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ABSTRACT
Malware detection is a fundamental task and associated with signifi-
cant applications in humanities, cybersecurity, and social media ana-
lytics. In some of the relevant studies, there is substantial evidence
that heterogeneous ensembles can provide very reliable solutions,
better than any individual verification model. However, so far, there
is no systematic study of examining the application of ensemble
methods in this task. This paper introduces a sophisticated Extrinsic
Random-based Ensemble (ERBE) method where in a predetermined
set of repetitions, a subset of external instances (either malware or
benign) as well as classification features are randomly selected, and
an aggregation function is adopted to combine the output of all
base models for each test case separately. By utilising static analy-
sis only, we demonstrate that the proposed method is capable of
taking advantage of the availability of multiple external instances
of different size and genre. The experimental results in AndroZoo
benchmark corpora verify the suitability of a random-based hetero-
geneous ensemble for this task and exhibit the effectiveness of our
method, in some cases improving the hitherto best reported results
by more than 5%.
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1. Introduction

According to recent reports (Statcounter, n.d.; Statista, n.d.), the Android operating system
exhibits a market share of more than 75%, making it the most widespreadmobile platform
worldwide (Smartphone market share, n.d.). As a result, countless malicious applications
(apps) are deployedevery year to exploit thepopularity of this platform (Mobile threat report
2020, n.d.; Sophos 2020 threat report, n.d.). A great mass of mobile malware detection sys-
tems and methodologies lean towards static anomaly-based techniques, which employ
machine learning (ML) to identify malicious apps (Damopoulos et al., 2014; Kouliaridis
et al., 2020; La Polla et al., 2013; Narudin et al., 2016; Yan & Yan, 2018). Specifically, anomaly-
based techniques comprise a training and a detection phase. The detection phase aims
to unveil anomalies, i.e. deviations from the metrics obtained during the training phase.
Concerning performance, static analysis requires less resources, and therefore is faster than
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dynamic analysis. Furthermore, static analysis does not require a mobile device or a Virtual
Machine (VM) to run the app, thus it is straightforward to implement.

State-of-the-art works either compare multiple classification models to determine the
best performer, or use ensemblemethods,which combinemultiple classifiers to obtainbet-
ter predictiveperformance. Thework at handgoesone step further byproposing adynamic
ensemble selection method that concentrates on the most effective models for each mal-
ware detection case separately. That is, our method is able to take advantage of the case
whenmultiple externalmalware instances are available and notably enhances state-of-the-
art performance. In particular, wepresent an extensive study of onedynamicmethodbased
on the best performingmodel andmeticulously study its properties and performance. This
method enriches the information that is kept in each iteration when building the random
subspace ensemble. Based on an extensive experimental study using benchmark datasets
that cover several malware genres, and degrees of difficulty, we show that the proposed
method is more effective inmost of the cases. Furthermore, we demonstrate the effect of a
random subspace of features in the performance of the proposed models.

A typical malware detection problem includes a set of malware cases (or instances), all
derived by the same dataset or a mixed set collected by various corpora to build the posi-
tive class. A set of benign instances are sampled to construct the negative class. A malware
detection method should be able to decide whether or not the instance under examina-
tion is a malware case or benign. Apart from a binary (yes/no) answer, malware detection
methods usually produce a score in [0,1] that can be viewed as a confidence estimation.
Essentially, malware detection problem can be defined as a one-class classification task
sinceonly labelled samples fromthepositive class are available.However, there are extrinsic
approaches adopted that attempt to transform it to a binary classification task by sampling
the negative class, i.e. all benign instances selectedby other sources. Inmost cases, the neg-
ative class can be huge and heterogeneous since it compromises all other possible benign
apps. It is important tomention that the performance of suchmethods heavily depends on
the quality and properties of the collected external benign instances.

In this study, we handle the malware detection problem from another point of view. In
particular, we build predefined positive and negative classes composed by a set ofmalware
and goodware apps, respectively. Moreover, we treat each test instance (either malware
or benign) separately by building a random subspace ensemble where in a fix number
of iterations randomly choosing a subset of features and a subset of external instances
(either of the positive or negative class). In each repetition, the output of three classification
binary algorithms is aggregated and a negative or positive answer is provided. Experimen-
tal results on the AndroZoo benchmark dataset (Allix et al., 2016) examining different sizes
and genre of external instances demonstrate the effectiveness of the proposed extrinsic
approach especially in challenging cases where the set of available external instances is of
limited size and in cross-genre conditions with respect to the test set.

The main contributions of this study are:

• We adopt predefined categories of external Androidmalware and benign instances and
propose amore sophisticated extrinsic ensemble approach, which provides a positive or
negative answer by averaging the output of the base models for each test instance sep-
arately. It is demonstrated that ensemble models can further improve the performance
of each individual base classifier.



CONNECTION SCIENCE 3

• We examine the effect of external instances when an ensemble malware detection
method is provided combining different sizes and types of external instances. It is
demonstrated that ensembles based on a larger and possibly homogeneous size of
external instances are exceptionally effective alternative to ensembles included smaller
sizes and feasibly more heterogeneous external instances.

• We investigate the effect of using either the entire feature set or a random subspace of
features of instances in each iteration and it is demonstrated that the latter assists an
extrinsic malware detection ensemble to further augment its effectiveness.

• We report experimental results on contemporary benchmark datasets and directly com-
pare them against state-of-the-art methods under the same settings. The performance
of themethodpresented in this study is quite competitive to the best results reported so
far for these datasets, demonstrating that an extrinsic ensemble method is much more
reliable and effective for the malware detection task.

The rest of this article is organised as follows. In the next section, a brief review of rel-
evant malware detection studies is presented. Section 3 describes the examined malware
detection method, while Section 4 details on the dataset employed and the experimen-
tal setup. Section 5 focuses on the performed experiments, while Section 6 discusses
the main conclusions drawn from this study and elaborates on possible future work
directions.

2. Related work

As of today, the topic of mobile app classification via the use of ML has received sig-
nificant attention in the Android security literature (Geneiatakis et al., 2018; Kouliaridis
et al., 2020; La Polla et al., 2013; Odusami et al., 2018; Papamartzivanos et al., 2014; Souri
& Hosseini, 2018; Yan & Yan, 2018). This section offers a chronologically arranged review of
the most notable and recent works on this topic. Specifically, as given in Table 1, we con-
centrate on contributions published over the last six years, that is, from 2014 to 2020. We
only consider highly relevant works to ours, namely those which propose or employ some
type of ensemble learning.

Yerima et al. (2015) contributed an approach which uses ensemble learning for Android
malware detection. According to the authors, their method combines advantages from
static analysis with ensemble learning to improve detection accuracy. During the evalua-
tion phase, the authors collected apps fromMcAfee’s internal repository (Mcafee, n.d.) and
their results showed that theproposedmethod is capable of achieving 97.3 –99%detection
accuracy with low false positive rates.

Coronado-De-Alba et al. (2016) presented an approach which analyses data obtained
through static analysis. According to the authors their results provided explicit evidence
for classification improvement. Even more, a comparative analysis of various ensembles
were presented to find the best combination of classifiers based on the evaluation of their
classification results.

Idrees et al. (2017) presented PIndroid, a framework which uses permissions and intents
in conjunctionwith ensemble learning to identify Androidmalware. The authors evaluated
their approach by applying it to 1745 real world apps from a number of datasets, including
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Table 1. Outline of the related work.

Work ML methodology Dataset

Yerima et al. (2015) Ensemble learning McAfee’s internal
repository

Coronado-De-Alba et al. (2016) Ensemble learning Drebin
Idrees et al. (2017) Ensemble learning Contagio, Genome, theZoo,

MalShare, VirusShare
Milosevic et al. (2017) Ensemble learning M0Droid
Chakraborty et al. (2020) Ensemble clustering and

classification
Drebin

Kouliaridis et al. (2020) Ensemble learning Drebin, VirusShare,
AndroZoo

(Android malware genome project, n.d.; Contagio mobile, n.d.; Malshare project, n.d.; thezoo
akamalware db, n.d.; Virus share, n.d.). Their results showed an accuracy score of 99.8%.

Milosevic et al. (2017) presented twoML-aided approaches for static analysis of Android
apps. The first one is basedonpermissions and theother on source code analysis basedon a
“bag-of-words” representationmodel. The authors evaluated both these approaches using
base classificationmodels, aswell as ensemble learning alongwith various combinations of
the selected base models. Their results showed an F-score of 95.1% and F-measure of 89%
for the source code-based and permission-based classification models, respectively.

Chakraborty et al. (2020) presented Ensemble Clustering and Classification (EC2), an
algorithm for identifying Android malware families. Furthermore, the authors offered a
performance comparison of several classification and clustering algorithms on the Drebin
dataset (Arp et al., 2014) and used the output of both supervised classifiers and unsuper-
vised clustering to design EC2. Their experimental results on both the Drebin and other
more recent malware datasets showed that EC2 is able to accurately detect malware fami-
lies, outperforming several comparative baselines. According to the authors, EC2 presents
an early warning system for newmalware families, as well as a predictor of known families
to which a malware sample belongs.

Kouliaridis et al. (2020) introduced Androtomist, a novel tool capable of utilising both
static and dynamic analysis on Android apps. The authors concentrated on the results of
static analysis when combined with dynamic instrumentation. Moreover, they proposed
an ensemble approach by averaging the output of several base models for each malware
instance separately. Finally, the authors evaluated their work against three well-known
datasets and their results designated that Androtomist is superior to previous state-of-the-
art mobile malware detection solutions.

3. Methodology

Tohandle challengingmalware detection cases,wepropose essentially a randomsubspace
ensemble taking into consideration a set of multiple malware and benign test instances
(Testinstances). We coin this method Extrinsic Random-based Ensemble (ERBE), and describe
it in Algorithm 1. ERBE examines each test instance (Testinstance) separately. That is, within
an iterative process, a subset of classification features stemming from static analysis, say,
permissions, intents, etc., along with a subset of available malware and goodware sam-
ples (they are called as external instances, Externalsrepetition) are randomly selected in each
repetition. Note that exactly the same number of Externalsrepetition both from malware or
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benign (Externalmalware and Externalbenign) samples are considered per repetition to serve as
a positive and negative class, respectively. The classificationScore of a Testinstance with both
the selected Externalsrepetition (both malware and benign) samples is calculated in terms
of three classification algorithms. That is, in each repetition, three scores (Scoreinstance) of
a test sample are recorded. Then, a malicious detection MalwareDetectionScore is calcu-
lated based on an aggregation function that combines all scores corresponding to the
test sample for a number of iterations. Note that the set of classifiers applied to esti-
mate malware detection scores per test instance and the aggregate function that com-
bines the scores of all three classifiers for a number of repetitions can be selected among
several alternatives to optimise performance in a set of preliminary experiments taken
place.

As shown in Algorithm 1, the proposed method has two important parameters,
Externalsrepetition, and the rate. The former determines the size of the set of the selected
external instances of both two categories. Always, an equal number of positive and nega-
tive instances are selected either from Externalmalware or Externalbenign. The latter parameter
affects the number of selected features considered for all instances (either positive or neg-
ative) examined. If it is set equal to 1, the entire set of features is utilised to represent each
instance vector per iteration in order to provide the final answer (the final MalwareDetec-
tionScore). On the other hand, if it is set equal to 0.5 then exactly a half amount of the initial
set of features is randomly selected and used to represent amalware instance examined. In
more detail, when there is exactly a fixed rate equal to 0.5, then a random 50% of the initial
feature set is consideredwithin the set of all investigated instances. As concerns thenumber
of base learners (i) applied to estimate the Scoreinstance(i) per iteration can also be used as
a significant parameter of ERBE method. With reference to Algorithm 1, the time complex-
ity of ERBE is in the order of O(n2). Note also that the proposed approach is a stochastic
algorithm since it makes some random choices of features as well as both positive and
negative instances for each tested sample.

Data: Testinstances, Externalmalware, Externalbenign
Parameters: repetitions, |Externalsrepetition|, rate
Result:MalwareDetectionScore
for each Testinstance ∈ Testinstances do

Set Score(Testinstance) = 0;
repeatrepetitions times

Select Externalsrepetition ⊂ Externalmalware randomly;
Select Externalsrepetition ⊂ Externalbenign randomly;
Select rate% of features randomly;
Scoreinstance(i) = ClassificationLearner (Testinstance, Externalsrepetition,
learner(i));
ClassificationScore = aggregate (Scoreinstance(:));

end;
Score(Testinstance) = Score (Testinstance) + ClassificationScore / repetitions;

end
MalwareDetectionScore = aggregate (Score(:));

Algorithm 1: The proposed Extrinsic Random-based Ensemblemethod.
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4. Experimental study

4.1. Description of data

In this paper, we considered a benchmark corpora, namely AndroZoo (Allix et al., 2016)
built in the framework of malware detection task. This is a widely used and continuously
spreading real-world collection of Android apps selected from assorted sources, including
the official Google Play app market (playstore, n.d.). Particularly, the collection of Andro-
Zoo apps we used in the context of this work is dated from 2017 to 2020 and enclosed
1K malware apps, each of which has been cross-examined by a large number of antivirus
products. It is important to note that AndroZoo is a challenging corpora since it includes
new and more sophisticated malware samples in comparison to other datasets, including
VirusShare and Drebin. We also chose a set of 1K benign apps from Google Play.

External cases: As already pointed out in Section 3, given that the proposed method fol-
lows the extrinsic paradigm, it needs a set of external both malware and benign instances
per each examined test instance. In this way, we follow the practice of constructing two
categories to collect such a set of instances. In particular, we use a set of 800malware cases
contained in AndroZoo dataset to compose the positive category. This set of instances is
randomly selected from the initial set of 1K samples in our partial AndroZoodataset. Follow-
ing the same strategy, the negative category is constructed by a randomly selected subset
of 800 benign apps from the initial 1K benign cases. It should be noted that the external
instances either Externalmalware or Externalbenign are unique and not duplicated in test set,
so that they do not affect the performance scores of base models.

Feature Selection: Static analysis was performed on all the appsmentioned in Section 4.1
using the open-source tool Androtomist (Kouliaridis et al., 2020). Specifically, each appwas
decompiled to get theManifest.xml file and log permissions and intents to create a feature
vector. Each vector is a binary representation of each distinct feature. For example, think of
two apps, app1 and app2. The first uses permissions p1, p2, and intent i1, while the latter
uses permissions p1, p3, and intents i2, i3. This leads to the 6-dimensional feature vector
(p1, p2, p3, i1, i2, i3), and thus the feature vectors for these two apps will be (1, 1, 0, 1, 0,
0) and (1, 0, 1, 0, 1, 1), respectively. Typically, the analysis of a real-world app yields a far
more lengthy vector. Precisely, the analysis of the largest set of malware and benign apps
used in our experiments, that is, 1 Kmalware instances alongwith all of the 1 K benign apps
collected from Google Play, produced 1002-dimensional feature vectors.

4.2. Experimental setup

As already pointed out, the full dataset used comprises a collection of 1K malware apps
randomly selected by AndroZoo corpus. Moreover, 1 K benign apps were downloaded by
the Google Play to comprise the negative category. The test set is constructed by ran-
domly selecting 200 malware and 200 benign individual apps by this initial set of positive
and negative instances, respectively. As already mentioned, the remaining apps per cate-
gory, i.e. 800 malware and 800 benign apps, compose an initial pool of Externalmalware and
Externalbenign samples, respectively. This way, external instances (eithermalware or benign)
are unique and distinct with respect to the specific instances included within the test set.

As per Algorithm 1, the set of external samples (Externalsrepetition) is constructed by
randomly selecting a fixed number of k samples per iteration from this initial pool
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of Externalmalware and Externalbenign instances, respectively. As can be observed from
Algorithm 1, the ERBE method has several parameters that need to be tuned for a particu-
lar dataset. In this paper using AndroZoo benchmark data, all these parameters were tuned
based on the training set.

Specifically, to simplify and make this process more efficient, we attempt to reduce
independent parameters by setting fixed parameter values. In particular, we focus on fine-
tuning parameter k = |Externalsrepetition| by selecting k ∈ 50, 100,. . . , 300 external samples
per repetition optimising the performance in the training set. Then, we set repetitions = 5
based on some preliminary tests. A slight, though not consistent, differencewith respect to
the performance of repetitions = 15 and repetitions = 5 was noticed. As concerns the fea-
tures selected, in this paper, we explore two options. The first one is to use exclusively the
entire set of features by setting rate = a = 1. This indicates that the entire vector of each
instance examined is considered per iteration. The second option is to fix rate of a = 0.5
indicating that a percent of 50% of the initial set of features are selected in each repeti-
tion. Again, doing somepreliminary testing, considering a = 0.5 and a = 0.75, a significant
improvement in the effectiveness of the ERBE method in comparison to the case where
a = 1 is observed.

Moreover, three well-known and widely used supervised ML algorithms were applied,
namely Logistic Regression (LR), Multiple Layer Perception (MLP), and Stochastic Gradient
Descent (SGD). In a more detailed description, the entire set of the classification algo-
rithmsemployed falls under eager learning. In this category, supervised learning algorithms
attempt to build a general model of the malicious instances, based on the training set.
Obviously, the performance of such classifiers strongly depends on the size, quality and
representative of the training data. For each classifier applied, the default values of the
parameter settings are used. The idea behind this is that ERBE is based on the performance
of the (selected) base models on the (selected) training instances. Thus, if the base models
are tuned based on the same dataset, their output on that specific dataset could be biased.
Sincedefaultmodels are lessbiased in the trainingdataset, eachERBEmodel ismore reliably
estimated. The general model of each eager classifier is built following the 10-fold cross-
validation technique, where the original dataset is randomly partitioned into 10 equal sized
sub-datasets. A single sub-dataset is retained for the testing, while the remaining 9 are used
for training. This process is repeated 10 times, and each time using a different sub-dataset
for testing. The results are then averaged to produce a single estimation.

Our main evaluation measure is the Area Under the Receiver Operating Characteristic
(ROC) curve (AUC) that quantifies the effectiveness of an examined approach for all possi-
blemalware detection score thresholds (Fawcett, 2006). Moreover, this evaluationmeasure
does not depend on the distribution of positive/negative instances. This is extracted by
examining the ranking of malware detection scores (rather than their exact values) pro-
duced when a method is applied to a dataset. However, when one has to decide about
a specific malware case, the malware detection score has to be transformed to a binary
answer: either a positive (malware class) or a negative (benign class) one. To this direction,
a threshold can be applied to themalware detection score – actually, the calculation of AUC
is based on all possible thresholds. To set this threshold, information about the distribution
of positive and negativemalware detection instances is paramount. In our dataset, positive
and negative instances are equally distributed. To transform malware detection scores to
binary answers, we follow exactly the same evaluation procedure to achieve compatibility
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of comparisonwithpreviously reported results. In amoredetaileddescription, the set of the
extracted scores based on the test instances are normalised in the interval of [0,1] per clas-
sification model per examinedmethod. To this direction, the estimation of the threshold is
set equal to 0.5. Then, all malware detection scores of the test dataset that are lower/higher
than this threshold are transformed to negative/positive answers. This is in accordance to
the setup of previously reported results.

Finally, we select the aggregation function used in ERBE method among average, min-
imum, and maximum that optimises performance in the training set. Most of the times,
average is selected. Since the proposed ERBE method makes stochastic choices in each
repetition, each experiment is repeated five times and we report average performance.
Indicatively, using a system equippedwith an Intel i5 CPU and 16GB RAM, the classification
process of the test set takes about 57min, for k = 200 and a = 0.5. This time is increased
to 117 min when taking into account the full feature set.

5. Results

The following classification performancemetrics are used to achieve compatibility of com-
parison with stare-of-the-art methods, where TP, TN, FP, and FN represent correspondingly
True Positives, True Negatives, False Positives, and False Negatives.

• Accuracy (CA) : TP+TN
TP+TN+FP+FN . The number of correctly classified patterns over the total

number of patterns in the sample.
• Precision (P) : TP

TP+FP . The ratio of TP values over the sum of TP and FP.

• Recall (R) : TP
TP+FN . The ratio of TP over the sum of TP and FN.

• Area Under Curve (AUC): The higher positive-over-negative value ranking capability of a
classifier.

• F1 : 2 ∗ P∗R
P+R .

To demonstrate the usefulness of legacy basemodels in ERBE approach, Figure 1 depicts
the performance of ERBELR, ERBEMLP and ERBESGD on the Androzoo corpus for varying sizes
of external instances (k) when a = 0.5 (left) and a = 1 (right) used for each examined
instance per iteration.

Figure 1. The performance (AUC) of the examined base models, using either a = 0.5 (left) or a = 1
(right) on AndroZoo dataset.
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Table 2. Scores of all evaluation measures examined in ERBE malware detec-
tion method and the best performing base models with a = 0.5 and a = 1
for k = 200 on AndroZoo dataset. The best AUC score is shown in boldface.

AUC Accuracy Precision Recall F1

ERBEMLP,a = 1 0.936 0.917 0.903 0.930 0.916
ERBEMLP 0.947 0.923 0.886 0.937 0.911
ERBEa=1 0.978 0.950 0.940 0.959 0.949
ERBE 0.994 0.983 0.970 0.976 0.973

As can be clearly seen, ERBEMLP model is the best option in all cases of the examined size
values of the external instances on Androzoo corpora. Not only in case where a percent of
50% on the initial feature set is randomly selected, but also when the entire set of features
is handled, it is more effective providing a more stable performance than the two others.
Moreover, the effectiveness of ERBELR model is stable and seems to be competitive enough
acquiring remarkable performance when k ≥ 200 especially in both cases. On the other
hand, the effectiveness of SGD classifier is negatively affectedwhen a = 0.5. Then, ERBESGD
model seems not to be a very stable option since its performance vary for different values
of k with a large margin. It seems to get improved a lot when k increases. In particular, it
achieves its best results for k=200, while in the case of shorter k values its performance
seems to be especially poor. All these indicate that ERBESGD models are in need of a more
fixed and accurate set of features to be valid.Moreover, these results demonstrate that both
ERBELR and ERBEMLP are better and reliable models for multiple values of k while ERBEMLP is
always superior.

Table 2 reports the evaluation results of ERBE method and the performance of the best
basemodel onmultiple evaluationmeasuresover theAndroZoodataset.Moreover, thever-
sion of ERBE when a=1 and the corresponding best performing base models, ERBEMLP for
k = 200, are also reported. As canbe seen, ERBE is themost effectiveone in all cases improv-
ing always the reported results of the best basemodels for the specific dataset. This verifies
that ensembles of classifiers based on multiple, possibly heterogeneous models, can fur-
ther improve the performance of individual malware detection base models (Kamimura
& Takeuchi, 2020; Liu et al., 2020; Sreeja, 2019). From the obtained results, it is also clear
that the performance of ERBE is higher when a random subspace of the initial feature set
is used (in case of a = 0.5) in comparison to the version where the entire set of features
(case of ERBEa=1) is considered in all the examined cases. It clearly seems that ERBEmethod
is positively affected by a random rate selection of features on examined samples per iter-
ation. In other words, when the number of features decreases and the size of vectors in
examined instances is reduced then the performance of ERBE is increased. This indicates
that ERBE approach is much more reliable and effective in difficult malware cases where
there are irregular and incidental subsets of features which belong to different domains in
each iteration.

5.1. Contribution of a random subspace set of features

Next, we examined the contribution of the factor |a| related to the number of features
considered in the proposed ensemblemalware detectionmethod ERBE. To isolate the con-
tribution of this factor, beyond of the value of a = 0.5, we also used the value of the initial
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Figure 2. Theperformance of AUCof the proposed ERBE and ERBEa=1. The best performingbasemodel,
ERBEMLP is also shown.

set of features, a = 1. In this way, ERBE was applied with and without considering the
entire feature set for varying values of parameter k. Note that each version of the exam-
ined method was performed to the AndroZoo dataset and the aggregation function was
fixed to average for this experiment.

Figure 2 shows the corresponding performance of ERBE method for comparative pur-
poses. Apparently, the contribution of random selection of features is significant and assists
the present ensemblemethod to enhance its effectiveness for all k values. The performance
of ERBE without random collected features, ERBEa=1 is also competitive enough, especially
when the k value is increased (k >150). In addition, ERBE is clearly better than the best
base model, ERBEMLP for the whole range of the examined k values. It is noticeable that the
contribution of random feature selection is stronger not only for low but also for large val-
ues of k (i.e. k > 150), while the version of ERBE without random feature selection (when
a = 1) is weaker enough for relatively low values of k (up to 150). This means that k should
be set to a relatively large value to reinforce the effectiveness of ERBEa=1. In other words,
this strongly suggests that when there are challenging conditions, the information of the
entire feature set is less crucial for ERBE method. On the other hand, ERBE is proved to be
particularly enhanced in the case where sporadic and inconstant features are selected on
examined instances in each iteration.

Additionally, we examined the statistical significance of pairwise differences of both the
tested versions of ERBE and base malware detection models, respectively. Table 3 demon-
strates the improvement in performance (difference of AUC scores) of both the examined
ERBE versions as well as the base classification models with a = 0.5 and a = 1 on Andro-
Zoo dataset, respectively. The statistical significance of these differences is estimated using
an approximate randomisation test (Noreen, 1989). The null hypothesis is that there is no
difference between the two cases, and we reject this hypothesis when p< .05.

As can be seen, in general the models extracted from the random selected feature set
are more effective and clearly better options. In particular, ERBE models based on a = 0.5
aremore improved and gainmore than the corresponding ones belonging in case of a = 1
for all k values. As concerns the individual base models, the results of ERBELR and ERBEMLP

are improved the most, while notable exceptions are ERBESGD base models, where the ran-
dom selection of features per iteration is not significantly better than the case of the entire
feature set (case of a = 1). This does not seem to correlate with the relative increase in the
number of external malware instances used per repetition.
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Table 3. Improvement in performance (difference in AUC) between
ensemble methods as well as base models using a = 0.5 and a = 1
on AndroZoo dataset. Statistically significant cases are shown in
boldface.

k ERBELR ERBEMLP ERBESGD ERBE

50 0.024 0.020 −0.035 0.011
100 0.024 0.027 −0.026 0.019
150 0.013 0.021 −0.018 0.012
200 0.010 0.011 −0.039 0.016
250 0.023 0.014 −0.037 0.012
300 0.023 0.011 −0.032 0.015

5.2. Comparisonwith the state-of-the-art

In all our experiments, the performance on the evaluation data set is measured by vari-
ous evaluation measures. In this way, our reported results can directly be compared with
the ones of other publishedmethods followed the static analysis that use exactly the same
evaluation measures in the framework of malware detection task. The following state-of-
the-art methods, ranked in chronological order, are used to estimate the competitiveness
of the proposed method:

• Yerima et al. (2015): This is an ensemble malware detection method focuses on the
extraction of critical Android and Java API calls from the source code, as well as the
app permissions extracted from the manifest file. In all experiments, McAfee’s internal
dataset is considered.

• Coronado-De-Alba et al. (2016): This method introduces a meta-ensemble algorithm.
The authors employed static analysis on a dataset of 1531 malware apps collected from
the Drebin dataset and 765 benign apps, to obtain permissions and intents.

• Milosevic et al. (2017): This method concentrates on the extraction of non-trivial and
beneficial malicious patterns examining the usefulness of source code as well as the
permissions set of features when combined with either classification or common used
clustering techniques, respectively. In all experiments, the M0Droid corpus (Damshenas
et al., 2015) is considered.

• Idrees et al. (2017): This is also amalware detectionmethod based on ensemble learning
to boost the effectiveness of base models followed a static app analysis. This method
considers a mix set of features including app’s permissions and intents derived from
Contagio dump, MalGenome, theZoo, Malshare, and Virushare datasets.

• Kouliaridis et al. (2020): This is a simple heterogeneous ensemble malware detection
method. A meta-model is constructed by averaging the output of several base models
based on either static or hybrid analysis. The feature set comprises multiple categories
such as permissions, intents and API calls. The performance of this method is evaluated
on several datasets, namelyDrebin, VirusShare andAndroZoo. For thiswork,we consider
the results stemming from static analysis.

Table 4 demonstrates the effectiveness of the state-of-the-art methods per dataset on
bothAUCandAccuracymeasures of evaluation. Note that thepublished results for a couple
of the abovemethods are only provided on either AUC or Accuracy Performancemeasures.
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Table 4. Comparison of state-of-the-art methods with the proposed ERBE malware detection method
of this study (an em dash means “not applicable”).

AUC per dataset Accuracy per dataset

Detection method Year Feature set AZ VS Dr Other AZ VS Dr Other

Yerima et al. 2015 permissions,
API calls

— — — 0.993 — — — 0.975

Coronado-De-Alba et al. 2016 permissions,
intents

— — — — — — 0.975 —

Milosevic et al. 2017 permissions,
source code

— — — — — — — 0.956

Idrees et al. 2017 permissions,
intents

— — — 0.998 — — — 0.998

Kouliaridis et al. 2020 permissions,
intents, API
calls

0.936 0.991 0.998 — 0.909 0.971 0.982 —

ERBE 2020 permissions,
intents

0.994 0.993 0.997 — 0.983 0.987 0.991 —

Moreover, all these methods but the study of Coronado-De-Alba et al., are not tested on
benchmark datasets, namely AndroZoo (AZ), VirusShare (VS), Drebin and (Dr), but only refer
to a mixture of datasets. To the best of our knowledge, these mixed corpora are not acces-
sible since they have generated by individual research groups and they are not publicly
available. As can be seen, ERBE is particularly effective and outperforms the vastmajority of
baseline methods and simultaneously the study of Yerima et al. (2015), which is also based
on ensemble learning. In addition, ERBE seems to be highly competitive with the approach
of Idrees et al. (2017), examined on a similar feature set. However, the improved results of
the proposed ERBE method in the challenging AndroZoo corpus indicate that the exam-
ined method is not easily confused in demanding malware conditions and the extracted
extrinsic ensemble models can capture useful malware information.

Moreover, the improvement in performance of ERBE model with respect to that of the
simple ensemble baseline as demonstrated by Kouliaridis et al. (2020) is higher than 5%
on the AndroZoo dataset. All in all, given that both ERBE and simple meta-model are
exclusively applied on the demanding AndroZoo dataset, it can be concluded that an
extrinsic ensemble provides an effective approach in malware detection when it is fine-
tuned and appropriately combined with suitable base models. With respect to the results
onVirusShare andDrebin corpora, it is clear that ERBEmodels are very effective, competitive
and even outperforming other ensemble methods. Taking into consideration the corre-
sponding results of themethodsofCoronado-DeAlbaet al., andKouliaridis et al.,wenotably
reinforce the aforementioned outcome as our proposed extrinsic malware detection mod-
els are also very effective and clearly better options in the VirusShare and Drebin corpus.
With respect to the feature types, it is clear that permissions and intents are the best option
and they provide a more stable performance on ERBE in all datasets examined.

In addition, theproposedERBEmalwaredetectionmodel is also very effective and clearly
better option in comparison to (Milosevic et al., 2017). The improvement in performance is
higher than 2%. With respect to the categories of features applied, the method of (Milose-
vic et al., 2017), does not seem to be positively influenced when a feature set of both app
permissions and source code is available. Taking also into consideration the corresponding
results of both (Milosevic et al., 2017) and (Idrees et al., 2017)methods, we notably reinforce
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the aforementioned outcome as a feature set of both app’s permission and intents is better
able to handle challenging malware conditions.

5.3. Genre of external cases

So far, in all the experiments the set of external instances required by the examinedmethod
stem from the AndrooZoo dataset. Thismeans that the genre of these instancesmost prob-
ably match a lot to the one of the test instances in question. Taking into account that the
genre of all instances is the same, the performance of the proposed method can take a
significant advantage and can be probably considerably improved.

This section uses another priory released corpus that will allow us to examine this effect.
As concerns the set of external malware instances required by ERBE, we explored two alter-
natives. First,we followed theapproachused in theprevious experiments selectingexternal
instances from the rather outdated Drebin corpus. We call this alternative as ERBEDerbin.
Second, we used the VirusShare corpus to collect the set of external instances. VirusShare
comprises newer andmore challenging apps dated from2014 to 2017. This second alterna-
tive is defined as ERBEVirusShare. For each of the above corpora examined, 200malware apps
are randomly selectedper iterationby a largepool of 1 Kmalware samples. Thebenign apps
included in the set of external instances are similar to those applied in ERBE and were col-
lected from Google Play (playstore, n.d.). In each repetition, a set of 200 goodware apps are
also randomly selected to use as external instances. Again, both the malware and benign
part of the external instances was balanced with 200 positive and 200 negative cases. The
parameters of the methods presented in this study were estimated based on the training
part of the corpus as described in Section 4.2.

In addition, similar to the previous experiments, we examined a case of extracting the
external malware instances by randomly selecting a similar number of apps from all three
datasets. That way, a set of 900mix external instances was obtained by extractingmalware
cases including all corpora examined (AndroZoo, Drebin, andVirusShare). In otherwords, in
the case of external malware instances, the enriched collection comprises a mix of genres.
This is called as ERBEmixed alternative. Again, in each repetition, 200 malware apps are ran-
domly collected by amix pool ofmalware external instances. We call each one of the above
alternatives as “genre-agnostic” because of different genre of the set of external malware
instances.

Table 5 shows the results on various evaluationmeasures of the examined ERBEmalware
detectionmethod on different genres of external malware instances selected in each itera-
tion. From the obtained results, the best results so far are obtained by the presented ERBE
model. As expected, the set of AndroZoo external malware instances assists the proposed
ensemble method to achieve higher scores in comparison to cases where genre-agnostic
external instances are used. This sounds reasonable since AndroZoo is a demanding corpus
including new and challenging apps. In this way, it is demonstrated that the meta-learner
needs as accurate base models as possible and learning models exclusively on AndroZoo
samples are more likely to be more accurate than models with learning on completely
different genre of external malware samples.

This is verified when genre-agnostic external malware instances are concerned since
then this difference is more evident. Comparing the performance of ERBEDerbin and
ERBEVirusSharemodels, we see that the contribution of the latter is stronger, while the version
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Table 5. Scores of all evaluation measures examined for ERBE method
when k = 200 based on different genre of external instances. Best AUC
score is shown in boldface.

AUC Accuracy Precision Recall F1

ERBEAndroZoo 0.994 0.973 0.970 0.976 0.973
ERBEDrebin 0.971 0.938 0.936 0.940 0.938
ERBEVirusShare 0.976 0.945 0.941 0.950 0.945
ERBEmixed 0.987 0.941 0.925 0.960 0.942

of the ERBEDerbin is the most weak. This indicates that when there are cross-genre malware
conditions, the information of the outdated external malware instances of Derbin corpus
is less crucial on ensemble learning and inadequate to handle test instances of AndroZoo
dataset. It is also remarkable that information in ensemble learning models belonging to a
mix of genres can be useful to define malware cases. The ERBEmixed model is better than all
other variations (both ERBEDerbin and ERBEVirusShare variations) in all the examined cases.

6. Discussion

In this paper, we present an extrinsic malware detectionmethod based on ensemble learn-
ing. By utilising a set of three well-known as well as widely used base verifiers, we attempt
to take advantage of their correlations by building a more sophisticated Extrinsic Random-
based Ensemble (ERBE) based on a random subspace of external instances and features
for each test instance separately. The experimental results based on AndroZoo benchmark
dataset demonstrate that ERBE’s performance is better than any single base model and is
highly competitive when compared with state-of-the-art methods. The contribution of the
random subspace of features, used in ERBE, is a crucial factor to improve performance. This
enables ERBE to take advantage of all the examined sizes of external instances. The extrinsic
ensemble approach outperforms a set of strong baselines tested on either the benchmark
AndroZoo corpus or mixed datasets. The performance of ERBE is more than 5% better than
an ensemble learning baseline implemented on the challenging AndroZoo dataset too. In
comparison to the best baseline (note that this method is tested on a mixed dataset), ERBE
is competitive enough in terms of accuracy measure.

All extrinsicmethods strongly dependon the appropriate selectionof external instances.
In this paper, we used a set of malware instances randomly selected by AndroZoo corpus
ensuring that there are similaritieswith the test instances under examination. Certainly, this
procedure can be improved by taking into account the genre of instances. To this direction,
we examined the effectiveness of ERBE method following a couple of options. In the first
one, the external malware instances were exclusively collected by different malware cor-
pora in comparison to test set. In the second, a mixed set of external malware instances
derived from multiple malware corpora was considered. As it is demonstrated, ideally, the
externalmalware instances should be sampled from the same source as the one fromwhich
the test instances are drawn. For instance, if the instance under examination belongs to
AndroZoo dataset, then there is strong indication that the external instances should also
be part from that dataset to ensure similarity in genre, format and edition of instances. This
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canbeexplained since themeta-model needs as accurate and reliablebasemodels aspossi-
ble. However, information about the source of test malware instancesmay not be available
in the most of the real-world cases.

The current work uses three classifiers as malware base models. An interesting future
work direction could focus on a richer set of classification models, comprising eager and
lazy algorithms, that can be adapted to each malware case separately. This heterogeneous
ensemble approach relies on base models with default parameter settings. This could be
used to further enrich the pool of our base verifiers considering several versions of the same
approach with different fixed and tuned parameter settings. Another future work direction
could concentrate on combining multiple malware detection methods based on hybrid
and static analysis in a more complex approach. Lastly but not least, although in this work
ERBE has been evaluated using Android malware datasets, it is evident that it can be easily
applied for malware detection on any platform.
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