑓(𝑐)))

􏾟
(𝛼􏷪∶precodeAA(𝑎􏷩,𝑓(𝑐)))

􏾟
(𝑝∶‖𝑔(𝑐)=𝑏􏷪‖􏷩)

precode-rel
AA
(𝑎􏷟, 𝑓(𝑐), 𝛼􏷟, 𝛼􏷠) → precode-rel

AB
(𝑎􏷟, 𝑏􏷠, appendAB(𝑐, 𝛼􏷟, 𝑝), appendAB(𝑐, 𝛼􏷠, 𝑝))

The families of set quotients are then defined as follows:

code(left(𝑎􏷟), left(𝑎􏷠)) ∶≡ precode
AA
(𝑎􏷟, 𝑎􏷠)⁄precode-relAA(𝑎􏷟, 𝑎􏷠)

code(left(𝑎􏷟), right(𝑏􏷠)) ∶≡ precode
AB
(𝑎􏷟, 𝑏􏷠)⁄precode-relAB(𝑎􏷟, 𝑏􏷠).

The other two families of sets, code(right(−), left(−)) and code(right(−), right(−)) are
defined using the same construction.

Four equivalences. As a reminder, we need to establish

􏾟
𝑎∶𝐴

􏾟
𝑐∶𝐶

code(left(𝑎), left(𝑓(𝑐))) ≃ code(left(𝑎), right(𝑔(𝑐)))

􏾟
𝑏∶𝐴

􏾟
𝑐∶𝐶

code(right(𝑏), left(𝑓(𝑐))) ≃ code(right(𝑏), right(𝑔(𝑐)))

􏾟
𝑎∶𝐴

􏾟
𝑐∶𝐶

code(left(𝑓(𝑐)), left(𝑎)) ≃ code(right(𝑔(𝑐)), left(𝑎))

􏾟
𝑏∶𝐴

􏾟
𝑐∶𝐶

code(left(𝑓(𝑐)), right(𝑏)) ≃ code(right(𝑔(𝑐)), right(𝑏)).
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The first equivalence between code(left(𝑎), left(𝑓(𝑐))) and code(left(𝑎), right(𝑔(𝑐))) is
simply appending reflexivity as follows:

[… , 𝑓(𝑐)] ↦ [… , 𝑐, refl𝑔(𝑐), 𝑔(𝑐)]
[… , 𝑐, refl𝑓(𝑐), 𝑓(𝑐)] ↤ [… , 𝑔(𝑐)]

which respects all the equations imposed by the quotient relations. Round trips are the
identity function because the quotient relations will kill two consecutive reflexivity iden-
tifications at the end. The other three equivalences are essentially the same.

The commuting square. The equivalences in the diagram are all about adding reflex-
ivity at the beginning or at the end. In this case, the commutativity basically states that
appending an identification and then prepending another is the same as doing them in
the other order, which can be verified by a routine calculation.

With these components one can assemble individual pieces into a coherent family of
sets code, concluding the construction of the combinatorial description. We are ready to
state the theorem.

Theorem 3.3.3 (naïve Seifert–van Kampen).

􏾟
𝑢,𝑣∶𝑃

‖𝑢 =𝑃 𝑣‖􏷟 ≃ code(𝑢, 𝑣).

Proof. Again, we follow the standard recipe of equivalence by showing two functions
inverse to each other. The encoding function is defined using transport:

encode ∶≡ 𝜆(𝑢, 𝑣∶𝑃).𝜆􏿴𝑝∶‖𝑢 =𝑃 𝑣‖􏷟􏿷.transport􏷟[𝑣.code(𝑢, 𝑣)]􏿴𝑝; encode-refl(𝑢)􏿷

assuming we have the proof for the reflexivity case:

encode-refl ∶ 􏾟
𝑢∶𝑃

code(𝑢, 𝑢).

By pushout elimination, it suffices to provide these components:

• An element 𝑐𝐴 of type 􏾟
𝑎∶𝐴

code(left(𝑎), left(𝑎)).

• An element 𝑐𝐵 of type 􏾟
𝑏∶𝐵

code(right(𝑏), right(𝑏)).

• 􏾟
𝑐∶𝐶

𝑐𝐴(𝑓(𝑐)) =
𝑢.code(𝑢,𝑢)
glue(𝑐) 𝑐𝐵(𝑔(𝑐)).
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The first two are easily satisfied by [𝑎, refl𝑎, 𝑎] and [𝑏, refl𝑏, 𝑏]. The third component can
be equivalently expressed in terms of transport:

􏾟
𝑐∶𝐶

transport[𝑢.code(𝑢, 𝑢)]􏿵glue(𝑐); 􏿮𝑓(𝑐), refl𝑓(𝑐), 𝑓(𝑐)􏿱􏿸 = 􏿮𝑔(𝑐), refl𝑔(𝑐), 𝑔(𝑐)􏿱.

The transport along glue will essentially extract the equivalence data used in building
the family of sets code; this transport, in particular, is moving from the upper left corner
to the bottom right corner in the commuting square

code(left(𝑓(𝑐􏷟)), left(𝑓(𝑐􏷠))) code(left(𝑓(𝑐􏷟)), right(𝑔(𝑐􏷠)))

code(right(𝑔(𝑐􏷟)), left(𝑓(𝑐􏷠))) code(right(𝑔(𝑐􏷟)), right(𝑔(𝑐􏷠))).

Therefore, this transport is prepending and appending reflexivity on both ends. In other
words, it suffices to show

􏾟
𝑐∶𝐶

􏿮𝑔(𝑐), refl𝑔(𝑐), 𝑐, refl𝑓(𝑐), 𝑐, refl𝑔(𝑐), 𝑔(𝑐)􏿱 = 􏿮𝑔(𝑐), refl𝑔(𝑐), 𝑔(𝑐)􏿱

which is obvious from the quotient relations.
The other direction that decodes sequences is done by connecting fragmented iden-

tifications into one. This again respects the quotient relations because the quotient rela-
tions are designed to mimic real identification.

The round trip from truncated identification is again by elimination of identification
and truncation. The round trip from code, on the other hand, is by induction on the
alternative sequences; the critical step is to prove the following two equations where ++
is the code concatenation:

encode(decode([… , 𝑐, 𝑝, 𝑎])) = encode(decode([… , 𝑔(𝑐)])) ++ [𝑓(𝑐), 𝑝, 𝑎]
encode(decode([… , 𝑐, 𝑞, 𝑏])) = encode(decode([… , 𝑓(𝑐)])) ++ [𝑔(𝑐), 𝑞, 𝑏]
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These are true because

encode􏿵decode􏿴[… , 𝑐, 𝑝, 𝑎]􏿷􏿸

the definition of decoding function

≡ encode􏿵decode􏿴[… , 𝑔(𝑐)]􏿷 � glue(𝑐)−􏷠 � ap𝑓(𝑝)􏿸

functoriality of transport

= transport􏷟[𝑣.code(𝑢, 𝑣)]􏿵ap𝑓(𝑝); transport􏷟[𝑣.code(𝑢, 𝑣)]􏿴glue(𝑐)
−􏷠; encode(decode([… , 𝑔(𝑐)]))􏿷􏿸

transport along glue(𝑐) reveals the inverse function of the equivalence

= transport􏷟[𝑣.code(𝑢, 𝑣)]􏿴ap𝑓(𝑝); encode(decode([… , 𝑔(𝑐)])) ++ [𝑓(𝑐), refl𝑓(𝑐), 𝑓(𝑐)]􏿷

transport along ap𝑓(𝑝) at the second position extends the code;
this can be shown by considering the case 𝑝 is reflexivity

= encode􏿴decode([… , 𝑔(𝑐)])􏿷 ++ [𝑓(𝑐), 𝑝, 𝑎]

and the other case is similar. This concludes the equivalence and thus the theorem.

3.3.2 Improvement with an Index Type
The improvement of Seifert–van Kampen presented now is motivated by a similar im-
provement in the classical theory, where 𝐶 is equipped with a set of base points 𝐷, even
though it turns out to be unnecessary for our proof to assume𝐷 to be actually a set, and
the original version can be recovered as a result.

What is important is that 𝐷 merely contains at least one element in each connected
component of 𝐶, or equivalently there is a surjective function ℎ ∶ 𝐷 → 𝐶. Through
lemma 3.1.7 on page 48, proving any theorem about 𝐶 is essentially a matter of proving
the theorem about 𝐷 and showing relative constancy.

The new code ∶ 𝑃 → 𝑃 →U is again defined by applying (non-dependent) pushout
elimination on both arguments. The difference from the old one is that bridges are now
indexed by ℎ(𝑑) for some 𝑑 ∶ 𝐷 instead of a general 𝑐 ∶ 𝐶. More precisely, the generators
append

AA
and append

AB
are replaced by

append
AA

∶ 􏾟
𝑎􏷩∶𝐴

􏾟
𝑑∶𝐷

􏾟
𝑎􏷪∶𝐴

precode
AB
(𝑎􏷟, 𝑔(ℎ(𝑑))) → ‖𝑓(ℎ(𝑑)) = 𝑎􏷠‖􏷟 → precode

AA
(𝑎􏷟, 𝑎􏷠)

append
AB

∶ 􏾟
𝑎􏷩∶𝐴

􏾟
𝑑∶𝐷

􏾟
𝑏􏷪∶𝐵

precode
AA
(𝑎􏷟, 𝑓(ℎ(𝑑))) → ‖𝑔(ℎ(𝑑)) = 𝑏􏷠‖􏷟 → precode

AB
(𝑎􏷟, 𝑏􏷠).

A similar change is made to the other two base cases precode
BA

and precode
BB
. Let

[𝑎􏷟, 𝑝􏷟, 𝑑􏷟, 𝑞􏷟, 𝑑′􏷟, … , 𝑝𝑛, 𝑎􏷠] and [𝑎􏷟, 𝑝􏷟, 𝑑􏷟, 𝑞􏷟, 𝑑′􏷟, … , 𝑞𝑛, 𝑏􏷠]
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be the new flat-out notation with 𝑑’s instead of 𝑐’s. In order to establish the required
equivalences later, the new quotients receive a new equation

[… , 𝑑􏷟, ap𝑓(𝑝), 𝑑􏷠, refl𝑔(ℎ(𝑑􏷪)), 𝑑􏷠, …] = [… , 𝑑􏷟, refl𝑓(ℎ(𝑑􏷩)), 𝑑􏷟, ap𝑔(𝑝), 𝑑􏷠, …]

which says the image of an identification 𝑝 in𝐶 on different sides are identified. This was
derivable in the original code by identification elimination on 𝑝, but not obviously deriv-
able now because none of the end points of 𝑝 ∶ ‖ℎ(𝑑􏷟) = ℎ(𝑑􏷠)‖􏷟 are free and thus identifi-
cation elimination is not directly applicable. Formally, the equation is implemented by
a new generator for the relation precode-rel

AB
,

switchAB ∶ 􏾟
𝑎􏷩∶𝐴

􏾟
𝑑􏷩∶𝐷

􏾟
𝑑􏷪∶𝐷

􏾟
(𝛽∶precode

AB
(𝑎􏷩,𝑔(ℎ(𝑑􏷩))))

􏾟
(𝑝∶‖ℎ(𝑑􏷩)=ℎ(𝑑􏷪)‖􏷩)

→ precode-rel
AB
(append

AB
(𝑑􏷠, appendAA(𝑑􏷟, 𝛽, ap𝑓(𝑝)), refl𝑔(ℎ(𝑑􏷪))),

append
AB
(𝑑􏷟, appendAA(𝑑􏷟, 𝛽, refl𝑓(ℎ(𝑑􏷩))), ap𝑔(𝑝)))

and a similar one for precode-rel
BB

with a different starting side.
The four equivalences are essentially the same, which append or prepend reflexivity

to code, except that we have to show relative constancy required by lemma 3.1.7: the
requirement is that the supposed equivalences indexed by 𝐶 must respect any identifi-
cation 𝑟 ∶ ℎ(𝑑􏷟) =𝐶 ℎ(𝑑􏷠). Considering the equivalence between code(left(𝑎), left(𝑓(𝑐)))
and code(left(𝑎), right(𝑔(𝑐))), this boils down to showing commutativity of appending
reflexivity and transporting along the 𝑟 itself; that is,

transport􏿮𝑐.code(left(𝑎), left(𝑓(𝑐)))􏿱􏿴𝑟; [… , 𝑓(ℎ(𝑑􏷟))]􏿷 ++ 􏿮𝑔(ℎ(𝑑􏷠)), refl𝑔(ℎ(𝑑􏷪)), 𝑔(ℎ(𝑑􏷠))􏿱

= transport􏿮𝑐.code(left(𝑎), right(𝑔(𝑐)))􏿱􏿴𝑟; [… , 𝑑􏷟, refl𝑔(ℎ(𝑑􏷩)), 𝑔(ℎ(𝑑􏷟))]􏿷.

This is proved by

transport􏿮𝑐.code(left(𝑎), left(𝑓(𝑐)))􏿱􏿴𝑟; [… , 𝑓(ℎ(𝑑􏷟))]􏿷 ++ 􏿮𝑔(ℎ(𝑑􏷠)), refl𝑔(ℎ(𝑑􏷪)), 𝑔(ℎ(𝑑􏷠))􏿱

by identification elimination on 𝑟 and the quotient relation

= 􏿮… , 𝑑􏷟, refl𝑓(ℎ(𝑑􏷩)), 𝑑􏷟, ap𝑓|𝑟|􏷟, 𝑔(ℎ(𝑑􏷠))􏿱 ++ 􏿮𝑔(ℎ(𝑑􏷠)), refl𝑔(ℎ(𝑑􏷪)), 𝑔(ℎ(𝑑􏷠))􏿱

≡ 􏿮… , 𝑑􏷟, refl𝑓(ℎ(𝑑􏷩)), 𝑑􏷟, ap𝑓|𝑟|􏷟, 𝑑􏷠, refl𝑔(ℎ(𝑑􏷪)), 𝑔(ℎ(𝑑􏷠))􏿱

by switchAB

= 􏿮… , 𝑑􏷟, refl𝑓(ℎ(𝑑􏷪)), 𝑑􏷟, refl𝑔(ℎ(𝑑􏷪)), 𝑑􏷟, ap𝑔|𝑟|􏷟, 𝑔(ℎ(𝑑􏷠))􏿱

by identification elimination on 𝑟 and the quotient relation

= transport􏿮𝑐.code(left(𝑎), right(𝑔(𝑐)))􏿱􏿵𝑟; 􏿮… , 𝑑􏷟, refl𝑔(ℎ(𝑑􏷩)), 𝑔(ℎ(𝑑􏷟))􏿱􏿸.

Other equivalences can be established in a similar way.
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As for the commutativity condition, the constancy requirement is free because the
commutativity itself is a mere proposition. The construction of the new code code(𝑢, 𝑣)
is thus completed.

Theorem 3.3.4 (Seifert–van Kampen with an index type).

􏾟
𝑢,𝑣∶𝑃

‖𝑢 =𝑃 𝑣‖􏷟 ≃ code(𝑢, 𝑣).

Proof. The proof is almost the same except for two spots:

• The new decoding function needs to respect the new equations in the quotient
relation such as switchAB; essentially we want the following identification for any
𝑝 ∶ 𝑐􏷟 = 𝑐􏷠:

ap
left

(ap𝑓(𝑝)) � glue(𝑐􏷠) = glue(𝑐􏷟) � apright(ap𝑔(𝑝))

which is exactly the naturality of glue. This can be shown by identification elimi-
nation on 𝑝.

• When showing the round trip from the code is the identity function, it is critical to
extract the equivalences in code(𝑢, 𝑣) when transporting along glue. This is again
done by lemma 3.1.7, where the required constancy condition is free because an
identification between the round trip and the identity function is a mere proposi-
tion.

3.4 The Blakers–Massey Theorem
This is joint work with Eric Finster, Dan Licata and Peter LeFanu Lumsdaine and this section incorporates
text from the paper [71].
In previous sections we have seen covering spaces and the Seifert–van Kampen theo-
rem for calculating the fundamental groups. Higher homotopy groups, however, defy
a straightforward generalization of those tools. Here we present one of the few known
tools for computing the higher homotopy groups—the Blakers–Massey theorem, which
characterizes the higher homotopy groups of a pushout 𝐴 ⊔𝐶;𝑓;𝑔 𝐵 in a certain range,
depending on the connectivity of 𝑓 and 𝑔.

The theorem states the connectivity of identification generator glue, which links the
structures in the type 𝐶 and those in the pushout (shifted by one dimension), is the sum
of the connectivity levels of 𝑓 and 𝑔; that is, if 𝑓 induces isomorphisms up to dimension𝑚
and 𝑔 up to dimension 𝑛, then the type𝐶 and the pushout share the homotopy groups up
to dimensions 𝑚+ 𝑛. Because information about the homotopy groups of the apex type
𝐶 chosen to make a pushout is often known, this is a useful way to obtain information
about the homotopy groups of the pushout itself. For example, it has as a special case
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the Freudenthal suspension theorem, whichwas used in past mechanization to calculate
the 𝑛𝑡ℎ homotopy group of the 𝑛-dimensional sphere [88] and to verify the correctness of
a construction of Eilenberg–Mac Lane spaces [91], and implies stability of the homotopy
groups of spheres (in a certain range, increasing both the dimension of the sphere and
the homotopy group by one gives the same group).

The Blakers–Massey theorem heavily relies on the connectivity of functions, yet it
is rather clumsy to handle using hfiber. Using the family-as-function correspondence
in section 3.1.7 on page 38, we can transform the pushout 𝐴 ⊔𝐶;𝑓;𝑔 𝐵 into an equivalent
pushout

𝐴 ⊔∑
𝑎∶𝐴

∑
𝑏∶𝐵𝑄(𝑎, 𝑏); 𝑝𝐴; 𝑝𝐵

𝐵

where

𝑄 ∶ 𝐴 → 𝐵 →U
𝑄 ∶≡ 𝜆(𝑎∶𝐴).𝜆(𝑏∶𝐵).􏾜

𝑐∶𝐶
􏿴􏿴𝑓(𝑐) = 𝑎􏿷 × 􏿴𝑔(𝑐) = 𝑏􏿷􏿷

𝑝𝐴 ∶ 􏾜
𝑎∶𝐴

􏾜
𝑏∶𝐵

𝑄(𝑎, 𝑏) → 𝐴 𝑝𝐵 ∶ 􏾜
𝑎∶𝐴

􏾜
𝑏∶𝐵

𝑄(𝑎, 𝑏) → 𝐵

𝑝𝐴 ∶≡ fst 𝑝𝐵 ∶≡ fst ∘ snd.

With the new family 𝑄, the fibers of 𝑓 and 𝑔 can be expressed as follows:

hfiber𝑓(𝑎) ≃ 􏾜
𝑏
𝑄(𝑎, 𝑏)

hfiber𝑔(𝑏) ≃ 􏾜
𝑎
𝑄(𝑎, 𝑏)

and thus the connectivity of 𝑓 and 𝑔, which was defined as connectivity of their fibers,
is now stated as connectivity of ∑𝑏𝑄(𝑎, 𝑏) and ∑

𝑎𝑄(𝑎, 𝑏). This way we can contain the
overwhelming hfiber construction. As a convenient notation, we define qglue𝑎;𝑏 of type
𝑄(𝑎, 𝑏) → left(𝑎) = right(𝑏) to be

qglue𝑎;𝑏 ∶≡ 𝜆(𝑞∶𝑄(𝑎, 𝑏)).glue􏿴⟨𝑎; ⟨𝑏; 𝑞⟩⟩􏿷

and the subscript may be dropped if clear from the context. The remainder of this sec-
tion will directly start from a family of 𝑄 indexed by 𝐴 and 𝐵 along with the canonical
projections 𝑝𝐴 and 𝑝𝐵 defined above.

3.4.1 Formulation
Theorem 3.4.1 (Blakers–Massey theorem). Let 𝐴 and 𝐵 be types, and 𝑄 a family 𝐴 → 𝐵 →
U . Suppose 𝑚, 𝑛 ≥ −1, and for each 𝑎 ∶ 𝐴 the type ∑𝑏∶𝐵𝑄(𝑎, 𝑏) is 𝑚-connected, and dually
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for each 𝑏 ∶ 𝐵 the type ∑
𝑎∶𝐴𝑄(𝑎, 𝑏) is 𝑛-connected. Then for each 𝑎 ∶ 𝐴 and 𝑏 ∶ 𝐵, the map

qglue𝑎;𝑏 ∶ 𝑄(𝑎, 𝑏) → left(𝑎) = right(𝑏) is (𝑚 + 𝑛)-connected, where left(𝑎) = right(𝑏) is
an identification type of the pushout 𝐴 ⊔∑𝑎∶𝐴∑𝑏∶𝐵𝑄(𝑎,𝑏);𝑝𝐴;𝑝𝐵 𝐵 and 𝑝𝐴 and 𝑝𝐵 are the canonical
projections from ∑

𝑎∶𝐴
∑

𝑏∶𝐵𝑄(𝑎, 𝑏) to 𝐴 and 𝐵, respectively.

Remark 3.4.2. Again, as noted in remark 3.1.1, the mechanized version replaces 𝑚 and 𝑛
by succ(𝑚) and succ(𝑛), respectively, replaces 𝑚 + 𝑛 by 𝑚 +̂ 𝑛, and drops the condition
𝑚, 𝑛 ≥ −1. See also section 4.3.

For the rest of this section, fix 𝐴, 𝐵, 𝑄, 𝑚, 𝑛 as in the theorem, and define 𝑃 as the
pushout �_∑_a:A∑_b:BQ(a,b);p_A;p_B for brevity. Unwinding the definition of connec-
tivity of a function, it is the statement:

􏾟
𝑎􏷩∶𝐴

􏾟
𝑏∶𝐵

􏾟
(𝑟∶left(𝑎􏷩)=right(𝑏))

is-connected𝑚+𝑛􏿴hfiberqglue𝑎􏷩;𝑏
(𝑟)􏿷 (3.1)

We single out 𝑎􏷟 with a subscript, because we will fix it throughout the rest of the proof.
Recalling that

is-connected𝑚+𝑛(𝐷) ∶≡ is-contr ‖𝐷‖𝑚+𝑛,

this unwound form of the theorem can be thought of as saying that for every identifica-
tion 𝑟 ∶ left(𝑎􏷟) = right(𝑏), there is an element 𝑞 ∶ 𝑄(𝑎􏷟, 𝑏) (in the domain of qglue𝑎􏷩;𝑏)
that is a kind of explicit representation or canonical form for 𝑟, up to level 𝑚 + 𝑛.

Overall, the (perhaps rather mysterious) connectivity hypotheses are used twice:
once rather weakly, to supply some extra auxiliary assumptions, and once more sub-
stantially to apply the wedge connectivity lemma. It is the wedge connectivity lemma
that gives rise to the additivity of connectivity in the conclusion.

3.4.2 Definition of Code
To prove eq. (3.1), we want to apply identification elimination to the identification 𝑟, so
that we only have to consider the case where 𝑟 is reflexivity. However, by the argument
on page 16, this requires either left(𝑎􏷟) or right(𝑏) to be “free”—generalized over the
whole pushout. So we want to generalize the original goal to the statement

􏾟
𝑝∶𝑃

􏾟
(𝑟∶left(𝑎􏷩)=𝑝)

is-contr􏿴code(𝑝, 𝑟)􏿷 (3.2)

for some family of types
code ∶ 􏾟

𝑝∶𝑃
(left(𝑎􏷟) = 𝑝) →U

such that
code(right(𝑏􏷠), 𝑟) ≡ 􏿎hfiberqglue𝑎􏷩;𝑏􏷪

(𝑟)􏿎𝑚+𝑛.
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Recall that is-connected𝑛(𝐷) is defined as is-contr ‖𝐷‖𝑛, and so, with this definition
of code for right, is-contr(code(right(𝑏􏷠), 𝑟)) is exactly the original goal. The code(𝑝, 𝑟)
can be thought of as a type of explicit characterizations or canonical forms for (the (𝑚+𝑛)-
level information in) an identification 𝑟 with an end point anywhere in the pushout.

The family code will be defined by applying the pushout eliminator on 𝑝 ∶ 𝑃, so as
demonstratedmany times in previous sections, we need to feed these three components:

• code􏿴left(𝑎􏷠), (𝑟∶left(𝑎􏷟)=left(𝑎􏷠))􏿷 for any 𝑎􏷠 ∶ 𝐴; and

• code􏿴right(𝑏􏷠), (𝑟∶left(𝑎􏷟)=right(𝑏􏷠))􏿷 for any 𝑏􏷠 ∶ 𝐵, which is defined as above to
be 􏿎hfiberqglue𝑎􏷩;𝑏􏷪

(𝑟)􏿎𝑚+𝑛; and

• apd
code

􏿴qglue𝑎􏷪,𝑏􏷪(𝑞)􏿷 for any 𝑎􏷠 ∶ 𝐴, 𝑏􏷠 ∶ 𝐵 and 𝑞 ∶ 𝑄(𝑎􏷠, 𝑏􏷠).

The difficulty is to find the analogue of the theorem for the left(𝑎􏷠) case, that is, when
both the end points of 𝑟 are in𝐴. Our trick is to make our assumptions more symmetric,
by supposing we have some distinguished 𝑏􏷟 ∶ 𝐵 and 𝑞􏷟;􏷟 ∶ 𝑄(𝑎􏷟, 𝑏􏷟) while defining code;
like 𝑎􏷟, 𝑏􏷟 and 𝑞􏷟;􏷟 will be fixed through most of the rest of the argument. We will show
that we can discharge these extra assumptions toward the end of the section.

The list of three needed components for defining code remain the same, as does the
definition in the right case, but for the other cases we will now make use of newly
added arguments 𝑏􏷟 and 𝑞􏷟;􏷟. In terms of diagrams, the above definition of the right case
code(right(𝑏􏷠), (𝑟∶left(𝑎􏷟)=right(𝑏􏷠))), which was chosen to make our generalization
imply the original theorem, can be drawn as follows.7 It is the type of all 𝑞􏷟;􏷠’s such that

left(𝑎􏷟)

left(𝑏􏷠)

𝑟 =

left(𝑎􏷟)

left(𝑏􏷠)

qglue(𝑞􏷟;􏷠 ) (3.3)

For the left case, we define

code􏿴left(𝑎􏷠), (𝑟∶left(𝑎􏷟)=left(𝑎􏷠))􏿷 ∶≡ 􏿎hfiber𝜆𝑞􏷪;􏷩.qglue(𝑞􏷩;􏷩) � qglue(𝑞􏷪;􏷩)−􏷪(𝑟)􏿎𝑚+𝑛.

7Truncations are ignored in diagrams.
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This represents (the truncation of) the type of all 𝑞􏷠;􏷟’s such that

left(𝑎􏷟)

left(𝑎􏷠)

𝑟 =

left(𝑎􏷟) right(𝑏􏷟)

left(𝑎􏷠)

qglue(𝑞􏷟;􏷟)

qg
lu
e(𝑞 􏷠;

􏷟)
−􏷠

The remaining missing piece is apd
code

(qglue(𝑞􏷠;􏷠)), that is, to show the above types
are equivalent when there is 𝑞􏷠;􏷠 ∶ 𝑄(𝑎􏷠, 𝑏􏷠) such that qglue(𝑞􏷠;􏷠) connects left(𝑎􏷠) to
right(𝑏􏷠). This boils down to an equivalence between the type code(left(𝑎􏷠)) transported
along qglue(𝑞􏷠;􏷠), and the type code(right(𝑏􏷠)). Pictorially, the type code(left(𝑎􏷠)) after
transportation maps each 𝑟 ∶ left(𝑎􏷟) = right(𝑏􏷠) to a type of all 𝑞􏷠;􏷟’s such that

left(𝑎􏷟) right(𝑏􏷟)

left(𝑎􏷠) right(𝑏􏷠)

𝑟 =

left(𝑎􏷟) right(𝑏􏷟)

left(𝑎􏷠) right(𝑏􏷠).

qglue(𝑞􏷟;􏷟)

qg
lu
e(𝑞 􏷠;

􏷟)
−􏷠

qglue(𝑞􏷠;􏷠)

(3.4)

The goal is to show, for any 𝑟, there is an equivalence between the truncation of the type
of all 𝑞􏷟;􏷠’s satisfying eq. (3.3) and that of all 𝑞􏷠;􏷟’s satisfying eq. (3.4). It turns out that
this equivalence is non-trivial and heavily relies on the connectivity conditions in the
Blakers–Massey theorem.

We can slightly simplify the needed equivalence by eliminating the middle 𝑟; ignor-
ing the truncation for the moment, essentially we want to prove that for any 𝑞􏷟;􏷠 there is
a 𝑞􏷠;􏷟 such that the equation

left(𝑎􏷟) right(𝑏􏷟)

left(𝑎􏷠) right(𝑏􏷠)

qglue(𝑞􏷟;􏷠 ) =

left(𝑎􏷟) right(𝑏􏷟)

left(𝑎􏷠) right(𝑏􏷠)

qglue(𝑞􏷟;􏷟)

qg
lu
e(𝑞 􏷠;

􏷟)
−􏷠

qglue(𝑞􏷠;􏷠)

is true, and vice versa. Then we show that these two functions are inverse to each other,
which establishes an equivalence between all 𝑞􏷟;􏷠’s and 𝑞􏷠;􏷟’s. In this section we will only
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demonstrate the direction from 𝑞􏷠;􏷟 to 𝑞􏷟;􏷠 as the other is symmetric. Putting back the
truncations, we wish to show

􏾟
𝑞􏷪;􏷩∶𝑄(𝑎􏷪,𝑏􏷩)

􏿎∑𝑞􏷩;􏷪∶𝑄(𝑎􏷩,𝑏􏷪)
qglue(𝑞􏷟;􏷠) = qglue(𝑞􏷟;􏷟) � qglue(𝑞􏷠;􏷟)−􏷠 � qglue(𝑞􏷠;􏷠)􏿎𝑚+𝑛.

The idea is to reorder all the hypotheses (including abstracting over the fixed 𝑎􏷟, 𝑏􏷟 and
𝑞􏷟;􏷟) to match the wedge connectivity theorem. After the reordering the lemma is

􏾟
𝑎􏷪∶𝐴

􏾟
𝑏􏷩∶𝐵

􏾟
(𝑞􏷪;􏷩∶𝑄(𝑎􏷪,𝑏􏷩))

􏾟
𝑎􏷩∶𝐴

􏾟
(𝑞􏷩;􏷩∶𝑄(𝑎􏷩,𝑏􏷩))

􏾟
𝑏􏷪∶𝐵

􏾟
(𝑞􏷪;􏷪∶𝑄(𝑎􏷪,𝑏􏷪))

􏿎∑𝑞􏷩;􏷪∶𝑄(𝑎􏷩,𝑏􏷪)
qglue(𝑞􏷟;􏷠) = qglue(𝑞􏷟;􏷟) � qglue(𝑞􏷠;􏷟)−􏷠 � qglue(𝑞􏷠;􏷠)􏿎𝑚+𝑛

and after grouping those arguments depending on 𝑎􏷟 or 𝑏􏷠 it is

􏾟
𝑎􏷪∶𝐴

􏾟
𝑏􏷩∶𝐵

􏾟
(𝑞􏷪;􏷩∶𝑄(𝑎􏷪,𝑏􏷩))

􏾟
(𝑢∶∑𝑎􏷩∶𝐴

𝑄(𝑎􏷩,𝑏􏷩))
􏾟

(𝑣∶∑𝑏􏷪∶𝐵
𝑄(𝑎􏷪,𝑏􏷪))

􏿎∑𝑞􏷩;􏷪∶𝑄(𝑎􏷩,𝑏􏷪)
qglue(𝑞􏷟;􏷠) = qglue(snd(𝑢)) � qglue(𝑞􏷠;􏷟)−􏷠 � qglue(snd(𝑣))􏿎𝑚+𝑛.

This may be visualized as

left(fst(𝑢)) right(𝑏􏷟)

left(𝑎􏷠) right(fst(𝑣))

fst􏿴𝑝(𝑢, 𝑣)􏿷 =

left(fst(𝑢)) right(𝑏􏷟)

left(𝑎􏷠) right(fst(𝑣)).

qglue(snd(𝑢))

qg
lu
e(𝑞 􏷠;

􏷟)
−􏷠

qglue(snd(𝑣))

In intuition the variable 𝑢 determines the upper arm and the variable 𝑣 determines the
lower arms; with the wedge connectivity theorem and proper truncations, we only have
to consider the cases either 𝑞􏷟;􏷟 (or snd(𝑢)) collides with 𝑞􏷠;􏷟 or 𝑞􏷠;􏷠 (or snd(𝑣)) collides
with 𝑞􏷠;􏷟, as long as we give a coherent choice when both collide. Formally, we will
apply lemma 3.1.3 on page 45 (wedge connectivity) to the wedge 𝑈 ∨ 𝑉 where the two
pointed types 𝑈 and 𝑉 are

𝑈 ∶≡ 􏾋􏿶􏾜
𝑎∶𝐴

𝑄(𝑎, 𝑏􏷟)􏿹; ⟨𝑎􏷠; 𝑞􏷠;􏷟⟩􏽾 (the upper arm)

𝑉 ∶≡ 􏾋􏿶􏾜
𝑏∶𝐵

𝑄(𝑎􏷠, 𝑏)􏿹; ⟨𝑏􏷟; 𝑞􏷠;􏷟⟩􏽾 (the lower arm)

70



and the motive 𝑃 ∶ 𝑈 → 𝑉 →U is

𝑃 ∶≡ 𝜆𝑢.𝜆𝑣.􏿎hfiberqglue
fst(𝑢);fst(𝑣)

(qglue(snd(𝑢)) � qglue(𝑞􏷠;􏷟)−􏷠 � qglue(snd(𝑣)))􏿎𝑚+𝑛.

The connectivities of𝑈 and𝑉 are exactly the original hypotheses of Blakers–Massey, and
the truncation level of 𝑃 is forced by the explicit truncation. ⟨𝑎􏷠; 𝑞􏷠;􏷟⟩ is the distinguished
element of𝑈 and ⟨𝑏􏷟; 𝑞􏷠;􏷟⟩ is the distinguished element of𝑉 , which signifies the collision
of either 𝑞􏷟;􏷟 or 𝑞􏷠;􏷠 with 𝑞􏷠;􏷟. The element 𝑓, which represents the case where the upper
arm 𝑞􏷟;􏷟 collides to the diagonal 𝑞􏷠;􏷟, is the truncated pair |⟨𝑞􏷠;􏷠; 𝑠⟩|𝑚+𝑛 where 𝑠 witnesses
the groupoid law

qglue(𝑞􏷠;􏷠) = qglue(𝑞􏷠;􏷟) � qglue(𝑞􏷠;􏷟)−􏷠 � qglue(𝑞􏷠;􏷠).

On the other hand, the element 𝑔, which represents the case where the lower arm 𝑞􏷠;􏷠 col-
lides to the diagonal 𝑞􏷠;􏷟, is the truncated pair |⟨𝑞􏷠;􏷠; 𝑡⟩|𝑚+𝑛 where 𝑡witnesses the groupoid
law

qglue(𝑞􏷟;􏷟) = qglue(𝑞􏷟;􏷟) � qglue(𝑞􏷠;􏷟)−􏷠 � qglue(𝑞􏷠;􏷟).

We further demand that 𝑠 and 𝑡 reduce to refl when its inputs are refl, which are
automatically true if they are naturally defined by identification elimination. The last
argument 𝛼 is to show that 𝑓 and 𝑔 agree on 𝑞􏷠;􏷟, which follows from the fact that 𝑞􏷠;􏷟 is
pickedwhen both arms collidewith the diagonal and that 𝑠 and 𝑡 agreewhen everything
is refl. In sum, these define a function from 𝑞􏷠;􏷟’s to 𝑞􏷟;􏷠’s.

The other direction can be defined similarly, and through the same technique one can
show they are inverse to each other. This eventually fills the final piece of type

apd
code

􏿴qglue𝑎􏷪;𝑏􏷪(𝑞􏷠;􏷠)􏿷

and concludes the construction of code. In total, this construction is the largest part of
the proof, and consists of approximately 400 lines of Agda code. In the verification that
the two functions are inverse, the mechanization involves some clever abstraction over
portions of the proof that can be shared between both the 𝑓 and 𝑔 cases of lemma 3.1.3
(wedge connectivity), which simplifies showing the final 𝛼 coherence assumption of this
lemma.

It remains to show the contractibility of code(𝑝, 𝑟), for each 𝑝 ∶ 𝑃 and 𝑟 ∶ left(𝑎􏷟) = 𝑝.

3.4.3 Contractibility of Code

A straightforward way to show contractibility of a type is to follow the definition of
is-contr, which demands a center, an element of that type, and a contraction, an identifi-
cation from the center to every other element.
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Centers. So we want to give an element of code(𝑝, 𝑟), for each 𝑝 ∶ 𝑃 and 𝑟 ∶ left(𝑎􏷟) = 𝑝.
By identification elimination on 𝑟, it is enough to give an element of code(left(𝑎􏷟), refl𝑎􏷩).
By the construction of code, this type reduces to

􏿏hfiber𝜆𝑞􏷪;􏷩.qglue(𝑞􏷩;􏷩) � qglue(𝑞􏷪;􏷩)−􏷪(refl𝑎􏷩)􏿏𝑚+𝑛

which is inhabited by the truncated pair

|􏾉𝑞􏷟;􏷟; inv-r(qglue(𝑞􏷟;􏷟))􏽼|𝑚+𝑛

where inv-r(𝑝∶𝑎=𝑏) ∶ 𝑝 � 𝑝−􏷠 = refl𝑎 is a proof that any identification concatenated with
its inverse is homotopic to refl, which is a groupoid law that can be defined as

inv-r􏿴𝑝∶𝑎=𝑏􏿷 ∶≡ elim𝑎=[𝑏.𝑝.𝑝 � 𝑝−􏷠 = refl𝑎](reflrefl𝑎 ; 𝑏; 𝑝).

Putting these together, we obtain the desired centers:

code-center ∶ 􏾟
𝑝∶𝑃

􏾟
𝑟∶left(𝑎􏷩)=𝑝

code(𝑝, 𝑟)

code-center = 𝜆(𝑝∶𝑃).𝜆𝑟.elimleft(𝑎􏷩)=􏿮𝑝.𝑟.code(𝑝, 𝑟)􏿱􏿴|⟨𝑞􏷟;􏷟; inv-r(qglue(𝑞􏷟;􏷟))⟩|𝑚+𝑛; 𝑟􏿷

Contractions. We now want an identification to each code(𝑝, 𝑟) from code-center(𝑝, 𝑟).
The type ∑𝑝∶𝑃 left(𝑎􏷟) = 𝑝 of pairs of such 𝑝 and 𝑟 is contractible, so it is enough to give
a contraction for any specific pair. We give it for the pair ⟨right(𝑏􏷟); qglue(𝑞􏷟;􏷟)⟩; but to
do this, we step back to an intermediate generality, and show

􏾟
𝑏􏷪∶𝐵

􏾟
(𝑟∶left(𝑎􏷩)=right(𝑏􏷪))

􏾟
(𝑐∶code(right(𝑏􏷪),𝑟))

code-center􏿴right(𝑏􏷠), 𝑟􏿷 = 𝑐

i.e. the case where 𝑝 is right(𝑏􏷠) for some 𝑏􏷠 ∶ 𝐵, and 𝑟 is arbitrary. The re-generalization
of 𝑟 is needed for the identification elimination below.

By construction, code(right(𝑏􏷠), 𝑟) is just ‖hfiberqglue(𝑟)‖𝑚+𝑛. Using elimination rules
of truncations, hfiber (as pairs), and identifications, wemay assume that 𝑐 is of the form
|⟨𝑞􏷟;􏷠; reflqglue(𝑞􏷩;􏷪)⟩|𝑚+𝑛 for some 𝑞􏷟;􏷠 ∶ 𝑄(𝑎􏷟, 𝑏􏷠), and 𝑟 is qglue(𝑞􏷟;􏷠). So it remains to show

code-center􏿴right(𝑏􏷠), qglue(𝑞􏷟;􏷠)􏿷 = |⟨𝑞􏷟;􏷠; reflqglue(𝑞􏷩;􏷪)⟩|𝑚+𝑛
This ismostly a routine calculation; roughly speaking, code-center(right(𝑏􏷠), qglue(𝑞􏷟;􏷠))
can be turned into a transport of the code-center at (left(𝑎􏷟), reflleft(𝑎􏷩)) along the iden-
tification qglue(𝑞􏷟;􏷠), which extracts the equivalencewe put into the construction of code,
and then the rest carries out the reduction to |⟨𝑞􏷟;􏷠; reflqglue(𝑞􏷩;􏷪)⟩|𝑚+𝑛. (Full details can
be found in section 4.3.)

This gives a contraction from code-center on code(right(𝑏􏷠), 𝑟), for any 𝑏􏷠 and 𝑟. In
particular, it gives us a contraction on code(right(𝑏􏷟), (qglue(𝑔􏷟;􏷟))), and hence, by the
contractibility of the type of pairs ⟨𝑝; 𝑟⟩, on each type code(𝑝, 𝑟), as required for the our
second generalization of Blakers–Massey.
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3.4.4 Theorem
We have shown our second generalization assuming fixed 𝑎􏷟 ∶ 𝐴, 𝑏􏷟 ∶ 𝐵 and 𝑞􏷟;􏷟 ∶ 𝑄(𝑎􏷟, 𝑏􏷟)
(which were implicit parameters in the above constructions). Making these explicit, we
have shown

􏾟
𝑎􏷩

􏾟
𝑏􏷩

􏾟
(𝑞􏷩;􏷩∶𝑄(𝑎􏷩,𝑏􏷩))

􏾟
𝑝∶𝑃

􏾟
(𝑟∶left(𝑎􏷩)=𝑝)

is-contr􏿴code(𝑎􏷟, 𝑏􏷟, 𝑞􏷟;􏷟, 𝑝, 𝑟)􏿷

We need to show that this implies the first generalization (eq. (3.2)) without access to
𝑏􏷟 ∶ 𝐵 nor 𝑞􏷟;􏷟 ∶ 𝑄(𝑎􏷟, 𝑏􏷟):

􏾟
𝑎􏷩

􏾟
𝑝∶𝑃

􏾟
(𝑟∶left(𝑎􏷩)=𝑝)

is-contr􏿴code(𝑎􏷟, 𝑝, 𝑟)􏿷 (3.5)

which, by definition of code, immediately implies the original Blakers–Massey by taking
𝑝 of the form right(𝑏).

So the only remaining gap is the extra assumptions 𝑏􏷟 and 𝑞􏷟;􏷟 in the second general-
ization. Note that eq. (3.5) is a mere proposition, and we assumed that 𝑚 is at least −1,
so the context is a fortiori 𝑚-truncated by cumulativity of truncation levels. Our connec-
tivity assumptions say that∑𝑏∶𝐵𝑄(𝑎􏷟, 𝑏) is 𝑚-connected, so in particular its 𝑚-truncation
is inhabited. Because the context is an𝑚-type, we can eliminate the truncation to obtain
some element of it; i.e. a pair ⟨𝑏􏷟; 𝑞􏷟;􏷟⟩ as desired. This closes the gap and finishes the
proof of the main theorem.

3.5 Study of Ordinary Eilenberg–Steenrod Cohomology
This is joint work with Ulrik Buchholtz.
In this section we change the subject from homotopy groups to cohomology groups, the
structure of functions from cycles in a type. In a very broad sense, the study of coho-
mology groups, cohomology theory, still belongs to homotopy theory because it respects
homotopy equivalence and has deep connections with proper homotopy theory. There
are several ways to define a theory of such groups, some combinatorial and some ax-
iomatic; amazingly, the classical theory states that the two approaches are essentially
equivalent. Our goal is to recreate such an equivalence in UniTT+hit and Agda.

In this section we focus on a particular class of types, CW complexes, which come
with an explicit description of how the type is built from lower dimensional structures
to higher dimensions. We will then introduce cellular cohomology theory, a combinatorial
cohomology theory specifically defined for CW complexes. After that, we will define
ordinary Eilenberg–Steenrod cohomology theory, an axiomatic framework for cohomology
theory, and then state our equivalence conjecture. A critical lemma toward the conjecture
is then stated and proved.
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Notation Types Pointed types Groups

𝐴 → 𝐵 arrows pointed arrows
(only in diagrams)

group homomorphisms

∏
𝑎∶𝐴 𝐵 functions (not reused) direct products

𝐴 ≃ 𝐵 equivalence point-preserving
equivalence

group isomorphism

𝟘 the empty type (not reused) the trivial group

𝟙 the unit type the unit type (not reused)

𝐴 × 𝐵 binary products (not reused) binary direct products

susp(𝐴) suspensions pointed suspensions (not reused)

cofiber(𝑓) cofibers pointed cofibers (not reused)

𝐴/𝐵 set quotients pointed cofibers
of inclusions

group quotients

Table 3.2: Abuse of notation in section 3.5.

Throughout this section, I reuse the symbol of arrows (→), functions (∏), equiva-
lence (≃), the unit (𝟙), binary products (×) and others for pointed types and groups as
in table 3.2. Pointed arrows are still marked as 𝑋 ⋅→ 𝑌 (except in diagrams in the cate-
gory of pointed types) because pointedness of functions plays an important role in the
definition of degrees that will be discussed later.

3.5.1 CW complexes

ACWcomplex is an inductively defined type built by attaching cells, starting frompoints
at the zeroth dimension, lines at the first dimension, faces at the second, and so on. The
description consists of 𝐴𝑛 as the set of cells at dimension 𝑛, along with functions 𝛼𝑛
denoting how cells are attached. The following recursive definition was adapted from
Ulrik Buchholtz’s work in Lean [31].

Let 𝑋𝑛 be the construction up to dimension 𝑛. A cell 𝑎 ∶ 𝐴𝑛+􏷠 at dimension 𝑛 + 1 is
specified by its boundary in 𝑋𝑛, denoted by a function from 𝕊𝑛 to the type 𝑋𝑛; the type
𝑋𝑛+􏷠 is then the result after attaching all cells at dimension 𝑛 + 1 to 𝑋𝑛. More formally,
𝛼𝑛+􏷠 is a function from 𝐴𝑛+􏷠 × 𝕊𝑛 to 𝑋𝑛 describing the boundary of each cell. Induc-
tively, the starting type 𝑋􏷟 is the set 𝐴􏷟, and the type 𝑋𝑛+􏷠 is defined to be the pushout
𝑋𝑛 ⊔𝐴𝑛+􏷪×𝕊𝑛;𝛼𝑛+􏷪;fst 𝐴𝑛+􏷠:
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𝐴𝑛+􏷠 × 𝕊𝑛 𝐴𝑛+􏷠

𝑋𝑛 𝑋𝑛+􏷠

𝛼𝑛+􏷠

fst

As afirst approximation, only finite-dimensionalCWcomplexes are considered,which
means the building process stops at some finite dimension. Pictorially, a (finite) CW
complex is the following iterated pushout, starting from the type 𝑋􏷟 ∶≡ 𝐴􏷟 and ending
at some dimension.

𝐴𝑛+􏷠 × 𝕊𝑛 𝐴𝑛+􏷠 𝐴𝑛+􏷡 × 𝕊𝑛+􏷠 𝐴𝑛+􏷡

… 𝑋𝑛 𝑋𝑛+􏷠 𝑋𝑛+􏷡 …

𝛼𝑛+􏷠

fst

𝛼𝑛+􏷡

fst

As a remark, a pointed CW complex additionally requires𝐴􏷟 to be pointed (and hence
𝑋􏷟 and all following pushouts).

3.5.2 Cellular Cohomology
Cohomology theory concerns about functions from cycles, and one of the best ways to
introduce it is through its dual, homology theory, which is about the cycles themselves.
Given an explicit description of a type, simplicial or cellular, suitable algebraic structures
can be defined for cycles. We will focus on the case where a CW complex 𝑋 is given,
along with its cellular description.

To begin with, a one-dimensional cycle in homology theory (and cohomology the-
ory) is a linear combination of (oriented) lines forming a collection of (possibly overlapping)
cycles in graph theory. Each coefficient in a homology-theoretic cycle (as a linear combi-
nation) tracks the number of occurrences of a line in these graph-theoretic cycles, where
traversals in the opposite direction are counted negatively. Because a linear combination
is determined by its coefficients, the order of lines is irrelevant; only the orientation of
lines is of concern, and two traversals of opposite directions cancel each other. One can
then define the addition, subtraction and negation on these homology-theoretic cycles,
where a negated homology-theoretic cycle form the same graph-theoretic cycles in the
opposite direction. In the following, homology-theoretic cycles are simply called cycles.

Let �̃�􏷠 be the function mapping a line from 𝑎 to 𝑏 to the linear combination 𝑎 − 𝑏,
which represents the (oriented) boundary of the line. Whether a collection of lines forms
a collection of graph-theoretic cycles reduces to whether the summation of �̃�􏷠 of these
lines are exactly zero, as every point in a graph-theoretic cycle has equal numbers of
“ins” and “outs”, contributing zero to the linear combination. If we extend the function
�̃�􏷠 on lines to linear combinations of lines as 𝜕􏷠, then a linear combination of lines is a cycle
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if and only if it is in the kernel of 𝜕􏷠. In our setting, the linear combinations of lines and
points are ℤ[𝐴􏷠] and ℤ[𝐴􏷟] as below.

ℤ[𝐴􏷠] ℤ[𝐴􏷟]
𝜕􏷠

Wewould like to identify cycles up to cells at higher dimensions; in particular, if there
is a two-dimensional cell filling the difference between two cycles (which is itself a cycle),
then those two cycles should be regarded as the same. Intuitively, a cell fills a cycle if its
boundary matches the cycle. Similar to 𝜕􏷠, one can define the boundary function 𝜕􏷡 for
any two-dimensional cell 𝑎 ∈ 𝐴􏷡 by summing up lines traversed by 𝛼􏷡⟨𝑎; −⟩. A cycle can
be filled if and only if it is in the image of 𝜕􏷡. Consider the following diagram:

ℤ[𝐴􏷡] ℤ[𝐴􏷠] ℤ[𝐴􏷟]
𝜕􏷡 𝜕􏷠

The subject of our interest, cycles up to identifications, is exactly the quotient of cycles (the
kernel of 𝜕􏷠) by boundaries of cells at the next dimension (the image of 𝜕􏷡). This quotient
forms the first cellular homology group of type𝑋, and groups for higher dimensions can be
defined in a similar way. How exactly the boundary functions 𝜕𝑛 at higher dimensions
should be defined from 𝐴𝑛 and 𝛼𝑛 will be discussed later.

Cellular cohomology groups take the dual of the sequence of linear combinations
above before calculating the quotients of kernels by images;8 it applies the contravariant
functor hom(−, 𝐺) for some given abelian group 𝐺 to the entire sequence. The resulting
diagram is

hom􏿴ℤ[𝐴􏷡], 𝐺􏿷 hom􏿴ℤ[𝐴􏷠], 𝐺􏿷 hom􏿴ℤ[𝐴􏷟], 𝐺􏿷
hom(𝜕􏷡, 𝐺) hom(𝜕􏷠, 𝐺)

and the first cohomology group is the quotient of the kernel of hom(𝜕􏷡, 𝐺) by the image
of hom(𝜕􏷠, 𝐺). Groups at higher dimensions are defined in a similar way, and we write
𝐻𝑛(𝑋;𝐺) as the 𝑛th cellular cohomology group with parameter 𝐺.
Remark 3.5.1. To be precise, I use reduced cellular cohomology groups; the difference
between reduced and unreduced ones will be discussed at the end of this section.

Boundary functions. One reasonable definition of 𝜕𝑛+􏷠 on a cell 𝑓 at dimension 𝑛+1 is
to individually calculate the coefficient coeff(𝑓, 𝑎) ∶ ℤ of each cell 𝑎within the boundary
of the cell 𝑓; that is, the boundary function is of the following form (where the ∑ below
is the summation in linear algebra, not sum types):

𝜕𝑛+􏷠(𝑓) ∶≡ 􏾜
𝑎∶𝐴𝑛

coeff(𝑓, 𝑎) 𝑎.

8The sequence is called chain complex and the dualized sequence is called cochain complex.
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In order to make possible summation over a possibly infinite 𝐴𝑛, it seems we have to
assume the final coeff(𝑓, −) has finite support; this corresponds to the closure-finiteness
condition in the classical theory, which is part of the definition of CW complexes and
in fact what the “C” in the “CW” stands for. The classical condition says the boundary
of each cell should be covered by a finite union of cells at lower dimensions, and so our
assumption is well-motivated and may be necessary. However, we believe it is possible
to avoid this assumption due to the way we define CW complexes in UniTT+hit and the
nature of synthetic homotopy theory.

Intuitively, the coeff(𝑓, 𝑎) should capture the (signed) occurrences of 𝑎 in the bound-
ary of 𝑓. Considering the CW complex

𝑎
𝑓

with a two-cell 𝑓 of boundary consisting of line 𝑎 and the other two, the value coeff(𝑓, 𝑎)
should be 1 under suitable orientation. The trick is to identify all points and obtain

𝑎

where the boundary of 𝑓 is then composed of loops at the center; the winding number
of the loop 𝑎 is then the coefficient we are looking for. More precisely, the coefficient is
the winding number of the function

𝑎 𝑎 𝑎
𝛼𝑛+􏷠⟨𝑓; −⟩ squash≠𝑎

from 𝕊􏷠 to 𝕊􏷠, where squash≠𝑎 kills every loop except the one indexed by 𝑎; the squashing
function is definablewhen the index type has a decidable equality. In terms of the syntax
of UniTT+hit, the above drawing is visualizing the following chain:

𝕊􏷠 𝑋􏷠 𝑋􏷠 /𝑋􏷟 ≃ ⋁
∶𝐴􏷪

𝕊􏷠 𝕊􏷠
𝛼􏷡⟨𝑓; −⟩ cfcod squash≠𝑎

where 𝑋􏷠 /𝑋􏷟 is the cofiber of the inclusion from 𝑋􏷟 to 𝑋􏷠.
To generalize this idea to arbitrary dimension 𝑛 ≥ 1, we follow the same steps to

obtain a function from 𝕊𝑛 to 𝕊𝑛,
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𝕊𝑛 𝑋𝑛 𝑋𝑛 /𝑋𝑛−􏷠 ≃ ⋁
∶𝐴𝑛

𝕊𝑛 𝕊𝑛,
𝛼𝑛+􏷠⟨𝑓; −⟩ cfcod squash≠𝑎

and then inspect its generalized winding number, which is called degree. Again, the type
𝑋𝑛 /𝑋𝑛−􏷠 is the cofiber of the inclusion from 𝑋𝑛−􏷠 to 𝑋𝑛. Intuitively, the identity function
will have degree 1 and the reversing function will have degree −1; functions that cover
the sphere twice will have degree 2 (or −2 if in the opposite direction). Formally, the
coefficient is defined as

coeff(𝑓, 𝑎) ∶≡ deg􏿴squash≠𝑏 ∘ 𝑒 ∘ cfcod ∘ 𝜆𝑥.𝛼𝑛+􏷠⟨𝑎; 𝑥⟩􏿷

where 𝑒 is the equivalence between 𝑋𝑛 /𝑋𝑛−􏷠 and ⋁
∶𝐴𝑛

𝕊𝑛; see the proof of lemma 3.5.6
for more details about the equivalence 𝑒. What remains is a definition of degrees in
UniTT+hit.

One classical definition of degrees relies on homology theories, which are not avail-
able in UniTT+hit yet. Another approach, which is our current choice, is to apply the
homotopy group functor to the function in question. Let the functor 𝜋𝑛(𝑋) be the 𝑛th
homotopy group of a pointed type 𝑋. We can compute the degree of a pointed arrow
𝑓 ∶ 𝕊𝑛 ⋅→ 𝕊𝑛 by inspecting where the following group homomorphism is sending the
generator 1 ∶ ℤ:

ℤ ≃ 𝜋𝑛(𝕊𝑛) 𝜋𝑛(𝕊𝑛) ≃ ℤ
𝜋𝑛(𝑓)

The caveat is that the function constructed in the previous paragraphmight not preserve
the distinguished element north, that is, might not be a pointed arrow. Fortunately, the
homotopy group functor works on sets, and the canonical map from the set of pointed
endo-arrows at the sphere to the set of endo-arrows,

elim-nd‖−‖􏿯􏿎𝕊𝑛 → 𝕊𝑛􏿎􏷟􏿲􏿴𝑓.|fst(𝑓)|􏷟􏿷 ∶ 􏿎𝕊𝑛 ⋅→ 𝕊𝑛􏿎􏷟 → 􏿎𝕊𝑛 → 𝕊𝑛􏿎􏷟,

is an equivalence, which means pointedness is free in this situation. This finishes our
definition of boundary functions in UniTT+hit.

Reduced cellular cohomology theory The cellular cohomology theory that is relevant
here is the reduced cellular cohomology theory for pointed types; a characteristic differ-
ence is that a reduced theory will assign the trivial group as the zeroth cohomology
group of the unit type—the most trivial pointed type—rather than the group ℤ; it is
more stylish to have trivial groups for trivial types.

The unit type in its natural CW complex representation is one point, which means
ℤ[𝐴𝑛] is isomorphic to ℤ for 𝑛 = 0 but trivial in all other dimensions. An unreduced
theory starts with the sequence
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⋯ ℤ[𝐴􏷠] ℤ[𝐴􏷟] 𝟙
𝜕􏷠

with the dual

⋯ hom􏿴ℤ[𝐴􏷠], 𝐺􏿷 hom􏿴ℤ[𝐴􏷟], 𝐺􏿷 hom(𝟙, 𝐺)
hom(𝜕􏷠, 𝐺)

which givesℤ as the zeroth homology (and cohomology) group of 𝟙. On the other hand,
the reduced homology theory augmented the sequence with 𝜖 to ℤ as

⋯ ℤ[𝐴􏷠] ℤ[𝐴􏷟] ℤ
𝜕􏷠 𝜖

where 𝜖 sums up integer coefficients in ℤ[𝐴􏷟]; its dual,

⋯ hom􏿴ℤ[𝐴􏷠], 𝐺􏿷 hom􏿴ℤ[𝐴􏷟], 𝐺􏿷 hom(ℤ,𝐺),
hom(𝜕􏷠, 𝐺) hom(𝜖, 𝐺)

gives 𝟙 as the zeroth cohomology group of 𝟙. The ending ℤ effectively kills one degree
of freedom in ℤ[𝐴􏷟] after the kernel-image quotienting.9 In general, the reduced and
unreduced ones only differ by a ℤ at the zeroth dimension.

3.5.3 Eilenberg–Steenrod Cohomology
Unlike the above explicit construction, there is an axiomatic framework for cohomology.
People including Guillaume Brunerie, Eric Finster, Peter LeFanu Lumsdaine, Dan Li-
cata, Michael Shulman and others have brought into UniTT+hit the standard abstract
framework for cohomology theories—Eilenberg–Steenrod axioms [35, 50, 126]. An (or-
dinary)10 reduced cohomology theory in UniTT+hit may be defined as a contravariant
functor ℎ from pointed types to a sequence of abelian groups satisfying the following
axioms. We write ℎ𝑛(𝑋) to denote the 𝑛th group in the sequence for a pointed type 𝑋.

Before presenting these axioms, however, we need to define what it means to satisfy
set-level axiom of choice, a condition stating that∏ quantifiers and 0-truncation commute.
This will be used in one of the cohomology axioms shown later.

Definition 3.5.2 (set-level axiom of choice). A type 𝐴 satisfies the set-level axiom of choice
if, for any family of types 𝐵 indexed by 𝐴, the unchoosing function

𝜆𝑓.𝜆(𝑖∶𝐼).elim‖−‖􏿯 .􏿎𝑊(𝑖)􏿎􏷟; .􏿎𝑊(𝑖)􏿎􏷟-level􏿲􏿴𝑓′.|𝑓′(𝑖)|􏷟; 𝑓􏿷 ∶ 􏿏􏾟
𝑖∶𝐼

𝑊(𝑖)􏿏􏷟 → 􏾟
𝑖∶𝐼

􏿎𝑊(𝑖)􏿎􏷟

9The kernel-image quotienting is called homology in the classical literature, so the homology of a chain
complex is homology, and the homology of a cochain complex is cohomology. I refrain from reusing this
word in this thesis to avoid further confusing people who are not familiar with algebraic topology.

10A cohomology theory is ordinary if it satisfies the last Eilenberg–Steenrod axiom. See below.
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is an equivalence.

See [138, ex. 7.8] formore discussion about the axiom of choice and [126] for its role in
cohomology theory inUniTT+hit. Essentially, one could present the Eilenberg–Steenrod
axioms without the axiom of choice, but it would be difficult for pointed arrows whose
codomains are Eilenberg–Mac Lane spaces, an important example of cohomology theo-
ries, to satisfy these axioms within UniTT+hit. In any case, here are the axioms we use
in UniTT+hit:

Suspension. There is an isomorphism between ℎ𝑛+􏷠(susp(𝑋)) and ℎ𝑛(𝑋), and the choice
of isomorphisms is natural in 𝑋.

Exactness. For any pointed arrow 𝑓 ∶ 𝑋 ⋅→ 𝑌, the following sequence is exact, which
means the kernel of ℎ𝑛(𝑓) is exactly the image of ℎ𝑛(cfcod).

ℎ𝑛(cofiber(𝑓)) ℎ𝑛(𝑌) ℎ𝑛(𝑋).
ℎ𝑛(cfcod) ℎ𝑛(𝑓)

Wedge. Let 𝐼 be a type satisfying the set-level axiom of choice. For any family of pointed
types 𝑋 indexed by 𝐼 , the group morphism

𝜄∗ ∶ ℎ𝑛􏿶􏾔
𝑖∶𝐼

𝑋(𝑖)􏿹 → 􏾟
𝑖∶𝐼

ℎ𝑛(𝑋𝑖)

induced by inclusions bwin(𝑖, −) ∶ 𝑋(𝑖) → ⋁
𝑖∶𝐼 𝑋(𝑖) is a group isomorphism.

Dimension. For any integer 𝑛 ≠ 0, the group ℎ𝑛(𝟚) is trivial.

The word ordinary refers to satisfying the dimension axiom. Interesting examples violat-
ing this axiom (but satisfying the rest), such as 𝐾-theories (originating from Alexander
Grothendieck’s work; see [12]) and complex cobordism [11], were discovered after the
introduction of the framework, and are called extraordinary cohomology theories. Our
result only handles ordinary ones.

3.5.4 Equivalence Conjecture and Partial Results
The current goal is to show the following statement:

Conjecture 3.5.3. For any ordinary reduced cohomology theory ℎ, any pointed finite-dimensional
CW complex 𝑋 and any 𝑛 ∶ ℤ, ℎ𝑛(𝑋) is isomorphic to 𝐻𝑛(𝑋; ℎ􏷟(𝟚)).

This basically states that, on CW complexes, two notions of cohomology coincide.
The significance is that it connects an explicit construction with a rather abstract frame-
work over a wide range of types. To prove this conjecture, we may need additional as-
sumptions to recover some power of the classical reasoning, for example that sets of cells
satisfy the set-level axiom of choice or that there is a decidable equality among cells.
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Our approach is to break this conjecture into two parts. Note that for 𝑛 ≥ 𝑚we write
𝑋𝑛 /𝑋𝑚 as the cofiber of the inclusion from 𝑋𝑚 to 𝑋𝑛.

Definition 3.5.4 (separable). A pointed type 𝑋 is separable if pt(𝑋) = 𝑥 is decidable for
any 𝑥 ∶ carrier(𝑋). That is, whether an element is the distinguished element or not is
decidable.

Lemma 3.5.5 (reformulation of ordinary cohomology groups). For any ordinary reduced
cohomology theory ℎ and any pointed finite-dimensional CW complex 𝑋 such that

1. all cell index sets 𝐴𝑛 satisfy the set-level axiom of choice; and

2. the cell index set 𝐴􏷟 at the zeroth dimension is separable,

there is a choice of coboundary functions 𝛿𝑛 forming the sequence

⋯ ℎ𝑛(𝑋𝑛 /𝑋𝑛−􏷠) ℎ𝑛−􏷠(𝑋𝑛−􏷠 /𝑋𝑛−􏷡) ⋯ ℎ􏷠(𝑋􏷠 /𝑋􏷟) ℎ􏷟(𝟚) × ℎ􏷟(𝑋􏷟) ℎ􏷟(𝟚)
𝛿𝑛 𝛿􏷠 𝛿􏷟

such that ℎ𝑛(𝑋) is isomorphic to the quotient of the kernel of 𝛿𝑛+􏷠 by the image of 𝛿𝑛 for any 𝑛 ≥ 0.

The above theorem states that any ordinary cohomology groups are also the kernel-
image quotients of some sequence, similar to cellular cohomology groups on page 79. It
is then sufficient to show that the sequences they startwith are equivalent. The rightmost
groups, ℎ􏷟(𝟚) and hom(ℤ, ℎ􏷟(𝟚)), are isomorphic due to the universal property ofℤ as a
free abelian group. The groups in the sequences are isomorphic because of this result:

Lemma 3.5.6 (groups in sequences agree). For any ordinary reduced cohomology theory ℎ
and any pointed finite-dimensional CW complex 𝑋 satisfying the preconditions of lemma 3.5.5,
there exist an isomorphism

𝑘𝑛 ∶ ℎ𝑛(𝑋𝑛 /𝑋𝑛−􏷠) ≃ hom􏿴ℤ[𝐴𝑛], ℎ􏷟(𝟚)􏿷

for any 𝑛 ≥ 1 and an isomorphism for the zeroth dimension

𝑘􏷟 ∶ ℎ􏷟(𝟚) × ℎ􏷟(𝑋􏷟) ≃ hom􏿴ℤ[𝐴􏷟], ℎ􏷟(𝟚)􏿷.

Proof. The cases for 𝑛 ≥ 1 are based on the type equivalence

𝑋𝑛 /𝑋𝑛−􏷠 ≃ 􏾔
∶𝐴𝑛

𝕊𝑛.

The desired result is derivable from this type equivalence, because the cohomology
group of the right hand side is the direct product∏ ∶𝐴𝑛

ℎ􏷟(𝟚) by the Eilenberg–Steenrod

axioms, and then the direct product is isomorphic to the group hom􏿴ℤ[𝐴𝑛], ℎ􏷟(𝟚)􏿷 by the
universal property of the free abelian group ℤ[𝐴𝑛]. That is,

ℎ𝑛(𝑋𝑛 /𝑋𝑛−􏷠) ≃ ℎ𝑛􏿵⋁ ∶𝐴𝑛
𝕊𝑛􏿸 ≃ 􏾟

∶𝐴𝑛

ℎ􏷟(𝟚) ≃ hom􏿴ℤ[𝐴𝑛], ℎ􏷟(𝟚)􏿷.
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It is not difficult to obtain the type equivalence 𝑋𝑛 /𝑋𝑛−􏷠 ≃ ⋁
∶𝐴𝑛

𝕊𝑛 but it is worth-
while to look into the insights behind it. The key observation is that the concatenation of
two pushout squares is still a pushout square; in particular, one can read this diagram
as a whole or as two squares:

𝐴𝑛 × 𝕊𝑛−􏷠 𝐴𝑛

𝑋𝑛−􏷠 𝑋𝑛

𝟙 𝑋𝑛 /𝑋𝑛−􏷠

𝛼𝑛

fst

cfcod

which shows that𝑋𝑛 /𝑋𝑛−􏷠 ≃ cofiber(fst∶𝐴𝑛×𝕊𝑛−􏷠→𝐴𝑛)where the cofiber is obtained by
reading the diagramas awhole. This cofibermaybe visualized as the followingdrawing,
where the satellites are𝐴𝑛, themiddle dotted parts are𝐴𝑛×𝕊𝑛−􏷠 and the center is cfbase;
the gluing cfglue then fills in each petal.

The gluing cfglue turns each petal into a suspension of 𝕊𝑛−􏷠, that is, 𝕊𝑛; this shows that
the cofiber is equivalent to the wedge of 𝕊𝑛.

The zeroth dimension needs special attention because, although a pointed set is intu-
itively a wedge of 𝕊􏷟 ≡ 𝟚, one of the points—here the distinguished element—is used as
the center in the above diagram. Therefore, we have to add one copy of ℎ􏷟(𝟚) to the left
hand side to make ends meet. We also need a separator for the pointed type 𝐴𝑛 to pick
out the center. The rest of the isomorphism 𝑘􏷟 is the same as in other dimensions.

The remaining issue is whether the group morphisms within two sequences are
equivalent; this remains unproven at the time of writing:

Conjecture 3.5.7. Suppose ℎ is an ordinary reduced cohomology theory, 𝑋 is a pointed finite-
dimensional CW complex 𝑋 satisfying the preconditions of lemmas 3.5.5 and 3.5.6, and cellular
boundary functioins 𝜕𝑛 are definable on 𝑋. Let 𝛿𝑛 be the morphisms given by lemma 3.5.5 and
𝑘𝑛 be the isomorphisms given by lemma 3.5.6. For any 𝑛 ≥ 1, we have a commuting square
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ℎ𝑛(𝑋𝑛+􏷠 /𝑋𝑛) ℎ𝑛−􏷠(𝑋𝑛 /𝑋𝑛−􏷠)

hom􏿴ℤ[𝐴𝑛+􏷠], ℎ􏷟𝟚􏿷 hom􏿴ℤ[𝐴𝑛], ℎ􏷟𝟚􏿷

𝛿𝑛+􏷠

hom(𝜕𝑛+􏷠, ℎ􏷟(𝟚))

𝑘𝑛+􏷠 𝑘𝑛

and similarly for the case 𝑛 = 0 with suitable groups and group isomorphisms.

The remainder of this section is dedicated to the proof of lemma 3.5.5. From now
on, let’s fix an ordinary Eilenberg–Steenrod cohomology theory ℎ and a CW complex 𝑋
satisfying the conditions listed in lemma 3.5.5. The central idea is to construct as many
cofibers as possible from its cellular description, and then apply the exactness axiom on
these cofibers to obtain long exact sequences. From the obtained long exact sequences
we can then calculate the groups of our interest.

Before constructing those cofibers, it is essential to observe that there is a lemma
complimentary to lemma 3.5.6 and that there is a long exact sequence for every cofiber:

Lemma 3.5.8. For any 𝑚 ≠ 𝑛 ∶ ℤ such that 𝑛 ≥ 1, ℎ𝑚(𝑋𝑛 /𝑋𝑛−􏷠) is trivial. Moreover, for any
𝑚 ∶ ℤ such that 𝑚 ≠ 0, ℎ𝑚(𝑋􏷟) is also trivial.

Proof. The proof of lemma 3.5.6 actually works for mismatched dimensions without
modification. For the cases 𝑛 ≥ 1, it gives an isomorphism

ℎ𝑚(𝑋𝑛 /𝑋𝑛−􏷠) ≃ hom􏿴ℤ[𝐴𝑛], ℎ𝑚−𝑛(𝟚)􏿷.

However, this time the mismatch between𝑚 and 𝑛 enables the dimension axiom, which
implies the right hand side is trivial. The case for the zeroth dimension is similar.

Lemma 3.5.9. For any pointed arrow 𝑓 ∶ 𝑋 ⋅→ 𝑌, there exist a natural choice of 𝛾𝑛 such that
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the following is a long exact sequence:
…

ℎ𝑛(cofiber(𝑓)) ℎ𝑛(𝑌) ℎ𝑛(𝑋)

ℎ𝑛+􏷠(cofiber(𝑓)) ℎ𝑛+􏷠(𝑌) ℎ𝑛+􏷠(𝑋)

…

𝛾𝑛

ℎ𝑛(cfcod) ℎ𝑛(𝑓)

𝛾𝑛+􏷠

ℎ𝑛+􏷠(cfcod) ℎ𝑛+􏷠(𝑓)

𝛾𝑛+􏷡

Proof sketch. The key observation is that a cofiber of a cofiber, or more precisely,

cofiber(cfcod∶𝑌⋅→cofiber(𝑓))

is equivalent to susp(𝑋). The correspondence continues forever as

𝑋 𝑌 𝟙

𝟙 cofiber(𝑓) susp(𝑋) 𝟙

𝟙 susp(𝑌) susp(cofiber(𝑓))

𝟙 ⋱ ⋱

where every square is a pushout square. The long exact sequence is obtained by applying
ℎ to the snake sequence in the middle (marked as thick red dashed arrows) and then
invoking the suspension axiom to remove those suspensions. The suspension axiom
lowers the dimension by one while unwraping one layer of suspension, leading to the
dimension stepping (as ℎ𝑛 is contravariant) in the statement.

Remark 3.5.10. Lemma 3.5.9 plus the naturality of 𝛾𝑛 is actually equivalent to the suspen-
sion and the exactness axioms. As a result many presentations of Eilenberg–Steenrod
axioms assert long exact sequences instead.

The way to construct numerous cofiber squares is to consider the following grid dia-
gram where every grid is a pushout square.
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𝑋􏷟 𝑋􏷠 … 𝑋𝑛 𝑋𝑛+􏷠 …

𝟙 𝑋􏷠 /𝑋􏷟 … 𝑋𝑛 /𝑋􏷟 𝑋𝑛+􏷠 /𝑋􏷟 …

⋱ ⋱ ⋮ ⋮ ⋮

𝟙 𝑋𝑛 /𝑋𝑛−􏷠 𝑋𝑛+􏷠 /𝑋𝑛−􏷠 …

𝟙 𝑋𝑛+􏷠 /𝑋𝑛 …

𝟙 …

Any square (consisting of one ormore grids) having the unit type 𝟙 at the bottom left is a
cofiber square and generates a long exact sequence by lemma 3.5.9. Various conclusions
can be drawn by choosing different cofiber squares:

• Zoom in on a grid on the diagonal:

𝑋𝑛 /𝑋𝑛−􏷠 𝑋𝑛+􏷠 /𝑋𝑛−􏷠

𝟙 𝑋𝑛+􏷠 /𝑋𝑛.

Through lemma 3.5.9, this grid generates the following exact sequence:

𝟘 ker(𝛿𝑛+􏷠)

ℎ𝑛(𝑋𝑛+􏷠 /𝑋𝑛) ℎ𝑛(𝑋𝑛+􏷠 /𝑋𝑛−􏷠) ℎ𝑛(𝑋𝑛 /𝑋𝑛−􏷠)

ℎ𝑛+􏷠(𝑋𝑛+􏷠 /𝑋𝑛) ℎ𝑛+􏷠(𝑋𝑛+􏷠 /𝑋𝑛−􏷠) ℎ𝑛+􏷠(𝑋𝑛 /𝑋𝑛−􏷠).

coker(𝛿𝑛+􏷠) 𝟘

𝛿𝑛+􏷠

We choose the coboundary function 𝛿𝑛+􏷠 to be the middle function as required. Be-
cause ℎ𝑛(𝑋𝑛+􏷠 /𝑋𝑛) is trivial, from the exactness we know ℎ𝑛(𝑋𝑛+􏷠 /𝑋𝑛−􏷠) is isomor-
phic to the kernel of 𝛿𝑛+􏷠 and the group homomorphism from it is injective. Dually,
we know ℎ𝑛+􏷠(𝑋𝑛+􏷠 /𝑋𝑛−􏷠) is isomorphic to the cokernel of 𝛿𝑛+􏷠 and the group ho-
momorphism to it is surjective.
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• Let’s turn our focus to this square:
𝑋𝑚 𝑋𝑚+􏷠

𝟙 𝑋𝑚+􏷠 /𝑋𝑚

which by lemma 3.5.9 gives this exact sequence:

ℎ𝑛(𝑋𝑚+􏷠 /𝑋𝑚) ℎ𝑛(𝑋𝑚+􏷠) ℎ𝑛(𝑋𝑚) ℎ𝑛+􏷠(𝑋𝑚+􏷠 /𝑋𝑚).

When 𝑛 ≠ 𝑚 or𝑚+1, both ℎ𝑛(𝑋𝑚+􏷠 /𝑋𝑚) and ℎ𝑛+􏷠(𝑋𝑚+􏷠 /𝑋𝑚) are trivial by lemma3.5.8;
therefore, by the exactness of the above sequence, ℎ𝑛(𝑋𝑚+􏷠) ≃ ℎ𝑛(𝑋𝑚). In other
words, cells at dimensions much higher or much lower than 𝑛 are irrelevant to
the cohomology group at dimension 𝑛. This implies that there are at most three
different values of ℎ𝑛(𝑋𝑚) up to isomorphism:

1. ℎ𝑛(𝑋𝑛−􏷠) ≃ ℎ𝑛(𝑋𝑛−􏷡) ≃ ⋯ ≃ ℎ𝑛(𝑋􏷟) ≃ 𝟘. The intuition is that 𝑋𝑚 for any 𝑚 < 𝑛
does not have any interesting information at dimension 𝑛.

2. ℎ𝑛(𝑋𝑛). 𝑋𝑛 has the cells at dimension 𝑛, but lacks the cells at dimension (𝑛+1)
which may identify some cycles at dimension 𝑛.

3. ℎ𝑛(𝑋𝑛+􏷠) ≃ ℎ𝑛(𝑋𝑛+􏷡) ≃ ⋯ ≃ ℎ𝑛(𝑋). Cells at dimension (𝑛 + 2) or above play no
role in the 𝑛th cohomology group.

It is thus sufficient to study ℎ𝑛(𝑋𝑛+􏷠) for the 𝑛th cohomology group of 𝑋.

• The next step is to investigate the square
𝑋𝑛−􏷡 𝑋𝑛+􏷠

𝟙 𝑋𝑛+􏷠 /𝑋𝑛−􏷡

which generates the exact sequence

ℎ𝑛−􏷠(𝑋𝑛−􏷡) ℎ𝑛(𝑋𝑛+􏷠 /𝑋𝑛−􏷡) ℎ𝑛(𝑋𝑛+􏷠) ℎ𝑛(𝑋𝑛−􏷡).

From the previous cofiber square we know both ℎ𝑛−􏷠(𝑋𝑛−􏷡) and ℎ𝑛(𝑋𝑛−􏷡) are trivial,
and again by the exactness ℎ𝑛(𝑋𝑛+􏷠 /𝑋𝑛−􏷡) ≃ ℎ𝑛(𝑋𝑛+􏷠). Therefore, we have

ℎ𝑛(𝑋𝑛+􏷠 /𝑋𝑛−􏷡) ≃ ℎ𝑛(𝑋𝑛+􏷠) ≃ ℎ𝑛(𝑋𝑛+􏷡) ≃ … ≃ ℎ𝑛(𝑋).

This means it is sufficient to calculate ℎ𝑛(𝑋𝑛+􏷠 /𝑋𝑛−􏷡).

Combining these observations, we have the following commuting square for 𝑛 ≥ 2:
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coker(𝛿𝑛) ≃ ℎ𝑛(𝑋𝑛 /𝑋𝑛−􏷡) ℎ𝑛(𝑋𝑛+􏷠 /𝑋𝑛−􏷡) ≃ ℎ𝑛(𝑋)

hom􏿴ℤ[𝐴], 𝐺􏿷 ≃ ℎ𝑛(𝑋𝑛 /𝑋𝑛−􏷠) ℎ𝑛(𝑋𝑛+􏷠 /𝑋𝑛−􏷠) ≃ ker(𝛿𝑛+􏷠).

We can further infer that the top homomorphism is injective and the right one is surjec-
tive by applying lemma 3.5.9 to the following two cofiber squares, respectively,

𝑋𝑛 /𝑋𝑛−􏷡 𝑋𝑛+􏷠 /𝑋𝑛−􏷡

𝟙 𝑋𝑛+􏷠 /𝑋𝑛

𝑋𝑛−􏷠 /𝑋𝑛−􏷡 𝑋𝑛+􏷠 /𝑋𝑛−􏷡

𝟙 𝑋𝑛+􏷠 /𝑋𝑛−􏷠

and finally obtain the desired isomorphism

ℎ𝑛(𝑋) ≃ ker(𝛿𝑛+􏷠)/im(𝛿𝑛)

by the following lemma from group theory:

Lemma 3.5.11. Let 𝑄 ⊆ 𝑃 be two subgroups of 𝐺 where 𝑄 is normal. If we have a group 𝐾 and
a commuting diagram as follows, where the group homomorphism from 𝑃 to 𝐺 is the canonical
inclusion and the one from 𝐺 to 𝐺/𝑄 is the quotienting, then 𝐾 ≃ 𝑃/𝑄.

𝐺/𝑄 𝐾

𝐺 𝑃

By choosing 𝑃 to be the kernel and𝑄 the image, we have the desired formula that𝐾 is
the quotient. (𝑄 is normal because it is a subgroup of an abelian group.) This shows that
for any 𝑛 ≥ 2, ℎ𝑛(𝑋) is isomorphic to the kernel-image quotient of adjacent coboundary
functions 𝛿𝑛. The cases for 𝑛 = 0 or 1 can also be derived from the grid diagram similarly
but with special care of the separable pointed set 𝑋􏷟 ∶≡ 𝐴􏷟 as demonstrated in the proof
of lemma 3.5.6. This concludes the proof of lemma 3.5.5.

3.6 Use of Univalence and Higher Inductive Types

It is worthwhile to review how the new features of UniTT+hit are used in the homotopy-
theoretic results we have seen in this chapter.
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Univalence axiom. It is challenging to trace the univalence axiom due to its prevalent
uses, but here are two essential ones:

• Functional extensionality.

Currently the functional extensionality is proved by the univalence axiom and it is
essential for any non-trivial reasoning about functions.

• Non-trivial identifications between types or non-trivial families of types indexed
by higher inductive types.

When defining such a family (as a function from some higher inductive type to the
universe), often the elimination rule of the higher inductive type demands a non-
trivial type identification for its identification generator, which can only be given
by the univalence axiom.

For example, to establish a non-trivial covering space 𝐹 indexed by the circle 𝕊􏷠, we
need to provide a non-trivial loop at 𝐹(base) ∶ U , and the univalence axiom enables
us to use any automorphism. Next, when comparing two covering spaces, we may use
functional extensionality to compare their fibers instead. Finally, to identify two fibers,
the univalence axiom makes it sufficient to show an equivalence between them.

The above example shows that the development of covering spaces in section 3.2
heavily relies on the univalence axiom. For the Seifert–van Kampen in section 3.3, the
code is a non-trivial family indexed by the pushout, and thus requires the univalence
axiom; so does the code for Blakers–Massey in section 3.4. Moreover, all of these sections,
including the cohomology groups in section 3.5, use functional extensionality.

Currently, the univalence axiom is also used as a shortcut to show 𝑃(𝐵) from 𝑃(𝐴)
for two equivalent types 𝐴 and 𝐵. It seems most of them can be rewritten without the
univalence axiom and thus are probably not essential.

Higher inductive types. The essential higher inductive types in use are pushouts, set-
quotients and truncations, and all of them can be reduced to pushouts [46, 81, 119]. Other
higher inductive types, such as the circle, suspensions, spheres, cofibers and wedges,
are already defined in terms of pushouts. Therefore, even though the precise scope of
higher inductive types is still up in the air, my thesis only uses pushouts and pushouts
are regarded as a core higher inductive type.

Truncations are fundamental to all developments in this chapter; for example, con-
nectivity and surjectivity are defined using truncation, and every previous section in
this chapter uses at least one of them. Set-quotients are already part of the definitions
of reconstructed covering spaces in section 3.2, the code for the Seifert–van Kampen the-
orem and the cohomology groups. In addition to various higher inductive types used
in the proofs, the Seifert–van Kampen and Blakers–Massey theorems directly concern
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pushouts; without higher inductive types, it also seems difficult to find an interesting
type11 with non-trivial higher cohomology groups.

In conclusion, higher inductive types not only play a role in various parts of the proofs
in my thesis, but also appear directly in the theorem statements. Without them (for
example in other developments such as [7, 17, 44, 123]) there is no obviousway to present
interesting topological spaces (up to homotopy) directly as types. The univalence axiom,
in addition to its direct use in proving type identification, provides the handy functional
extensionality and makes higher inductive types more usable.

3.7 Notes on Homotopy Theory
Our proof of the Blakers–Massey theorem in section 3.4 is mathematically new and has
led to new research in mathematics: my Agda mechanization has been translated by
Charles Rezk back into the more conventional mathematical language [117] and then,
based on the translation, MathieuAnel, Georg Biedermann, Eric Finster andAndré Joyal
have generalized the theorem to Goodwillie calculus by abstracting over the notion of
connectivity and truncation [8]. It will be interesting to mechanize the new results back
into some computer system.

There are many other results in homotopy and cohomology theories awaiting us!
For example, the study of covering spaces presented in this thesis is just a starting point.
The representation theorem in the classical theory is actually a correspondence between
two categories, not just the objects. Also, the connectivity condition on the base type
may be dropped if we replace fundamental groups by fundamental groupoids. There
should also be a connection between transitive 𝜋􏷠-sets and connected covering spaces.
Moreover, there are other possible generalizations such as 𝑛-covering spaces over a type
as families of 𝑛-types indexed by that type, which to our knowledge do not immediately
correspond to well-known structures in classical homotopy theory.

There are also various generalizations of the Seifert–vanKampen theorem into higher
dimensions,manybyRonaldBrown et al., which aid the calculation of higher-dimensional
structures based on groupoids [26]. One may wonder whether they can be stated in
UniTT+hit; the double groupoids mechanized by Jakob von Raumer [115] can be seen
as a step in this direction.

11Except possibly the universe itself, where the univalence axiom acts as an identification generator.

89



90



Chapter 4

Mechanization in Agda

Because the UniTT+hit introduced in chapter 2 is based on the Martin-Löf type theory,
existing tools designed for similar flavors ofMartin-Löf type theoriesmaymeet our need
with little modification. Moreover, new proof assistants that are aware of UniTT+hit are
also being developed. Here are somewell-known computer programs formechanization
in UniTT+hit:

• Coq [134] is a proof assistant based on the dependent type theory Calculus of Con-
structions [42]. It emphasizes on the usage of tactics scripts to complete the proofs,
even though it is still possible to write out the proofs directly.

• Agda [109] is a proof assistant based on a Martin-Löf type theory. It is also a func-
tional programming language with sophisticated pattern matching. Compared to
Coq, it encourages the users to write out proofs directly.

• Lean [106] is a newer proof assistant that is also based on dependent type theory as
Coq and Agda are. It “aims to bridge the gap between interactive and automated
theorem proving” [106].

• Cubical [40] is an experimental proof assistant that is based on the cubical set
model [23] which provides a constructive interpretation of the univalence axiom.

All my thesis work is mechanized in the proof assistant Agda and this chapter is
dedicated to highlighting theoretical and practical details when mechanizing proofs in
UniTT+hit in Agda. To the best of my knowledge, Agda is still lacking a thorough con-
sistency proof of the language (or even the core language); the confidence in the formal
proofs written in Agda seem to be rooted in its perceived similarity to Martin-Löf type
theories. The common belief is that, even if the proof checker turns out to be faulty, the
mechanized proofs probably still stand.

This thesis will also assume this correctness from perceived similarity; see table 4.1 for
how UniTT+hit and Agda appear similar (except the universe lifting). In this chapter, I
will highlight some differences betweenUniTT+hit andAgda and discuss some practical
considerations.

91



Types UniTT+hit Agda implementation in my thesis

Sums ∑
𝑎∶𝐴 𝐵 Σ A (λ a → B)

⟨𝑎; 𝑏⟩ (a , b)

elim∑[𝑧.𝐶](𝑥.𝑦.𝑐; 𝑠) f s where

f : (z : Σ A (λ a → B)) → C

f (x , y) = c
fst fst

snd snd

𝑠 ≡ ⟨fst(𝑠); snd(𝑠)⟩ valid

Functions ∏
𝑎∶𝐴 𝐵 (a : A) → B

𝜆(𝑥∶𝐴).𝑏 λ (x : A) → b

𝑓(𝑎) f a or f $ a

𝑓 ≡ 𝜆𝑥.𝑓(𝑥) valid
functional extensionality λ=

The unit 𝟙 ⊤

unit unit

elim𝟙[𝑥.𝐶](𝑐; 𝑢) f u where

f : (x : ⊤) → C

f unit = c
𝑢 ≡ unit valid

Identification 𝑎 =𝐴 𝑏 a == b

refl𝑎 idp

elim=[𝑥.𝑦.𝑧.𝐶](𝑥.𝑐; 𝑎; 𝑏; 𝑝) f a b p where

f : (x y : A) (z : x == y) → C

f x .x idp = c
ap𝑓(𝑝) ap f p

elim𝑎=[𝑥.𝑦.𝐶](𝑐; 𝑏; 𝑝) f b p where

f : (x : A) (y : a == x) → C

f .a idp = c
elim=𝑎[𝑥.𝑦.𝐶](𝑐; 𝑏; 𝑝) f b p where

f : (x : A) (y : x == a) → C

f .a idp = c
𝑝 � 𝑞 p ∙ q

𝑝−􏷪 ! p

transport[𝑥.𝐵](𝑝; 𝑢) transport (λ x → B) p u

to-transp to-transp

Universes U 𝑖 Type i

U􏷩 Type lzero

U 𝑖+􏷪 Type (lsucc i)

U 𝑖∨𝑗 Type (lmax i j)

(continued on the next page)

Table 4.1: Similarity between UniTT+hit and Agda.
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Types UniTT+hit Agda implementation in my thesis

U 𝑖 ∶U 𝑖+􏷪 valid
𝐴 ∶U 𝑖 ⟹ 𝐴 ∶U 𝑖+􏷪 not valid; A : Type i only implies

Lift A : Type (lsucc i)

Coproducts 𝐴 + 𝐵 A ⊔ B

inl(𝑎) inl a

inr(𝑏) inr b

elim+[𝑥.𝐷](𝑥.𝑑inl; 𝑥.𝑑inr; 𝑐) f c where

f : (x : A ⊔ B) → D

f (inl x) = d_inl

f (inr x) = d_inr

This cell
intentionally
left blank

𝟘 ⊥

elim𝟘[𝑥.𝐶](𝑒) f e where

f : (x : ⊥) → C

f ()

Natural
numbers

ℕ data ℕ : Type lzero

zero O

succ S

elimℕ[𝑥.𝐶](𝑐zero; 𝑥.𝑦.𝑐succ; 𝑛) f n where

f : (x : ℕ) → C

f O = c_O

f (S x) = c_S where y = f x

Equivalence is-equiv(𝑓) is-equiv f

𝐴 ≃ 𝐵 A ≃ B

Univalence coerce(𝑝) coe p

coerce-equiv(𝑝) coe-equiv p

idf-is-equiv(𝐴) idf-is-equiv A

univalence(𝐴; 𝐵) snd ua-equiv

Dependent
identification

𝑢 =𝑥.𝐵
𝑝 𝑣 u == v [ (λ x → B) ↓ p ]

apd𝑓(𝑝) apd f p

The circle 𝕊􏷪 S¹

base base

loop loop

elim𝕊􏷪 [𝑥.𝐶](𝑐base; 𝑐loop; 𝑠) S¹-elim c_base c_loop s

loop𝛽 loop-β

elim-nd𝕊􏷪 [𝑥.𝐶](𝑐base; 𝑐loop; 𝑠) S¹-rec c_base c_loop s

loop-nd𝛽 loop-β

Truncation
level

TLevel data TLevel : Type lzero

(continued on the next page)

Table 4.1: Similarity between UniTT+hit and Agda.
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Types UniTT+hit Agda implementation in my thesis

−􏷡 ⟨-2⟩

succ S

elimTLevel[𝑥.𝐶](𝑐−􏷫; 𝑥.𝑦.𝑐succ; 𝑛) f t where

f : (x : ℕ) → C

f O = c_⟨-2⟩

f (S x) = c_S where y = f x
𝑚 +̂ 𝑛 m +2+ n

is-contr(𝐴) is-contr A

has-level𝑛(𝐴) has-level n A

is-prop(𝐴) is-prop A

is-set(𝐴) is-set A

𝑛-type n -Type i

Set hSet

Truncation ‖𝐴‖𝑛 Trunc n A

‖𝐴‖𝑛-level Trunc-level

|𝑎|𝑛 [ a ]

elim‖−‖[𝑥.𝐶; 𝑥.𝐶-level](𝑥.𝑐|−|; 𝑡) Trunc-elim {P = λ x → C}

(λ x → C-level) (λ x → c_[]) t
elim-nd‖−‖[𝐶; 𝐶-level](𝑥.𝑐|−|; 𝑡) Trunc-rec C-level (λ x → c_[]) t

Connectivity is-connected𝑛(𝐴) is-connected n A

Fibers hfiber𝑓(𝑏) hfiber f b

has-conn-fibers𝑛(𝑓) has-conn-fibers n f

is-surj(𝑓) is-surj f

Set quotients 𝐴/𝑅 SetQuot R

𝐴/𝑅-level SetQuot-level

[𝑎] q[ a ]

quot-rel(𝑟) quot-rel r

elim /[𝑥.𝐶; 𝑥.𝐶-level](𝑥.𝑐[−];
𝑥.𝑦.𝑧.𝑐quot-rel; 𝑞)

SetQuot-elim {P = λ x → C}

(λ x → C-level) (λ x → c_q[])

(λ {x} {y} z → c_quot-rel) q
quot-rel𝛽 quot-rel-β

elim-nd/[𝐶; 𝐶-level](𝑥.𝑐[−];
𝑥.𝑦.𝑧.𝑐quot-rel; 𝑞)

SetQuot-rec

C-level (λ x → c_q[])

(λ {x} {y} z → c_quot-rel) q
quot-rel-nd𝛽 quot-rel-β

Pushouts 𝐴 ⊔𝐶;𝑓;𝑔 𝐵 Pushout (span A B C f g)

left(𝑎) left a

right(𝑏) right b

(continued on the next page)

Table 4.1: Similarity between UniTT+hit and Agda.
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Types UniTT+hit Agda implementation in my thesis

glue(𝑐) glue c

elim⊔[𝑥.𝐷](𝑥.𝑑left; 𝑥.𝑑right;
𝑥.𝑑glue; 𝑝)

Pushout-elim {P = λ x → D}

(λ x → d_left) (λ x → d_right)

(λ x → d_glue) p
glue𝛽 glue-β

elim-nd⊔[𝐷](𝑥.𝑑left; 𝑥.𝑑right;
𝑥.𝑑glue; 𝑝)

Pushout-rec

(λ x → d_left) (λ x → d_right)

(λ x → d_glue) p
glue-nd𝛽 glue-β

Suspension susp(𝐴) Susp A

north north

south south

merid(𝑎) merid a

Cofibers cofiber(𝑓) Cofiber f

cfbase cfbase

cfcod(𝑏) cfcod b

cfglue(𝑎) cfglue a

Pointedness ∑
𝐴∶U𝑖

𝐴 Ptd i

pt(𝑋) pt X

carrier(𝑋) de⊙ X

𝑋 ⋅→ 𝑌 X ⊙→ Y

Binary wedges 𝑋 ∨ 𝑌 X ∨ Y

winl(𝑥) winl x

winr(𝑦) winr y

wglue wglue

Wedges ⋁
𝐴 𝑋 BigWedge X

bwbase bwbase

bwin(𝑎, 𝑥) bwin a x

bwglue(𝑎) bwglue a

Spheres 𝕊𝑛 Sphere n

Booleans 𝟚 Bool

true true

false false

(continued on the next page)

Table 4.1: Similarity between UniTT+hit and Agda.
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Types UniTT+hit Agda implementation in my thesis

elim𝟚[𝑥.𝐶](𝑐true; 𝑐false; 𝑏) f b where

f : (x : Bool) → C

f true = c_true

f false = c_false

Table 4.1: Similarity between UniTT+hit and Agda.

Remark 4.1. Typesetting Agda code with English text is challenging, and this is why I
chose UniTT+hit to present my work in chapter 3. The naïve arrangement would lead to

• I wrote A B and also f x. That is it.

where the space between A and B or f and x is wider than the space between sen-
tences, which is visually disturbing to my taste. There are various ways to reconnect the
fragments separated by these wide spaces:

• I wrote A␣B and also f␣x. That is it.

• I wrote A B and also f x . That is it.

• I wrote A B and also f x . That is it.

I do not feel there is a good solution, and the difference between printers and LED dis-
plays makes the situation even worse. Eventually, I chose to add the light gray back-
ground, and I apologize if this is not your favorite style.

4.1 Specifics of Agda

4.1.1 Function Types
There is no essential difference between functions types in Agda and those in UniTT+hit,
but Agda provides much syntax sugar to make the programming easier; see table 4.2.
Agda also supports implicit arguments to reduce clutter, which are indicated by the curly
brackets in {a : A} → B ; this is useful for suppressing arguments that can be inferred
from later arguments. For example, the following is an identity function for any type A
in Type lzero :

id : {A : Type lzero} → A → A

id a = a

where Agda can usually infer the type A from the succeeding argument in a typical
usage of id such as id a .
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Syntax Elaboration

A → B (_ : A) → B with an unused variable

(a : A) (b : B) → C (a : A) → (b : B) → C

(a b : A) → C (a : A) → (b : A) → B

∀ (a : A) → B (a : A) → B

∀ a → B (a : _) → B with domain unspecified

λ (a : A) (b : B) → c λ (a : A) → λ (b : B) → c

λ (a b : A) → c λ (a : A) → λ (b : A) → c

λ a → b λ (a : _) → b

Table 4.2: Syntax sugar for functions in Agda.

4.1.2 Universes

Both UniTT+hit andAgda have a hierarchy of countably infinite universes, where the 𝑖th
universeU 𝑖 is roughly transcribed as Set i in plain Agda and then aliased to Type i

in this thesis. Nonetheless, there are significant discrepancies in how the universe hier-
archy may be used in two systems.

Universe polymorphism. Universe levels inUniTT+hit remainmeta-variables in rules,
separate from the term variables. Agda, on the other hand, provides a special type for
the universe levels and reuses function types for quantification over (finite) levels. The
level type is named ULevel in my thesis. For example, the following is an identity
function that works for any type in any (finite-level) universe.

id : ∀ {i : ULevel} (X : Set i) → X → X

id X x = x

This feature is called universe polymorphism in the Agda documentation. One problem is
that every Agda type should belong to some universe, but the introduction of universe
polymorphism in Agda creates new types that do not belong to any finite level in the
universe hierarchy. To mitigate this issue, in Agda there is a special 𝜔-level universe,
Setω 1, which includes all typeswhose universe levels can be expressedwith universally
quantified bound variables. For example, the type of the above function id

∀ {i : Level} (X : Set i) → X → X

involves a bound variable i and belongs to Setω . Note that Setω does not belong to
any universe and is not a type, nor can it be used directly in an Agda proof.

1There is no space between Set and ω in the Agda output messages.
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Lifting Agda admits implicit lifting of types to higher-level universes only in limited
cases, where UniTT+hit admits such transparent lifting everywhere. Explicit lifting in
Agda is possible through defining a new type Lift A with a single constructor from
A such that types A and Lift A live in different universes but are trivially equivalent.
Fortunately, the need of explicit lifting during the mechanization of homotopy theory is
rare.

An alternative approach to implementing the universe hierarchy is to separate uni-
verse level variables from term variables, and then apply the elaboration algorithm by
Robert Harper and Robert Pollack [62]; the algorithm imposes the prenex form restric-
tion onuniverse level variables as the polymorphism inML-like programming languages,
but provides implicit lifting as in UniTT+hit and was recently implemented in the proof
assistant Coq [130]. At the time of writing, there are concerns in the Agda community
about the prenex form being too restricted and the potential slowdown of the type check-
ing; see [70] for a discussion about these concerns.

4.1.3 Pattern Matching

In Agda, pattern matching plays the role of elimination rules in UniTT+hit as shown
in table 4.1 except for higher inductive types. It comes with flexible syntax for function
definitions that matches the rich syntax of data types and record types. The correct-
ness is guarded by two parts: the coverage checker of Agda guarantees that all cases are
considered, and the termination checker analyzes the call graphs to determine whether
recursive definitions are terminating [1, 84]. Together they maintain the Haskell pro-
gramming style without obliviously demanding additional proof-theoretic power from
the underlying type theory.

Note that the default pattern matching relies on the rule K for identification [55, 105],
which is incompatible with UniTT as discussed in section 2.3. The current version of
Agda implements a new flag [38] --without-K which removes the dependency on
the rule K. The mechanization in this thesis was checked against this new flag.

4.1.4 Data Types

Agda supports rich syntax for data types following the similar principles of mutually
defined inductive-recursive types in [49, 108], which is able to covermost inductive types
in UniTT+hit, if not all. A simple example is that we can define natural numbers ℕ as
follows; see table 4.1 for a complete translation of uses of ℕ into Agda.

data ℕ : Set where

O : ℕ

S : ℕ → ℕ
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4.1.5 Records
Agda also has built-in syntax for 𝑛-ary labelled sums, called records. Sum types and the
unit type in UniTT+hit can be easily defined as record types; also see table 4.1.

record Σ {i j} (A : Type i)

(B : A → Type j) : Type (lmax i j) where

constructor _,_

field

fst : A

snd : B fst

record ⊤ : Type lzero where

constructor unit

The difference between record types and data types with only one constructor is that
(non-recursive) record types admit the uniqueness rule as we see in figs. 2.1 and 2.3; for
this reason, the unit and sum types are not defined as inductive types in section 2.1.

4.1.6 Higher Inductive Types
Unfortunately, it is still unclear how to incorporate higher inductive types in UniTT+hit
into Agda. Currently there are two ways to encode a higher inductive type in Agda:

The old way. Dan Licata proposed postulating constructors at higher dimensions on
top of an ordinary inductive type defined by constructors at the zeroth dimension [86].
There is, however, a constant worry that it might be possible to contradict the postulated
identification generator which leads to inconsistency; at the time of writing complicated
mechanisms are needed to seal all known loopholes.

To see the issue, consider an interval as a higher inductive type 𝕀, which has two
element generators 0 and 1 and one identification generator seg between 0 and 1. Dan
Licata’s method would first define an inductive type generated by 0 and 1 and then
postulate that 0 is identified to 1 as follows:

data I : Type lzero where

I0 : I

I1 : I

postulate

Iseg : I0 == I1

I-elim : ∀ {l} {C : I → Type l}
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(I0* : C I0) (I1* : C I1)

(Iseg* : I0* == I1* [ C ↓ Iseg ])

→ (x : I) → C x

I-elim I0* I1* Iseg* I0 = I0*

I-elim I0* I1* Iseg* I1 = I1*

However, in Agda we can prove I0 and I1 are different and contradict seg :

¬Iseg : (I0 == I1) → ⊥

¬Iseg ()

This is due to Agda knowing I0 and I1 are different constructors. To prevent this, we
have to block the pattern matching on I or in general any way to show I0 and I1 are
different.2 Over time more ways have been found to prove that I0 and I1 are different
in Agda, and the workaround has evolved into delicate hacks that have been manually
applied to each higher inductive type; see [28] for more information.

The new way: rewrite rules. Currently Agda is experimenting with a new extension,
called rewrite rules [37], that enables adding (certain) judgmental equalities. To define
a higher inductive type is to first postulate everything as axioms, and then insert the
computation rules as rewrite rules.

postulate

I : Type lzero

I0 : I

I1 : I

Iseg : I0 == I1

module IElim {l} {C : I → Type l}

(I0* : C I0) (I1* : C I1)

(Iseg* : I0* == I1* [ C ↓ Iseg ]) where

postulate

f : (x : I) → C x

I0-β : f I0 ↦ I0*

I1-β : f I1 ↦ I1*

{-# REWRITE left-β #-}

{-# REWRITE right-β #-}

postulate

Iseg-β : apd f Iseg == Iseg*

2There are also other issues such as Iseg* is improperly ignored during type checking because it is
not used; this has led to another hack to block the special treatment of unused variables in Agda.
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Rewrite rules seem safer, because they add features to a safe state, unlike the work-
around in the previous method which tries to subtract features from an unsafe state.
They alsomake it possible to have judgmental computational rules for higher-dimensional
structures (discussed in section 2.5). During the time of writing this thesis, Jesper Cockx
and I have completed the migration of the main Agda development of homotopy theory
(including the mechanization in this thesis) [29] to rewrite rules.

4.2 Practice of Mechanization
This section is dedicated to practical considerations that are not visible on paper. In
my experience, there is a regular struggle between these essential factors to a successful
Agda mechanization:

1. the speed of type checking, and

2. the computational content, and

3. the economy or elegance of the syntax.

It is desired to have fast type checking to reduce machine efforts, economic syntax to re-
duce human efforts, and much computational content (in terms of judgmental equality)
to strengthen the mathematical results in addition to their typing. That is, we consider
the standard addition + with the judgmental equality 2 + 2 ≡ 4 stronger than the one
without. However, in practice it is difficult to achieve the best in all aspects, and the
following discusses the interplay between these factors in several examples.
Remark 4.2.1. Although these three criteria are my best attempt to abstract over various
trade-offsmade in our Agdamechanization, there is no reason to believe that this section
directly applies to other mechanization systems or future versions of Agda.

Expansion control. In my observation, the most important factor to the speed of the
type checking is how definitions are expanded; during the equality checking, Agda
might expand the terms into unnecessarily long expressions, sometimes pushing the
computers to their limits. The easiest way to manually contain the expansion in Agda is
to mark a definition abstract, which effectively strips off any attached computational con-
tent from the definition. In other words, the key word abstract [2] sacrifices compu-
tational content for speed. Usually, properties such as a function being an equivalence,
group laws, or that a function respects higher-dimensional generators in the domain, are
all good candidates to mark abstract; the rationale is that their actual proofs are usually
insignificant. As a side note, there has been an on-going research to automatically op-
timize the expansion in the logical framework Twelf [114, 116] without sacrificing any
computational content. See also [77] for the proposal for Agda to try unifying arguments
before expansion.
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Records and general sums. When we are bundling data together, there is always a
choice betweenusing (possibly nested) sum types anddefiningnewspecific record types.
A major benefit of defining new record types is that the new type constructor is injective
(for unification) and thus can be used to pass implicit parameters. For example, let X a

be a new record type, a function of type (a : A) → X a can make the first argument
a implicit because the unification of X a and X b forces the unification of a and b .
A definition using sum types might not be able to achieve this.3 However, sum types
enjoy a large collection of lemmas, which might offset the cost of specifying implicit
arguments.

Univalence. Here is another example of the trade-off between these factors. Using uni-
valence, proving lemmas about equivalences often become trivial because identification
elimination only considers reflexivity (or effectively only identity functions). However,
the price is that all identifications constructed by the univalence axiom are stuck, which
in turn demands manual manipulation at the call sites. Despite the (superficial) conve-
nience of the univalence axiom, I chose to limit the usage of it for more computational
content.

Note that the difference between a good design and a bad one (in terms of balancing
these factors) can make a mechanized proof impossible to type check or too difficult to
finish despite it being based on the same paper proof.

The best way to feel the struggle is through real code. Here is a (slightly adapted) ex-
ample from the real development:4 we will explore the design space of the mechanized
definition of finite-dimensional CW complexes defined in section 3.5.1. Fixing some uni-
verse level i , the primary goal is to have a family of types

Skeleton : ℕ → Type (lsucc i)

such that Skeleton n is the type of combinatorial descriptions of n -dimensional CW
complexes whose cell index sets are of universe level i . The secondary goal is to find
the best definition judged by the above three criteria. Because the boundary of a cell is
a function from a sphere to the realized CW complex up to the previous dimension, the
skeleton family Skeleton and the realizer, which is named Realizer , are mutually
defined. In sum, we want the following two functions:

Skeleton : ℕ → Type (lsucc i)

Realizer : {n : ℕ} → Skeleton n → Type i

Here is a naïve inductive implementation closely following the descriptions in section 3.5.1.

3Agda can infer injectivity in some cases.
4Themismatch is due to the convenient helper functions used in real mechanized proofs to save typing

and make code beautiful. This section inlines most of them.
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Skeleton O = Σ (Type i) is-set

Skeleton (S n) =

Σ (Skeleton n) λ skel →

Σ (Σ (Type i) is-set) λ cells →

fst cells → Sphere n → Realizer {n} skel

Realizer {n = O} A = fst A

Realizer {n = S n} (skel , cells , α) = Pushout (span

(Realizer {n} skel) (fst cells) (fst cells × Sphere n)

(uncurry α) fst)

However, there is a major drawback of this naïve implementation: Suppose we define a
helper function to strip off the highest dimension called cw-init .

cw-init : ∀ {n} → Skeleton (S n) → Skeleton n

cw-init (skel , _ , _) = skel

The problem is that, in a typical use of cw-init such as cw-init skel , the implicit
argument n will not be inferred from the skeleton skel ; users often have to write
cw-init {n} skel to specify the dimension. The reason is that the current Agda is
unable to infer injectivity of Skeleton , as both cases of Skeleton have the same head
symbol Σ . A direct solution is to replace either the definition of Skeleton O or that
of Skeleton (S n) with a custom record type. Here I define AttachedSkeleton

to replace the nested Σ type used in the successor case:

record AttachedSkeleton n (Skel : Type (lsucc i))

(Real : Skel → Type i) : Type (lsucc i) where

constructor attached-skeleton

field

skel : Skel

cells : hSet i

attaching : fst cells → Sphere n → Real skel

Skeleton : ℕ → Type (lsucc i)

Realizer : {n : ℕ} → Skeleton n → Type i

Skeleton O = Σ (Type i) is-set

Skeleton (S n) = AttachedSkeleton n (Skeleton n) Realizer

Realizer {n = O} A = fst A

Realizer {n = S n} (attached-skeleton skel cells α) =

Pushout (span

(Realizer skel) (fst cells) (fst cells × Sphere n)

(uncurry α) fst)
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This works well in practice and is used in our mechanization; as a bonus in style, it
uses dedicated projections instead of the generic fst and snd . There are two other
possible definitions of AttachedSkeleton but they seem inferior: One possibility is
a data type with only one constructor.

data AttachedSkeleton n (Skel : Type (lsucc i))

(Real : Skel → Type i) : Type (lsucc i) where

attached-skeleton :

(skel : Skel)

→ (cells : hSet i)

→ (fst cells → Sphere n → Real skel)

→ AttachedSkeleton n Skel Real

Another choice is a recursive record type to avoid abstraction over Skeleton :

record AttachedSkeleton (n : ℕ) : Type (lsucc i) where

inductive

constructor attached-skeleton

field

skel : Skeleton n

cells : hSet i

attaching : fst cells → Sphere n → Realizer skel

Both alternative solutions lack the uniqueness rule that makes cw-init skel or other
operations compute without further pattern matching. This may seem minor on first
thought, but one of the subjects of my study, cohomology groups, is all about adjacent
dimensions, and additional boilerplate is needed if operations to extract neighboring
information are stuck. Therefore these two solutions score lowon the economyof syntax.

To summarize the impact of different choices, let’s consider the inclusion function
cw-incl-last from the realization up to the previous dimension to that up to the
current dimension. In my current mechanization using a non-recursive record type, this
can be defined as:

cw-incl-last : ∀ {n} (skel : Skeleton (S n))

→ (Realizer (cw-init skel) → Realizer skel)

cw-incl-last _ = left

In the naïve definition using Σ , dimensions need to be explicitly specified.

cw-incl-last : ∀ {n} (skel : Skeleton (S n))

→ (Realizer {n} (cw-init {n} skel) → Realizer {S n} skel)

cw-incl-last _ = left

Finally, in the solutions using data types or recursive record types, additional pattern
matching is required.
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cw-incl-last : ∀ {n} (skel : Skeleton (S n))

→ (Realizer (cw-init skel) → Realizer skel)

cw-incl-last (attached-skeleton _ _ _) = left

My choice is a clear winner in terms of the economy of syntax and the computational
content, so the only worry is whether the type checking is significantly slowed down.
Fortunately, the current development can be checked in a reasonable amount of time
and it is hard to believe that any of the above alternative definitions can considerably
improve the checking time.

4.3 Head-to-Head Comparison
It has been asserted (perhaps too many times) that the Agda mechanization is compara-
ble to the UniTT+hit proofs on paper. In this section I shall substantiate this claim by
showing part of the real mechanized proof of the Blakers–Massey theorem. Except for
the definition of app= , the only changes from the actual code are comment removal and
line break insertion; even the indentation is preserved. The mechanization starts with

module homotopy.BlakersMassey {i j k}

{A : Type i} {B : Type j} (Q : A → B → Type k)

m (f-conn : ∀ a → is-connected (S m) (Σ B (λ b → Q a b)))

n (g-conn : ∀ b → is-connected (S n) (Σ A (λ a → Q a b)))

where

which matches the preconditions of theorem 3.4.1 except that 𝑚 and 𝑛 are replaced by
S m and S n (and 𝑚 + 𝑛 by m +2+ n below). This way we can drop the condition
𝑚, 𝑛 ≥ −1; see remark 3.1.1. In this section we will focus on the part after establishing
the crucial equivalence in section 3.4.2 for apd

code
(qglue(𝑞􏷠;􏷠)), that is,

‖hfiber𝜆𝑞􏷪;􏷩.qglue(𝑞􏷩;􏷩) � qglue(𝑞􏷪;􏷩)−􏷪 � qglue(𝑞􏷪;􏷪)(𝑟)‖𝑚+𝑛 ≃ ‖hfiberqglue(𝑟)‖𝑚+𝑛

or, in my Agda mechanization,

eqv : ∀ {a₀ a₁ b₀ b₁} (q₀₀ : Q a₀ b₀) (q₁₁ : Q a₁ b₁) r

→ Trunc (m +2+ n) (hfiber (λ q₁₀ → bmglue q₀₀

∙' ! (bmglue q₁₀)

∙' bmglue q₁₁) r)

≃ Trunc (m +2+ n) (hfiber bmglue r)

Remark 4.3.1. The primed concatenation ∙' is similar to the ordinary concatenation ∙ ,
except that it pattern matches on the second argument instead of the first one; that is,
p ∙' idp reduces to p but p ∙ idp will not. This is useful here because later on we
will replace bmglue q₁₁ by idp and only the primed version computes. A careful
choice between implementations that are identified but computationally different can
make a huge difference in mechanization.
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The setup begins with the dedicated pushout after the family-as-fibration transforma-
tion. This is done by importing the dedicated pushout library

open import homotopy.blakersmassey.Pushout Q

which contains the following definitions (and more):

bmspan : Span {i} {j} {lmax i (lmax j k)}

bmspan = span A B (Σ A λ a → Σ B λ b → Q a b) fst (fst ∘ snd)

BMPushout : Type (lmax i (lmax j k))

BMPushout = Pushout bmspan

bmleft : A → BMPushout

bmleft = left

bmright : B → BMPushout

bmright = right

bmglue : ∀ {a b} → Q a b → bmleft a == bmright b

bmglue {a} {b} q = glue (a , b , q)

where the prefix “bm” or “BM” means “Blakers–Massey”. The Agda BMPushout cor-
responds to the pushout 𝑃 in the UniTT+hit proof, and bmglue corresponds to the
function qglue. We then import the equivalence library

import homotopy.blakersmassey.CoherenceData Q m f-conn n g-conn

as Coh

under the namespace Coh ; this corresponds to the equivalence proved in section 3.4.2
for apd

code
(qglue(𝑞􏷠;􏷠)). We then assume there is an element q₀₀ : Q a₀ b₀ and will

discharge it eventually, again perfectly matching the UniTT+hit proof:

module _ {a₀} {b₀} (q₀₀ : Q a₀ b₀) where

We proceed by defining the code through pushout elimination using the equivalence
Coh.eqv from the library. Among the following lemmas the only new ingredients are
the oneswith the suffix -template , whose sole purpose is to enable identification elim-
ination on bmglue q₀₁ later in the proof. Because both end points of bmglue q₀₁

are not free, we have to abstract over the right end point bmright b₁ as well. In the
following, the argument r' to code-bmleft-template results from the abstraction
over bmglue q₁₁ in the type of Coh.eqv .
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code-bmleft-template : ∀ a₁ {p} (r' : bmleft a₁ == p)

→ bmleft a₀ == p

→ Type (lmax i (lmax j k))

code-bmleft-template a₁ r' r = Trunc (m +2+ n)

(hfiber (λ q₁₀ → bmglue q₀₀

∙' ! (bmglue q₁₀)

∙' r') r)

code-bmleft : ∀ a₁ → bmleft a₀ == bmleft a₁

→ Type (lmax i (lmax j k))

code-bmleft a₁ = code-bmleft-template a₁ idp

code-bmright : ∀ b₁ → bmleft a₀ == bmright b₁

→ Type (lmax i (lmax j k))

code-bmright b₁ r = Trunc (m +2+ n) (hfiber bmglue r)

Similarly, the argument r to code-bmglue-template will be given bmglue q₀₁ ;
this template even abstracts over the code because we are still defining it.

code-bmglue-template : ∀ {a₁ p}

→ (code : (r : bmleft a₀ == p) → Type (lmax i (lmax j k)))

→ (r : bmleft a₁ == p)

→ (∀ r' → code-bmleft-template a₁ r r' ≃ code r')

→ code-bmleft-template a₁ idp == code

[ (λ p → bmleft a₀ == p → Type (lmax i (lmax j k))) ↓ r ]

code-bmglue-template _ idp lemma = λ= (ua ∘ lemma)

code-bmglue : ∀ {a₁ b₁} (q₁₁ : Q a₁ b₁)

→ code-bmleft a₁ == code-bmright b₁

[ (λ p → bmleft a₀ == p → Type (lmax i (lmax j k)))

↓ bmglue q₁₁ ]

code-bmglue {a₁} {b₁} q₁₁ = code-bmglue-template

(code-bmright b₁) (bmglue q₁₁) (Coh.eqv q₀₀ q₁₁)

With all these components, we are ready to define the code inAgda. TheAgda code p r

matches the UniTT+hit code(𝑝, 𝑟).
module Code = BMPushoutElim

code-bmleft code-bmright code-bmglue

code : ∀ p → bmleft a₀ == p → Type (lmax i (lmax j k))

code = Code.f

The remaining part is the contractibility of code and the discharge of q₀₀ . First, we
want to state there is a center in any fiber of code :
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code-center : ∀ {p} r → code p r

This can be done by identification elimination on r and the following lemma:

code-center-idp : code (bmleft a₀) idp

code-center-idp = [ q₀₀ , !-inv'-r (bmglue q₀₀) ]

where the identification elimination on r effectively transports this center into all fibers.
However, we have to understand the computational behavior of this transportation (up
to identification) because the contractibility of fibers of code relies upon knowing the
exact values of the transported centers. Therefore, we should not rush into identification
elimination but give a good description of the coercion from code (bmleft a₀) idp

to code p r . The definition of the coercion, again, startswith a general templatewhich
enables identification elimination on r .

coerce-path-template : ∀ {p} r

→ code-bmleft a₀ == code p

[ (λ p → bmleft a₀ == p → Type (lmax i (lmax j k)))

↓ r ]

→ code-bmleft a₀ idp == code p r

coerce-path-template idp lemma = app= lemma idp

coerce-path : ∀ {p} r → code (bmleft a₀) idp == code p r

coerce-path r = coerce-path-template r (apd code r)

code-center : ∀ {p} r → code p r

code-center r = coe (coerce-path r) code-center-idp

where the lemma app= is the inverse of the functional extensionality λ= . (The follow-
ing definition of app= was slight adapted from the real library code by incorporating
module parameters and removing its indentation.)

app= : ∀ {j} {P : A → Type j} {f g : (x : A) → P x}

→ (p : f == g) → ((x : A) → f x == g x)

app= p x = ap (λ u → u x) p

The goal is the following lemma

code-coh-lemma : ∀ {b₁} (q₀₁ : Q a₀ b₁)

→ code-center (bmglue q₀₁) == [ q₀₁ , idp ]

which implies the contractibility of all fibers of code by the same argument in sec-
tion 3.4.3:
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code-coh : ∀ {b₁} (r : bmleft a₀ == bmright b₁)

(s : hfiber bmglue r) → code-center r == [ s ]

code-coh ._ (q₀₁ , idp) = code-coh-lemma q₀₁

code-contr : ∀ {b₁} (r : bmleft a₀ == bmright b₁)

→ is-contr (Trunc (m +2+ n) (hfiber bmglue r))

code-contr r = code-center r , Trunc-elim

(λ _ → =-preserves-level Trunc-level) (code-coh r)

Expanding the definition of code-center , it becomes obvious that we have to under-
stand how the transporting function coe (coerce-path r) works in the case that r
is bmglue q₀₁ . In particular, we would like to show

coe-coerce-path-code-bmglue : ∀ {b₁} (q₀₁ : Q a₀ b₁) x

→ coe (coerce-path (bmglue q₀₁)) x

== Coh.to q₀₀ q₀₁ (bmglue q₀₁)

(code-bmleft-template-diag (bmglue q₀₁) x)

where the function Coh.to q₀₀ q₀₁ (bmglue q₀₁) is the forward computational
content of the equivalence Coh.eqv q₀₀ q₀₁ (bmglue q₀₁) and themediating func-
tion code-bmleft-template-diag reconciles the type mismatch.

The mediating function code-bmleft-template-diag bridges the gap between
the fiber code-bmleft a₀ idp (which is code-bmleft-template a₀ idp idp )
and code-bmleft-template a₀ r r :

code-bmleft-template-diag : ∀ {p} (r : bmleft a₀ == p)

→ code-bmleft a₀ idp → code-bmleft-template a₀ r r

code-bmleft-template-diag r = Trunc-rec Trunc-level

λ {(q₀₀' , shift) →

[ q₀₀' , ! (∙'-assoc (bmglue q₀₀) (! (bmglue q₀₀')) r)

∙ ap (_∙' r) shift ∙' ∙'-unit-l r ]}

which may be visualized as “extending identifications through r”; in other words, it
asserts any q₀₀' satisfying the equation

bmleft a₀ bmright b₁

bmglue q₀₀

! (bmglue q₀₀')

= bmleft a₀ idp
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also satisfies the equation:

bmleft a₀ bmright b₁

p

bmglue q₀₀

! (bmglue q₀₀')

r
=

bmleft a₀

p

r

It is useful to show its computational behavior (up to identification) when we plug
in idp for r ; unsurprisingly, it becomes an identity function because no coercion is
needed.

abstract

code-bmleft-template-diag-idp :

∀ x → code-bmleft-template-diag idp x == x

code-bmleft-template-diag-idp =

Trunc-elim (λ _ → =-preserves-level Trunc-level)

λ{(q₁₀ , shift) → ap (λ p → [ q₁₀ , p ]) (ap-idf shift)}

where ap-idf is the lemma showing that ap of an identity function is still an identity
function. The reason thatwe avoided applying identification elimination to r in the defi-
nition of themediating function code-bmleft-template-diag is again tomake pos-
sible reduction under non-idp values (in particular, bmglue q₀₁ ). The above lemma
is marked abstract because its computational content is insignificant. This concludes
the definition of the mediating function.

Going back to the decomposition of coe (coerce-path (bmglue q₀₁)) , it is
time to reap the fruits of our labors of abstracting over bmglue q₀₁ ! The following is
a general lemma which exploits the identification elimination on r ; it would be painful
if we had to consider the non-idp cases.

abstract

coe-coerce-path-code-bmglue-template : ∀ {p}

(r : bmleft a₀ == p)

(lemma : ∀ r' → code-bmleft-template a₀ r r' ≃ code p r')

(x : code-bmleft a₀ idp)

→ coe (coerce-path-template r

(code-bmglue-template (code p) r lemma)) x

== ‒> (lemma r) (code-bmleft-template-diag r x)

coe-coerce-path-code-bmglue-template idp lemma x =

coe (app= (λ= (ua ∘ lemma)) idp) x
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=⟨ ap (λ p → coe p x) (app=-β (ua ∘ lemma) idp) ⟩

coe (ua (lemma idp)) x

=⟨ coe-β (lemma idp) x ⟩

‒> (lemma idp) x

=⟨ ! (ap (‒> (lemma idp))

(code-bmleft-template-diag-idp x)) ⟩

‒> (lemma idp) (code-bmleft-template-diag idp x)

=∎

where ‒> extracts the forward function from an equivalence; and the … =⟨ … ⟩ … =∎

notation helps organize a long identification proof, with each identification within the
brackets ⟨ … ⟩ identifying its adjacent expressions. With this lemma, we can finish the
decomposition of coe (coerce-path (bmglue q₀₁)) :

abstract

coe-coerce-path-code-bmglue : ∀ {b₁} (q₀₁ : Q a₀ b₁) x

→ coe (coerce-path (bmglue q₀₁)) x

== Coh.to q₀₀ q₀₁ (bmglue q₀₁)

(code-bmleft-template-diag (bmglue q₀₁) x)

coe-coerce-path-code-bmglue q₀₁ x =

coe (coerce-path-template (bmglue q₀₁)

(apd code (bmglue q₀₁))) x

=⟨ ap (λ p → coe

(coerce-path-template (bmglue q₀₁) p) x)

(Code.glue-β q₀₁) ⟩

coe (coerce-path-template (bmglue q₀₁)

(code-bmglue q₀₁)) x

=⟨ coe-coerce-path-code-bmglue-template (bmglue q₀₁)

(Coh.eqv q₀₀ q₀₁) x ⟩

Coh.to q₀₀ q₀₁ (bmglue q₀₁)

(code-bmleft-template-diag (bmglue q₀₁) x)

=∎

More importantly, the desired identification between code-center (bmglue q₀₁)

and [ q₀₁ , idp ] can be constructed from the decomposition lemma and compu-
tational rules (up to identification) derived from lemma 3.1.3 (wedge connectivity).

abstract

code-coh-lemma : ∀ {b₁} (q₀₁ : Q a₀ b₁)

→ code-center (bmglue q₀₁) == [ q₀₁ , idp ]

code-coh-lemma q₀₁ =

coe (coerce-path (bmglue q₀₁)) code-center-idp

=⟨ coe-coerce-path-code-bmglue q₀₁ code-center-idp ⟩
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Coh.to' q₀₀ q₀₁ (bmglue q₀₁)

(q₀₀ , α₁α₁⁻¹α₂=α₂ (bmglue q₀₀) (bmglue q₀₁))

=⟨ ap (Coh.To.ext q₀₀ (_ , q₀₀) (_ , q₀₁) (bmglue q₀₁))

(path-lemma (bmglue q₀₀) (bmglue q₀₁)) ⟩

Coh.To.ext q₀₀ (_ , q₀₀) (_ , q₀₁) (bmglue q₀₁) (! path)

=⟨ Coh.To.β-r q₀₀ (_ , q₀₁) (bmglue q₀₁) (! path) ⟩

[ q₀₁ , path ∙' ! path ]

=⟨ ap (λ p → [ q₀₁ , p ]) (!-inv'-r path) ⟩

[ q₀₁ , idp ]

=∎

where

path = Coh.βPair.path

(Coh.βpair-bmright q₀₀ q₀₁ (bmglue q₀₁))

-- this is defined to be the path

-- generated by [code-bmleft-template-diag]

α₁α₁⁻¹α₂=α₂ : ∀ {p₁ p₂ p₃ : BMPushout}

(α₁ : p₁ == p₂) (α₂ : p₁ == p₃)

→ α₁ ∙' ! α₁ ∙' α₂ == α₂

α₁α₁⁻¹α₂=α₂ α₁ α₂ = ! (∙'-assoc α₁ (! α₁) α₂)

∙ ap (_∙' α₂) (!-inv'-r α₁)

∙' ∙'-unit-l α₂

-- the relation of this path

-- and the one from CoherenceData

path-lemma : ∀ {p₁ p₂ p₃ : BMPushout}

(α₁ : p₁ == p₂) (α₂ : p₁ == p₃)

→ α₁α₁⁻¹α₂=α₂ α₁ α₂ == ! (Coh.α₁=α₂α₂⁻¹α₁ α₂ α₁)

path-lemma idp idp = idp

Now that we finished the most difficult part, it is easy to prove the contractibility as
already shown above.
code-coh : ∀ {b₁} (r : bmleft a₀ == bmright b₁)

(s : hfiber bmglue r) → code-center r == [ s ]

code-coh ._ (q₀₁ , idp) = code-coh-lemma q₀₁

code-contr : ∀ {b₁} (r : bmleft a₀ == bmright b₁)

→ is-contr (Trunc (m +2+ n) (hfiber bmglue r))

code-contr r = code-center r , Trunc-elim

(λ _ → =-preserves-level Trunc-level) (code-coh r)

The final step is to discharge q₀₀ through the connectivity of f (or g ). In the following
code snippet, the lemma is-connected-is-prop states that connectivity itself is a
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Result UniTT+hit Location of the Agda entry point Agda entry point #lines

Representations of
covering spaces

theorem3.2.2 theorems/homotopy/

GroupSetsRepresentCovers.agda

grpset-equiv-cover 198

Universal covering
spaces

represented
by 𝜋􏷪

theorems/homotopy/

GroupSetsRepresentCovers.agda

path-set-repr-by-π1 5 more
(added to
the above)

lemma3.2.6 theorems/homotopy/

AnyUniversalCoverIsPathSet.agda

theorem 75

lemma3.2.7 theorems/homotopy/

PathSetIsInitalCover.agda

Uniqueness.theorem 35

Blakers–Massey theorem3.4.1 theorems/homotopy/

BlakersMassey.agda

blakers-massey 630

Seifert–van Kampen
(the improved version)

theorem3.3.4 theorems/homotopy/

VanKampen.agda

vankampen 1168

Cohomology
groups

lemma3.5.5 theorems/cw/cohomology/

ReconstructedCohomologyGroups.agda

reconstructed-

cohomology-group

2368
(for both
lemmas)

lemma3.5.6 theorems/cw/cohomology/

ReconstructedCochains

IsoCellularCochains.agda

rcc-iso-ccc

Table 4.3: Theorem Lookup Table

mere proposition and the lemma prop-has-level-S asserts that a mere proposition
is of level S m for any m .

blakers-massey : ∀ {a₀ b₀} (r : bmleft a₀ == bmright b₀)

→ has-conn-fibers (m +2+ n) (bmglue {a₀} {b₀})

blakers-massey {a₀} r = Trunc-rec

(prop-has-level-S is-connected-is-prop)

(λ{(_ , q₀₀) → code-contr q₀₀ r})

(fst (f-conn a₀))

We are done! The important message of this section is that Agda proofs and UniTT+hit
proofs work at the same level of abstraction and their lengths are in the same order of
magnitude.

4.4 Summary
The latest development is available on GitHub [29] and the reference version was kept
on Figshare [30]. It requires Agda 2.5.2 or newer to type check. A major part of the
code repository (including my entire thesis) can be checked in total about 20 minutes
on a reasonably new machine. See table 4.3 for the list of major theorems and lemmas
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in chapter 3 that have been mechanized in Agda. Note that the naïve version Seifert–
van Kampen (theorem 3.3.3) was not mechanized because it was superseded by the im-
proved one (theorem 3.3.4).
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Chapter 5

Concluding Remarks

Computer science values efficiency and feasibility, and in the context of mechanization,
the main questions are whether we can mechanize proofs and how much time it takes
to code and check these mechanized proofs. In this thesis, I have shownmany examples
of using higher-dimensional types in the mechanization of homotopy theory. While
I can never mathematically prove my thesis statement that mechanization with higher-
dimensional types is easier than without, the volume and the diversity of my contribu-
tion within such a short time should constitute compelling evidence.

Although the homotopy-theoretic examples in chapter 3were presented inUniTT+hit
instead of Agda code due to typesetting issues, chapter 4 shows that every component
in UniTT+hit can be directly translated into Agda without any loss of abstraction. Chap-
ter 3would be largely the same if presented inAgda code; in fact, section 3.4was adapted
from our paper which uses Agda syntax. This is because type theory supports formal
abstraction that enables high-level reasoning even in mechanized proofs, as pointed out
in chapter 1.

That said, by no means do I suggest that the system I used for mechanization is the
best one. Currently, many different type theories and their accompanying proof assis-
tants are being actively developed, some listed in section 1.5. I am always looking for-
ward to a new type theory, or even a completely new foundation different from type
theory, as long as it serves the purpose well. Indeed, I hope that my writing can help
future researchers to construct new systems vastly better than the current ones.
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Appendix A

How to Typeset This Thesis

Hello, thesis writers! LATEX and its family are beautifully painful, and thus the philoso-
phy of this thesis1 forces me to show you what I have learned frommy thesis writing. In
this era of search engines, I believe it is most useful to give only keywords. Also, I will
not list obvious resources that you will try to find (such as the package dtk-logos or the
one for derivation trees).

You should not believe anything written below, unless you have verified the
statements against the most recent documentation. There is an intentional bug
in this appendix in order to force you to do that.

A.1 Packages You Should Know
First of all, definitely check out these packages (or their successors) because you may not
even know you want them!

• mathtools: this fixes bugs in amsmath and provides goodies like multlined.

• microtype: a compelling reason to stay in pdfLATEX (thanks to Ryan Kavanagh).

• mleftright: I assume you already knew the built-in \left and \right are bad.

• letltxmacro: never do \let\oldmacro\macro when redefining LATEX macros.

A.1.1 Bibliography
Because your thesis is not constrained by outdated journal or proceedings templates, you
should consider biblatex and Biber instead of natbib, BIBTEX or other legacy systems.
Using new features may break backward compatibility, though.

1See the preface on page ix.
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A.1.2 Multilingual Support
Consider polyglossia or babel if your document is multilingual (like this thesis). The
package csquotes might come in handy.

A.1.3 Compiling Individual Chapters
Try subfiles or other similar packages. Just be aware of this possibility.

A.1.4 Cross Referencing
The following three must be loaded exactly in this order if you want them all:

1. varioref: adding “on page”. You may or may not want it.

2. hyperref: you want this.

3. cleveref: adding “table”, “figure” and others. You may or may not want it.

A.1.5 LATEX Hacking
• calc: flexible length expressions.

• adjustbox: vertical alignments and various features.

• etoolbox and xpatch: LATEX2𝜀 hacking.

• xparse: programming in the LATEX3 style instead of the old \newcommand.

Remember to \protect your code if it is too fragile.

A.1.6 Tables
The ultimate choice for tables consists of:

• tabu: a replacement of many, many other similar packages. However, the current
version has bugs and is unmaintained. Use at your own risk.

• booktabs: Just Beautiful™.

The following are for long tables like table 4.1.

• longtable: spanning tables across multiple pages.

• caption: adding a caption to anything.
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A.1.7 Lists
The package enumitem is again a replacement of many other similar packages.

A.1.8 Others
The package underscore gives you underscore as underscore in the text mode.

A.2 Unicode
This thesis uses a great varieties of characters scattered across different Unicode blocks,
not just Latin alphabets with diacritical marks; thus, the package inputenc is far from
being sufficient and the real solution is XƎLATEX, LuaLATEX or their successors. The major
price to pay is their immaturity compared to the good old LATEX2𝜀 (or pdfLATEX); for
example,

• it is tricky to have fine-tuned font packages such as newpxmath and newpxtext
peacefully coexist with new mechanisms such as fontspec and polyglossia; and

• the support of microtypography (or more precisely, the package microtype) is lim-
ited in XƎLATEX; and

• the package xy generates ugly diagonal lines when used in XƎLATEX (and in the
meanwhile the package tikz is free from this issue).

Good OpenType fonts with the math extension and good support of these fonts are es-
sential for beautiful mathematical equations in XƎLATEX and LuaLATEX, and there is much
room for improvement in these areas. This thesis is a proof that XƎLATEX can handle se-
rious typesetting but mathematical symbols demand more subtle tuning.
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Appendix B

Buddhism in Martin-Löf Type Theory

It is impossible to formalize Buddhism (as a metaphysics without the rebirth part) be-
cause the nature of Buddhism, as many metaphysical theories, lies above the limits of
our languages. However, I still want to give readers of my thesis a taste of emptiness, an
important concept in Buddhism, and show how the Martin-Löf ontological type theory
with identification types may approach this.

As diverse as Christianity and other religions, there are many Buddhist schools with
distinct practices and teachings. In this appendix, I will loosely follow my understand-
ing of Prāsaṅgika, a subschool of Madhyamaka, especially the works of the well-known
Buddhist scholar Candrakīrti [133]. That said, this appendix is aimed at formalizing a
particular argument used in Buddhism, not the actual content of Buddhism. We may start
with the Diamond Sūtra, an influential Buddhist text. The following is an English trans-
lation of a paragraph in its chapter 17 [152]:

Should anyone say, Subhūti, that the Realized One has fully awakened to
supreme and perfect awakening, there is no dharma whatsoever to which the
Realized One has fully awakened as supreme and perfect awakening. In the
dharma to which the Realized One has fully awakened, there is no truth and
no falsehood. Therefore the Realized One preaches “All dharmas are Buddha-
dharmas.” As far as “all dharmas” are concerned, Subhūti, all of them are
dharma-less. That is why they are called “all dharmas.”

(The italic marking of dharmas is done by me.) This is part of a conversation between
the Buddha and Subhūti, one of the distinguished disciples of the Buddha; the Buddha
is the sole speaker in this paragraph. Abstracting over dharmas, the message is roughly
that a concept 𝑃 spoken by the Buddha is 𝑃-less, and that is why it is called 𝑃. This paradoxical,
non-dual figure of speech has been used numerous times in the Diamond Sūtra to help
its readers understand the emptiness of concepts (including the emptiness of the emptiness
itself in the view of Prāsaṅgika). Buddhism in general believes that persistent practice
based on this philosophical view can liberate your mind from attachment and thus from
all suffering. Nonetheless, let’s suffer a little bit more by trying to translate this into the
Martin-Löf type theory with identification; there is actually something to say.
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For the sake of simplicity, let’s ignore all the philosophical incompatibilities and
freely reinterpret Gottlob Frege’s concept in type theory as a family of types 𝑃 indexed
by some type object inU 𝑖; that is,

concept ∶≡ object →U 𝑖

where an object 𝑜 ∶ object belongs to a concept 𝑃 if and only if 𝑃(𝑜) is inhabited.1 The
paradoxical nonduality may be formalized as equivalences between all fibers:

is-non-dual ∶ concept →U 𝑖

is-non-dual(𝑃) ∶≡ 􏾟
𝑜􏷪,𝑜􏷫∶object

𝑃(𝑜􏷠) ≃ 𝑃(𝑜􏷡).

The idea is that a conventional2 concept 𝑃, intuitively, should admit at least one exam-
ple and one counterexample; for example, you probably want an object of red and an-
other object of no-red before discussing redness. The nonduality then non-affirmingly
negates3 a conventional concept by eliminating the distinction between examples and
counterexamples at the ultimate level. In terms of redness, it means ultimately there
is no way to separate red objects from no-red objects, and the concept red is ultimately
empty. In the following, we will see a sufficient and necessary condition of nonduality.

One popular argument for nonduality (that will be formalized in the type theory) is
through the identification of any two objects. Wemay start with the philosophical question
of identity and change: When will a banana rot enough that it is no longer a banana? Sim-
ilarly, how much do I have to disassemble a chair so that it is no longer a chair? Various
Buddhist schools hold the view that all conventional objects are interdependent and in-
terconnected, and that any attempt to draw a line between bananas and no-bananas or
chairs and no-chairs is misguided at best. Under this belief, if there is a conventional con-
cept as a non-trivial partition of conventional objects, we may continuously move from
an example to a counterexample and examine how and where the separation breaks
down, and eventually conclude that such a concept is ultimately empty.

The surprise is that we can easily carry out the argument from identification to non-
duality in the type theory. The following is a short formal proof of the desired theorem:

𝜆􏿴𝑞∶􏾟
𝑜􏷪,𝑜􏷫

𝑜􏷠 = 𝑜􏷡􏿷.𝜆(𝑃∶concept).𝜆(𝑜􏷠, 𝑜􏷡∶object).coerce-equiv􏿴ap𝑃􏿴𝑞(𝑜􏷠, 𝑜􏷡)􏿷􏿷

∶ 􏿶 􏾟
𝑜􏷪,𝑜􏷫∶object

𝑜􏷠 = 𝑜􏷡􏿹 → 􏿶 􏾟
𝑃∶concept

is-non-dual(𝑃)􏿹.

1Truncation is intentionally avoided to simplify the presentation.
2The word conventional here refers to the conventional-ultimate distinction. There are disagreements

about the nature of the ultimate reality or the ultimate truth between different Buddhist (sub)schools, but in
noways can I address those in this appendix. Therefore, I have to confinemyself to conventional concepts.
Readers unfamiliar with Buddhism may largely ignore the word conventional.

3Negating without affirming the opposite.
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Moreover, we can show that the inverse is also true! This means the identification of all
objects is not only sufficient but also necessary for nonduality, at least in our formulation.
Fixing some object 𝑜􏷠, the trick is to choose the identification itself, 𝜆𝑜′􏷡.𝑜􏷠 = 𝑜′􏷡, as the
concept. We can see that 𝑃(𝑜􏷠) is inhabited by refl𝑜􏷪 and thus all fibers of 𝑃 are inhabited
by nonduality. This means all objects are identified with 𝑜􏷠.

𝜆􏿴𝑛∶􏾟
𝑃

􏾟
𝑜􏷪,𝑜􏷫

𝑃(𝑜􏷠) = 𝑃(𝑜􏷡)􏿷.𝜆(𝑜􏷠, 𝑜􏷡∶object).fst􏿵𝑛􏿴(𝜆𝑜′􏷡.𝑜􏷠 = 𝑜′􏷡), 𝑜􏷠, 𝑜􏷡􏿷􏿸(refl𝑜􏷪)

∶ 􏿶 􏾟
𝑃∶concept

is-non-dual(𝑃)􏿹 → 􏿶 􏾟
𝑜􏷪,𝑜􏷫∶object

𝑜􏷠 = 𝑜􏷡􏿹.

I hope this intellectual exercise is somewhat inspiring, especially after FrancisWilliam
Lawvere’s take on Hegelian philosophy. As usual, all the proofs have been mechanized
in Agda. I would like to emphasize again that a large part of Buddhism is about the
mental training to attain liberated mind, not these metaphysical discussions; in fact, the
attachment to these metaphysical ideas could be a major obstacle to the liberation.
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Appendix C

Notes on Linguistic Issues

C.1 Translation in Tai-Min

The abstract and the dedication of this thesis were translated into Tai-Min with the help
of my dear friend Phín-tsì Kí. The language Tai-Min (Tâibân in Tai-Min), commonly
known as Taiwanese (Tâiuân'uē in Tai-Min), is one of the most spoken languages in Tai-
wan. Unfortunately, most native speakers have the misconceptions that there is no writ-
ing system for Tai-Min and that Tai-Min can only serve as an inferior, colloquial “di-
alect”. This is mostly due to the decades-long Mandarin-dominating language policy,
and as a result I am witnessing the inevitable death of many languages in Taiwan. The
story is similar to Frisian in Netherlands and the regional languages in Italy, where most
native speakers never learn their writing systems. Though the birth and death of lan-
guages are regular part of human history, it is still disturbing to see that many people
have lost their access to the rich materials published in their first language less than one
century ago.

I hereby provided the translation as a demonstration that there is definitely a full-
fledged orthography for Tai-Min; in fact, there are several established standards that
were actively in use before the forceful promotion of Mandarin. Moreover, this shows
that Tai-Min and many other languages in Taiwan are ready for scientific discussions in
the most formal contexts—if their native speakers wanted to.

RemarkC.1.1. Thewriting systemused in this thesis is based on the Taiwanese Romaniza-
tion System [153] but (single) hyphens are either removed or replaced by the apostrophe
“'” for the sake of typesetting. Double hyphens are kept due to their special phonetic
functionality. Even without the hyphens, a fluent (and literate) speaker should be able
to read it without any difficulty.
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C.2 Gender-Specific Pronouns
Existing gendered nouns and pronouns in English can be problematic for the people
whose perceived gender, biological sex, gender identification and gender expression (in-
cluding their choice of pronouns) do not perfectly line up under the traditional gender
dichotomy. Therefore, I have been actively avoiding these words. As far as I know, the
only occurrence of gender-specific pronouns in this thesis is the he referring to my ad-
visor Robert Harper in the acknowledgments on page vii; I have personally verified it
with my advisor.
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