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ABSTRACT 

 

Induction machines are electromechanical energy conversion devices comprised of a 

stator and a rotor. Torque is generated due to the interaction between the rotating magnetic 

field from the stator, and the current induced in the rotor conductors. Their speed and torque 

output can be precisely controlled by manipulating the magnitude, frequency, and phase of 

the three input sinusoidal voltage waveforms. Their ruggedness, low cost, and high 

efficiency have made them ubiquitous component of nearly every industrial application. 

Thus, even a small improvement in their energy efficient tend to give a large amount of 

electrical energy savings over the lifetime of the machine. Hence, increasing energy 

efficiency (reducing energy losses) in induction machines is a constrained optimization 

problem that has attracted attention from researchers. 

The energy conversion efficiency of induction machines depends on both the speed-

torque operating point, as well as the input voltage waveform. It also depends on whether 

the machine is in the transient or steady state. Maximizing energy efficiency during steady 

state is a Static Optimization problem, that has been extensively studied, with commercial 

solutions available. On the other hand, improving energy efficiency during transients is a 

Dynamic Optimization problem that is sparsely studied. This dissertation exclusively 

focuses on improving energy efficiency during transients. 

This dissertation treats the transient energy loss minimization problem as an optimal 

control problem which consists of a dynamic model of the machine, and a cost functional. 



 

xviii 
 

The rotor field oriented current fed model of the induction machine is selected as the 

dynamic model. The rotor speed and rotor d-axis flux are the state variables in the dynamic 

model. The stator currents referred to as d-and q-axis currents are the control inputs. A cost 

functional is proposed that assigns a cost to both the energy losses in the induction machine, 

as well as the deviations from desired speed-torque-magnetic flux setpoints. Using 

Pontryagin’s minimum principle, a set of necessary conditions that must be satisfied by the 

optimal control trajectories are derived. The conditions are in the form a two-point 

boundary value problem, that can be solved numerically. The conjugate gradient method 

that was modified using the Hestenes-Stiefel formula was used to obtain the numerical 

solution of both the control and state trajectories.  

Using the distinctive shape of the numerical trajectories as inspiration, analytical 

expressions were derived for the state, and control trajectories. It was shown that the 

trajectory could be fully described by finding the solution of a one-dimensional 

optimization problem. The sensitivity of both the optimal trajectory and the optimal energy 

efficiency to different induction machine parameters were analyzed. 

A non-iterative solution that can use feedback for generating optimal control 

trajectories in real time was explored. It was found that an artificial neural network could 

be trained using the numerical solutions and made to emulate the optimal control 

trajectories with a high degree of accuracy. Hence a neural network along with a 

supervisory logic was implemented and used in a real-time simulation to control the Finite 

Element Method model of the induction machine. The results were compared with three 

other control regimes and the optimal control system was found to have the highest energy 

efficiency for the same drive cycle. 



 

1 

 

1 INTRODUCTION 

 

“For since the fabric of the universe is most perfect and the work of a most wise Creator, 

nothing at all takes place in the universe in which some rule of maximum or minimum does 

not appear.” Leonhard Euler.  

The concept that Euler tries to convey through this quote, made nearly 300 years ago, 

hasn’t lost any of its relevance. In Engineering, we find the application of this concept 

when finding ways to improve upon existing systems so that a performance goal is 

maximized or minimized. The procedure and method by which the extremum of a 

performance goal is found may be broadly classified under the term ‘Optimization’. It is 

also known as ‘Operations Research’ in the field of management. Engineering optimization 

problems can be broadly divided into two categories: 

a) System design is optimized: 

Here the system being built is optimized so that a performance goal is minimized (or 

maximized). The solutions for these types of problems are in the form of scalar values. 

A few examples are:  

1) An electric motor may be designed to give the maximum torque for a given input 

voltage.  

2) Designing a Proportional-Integral-Derivative (PID) controller used in a process 

control loop to minimize the system settling time. 
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The problem discussed in this dissertation does not belong to this category. 

b) System operation is optimized: 

Here we take an existing system and modify its operation to minimize (or maximize) 

some performance goal.  This class of problems may be separated into two, depending 

upon whether the system is in a steady state or in a transient state. 

In steady state optimization problems, the solutions are only applicable when the 

system has reached steady state. The solutions are in the form of a scalar value or an 

algebraic relationship. A few examples are: 

1) Finding the right combination of pressure and temperature that would maximize the 

yield of a desirable product in a chemical reactor. 

2) Finding electric current required by the motors in a heating, ventilation, and air-

conditioning (HVAC) system to maintain the desired air flow and maximize energy 

efficiency. 

The problem addressed in this dissertation does not belong to the category of steady 

state optimization problems.  

There exists a niche of engineering problems where optimization cannot wait for the 

steady state. This is either because the system spends much of its operating time in transient 

states or because optimization cannot ignore the transient conditions of the system. These 

problems may be broadly called Dynamic Optimization Problems. The solutions are in the 

form of a function with respect to (w.r.t.) time (or some other continuous variable) or vector 

containing values specific to a time instant. A few examples are: 
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1) Finding the optimal thrust vector to be supplied by the engines of a jet plane so 

that it can make a turn in the minimum time.  

2) Finding optimal thrust vector to be supplied by a space probe in interplanetary 

missions to minimize fuel consumption. 

3) Finding the optimal route to be taken by a traveling salesman.  

The engineering problem addressed in this dissertation is a dynamic optimization problem. 

1.1 Key Ingredients in dynamic optimization problems 

The solution of any engineering optimization problem involves three key ingredients, 

namely: 

1. system model, 

2. cost function, and 

3. optimization algorithm. 

The cost function, also referred to as the objective function, gives a scalar value which 

provides a means to compare how much the system has improved against a baseline. In the 

dynamic optimization problem of this dissertation, we use a cost functional, i.e., a function 

of a function which still provides a scalar value.  In this dissertation, the cost functional 

measures the energy losses in an induction machine. 

The solution to engineering optimization problems are intimately linked with key 

features of the system being optimized. A system model defines the relationship between 

its constituent variables and parameters. In static optimization problems, a system of 

algebraic equations may be enough to properly define the model. However, in dynamic 
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optimization problems the changes w.r.t. time must be considered, and hence the model is 

usually defined by a system of ordinary differential equations. In this work, the system 

model is based on that of a current fed induction machine. 

Once the system model and the cost function are determined, solving the problem 

requires an optimization algorithm. The same optimization problem may be solved by 

different optimization algorithms, i.e. optimization algorithms are not problem specific. 

However, some algorithms may perform better than others for specific problems. Many 

optimization algorithms have been developed through modification of certain core 

concepts. In case of dynamic optimization problems, optimization algorithms may be 

classified under either calculus of variations or optimal control theory. 

1.2 Statement of the Problem 

The main objective of this dissertation is to develop a control law to minimize energy 

losses in an induction machine during transients. This is a sparsely researched topic, 

compared to the problem of minimizing energy losses during steady-state operation. For 

this purpose, Pontryagin’s minimum principle from optimal control theory, and a modified 

conjugate gradient algorithm are used to obtain a numerical solution to the problem under 

study. An analytical closed-form solution is proposed based on observations from the 

numerical solution. Finally, Neural Networks are used to generate the optimal solution to 

the problem in a real-time scenario. 

1.3 Organization of the manuscript 

Since this manuscript explores several concepts from multiple technical fields, the first 

three chapters provide a brief background on each. An introduction to the optimal control 

method to be used is given in Chapter 2. The importance of electromechanical energy 
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conversion efficiency, as a performance index, is discussed in Chapter 3. Mathematical 

models of induction machines, as well as the various energy losses within those machines, 

are presented and discussed in Chapter 4. A literature survey is provided in Chapter 5 that 

collates all the related research over the past 40 years for the problem being investigated in 

this dissertation. Chapter 6 solves the optimal control problem for a DC motor which is a 

simplified version of the main optimization problem being investigated for AC induction 

motors. Chapter 7 defines the optimal control problem for induction machines and derives 

the necessary conditions for optimal control using Pontryagin’s minimum principle. 

Chapter 8 presents the numerical solution of the necessary conditions (from the previous 

chapter) using the modified conjugate gradient optimization algorithm. Solutions for two 

types of induction machines for different operating conditions are presented. Chapter 9 

derives analytical expressions for the optimal control law, state trajectories, and the energy 

losses due to them which is applicable for any induction machine. Chapter 10 presents the 

concept of using of neural networks in generating the optimal control trajectories for an 

accelerating induction machine in a real-time environment. Using the control system 

developed in Chapter 10, Chapter 11 presents the real-time optimization simulation results 

using a Finite Element Model (FEM). And finally, Chapter 12 provides conclusions and 

some suggestions for future work. 

1.4 Summary 

This chapter introduced the general concept of dynamic optimization problems from 

the point of view of an engineering optimization problem. A few examples were provided 

to differentiate static and dynamic optimization problems. The list of all key concepts that 

will be utilized in this dissertation was presented. The statement of the problem under 
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investigation was provided to give a broad overview of the content of this dissertation 

document. Finally, a one-line overview of each of the succeeding chapters was provided. 
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2 INTRODUCTION TO OPTIMAL CONTROL AND PONTRYAGIN’S MINIMUM 

PRINCIPLE 

Dynamic optimization is fundamentally an applied mathematical problem. Hence, a 

background on some of the fundamental concepts of optimal control theory that have been 

used in this work are provided in this chapter. A significant amount of literature exists on 

optimal control theory with a varying degree of mathematical complexity. But [1] and [2] 

provide excellent relevant references with some practical examples. 

2.1 Dynamic Optimization 

A Dynamic optimization problem for a continuous system may be defined as follows. 

If we have a dynamic system defined by the ordinary differential state equation, 

  ,x g x t                                                                                                              (2.1.1) 

and a cost functional, 

  
0

,

ft

t

J f x t t dt                                                                     (2.1.2) 

where, depending on the system being modelled, 𝑥(𝑡) may represent a single state variable 

or a system of state variables. In (2.1.2) 𝑡𝑓 and 𝑡0 are the start and the end points of a 

horizon in time during which we are interested in optimizing the given dynamic system. 𝐽 

represents the total energy cost incurred by the IM over the time horizon of interest. It is 

called a cost functional (instead of a cost function), because it the function of a function.  𝑓(𝑥(𝑡), 𝑡) represents the cost value at a single time instant in the horizon of interest. A 
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Dynamic optimization method requires one to find an optimal state trajectory 𝑥∗(𝑡) such 

that: 

  
0

*

min
,

ft

t

J f x t t dt                                                                                          (2.1.3) 

In other words, one needs to find a function describing  𝑥∗(𝑡) during the time horizon 𝑡0 to 𝑡𝑓, that minimizes (or maximizes) the cost functional 𝐽.  The mathematical technique 

that provides a means to find 𝑥∗(𝑡)  is called Calculus of Variations.  

2.2 Optimal Control 

 It must be noted that dynamic optimization only tells us what the optimal state 

trajectory looks like. It does not tell us how to cause the state variable follow this optimal 

trajectory. To gain insight into this issue, one must consider the fact that change in the state 

variables of a dynamic system need not be dependent only on the current state of the 

system. The system can be influenced in two ways: a) The parameters of the system change, 

b) Disturbances may enter the system from outside. The disturbances affecting the system 

may be controllable or uncontrollable. The controlled disturbances are referred to as control 

variables or control inputs and are represented by 𝑢(𝑡). The state equation in (2.1.1) may 

then be rewritten as (2.2.1). As stated earlier, a cost is also be assigned to the control 

trajectory by a cost function or functional. It is also desirable that the state variables in the 

system attain certain terminal values at the end of the transient time. This can be 

incorporated into the cost functional using a terminal cost function 𝜙 (𝑥(𝑡𝑓)). Hence the 

cost functional (2.1.2) can be rewritten as (2.2.2). 

    , ,x g x t u t t                                                                                        (2.2.1) 



 

9 

 

       
0

, ,

ft

f

t

J x t f x t u t t dt                                               (2.2.2) 

If the system is fully controllable, the control variable can manipulate all the state 

variables. Hence, the problem of   finding the optimal state variable  𝑥∗(𝑡) may be 

converted into a problem of finding the optimal control variable  𝑢∗(𝑡)  instead. In other 

words, we find a trajectory for the control variable 𝑢∗(𝑡) that causes the state variable 𝑥(𝑡) 

to follow the optimal state trajectory as well as minimize the cost functional. This is known 

as the optimal control problem. 

2.3 Pontryagin’s Minimum Principle 

Pontryagin’s minimum principle allows us to derive a set of necessary conditions that 

must be satisfied by the optimal control variable 𝑢∗(t). To drive the required necessary 

conditions, first the state equation (2.2.1) and the cost function inside the integral of (2.2.2) 

are combined to form what is known as the Hamiltonian function (also called Hamiltonian) 

as shown in (2.3.1). Note that the terminal constraints are not included in the Hamiltonian 

directly. 

          , , , , , , ,H x u t g x t u t t t f x u t                                   (2.3.1) 

In (2.3.1) 𝜆 is called the co-state and each state equation is multiplied by a 

corresponding co-state 𝜆. According to the minimum principle, for the trajectory of control 

input 𝑢(𝑡) to be optimum, it must minimize the Hamiltonian for all 𝑡 ∈ [𝑡0: 𝑡𝑓]. This may 

be expressed by (2.3.2). A visualization of the how the Hamiltonian for an optimal control 

differs from that of a non-optimal control is provided using Figure. 2.1.  
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Figure 2.1. Visualizing the minimum principle 

 

The minimum principle given in (2.3.2) is for control inputs 𝑢(𝑡)  that have constraints 

(are bounded). However, this principle can also be applied for unconstrained control inputs. 

Hence, we have the condition that the partial derivative of the Hamiltonian w.r.t. 𝑢(𝑡)  

should be equal to zero given by (2.3.3). Also, to guarantee that 𝑢∗(𝑡) indeed minimizes 

the Hamiltonian, the second variation of the Hamiltonian w.r.t. 𝑢(𝑡)  should be greater than 

zero as shown in (2.3.4). 

      * * *, , ,
0

H x t u t t t

u





                                                                      (2.3.3) 

      2 * * *

2

, , ,
0

H x t u t t t

u





                                                                   (2.3.4) 

In addition to the above optimality condition, the state equation (2.3.5) must also be 

satisfied. Note that the state equation (2.3.5) would turn out to be the same as the state 

equation in (2.2.1). The dynamics of the co-state 𝜆 can be found through the co-state 

equation given by (2.3.6).  
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      * * *, , ,H x t u t t tdx
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                                                     (2.3.5) 

      * * *, , ,H x t u t t td

dt x

 
 


                                                              (2.3.6) 

The terminal cost function 𝜙 (𝑥(𝑡𝑓)) can be introduced into the solution process by 

using the tansversality condition to calculate the boundary condition for the co-states 𝜆  as 

given by (2.3.7). 

    f

f

x t
t

x








                                                                                             (2.3.7) 

To reiterate, using the minimum principle of optimal control theory, finding the optimal 

control 𝑢∗(𝑡) during the time 𝑡0 to 𝑡𝑓 becomes just a problem of finding the corresponding 

control variable  𝑢(𝑡) that minimizes (or maximizes) the Hamiltonian. For simple systems 

this may be possible through visual inspection of the Hamiltonian as has been demonstrated 

in [1]. However, for non-linear multi-state systems solutions based on visual inspection is 

not a feasible exercise. Only numerical methods can be used in such cases. Finally, an 

important property of the Hamiltonian that must be kept in mind is as follows. If the 

Hamiltonian is not an explicit function of time, then its value is constant at all points on 

the optimal trajectory given by (2.3.8). 

      * * *

1
, ,H x t u t t c                                                                              (2.3.8) 

2.4 Summary 

This chapter discussed the Dynamic Optimization based on optimal control concepts 

and how it differs from optimization solutions based on Calculus of variations. A brief 
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overview of the state equations and cost functional was provided. The use of Optimal 

Control theory was discussed. Finally, Pontryagin’s Minimum Principle and the associated 

necessary conditions were explained. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 



 

13 

 

 

3 ELECTROMECHANICAL ENERGY CONVERSION 

Human society takes for granted its ability to harness and utilize mechanical power 

from sources other than what is available from our bodies. Whether it be in mundane 

applications like an automobile or remarkable feat like drilling tunnels under the ocean, 

this concept has been one of the cornerstones of human civilization. Humanity’s first 

source of mechanical power were domesticated animals, and they continued to be the 

primary sources of energy until the advent of the steam turbine in the 1st half of the 19th 

century. However, it was the concept of electromechanical energy conversion using electric 

motors and generators (collectively referred to as electric machines) that brought about a 

paradigm shift. Before the advent of electric machines, mechanical power could only be 

transmitted using couplings, gears, belts, or fluids (compressed air, oil), limiting the 

maximum distance between the power source and the application. But electric machines 

enabled mechanical power to be available on demand with the throw of a switch, with 

electrical power being supplied through metal conductors. Suffice it to say that electric 

machines revolutionized human society in unforeseen ways.  

3.1 Features of Electric Machines 

Electric machines can be broadly divided into two types, namely machines that work 

on Direct Current (DC), and machines that work on Alternating Current (AC). Within these 

two types of machines, there are further classifications. However, all electric machines 

share certain common features irrespective of their type and their widespread acceptability. 

The common features are: 
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a) Rotary motion: Electric machines produce mechanical power in the form of 

smooth rotational motion which may be measured in terms of angular velocity, 

and torque (moment of force). Comparatively, steam engines produce a 

reciprocating motion which must be converted to a rotary motion through 

additional components. 

b) High efficiency: The conversion efficiency from electrical energy to mechanical 

energy and vice versa is usually in the range of 80 to 95% at the rated power of 

the machine. Comparatively, the maximum efficiency of a diesel engine is only 

about 35%.  

c) Controllability: By controlling the magnitude and/or the frequency of the electric 

current of electric machines it is possible to precisely regulate or throttle the 

speed/torque output of an electric machine. 

d) Ruggedness: There are very few moving parts in an electric machine resulting in 

less wear and tear, low maintenance, and machine lifetime’s exceeding 30 years. 

There are significant differences among the electric machines. A graphical overview of 

different motor types can be found in [3]. Table 3.1 lists the relative differences among the 

most common types of electric machines, and their common application areas. 

Table 3.1.Comparison of electric machine types. 

Type Permanent Magnet 

DC Motor 

AC Induction AC 

Synchronous 

Stepper Motor 

Maximum 

power rating 

Medium High High Low 

Starting torque 

capability 

High Medium Medium High 

Efficiency Medium Medium High Medium 

Maintenance High Very Low Low Medium 
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Capital Cost Low Low High Medium 

Operating 

complexity 

Low Low Medium High 

Speed control 

complexity 

Low Medium Medium High 

Application Drones, robotics, 

cooling fans, toys, 

and engine starters 

Industry+ 

commercial, 

electric cars, 

wind turbine 

generators 

Power 

generation, 

electric cars, 

wind turbine 

generators 

Robotics, 

actuators 

 

Note that there are a few other distinct electric machine types like switched reluctance 

machine and DC series motor which have not been listed in Table 3.1. It can be noted from 

Table 3.1 that certain machine types have found a niche in certain applications. One 

example is the permanent magnet DC motors which are exclusively used in toys and 

drones, and the stepper motors in robotics. Another important fact that must be pointed out 

is that two types of electrical machine account for nearly 100 % of the mechanical and 

electric power generated in the world. All the conventional power generation plants 

exclusively use AC Synchronous generators. The power ratings of these machines range 

from a few kilowatts (kW) in case of portable generator sets (gensets) to more than 600 

Megawatts (MW) in case of steam turbine generators in electric power plants. Conversely, 

nearly 70% of the power generated by the AC Synchronous machines are consumed by the 

AC Induction motors to produce mechanical power in industrial, commercial, and domestic 

application. They can be found in everything from refrigerators, and air conditioning 

systems to industrial conveyors, and electric cars. 

The design of an optimal control system for the AC Induction machine is the focus of this 

dissertation report.  
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3.2 Energy efficiency in electric machines 

A consequence of the Second law of Thermodynamics is that conversion of energy 

from one form of energy to another is not 100% efficient. Electro-mechanical energy 

conversion systems are no exception. A fraction of electrical/mechanical power input is 

wasted as heat in electric machines. Depending on the measurements available, the energy 

efficiency of an electric machine may be calculated in two ways. If the electrical machine 

is motoring, i.e. converting electrical energy into mechanical energy, the efficiency is 

calculated using (3.2.1) or (3.2.2). In case the machine is generating power, i.e. converting 

mechanical energy into electrical energy, the energy efficiency may be calculated using 

(3.2.3) or (3.2.4). 

mech
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mot elect
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E
                                                                               (3.2.1) 
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                                                                          (3.2.4) 

where 𝐸𝑜𝑢𝑡 is the mechanical energy output, 𝐸𝑖𝑛 is the electrical energy input, and 𝐸𝑙𝑜𝑠𝑠 is 

the energy losses in the machine over a time interval. 

Electro-mechanical energy conversion systems, i.e. electric machines, are considerably 

more efficient than the thermochemical–mechanical or mechanical-mechanical energy 

conversion systems. Electric machines outnumber other energy conversion systems, both 

in quantity and operating time, and hence even small power losses add up over time to 
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become significant energy losses. Conversely, even a couple of percentage points of 

improvement in energy efficiency of electric machines can lead to large energy savings 

over time. Energy efficiency of an electric machine (or any other energy conversion device) 

is not a static quantity. It is a function of state variables, input variables, and external 

disturbances related to the machine. Energy efficiency of an electric machine can take any 

value from zero to a maximum theoretical efficiency (below 100%). Also, it is highly 

dependent on the speed-torque output from the machine. 

3.3 Maximizing Energy Efficiency 

Improving the efficiency (or reducing losses) of an electro-mechanical energy 

conversion system is ultimately an engineering optimization problem, consisting of a cost 

function to be minimized (or maximized) and a set of constraints. This problem can be 

approached using all three methodologies mentioned in Chapter I. These are discussed as 

follows: 

a) Optimize design parameters: Select electric machine parameters like resistance, 

inductance, number of windings, grade of steel used in the stator/rotor, type of metal 

used in windings, etc. to obtain maximum energy efficiency at a specific speed-torque 

operating point (usually the rated speed and torque operating point). 

b) Optimize operation during steady state: Modify state variables of the electric machine 

like electro-magnetic flux or stator electric current after it has reached a steady state, 

and maximize the efficiency at its present speed and torque operating point. 

c) Optimize operation during transients: Modify state variables of the electric machine 

like electro-magnetic flux or stator electric current while it is accelerating or 
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decelerating to a new speed-torque operating point in such a way that its efficiency 

during those transitions is maximized.  

It is easy to observe how (a) above fundamentally differs from (b) and (c) in terms of 

the engineering work involved. However, from the point of view of an optimization 

algorithm, (a) and (b) are static optimization problems and would use similar techniques to 

solve. On the other hand, (c) is a dynamic optimization problem and would need a 

considerably different approach. As mentioned in Chapter I, this dissertation is about 

dynamic optimization as it exclusively focuses on optimizing induction machine operation 

during transients (acceleration and deceleration). Since the dynamics governing the 

operation of each electric machine is different, dynamic optimization problems and their 

solutions for different electric machines will be distinct. This work focuses entirely on the 

problem of improving the efficiency (or reducing energy losses) of the induction machine 

during its acceleration and deceleration (transient) states. 

3.4 Importance of Transient Energy Efficiency in Induction Machines 

In most IM applications, the operating points (rotor speed and torque) remain constant 

for most of its operating time (also referred to as duty cycle). For example, the rotor speed 

may change once every hour on average in a refrigerator application. This means that only 

a small fraction of the IM’s duty cycle is in transient state. For this reason, improving 

transient energy efficiency will have only a marginal impact on the overall energy 

efficiency and hence has never received much interest from researchers. But in recent years 

IM’s have found application in electric vehicles (EV) [4], wind turbine generators [5], and 

fly wheel energy storage [6]. In these applications, for a significant fraction of the operating 

time, the IM is in a transient state because the operating point changes rapidly. In case of 
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EV’s, this is apparent from the US EPA sample drive schedules for vehicles that can be 

found in [7]. Hence while the objective of this thesis is applicable to IM’s in all 

applications, the best results would be obtained in applications with frequent speed 

transients.  

A simple illustration of the potential electrical energy savings in EV’s is given here. 

Assume that a 2% improvement in drive cycle energy efficiency is achieved by using 

transient loss minimization algorithms within the EV drive train control software. This 

would translate to a 2% decrease in the specific energy consumptions (kWh per mile). The 

resulting energy savings for different Tesla models are shown in Table 3.1. Note that Tesla 

exclusive uses IM’s in all their EV models. The number of Tesla vehicles on road around 

the world was about 200,000 in 2017 [8]. However, it is expected to reach 1 million 

vehicles in a couple of years and keep increasing for the near future [9]. Hence even a 2% 

improvement can lead to saving of millions of units of electrical energy. 

Table 3.2 Potential energy savings in Tesla EV's 

Model EPA 

range 

(Miles) 

Battery 

capacity 

(kWh) 

Specific 

energy per 

mile 

(kWh/mile) 

2% Energy 

Saving 

(kWh/mile) 

Energy 

Saving for 

100000 miles 

(kWh) 

Tesla Model S 75D 259 75 0.306 0.0061 579 

Tesla Model X 75D 237 75 0.32 0.0063 633 

Tesla Model 3 215 60* 0.233 0.0047 558 

3.5 Summary 

This chapter discussed the importance of electro-mechanical energy conversion using 

electric machines. It specifically highlighted the importance of induction machines. The 

concept of energy conversion efficiency was discussed. Different levels at which the 

electric machine operation can be optimized to maximize its energy conversion efficiency 

were described. 
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4 INDUCTION MACHINES  

The invention of the first practical induction machine (IM) can be attributed to Nikola 

Tesla in 1887 and Galileo Ferraris in 1885 (both working independently). The operating 

principle of an induction machine was first explained by Tesla in his paper “A New System 

for Alternating Current Motors and Transformers”. However, it was Michael Dolivo-

Dobrowolsky who perfected the design of Tesla and Ferraris and invented the most 

common type of induction machine being used today, namely the 3-phase Squirrel Cage 

induction machine (SQIM). This design has been optimized over the last 100 years and has 

been the subject of many volumes of research [10], [11]. A brief explanation of the IM 

operation is provided below for completeness.  

4.1 Induction Machine Operation 

It is known that when electric current flows through a closed loop wire, a magnetic 

field is established that surrounds the current carrying loop of wire. Now, when a magnetic 

field and a conductor moving at relative speeds w.r.t. each other intersect, a voltage (also 

referred to as the electromotive force (emf)) is induced across the conductor (Faraday’s 

law of induction). If the conductor is short circuited, i.e. forms a loop, the induced emf 

causes a current to flow through it.  The direction of this current is in such a way that the 

magnetic field it produces will be in the opposition to the magnetic field that caused it in 

the first place (Lenz’s law). If the magnetic field is moving and the metal conductor is 

stationary (as in the case of an IM), the induced current interacts with the magnetic field 
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(Lorentz’s force law) to produce a force that acts on the conductor and causes the conductor 

to move in the direction of the magnetic field.  

Φ1

Φ2

Φ3

Short Circuited

Metal Conductors

(Aluminium or Copper)

Stator Windings

(Copper)

Rotor Shaft

Air Gap between Rotor 

and Stator

3 phase sinusoidal 

voltage waveforms

Stator Core 

(Steel)

Rotor Core 

(Steel)

 
Figure 4.1.  Induction machine cross section diagram.   

 

An IM has primarily two major components as illustrated in Figure 4.1, namely the 

stator and the rotor. The stator consists of three coils of insulated copper wires and are 

physically displaced by 120 degrees on the stator. This three-coil arrangement is known as 

the stator winding. The terminals of each of the three stator windings are supplied with a 

sinusoidal voltage waveform. The three sinusoidal voltage waveforms are themselves 

phase displaced from each other by 120 degrees and when applied to the stator windings 

will produce a rotating magnetic field (RMF). The RMF links with the rotor conductors 

through the air gap (a clearance between the rotor and the stator). The rotor core consists 

of insulated metal discs called laminations fixed around a shaft that is free to rotate about 

its axis. Embedded with these laminations are short-circuited metal conductors. The current 
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induced in the rotor interacts with the RMF to produce a torque that causes the rotor 

structure to spin and catch up with the RMF, thereby reducing the relative speed between 

them. Hence, all the energy transfer that occurs between the stator and rotor is through the 

electromagnetic linkage through the air gap. The speed at which the RMF rotates is known 

as the synchronous speed, 𝑁𝑠𝑦𝑛𝑐ℎ and is given by (4.1.1), if measured in revolutions per 

minute (RPM). 

120
sync

f
N

p
                                                                                                       (4.1.1) 

where 𝑓 is the frequency of the sinusoidal voltage waveforms being supplied to the stator 

windings, and 𝑝 is the number of stator magnetic poles that result from stator windings. 

The rotor speed, 𝑁𝑟, can never reach the synchronous speed of the stator magnetic field. 

If 𝑁𝑟 were to become equal to 𝑁𝑠𝑦𝑛𝑐 then the relative speed between the stator magnetic 

field and the rotor conductors would become zero thereby preventing emf from being 

induced (Faraday’s law), current from flowing (Lenz’s law), and consequently torque 

becoming zero. The relative difference between rotor speed and the RMF’s synchronous 

speed is known as the slip of the machine and is calculated using (4.1.2). More importantly, 

slip is a measure of the magnitude of current that flows in the rotor conductors, as well as 

the amount of electro-magnetic torque that is being produced. The value of slip typically 

varies from 0.1% to 5%.   
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4.2 Induction Machine Drives 

In many industrial applications precision control of speed and torque is necessary, i.e. 

the machine’s speed is expected to change depending upon the need of the application at 

that time. An old example is the HVAC systems in buildings, while electric cars are a new 

example. Speed control over a limited range is possible through the use of gears, however, 

these would add complexity and energy losses to the system. From (4.1.1) and (4.1.2), 

speed control is possible by changing the frequency of the stator’s sinusoidal voltage 

waveform. However, changing the supply frequency is not a trivial task, and for this reason, 

DC motors were the favored machines for such speed control applications until the latter 

half of the 20th century. 

However, the advances in power electronics technology made it possible to have 

precise control over the magnitude, frequency, and phase of the voltage waveform supplied 

to the stator of the IM even at high current and voltage levels for a reasonable price and 

complexity. The power electronic devices that convert DC waveforms to sinusoidal AC 

waveforms required by AC machines are called 3-phase inverters. A simple description for 

these are: circuits comprised of on/off electronic switches which can be controlled 

independently with one side connected to a DC voltage source and other side connected to 

the AC machine. The switches are functionally like a normal mechanical switch except that 

they can be turned on and off thousands of times every second continuously with minimal 

power losses. Also, these switches can carry very large currents without damage if 

sufficient heat dissipation is provided. Through operating the switches in a precise and 

specific sequence and duty cycles, the desired voltage waveforms with the desired 

frequency can be generated. The inverter, IM, and the software algorithms are collectively 
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referred to as the IM drive. References like [12] discuss IM and other electric drives in 

detail. The schematic of a generic IM electric drive system is shown in Figure 4.2. 
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Figure 4.2. IM Electric Drive Schematic 

 

4.3 Induction Machine Power Flow and Power/Energy Losses 

A graphical illustration of the power flows and relative differences in magnitude 

between power/energy losses in an induction machine are given in Figure. 4.3 and Figure. 

4.4, respectively.  
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Figure 4.3. Power flows in an induction machine 
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Figure 4.4. Relative magnitude of Power flows in an induction machine 

 

Electrical power that the source supplies to an IM is transformed in three ways.  

1) Mechanical power: Most of the input electric power is transformed into output 

mechanical power at the rotor. This output mechanical power is a function of the torque 

of the load connected to the motor shaft and the rotor speed. It can be expressed as 
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(4.3.1). A small fraction of the mechanical power is lost due to friction in the bearings 

that support the rotor shaft. Another fraction is lost due to drag offered by air due to the 

rotation of the shaft. These losses are functions of the rotor speed (4.3.2). Another 

fraction of the output mechanical power is stored as kinetic energy (4.3.3) in the 

rotating mass of the rotor. Note that transfer of power to the rotor mass occurs only 

when rotor speed is increasing. If the rotor speed were to decrease, the kinetic energy 

is released as the mechanical output of the rotor. No energy is transferred to the rotor 

mass when rotor speed reaches steady state. 

      mech L r
P T 

                                                                                                      (4.3.1) 

       /friction windage r
P f                                                                                      (4.3.2) 
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2
stored r

E J                                                                                                  (4.3.3) 

In the above equations 𝑇𝐿 is the load torque on the rotor shaft, 𝜔𝑟 is the rotor mechanical 

speed, and 𝐽 is the moment of inertia of the rotor mass. 

Every speed-torque operating point has a corresponding mechanical power output. 

Hence these are hard constraints for the energy efficiency optimization problem. Since 

the friction and windage losses are fixed for a specific speed-torque operating point, 

these are considered as uncontrollable energy losses and not part of the optimization 

problem.  

2) Ohmic losses: When an electric current passes through any type of conductor heat is 

generated which can be expressed as (4.3.4). In case of an IM, Ohmic losses occur 

when current flows through the stator windings and the short-circuited rotor 

conductors. 
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2

ohmic
P i R                                                                                                (4.3.4) 

where 𝑖 is the current flowing through the conductors, and 𝑅 is the resistance of the 

conductors. 

Since electric current is a controllable input to the IM, Ohmic losses can be considered 

as controllable losses and part of the optimization problem to maximize energy 

efficiency. 

3) Electromagnetic flux: A explained earlier, a rotating magnetic field is produced due to 

the sinusoidal currents flowing through the stator windings. The magnetic flux flows 

through the stator core, air-gap, and rotor core. Some of the input electrical energy is 

stored in the magnetic field. The amount of energy stored is a function of the current 

flowing through the stator windings. The flow of magnetic flux through the metal that 

constitutes the core of the stator and the rotor also results in two types of energy losses: 

eddy current losses and hysteresis losses. These losses are expressed by (4.3.5) and 

(4.3.6), respectively. These losses are collectively referred to as core or iron losses. 

       

2 2

eddy e f m
P K K B f                                                                                          

(4.3.5) 

       

1.6

hysterisis h m
P K B f                                                                                           (4.3.6) 

where 𝐵𝑚 and 𝑓 are the peak magnetic flux and the frequency at which the magnetic 

poles change on the stator, respectively. 𝐵𝑚 is proportional to the magnitude of the 

sinusoidal voltage waveform, while 𝑓 is equal to the frequency of the same. 𝐾𝑒 , 𝐾𝑓, and 𝐾ℎ are constants related to the type, volume, and the shape of material used to construct 

the stator and rotor cores.  
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Since the functions describing core losses have two degrees of freedom, the core losses 

can be considered as controllable losses and hence part of the optimization problem. 

4.4 Induction Machine Dynamics 

Like all dynamical systems, the operating cycle of an IM can be separated into transient 

and steady state phases. An induction machine is said to be in steady state if its rotor speed, 

electromagnetic torque, magnitude of the voltage and current waveforms, and peak 

magnetic flux remain constant. The IM can be induced into a transient phase from steady 

state in two ways as listed below: 

a) Change in the frequency or the magnitude of input sinusoidal voltage waveforms. 

b) Change in the load torque on the shaft. 

Transients can also be caused due to short circuits or open circuits in the stator or rotor 

windings. These are outside the scope of this dissertation, and hence not discussed. 

The most common transient that occurs in IM is when the machine accelerates or 

decelerates from its current speed to a higher or lower speed, respectively. As with other 

dynamical systems, transients in IM can lead to two possibilities. 

a) IM achieves a new steady state operating point. 

The simplest example of this is an IM increasing its rotor speed to a new operating 

point in response to a change in input voltage magnitude and frequency. 

b) IM becomes unstable which may lead to stalling, over speeding, or overheating. 
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The most common example of instability is when the load torque on the IM is suddenly 

increased to a value that is beyond its maximum torque rating. This results in the net torque 

becoming negative, and the machine coming to a stop (stalling).  

Figure 4.5. Illustrates a transient in the input phase voltages of an IM. It can be observed 

that the magnitude and frequency of the voltage waveforms for all three phases change at 

0.5s, 1s, and 2s. The transient phase that follows is highlighted using the circles. 

 
Figure 4.5. Transients in input phase voltage waveforms of an induction machine. 

 

The change in input voltage corresponds to a change in the rotor speed as shown in 

Figure 4.6. A steady state phase follows each of the transients. There is a difference in the 

magnitude of the power/energy that is consumed by the IM during transients and steady 

states. This is illustrated in Figure 4.7. by plotting the cumulative energy input into the IM 

during the above transients. 
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Figure 4.6. Transients and steady states in rotor speed of IM corresponding to voltage 

transients 

 

 
Figure 4.7. Transients & steady states in energy input to IM corresponding to voltage 

transients 

Most of the input energy consumed during transients is used to accelerate the IM to its 

new speed-torque operating point while the rest is consumed by the energy losses that were 

described earlier. Details on how the dynamics of the IM affect the energy input and the 

energy losses will be explained in the Methodology section of this dissertation. 
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4.5 Mathematical Modelling of Induction Machines 

The dynamics of an IM can be described through a system of ordinary differential 

equations (ODE’s). In one approach, the model is built around treating the three-phase 

variables as they are. That is, there is no transformation of the variables. In such an 

approach, there will be 3 variables representing the current, voltage, and the magnetic flux 

linkage of each phase of the IM. Also, the mutual inductance of the IM, which is a 

coefficient in the ODE’s, would be a function of the rotor speed. Hence, we arrive at a time 

variant model of the IM consisting of 3 input variables, 7 state variables, and 6 dependent 

variables.  

Fortunately, there is a second approach that can yield a significantly simpler model 

without losing accuracy of the model. This involves transforming the three a, b, and c phase 

variables into two d and q phase variables by projecting them onto the orthogonal d- and 

q-axes of a rotating reference frame [13]. Apart from reducing the number of variables, the 

transformation of variables also results in the mutual inductance becoming independent of 

the rotor speed, i.e. it becomes a constant. The transformation from 3 phase variables to 2 

phase variables is called Park’s transform.  The speed of the rotating reference frame can 

be arbitrarily chosen, and the properties of the IM model varies accordingly. The concept 

is illustrated in Figure 4.8. 

A

Park’s transform

 
Figure 4.8. Visualizing change in reference frame 
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In this dissertation, the reference frame speed is chosen to be equal to the frequency of 

the input voltage waveforms of the stator. Using magnetic flux linkages as the state 

variables, the transformation of variables results in an ODE model of the IM as given by 

(4.5.1) to (4.5.5) [14], [15]. 

ds

ds s ds sync qs

d
v R i

dt

                                                                                  (4.5.1) 

qs

qs s qs sync ds

d
v R i

dt


                                                                 (4.5.2) 

 dr

dr r dr sync r qr

d
v R i

dt

                                                                    (4.5.3) 

 qr

qr r qr sync r dr

d
v R i

dt


                                                                   (4.5.4) 
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m

dr qs qr ds L
qr dr dr qr L

r r

pLp i i Ti i T
d Lp p

dt J J

  
                 

          

     

 (4.5.5) 

 

where 𝛹𝑑𝑠 and 𝛹𝑞𝑠 are the stator flux linkages along the new d-axis and q-axis, 

respectively. 𝛹𝑑𝑟  and 𝛹𝑞𝑟 are the rotor flux linkages along d-axis and q-axis, 

respectively.  𝑖𝑑𝑠 and 𝑖𝑞𝑠 are the stator currents along d-axis and q-axis, respectively. 𝑖𝑑𝑟 

and 𝑖𝑞𝑟 are the rotor currents along d-axis and q-axis, respectively. 𝑣𝑑𝑠 and 𝑣𝑞𝑠 are the 

stator input voltage along d-axis and q-axis, respectively. 𝑣𝑑𝑟 and 𝑣𝑞𝑟 are the rotor input 

voltage along d-axis and q-axis, respectively.  𝑅𝑠 and 𝑅𝑟 are the resistances of the stator 

and rotor windings, respectively. 𝜔𝑠𝑦𝑛𝑐 is the frequency of the source voltage waveforms 

at the stator and 𝜔𝑟  is the rotor speed. 𝑇𝐿 is the load torque on the rotor (torque in opposition 
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to rotation of the rotor) while 𝐽 is the moment of inertia of the rotor. Finally, 𝑝 denotes the 

number of magnetic poles due to the stator windings. 

In most IM’s the rotor windings are short circuited, hence 𝑣𝑞𝑟 = 𝑣𝑑𝑟 = 0. The rotor 

currents can be expressed as functions of stator currents, and the rotor flux linkages can be 

expressed through the algebraic relationships given by (4.5.6) to (4.5.9) [15]. 

ds s ds

dr

m

L i
i

L

 
                                                                                                   (4.5.6) 
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                                                                             (4.5.8) 

qr m qs

qr

r

L i
i

L

 
                                                                                                   (4.5.9) 

where 𝐿𝑠 is the stator inductance, 𝐿𝑟 is the rotor inductance, and  𝐿𝑚is the mutual 

inductance. 

4.6 Current Fed Model of The Induction Machine 

The mathematical model in section 4.5 used stator input voltages as control inputs and 

hence it is known as the voltage fed model. It is also possible to use stator input currents 

as the control inputs and obtain a smaller model of the IM. Using currents as inputs imply 

that the dynamics between stator flux and stator voltages can be neglected. It is assumed 

that there are current controllers with very fast settling times between the IM and the input 

voltage source that control the input voltage. Hence the dynamics of the IM only depend 

on the reference to the current controller. This concept is illustrated in Figure 4.9.  
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Figure 4.9. Concept of Current Fed IM Model 

Using stator current as an input to the model removes the need for ODE’s involving 

stator flux variables, i.e. (4.5.1) and (4.5.2). Substituting the equations for rotor currents, 

(4.5.8) and (4.5.9) in (4.5.3) to (4.5.5) results in an IM model having 3 state variables as 

shown in (4.6.1) to (4.6.3). 
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The above model will be further simplified later in this work and used in the IM optimal 

control problem.   
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4.7 Detailed Problem Statement 

There is a significant scope for improving the energy efficiency of an IM during both 

steady state and transient phases. Algorithms for minimizing energy losses during steady 

state are already available in commercial IM drives, whereas transient energy loss 

minimization algorithms are not. As such, the contribution and the objective of this work 

is to find an optimal control law that minimizes the Ohmic and iron energy losses inside 

an IM during the transient phases of operation without compromising the performance of 

the machine in terms of its output mechanical power. A secondary contribution and 

objective of this work is to determine the sensitivity of the control law to the operating 

conditions of the IM. Additionally, the tertiary objective is that the designed control law 

must be in a form that allows it to be incorporated into the existing IM drive control 

algorithms. 

4.8 Summary 

This chapter briefly explained the operation of, the power flow through, and the various 

power losses within an IM. The transient phase of the machine was discussed. The ODE 

representation of the IM model was given. Finally, a more detailed overview of the research 

problem that is addressed in this work was provided. 
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5 LITERATURE SURVEY 

 

Optimal control is a fascinating optimization technique and its development history, 

which began about 300 years ago, is equally fascinating. Its relationship to mathematics, 

engineering, and computer science is illustrated in Figure 5.1.  

Mathematics

Optimal 

Control

Calculus

Optimal 

Control

 
Figure 5.1. Relationship between optimal control and other technical areas 

 

5.1 History of Optimal Control 

The excellent historical overview provided by Sussmann et al. in [16] describes the 

inception of optimal control theory through a mathematical challenge put forward by 

Johann Bernoulli in 1696 in the form of the Brachystochrone problem. The authors of [16] 

also present their solution to the said problem using the optimal control approach and 

showed how it was superior to the Calculus of Variations solution. A few other notable 

works chronicling the history of optimal control are [17],  [18], and [19]. The development 



 

37 

 

of the Euler-Lagrange equation was a key discovery in the advancement of Calculus of 

Variations. However, it was the efforts of two cold war era mathematicians, Lev Pontryagin 

in the Soviet Union and Richard Bellman in the US that established optimal control theory 

as a new field in applied mathematics and distinguished it from Calculus of Variations.  

A timeline has been created illustrating the major developments in the field by 

extracting relevant information from the above-mentioned references and shown in Figure 

5.2. 
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Figure 5.2. Optimal Control through history 

Pontryagin’s discovery of the Maximum principle paved the way for control engineers 

to solve optimal control problems involving continuous variables in a more intuitive way 

compared to using Calculus of Variations. Bellman was responsible for the development 
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of dynamic programming, which made it possible to solve piecewise optimal control 

problems [20]. The development of the Linear Quadratic Regulator by Kalman using the 

minimum principle enabled practically implementable optimal controllers for linear 

systems [21], [22]. 

The work of this dissertation uses Pontryagin’s maximum principle to define a set of 

necessary conditions and use them to develop an optimal control law for minimizing 

transient energy losses in an accelerating IM. 

5.2 Literature on Transient Energy Loss Minimization in IM’s 

The problems involving optimizing the IM operation during steady state in real time is 

a heavily researched topic compared to optimizing during transient states. An excellent 

survey of the various techniques used for IM steady state optimization over the past 15 

years is given in [23].  

There have been several researchers who have attempted to solve the research problem 

of optimizing IM operation during transients, but there has yet to be a survey that chronicles 

their efforts. This section will provide a brief outline on the efforts of all the researchers 

over the last 40 years who have worked on this research problem. A chronological 

illustration is provided in Figure. 5.3. Note that the survey includes papers from both 

conferences and journals. 
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Figure 5.3. Dynamic optimization in Induction Machines Literature 

 

The concept of using optimal control theory in electric machine control applications 

can be traced back to the work of a Soviet engineer named Petrov in [24]. He developed 

control trajectories for DC series motor, DC permanent magnet motor, and the induction 

motor using optimal control principles. However, he only considered stator transient 

Ohmic losses, used a very simple model, and used control variables that made it impractical 

to implement with modern power electronic drives. The work by Figalli in [25] during 

early 1980’s was the first to use Bellman’s equation to develop an optimal control law for 

frequency of the IM with objective to reduce speed error and control effort. The subject 

did not receive much attention until the early 1990’s. The work by Lorenz in [26]–[28] 
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again proposed to use Bellman’s equations from Dynamic programming to solve the 

transient energy loss problem, considering both stator and rotor Ohmic losses as well as 

core losses. This was also the first work to use d- & q-axis currents as control inputs in the 

transient energy loss minimization problem. This solution was compatible with power 

electronic drives using the Field Oriented Control algorithm.  However, the Bellman 

equations resulted in the need to solve partial differential equations to compute the optimal 

control trajectories. Hence, trajectories were computed offline and stored as a lookup table 

on the controller. This technique could only be used if all possible load torque values and 

speed reference values encountered in the IM duty cycle were available before hand, 

thereby limiting its practical use. During the same period Sangwongwanich used 

Pontryagin’s minimum principle to develop a control law for the IM that minimized the 

time taken to increase its rotor speed [29]–[32]. It used the angle between d- and q-axis 

currents as the control input. However, energy losses were not considered in this work, i.e. 

it was purely a minimum time solution. Another work that used optimal control principles 

without considering transient energy losses was by Murata in [33].  The linear quadratic 

regulator was used for speed control with stator currents as the control inputs. 

In the late 1990’s the work by De Wit in [34] used the Euler-Lagrange equation to 

derive a set of necessary conditions to be satisfied by the optimal rotor flux trajectory in a 

field oriented control of an induction machine. Stator and rotor Ohmic losses were 

considered in the cost function. This work treated the problem like a Calculus of Variations 

problem rather than an optimal control one. However, unlike the earlier works, they gave 

no simulation or hardware results to show the feasibility of their optimal rotor flux 

trajectory solutions.  
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During the early 2000’s the work by Rodriquez in [35] and Gonzalez in [36] used 

Pontryagin’s minimum principle for obtaining the maximum torque per current input. 

However, their cost functional didn’t have any power loss terms or terminal costs. Hence, 

they could find an equation for the optimal d- and q-axis current trajectories (as control 

inputs). The parameter’s in their analytical equation took on different values for different 

initial and final conditions. Hence, they had to be computed offline and stored in a lookup 

table in the controller. The work by Botan in [37] also used the minimum principle, a cost 

function with stator and rotor Ohmic losses, and the stator d- and q-axis currents as control 

inputs. However, the fact that they considered only the rotor speed dynamics makes the 

validity of their optimal trajectory debatable. The work by Inoue in [38] used the Euler-

Lagrange equation to find the optimal torque trajectory that maximizes regenerative power. 

In early 2010 the same concept was used again by the same authors in [39]–[41] for 

minimizing stator and rotor Ohmic losses during transients. During the same time period, 

the work by Gaiceanu and Rosu in [42]–[44] used a linear quadratic regulator for speed 

control and for minimizing the stator Ohmic losses. They calculated the optimal trajectory 

of the stator q-axis current online using the Matrix Riccati Differential Equation (MRDE). 

This is a good approach for practical implementation except that only the Ohmic losses 

due to stator q-axis current are considered. Another work that used the Bellman equation 

to minimize stator and rotor Ohmic losses was by Ali in [45]. Unlike the work by Lorenz, 

Ali found the optimal flux trajectory as an offline solution, instead of the optimal stator 

current, and then fitted a polynomial curve to reproduce the optimal flux trajectory during 

real-time operations. However, this method was not generalized to be applicable for an 

arbitrary IM.  
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The recent related works in this area (other than the work of the author of this 

dissertation) are by Stumper [46], [47] in 2013 and Weis [48] in 2016, both of which 

extended De Wit’s work. Stumper’s work used the Euler-Lagrange equation to come-up 

with a predetermined torque trajectory to find the optimal rotor d-axis flux trajectory that 

minimized Ohmic and eddy current losses during torque transients. The distinguishing 

feature of Stumper’s work was the development of a closed form equation for the optimal 

rotor d-axis flux trajectory which took the shape of a first order lag. However, the problem 

with this optimal trajectory was that it assumed speed was constant during the torque 

transients. Hence, it was not optimal for an IM that is accelerating from one speed to 

another. The next work in this area was by the author of this dissertation in [49] and [50] 

in 2015 and 2016, respectively. Weis [48] extended the work of Stumper but did not assume 

speed was constant during transients. He found that the optimal rotor flux trajectory in an 

accelerating IM could be described by a conic section. Concurrently, the same conclusion 

was arrived at by the author of this dissertation in [50]. Since both Stumper and Weis 

treated it as a Calculus of variation problem, they found the optimal state trajectory instead 

of the optimal control trajectory. The latest work in this area just before the writing of this 

dissertation was by Borisevich [51]. He set up an optimal control problem to minimize 

stator and rotor ohmic losses, but only considered the flux dynamics since he assumed a 

predetermined trajectory for the electromagnetic torque (like Stumper). Borisevich also 

derived some necessary conditions using Pontryagin’s minimum principle but did not solve 

them numerically. Instead, using some simplifications he was able to express the stator d-

axis current in terms of the q-axis current (which was known due to the pre-determined 

torque trajectory). However, no analysis was done on the shape of these trajectories.   
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The literature surveyed has been classified into four groups depending on the 

mathematical technique used as illustrated in Figure 5.4. The different techniques used to 

generate the optimal control trajectories of IM in real time are illustrated in Figure 5.5. The 

dynamic models, cost functions, and control inputs that have been used in the surveyed 

literature are tabulated in Table 5.1. 
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Figure 5.4. Dynamic optimization in Induction Machines in Literature 
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Figure 5.5. Different techniques used to generate the optimal control trajectories of IM  
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Table 5.1. Comparing literature on transient energy loss minimization in induction 

machines 

Reference Energy cost Operatin

g point 

cost 

State 

variable 

Control 

input 

Solution 

Petrov Rotor 

Ohmic loss 

None Stator flux, 

rotor speed 

Frequency

, Voltage 

NA 

Lorenz Stator + 

rotor Ohmic, 

eddy current 

+ hysteresis 

losses 

None Rotor d-

axis flux, 

Rotor speed 

Stator d- 

and q-axis 

current 

Look up 

table 

Sangwongwanic

h 

None Minimum 

time 

Rotor d-

axis flux, 

Rotor speed 

Phase 

angle of 

stator 

current 

vector 

Algebraic 

equation 

De Wit Stator + 

rotor Ohmic 

losses, 

Stored 

magnetic 

energy 

None Rotor d- 

and q-axis 

flux 

Stator d- 

and q-axis 

currents 

NA 

Rodriguez, 

Gonzalez 

Stator 

Ohmic 

losses 

Minimum 

time 

Rotor 

magnetizin

g current, 

rotor speed 

Stator d- 

and q-axis 

currents 

Algebraic 

equation 

Inoue Regenerativ

e braking 

power 

None Rotor speed Optimal 

torque 

Algebraic 

equation 

Botan Stator + 

rotor Ohmic 

losses, 

None Rotor speed Stator d- 

and q-axis 

currents 

Algebraic 

equation 
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Plathottam Stator + 

rotor Ohmic 

losses, Eddy 

current 

losses 

Speed 

error, load 

torque 

error 

Rotor d-

axis flux, 

Rotor speed 

Stator d-

axis 

current, 

rotor q-

axis 

current 

ANN 

Weis Stator + 

rotor Ohmic 

losses, Eddy 

current 

losses 

None Rotor d-

axis flux 

Rotor d-

axis flux 

Iterative 

 

5.3 Contributions of this Dissertation 

The distinguishing features which differentiate the work in this dissertation from 

previous works are listed below: 

1. This work showed that it was possible to numerically solve an IM optimal control 

incorporating both transient energy losses (stator ohmic, rotor ohmic, and eddy current) 

and steady state error (rotor speed, rotor flux, electromagnetic torque). Consequently, it 

was possible to minimize the energy losses as well as bring the IM to its new speed-

torque operating point in a specified amount of time. This is a straightforward approach 

compared to earlier works. Also, this work considered both the non-linear flux and speed 

dynamics while formulating the IM optimal control problem. In contrast, many of the 

other works neglected either the flux dynamics or the speed dynamics or used linearized 

models while formulating the optimal control problem. 

2. This work is the first to generate real-time optimal trajectories for stator currents using 

neural networks. Many works used lookup tables for entire optimal trajectories 

corresponding to specific initial and final conditions. Other works used open loop 

control laws that took different parameters depending upon the operating point of the 

IM. 
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3. This work was one of the first to propose a conic trajectory for rotor d-axis flux during 

IM acceleration/deceleration (Weis et al. concurrently arrived at the same conclusion). 

Additionally, it discovered that the optimal q-axis current could take either a conic 

trajectory or a constant value trajectory. The prototype trajectories were fully described 

in the form of analytic expression that are applicable to a generic field oriented 

induction machine. These expressions made it possible to perform a sensitivity analysis 

of energy efficiency during transient which has not been done in literature before. 

5.4 Summary 

The history of optimal control was briefly discussed and important contributions by 

various mathematicians over the time were presented. All the publicly available literature 

on transient loss minimization in induction machines were discussed. In solving the 

problem, it was evident from historical developments that primarily four methodologies 

were used and that the Euler-Lagrange equation was the most popular. The most used 

control inputs were stator currents or d-axis rotor flux. Stator and rotor Ohmic losses were 

considered by almost all researchers. Finally, the contributions of this dissertation to the 

existing literature were listed. 
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6 OPTIMAL CONTROL OF DC MOTOR 

To set the stage for the work of this dissertation, instead of first tackling the transient 

energy loss minimization problem for an IM, a similar problem for the Permanent Magnet 

DC (PMDC) motor is presented. Using Pontryagin’s minimum principle, the necessary 

conditions for an optimal trajectory are derived, from which an analytical expression for 

the optimal armature current is developed. 

6.1 PMDC Motor Model and Cost Functional 

The current fed model for the permanent magnet DC motor (PMDC) is given by state 

equation (6.1.1) and has rotor speed as the state variable and armature current as the control 

variable.  

  0

0
,

ta Lr

r r

ki Td
t

dt J

  
                                                     (6.1.1)   

 

For simplicity, in what follows we assume 𝑇𝐿 = 𝑡0 = 𝜔𝑟𝑡0 = 0 and 𝑘1 = 𝑘𝐽 and 𝑘2 = 𝑘1𝑅𝑎.  

The value of armature current  𝑖𝑎 that would accelerate the machine to a reference speed, 𝜔𝑟𝑟𝑒𝑓
 in time 𝑡𝑓 can be calculated by (6.1.2). 
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t k


                                                                                                         (6.1.2)   

However, the goal here is to minimize Ohmic losses for the DC motor during the 

transient period. A functional is defined in (6.1.3) that puts a cost on both the Ohmic losses 
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due to the armature resistance, and the deviation from the reference rotor speed at the end 

of the transient time interval. A weight 𝑤1 is assigned to the speed deviation. 

    
0

2
2

1

ft

ref

r r f a a

t

J w t i t R dt                                                            (6.1.3)    

 

6.2 Necessary Conditions using Pontryagin’s Minimum Principle         

Applying the Hamiltonian in (2.3.1) to (6.1.1) and (6.1.3) a new Hamiltonian is created 

as in (6.2.1) from which the co-state equation (6.2.2) is then derived. The co-state equation 

can be integrated to obtain (6.2.3). 
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                                            (6.2.1)        
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                                                                                                   (6.2.2)  

   1
t c                                                                                                                   (6.2.3)        

Using the transversality condition and the terminal cost function, the following 

boundary condition for the co-state is found.  
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                         (6.2.4)   

The optimal armature current 𝑖𝑎∗ (𝑡) should also satisfy the optimal control equation 

(6.2.5). The control input (armature current) can then be expressed in terms of the co-state 

as in (6.2.6). Note that if we substitute (6.2.3) and (6.2.6) back into the Hamiltonian (6.2.1), 

it’s value becomes a constant during the transient as expected (see (2.3.6)). 
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    2 2

1
2 2

a

k k
i t t c         

   
                                                                     (6.2.6)        

Integrate the state equation (6.1.1) and substitute (6.2.6) into that to express the rotor 

speed in terms of the co-state as shown in (6.2.7). Similarly, the terminal rotor speed can 

be expressed using (6.2.8).  

    1 2

1 1
2

r a

k k
t k i t c t     

 
                                                                   (6.2.7)  

  1 2

1
2

r f f

k k
t c t    

 
                                                             (6.2.8)  

       

Using (6.2.3), (6.2.4), and (6.2.8) it is possible to obtain the condition (6.2.9), which 

can be solved to find the co-state 𝑐1 as in (6.2.10). 
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                                                                                                (6.2.10) c1 can now be substituted into (6.2.6) to find the value of the optimal current trajectory 

(6.2.11) and the terminal rotor speed corresponding to that trajectory (6.2.12). 
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                                                                                          (6.2.11) 
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                                                                                  (6.2.12) 

Finally, by substituting (6.2.11) and (6.2.12) into the cost function (6.1.3) we get the 

optimal cost (6.2.13). If instead the sub-optimal value of current, as given by (6.1.2), had 

been used, then the cost function would have been as given in (6.2.14). 
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                                                                                         (6.2.13)            
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                                                                  (6.2.14)   

 𝐽𝑜𝑝𝑡 will always be smaller than 𝐽𝑛𝑜𝑛−𝑜𝑝𝑡, and as 𝑤1tends to infinity, 𝐽𝑜𝑝𝑡 = 𝐽𝑛𝑜𝑛−𝑜𝑝𝑡. 

The above proposed optimal control solution was tested using the DC motor specifications 

given in Appendix I. Table 6.1 gives the optimal current, energy cost, and current for 

different speed deviation weights. For comparison, Table 6.1 also gives the cost if the DC 

motor was accelerated using the sub-optimal current calculated through (6.1.2). As 

expected, these results show that the value of the optimized objective function is always 

smaller than that of the sub-optimal control. Also, as 𝑤1increases the optimal current 

converges to the same value as that of the non-optimal control. 

Table 6.1. Comparing optimal control and non-optimal control in PMDC Motor 

Weight 

(w1) 

Current 

(A) 

Energy cost 

(J) 

Terminal 

speed (rad/s) 

Speed Deviation 

(rad/s) 

Objective 

function 

Optimal control 

1 15.78947 498 94.73 5.26 526.31 

2.5 16.30435 531 97.82 2.17 543.47 

100 16.65741 554.938786 99.94 0.055525 555.24 

Non- optimal control 

NA 16.67 555.55 100 0 555.55 
 

The derivation of the optimal control trajectory for PMDC was an illustration of how 

solutions for even simple optimal control problems are neither intuitive nor trivial.  

6.3 Summary 

This chapter presented the application of Pontryagin’s minimum principle for finding 

the optimal control law for the armature current to accelerate a PMDC motor.  
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7 NECESSARY CONDITIONS FOR OPTIMAL CONTROL IN INDUCTION 

MACHINE 

This chapter presents the optimal control problem formulation for IM transient loss 

minimization purposes. First, the rotor field oriented model is presented and sub-optimal 

control trajectories are analyzed. The power losses are expressed in terms of the variables 

in the model. Finally, the minimum principle is applied to derive the necessary conditions. 

7.1 Rotor Field Oriented IM Model 

The current fed model of the IM in section 4.6 can be further simplified if we assume 

that the entire rotor flux vector lies on the d-axis of the rotating frame of reference. This 

can be accomplished by manipulating the electrical frequency using (7.1.1). [15] provides 

a detailed explanation of the reasoning behind it. Note that this concept is used in almost 

all commercially available IM drives for achieving high precision speed control [52]. 

       r m

sync r qs

r dr

R L
t t i t

L t
 


                                                                 (7.1.1) 

With the above manipulation, the rotor flux along the q-axis of transformation would be 𝛹𝑞𝑟 = 0, and 
𝑑𝛹𝑞𝑟𝑑𝑡 = 0. Hence equations (4.6.1) to (4.6.3) may be rewritten as (7.1.2) to 

(7.1.4). It can be noted that in a rotor field oriented IM the stator currents are decoupled 

from each other i.e. if we try to change one it will not affect the other. This allows us to 

have a simple control scheme to independently control rotor flux and electromagnetic 

torque. 
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                                                     (7.1.3)  

   0 0

0 0
,

r r dr dr
t t                                                                                    (7.1.4) 

where 𝛹𝑑𝑟0  is the initial value of the rotor flux along the d-axis and 𝜔𝑟0 is the initial rotor 

speed.  

In (7.1.4),  𝜔𝑟 corresponds to the rotor speed in electrical radians per second, also 

referred to as the electrical speed. Rotor speed can also be expressed in terms of the 

mechanical radians per second as shown in (7.1.5), which is referred to as the mechanical 

speed of the machine. Speed encoders used for measuring the rotor speed measure the 

mechanical speed. The mechanical power output at the rotor shaft is calculated using this 

mechanical speed. 

2 r

m
p

                                                                                      (7.1.5) 

From here onward all the expressions for rotor speed will be written in terms of the 

mechanical speed. 

7.2 Analysis of the IM Model 

This section discusses the different trajectories that can be taken by state and control 

variables of the rotor field oriented current fed IM model when it is accelerating from one 

operating point to another.  



 

53 

 

Using Newton’s 2nd law, it is possible to calculate the torque required to increase (or 

decrease) the speed of a rotating body from one operating point to another as given by 

(7.2.1). After reaching steady state, the torque required for maintaining the steady state 

speed is equal to the load torque (7.2.2). 

accel L

d
T J T

dt


                                                                (7.2.1) 

steady LT T                                (7.2.2) 

 

where 
𝑑𝜔𝑑𝑡   is the acceleration of the rotor.  

 

It is obvious that |𝑇𝑎𝑐𝑐𝑒𝑙| > |𝑇𝑠𝑡𝑒𝑎𝑑𝑦| in most scenarios, which means that the torque 

produced by the IM during transients should be much higher than what is required at steady 

state. The ideal case would be for the IM torque to transition instantaneously from 𝑇𝑎𝑐𝑐𝑒𝑙 
to 𝑇𝑠𝑡𝑒𝑎d𝑦 at the end of the transient time interval. However, this does not happen in 

practice, and torque transients result in rotor speeds overshooting the desired steady state 

reference speed. The constraint on the electromagnetic torque may be expressed using 

(7.2.3). Also from (7.1.3) the expression for electromagnetic torque can be separated and 

written as in (7.2.4).  
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It can be observed that 𝑇𝑒 can be manipulated by changing the q-axis stator current 𝑖𝑞𝑠, 

while keeping the d-axis rotor flux Ψ𝑑𝑟 constant or vice versa. There is also the possibility 

of changing both current and flux at the same time.  

However, rotor flux cannot be changed instantaneously. For a step change in d-axis 

stator current 𝑖𝑑𝑠, the state equation for rotor flux (7.1.2) can be solved to get (7.2.5). It can 

be observed that the rotor flux has a first order response with a time constant 𝜏𝑟. This means 

that using only rotor flux to manipulate torque production would result in a slower speed 

response. Additionally, from (7.2.5), the value of rotor flux at steady state is equal to 𝐿𝑚𝑖𝑑𝑠. 

The mutual inductance 𝐿𝑚 can take a magnitude in the range of 10-3 to 10-1. Hence the 

range of values through which flux can be manipulated is much smaller than what is 

possible with q-axis current. Hence, changing 𝑇𝑒 and consequently the rotor speed, requires 

that, in addition to the rotor flux,  𝑖𝑞𝑠 is also changed. This means that the rotor flux  Ψ𝑑𝑟 

need not be constant during the accelerating and/or decelerating periods. 

   0 r

t

dr m ds m ds dr
t L i L i e

 


                                                            (7.2.5) 

where, 𝜏𝑟 = 𝐿𝑟𝑅𝑟. 

We can identify four feasible regimes for the control trajectories. 

1) Regime I: Constant electromagnetic torque 𝑇𝑒 and constant acceleration  
𝑑𝜔𝑑𝑡 . In this 

case the rotor flux  Ψ𝑑𝑟 remains constant. A step change is made in the q-axis stator 

current 𝑖𝑞𝑠 at the start of the accelerating period followed by a step change at the 

end of the accelerating period.  



 

55 

 

2) Regime II: Constant 𝑇𝑒 and constant 
𝑑𝜔𝑑𝑡  .Ψ𝑑𝑟 changes due to a step change in 𝑖𝑞𝑠. 𝑖𝑞𝑠 changes w.r.t. Ψ𝑑𝑟 in order to maintain 𝑇𝑒 constant. 

3) Regime III: Time variant 𝑇𝑒, time variant 
𝑑𝜔𝑑𝑡 . Ψ𝑑𝑟 remains constant, 𝑖𝑞𝑠 changes 

depending on 
𝑑𝜔𝑑𝑡 . 

4) Regime IV: Time variant 𝑇𝑒, time variant 
𝑑𝜔𝑑𝑡 . Both Ψ𝑑𝑟 and 𝑖𝑞𝑠 change. 

The first, second, and third regimes are discussed in the following sections. Regime IV 

is the optimal control regime that will be obtained from derivations in Section 7.6 and 

Chapter 11 of the dissertation. Regime IV will be implemented in real time using the work 

in Chapter 10 of this document. The following sections of this chapter discuss details of 

the first, second, and third regimes of the control trajectories. 

7.2.1 Regime I 

The d-axis and q-axis stator current trajectories may be expressed using (7.2.1.1) and 

(7.2.1.2), respectively. Here the change in reference speed is a step function. There is no 

change in rotor flux  Ψ𝑑𝑟 since there is no change in d-axis current as shown in (7.2.1.3). 

This regime approximates the behavior of PI speed control loops used in most IM drives. 
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where 𝛹𝑑𝑟𝑎  is the rated steady state rotor flux while 𝑖𝑑𝑠𝑎  is the stator d-axis current required 

to produce this flux. 

7.2.2 Regime II 

The d-axis and q-axis stator current trajectories may be expressed using (7.2.2.1) and 

(7.2.2.2), respectively. Here the change in reference speed and rotor flux is a step function. 

The change in rotor flux corresponding to change in d-axis current is given by (7.2.2.3). 
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                                                  (7.2.2.3) 

where 𝛹𝑑𝑟𝑎  is the steady state rotor flux at the start of transient time and  𝑖𝑑𝑠𝑏  is the stator d-

axis current required to establish a new steady state rotor flux. 

7.2.3 Regime III 

In Regime I and Regime II the change in reference speed is assumed to be a step 

function while in Regime III a ramp function as described by (7.2.3.1) is used instead. This 

regime approximates the behavior of practical electric drives more closely. 
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7.2.4 Rotor speed corresponding to Regime I and Regime II 

In both Regime I, and Regime II the electromagnetic torque generated during transients 

is constant, and hence acceleration is constant. The rotor speed may be expressed as a ramp 

function (7.2.4.1) with a constant coefficient. It is assumed that load torque 𝑇𝐿 is a constant 

during the transient. 

  0e L

m m

T T
t t

J
    

 
                                                                              (7.2.4.1) 

7.3 Energy Loss Functions 

Power losses inside an IM can be expressed using either current, flux, or voltage 

variables. For setting up the optimal control problem the losses should be expressed in 

terms of variables present in the IM model. Hence, we describe the power losses in terms 

of rotor d-axis flux Ψ𝑑𝑟, rotor speed 𝜔𝑟, stator d-axis current i𝑑𝑠, and stator q-axis current i𝑞𝑠 which are all present in the current fed field oriented model of the IM described in 

section 7.1. The Ohmic losses in the stator and rotor circuits are given by (7.3.1) and (7.3.2) 

[53]. 

      2 2stator

loss ds qs s
P t i t i t R                                                                  (7.3.1) 

              2
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(7.3.2) 

In case of stator iron losses, eddy current losses are proportional to the square of 

frequency while hysteresis loss is not. Since the IM usually operates in the range of 5 Hz 

to 60 Hz the hysteresis loss is only a small fraction of eddy current losses, and hence are 

not part of the loss function. Furthermore, both the hysteresis, and eddy current losses in 

the rotor circuit are ignored since the frequency of current through the rotor is much lower 
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than the frequency of current in the stator. Using the equation for eddy current losses given 

in [53], we get (7.3.3). 

         
2 2 2

2 2 2 2

2

eddy m lr m

loss sync qs sync ds

r m m

L L L
P t t i t t i t

L R R
                              (7.3.3) 

where 𝐿𝑙𝑟 is the rotor leakage inductance and 𝑅𝑚 is the resistance corresponding to the 

eddy current losses.  

𝜔𝑠𝑦𝑛𝑐  in (7.3.3) may be replaced by (7.1.1) since we are using a rotor field oriented 

model of the IM. However, the rotor slip, i.e. the difference between synchronous speed  𝜔𝑠𝑦𝑛𝑐 and rotor speed  𝜔𝑟 (in electrical rad/s) is very small during most of the transient 

periods. Hence, this substitution will unnecessarily complicate the loss function in (7.3.3) 

without significant improvement in the accuracy of power loss calculations. Hence, 𝜔𝑠𝑦𝑛𝑐 

is instead replaced with 𝜔𝑟 = 𝑝2 𝜔𝑚 in (7.3.3). It can be observed that all loss functions are 

expressed in terms of either the state variables or control inputs to the IM model. 

7.3.1 Power loss in terms of rotor d-axis flux at steady state 

It is possible to substitute for the d-axis and q-axis currents in terms of rotor flux during 

steady state using (7.3.1.1) and (7.3.1.2) and express the total loss purely in terms of only 

rotor flux (7.3.1.3). 
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                        (7.3.1.3) 

7.3.2 Mechanical Power output 

The mechanical power produced from a rotating machine is simply the product of speed 

and torque. The calculation is straight forward if the machine is in steady state since the 

electromagnetic torque produced by the machine is equal to the load torque (ignoring the 

rotational torque). However, this is not the case during transients where the electromagnetic 

torque will be different from the load torque. This is because during transients, a fraction 

of mechanical power output is stored as kinetic energy in the rotor mass. Hence, (7.3.2.1) 

gives total mechanical power produced, while (7.3.2.2) gives the mechanical power output 

available at the shaft of the motor. The relationship between the two is given by (7.3.2.3). 

   _mech total m e
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                                                            (7.3.2.3) 

7.4 Optimal Flux at Steady State 

The rotor flux variable provides an additional degree of freedom to produce the 

necessary torque. Also, the total power loss can be expressed purely in terms of rotor flux, 

as shown in (7.3.1.3) above. We can utilize these facts to calculate the optimal flux at a 

steady state speed-torque operating point, i.e. the flux that results in a minimum power loss. 

For this, we take the derivative of 𝑃𝑙𝑜𝑠𝑠𝑡𝑜𝑡𝑎𝑙 in terms of rotor flux and equate it to 0 (zero) as 
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shown in (7.4.1). It is possible to arrive at an expression for the optimal value of the steady 

state flux as in (7.4.2). The full derivation of (7.4.2) is given in Appendix III 
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Note that the optimal steady state flux in (7.4.2) is directly proportional to square root 

of the load torque 𝑇𝐿(which is equivalent to the electromagnetic torque produced by the 

IM), and inversely proportional to the square root of rotor speed 𝜔𝑚. Now if the optimal 

steady state rotor flux in (7.4.2) were to be used during transients, by replacing 𝑇𝐿 with 𝑇𝑎𝑐𝑐𝑒𝑙  and 𝜔𝑚 with the current rotor speed, it would certainly give an approximate value 

of the optimal flux during transients. However, there are two problems with using this 

value. 

1) The d-axis stator current needed to generate a specific value of rotor d-axis flux can be 

calculated using (7.4.3). The magnitude of this required current is directly proportional 

to the rate of change of rotor flux. This means that trying to change the rotor flux 

instantaneously will result in a very large d-axis current and the Ohmic losses associated 

with it. This would negate any decrease in power losses in the IM due to operating at 

optimal rotor flux. 
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2) The rotor speed is continuously changing during transients. Hence, the optimal rotor 

flux calculated using (7.4.2) for the rotor speed at start of a transient would become sub-

optimal as soon as the rotor speed has substantially changed from its initial value.  

However, one possible approach to this issue is to start with changing the rotor flux at 

the beginning of a transient so that it would reach its optimal value soon after the rotor 

speed has reached a steady state. The approach of changing rotor flux for each change in 

the speed-torque operating point has already been used in works like [54]. 

7.5 Cost Functional 

The energy loss during transient time interval 𝑡0 to 𝑡𝑡𝑓  is represented by the cost 

functional 𝐸𝑙𝑜𝑠𝑠 in (7.5.1).  

      
0

tft

t

stator rotor eddy

loss loss loss loss
E dtP t P t P t                                       (7.5.1) 

where 𝑃𝑙𝑜𝑠𝑠𝑠𝑡𝑎𝑡𝑜𝑟 is the stator Ohmic power loss, 𝑃𝑙𝑜𝑠𝑠𝑟𝑜𝑡𝑜𝑟 is the rotor Ohmic power loss, and 𝑃𝑙𝑜𝑠𝑠𝑒𝑑𝑑𝑦
 is the eddy current power loss at time 𝑡. Note that the unit for the power loss is in 

Watts and that of energy loss is in Joules. 

It is desired that the rotor speed 𝜔𝑚 reaches the reference speed 𝜔𝑚𝑟𝑒𝑓 within the 

transient time interval. In addition, it is desirable that the rotor flux,  𝛹𝑑𝑟 , converges to the 

optimal steady state flux, 𝛹𝑑𝑟𝑜𝑝𝑡, and the electromagnetic torque,  𝑇𝑒 , converges to load 

torque, 𝑇𝐿. These constraints are enforced by assigning a penalty for deviation from the 

desired steady state operating points using the terminal cost function in (7.5.2).  
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w w T T w                       (7.5.2) 

where 𝑇𝑒𝑡𝑓  is the electromagnetic torque generated at the end of the transient period, 𝜔𝑚𝑡𝑓
 is 

the rotor speed at end of transient period, and 𝛹𝑑𝑟𝑡𝑓
 is the rotor d-axis flux at end of the 

transient period.  

Combining (7.5.1) and (7.5.2) results in (7.5.3), which is known as the Bolza form of 

the cost functional and has to be minimized in the optimal control problem under study. 

The optimal scenario would be for (7.5.1) to take a non-zero positive value (since a loss 

free energy conversion is impossible) and for (7.5.2) to become zero. 

loss
J E                                                 (7.5.3) 

7.5.1 Reasoning behind setting terminal values of flux, rotor speed, and torque 

To solve the IM optimal control problem discussed in this dissertation it is necessary 

to specify 𝛹𝑑𝑟𝑡𝑓
, 𝜔𝑚𝑡𝑓

, and 𝑇𝑒𝑡𝑓
. In case of the 𝜔𝑚𝑡𝑓

, and 𝑇𝑒𝑡𝑓
 the choice is straightforward since 

the load torque and reference speed constrains them. We want the rotor speed  𝜔𝑚 to attain 

a specific reference speed, and the  𝑇𝑒 to become equal to the load torque at the end of the 

transient interval. The choice for rotor flux is less obvious since it can take any value 

between a minimum and maximum limit. However, if the 𝛹𝑑𝑟𝑡𝑓
 attains a value that is close 

to the optimal steady state flux that was calculated by (7.4.2) in section 7.4, the steady state 

energy losses of the IM would also be minimized. Hence, 𝛹𝑑𝑟𝑡𝑓
may be replaced by 𝛹𝑑𝑟𝑜𝑝𝑡

 of 

(7.4.2) in the terminal cost function. 
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7.6 Deriving the Necessary Conditions for Optimal Control 

To apply Pontryagin’s minimum principle we first create the Hamiltonian function in 

(7.6.1) using (2.3.1) from section 2.3. Here, 𝑔(𝑥, 𝑢, 𝑡) corresponds to the sum of equations 

(7.3.1), (7.3.2), and (7.3.3). 𝑓(𝑥, 𝑢, 𝑡) corresponds to (7.1.2) and (7.1.3). 𝜙(𝑡𝑓) corresponds 

to (7.5.2).  

      

 

22 2 2 2

2

2 2 2 2 2

2 2 2 2

2

1 2

, , ,

2 2

2

r

dr m ds qs ds qs s dr m ds m qs

r

m lr m

m qs m ds

r m m

m

qs dr L

rr

m ds dr

r

R
H i i i i R L i L i

L

L L p L p
i i

L R R

pL
i T

LR
L i

L J

  

 


  

     

 

  
             

 
(7.6.1) 

From the above Hamiltonian, the co-state equations are derived using (2.3.6), from 

Section 2.3 and given by (7.6.2) and (7.6.3). The terminal conditions for the co-states are 

found using the transversality conditions from (2.3.7), and they form one set of boundary 

conditions as shown in (7.6.4) and (7.6.5). 
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   2 12 ft ref

m mft w                                                                      (7.6.5) 

State equations are derived using (2.3.5). However, they are the same as (7.1.2) and 

(7.1.3), and hence not reproduced here. The initial value for the states in (7.1.4) forms the 

second set of boundary conditions. Finally, the optimal control equation is derived using 

(2.3.3). The optimal control equations corresponding to 𝑖𝑑𝑠 and 𝑖𝑞𝑠 are given by (7.6.6) and 

(7.6.7), respectively. The second derivative of the Hamiltonian given by (7.6.8) and (7.6.9) 

is always positive, which guarantees that the optimal trajectories for 𝑖𝑞𝑠 and 𝑖𝑑𝑠, which 

satisfy (7.6.6) and (7.6.7), will cause the Hamiltonian to be a strong local minimum.  
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                       (7.6.8) 

From (7.6.6) and (7.6.7) it is possible to express the optimal trajectories of 𝑖𝑞𝑠 and 𝑖𝑑𝑠 

as a function of the state and co-state trajectories: 
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To summarize, the necessary conditions for IM transient energy loss minimization 

problem consists of: 

1) 4 first order non-linear ODE’s (two for states, two for co-states) 

2) 2 non-linear algebraic equations (one for each control input) 

3) 4 boundary conditions (two for state, two for co-states). 

If we were to substitute (7.6.10) and (7.6.11) into the state and co-state equations it 

would be possible to get a system of ODE’s purely in terms of the state and co-state 

variables. However, this would also result in the system of ODE’s becoming more non-

linear. It is not practically possible to find a closed form solution of such a system of 

equations. Hence, the only recourse is to find a numerical solution for the state and control 

trajectories that satisfy the necessary conditions, which is the objective of the next chapter. 

7.7 Summary 

This objective of this chapter was to derive the necessary conditions for the transient 

energy loss optimal control problem of this work using the Pontryagin’s minimum 

principle. For this purpose, the current fed model of the IM was presented. The power 
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losses in the IM were expressed in terms of the state and control variables of the IM model. 

This model was analyzed and sub-optimal trajectories for the control inputs were discussed. 

The expression for optimal rotor flux at steady state was derived. The final section of this 

chapter derived all the necessary conditions for the optimal control solution. 
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8 NUMERICAL SOLUTION OF INDUCTION MACHINE OPTIMAL CONTROL 

PROBLEM 

The state and co-state equations, along with their four boundary values (two initial and 

two final) constitute a two-point boundary value problem (TPBVP). A trajectory of the 

control inputs that solves the TPBVP will also be the optimal control trajectory. There are 

primarily two iterative methods for solving the TPBVP problem numerically. 

1) Gradient method 

2) Shooting method 

Gradient method is of two types: Steepest Descent and Conjugate Gradient (CG) [55]. 

The nonlinear form of CG method is used in this dissertation. 

8.1 Modified Conjugate Gradient Method 

In the gradient method, the state equations are integrated forward through the transient 

time interval, i.e. from 𝑡0 to 𝑡𝑓 , with the starting point provided by the initial conditions. 

The co-state equations are integrated backwards, i.e. from 𝑡𝑓 to 𝑡0, with the starting point 

provided by the terminal condition of the co-state. For the control input we would begin 

by assuming an optimal control trajectory for the entire transient time interval. In doing 

this we are implicitly assuming that the necessary conditions for states and co-states are 

satisfied while the necessary condition for control inputs, i.e. the optimal control equation, 

is not satisfied. The control trajectory is then updated in the succeeding iterations so that it 

would become closer and closer to satisfying the optimal control equation. The direction 

of the update is found using the gradient of the Hamiltonian w.r.t. the control inputs, and 
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the magnitude of the update is controlled using a scalar value known as the step length.  

Also in CG (as opposed to steepest descent), the direction of update is orthogonal to the 

direction of the gradient. The update rule of the CG algorithm is given by (8.1.1). 

1i i i
u u d                                                                                           (8.1.1) 
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                                                                   (8.1.2) 

where 𝑢𝑖 is the control trajectory at the ith iteration, 𝜏 is the step length, 𝑑𝑖 is the direction 

of the updates in the control trajectory, and 𝛽𝑖 is defined below. 

However, the update rule  𝑑𝑖 for the standard CG algorithm is highly sensitive to the 

step length 𝜏 which can result in the solution becoming unstable if the step size is not 

optimal. Instead of calculating the optimal step size in each iteration, the direction 𝑑𝑖 was 

modified using the coefficient 𝛽. The Hestenes-Steifel formula [56] shown in (8.1.3) was 

used to calculate 𝛽. 

1 1
1

T
i i i i i

i idH dH dH dH dH
d

dt dt dt dt dt


 
     

        
     

                         (8.1.3) 

 Using the above modified CG algorithm made it possible for the solution to converge 

to the desired control trajectories for the majority of the IM optimal control problems in a 

reasonable amount of time. The norm of the Hamiltonian gradient given by (8.1.4) was 

used as a performance measure to determine if the numerical solution was converging. 
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A flow chart for the modified CG algorithm to find the numerical solution of the optimal 

control trajectories is shown in Figure 8.1. 
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Figure 8.1. Applying the modified CG algorithm to find numerical solution of optimal 

trajectories 
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8.2 Numerical Solution Example – Scenario 1 

In this section, the modified CG algorithm in section 8.1 will be used to solve the 

TPBVP defined in section 7.6 for different cases and types of IM’s. Five parameter values 

define each of the study cases: initial rotor d-axis flux 𝛹𝑑𝑟𝑜𝑝𝑡
, initial rotor speed 𝜔𝑚0 , load 

torque 𝑇𝐿, reference rotor speed 𝜔𝑚𝑟𝑒𝑓
, and reference rotor d-axis flux 𝛹𝑑𝑟𝑜𝑝𝑡

. During this 

research work the problem has been solved for six different types of IM’s. However, only 

the result for two of the machines are presented here. They are: Type I IM whose 

parameters were obtained from finite element model in ANSYS Maxwell software and 

Type II IM from [48]. The parameters of the machines are given in Table I and Table II of 

Appendix II, respectively. Scenario 1 and scenario 2 correspond to Type I IM and Type II 

IM, respectively. Each scenario consists of 6 cases as shown in Table 8.1 and Table 8.2.  

Note that referring to the IM’s as Type I and Type II is only for ease of reference and do 

not correspond to classification provided by NEMA or IEC. 

8.2.1 Scenario 1 - Optimal 

The plots for optimal state trajectories (w.r.t. time) are shown in Figures 8.2 and 8.3. 

The plots for optimal q- and d-axis stator currents are given by Figures 8.4 and 8.5. The 

trajectories of co-states are given by Figures 8.6 and 8.7. The electromagnetic torque 

generated by the IM during transients is shown in Figure 8.8. Finally, the mechanical power 

produced by the IM is calculated using (7.3.2.1) from the speed and torque trajectories and 

is given in Figure 8.9.  Note that all cases of a similar type of trajectory are shown on the 

same plot. 
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Table 8.1. Scenarios for testing IM optimal control problem using Type I IM 

Scenario 𝜳𝒅𝒓𝟎  

(Wb) 

𝝎𝒓𝟎 

(rad/s) 

𝑻𝑳 

(Nm) 
𝝎𝒓𝒓𝒆𝒇

 

(rad/s) 

𝜳𝒅𝒓𝒐𝒑𝒕
 

(Wb) 

Time interval 

(s) 

1.1 0.5 0 10 90 0.76 0.5 

1.2 0.5 0 5 90 0.53 0.5 

1.3 0.5 0 1 180 0.3 0.5 

1.4 0.5 0 10 50 0.79 0.5 

1.5 0.5 0 10 150 0.70 0.5 

1.6 0.5 0 15 150 0.86 0.5 
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Figure 8.2. Trajectory for rotor d-axis flux (Scenario 1- optimal) 

 
Figure 8.3. Trajectory for rotor speed (Scenario 1 - optimal). 
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Figure 8.4. Trajectory for q-axis current (Scenario 1- optimal). 

 
Figure 8.5. Trajectory for d-axis current (Scenario 1- optimal). 

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

5

10

15

20

25

30

35

Time
(s)

C
u

rr
e

n
t

(A
)

Stator q-axis current during transient

 

 

Scenario 1.1

Scenario 1.2

Scenario 1.3

Scenario 1.4

Scenario 1.5

Scenario 1.6

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

-20

-10

0

10

20

30

40

Time
(s)

C
u

rr
en

t
(A

)

Stator d-axis current during transient

 

 

Scenario 1.1

Scenario 1.2

Scenario 1.3

Scenario 1.4

Scenario 1.5

Scenario 1.6



 

75 

 

 
Figure 8.6. Trajectory of co-state 1 (Scenario 1 - optimal). 

 
Figure 8.7. Trajectory of co-state 2 (Scenario 1 - optimal). 
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Figure 8.8. Electromagnetic torque trajectory (Scenario 1 - optimal). 

 
Figure 8.9. Mechanical power corresponding to the rotor speed and torque trajectories 

(Scenario 1 -optimal). 
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The value of the Hamiltonian function at each time instant is given in Figure 8.10. 

The plots for the power losses corresponding to the optimal state and control trajectories 

are shown in Figures 8.11, 8.12, and 8.13. Figure 8.14 gives the total power losses. The 

change in energy cost functional and gradient norm (from (8.1.4)) w.r.t. iterations are 

given in Figures 8.15 and 8.16, respectively.  

 
Figure 8.10. Hamiltonian function value during transient (Scenario 1 - optimal). 
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Figure 8.11. Stator Ohmic power losses in IM (Scenario 1 - optimal). 

 
Figure 8.12. Rotor Ohmic power losses in IM (Scenario 1 - optimal). 
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Figure 8.13. Stator core power losses in IM (Scenario 1 - optimal). 

 
Figure 8.14. Total power losses in IM (Scenario 1 - optimal). 
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Figure 8.15. Change in the value of the energy loss cost function over iterations 

(Scenario 1 - optimal) 

 
Figure 8.16. Change in the value of the gradient norm over iterations (Scenario 1 – 

optimal) 
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8.2.2 Scenario 1 - Baseline 

It is necessary to compare the optimal trajectories with a baseline in order to determine 

if the energy efficiency of the IM has improved during transients. For this purpose, we 

calculate the trajectories of current inputs according to Regime I (from section 7.2.1) using 

equations (7.2.1.1) to (7.2.1.3) for each case described in Table 8.1. The Regime I 

trajectories are applied to the IM model (same as the model used in the optimal control 

problem). The rotor flux and rotor speed are shown in Figures 8.17 and 8.18. The plots for 

q- and d-axis stator currents are given by Figures 8.19 and 8.20. The electromagnetic torque 

generated by the IM during transient is shown in Figure 8.21. The mechanical power 

produced by the IM calculated using (7.3.2.1) from the speed and torque trajectories is 

given in Figure 8.22.  The value of the Hamiltonian function at each time instant is given 

in Figure 8.23. The plots for the three types of power losses (stator Ohmic, rotor Ohmic, 

stator core) are given in Figures 8.24, 8.25, and 8.26, respectively. The total power loss is 

given in Figure 8.27.  Note that all cases of a similar type of trajectory are shown on the 

same plot. 
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Figure 8.17. Trajectory of rotor d-axis flux (Scenario 1 – baseline) 

 
Figure 8.18. Trajectory of rotor speed (Scenario 1 – baseline) 
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Figure 8.19. Trajectory of stator q-axis current (Scenario 1 – baseline). 

 
Figure 8.20. Trajectory of stator d-axis current (Scenario 1 – baseline). 
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Figure 8.21. Electromagnetic torque produced during transient (Scenario 1 – baseline). 

 
Figure 8.22. Mechanical power produced during transient (Scenario 1 - baseline). 
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Figure 8.23. Hamiltonian function value (Scenario 1 - baseline). 

 
Figure 8.24. Stator Ohmic power losses in IM (Scenario 1 - baseline). 
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Figure 8.25. Rotor Ohmic power losses in IM (Scenario 1 -baseline). 

 
Figure 8.26. Core power losses in IM (Scenario 1 -baseline). 
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Figure 8.27. Total power losses in IM (Scenario 1 -base case) 
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8.2.4 Comparing energy efficiency for optimal and Regime I in scenario 1 

By numerically integrating (using trapezoid rule) the power quantities (mechanical 

power and total power loss), the total mechanical energy produced and the total energy loss 

during transient can be found. Then by applying (3.2.2) from section 3.2, the energy 

efficiency of the machine during transient can be calculated. The calculated values are 

tabulated in Table 8.2 for both the optimal and for Regime I (baseline) for all six cases in 

scenario 1. 

Table 8.2. Comparing total energy cost for scenario 1 

Scenario Energy loss (J) Mechanical 

energy output (J) 

Energy efficiency (%) 

Optimal Regime 

I 

Optimal Regime 

I 

Optimal Regime 

I 

Improvement 

1.1 305 1300 1000 1035 76.6 44.3 32.2 

1.2 275 1050 893 920 76.4 46.7 29.7 

1.3 580 3600 3200 3280 84.6 47.7 36.9 

1.4 182 560 350 375 65.7 40.1 25.6 

1.5 515 3200 2580 2625 83.3 45.0 38.3 

1.6 590 3700 2590 2810 81.4 43.1 38.3 
 

It can be observed that there is indeed an improvement in the efficiency averaging 

around 30% over the baseline when using optimal trajectories during the transient period. 

It can also be seen that the larger the change in the magnitude of speed, and load torque, 

the higher is the improvement in efficiency. The relationship between change in magnitude 

of speed and optimal energy efficiency is derived in the next chapter. The mechanical 

energy outputs are on an average about 3% lower for optimal when compared to Regime 

I. However, it will be shown in next section that such large improvements were due to the 

low value of the initial rotor flux in this scenario. 
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8.3 Numerical Solution - Scenario 2 

The procedure in the previous section is now repeated using a Type II IM. The initial 

and final conditions, in this case, are also different from the previous scenario 1 and are 

listed in Table 8.3 below. Note that the initial rotor flux is also more than twice that of 

scenario 1. 

Table 8.3. Scenarios for testing IM optimal control problem using Type II IM 

Scenario 𝜳𝒅𝒓𝟎  

(Wb) 

𝝎𝒓𝟎 

(rad/s) 

𝑻𝑳 

(Nm) 
𝝎𝒓𝒓𝒆𝒇

 

(rad/s) 

𝜳𝒅𝒓𝒐𝒑𝒕
 

(Wb) 

Time 

interval 

(s) 

2.1 1.1 0 10 100 1.04 0.5 

2.2 1.1 0 20 50 1.5 0.5 

2.3 1.1 100 3 180 0.5 0.5 

2.4 1.1 180 5 50 0.76 0.5 

2.5 1.1 100 10 50 1.08 0.5 

2.6 1.1 125 0 25 0.3 0.5 
 

8.3.1 Scenario 2 - Optimal 

The plots for the optimal state trajectories (w.r.t. time) are shown in Figures 8.28 and 

8.29. The plots for optimal q- and d-axis stator currents are given by Figures 8.30 and 8.31, 

respectively. The electromagnetic torque generated by the IM during transient is shown in 

Figure 8.32. The mechanical power produced by the IM and calculated using (7.3.2.1) from 

the speed and torque trajectories is given in Figure 8.33. Figure 8.34 gives the total power 

losses. The change in energy cost functional and the gradient norm (from (8.1.4)) w.r.t. 

iterations are given in Figures 8.35 and 8.36, respectively. The plots for co-states, 

Hamiltonian, and individual power loss components are not included to reduce the number 

of figures.  Note that all cases of a similar type of trajectory are shown on the same plot. 
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Figure 8.28. Trajectory for rotor d-axis flux (Scenario 2 - optimal). 

 
Figure 8.29. Trajectory for rotor speed (Scenario 2 - optimal). 
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Figure 8.30. Trajectory for q-axis current (Scenario 2- optimal). 

 
Figure 8.31. Trajectory for d-axis current (Scenario 2- optimal). 
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Figure 8.32. Electromagnetic torque trajectory (Scenario 2 - optimal) 

 
Figure 8.33. Mechanical power corresponding to rotor speed and torque trajectory 

(Scenario 1 - optimal). 
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Figure 8.34. Total power losses in IM (Scenario 2 - optimal). 

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

50

100

150

200

250

300

Time
(s)

P
o

w
er

(W
)

Total power loss during transient

 

 

Scenario 2.1

Scenario 2.2

Scenario 2.3

Scenario 2.4

Scenario 2.5

Scenario 2.6



 

94 

 

 
Figure 8.35. Change in value of energy loss cost function over iterations (Scenario 2 - 

optimal) 

 
Figure 8.36. Change in value of gradient norm over iterations (Scenario 2 - optimal) 
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8.3.2 Scenario 2 - Baseline 

It is necessary to compare the optimal trajectories with a baseline in order to determine 

if energy efficiency has improved. For this, we calculate the trajectories of current inputs 

according to Regime I (from section 7.2.1) using equations (7.2.1.1) to (7.2.1.3) for each 

case described in Table 8.2. The Regime I trajectories are applied to the IM model (same 

as the model used in the optimal control problem). The rotor flux and rotor speed are shown 

in Figures 8.37 and, Figures 8.38, respectively. The electromagnetic torque generated by 

the IM during transient is shown in Figure 8.39. The mechanical power produced by the 

IM that is calculated using (7.3.2.1) from the speed and the torque trajectories are given in 

Figure 8.40.  The total power loss is given in Figure 8.41. Note that all cases of a similar 

type of trajectory are shown on the same plot. 

 
Figure 8.37. Trajectory of d-axis rotor flux (Scenario 2 – baseline) 
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Figure 8.38.Trajectory of rotor speed (Scenario 2 – baseline) 

 
Figure 8.39. Trajectory of electromagnetic torque (Scenario 2 – baseline) 

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

20

40

60

80

100

120

140

160

180

Time
(s)

R
o

to
r 

S
p

e
e

d
(W

b
)

Rotor speed during transient (Scenario 2 - base case)

 

 

Scenario 2.1

Scenario 2.2

Scenario 2.3

Scenario 2.4

Scenario 2.5

Scenario 2.6

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
-10

-5

0

5

10

15

20

25

Time
(s)

T
o

rq
u

e
(N

m
)

Electromagnetic torque during transient (Scenario 2 - base case)

 

 

Scenario 2.1

Scenario 2.2

Scenario 2.3

Scenario 2.4

Scenario 2.5

Scenario 2.6



 

97 

 

 
Figure 8.40. Mechanical power produced during transient (Scenario 2 - baseline). 

 
Figure 8.41. Total power losses in IM (Scenario 2 - baseline) 
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8.3.3 Comparison of the optimal trajectories vs Regime I trajectories 

It can be observed from the results in above that optimal trajectories for 𝑖𝑞𝑠 and 𝑖𝑑𝑠 are 

significantly different from Regime I trajectories. The resulting trajectories for rotor flux 

and electromagnetic torque take different shapes as well. However, it can be seen that the 

rotor speed has attained the desired reference speed at the end of the transient period. 

However, it can be observed that the optimal trajectory of rotor flux takes the shape of a 

conic section just as it did in Scenario 1. But the optimal electromagnetic torque is found 

to take on a nearly constant value during the transient period, in contrast to the conic shape 

it took in Scenario 1. The reasoning behind this becomes clearer in Chapter 9 when the 

analytic expression for optimal torque is derived. 

8.3.4 Comparing Energy Efficiencies 

By numerically integrating (using trapezoid rule) the power quantities (mechanical 

power and power losses), the total mechanical energy output and the energy losses during 

transients can be found. Then by applying (3.2.2) from section 3.2, the energy efficiency 

of the machine during transients can be calculated. The calculated results are tabulated in 

Table 8.4 below for both the optimal and the baseline for all the six scenarios. 

Table 8.4. Comparing total energy cost for scenario 2 

Scenari

o 

Energy loss (J) Mechanical 

energy produced 

(J) 

Energy efficiency  

(%) 

Optima

l 

Regim

e I 

Optima

l 

Regim

e I 

Optima

l 

Regim

e I 

Improvemen

t  

2.1 92 96 450 430 83.0 81.7 1.3 

2.2 135 157 265 295 66.3 65.3 1 

2.3 45 45 620 613 93.2 93.2 0 

2.4 20 29 -260 -250 92.3 88.4 3.9 

2.5 35 34 225 240 86.5 87.6 -1.1 
2.6 30 37 -270 -270 88.9 86.3 2.6 
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From these results, it can be observed that there is indeed an improvement in the 

efficiency averaging around 1.5% over the baseline when using optimal trajectories during 

the transient periods. Note that in cases where the rotor speed is decreased the mechanical 

energy is negative, i.e. the machine is acting as a generator. In Scenario 2 the improvement 

in energy efficiency is, however, much lower compared to that in Scenario 1. The reason 

being that the initial rotor flux was set high at the start of the transient which means it could 

not be increased to the extent that was possible in Scenario 1. The relationship between 

initial rotor flux and optimal energy efficiency is derived in the next chapter. 

8.4 Summary 

This chapter explained the working of an algorithm based on the modified gradient 

method to numerically solve the TPBVP problem that was developed in Chapter 7 in order 

to obtain the numerical solution of the optimal control trajectories. The Gradient method 

involved an initial guessing of a control trajectory and then updating it using the conjugate 

gradient algorithm. To avoid instability that may occur due to a non-optimal step size, the 

gradient at each step was modified using the Hestenes-Steifel formula. The algorithm was 

applied to two IM models (Type I and Type II) having different parameters as well as 

boundary conditions. All the solutions for the control, state, and co-state trajectories were 

plotted. A baseline was also established using the Regime I of the control trajectories.  The 

optimal rotor flux trajectories were found to lie on a conic curve in both Scenarios 1 and 2. 

The optimal electromagnetic torque was found to lie on a conic curve in Scenario 1 but it 

takes a constant value in Scenario 2. The total energy loss, the total mechanical energy 

produced and the energy efficiency were tabulated for both machines Type I and Type II.  
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The results showed that the improvement in energy efficiency due to the optimal trajectory 

was dependent on the initial rotor flux value and on the magnitude of change in speed. 
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9 ANALYTICAL EXPRESSIONS FOR IM OPTIMAL CONTROL TRAJECTORIES 

Numerical solutions of the IM optimal control problem in the previous Chapter showed 

that it is possible to improve the energy efficiency using optimal control trajectories. 

However, the numerical solutions were specific to the case studies under investigation and 

the motor types. Those numerical solutions do not explicitly establish a relationship 

between the motor operating parameters and the optimal control law. This chapter attempts 

to do that by proposing prototype analytical expressions to describe the optimal state and 

control trajectories for an accelerating IM. The expressions for optimal transient energy 

losses are also derived. The reader of this document should note that while these 

expressions are inspired by the numerical solutions in Chapter 8 they do not use any data 

points from them, i.e. this is not a curve fitting exercise specific to the case studies of 

Chapter 8. The prototype expressions to be derived are generic and are applicable to any 

type of accelerating/decelerating IM. Hence, this work is in contrast to the other published 

literature proposing analytical expressions for their specified optimal trajectories. Although 

the prototype expressions will be in the form of open loop control laws, the objective is not 

to use them for real-time control of IMs (real-time control is achieved later through the use 

of neural networks in Chapter 10). Instead, the aim is to study how different IM operating 

parameters influence the optimal energy efficiency. 

A brief overview is provided here to aid in reading the chapter. First, an expression ( a 

function of time) for the optimal rotor d-axis flux and the stator d-axis current is proposed. 

Using some assumptions, these expressions are written purely in terms of the initial rotor 
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flux 𝛹𝑑𝑟𝑎 , and flux ratio, 𝑥. The significance of the flux ratio 𝑥  will be discussed later. For 

optimal stator q-axis current, two types of prototype of expressions (function of time) are 

proposed and they are expressed in terms of the initial rotor flux 𝛹𝑑𝑟𝑎 , change in speed 𝐶, 

and flux ratio 𝑥. Hence, we have two sets of prototype expressions which will be referred 

to as Trajectory A and Trajectory B.  The rotor flux expression will be same while the q-

axis current expression will be different for A and B. As a baseline, the Regime I trajectory 

from section 7.2 is used. The displacement in rotor angle due to both optimal and Regime 

I current trajectories are calculated and equated to each other. To this end, the energy losses 

for Regime I are first calculated. Then the energy losses for optimal trajectories of the stator 

q-axis current (both A and B) are expressed in terms of the Regime I energy losses and flux 

ratio 𝑥. Finally, we find the optimal value of 𝑥 which minimizes the energy losses (a one-

dimensional static optimization problem), and substitute it in the expressions for the rotor 

flux and stator current to obtain the optimal trajectories. 

9.1 Prototype Expression for Optimal Rotor d-axis Flux 

As discussed in Chapter 8 the optimal trajectory of the rotor d-axis flux is observed to 

take the distinctive shape of a conic section. Hence, the optimal rotor flux trajectory can be 

represented by a generic polynomial function of time as shown in (9.1.1). The rate of 

change of optimal rotor d-axis flux is found by differentiating (9.1.1) to obtain (9.1.2). The 

stator d-axis current trajectory necessary to realize this optimal flux trajectory can be 

obtained by plugging (9.1.2) into (7.4.3) to get (9.1.3). 
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where 𝑎1, 𝑏1, and 𝑐1 are constants to be determined.  

9.1.1 Regime I rotor flux trajectory expression  

The rotor flux trajectory based on Regime I (from section 7.2.1) will be used as a 

baseline for comparison and is reproduced in (9.1.1.1). The corresponding rate of change 

of rotor flux and d-axis current trajectory are given by (9.1.1.2) and (9.1.1.3), respectively. 

Since the change in flux is zero we can express the stator d-axis current in terms of rotor 

flux as shown by (9.1.1.3). 
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dr drt for all t                                                                         (9.1.1.1) 
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9.1.2 Expressing the conic polynomial trajectory in terms of rotor flux values 

Assuming that the optimal trajectory of rotor flux (9.1.1) generally takes on the values 𝛹𝑑𝑟0 , 𝛹𝑑𝑟𝑚  and 𝛹𝑑𝑟𝑓  at 𝑡 = 𝑡0, 𝑡𝑓2 , and 𝑡𝑓 , respectively as illustrated in Figure 9.1., it is possible 

to express the parameters  𝑎1, 𝑏1, 𝑐1 of the generic polynomial of (9.1.1) in terms of these 

flux values as shown in (9.1.2.1). The derivation of (9.1.2.1) is given in Appendix IV. 
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Figure 9.1. Illustration of flux trajectories for baseline (Regime 1) and optimal 

9.2 Prototype expression for optimal stator q-axis current 

The shape of the q-axis current trajectories in the numerical solution (from Chapter 8) 

varied significantly between the two scenarios that were studied. Hence, two different 

generic prototype trajectories are considered for the optimal stator q-axis current trajectory. 

The first prototype optimal trajectory is a conic and will be referred to as Type A. It is 

represented by a generic polynomial function of time as shown in (9.2.1). An illustration 

of Type A is depicted in Figure 9.2.  
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where 𝑎2, 𝑏2 and 𝑐2 are constants to be determined. 

The second prototype optimal trajectory of the stator q-axis current is a constant value and 

will be referred to as type B. It is expressed by (9.2.2). 
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9.2.1 Regime I q-axis current trajectory 

The q-axis current trajectory based on Regime I (from section 7.2.1) will be used as a 

baseline for comparison and is reproduced in (9.2.1.1). 

  a

qs qsi t i                                                                                                             (9.2.1.1) 

 

9.2.2 Expressing conic trajectory parameters in terms of stator d-axis current 

If we assume that the conic optimal Trajectory A of the stator q-axis current passes 

through the generic points 𝑖𝑞𝑠0 , 𝑖𝑞𝑠𝑚  and 𝑖𝑞𝑠𝑓  at 𝑡 = 𝑡0, 𝑡𝑓2 , and 𝑡𝑓 , respectively and as illustrated 

in Figure 9.2, it is possible to express the constants 𝑎2, 𝑏2, 𝑐2 in terms of stator q-axis 

currents as shown in (9.2.2.1). The derivation is given in Appendix IV. For optimal 

trajectory B, if the stator q-axis current passes through the point 𝑖𝑞𝑠𝑏  we get (9.2.2.2) 
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Figure 9.2. Illustrating stator q-axis current for baseline (Regime 1) and optimal 

 

9.3 Assumptions to Prove Optimality 

In the previous sections, the coefficients 𝑎1, 𝑏1, 𝑐1, 𝑎2, 𝑏2, 𝑐2, and 𝑐3  of the prototype expressions 𝑤𝑒𝑟𝑒 expressed in terms of currents, rotor fluxes, and 

time. All except three of these values can be determined using the inputs from the optimal 

control problem. The unknown in the case of the optimal d-axis flux trajectory is 𝛹𝑑𝑟𝑚 . The 

unknowns in the case of the optimal q-axis current trajectory are 𝑖𝑞𝑠𝑚  and 𝑖𝑞𝑠𝑏  for both 

Trajectory A and Trajectory B, respectively. To determine these unknowns, we assume 

that the IM is running on no-load and maintains a minimum flux during steady state.  These 

assumptions mean that there is no load torque on the IM rotor shaft and all the mechanical 

energy output from IM is being stored as kinetic energy in the rotor mass. For example, an 
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IM used in a flywheel application works under these conditions. It must be pointed out 

these assumptions are there only to alleviate the mathematical effort that is required. They 

are not a way to force fit a solution. The procedure outlined in the following section can be 

applied to an IM with a load torque and which operates at different flux levels, depending 

on the load.  However, the mathematical effort would be significantly higher and would 

require a capable symbolic toolbox. The list of assumptions are: 

1. Transient time: The transient time interval is assumed to be normalized so that it starts 

at 0 and ends at 1. The initial and final times corresponding to this interval are given 

by (9.3.1).  

2. Rotor flux: The initial and final values of the optimal rotor flux trajectory are assumed 

to be equal as given by (9.3.2) and (9.3.3). 

3. Stator q-axis current: The initial and final values of optimal stator q-axis current 

trajectories A and B are assumed to be equal as given by (9.3.4).  

4. Load torque: The load torque is assumed to be zero as shown in (9.3.5).  

Note that, the shape of rotor d-axis flux trajectory and the stator q-axis current trajectory 

corresponding to these assumptions are same as that of Figure 9.1 and Figure 9.2. Only the 

initial and final values will be changed. 
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Note that 𝛹𝑑𝑟𝑎  is known from the optimal control problem in the form of the initial 

condition. Hence, the extremum value in the optimum flux trajectory 𝛹𝑑𝑟𝑚   can be expressed 

in terms of the initial rotor flux 𝛹𝑑𝑟𝑎  as shown in (9.3.3).  

                                                                                                                        (9.3.3) 

 

where 𝑥 is the ratio between 𝛹𝑑𝑟𝑚  and 𝛹𝑑𝑟𝑎 . 

Using the above assumptions, it is possible to rewrite the coefficients of the rotor flux 

expression and the q-axis current expressions (for A and B) as given in (9.3.6) through 

(9.3.8). Note that even after using the above assumptions we still have the same number of 

unknowns. However, we have been able to express 𝛹𝑑𝑟𝑚  in terms of the initial flux using 

the flux ratio 𝑥. This approach will considerably ease the finding of a solution.  
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Since the load torque is assumed to be zero, the state equation for rotor speed from 

section 7.1 can be simplified and written as in (9.3.9). 

m a

dr drx 



 

109 

 

   
2

m m

qs dr

r

d pL
i t t

dt JL

 
 

  
 

                                                                           (9.3.9)  

 

9.4 Energy Costs and Rotor Angle Displacement for Regime I Trajectories 

In this section, we find the energy costs and the rotor angle displacement when the IM 

is accelerating at a constant rate of 𝐶 rad/s during the transient time interval. The state 

equation for rotor speed (9.3.9) can be equated to 𝐶 after substituting for flux and current 

from Section 9.1.1 and Section 9.2.1 respectively to get (9.4.1). The stator q-axis current 

can then be found as given by (9.4.2). 
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where, 𝐾1 = (𝑝𝐿𝑚2𝐽𝐿𝑟) (from (9.3.9)). 

Solving (9.4.1) will give the rotor speed (9.4.3), and integrating the resulting speed 

within the transient time interval will give the displacement in the rotor angle, 𝑆1, in 

radians. The displacement in the rotor angle due to the optimal trajectories should be equal 

to that due to Regime 1 trajectories to ensure that the mechanical energy produced by the 

IM in both cases is same. 

m
Ct                                                                                                                   (9.4.3) 
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1

0 2
m

C
S dt                                                                                                   (9.4.4) 

The energy losses for Regime I trajectories provide a baseline for comparing the energy 

costs due to optimal trajectories. Note that the energy losses can be separated into d-and q-
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axis components. The d-axis components of the stator and rotor Ohmic losses can be 

expressed in terms of d-axis current and d-axis flux as given by (9.4.5) and (9.4.6), 

respectively. Note that rotor d-axis loss component will be zero for Regime I due to 

(9.1.1.3) 
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Similarly, the q-axis component of the stator and rotor Ohmic losses can be expressed 

in terms of q-axis current as given by (9.4.7) and (9.4.8), respectively. 
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                  (9.4.8) 

9.5 Expressions for Optimal d-axis Rotor Flux, d-axis Current and Transient Energy 

Loss 

In this section, first, the expressions (functions of time) for rotor flux and d-axis current 

are derived in terms of 𝛹𝑑𝑟𝑎 , 𝑥, and other IM parameters for prototype trajectories A and B. 

Then using them, the d-axis energy loss components which depend only on the rotor flux 

and d-axis current are obtained. 

First, we substitute the values of  𝑎1, 𝑏1, 𝑐1 from (9.3.6) into (9.1.1) through (9.1.3) to 

obtain d-axis rotor flux trajectory (9.5.1), rate of change of flux (9.5.2), and stator d-axis 

current trajectory (9.5.3).  
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Substituting the above equations in the expressions for stator and rotor Ohmic energy 

losses during transients gives the d-axis component of the stator energy loss (9.5.4) and 

rotor energy loss (9.5.5). Note that the intermediate steps involved in deriving the d-axis 

energy loss components are included in Appendix V for reference. 
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        (9.5.5) 

Note that in above equations, if flux ratio 𝑥 = 1 then the energy losses for optimal 

trajectories would be the same as that of the Regime I energy losses. 

9.6 Stator q-axis Current and Transient Energy Losses for Trajectory A 

As stated earlier, based on numerical solutions, the stator q-axis current trajectory is 

different for both A and B cases, and hence they will have different loss expressions. In 

this section, the energy losses due to the q-axis current trajectory A is calculated. First, we 

substitute the values of  𝑎2, 𝑏2, 𝑐2 from (9.3.7) in (9.2.1) to obtain (9.6.1). Then (9.6.1) and 
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(9.5.1) can be substituted in the state equation for rotor speed (9.3.9) to obtain (9.6.2). 

Solving (9.6.2) results in an expression for the rotor speed as in (9.6.3). 
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Integrating the rotor speed within the transient time interval as shown in (9.6.4) will 

give the displacement in rotor angle 𝑆2 in terms of radians resulting from the use of the 

stator q-axis current trajectory A. 𝑆2 must be equal to 𝑆1 (displacement in the rotor angle 

due to Regime I). Using this equality, then it is possible to solve for 𝑖𝑞𝑠𝑚  as in (9.6.6). Note 

that the intermediate steps involved in deriving the stator q-axis energy loss components 

for trajectory A are included in Appendix V for reference. 
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Substituting 𝑖𝑞𝑠𝑚  from (9.6.6) into (9.6.1) will give the expression for stator q-axis 

current in terms of the flux ratio 𝑥 as given by (9.6.7). Now it is possible to obtain an 

expression for the q-axis component of the stator and rotor Ohmic losses as given by (9.6.8) 

and (9.6.9), respectively. 
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9.7 Stator q-axis Current Energy Loss for Trajectory B 

In this section, the energy losses for stator q-axis current trajectory B are calculated. 

First, coefficient 𝑐3 from (9.3.8) is substituted into (9.2.2) to obtain (9.7.1). The state 

equation for rotor speed is obtained by substituting (9.7.1) and (9.5.1) into (9.3.9) to get 

(9.7.2). Solving (9.7.2) will then result in an expression for the rotor speed as in (9.7.3). 
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Integrating the rotor speed as shown in (9.7.4) within the transient time interval will 

give the displacement in rotor angle, 𝑆3, resulting from the use of stator q-axis current 

trajectory B. 𝑆3 must be equal to 𝑆1 (rotor angle displacement due to Regime I). Then, it is 

possible to solve for 𝑖𝑞𝑠𝑏  as in (9.7.6). Note that the intermediate steps involved in deriving 

the q-axis energy loss components for trajectory B are included in Appendix V for 

reference. 
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The expression for 𝑖𝑞𝑠𝑏  in (9.7.6) can be used to find the stator q-axis and rotor q-axis 

Ohmic energy losses given by (9.7.7) and (9.7.8), respectively.  
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9.8 Determining the Optimal Flux Ratio 𝑥 

In the expressions for energy losses that were obtained in Sections 9.5, 9.6, and 9.7 it 

can be observed that the only unknown parameter is the flux ratio 𝑥. The parameter 𝛹𝑑𝑟𝑎  

can be determined from measuring the flux at the start of the transient interval and by 

definition 𝐶 is the difference between the actual rotor speed at the start of transient and the 

desired rotor speed at end of the transient interval. It can be noted that 𝑥 is inversely related 

to the q-axis component of the energy losses and directly related to the d-axis component 

of the energy losses. Hence, there must exist an optimal value of 𝑥 that would minimize 

the total energy losses. From above it can be seen that the problem of finding the optimal 

trajectory has been reduced to a one-dimensional optimization problem. Taking the first 

derivative of the total energy losses for Trajectory A w.r.t. 𝑥 and equating that to zero gives 

(9.8.1) which is a 4th order polynomial equation in terms of 𝑥. It is possible to solve (9.8.1) 
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for the 𝑥 numerically since the values of the other parameters in the equation are known. 

Here the ‘solve’ function of MATLAB software was used. Since the second derivative 

shown by (9.8.2) is found to be always positive, that means 𝑥 minimizes the total loss 

function.  
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,  

The same procedure for calculating the flux ratio 𝑥 can be repeated for optimal 

trajectory B, and can be found in Appendix VI.  

The influence that various parameters in the optimal energy loss equation have on the 

optimal flux ratio 𝑥  can be determined by conducting a sensitivity analysis. Parameters 

from the Type I IM were used in the IM model. The sensitivity of the optimal ratio 𝑥 to the 

initial flux Ψ𝑑𝑟𝑎  and the moment of inertia 𝐽 (which affects 𝐾1) is illustrated in Figure 9.3. 

The sensitivity of the flux ratio 𝑥 to initial flux Ψ𝑑𝑟𝑎  and the change in magnitude of rotor 
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speed 𝐶 (which affects 𝐾1) is illustrated in Figure 9.4. The sensitivity of optimal 𝑥 to the 

initial flux Ψ𝑑𝑟𝑎  and rotor time constant 𝜏𝑟 is illustrated in Figure 9.5. 
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Figure 9.4. Sensitivity of optimal x to the initial flux and change in speed 

 
Figure 9.5. Sensitivity of optimal x to the initial flux and rotor time constant 
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The above sensitivity analysis shows that a higher initial flux results in a lower value 

of the optimal flux ratio 𝑥. This is intuitive since it makes no sense for the flux to be 

increased during the transient interval if it is already high to begin with. Also, if the initial 

flux is very high, the optimal value of 𝑥 would be less than one.  Another important 

observation is that the optimal value of 𝑥 increases, corresponding to an increase in the 

moment of inertia  𝐽 and the change in speed 𝐶, while it decreases for an increase in the 

rotor time constant 𝜏𝑟. Practically, this means that for IM’s with heavy rotors, a large 

change in rotor speed would require a large change in flux to achieve an optimal transient 

energy efficiency. 

9.9 Evaluating improvement in energy efficiency using derived analytical Prototype 

expressions 

The closed form analytical solutions of the optimal control trajectories and the optimal 

flux ratio 𝑥 can be used to calculate the energy efficiency during transients for different 

scenarios. Parameters from Type I IM were used for this energy efficiency calculation. 

Regime I is used as a base case for comparison purposes. The test cases for this energy 

efficiency calculation are given in Table 9.1. In Table 9.1 the first four cases are for positive 

changes in the reference speed, and next four cases are for negative changes in the reference 

speed. Note that only Ψ𝑑𝑟𝑎  is varied across the cases. The calculated energy losses and 

efficiency for all the cases are tabulated in Table 9.2. The trajectories of rotor d-axis flux, 

rotor speed, electromagnetic torque, and power losses corresponding to case 1.3 and case 

1.7 are given in Figure 9.6, Figure 9.7, Figure 9.8, and Figure 9.9, respectively. 
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Table 9.1. Optimal x for different scenarios. 

Scenario 𝛹𝑑𝑟𝑎  

(Wb) 

𝐶 

(rad/s) 

𝜔𝑟0 

(rad/s) 

Optimal x Time interval 

(s) Trajectory A Trajectory B 

1.1 0.2 100 0 6.8 6.9 1.0 

1.2 0.5 100 0 2.65 2.6 1.0 

1.3 1.0 100 0 1.27 1.2 1.0 

1.4 1.5 100 0 0.82 0.72 1.0 

1.5 0.2 -200 200 9.7 9.9 1.0 

1.6 0.5 -200 200 3.8 3.8 1.0 

1.7 1.0 -200 200 1.8 1.7 1.0 

1.8 1.5 -200 200 1.2 1.1 1.0 
 

 

 
Figure 9.6. Comparison of rotor d-axis flux trajectories 
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Figure 9.7. Comparison of rotor speed trajectories 

 
Figure 9.8. Comparison of electromagnetic torque trajectories 
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Figure 9.9. Comparison of power losses 

As expected the rotor flux trajectory for both optimal trajectory cases A and B of the 

stator q-axis current are conic shaped and terminal rotor speed attains the specified value. 

The electromagnetic torque and total power losses for both optimal A and optimal B are 

time varying unlike Regime I. However, optimal case B has a lower peak torque when 

compared to optimal case A.  The mechanical output power can be found by multiplying 

the rotor speed and the electromagnetic torque. integrating this mechanical output power 

would result in the mechanical energy that is produced. Similarly, the power losses can be 

integrated to obtain the energy losses.  Using these calculated energy values, the energy 

efficiency during transients can be calculated. 
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Table 9.2. Comparing energy efficiency for optimal and Regime I (baseline) cases. 

Scenario 

 

Mechanical 

Energy 

(J) 

Total energy losses Energy efficiency 

Regime I 

(J) 

Optimal A 

(J) 

Optimal B 

(J) 

Regime 

I 

(%) 

Optimal A 

(%) 

Optimal 

B (%) 

Motoring 

1.1  

1000 

3060 226 239 24.6 81.5 80.6 

1.2 508 211 213 66.3 82.5 82.4 

1.3 197 205 192 83.5 82.9 83.9 

1.4 224 225 202 81.7 81.6 83.2 

Regenerative Braking 

1.5  

-4000 

12240 530 560 -206 86.7 85.9 

1.6 1980 500 509 50.5 87.5 87.3 

1.7 577 470 448 85.5 88.2 88.8 

1.8 415 463 419 89.6 88.4 89.5 
 

 

From above calculations, it can be seen that as the initial flux increases the 

improvement in the energy efficiency for optimal trajectory over Regime 1 decreases. 

Similarly, optimal trajectory A is found to have a slightly higher efficiency when compared 

to optimal trajectory B if the initial flux is low. However, when the value of the initial flux 

is high the opposite is true. These observations agree with the results of Chapter 8.  

9.10 Sensitivity of Energy Efficiency to Parameters 

Using the technique of the previous section, the sensitivity of transient energy 

efficiency to changes in the operating parameters of the IM can be analyzed. The first set 

of plots in Figure 9.10 shows the sensitivity to the speed change  𝐶 and Ψ𝑑𝑟𝑎  with 𝐽 and 𝜏𝑟 

being constant. Figure 9.11 shows the sensitivity to moment of inertia  𝐽 and Ψ𝑑𝑟𝑎  with 

speed change 𝐶 and  𝜏𝑟 being constant. Finally, the sensitivity to 𝜏𝑟 and Ψ𝑑𝑟𝑎 , with 𝐶 and J 
being constant is shown in Figure 9.12. 
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Figure 9.10. Sensitivity of transient energy efficiency to initial flux, and change in rotor 

speed 
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Figure 9.11. Sensitivity of energy efficiency to initial rotor flux and moment of inertia 
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Figure 9.12. Sensitivity of energy efficiency to initial rotor flux and rotor time constant 
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The observations from the sensitivity plots reveal many interesting features as 

summarized below: 

1. Magnitude of flux ratio 𝑥: The optimal value of 𝑥 depends primarily on Ψdra , i.e. if 

the initial rotor flux is below a certain threshold, 𝑥 is greater than 1 and vice 

versa. However, the value of the threshold is dependent on 𝑠peed change 𝐶, and moment of inertia 𝐽. 

 

2. Direction and magnitude of 𝑖𝑞𝑠𝑜𝑝𝑡_𝐴
and 𝑖𝑞𝑠𝑜𝑝𝑡_𝐵

:  The direction of the q-axis current 

is dependent solely on the sign of speed change 𝐶. However, the peak current is 

dependent on both the magnitude of 𝐶 and the optimal flux ratio 𝑥. 

 

3. Constant energy efficiency:  The optimal trajectories tend to maintain a nearly 

constant energy efficiency despite changes in 𝛹𝑑𝑟𝑎 , 𝐶, 𝐽, and 𝜏𝑟. This contrasts with 

Regime I whose efficiency increases with increases in Ψ𝑑𝑟𝑎 , reaches a peak (which 

is equal to or less than the optimal energy efficiency), and drops off afterwards. 

The value at which efficiency reaches its peak is dependent upon 𝐶 and 𝐽. 

 

4. Stator q-axis current trajectories:  Trajectory A of the stator q-axis current 

provides slightly a higher efficiency when 𝛹𝑑𝑟𝑎  is low. However, the opposite is 

true when 𝛹𝑑𝑟𝑎  is high. 

 

5. Efficiency improvement: The improvement in energy efficiency over the baseline 

is directly proportional to 𝐶 and  𝐽 for the same 𝛹𝑑𝑟𝑎 . 

 

6. Effect of rotor time constant 𝜏𝑟:  Decreasing  𝜏𝑟 (rotor inductance 𝐿𝑟 decreases 

constant and rotor resistance 𝑅𝑟 remains constant) increases energy efficiency 

due to the optimal trajectories, when compared to the baseline for the same 𝛹𝑑𝑟𝑎 . 

9.11 Practicality of using the Prototype Analytical Expressions in Real-Time Control 

It may seem that it is possible to deploy the above analytical expressions for the optimal 

trajectories in real-time controllers. However, the following limitations can be identified. 

1. Control law is open loop: This means that disturbances that occur during the transient 

periods will not be reflected in the control trajectory. 

2. Solution for flux ratio 𝑥 requires an iterative process: The optimal value of 𝑥 needs to 

be calculated at the start of the transient period. This is a static optimization problem 
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involving a non-linear equation and hence requires more time than what is available 

during the sampling time of a real-time industrial controller. A potential solution to this 

is to have a lookup table, which would need to be extensive to account for all possible 

scenarios. This is not a particularly elegant solution. 

To overcome the above limitations, a solution to implement optimal control of IM in 

real time using Artificial Neural Networks is presented in the next chapter.  

9.12 Summary 

In this chapter, analytical prototype expressions to describe the optimal trajectories for 

IM control and state variables were developed. The optimal trajectory expressions describe 

both the rotor flux trajectory and the stator current trajectory. In Trajectory A the rotor d-

axis flux was a conic trajectory and the stator q-axis current was also a conic trajectory. In 

Trajectory B, rotor d-axis flux was a conic trajectory while the stator q-axis current was a 

constant value trajectory. Trajectory B was found to be best performing in all cases. 
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10 EMULATING OPTIMAL CONTROL OF IM USING ARTIFICIAL NEURAL 

NETWORKS 

The advances made in Artificial intelligence (AI) during the last 5 years have primarily 

been due to what is called Machine Learning (ML). ML is the “Field of study that gives 

computers the ability to learn without being explicitly programmed.” This was how Arthur 

Samuel, one of the pioneers in the field of AI described ML in 1959 [57].  Contemporary 

ML usually refers to writing programs that learn to perform a task from data rather than 

being explicitly instructed by the programmer on each step required to perform the task 

[58]. Data here refers to the information related to the task. There are 3 different approaches 

to ML, namely supervised learning, unsupervised learning, and reinforcement learning. 

Each of these approaches has specific strengths and suitability for different tasks. The 

approach used in this dissertation is supervised learning. The most successful model of ML 

in recent times has been artificial neural networks (ANN’s) [59].  

10.1 Neural Network Basics 

Generally, ANN’s are computational graphs made up of biologically inspired 

computational units known as artificial neurons. A simple description of the operation 

performed by a neuron would be ‘weighted sum of inputs passed through a function’.  The 

process of this operation is illustrated in Figure 10.1. 
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Figure 10.1. Structure of an Artificial Neuron. 

In Figure 10.1 the inputs to the neuron are represented by x1, x2,…xn. Each input is 

multiplied by a corresponding weight W1, W2,…Wn, respectively, before they all enter 

the summer.  Another parameter B is known as the bias and is added to the sum before 

being given as input to the activation function f(x) of the neuron. The activation function 

f(x) produces the output of the neuron. All the information in the network is stored in the 

weights and biases of the neurons. The activation function of each neuron of the network 

can be generic functions like sigmoid, tanh, or rectified linear, etc. [60]. 

Taken alone, there is very little that an individual neuron can do. However, many 

individual neurons arranged in multiple layers with the output of each neuron feeding into 

other neurons can perform computational tasks which are extremely hard or even 

impossible with conventional algorithms. An illustration of this concept is shown in Figure 

10.2. The phrase ‘The whole is greater than the sum of its parts’ is very true for ANN’s. 
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Figure 10.2. Neurons arranged in layers to create a neural network 

 

However, the theory behind how exactly an ANN works is still a topic of debate and 

active research [61]. Hence, there are only rules of thumb based on empirical results for 

selecting a specific ANN architecture (how its neurons are arranged) and hyper-parameters 

that define it for a specific task. The architecture in Figure 10.2 is referred to as the feed 

forward neural network (FFNN) and is also the simplest and most commonly used 

architecture. 

The process of using information about a problem to adjust the weights of the ANN so 

that it can produce a meaningful output for a given input is referred to as training. Training 

is ultimately a static optimization problem, the key ingredients of which are: 

1) Sufficient samples of inputs/outputs. 

2) Loss (error) function that measures the difference between the actual ANN output 

and the desired output. 

3) An algorithm that would adjust the weights to decrease the loss function value. 
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 The process of feeding a trained ANN with new inputs (similar to those used in its 

training) and obtaining outputs is known as inference. Discussing more about ANN’s 

would be redundant considering the vast amount of literature available, and hence the 

reader is referred to  [62] for further detail and information.  

10.2 Using Neural Networks as Controllers 

ANN’s have been shown to be able to approximate the output of any function provided 

an appropriate network architecture is chosen and there are sufficient numbers of neurons 

[63], [64]. Note that one does not need to have any presuppositions regarding the shape of 

the target function one is trying to approximate when using ANN’s. In ML terminology, 

the task of producing a continuous numeric output for a given continuous numeric input is 

called regression. This capability can be extended to the control laws, i.e. ANN’s can be 

trained to act like controllers. This concept has been referred to as Neurocontrol in [65]. 

There are four topologies for Neuro control that have been proposed: 

1) Template training, 

2) Learning plant inversion, 

3) Closed loop optimization, and 

4) Critic system. 

Detailed discussions on these techniques have been provided in [65]. However, only 

Template training is relevant to the work done in this dissertation. As the name suggests, 

Template training refers to training an ANN to mimic the output of a control law using a 

template. Template, in this case, refers to the input presented to the actual control law and 

its corresponding output. The Template training concept is illustrated in Figure 10.3. 
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Figure 10.3. Template training an ANN as a controller 

 

A Template trained ANN controller is suitable for solving the IM optimal control 

problem of this dissertation work because of the following reasons. 

1) The numerical solutions for the optimal control problem provide a template for 

training the ANN controller. 

2) The template trained ANN can instantly generate control outputs in real-time, unlike 

the conventional numerical solution which is iterative. 

3) Feedback from the IM can be used as inputs to the ANN controller. 

One rule of thumb that can be followed while deciding the number of neurons and the 

number of hidden layers of the ANN is to get the highest performance using the minimum 

number of parameters (weights and biases). In this work, through a trial and error process, 

an ANN with a single hidden layer consisting of 3 neurons was found to give sufficient 

accuracy.  
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10.3 Training the ANN to Emulate Optimal Control Trajectories 

The most important aspect of training an ANN is the availability of good quality 

training data. A minimum number of samples of training data is required to get acceptable 

performance. In the case of the IM optimal control problem, the data required for training 

is available in the form of numerical solutions for optimal state, co-state, torque, and 

control trajectories from Chapter 8. Each of these numerical solution trajectories represents 

a potential input to the ANN or an output that must be produced by the ANN. The inputs 

and the corresponding outputs of the network are referred to as features. It is necessary to 

select a sub-set of input-output features for the training of the network. The selection of the 

training features is equivalent to presenting a set of evidence to the ANN based on which 

it provides an output. The ANN will automatically assign a weight for each piece of 

evidence that it is provided with during the training process. However, by selecting an 

optimal set of inputs (through intuition or trial and error) we can help the ANN improve 

the quality of the result. The features that gave the best results in case of the IM optimal 

control problem under study are given in Table 10.1. The architecture of the ANN that was 

chosen and used to generate the optimal control trajectories is given in Figure 10.4. 
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Table 10.1. Selecting input-output features for ANN to emulate the optimal control 

trajectory. 

ANN input features Data Type Source during real-time 

simulation 

Optimal rotor d-axis 

flux trajectory, Ψ𝑑𝑟(𝑡) 

Time variant  

Feedback from IM 

 Optimal rotor speed 

trajectory, 𝜔𝑟(𝑡) 

Time variant 

Initial rotor flux, Ψ𝑑𝑟0  Constant  

 

 

Generated by supervisory logic 

Initial rotor speed, 𝜔𝑟0 Constant 

Final rotor flux, Ψ𝑑𝑟𝑡𝑓
 Constant 

Final rotor speed, 𝜔𝑟𝑡𝑓
 Constant 

Time as a fraction of the 

transient period (t) 

Varies from 0 to T 

(where T is the 

transient time 

period) 

ANN output features Data Type 

Optimal d-axis stator 

current, 𝑖𝑑𝑠(𝑡) 

Time variant 

Optimal q-axis stator 

current, 𝑖𝑞𝑠(𝑡) 

Time variant 

 
Figure 10.4. Operations in the ANN emulating the IM optimal control solution. 
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After the features are selected and the data corresponding to those features are 

available, a training algorithm is chosen. A training data set consisting of 60 trajectories 

were found to provide acceptable performance. The training algorithm does not have to be 

implemented from scratch since software toolboxes and libraries for different algorithms 

are readily available. In this work, the ANN training was done separately using two 

separate software packages. Firstly, the NN Toolbox available in MATLAB software with 

the Levenberg-Marquardt training algorithm [66] was used. Then, the open source ML 

toolkit TensorFlow [67] was used. The computational graph generated by TensorFlow for 

the ANN is shown in Figure 10.5. The change in the learning error for the training and the 

validation data set during training when using MATLAB NN toolbox and TensorFlow are 

shown in Figure 10.6. and Figure 10.7, respectively. 
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Figure 10.5.TensorFlow computational graph implementing the ANN of the IM Optimal 

control problem 
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Figure 10.6. Change in the mean square error of training and validation data set during 

ANN training using Levenberg-Marquardt algorithm in MATLAB 

 

 
Figure 10.7. Change in the mean square error of training and validation data set during 

training using ADAM algorithm in TensorFlow 
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10.4 Incorporating ANN into an IM drive control system 

It must be noted that the ANN discussed in the previous section cannot be used alone 

in an IM drive control system. This is because an IM drive cycle consists of both transients 

and steady state operating regions. Also, the ANN is only generating the set points for the 

stator current of the IM. A current controller is required to control the voltage sources so 

that the stator current takes on that value. Based on this, the integration of the Template 

trained ANN as part of the IM drive control system is illustrated in Figure. 10.8.  The main 

components of the integrated controller are: 

1. ANN block for generating the optimal control trajectories. 

2. Feedback controller for motor speed and rotor flux. 

3. Supervisory logic to decide when to enable the ANN and provide input data to ANN. 

4. Current controllers for the IM d-axis stator currents which can take set points from either 

the ANN block or the feedback controller. 

The optimal trajectories generated by the trained ANN will be referred to as Regime 

IV. 
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Figure 10.8. Template trained ANN block as a part of the IM drive control system 

 

The operations within the supervisory logic are illustrated in the flowchart diagram 

shown in Figure 10.9. The ANN’s output is enabled when a change in the speed setpoint 

is detected by the supervisory logic. Once the rotor speed reaches the reference speed, the 

supervisory logic disables the ANN output and enables the output to the feedback 

controllers. 
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Figure 10.9. Supervisory logic to implement the ANN based IM optimal controller 
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10.5 Performance of the ANN Optimal Control 

As stated previously the role of the ANN is to emulate optimal control trajectories. The 

training is said to be successful when the ANN can generate optimal control trajectories 

approximating the numerical solution using inputs it has not seen during the training. Fig. 

10.10 shows the output produced by a trained ANN compared to the actual control 

trajectory from the numerical solution. To test the effectiveness of the ANN optimal control 

system (ANN + supervisory logic), a real-time simulation was performed using a 7th order 

IM model (i.e. IM model with 7 state variables). The inputs (to the ANN) produced by the 

supervisory control and outputs from the ANN during real-time simulation are shown in 

Figure. 10.11 and Figure 10.12 respectively. Detailed results can be found in [50]. 
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Figure 10.10. ANN output emulating solution of IM optimal control problem 
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Figure 10.11. Input from supervisory logic to ANN during real-time simulation. 

 
Figure 10.12. Output from ANN during real-time simulation. 
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It can be observed that the ANN optimal control system is able to reach the setpoint in 

the specified time. Discontinuities in the current set points occur whenever the changeover 

from the neural network control to speed feedback control occurs. From Figure. 10.11 input 

is given to a neural network only during the transient time periods. As soon as the IM 

achieves its reference speed, the input is switched off. 

10.6 Summary 

In this chapter, the concept of using an ANN for designing control systems was 

discussed. The use of numerical solutions of optimal control trajectories for training an 

ANN controller was proposed. MATLAB and TensorFlow based ANN training errors were 

presented. Finally, incorporating the ANN into the IM drive control scheme was explained. 

The outputs from the ANN were shown to be emulating the numerical solution of the IM 

optimal control problem. The ANN Optimal control system was implemented in 

Simulink/MATLAB will be used in the next chapter to perform real-time control of a finite 

element method model of the IM. 
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11 REAL-TIME SIMULATION RESULTS USING ANN OPTIMAL CONTROL 

SYSTEM AND FINITE ELEMENT MODEL OF IM 

 

In this Chapter, real-time simulation results using the ANN optimal control system and 

the finite element (FE) model of the IM are shown. But first, some experimental results 

obtained by applying a standard rotor field oriented control (FOC) on IM drive hardware 

are presented.   

11.1 Experimental Results of IM Field-oriented Control (FOC) 

A schematic of the experimental hardware setup to perform FOC is shown in Figure 

11.1. Snapshots of the actual hardware setup available in the Electric Power and Energy 

System laboratory at UND are shown in Figure 11.2 and Figure 11.3. The experimental 

measurement results for the rotor speed, input power, rotor flux, and stator d-axis current 

are shown in Figures 11.4, 11.5, and 11.6. 
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Figure 11.1. IM experimental hardware setup 
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Figure 11.3. dSPACE controller board and ControlDesk UI 
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Figure 11.4. Speed and power input. 

 
Figure 11.5. Rotor flux and d-axis current corresponding to change in rotor speed. 
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Figure 11.6. Change in rotor flux for change in d-axis current. 
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the rotor speed. The small oscillations at steady state occur because the resolution of the 

speed encoder is only 12.5 RPM.  The change in speed also corresponds to change in the 

q-axis current as expected. However, there are some disturbances in the d-axis current 

because in a practical IM (unlike the current fed FOC theoretical model of the IM) a full 

decoupling of d- and q-axis flux and current components does not exist. The increase in 

stator current is a first order response rather than a step because the dynamics of the current 

controller slows down the increase in current. Consequently, the rotor flux response is also 

not a first order response.  
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An ideal conclusion to this research work would have been the testing of the developed 

real-time IM optimal control on a hardware of more than 1 kW rating. However, the power 

rating of the currently available IM drive hardware in the Electric Power and Energy 

Systems Laboratory of the Department of Electrical Engineering at UND is much below 

that. The no-load power consumption rating of the available IM in the laboratory is in the 

range of 2-3 W. Reliable power measurements are not feasible at this kind of power levels. 

11.2 ANN Controller deployed on Real-Time Controller Hardware 

It is still necessary to verify that the ANN controller and the supervisory logic will work 

when deployed in a real-time controller hardware. For this, an ANN controller was trained 

to emulate the output of a PI speed controller for a DC motor. The ANN inputs consisted 

of reference rotor speed, measured rotor speed, measured armature current, and output was 

armature voltage. The ANN architecture consisted of a single hidden layer with 3 neurons 

(same as ANN optimal control). The ANN controller was found to successfully emulate 

the output of the PI controller and maintain reference speed. A detailed explanation of the 

training procedure and results can be found in [68].   

11.3 IM Finite Element Model and Co-simulation using Simulink and ANSYS Maxwell 

In this work, the ANSYS Maxwell software [69] is used to develop a Finite Element 

(FE) model of the IM. The ANN optimal controller that was designed and discussed in 

Chapter 10 is implemented in the Simulink environment of MATLAB.  ANSYS Maxwell 

software has the capability of performing a transient co-simulation with Simulink of 

MATLAB [70]. As such, both Maxwell and Simulink programs are run concurrently to 

perform a co-simulation of the IM FE  model and the  ANN controller of Chapter 10.  [71] 

and [72] are recent works which take advantage of co-simulation to analyze electric drives. 
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The RMxprt tool inside ANSYS Maxwell provides some predesigned models of 

different electric machines. This work used the 4-pole IM model. The spatial dimensions 

and circuit parameters of the IM are given in Appendix II. It is possible to import the IM 

design from RMxprt into Maxwell as a 2-dimensional (2D) FE model. An illustration 

showing a quarter section of the 2D FEM model is shown in in Figure 11.7. Even though 

the 3D FEM model of the IM gives a more detailed representation of its dynamics, the 

large computation time needed to complete the simulation on a standard desktop PC made 

the author of this dissertation choose a 2D model instead. In order to further reduce the 

computation times, the 2D FEM is further divided into four symmetrical sections, only one 

of which is used in the simulation.   

It is observed from the figure that the geometry of the IM has been discretized into 

triangles, also known as the finite element meshes of the model. The number of meshes 

changes depending upon the accuracy of the results required. Usually, the simulation starts 

with a coarse mesh which is further refined into smaller meshes as the simulation 

progresses.  

 

Figure 11.7. Quarter section of IM FEM model simulated in ANSYS Maxwell 
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It is not possible to directly connect Maxwell to the Simulink tool of MATLAB 

software where the ANN optimal controller of Chapter 10 is implemented. ANSYS 

Simplorer, however, provides a common platform for linking the control system in 

Simulink with the IM model in Maxwell [73] as illustrated in Figure 11.8. It should be 

noted that all three software programs (Simulink, Maxwell, and Simplorer) were running 

simultaneously during the simulation. 
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Figure 11.8. Co-simulation using Simulink, ANSYS Simplorer, and Maxwell 

11.4 Results 

The test drive cycle of this simulation study is 3 seconds long and consists of 2 

reference speed-load torque changes. The simulation was done on a PC with Intel Core i7 

processor and 8 GB RAM. The complete simulation run took about 4 hours in real-world 

time. The four control regimes detailed in the previous chapters of this dissertation are 

applied to each drive cycle of this simulation study. The performance parameters of 

comparison are: a) settling time, b) peak electromagnetic torque, c) peak rotor flux 

(estimated), d) integral absolute error (IAE), e) cumulative electrical energy input, f) 

cumulative mechanical energy output, g) cumulative energy losses, and h) cycle energy 

efficiency. 
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The optimal control problem has been designed so as to allow the IM to reach steady 

state within 0.5 seconds after changing the reference speed. During the first second of 

simulation, the IM reaches a steady state speed of 50 rad/s and a rotor d-axis flux of 0.5 

Wb. Hence, the 1st second will be similar for all the regimes. Next, the reference speed is 

changed from 50 rad/s to 100 rad/s at the end of the 1st second and to 150 rad/s at the end 

of the 2nd second. A load with a torque of 10 Nm is applied at the 1s. The input control 

trajectories were calculated using the expression for Regime I, Regime II, and Regime III. 

Regime IV refers to the optimal control trajectories generated by ANN optimal control 

system in Chapter 10. A video of the simulation has been uploaded by the author on 

YouTube and can be accessed using [74]. 

The rotor speed and electromagnetic torque profiles for the four control regimes 

corresponding to the duty cycle explained above are given in Figure 11.9 and Figure 11.10, 

respectively. The trajectory of rotor d-axis flux w.r.t. time that was estimated using an 

observer is shown in Figure 11.11. The d- and q-axis current trajectories (control inputs) 

w.r.t. time for all four regimes are shown in Figure 11.12 and Figure 11.13, respectively. 

The controllable energy losses and the mechanical energy output w.r.t. time are plotted in 

Figure 11.14, and Figure 11.15, respectively. 



 

153 

 

 
Figure 11.9. IM rotor speed profile corresponding to drive cycle. 

 
Figure 11.10. IM electromagnetic torque trajectories for given drive cycle 
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Figure 11.11. IM rotor d-axis flux trajectories for given drive cycle 

 
Figure 11.12. Comparing measured stator d-axis current for drive cycle 
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Figure 11.13. Comparing stator q-axis current for drive cycle 
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Figure 11.14. Comparing IM energy losses during the drive cycle. 

 
Figure 11.15. Comparing mechanical energy output at shaft during the drive cycle. 
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problem. The shape of the optimal current trajectories was similar to those obtained from 
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though the rotor speed and the rotor flux feedback from the 2-D FEM model had a small 

amount of noise.  
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in Chapter 8 and Chapter 9 of this dissertation, and further validate the utility of the optimal 

current trajectories. 

Table 11.1. Comparing performance parameters over the drive cycles for all regimes 

Regime Max 

Settling 

Time 

(s) 

Peak 

Electromagnetic 

Torque  

(Nm) 

Peak d-

axis 

Flux 

(Wb) 

IAE w.r.t. 

reference 

speed 

Energy 

Losses 

(J) 

Mechanical 

Energy 

Output (J) 

Energy 

Efficiency 

(%) 

I 0.30 69 1.95 8.6 534 2456 82.4 

II 0.25 79 0.91 7.4 491 2472 83.4 

III 0.70 26 1.88 31.5 399 2208 84.7 

IV 0.46 47 1.22 18.5 325 2400 88 

 

11.6 Summary 

In this chapter results from a field oriented control experiment using the IM drive 

hardware and software available in the Electric Power and Energy Systems laboratory at 

UND was shown. It was shown that the power rating of IM drive hardware was too low to 

get meaningful results if IM optimal control solutions were applied. Hence a co-simulation 

using an FE model in ANSYS Maxwell was performed. It was found that the ANN optimal 

control showed noticeable gains in energy efficiency over a drive cycle when compared to 

conventional speed control algorithms.  
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12 CONCLUSION AND FURTHER WORK 

The goal of this dissertation work was to design an optimal control law for an induction 

machine to minimize the transient energy losses. The following contributions were made: 

1.It was shown that it is possible to incorporate energy losses as well as the terminal costs 

related to the rotor field oriented induction machine into a single cost functional. 

Furthermore, it was shown that the necessary conditions arising from Pontryagin’s 

minimum principle can be numerically solved for given set of initial and final conditions 

(rotor flux, rotor speed, and load torque). From the numerical solutions, it could be 

noticed that the shape of the optimal flux trajectory (during transient) was a conic section, 

while the q-axis current trajectory (during transient) could either be a conic section or a 

constant value function. 

2.Prototype analytical expressions to describe the conic and constant value optimal rotor 

flux and stator current trajectories for a generic rotor field oriented IM were formulated. 

The parameters related to the expressions were derived as a function of 𝑥, which is 

defined as the ratio of the rotor flux value at the vertex of the conic section to the rotor 

flux value at start of transient. It was found that the energy efficiency obtained while 

accelerating/decelerating an IM using optimal control trajectories remained consistent. 

Also, the sensitivity of the optimal energy efficiency to parameters like moment of 

inertia, change in reference rotor speed, and rotor time constant were analyzed.  

3. A feedforward neural network was trained using the numerical solutions following the 

template training concept so that it could emulate the solution of the optimal control 
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problem. The trained neural network was incorporated into a supervisory control system 

(ANN optimal control system) that could generate the optimal control trajectories for q-

axis and d-axis current IM in real time during transients. Finally, results from a real-time 

simulation using a finite element model of the IM for a drive cycle was presented which 

indicated at least 3% improvement in energy efficiency was possible over conventional 

speed control loops when using the ANN optimal control system. 

12.1 Further work 

The concept of manipulating rotor flux to improve efficiency can be extended to other 

types of AC machines where rotor flux is controllable, like a wound rotor synchronous 

machine. Electric vehicle drive train application offers the biggest potential for energy 

savings due to transient energy loss minimization is probably in electric car drivetrains.  

The additional dynamics associated with drivetrains can be incorporated into the problem. 

Also, the ANN optimal control system developed in this dissertation could be modified to 

work as part of the EV drive train control loops. 
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APPENDIX I 

Permanent magnet DC motor specifications: 

Table I. Parametres of PMDC machine (from [75]) 

Parameter (unit) Unit Value 

Armature winding resistance ohm 2 

Torque constant Vs 3 

Terminal voltage V 600 

Rated armature current A 5 

Starting current A 300 
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APPENDIX II 

 

Induction motor specifications 

Table I. Parameters of Type I IM (from ANSYS RMxprt) 

Parameter (unit) Unit Value 

Rated Power kW 7.5 

Terminal voltage V 400 

Rated armature current A 15 

Number of poles  4 

Rated frequency Hz 60 

Stator winding resistance ohm 0.669 

Rotor winding resistance ohm 0.524 

Resistance corresponding to core loss ohm 800 

Stator leakage inductance  mH 1.6 

Rotor leakage inductance mH 2.2 

Mutual inductance mH 97 

Moment of inertia kg-m2 0.2 

Outer Diameter mm 210 

Inner diameter mm 148 

Length mm 250 

 

 

Table II. Parameters of Type II IM (from [48]) 

Parameter (unit) Unit Value 

Rated Power kW 4.0 

Terminal voltage V 400 

Rated armature current A 7.5 

Number of poles  4 

Rated frequency Hz 50 

Stator winding resistance  ohm 1.3 

Rotor winding resistance ohm 0.93 

Resistance corresponding to core loss ohm 2000 

Stator leakage inductance mH 12.6 

Rotor leakage inductance mH 5.3 

Mutual inductance mH 181.8 

Moment of inertia kg-m2 0.036 
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Table III. Parameters of Type C IM (from [15]) 

Parameter (unit) Unit Value 

Rated Power kW 2.4 

Terminal voltage V 460 

Rated armature current A 4 

Number of poles  4 

Rated frequency Hz 60 

Stator winding resistance ohm 1.77 

Rotor winding resistance ohm 1.34 

Stator leakage inductance ohm 14 

Rotor leakage inductance mH 12.1 

Resistance corresponding to core loss mH  

Mutual inductance mH 369 

Moment of inertia kg-m2 0.025 
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APPENDIX III 

 

The steady state power losses may be written as, 
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The first derivation of the power losses with respect to rotor d-axis flux is given by, 
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Hence the optimal steady state flux is given by, 
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APPENDIX IV 

 

Expressing parameters in conic equation in terms of flux. 
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Expressing parameters in conic equation in terms of current. 

Assuming that the trajectory passes through the points 𝑖𝑞𝑠𝑡0 , 𝑖𝑞𝑠𝑚  and 𝑖𝑞𝑠𝑓
 at 𝑡 = 0, 𝑡𝑡𝑓2  and 𝑡𝑡𝑓 , respectively, we can calculate the constants a2, b2, c2 .. 
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APPENDIX V 

Derivation of d-axis component of losses  

Analytical proof of optimality 

For simplicity assume, 
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The stator d-axis current loss for optimal can then be expressed by, 
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The stator d-axis loss for Regime I can then be expressed by 
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Derivation of q-axis component of energy losses  for Trajectory A 

 

In case of Regime 1, 
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Integrating speed, 
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Equating the displacements, 
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Substituting, we can find the expression for optimal q-axis current, 
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Integrating, 
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For q-axis component of rotor losses, 
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Integrating, 
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Derivation of q-axis component of energy losses for Trajectory B 

 

For Optimal Trajectory B, 
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The stator q-axis power losses can then be written as, 
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Integrating to get energy losses, 
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APPENDIX VI 

Finding optimal 𝑥 for trajectory A, 

       

   
 

_ _ _ _ _ _ _ _

2 222
2

1

3 42 2

2

1

8 4 3 116 16
1

3 15 3

30 30

4 1 4 1

16 2 216 4

15 3 15

total stator d optA rotor d optA stator q optA rotor q optA

loss loss loss loss loss

a

drr

r

total

rloss

E E E E E

x x x
E x

R

E E
x x

xdE x
E

dx





   

              

 
 

 
    

 

   

 
 

 

 
 

2

3 43

2
2 2

12

3 44

2 116

3

240
0

4 1

23216 4 16

15 3 15 3

2880
0

4 1

a

dr

r

atotal

drloss r

r

x

R

E E
x

d E
E

dx R

E E
x





 
 
 


  



            

  


 

Finding optimal x for trajectory B, 
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