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ABSTRACT 

The goal of this research was to evaluate and compare two types of brain computer 

interface (BCI) systems, P300 and steady state visually evoked potentials (SSVEP), as 

spelling paradigms and combine them as a hybrid approach. There were pilot experiments 

performed for designing the parameters of the SSVEP spelling paradigm including peak 

detection for different range of frequencies, placement of LEDs, design of the SSVEP 

stimulus board, and window time for the SSVEP peak detection processing. The next 

experiment was to evaluate the SSVEP spelling paradigm. Six subjects participated in the 

task. The accuracy of each frequency and average accuracy for each subject were 

considered.  The second experiment was designed to compare the performance and 

accuracy of SSVEP, P300, and the combination of both paradigms as a simultaneous task. 

Ten subjects were considered for performing this experiment. Overall the average accuracy 

of the SSVEP spelling paradigm was 80.00 % and higher than the P300 spelling paradigm 

average accuracy which was 72.50 %, and both of the spelling paradigms have better 

accuracy than the hybrid paradigm with the average accuracy of 64.39 %. 

 



 

1 

 

Chapter 1. BACKGROUND AND LITERATURE REVIEW 

1.1 Brain Computer Interface 

A Brain-Computer Interface (BCI) system can provide a communication method to 

convey brain messages independent from the brain’s normal output pathway [1]. Brain 

activity can be monitored using different approaches such as standard scalp-recording 

electroencephalogram (EEG), magnetoencephalogram (MEG), functional magnetic 

resonance imaging (fMRI), electrocorticogram (ECoG), and near infrared spectroscopy 

(NIRS) [1-4]. However, EEG signals are considered as the input in most BCI systems. In 

this case, BCI systems are categorized based on the brain activity patterns such as event-

related desynchronization/synchronization (ERD/ERS), steady-state visual evoked 

potentials (SSVEPs), P300 component of event related potentials (ERPs), and slow cortical 

potentials (SCPs) [5-16]. In this thesis, the focus is on the SSVEP and P300 types of BCI 

which will be explained in details in the following sections.  

1.2 Electroencephalogram 

Electroencephalography is a technique for acquiring brain signals based on 

electrical activity of brain neurons. The signal is called electroencephalogram (EEG) [1]. 

As a noninvasive technique, for recording EEG, surface electrodes are used. There are 

many features which can be extracted from EEG, for example, six brain rhythms can be 

distinguished in EEG based on the differences in frequency ranges; delta (1- 4 Hz), theta 
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(4-7 Hz), alpha (8-12 Hz), mu (8-13 Hz), beta (12-30 Hz), and gamma (25-100 Hz). The 

delta and theta rhythms occur in high emotional conditions or in a sleep stage. The alpha 

rhythm happens in awake and eyes closed relax condition. The oscillation in alpha rhythm 

has smooth pattern. The beta rhythm pattern is desynchronized and the condition is the 

normal awake open eyes. The gamma rhythm can be acquired from somatosensory cortex 

and mu rhythm from sensorimotor cortex. In Figure 1, EEG signal is shown. 

 

Figure 1. EEG Signal. 

1.3 P300-based Brain Computer Interface 

1.3.1 The P300 Component 

Event related potentials (ERPs) are the measurement of brain responses to specific 

cognitive, sensory or motor events. One of the main approaches towards BCI is based on 

ERPs. P300 is a major peak and one of the most used components of an ERP. In P300-

based BCIs, intention of the subjects is measured using the P300 component of the brain 
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evoked response [17]. After stimulus onset, positive and negative deflections occur in the 

EEG. These deflections are called event-related potential (ERP) components. Depending 

on the latency of these deflections, they are grouped as “exogenous components” and 

“endogenous components” [10]. The exogenous components occur until about 150 msec 

after the eliciting stimulus. The endogenous components have longer latency. The largest 

positive deflection that occurs between 250 and 750 msec after the stimulus onset is called 

“P300”. The P300 component is the most used ERP component in BCI systems. The 

paradigm that elicits P300 is called the “oddball paradigm” [18]. In an oddball paradigm, 

events that elicit the P300 fall into two classes in which one of the classes is less frequent. 

Inter-stimulus interval time and the frequency of the oddball stimulus are among the 

parameters that determine the amplitude of the P300 component. The first BCI P300-based 

system was introduced by Farwell and Donchin for spelling characters in 1988 [13]. 

1.3.2 Properties of P300 

The spatial amplitude distribution is strongest in the occipital region of brain and is 

symmetric around central location Cz recorded based on the 10-20 international system 

[19]. The spatial amplitude distribution of 10-20 international system and the electrodes 

that P300 is typically recorded from are shown in Figure 2. In terms of temporal pattern, 

P300 wave amplitude is typically in the range of 2 to 5 µV with duration of 150 to 200 

msec as shown in Figure 3 which is the ensemble of 10 P300 wave. Considering the P300 

low amplitude relative to background activities of the brain (in the rage of 50 µV), it is 

clear that P300 detection requires special signal processing. One of the simplest approaches 

is ensemble averaging EEG over multiple responses to enhance P300 amplitude to identify 

it while suppressing background EEG activities. 
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Figure 2. Recoding of EEG based on 10-20 system and location of the electrodes 

typically used for P300 detection [19]. 

  

Figure 3. Temporal pattern of P300 component. 
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P300-based BCI has been used as one of the most widely used BCI systems since 

1988 [1]. New advancements in inexpensive and portable hardware made it possible to 

have real-life application outside of laboratory environment [17] [1] [20]. P300-based BCI 

has been used from controlling a wheelchair for helping disable people to a virtual 

keyboard for spelling word and interacting with computers. This type of BCI systems 

possesses the potential to improve the quality of life. P300-based visual speller paradigms 

are attracting much attention as they could provide means to communicate letters, words, 

and simple commands to computer directly from the brain. In the following sections, we 

will review the classical speller paradigm and discuss current and future trends in this area. 

Processing and successful use of P300 wave in a BCI application requires several 

processing steps. First of all, the recorded EEG data have to be processed to reduce the 

effect of noise. A feedback mechanism is required where a visible signal is presented in 

the monitor correlated with the recorded signal. A pattern recognition or classification 

algorithm has to be developed to identify the P300 wave in the recorded ERP epochs. The 

algorithm parameters should be adjustable to adapt according to the change of user 

characteristics [21] [17]. The classical paradigm for P300-based BCI speller was originally 

introduced by Farwell and Donchin in 1988 [13]. This Row-Column (RC) paradigm is the 

most popular speller format. It consists of 6 × 6 matrix of characters as shown in Figure 4. 

This matrix is presented on computer screen and the row and columns are flashed in a 

random order. The user is instructed to select a character by focusing on it. The flashing 

row or column evokes P300 response in EEG. The non-flashing rows and columns do not 

contribute in generating P300 [1]. Therefore, the computer can determine the desired row 

and column after averaging several responses. Finally, the desired character is selected.  
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Figure 4. A typical row/column paradigm. 

It is interesting to note that P300-based BCI did not receive much attention when it 

was first proposed. However, recent trend is quite different where P300 BCI has emerged 

as one of the main BCI approaches. The researchers have focused on identifying the scopes 

of improvement of the traditional paradigm by introducing new ways of flashing, 

introducing colors, or investigating other ways to enhance the ERPs. Much focus has put 

on applying advanced digital signal processing techniques and classification methods in 

order to improve the classification results. Also, there have been several attempts to 

introduce new paradigms to evoke P300 potentials. Figure 5 shows such a different 

approach which is called single character (SC) paradigm that only single character is 

flashed instead of a row or column. The SC paradigm randomly flashes one character at a 

time with a delay between flashes. The delay in SC speller is longer than the delay in RC 
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speller. Though SC speller is slower than RC speller, SC speller can produce larger P300 

amplitude. 

 

Figure 5. Single character paradigm where each character is flashed [1]. 

Checkerboard (CB) speller is another paradigm proposed to overcome a problem 

associated with RC speller [17]. This drawback is arising from the distraction or inherent 

noise due to row/column association [17]. CB speller effectively reduces these two 

limitations as the characters are arranged in a checkerboard style as shown in Figure 6 CB 

speller also increases Information Transfer Rate (ITR) [20]. 

 

Figure 6. Checkerboard paradigm [20]. 
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The region-based (RB) paradigm was proposed by Fazel-Rezai et. al. in 2009 [22]. 

It is a two-level speller where the regions have to flash instead of rows and columns. In the 

first level, characters are placed in several regions (seven groups) as shown in Figure 7. 

The users are instructed to focus attention on a specific character in one of the seven 

regions. After several flashes the desired region is selected. In the second level, characters 

are distributed following the same rule used in the first level and each character flashes in 

similar order. After several flashes, the desired character is identified [22]. 

 

 

 

Figure 7. Region based paradigm where a set of characters in level 1 (E) are expanded in 

level 2 for spelling character “B” (F). 

It is reported that RB speller has decreased the adjacency problem significantly [20] 

[22] [17] [23]. The RB and CB paradigms show new directions in BCI speller paradigms 

apart from RC speller. There has been much progress in bringing BCI technology out of 

lab environment to real-life applications. BCI has widely been studied in helping disable 

people, for example, enabling controlling a wheel chair using brain signals [24]. The other 

promising applications are in managing smart home environment, controlling a virtual 

reality environment, and next generation gaming [25].  
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1.3.3 P300 Feature Extraction and Classification 

For P300 detection, time domain or time-frequency domain features such as 

wavelets are appropriate. Classifiers such as Fischer’s linear discriminant analysis (FLDA), 

Bayesian linear discriminant analysis (BLDA), stepwise linear discriminant analysis 

(SWLDA), and support vector machine (SVM) are utilized [25] [26]. 

1.4 SSVEP-based Brain Computer Interface 

1.4.1 SSVEP Stimulus 

Evoked response in EEG signals to repetitive visual stimulations is called SSVEP. 

In a SSVEP BCI paradigm, specific frequencies are allocated to the repetitive stimuli. For 

SSVEP detection, the frequency spectrum of the EEG is computed. Around the frequency 

of the repetition of stimulus in which the subject focuses, there will be peak on the 

frequency spectrum. By detecting this frequency, an intention of the subject can be 

detected. This can be translated to a control signal for a BCI system. One of the most 

important issues about SSVEP BCIs is the gaze dependence [9, 27]. It is shown that SSVEP 

BCIs are not entirely dependent on muscle-based gaze control. Another issue is that in 

some users, the flickering stimulus is annoying and produces fatigue. Using higher 

frequencies for the flickering stimuli reduces the annoyance, but on the other hand, it is 

harder to detect the SSVEP [6, 28, 29]. 

1.4.2 Properties of SSVEP 

Compared to other modalities for BCI approaches, such as the P300-based and the 

SCP BCIs, SSVEP-based BCI system has the advantage of higher accuracy, higher ITR 

and short/no training time and fewer EEG channels are required. However, similar to other 
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BCI modalities, most current SSVEP-based BCI techniques also face some challenges. 

Two important features of each BCI system are information transfer rate and required 

training time. A general comparison of different BCI approaches is shown in Figure 8 [30]. 

 

Figure 8. A general comparison of SCP, ERD/ERS, P300, and SSVEP with 

respect to their training time and information transfer rate. 

1.4.3 SSVEP Detection 

The process of detecting patterns from EEG is divided to three steps [21]; signal 

pre-processing, feature extraction, and classification. The first step is to remove noise such 

as artifacts or power line noise which is added to EEG. So filtering is the first step in EEG 

signal pre-processing. Band pass and notch filters are the most common filters utilized in 

EEG signal filtering. In the next step, features that are selected in feature extraction step 

and the type of classifier should be chosen based on the type of BCI. For SSVEP feature 

extraction and classification, different methods such as the Fast Fourier transform (FFT), 

the canonical correlation analysis (CCA), stimulus-locked inter-trace correlation (SLIC), 

and the common special patterns (CSPs) have been used  [9] [31]. Considering the 
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frequency spectrum of the signal, and utilizing the frequency domain features and power 

spectral density (PSD), is one of the basic methods for SSVEP detection as the signal has 

higher peak at the stimulation frequency and its harmonics. The frequency spectrum of 

EEG signal in a SSVEP experiment is shown in Figure 9. In Figure 10 , and Figure 11 

peaks at the stimulation frequency and its first harmonic are shown for the signal with 

stimulus frequency of 17 Hz respectively.   

  

Figure 9. Frequency spectrum for a typical EEG signal. 

 

Figure 10. Frequency spectrum of EEG shows higher amplitude at the stimulation 

frequency of 17 Hz. 
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Figure 11. Frequency spectrum of EEG shows higher amplitude at the first harmonic of 

the stimulation frequecy, 34 Hz. 

1.4.4 Other types of Brain Computer Interface 

Slow negative voltage shifts that occur in the EEG recorded over sensorimotor 

cortex, while actual or imagined movement happens [9] are called SCP. SCP-based BCI 

consists of series of trials [32]. Early SCP BCIs were especially slow, since in each trial 

only one selection was possible and the time needed for each selection was at least 10 sec. 

The temporal efficiency was improved by Kubler et al. to 4 sec [33]. Shortening the time 

process further was not possible because users were uncomfortable with the shortened trial 

time. Over the past decade studies about the SCP approach have been limited because of 

several SCP BCI problems, which reduce the applicability of this type of BCI. Among 

others, SCP BCIs have three main problems: poor multidimensional control, high 

probability of error, and long-term training.  
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Rhythmic activity of EEG in terms of event-related desynchronization 

/synchronization (ERD/ERS) has been used as one of the sources in BCI [1]. Motor 

imagery is one way to induce changes in ERD/ERS and has been used in many BCI systems 

[34]. During motor imagery of movements, ERD occurs predominantly over the 

contralateral brain motor area and, therefore can be used as a signal for a BCI system. 

ERD/ERS BCIs have been used in different applications such as achieving two-

dimensional cursor control. 

1.5 Hybrid Brain Computer Interface 

1.5.1 Introduction 

Each BCI type has its own shortcoming and disadvantages. To utilize the 

advantages of different types of BCIs, different approaches are combined, called hybrid 

BCIs [15, 16]. In a hybrid BCI, two types of BCI systems can be combined. It is also 

possible to combine one BCI system with another system which is not BCI-based, e.g., 

combining a BCI system with an electromyogram (EMG)-based system. However, one can 

debate if this type of system should be defined as hybrid BCI. In the rest of this section, 

we assume that if an EEG BCI system is combined with another physiological signal (e.g., 

EMG) based system, a hybrid BCI system will be constructed. 

Although different BCI methods can be combined, it should be noted that not all 

combinations of different brain imaging methods are feasible and possible. One of the 

limiting factors is the technology. For example, although MEG is a very high resolution 

brain imaging technique, it is not practical to use it when subjects need to move around. In 

addition, different techniques and their combinations should be utilized based on the 

application that the hybrid BCI is going to be used for. The main purpose of combining 
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different systems to form a “hybrid” BCI is to improve accuracy, reduce errors, and 

overcome disadvantages of each conventional BCI system. Different types of hybrid BCI 

systems can be defined according to the types of systems which are combined, how systems 

are joined, and what types of inputs are considered. In non-hybrid BCIs, based on the 

property of EEG signals used as the input of BCI system, four major EEG-based BCIs are 

considered: SSVEP, P300, SCP, and ERD/ERS.  

In general, in a hybrid BCI, two systems can be combined sequentially or 

simultaneously [35]. In a simultaneous hybrid BCI, both systems are processed in parallel. 

Input signals used in simultaneous hybrid BCIs can be two different brain signals, one brain 

signal, or one brain signal and another input. In sequential hybrid BCIs, the output of one 

system is used as the input of the other system. This approach is mostly used when the first 

system task is to indicate that the user does not intend to communicate or as a “brain 

switch” [35].  

The combinations of the BCI types and a summary of important features of different 

hybrid BCIs which are discussed in this chapter are shown in Table 1 [36]. 

Table 1. A comparison of several different BCI hybrid systems. 

Paper # Hybrid 

Type 

System 

Organization 

Improvement Number 

of 

Subjects 

Classification 

[15] ERD, 

SSVEP 

Simultaneous Accuracy significantly 

improved compared to 

ERD and slightly 

better than SSVEP 

14 LDA 

[16] ERD, 

SSVEP 

Sequential False positive rate was 

reduced 

6 FLDA 

[27] ERD, 

SSVEP 

Sequential Application of BCI for 

FES triggering was 

improved 

3 Filters and 

thresholds 

[28] ERD, 

SSVEP 

Simultaneous Feedbacks 

were added to the 

work done in [15] 

12 LDA 
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1.5.2 SSVEP-based BCI combined with other types of BCIs 

In [15], the proposed hybrid was evaluated during the task and was applied under 

three conditions: ERD BCI, SSVEP BCI, and ERD-SSVEP BCI. During the ERD BCI 

task, two arrows appeared on the screen. When the left arrow appeared, subjects were 

instructed to imagine opening and closing their left hand. For the right arrow, subjects 

imagined opening and closing the right hand. In the SSVEP task, subjects were instructed 

to gaze at either left (8 Hz) or right (13 Hz) LED depending on which cue appeared. In the 

Table 1. cont. 

Paper # Hybrid 

Type 

System 

Organization 

Improvement Number 

of 

Subjects 

Classification 

[29] P300, 

SSVEP 

Sequential Improved ITR 10 FLDA and 

BLDA 

[30]  P300, 

SSVEP 

Sequential New application 

(smart home) 

3 SVM 

[31]  P300, 

ERD 

Sequential Improvement in 

application 

(wheelchair control) 

2 Frequency 

analysis 

 

[32] 

P300, 

ERD 

Sequential Expand control 

functions in virtual 

environment 

4 SVM and 

FLDA 

[33] P300, 

ERD 

Simultaneous Increase reliability 4 Fisher’s 
discriminate 

analysis 

[34] ERD, 

NIRS 

Simultaneous Improvement in 

classification accuracy 

and performance 

14 LDA 

[35] EEG, 

EMG 

Simultaneous Improvement in 

performance 

12 Frequency 

analysis and 

Gaussian 

classifier 

[36] ERD, 

EOG 

Simultaneous Improvement in 

classification 

accuracy, reduction in 

number of electrodes 

and training time 

3 Frequency 

analysis 

[37] ERD, 

EOG 

Sequential Improvement in 

performance 

7 LDA 
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hybrid task, when the left arrow was shown, subjects were imagining the left hand opening 

and closing while gazing at the left LED simultaneously. The task was similar for the right 

arrow. Results show the average accuracy of 74.8% for ERD, 76.9% for SSVEP, and 

81.0% for hybrid. The number of illiterate subjects, who achieved less than 70% accuracy 

[37] , reduced to zero from five using the hybrid approach. 

A hybrid SSVEP/ERD BCI was introduced in [16] for orthosis control application. 

The SSVEP-based BCI was utilized for opening the orthosis at the activating stage, and an 

ERS-based BCI was used as a switch to deactivate the LEDs that were mounted on the 

orthosis for SSVEP evocation in the resting stage. The SSVEP-based stage entails four 

steps for opening and closing the orthosis completely.  Frequencies 8 and 13 Hz LEDs 

were used for the opening and closing tasks, respectively. During training sessions, subjects 

were instructed to close the brain switch. Then, they were instructed to open and close the 

orthosis by gazing at the LEDs mounted on the orthosis. In the next stage, the SSVEP-

based BCI was turned off by opening the brain switch. This switch was kept open during 

the resting period. At the end of the resting period, the brain switch was closed, and SSVEP 

task was repeated. After this experiment, subjects undertook the SSVEP-based BCI task 

alone and the LEDs were flickering during the resting period. For SSVEP detection, the 

power density spectrum was used. For the activity period the true positive rate and false 

positive rate were measured and for resting period the false positive rate was measured. It 

was shown that false positive rate was reduced by more than 50% when hybrid BCI was 

utilized.  

SSVEP and ERD were combined in [38] to make a two-stage hybrid BCI system 

for triggering a Functional Electrical Stimulation (FES) system. In the first stage, SSVEP 
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was presented for object selection. For evoking SSVEP, three LEDs with 15, 17 and 19 Hz 

frequencies were considered. The EEG was acquired from O1, O2, and Oz channels while 

considering Cz as a reference. The object selection task represented three basic grasps: 

palmar, lateral and precision grasp. For the analysis, Oz channel was chosen as the SSVEP 

activity in this channel and it was more noticeable compared to other channels. For SSVEP 

detection, Butterworth’s band pass filters were used to separate frequency bands and a 

threshold for each subject was fixed manually. After selecting one of the three grasp 

options based on SSVEP, the next task was reaching movement in which ERD-based BCI 

was used. EEG signals for this task were recorded from the C3 channel. The Cz channel 

was used as the reference point. The signal was filtered utilizing Butterworth’s band pass 

filters. The detection algorithm was based on the real-time mu and beta band-power 

estimation. The signal was compared with the manual adjusted threshold and a drop under 

the threshold was considered as a movement command. 98.1% accuracy was achieved in 

the SSVEP stage. Using mu and beta bands, 100% and 98.1% accuracy were achieved, 

respectively. This study showed that the presented hybrid BCI can be considered as one of 

the appropriate combinations for FES triggering application. 

In [39], subjects found the hybrid BCI slightly more difficult than non-hybrid BCIs 

and ERD and SSVEP were combined for a simultaneous hybrid task. Bipolar channels C3, 

Cz, C4, O1, and O2 were utilized for EEG recording. After training sessions, in the online 

run for SSVEP task, a cue pointed to the top LED which was flickering with 8Hz and then 

pointed to the bottom 13 Hz LED. Subjects received a real-time feedback from a 

rectangular appearing on the screen. During the ERD task, a cue pointed to the top of the 

screen and subjects imagined the opening and closing of both hands. When the cue pointed 
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to the bottom of screen, subjects were instructed to imagine moving both feet. In the hybrid 

condition both tasks were done simultaneously. The data from the training sessions was 

used for setting up the LDA classifier. The cross-validation classification accuracy was 

calculated for both online and the training sessions. In the training sessions, mean 

classification accuracy was 79.9%, 98.1%, and 96.5% for ERD, SSVEP, and hybrid 

condition respectively. The analysis of the online performance showed that the mean 

classification accuracy was 76.9%, 99.1%, and 95.6% for ERD, SSVEP, and hybrid 

condition. For the same conditions ITR was 3.2, 6.1, and 6.3 bits per min. In another 

analysis, the ERD and SSVEP features were classified separately in the hybrid BCI which 

showed that subjects were not doing only one of the tasks. Based on a questionnaire two 

subjects indicated that hybrid BCI was much more difficult and their performance declined 

compared to the SSVEP condition. Four subjects indicated that there was not any 

difference in difficulty of the hybrid condition compared to two other conditions and their 

performance stayed the same or improved in the hybrid condition. Overall, from the 

questionnaire the hybrid condition was moderately more difficult. Comparing the results 

of this experience with the previous one, [15], improvement was seen in the ERD results 

as the performance of the task had been changed (right hand versus left hand movement 

imagination in the previous study and both hand versus both feet movement imagination 

in this study). Other results such as the lower accuracy in ERD condition and the higher 

performance in SSVEP condition were consistent. The accuracy in the hybrid BCI is not 

significantly different from the SSVEP condition. By changing the classification or the 

combinations of the features improvement in results may appear. However, the reliability 

of the system is improved as the SSVEP BCI is added to the conventional ERD BCI system. 
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For subjects with low performance with ERD or in the case of fatigue, the SSVEP BCI is 

appropriate option. 

1.5.3 P300-based BCI combined with other types of BCIs 

A possible combination for a hybrid BCI is P300 and motor imagery (MI)-based 

BCI [40-42]. The basic concept in this type of hybrid is based on the features of P300 and 

ERD/ERS in control applications. P300 is a reliable BCI type for selecting one item out of 

several items and can be used for discrete control commands. On the other hand, due to the 

low degree of freedom presented by MI-based BCI this type of BCI is more efficient for 

continuous control commands. These two types of BCIs can be joined to present more 

complicated control commands in one task. 

  In [40], for controlling a wheelchair in a home environment several approaches 

using different BCI techniques were introduced. The wheelchair control commands were 

divided into three steps.  

Step 1) Destination Selection: In this task, the user should select the destination of 

the wheelchair motion by selecting one of the items among a list of destinations. To 

implement this control command, an accurate and reliable interface is needed and false 

acceptance rates should be as low as possible. For this task, a P300 BCI presented at a 

screen was utilized. The experiments on healthy subjects showed a response time of about 

20 seconds, the false acceptance rate of 2.5% and the error less than 3%. The results showed 

that P300 was an appropriate option for the interface, but there are a couple of points to be 

considered: First, all subjects were healthy. For users with severe disability, the accuracy 

of the results may differ. Second, there is concern about the applicability of the interface, 
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if it is proper for daily use. A more applicable situation should be considered for evaluating 

this approach. 

Step 2) Navigation: An autonomous motion control was introduced for this step. 

The destination was selected and the wheelchair started its motion toward the destination 

following virtual guiding paths. A proximity sensor was considered for stopping the 

wheelchair facing obstacles.  

Step 3) Stopping Command: For this control command the interface needs to be 

fast, reliable and have a low false acceptance rate. Two approaches for a stopping command 

were presented. The first approach was the fast P300 in which, on the screen, there is only 

one item “The Stop” and the task is the detection of user’s intention. Experimental results 

showed reduction in response time. However, increase in false acceptance makes this 

approach inapplicable. The second approach was to use a mu-beta BCI. The position of a 

cursor was considered for presenting the visual feedback for the mu-beta BCI system and 

the control of the cursor was based on an arm movement imagination. Results showed 

approximately the same response time as the fast P300 approach but for false acceptance, 

a rate of zero was achieved. Since the low false acceptance rate and fast response are the 

most important needs for this type of BCI, it seems that mu-beta BCI is a more reliable 

system for this application. 

In [41], different states and control commands needed for operating the system were 

controlled in a virtual environment. P300/MI hybrid BCI was used for operating the 

system. Two sequential states covered the areas of the virtual environment, navigation, and 

device control state. The interface strategy is explained as follows. For navigation, MI BCI 

was used with the continuous control commands limited number of commands. By 
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imagination of left and right hand movement, control commands were issued. The position 

in the virtual environment was updated by each control command. 

In the device control state, the commands were discrete. By considering features of 

control commands and paradigms, an interface was developed. For this paradigm, the P300 

oddball paradigm was considered. When the area coverage changed to the device control 

state, the MI command detection stopped and the controller switched to system state. The 

system state then switched to device control state automatically. The P300 BCI presented 

the control panel to subjects. A switch for navigation happened by the selection of the ‘quit’ 

command using the P300 oddball paradigm. If the ‘quit’ was not detected after 6 

commands, the controller would switch to the system state automatically. 

In [41], experiments were performed by four subjects. To evaluate the hybrid 

approach, the experiment was also implemented for P300 and MI BCIs separately. 22 

testing runs were considered in three blocks: 1) A block for hybrid control testing, 2) A 

block for MI-based navigation, and 3) A block for P300-based device control. Three tasks 

with a combination of navigation and device control commands were considered for 

evaluating the hybrid control strategy.  

In block presenting MI-based navigation, the tasks were the same, with the 

difference that in the device control state areas, the device control panels were not evoked. 

In the third block, navigation was not available and two of the tasks were tested for P300 

BCI evaluation. The online accuracy was used for comparing different approaches. 

Comparing the P300 task in the hybrid BCI and the single P300 BCI showed reduction in 

the accuracy of the hybrid strategy. The accuracy for two of the subjects reduced in MI part 
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of the hybrid BCI compared to the single MI BCI.  However, by utilizing the hybrid BCI, 

more complicated tasks can be accomplished in a virtual environment. 

In [42], P300 and ERD were introduced to be components of the hybrid BCI in 

robotic control decision applications. Parallel and asynchronous classifications were 

introduced. The system task was to detect the intended pattern. Classification accuracy was 

evaluated during the experiment, which was considered for presenting the hybrid. Sixty 

trials were presented to four subjects: thirty trials for P300 presentation and thirty trials for 

MI. During the second thirty trials, the P300 stimuli were also presented but the subjects 

were not supposed to pay any attention to the stimuli.   

1.5.4 P300-based BCI combined with SSVEP-based BCI 

P300 and SSVEP BCI were introduced as hybrids in an asynchronous BCI system 

in [26]. It seems the P300 and SSVEP combination worked well as the stimuli for evoking 

both patterns which can be shown on one screen simultaneously. The P300 paradigm 

considered in this study is a 6x6 speller matrix based on the original P300 row/column 

paradigm introduced by Farwell and Donchin [13]. Only one frequency is allocated for the 

SSVEP paradigm. The background color was flashed with a frequency slightly less than 

18 Hz. The background color change facilitates the SSVEP detection. During the 

classification, P300 and SSVEP signals were separated by a band pass filter. The SSVEP 

was utilized as a control state (CS) detection. When the user was gazing at the screen, the 

SSVEP was detected and it was assumed that the user intended to send a command. The 

system detected the P300 target selection and CS simultaneously. 

For SSVEP detection, the mean PSD in the narrow band near the desired frequency 

and the PSD in the wider range near the desired frequency were utilized in an objective 
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function [26]. These values were subtracted from each other and divided over the PSD 

value from the wide band and the function value was compared to a specified threshold. 

During the data acquisition the channels for acquiring EEG signals were not fixed for all 

subjects.  

For P300 classification, FLDA or BLDA were utilized [43, 44]. The experiment 

was presented as an offline and online test. Ten subjects participated in the experiment. In 

the offline test, forty characters were presented for detection, which were divided into four 

groups. For better evaluation, SSVEP was presented only to two groups out of four groups. 

In CS, subjects were instructed to count the number of times they distinguished the 

highlighted character. In the non-control state (NCS), subjects were instructed to do a 

mental task like multiplication of two numbers and relax with closed eyes.  

For four out of five subjects, the accuracy was improved insignificantly during the 

presence of SSVEP and P300 detection was not determinate. Between the ten character’s 

detection there was a break of a certain time which was due to the subject pressing a 

keyboard button. When the NCS time was almost finished, an auditory cue alerted subjects. 

Average classification accuracy of 96.5% and control state detection accuracy of 88% with 

the ITR of 20 bits/min were achieved during the offline test. The online test was presented 

under a semi synchronous condition. The experiment consisted of blocks with five rounds, 

for detecting each character. SSVEP detection for at least three out of five runs showed the 

control state detection by the subject and P300 was detected during the control state. If the 

control state was not detected, the ‘=’ character would be shown on the screen. The break 

time and the auditory alert were the same as the offline test. An average control state 
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detection accuracy of 88.15%, a classification accuracy of 94.44%, and an ITR of 19.05 

bits/min were achieved during the online test. 

P300 and SSVEP combination was also introduced to control smart home 

environments in [25]. P300-based BCI was used for controlling the virtual smart home 

environment and SSVEP was implemented as a switch for the P300 BCI operation. Results 

from this experiment show that P300 is suitable for discrete control commands and SSVEP 

is suitable for continuous control signals. The hybrid BCI achieved high accuracy and 

reliability in all subjects.  

1.5.5 Other combinations  

A type of hybrid BCI that uses EEG and NIRS [45] was introduced by [46]. Coyle 

et al. in [4] introduced an approach of utilizing NIRS as an optical BCI. In [46], EEG and 

NIRS measurements were utilized simultaneously for ERD-based BCIs. In this study, the 

experiment consisted of 2 blocks of motor execution and 2 blocks of motor imagery. For 

all blocks both EEG and NIRS were measured simultaneously. The increase in 

concentration of oxygenated hemoglobins (HbO) and decrease in concentration of 

deoxygenated hemoglobins (HbR) were measured using NIRS. The global peak cross-

validation accuracy for each subject was considered for evaluation of the hybrid BCI. The 

mean classification accuracies of HbO, HbR, and EEG for executed movement tasks were 

71.1%, 73.3%, and 90.8%. For motor imagery tasks they were 71.7%, 65.0%, and 78.2%. 

The mean classification accuracies of EEG/HbO, EEG/HbR, and EEG/HbO/HbR for 

executed movement tasks were 92.6%, 93.2%, and 87.4%, and for motor imagery tasks 

were 83.2%, 80.6%, and 83.1%, respectively. It was shown that the combination of EEG 

and NIRS improved the classification accuracy in both MI and executed movement tasks. 
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However, the information transfer rate may decrease. This type of hybrid BCI may enhance 

the performance of subjects who are not able to use EEG-based BCI properly. 

The NIRS-based BCI was used as a brain switch for a SSVEP BCI system [35]. 

The objective was to open and close an orthosis. One subject with four runs performed an 

experiment. A 60 sec break was considered between two runs. For starting a command, the 

optical BCI was utilized as a switch for SSVEP BCI starting point. By using a switch false 

positives were detected during the first two runs but in the third run the performance was 

improved and only one false positive occurred. In the last run the performance was perfect 

with 100% accuracy. 

EEG and EMG were fused to devise a hybrid BCI in [47]. EEG signals were 

recorded through 16 channels. EMG activities were recorded from channels over the flexor 

and extensor of the right and the left forearms. Two classifiers were used for EEG and 

EMG and the probabilities from these classifiers were used for controlling the BCI 

feedback. In the first approach of this experiment, a switch with weights equally balanced 

between the two classifiers was implemented between the input channels as the fusion of 

EEG and EMG. In the second approach, the Bayesian fusion method was utilized. Two 

conditions were considered for EEG and EMG separately and four conditions for the fusion 

of EEG and EMG depending on the increase of muscular fatigue. The accuracy for EEG 

activity alone was 73% and for EMG activity alone was 87%. In the first approach the 

accuracy was 90% for 10% attenuation due to the fatigue, 90% for 50% attenuation, 85.1% 

for 90% attenuation and it was decreased to 73% due to the increase of muscular fatigue.  

Results had the same trend in the second approach with smaller standard deviation 

(SD). The accuracy was approximately 92% for 10% attenuation, 92% for 50% attenuation, 
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and 60.4% for 90% attenuation. In the third condition, the accuracy achieved was less than 

the accuracy in EEG BCI and this is because of the assumption of fixed value sources in 

the Bayesian fusion technique calculations. Utilizing multimodal fusion techniques led to 

enhancement in performance reliability. 

Since the majority of people with disabilities can have control on their eye 

movement, the EOG signals could be an appropriate option as input signals for BCI system. 

EEG and EOG combination was introduced to make a hybrid BCI [48]. In this study, EOG 

and EEG signals were taken from two channels and were utilized simultaneously. The 

technique in generating control commands based on EEG/EOG hybrid BCI is explained as 

follows.  

The ‘turn left’ and ‘turn right’ control commands were derived from EOG signals 

based on the right/left eye gazing pattern. Subjects performed maximum right and left eye 

gazing, and the positive and negative potential were recorded respectively. 75% of the 

recorded amplitudes were considered as the threshold for the right and left eye. If the 

amplitude recorded from the right eye during the trials was greater than the threshold 

related to the right eye, the ‘turn right’ command was detected. For the ‘turn left’ control 

command detection, the absolute value of the negative potential recorded from the left eye 

should be greater than the related threshold. If both values were less than the related 

threshold values, the ‘no action’ control command was detected. Classification accuracy 

of 100% was achieved for ‘turn left’ and ‘turn right’ control commands. Average accuracy 

of 95% was achieved for ‘no action’ control command. The ‘forward’, ‘no action’, and 

‘completely stop’ control commands were detected from EEG.  
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The parameter used for deriving the control commands from the EEG was PSD in 

the alpha and beta band. A threshold was considered for comparison to the maximum PSD 

detected from the alpha and beta band. Three subjects in three trials and 50 control 

commands in each trial performed experiments. At the beginning of the test software 

calibration was performed by the subjects. The maximum PSD in alpha band was recorded 

from the subjects with closed eyes and 75% of the PSD from the calibration was considered 

as threshold. For the ‘completely stop’ command, the subjects were instructed to close their 

eyes to increase the alpha activity. Then the maximum PSD in the alpha band was 

compared to a threshold. If the maximum PSD was greater than the threshold, the 

‘completely stop’ command was issued. For the ‘forward’ control command, the subjects 

were instructed to think about moving forward. If the maximum PSD recorded in the beta 

band was greater than the maximum PSD recorded in the alpha band, the ‘forward’ control 

was issued. The  ‘no action’ control command was issued if the maximum PSD in the beta 

band was less than the maximum PSD in the alpha band and both were less than the 

threshold.  

The average classification accuracy over the whole trials was 100% for ‘completely 

stop’ and 87% for ‘forward’ control commands. The ‘no action’ control command was 

common in both EEG and EOG control command detection parts and the average 

classification accuracy of 95% was related to the both parts of the task. The interface 

implementation and the feedback were presented by employing the test on a toy truck. In 

addition to high classification accuracy, small number of electrodes and short training time 

showed the advantage of introduced hybrid. 
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In another approach [49], a self-paced BCI system was combined with an eye-

tracker system to establish a self-paced hybrid BCI [35]. In this system, for cursor control, 

an eye tracker was utilized by detecting the user’s eye gaze. A BCI was utilized for clicking 

on a selected item on computer screen.  Subjects were instructed to first gaze at an intended 

letter on the screen to select it, then for click on the selected letter based on BCI. EEG was 

recorded from the cortex area with 15 electrodes. For EOG, two pairs of electrodes were 

used. In addition, four pairs of electrodes were used for recording facial muscle activities, 

from which the facial muscle artefacts can be detected. PSD of 30 combinations of bipolar 

EEG channels was computed based on Fast Fourier Transform (FFT). For feature selection, 

stepwise LDA was considered [50]. Then, the features were classified with LDA and 

adaptive LDA and for more improvement moving average.  

For removing EOG and EMG artefacts from the EEG signal, an algorithm was 

proposed in [51], which showed improvement in the performance of the introduced self-

paced hybrid BCI [49]. Stationary wavelet transform and an adaptive threshold mechanism 

were used in the proposed algorithm. Results were evaluated based on two types of data; 

real EEG signals with simulated artefacts (semi-simulated EEG signals) and real EEG 

signals. In semi-simulated EEG signals, signal distortion was decreased and in real EEG 

signals, the true positive rate was increased using the proposed algorithm. 

To overcome limitations and disadvantages of conventional BCIs, different BCI 

systems or BCI and non-BCI systems can be combined to form a “hybrid BCI”. Hybrid 

BCIs have been used for different applications such as 2-D control of a cursor, target 

selection, and virtual environment. 
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There are several advantages of sequential combination when one of the BCIs is 

used as a switch or different BCIs are used for different tasks sequentially. When combined 

sequentially, complicated tasks can be distributed to several stages in series. For each stage 

a specific BCI can be used. An example of this approach is a virtual environment 

application [25]. Based on the required type of control commands, different BCI systems 

can be implemented. In [16], one BCI (ERD) was used as switch for another BCI (SSVEP) 

and the false positive rate was decreased for this sequential hybrid BCI. However, the main 

advantage of the simultaneous combination is that in general the accuracy can be improved 

if the BCIs are combined appropriately for all subjects. With adaptive pattern recognition 

algorithms, a hybrid system can adapt to subjects based on their performance. In addition, 

classification methods can use more BCI outputs. Hybrid BCIs combining different 

systems simultaneously may be more complicated than a single BCI and more difficult to 

be accepted by all users. Therefore, the paradigm design of a hybrid BCI plays very 

important role in overall performance of the system. Similarly, when a BCI system is 

combined with a non-BCI, which is not based on EEG signals, the system performance can 

be improved. In general, in a hybrid BCI, the complexity of the system paradigm is 

increased compared to a non-hybrid BCI. Therefore, the use of hybrid systems might be 

more complicated from the user’s point of view. Thus, in designing a hybrid system 

paradigm, the complexity and user acceptability are important performance criteria to be 

considered carefully. Another consideration for the user acceptability is the number of 

channels used in a hybrid BCI system.  

In conclusion, although hybrid BCIs have shown great improvement in several 

performance criteria such as accuracy and information transfer rate, complexity of the 
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system and user acceptability should be reported as important performance criteria of 

hybrid BCI systems. With the current trend in introducing hybrid BCIs, we will soon see 

more than two BCI systems combined sequentially or simultaneously. It is also possible to 

combined BCIs in a combined sequentially/simultaneously approach. This will create a 

network of BCIs which cannot be distinguished as sequential or simultaneous any more.  

This thesis research study is focused on the spelling application based on two 

common types of BCI systems for this application, i.e., P300 and SSVEP approaches. 

Experiments were done on SSVEP and P300 separately and as also as a combined system. 

The SSVEP and P300 were designed as a simultaneous combination. The performance and 

the accuracy of the spellers were evaluated and compared.
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Chapter 2. METHODS  

2.1 Data Acquisition 

2.1.1 Equipment 

The data used for the experiments performed for this thesis was acquired using 

Guger Technologies (g. tec) products [52] including; g. GAMMA cap, g. USB amp, g. 

GAMMA box, and g.STIM box. MATLAB and Simulink were the software utilized for 

performing and processing the experiments. For repetitive stimulus, LEDs with white light 

color were utilized. The equipment utilized in this research are shown in Figure 12. 

 

Figure 12. Equipment utilized for data acquisition.
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2.1.2 Data 

The biomedical signal used for the experiments is EEG which was acquired through 

surface electrodes using g. GAMMA cap. For the SSVEP spelling test, three channels; 

PO7, Oz, and PO8, were considered for recording the EEG, FPZ was considered as the 

ground and data from electrode placed on the right mastoid as the reference. For the 

subjects performed experiment based on SSVEP, P300 and hybrid Spelling paradigm 

experiment, 8 channels; Fz, Cz, P3, Pz, P4, PO7, Oz, and, PO8 were utilized for data 

acquisition. The electrodes position was based on 10-20 system [19]. 

2.2 Signal Processing 

2.2.1 SSVEP Detection 

EEG was passed through 60 Hz notch filter. The difference EEG from channels OZ 

and PO8 (OZ-PO8) with 256 Hz as sampling frequency rate was considered as the data to 

have the further processing on. The reason behind choosing OZ-PO8 was that this selection 

of the bipolar channels has the most distinct high amplitude at the elicited frequencies 

based on offline analysis of pilot experiments. FFT was applied to the signal and the signal 

is passed through 6 subsystem blocks.  The signal processing model is shown in Figure 13. 

In Figure 14 the preprocessing blocks and FFT blocks are shown. 
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Figure 13. SSVEP signal processing block diagram. 

 

Figure 14. Block diagram showing calculating FFT. 

The stimulus frequencies were defined as a vector ‘f’. In each subsystem block, one 

of the stimulus frequencies were considered for calculation. The amplitude of the narrow 
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band of frequency ±0.2 Hz was considered. The calculation is shown in the following 

equation. The ‘x’ shows the number of each of the six intended frequencies and 4 is the 

window size. 𝐴𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒 = [𝑧𝑒𝑟𝑜𝑠((𝑟𝑜𝑢𝑛𝑑((𝑓(x) − (.2)) ∗ 4) + 2),1); 𝑜𝑛𝑒𝑠(𝑟𝑜𝑢𝑛𝑑((𝑓(x) ∗ 4 + 4 ∗ (.1)) −(𝑓(x) ∗ 4 − 4 ∗ (.1))) + 2,1); 𝑧𝑒𝑟𝑜𝑠(𝑟𝑜𝑢𝑛𝑑(1024 − ((𝑓(x) + (.2)) ∗ 4) − 1),1)]  
The subsystem and the calculated amplitude as the ‘gain’ block are shown in Figure 

15 and Figure 16 respectively. As it is shown in Figure 15, the intended frequency and 2 

first harmonics are considered. The calculation of gain for the first and second harmonics 

(e.g., when  f(1) =17 Hz) is  are shown in the following equations.  𝐴𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒 = [𝑧𝑒𝑟𝑜𝑠((𝑟𝑜𝑢𝑛𝑑((2 ∗ 𝑓(1) − (.2)) ∗ 4) + 2),1); 𝑜𝑛𝑒𝑠(𝑟𝑜𝑢𝑛𝑑((2 ∗ 𝑓(1) ∗ 4 + 4 ∗ (.1))− (2 ∗ 𝑓(1) ∗ 4 − 4 ∗ (.1))) + 2,1); 𝑧𝑒𝑟𝑜𝑠(𝑟𝑜𝑢𝑛𝑑(1024 − ((2 ∗ 𝑓(1) + (.2)) ∗ 4)− 1),1)] 𝐴𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒 = [𝑧𝑒𝑟𝑜𝑠((𝑟𝑜𝑢𝑛𝑑((3 ∗ 𝑓(1) − (.2)) ∗ 4) + 2),1); 𝑜𝑛𝑒𝑠(𝑟𝑜𝑢𝑛𝑑((3 ∗ 𝑓(1) ∗ 4 + 4 ∗ (.1))− (3 ∗ 𝑓(1) ∗ 4 − 4 ∗ (.1))) + 2,1); 𝑧𝑒𝑟𝑜𝑠(𝑟𝑜𝑢𝑛𝑑(1024 − (3 ∗ 𝑓(1) + (.2)) ∗ 4) − 1),1)] 

 

Figure 15.The block diagram of each subsystem. 
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Figure 16. The calculated amplitude. 

The output of each subsystem would enter the frequency mapping block which is 

shown in Figure 17. 

 

Figure 17. The frequency mapping block. 
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In the frequency mapping block the maximum of the six input would be determined 

and the frequency related to that would be shown. Other arrays of the ‘f1’ would be shown 

as zero. The processing in the frequency mapping block is shown in Figure 18. And the 

output of the SSVEP detection signal processing block is shown in Figure 19.  

 

Figure 18. Frequency detection in frequency mapping block. 
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Figure 19. Detected frequencies are shown as a column for each sampling time. 

As the data shows, the output would present the frequency of the detected 

frequency. A 24 sec window size was considered for spelling each character, and as the 

window size was considered 4 sec. 6 detections were considered for each character, and 

the most detected frequecy was determind as the output frequency.The related region 

represented by the detected frequency was shown as the final output and related charater 

was shown on the display. In  Figure 20, the identification number of detected regions are 

shown; 1, 2, 3, 4, 5, and 6. 
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Figure 20.  The identification number of detected regions. 

2.2.2 P300 Detection 

For P300 detection, data would pass through filter block and then downsample to 

4, Figure 21, and the preprocessed data would enter the processing block.  The 

classification  method used in this research is LDA [25], which is a machine learning 

technique that uses linear combination of features that separates two or more types of 

events. The calibration was performed for each subject, using ‘gbsanalyze’ which is shown 

in Figure 22. 

 

Figure 21 Pre processing for P300 detection. 
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Figure 22. Loaded P300 file in gbsanalyze for LDA classification. 

The same as SSVEP signal processing output, the output of the P300 signal 

processing was presented as the identification number of the detected region. Then the 

display as the character related to the detected region was displayed.  

2.3 Paradigms 

2.3.1 SSVEP-Based Spelling paradigm 

The spelling paradigm utilized in this study was region-based spelling paradigm 

[53]. The spelling paradigm is designed with 49 characters, distributed in seven regions 

and has ‘copy spelling’ and ‘free spelling’ mode. For this study, the ‘copy spelling’ mode 

is utilized. Starting the paradigm, a keyboard would appear on the screen, the intended 

characters would be selected and the spelling screen would pop up. The spelling of each 

character happens in two levels. In the first level, the region of the intended character is 
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selected and in the second level, the seven characters of the selected region are disperse in 

the same pattern of the first level and the character would be selected. The background 

color of the speller is black and characters color is white.  The spelled character would be 

shown under the intended character. The spelling paradigm screen was projected on a white 

board with LEDs placed behind it. The LEDs placement is designed to be on the corner of 

the regions in level one and characters in the second level. The spelling paradigm set up, 

the keyboard display, and the two levels of the character spelling are shown in Figure 23, 

Figure 24, Figure 25, and Figure 26.  

 

Figure 23. SSVEP-based spelling paradigm set up. 

 

Figure 24. The keyboard display. 
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Figure 25. Level one of the character spelling. 

 

Figure 26. Level 2 of the spelling paradigm. 
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2.3.2 P300 Spelling Paradigm 

The P300 region-based spelling paradigm [22] was utilized for experiments during  this 

research. The distribution of characters and regions were the same as SSVEP Spelling 

paradigm. The P300 region-based spelling paradigm has two types based on the flashing 

stimulus. In the first type, the background of the regions flashed. In the second type, the 

characters flashed. In Figure 27, Figure 28, and Figure 29 the two types of paradigm and 

the Simulink model are shown. 

 

Figure 27. P300 region-based spelling paradigm with background flashing. 

 

Figure 28. P300 region-based spelling paradigm with characters flashing. 
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Figure 29. The P300-based spelling paradigm Simulink model. 

2.3.3 Hybrid Paradigm 

In the hybrid paradigm, the P300 region-based spelling paradigm was used and the 

LEDs placing behind the board were flashing. So both stimulus were performed at the same 

time. The Simulink model is shown in Figure 30. In this model EEG is processed through 

the P300 and SSVEP signal processing blocks. P300 and SSVEP signal processing blocks 

process the data simultaneously and send the identification number of the detected region 

at the same time. The output of both signal processing blocks are shown in Figure 31, as 

was displayed on the scope during the hybrid experiment, which is showing the 

identification number of detected region by both P300 and SSVEP signal processing 

blocks. 
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Figure 30. The Simulink model of hybrid spelling paradigm. 

 

 

Figure 31. Identification numbers of detected regions by P300 and SSVEP.
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Chapter 3. EXPERIMENTS AND RESULTS  

In this chapter, the series of experiments performed during this study and their 

results are presented and discussed. Ethical approval for performing the experiment was 

obtained from the Institutional Review Board (IRB) from the University of North Dakota 

(UND).  The IRB is responsible for ensuring that the rights and welfare of human subjects 

in social behavioral and biomedical research are protected.  For experiments performed for 

this research the IRB approval number is IRB-201006-372 [54]. 

At the beginning, series of pilot studies were performed. Based on the analyzing 

the results of those experiments, the parameters for the SSVEP spelling paradigm were 

determined and the eventually results of the experiments performed for evaluation of 

hybrid P300 and SSVEP-based spelling paradigms. 

3.1 Pilot Experiments 

Series of pilot experiments were performed intending to determine the channel 

combination, the range of eliciting frequency, and the window size of data for processing. 

Two subjects participated in the first experiment and for the rest of experiments one subject 

performed the tasks. 

3.1.1 SSVEP Detection Testing - Initial Experiment 

The experiment was done offline with low frequencies to check the SSVEP 

detection. The SSVEP eliciting paradigm was a board with six LEDs on it in a circular
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pattern. For this experiment the upper left LED was flashing and frequencies of 14, 18 and 

20 Hz were selected. Each time, the subject task was to gaze at the flashing LED for 200 

seconds.  The window size for processing was 16 sec. The first 16 sec of data was 

eliminated as it was corrupted with noise. Large peaks were appeared around the frequency 

of 11 Hz which is related to alpha activities. By analyzing offline data, 100% accuracy in 

detection of eliciting frequencies was achieved. 

3.1.2 Determining the Processing Window Size 

This experiment was performed as an online test. The same frequencies were 

utilized, except the three upper half LEDs were flashing at the same time and the subject 

task was to look at one of them at a time. The test started with assigning 16 sec as the 

window size. As the SSVEP detection was successfully achieved the window size changed 

from 16 to 8 and from 8 to 4 seconds. The results remained consistent as the window size 

got smaller. Based on this experiment, it was concluded in considering 4 sec window size 

is large enough for processing the EEG data to detect the SSVEP frequencies. 

3.1.3 Switching between Flashing LEDs 

In this test, subject task was to switch from one LED to another one. 93.33% 

accuracy was achieved in the previous test with considering 4 sec for window size of the 

processing. However, this set of experiments were processed with 16 and 8 sec of window 

timing, as assuring that the detection of peaks was just affected with the transition between 

LEDs and the processing was performed with a large enough window time. In the first set 

of experiments, the window size was 16 sec and the time of experiments was 64 sec. In 

first round, the subject task was to gaze at LED flashing at 18 Hz for 48 seconds and 
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shifting to LED with 14 Hz flashing rate for 32 seconds. In the next round of the test, the 

transition was from LED with flashing rate of 14 Hz to LED with 20 Hz flashing rate.  In 

the third round, the task was to switch from LED with flashing rate of 20 Hz to LED with 

18 Hz flashing rate. In the next round, the transition was among the three LEDs with the 

sequence of LEDs with 18-14-20 Hz. The task was repeated for switching from 14 to 20 

Hz and from 20 to 14 Hz.  

   As achieving high accuracy while analyzing data with 16 sec window for 

processing, the window time was reduced to 8 seconds and 4 sec. All the rounds repeated 

with the same sequence of switching between LEDs. The results of all sets of experiments 

are shown in Table 2.The accuracy was reduced as the window size was reduced to 4 sec.  

Table 2. Results of the switching between LEDs. 

Sequence of LEDs 

(Frequency Hz) 

Accuracy (%) with 

16 sec of window 

size 

Accuracy (%) with 

8 sec of window 

size 

Accuracy (%) with 

4 sec of window 

size 

18-14 100 100 93.33 

14-20 100 66.66 87.5 

20-18 100 100 75 

18-14-20 100 71.43 80 

14-20-14 100 100 60 

3.1.4 Detecting High Frequencies 

The goal in this experiment was to evaluate the detection of high frequencies. Three 

high frequencies; 36, 44, and 40 Hz were selected for the first, second, and third LEDs, 

respectively. The experiment had three rounds. In the first round, subject gazed at the first 

LED with 36 Hz flashing stimuli, and the higher peak was detected at the frequency of 36 

Hz. In the second and third rounds, the subject gazed at the second and third LEDs and 

peaks were detected at 44 and 40 Hz respectively. The analysis for this experiment was 
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done offline and the FFT spectrums for each round are shown in Figure 32, Figure 33, and 

Figure 34. 

 

Figure 32. Frequency spectrum of the first round. Peak at 36 Hz is detected. 

 

Figure 33. Frequency spectrum of the first round. Peak at 44 Hz is detected. 
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Figure 34. Frequency spectrum of the first round. Peak at 44 Hz is detected. 

As it is shown in the frequency spectrum, at the frequencies close to 11 Hz the high 

peaks are detected related to alpha activity [1]. 

3.1.5 Determining the SSVEP stimulation board 

In the previous tests, the LEDs were placed on a board. In this set of experiments, 

LEDs were placed behind a white board, and according to the accuracies achieved from 

the tests on the new board comparing to the basic board with LEDs placed on the board, 

the size of the holes on the board were determined. A black screen was projected on both 

boards to simulate the actual spelling board. In this experiment, it was tried to keep all the 

variables or environmental factors unchanged, and to see how changing the stimuli set up, 

affects the results. For the first step, 14 Hz was chosen as a flickering frequency. The test 

was done using the first board. The experiment resulted in detecting 14 Hz, 8 out of 8 times 

(100% accuracy). The same frequency was tested using the second board in the next round. 

14 Hz was detected 4 out of 8 times. For the next round, the holes in the second board were 



 

50 

 

enlarged and the experiment was repeated. In this round 14 Hz was detected 8 out of 8 

times. By enlarging the holes the accuracy improved, so the size of the holes on the board 

was changed. The experiment continued using the first and the second board for 24 and 36 

Hz. The three combinations of the three channels that the EEG signals were acquired were 

compared in the offline analysis and the FFT spectrums of the channels OZ and PO8 

showed higher peaks at the intended frequency. The accuracy of the frequency detection is 

shown in Table 3 for 14 Hz and in Table 4 for 24 and 36 Hz. 

Table 3. Average accuracy for 14 Hz. 

Accuracy % 

Board I 

Accuracy % 

Board II 

Accuracy % 

Board II after enlarging the 

holes 

100 50 100 

 

Table 4. Average accuracy for 24 and 36 Hz. 

Frequency (Hz) Accuracy % 

Board I 

Accuracy % Board II after 

enlarging the holes 

24 100 100 

36 87.5 100 

 

In another series of the experiments, a black board was utilized for the tests. The 

effect of environmental condition was investigated in this experiment. The subject was 

seated in a dark room to determine the effect of the light on the results. The frequencies of 

36, 38, 40, 42, 44, and 46 Hz were tested in this series of experiments. Subject did the task 

for the first four frequencies and had a break due to the fatigue caused by gazing at the 

flickering LEDs. After the break, the experiment was continued for 44 and 46 Hz three 

times with board II, but we were not able to detect the peaks at the intended frequencies 

for 46 Hz and with accuracy of 12.5% for 44 Hz. To justify that the failure to detect the 
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frequencies was because of the frequencies, the test was repeated for 36 Hz, and 100% 

detection was achieved. The result for each frequency is shown in Table 5. The results 

show that the white board, second board, is more appropriate to consider as stimulating 

board. The black screen has better reflection on a white color board and subject was more 

comfortable doing the task in a dark room, with higher contrast of the LED lights and the 

room light. 

Table 5. Average accuracy for three stimulating boards. 

Frequency (Hz) Accuracy % 

Board I 

Accuracy % 

Boards II 

Accuracy % 

Board III 

36 100 87.5 100 

38 87.5 87.5 75 

40 75 62.5 50 

42 12.5 62.5 25 

 

These series of experiments show great potential in implementing SSVEP-based 

BCIs with high frequency. The frequencies up to 44 Hz were detected and stimulation 

board was determined. The higher the frequency, the harder would be to detect the peak 

[9] as the amplitude would be lower, and frequencies up to 44 Hz were detected. This 

shows that the SSVEP detection signal processing has high accuracy. After these series of 

experiment, a set of experiments was performed utilizing SSVEP for spelling paradigm 

application. 

3.2 SSVEP-Based Spelling Paradigm 

In this part of study, the SSVEP-based spelling paradigm was evaluated. Six 

healthy male subjects participated in this study. Three words; ‘BR8’, ‘C41’, and ‘*6B’, 

were selected, based on selecting all the 6 side regions. Each word was spelled in three 

trials. The LEDs were flashing as 17, 20, 23, 26, 29, 32 Hz for region one to region six, the 
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side regions in a clockwise order, respectively. The EEG from OZ-PO8 channel was 

processed through a 4 sec window. The spelling paradigm was run 24 seconds for each 

character to be spelled for each level. Two male subjects participated in this part of the 

study. Allocating the frequencies to the LEDs in order to get high accuracy needs series of 

trial and error tests, as several parameters affect the accuracy of SSVEP peak detection. 

One parameter is the frequency of each LED. Several tests were performed to determine 

the frequencies for which the detection of SSVEP peaks has high accuracy. In the allocation 

of frequency for each LED, the frequencies of other LEDs should be also considered in a 

way that the frequencies of the adjacent LEDs should have a short range of interval. In the 

first set of selected frequencies, 17 Hz was allocated for the first LED and 32 Hz for the 

sixth LED. Results show that the LED with 17 Hz had the highest percentage of miss 

selection. Another parameter is the placement of the LEDs. The LEDs located straight to 

the subject’s eye may create unwanted stimulus when subject eye’s direction is to the other 

LEDs. The frequency for these LEDs should not be at the lowest range of the selected 

frequencies. The LEDs located on the sides may also create unwanted stimulus if the 

allocated frequency is not close to the other LEDs’ frequencies. In designing the SSVEP 

spelling paradigm, the frequencies for each LED, the location of LED and the range of 

frequencies should be considered in frequency selection. The results of the first two 

subjects are shown in Table 6, Table 7, and Table 8.  

Table 6. Accuracies of SSVEP detection for the first two subjects. 

Subject Accuracy 

17Hz (%) 

Accuracy 

20 Hz (%) 

Accuracy 

23Hz (%) 

Accuracy 

26 Hz (%) 

Accuracy 

29 Hz (%) 

Accuracy 

32 Hz (%) 

1 100 77.78 88.89 33.33 0 0 

2 100 44.44 77.78 55.56 0 0 

Avg. 100 61.11 83.33 44.44 0 0 
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Table 7. False positive rate of SSVEP detection for the first two subjects. 

Subject FPR 

17Hz (%) 

FPR 

20Hz (%) 

FPR 

23Hz (%) 

FPR 

26Hz (%) 

FPR 

29Hz (%) 

FPR 

32 Hz (%) 

1 55.55 2.22 0 0 0 0 

2 33.33 2.22 26.66 0 0 0 

Avg. 44.44 2.22 13.33 0 0 0 

 

Table 8. Accuracies of SSVEP detection for each word. 

Subject Accuracy 

‘BR8’(%) 
Accuracy 

‘C41’ (%) 
Accuracy 

‘*6B’ (%) 
 Trial1 Trial2 Trial3 Trial1 Trial2 Trial3 Trial1 Trial2 Trial 3 

1 33.33 66.67 50 50 66.67 33.33 50 33.33 50 

2 33.33 50 50 33.33 50 50 33.33 0 66.67 

Avg. 47.22 47.22 38.39 

 

As the results show, the frequency of 17 Hz for the first LED creates high 

percentage of false positive rate. In despite of SSVEP peak detection at frequencies of 36, 

44 and 40 Hz when three out of six LEDs were flashing. Detection of frequencies below 

36 in previous tests, in this experiment selection of frequency set as 17, 20, 23, 26, 29, and 

32 Hz results in zero detection of the peaks at 26, 29, and 32 Hz. After the first two subjects 

performed the test. The average accuracy of spelled words was in a close range which 

shows characters spelled do not affect the detection accuracy. The frequencies of the 

flickering LEDs were changed to 21, 23, 20, 18, 17, and 19 Hz. In this new selection of 

frequencies, the higher frequencies were allocated to the top LEDs and lower frequencies, 

which creates stronger stimulus, allocated to the lower LEDs. The frequencies of the 

adjacent LEDs were selected to be close to each other. For this series of experiments four 

male subjects participated. The results are shown in Table 9, Table 10, and Table 11. 
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Table 9. Accuracies of SSVEP detection for new set of frequencies. 

Subject Accuracy % 

for 21 Hz 

Accuracy % 

for 23 Hz 

Accuracy % 

for 20 Hz 

Accuracy % 

for 18 Hz 

Accuracy % 

for 17 Hz 

Accuracy % 

for 19 Hz 

3 100 77.78 44.44 100 100 88.89 

4 66.67 55.56 33.33 66.67 100 66.67 

5 44.44 33.33 0 55.56 44.44 44.44 

6 55.56 33.33 33.33 44.44 77.78 22.22 

Avg. 66.67 50 27.78 66.67 80.55 55.55 

 

Table 10. False positive rate of SSVEP detection for new set of frequencies. 

Subject FPR  % 

for 21 Hz 

FPR %  

for 23 Hz 

FPR  % 

for 20 Hz 

FPR  % 

for 18 Hz 

FPR  % 

for 17 Hz 

FPR  % 

for 19 Hz 

3 2.22 0 0 4.44 2.22 6.67 

4 0 0 0 13.33 20 8.89 

5 4.44 11.11 0 22.22 17.78 17.88 

6 2.22 0 0 17.78 11.11 33.33 

Avg. 2.22 2.78 0 11.55 10.22 13.35 

 

Table 11. Accuracies of SSVEP detection for each word. 

Subject Accuracy % for ‘BR8’ Accuracy % for ‘C41’ Accuracy % for ‘*6B’ 
Trial1 Trial 2 Trial 3 Trial 1 Trial 2 Trial 3 Trial 1 Trial 2 Trial 3 

3 100 66.67 83.33 100 66.67 100 83.33 83.33 83.33 

4 83.33 66.67 66.67 33.33 66.67 66.67 50 83.33 50 

5 33.33 50 83.33 50 16.67 0 33.33 0 83.33 

6 100 66.67 33.33 66.67 16.67 16.67 33.33 16.67 33.33 

Avg. 69.44 50 52.78 

 

As it is shown in the results, the false positive rate is in close range for the lower 

LEDs and upper LEDs as well. The average accuracy for spelling the intended words is 

not high, as number of subjects for this experiment was four, and two of them did not have 

high accuracy for SSVEP detection. For the next series of experiments, more subjects 

participated in the experiment to validate the results. 
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3.3 Hybrid Spelling Paradigm 

As series of experiments were performed based on SSVEP spelling paradigm, in 

these series of experiments, SSVEP-based spelling paradigm, P300-based spelling 

paradigm and the hybrid spelling paradigm were evaluated. 10 subjects participated in 

these series of experiment. The task was to spell ‘BR8’, through SSVEP spelling paradigm, 

P300 spelling paradigm and in the last, hybrid spelling paradigm. The task for each 

paradigm was performed through three trials.  

3.3.1 SSVEP-Based Spelling Paradigm  

For the SSVEP spelling experiment, the frequencies were the same as previous 

experiment, 21-23-20-18-17-19 Hz, and also all other parameters. The average accuracy 

for spelling ‘BR8’ through three trials was calculated for each subject and the results are 

shown in Table 12.  As the results show the average accuracy of 80% was achieved through 

SSVEP detection. 

Table 12. SSVEP accuracy. 

Subject 

number 

Accuracy % 

Trial 1 

Accuracy % 

Trial 2 

Accuracy % 

Trial 3 

Average % 

1 100.00 100.00 100.00 100.00 

2 100.00 100.00 83.33 94.44 

3 50.00 75.00 50.00 58.33 

4 50.00 83.33 50.00 61.11 

5 75.00 83.33 100.00 86.11 

6 100.00 100.00 100.00 100.00 

7 75.00 75.00 50.00 66.67 

8 50.00 50.00 83.33 61.11 

9 83.33 83.33 100.00 88.89 

10 83.33 83.33 83.33 83.33 

Average 76.67 83.33 80.00 80.00 
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3.3.2 P300-based Spelling paradigm 

After subjects performing the first task, the next step was to evaluate the test 

through the P300-based spelling paradigm [22] The parameters of the paradigm are; 150 

msec for flash time, 100 msec for dark time, and 14 as number of flashes. The test went 

through three trials and the results are shown in Table 13. The average accuracy of 72.50 

% was achieved.  

Table 13. P300 accuracy. 

Subject 

number 

Accuracy(%) 

Trial 1 

Accuracy(%) 

Trial 1 

Accuracy(%) 

Trial 1 

Average(%) 

1 75.00 100.00 75.00 83.33 

2 75.00 75.00 83.33 77.78 

3 50.00 33.33 50.00 44.44 

4 33.33 33.33 50.00 38.89 

5 83.33 100.00 100.00 94.44 

6 83.33 100.00 83.33 88.89 

7 75.00 50.00 50.00 58.33 

8 83.33 83.33 75.00 80.55 

9 83.33 83.33 75.00 80.55 

10 75.00 75.00 83.33 77.78 

Average 71.67 73.33 72.50 72.50 

3.3.3 Hybrid Spelling Paradigm 

The last task was to spell ‘BR8’, and subjects were asked to focus on both flickering 

LEDs and random flashing regions. A sample of EEG signals recorded from 8 channels 

during the experiment is shown in Figure 35. 

 

Figure 35. Recorded EEG. 
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 The results from SSVEP signal processing block and P300 signal processing block 

are shown in Table 14 and Table 15. 

Table 14. Results from hybrid/SSVEP signal processing block. 

Subject 

Number 

Accuracy % 

Trial 1 

Accuracy % 

Trial 2 

Accuracy % 

Trial 3 

Average % 

1 50.00 75.00 75.00 66.67 

2 75.00 75.00 50.00 66.67 

3 50.00 16.67 33.33 33.33 

4 33.33 33.33 50.00 38.89 

5 50.00 50.00 16.67 38.89 

6 50.00 75.00 75.00 66.67 

7 33.33 50.00 50.00 44.44 

8 33.33 16.67 33.33 27.78 

9 50.00 33.33 75.00 52.78 

10 16.67 50.00 75.00 47.22 

Average 44.17 47.50 53.33 48.33 

 

Table 15. Results from hybrid/P300 signal processing block. 

Subject 

Number 

Accuracy (%) 

Trial 1 

Accuracy(%) 

Trial 2 

Accuracy(%) 

Trial 3 

Average(%) 

1 50.00 16.67 50.00 38.89 

2 50.00 50.00 33.33 44.44 

3 33.33 33.33 16.67 27.78 

4 50.00 33.33 33.33 38.89 

5 50.00 50.00 75.00 58.33 

6 50.00 75.00 50.00 58.33 

7 33.33 50.00 16.67 33.33 

8 16.67 16.67 33.33 22.22 

9 50.00 33.33 50.00 44.44 

10 33.33 50.00 16.67 33.33 

Average 41.67 40.83 37.50 40.00 

 

As the results show, the average accuracy from P300 signal processing was 40.00% 

and from the SSVEP processing was 48.33 %, which shows decreasing comparing to 

SSVEP and P300 results.  This shows the results from each of the speller. The detected 

region from both SSVEP and P300 was compared for each character, and if either of the 

processing systems had detected the intended region, the output was considered as the 
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correct response. The decision making is shown in Figure 36, for the results from the first 

trial of the subject one. And the results calculated for all subjects are shown in Table 16. 

As the results show the average of 64.39% is achieved. For better comparison, the average 

accuracy achieved from SSVEP, P300 and hybrid speller for each subject is shown in Table 

17. As the results show, the average accuracy in SSVEP is higher than P300 speller and 

the hybrid speller shows lower average accuracy.  

 

Figure 36. The calculated average for hybrid speller. 

 

Table 16. Results for hybrid speller. 

Subject 

Number 

Accuracy % 

Trial 1 

Accuracy % 

Trial 2 

Accuracy % 

Trial 3 

Average % 

1 83.33 75.00 90.00 82.78 

2 75.00 75.00 75.00 75.00 

3 50.00 50.00 33.33 44.44 

4 50.00 50.00 75.00 58.33 

5 75.00 75.00 75.00 75.00 

6 50.00 83.33 83.33 72.22 

7 50.00 75.00 50.00 58.33 

8 33.33 33.33 50.00 38.89 

9 83.33 50.00 83.33 72.22 

10 50.00 75.55 75.00 66.67 

Average 60.00 64.17 69.00 64.39 

 



 

59 

 

Table 17. Average accuracies from SSVEP, P300 and hybrid speller. 

Subject Number Accuracy % 

SSVEP speller 

Accuracy % P300 

speller 

Accuracy % hybrid 

speller 

1 100.00 83.33 82.78 

2 94.44 77.78 75.00 

3 58.33 44.44 44.44 

4 61.11 38.89 58.33 

5 86.11 94.44 75.00 

6 100.00 88.89 72.22 

7 66.67 58.33 58.33 

8 61.11 80.55 38.89 

9 88.89 80.55 72.22 

10 83.33 77.78 66.67 

Average 80.00 72.50 64.39 

3.4 Questionnaire and Evaluation Form 

Before performing the experiments subjects filled out a questionnaire form about 

their general feeling and medical condition. All the subjects had no pre-existing medical 

condition or allergies. After performing the experiments, an evaluation form was filled out 

by the subjects. The 5.75 was the average level of general tiredness and fatigue after 

performing the experiments ( the scale was from 1 to 10). The average level of focus ability 

was 7.1 at the beginning of the experiment and was decreased to 6.5 by the end of 

performing the task. The average level of complexity for performing SSVEP speller 

experiment, P300 speller experiment, and hybrid speller experiment were 3.3, 3, and 6.1 

respectively. Results show that hybrid task was more complex to perform than P300 or 

SSVEP spelling. 
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Chapter 4. CONCLUSION 

4.1 Conclusion 

The average accuracy achieved from SSVEP spelling paradigm was 80.00 % and was 

higher than the P300 spelling paradigm which was 72.5%. The high accuracy for SSVEP 

spelling paradigm shows that this type of BCI is appropriate for spelling application and even 

has more promising future for spelling application as it shows higher accuracy than the P300 

speller.  

The accuracy of detection from SSVEP and P300 processing for the hybrid speller 

was 48.33% and 40.00% respectively which leads to overall accuracy of 64.39 %. The 

increase in hybrid accuracy compared to individual accuracies of SSVEP and P300 shows that 

if SSVEP and P300 are combined appropriately the overall hybrid accuracy can be increased. 

However, the accuracies of SSVEP and P300 in the hybrid speller were decreased compared 

to the conventional SSVEP and P300 speller. The reason of this decrease is the distraction 

caused by one visual stimulus (SSVEP/P300) on the other one (P300/SSVEP). Therefore, the 

design of the speller has a significant role in the performance of the speller. In this proposed 

design, the LEDs flashing light intensity makes it hard for subjects to follow the P300 flashes. 

Focusing on both task was quite hard as the P300 flashes distracted the subjects from gazing 

at the flickering LEDs and the task got more complicated for subjects to perform in the hybrid 

speller. 
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4.2 My Contributions 

My contribution for this research was to design SSVEP speller paradigm and hybrid 

speller. More specifically I contributed the following: 

 Conducted pilot experiments to determine the parameters for SSVEP speller 

paradigm, such as flashing frequencies, location of LEDs, processing window 

size. 

 Designed, implemented, and conducted experiment for a new SSVEP speller 

BCI. 

 Designed, implemented, and conducted experiment for a new hybrid speller 

BCI. 

 Compared P300, SSVEP and a hybrid P300/SSVEP speller paradigms. 

 

As the result of research conducted in this thesis, the following journal paper, book 

chapters, and conference papers were published. 

1. S. Amiri, R. Fazel-Rezai, and V. Asadpour, "A review of hybrid brain-computer 

interface systems," Advances in Human-Computer Interaction, [online], vol. 2013 

Article ID 187024, 8 pages, 2013. doi:10.1155/2013/187024. 

2. S. Amiri, A. Rabbi, L. Azinfar, and R. Fazel-Rezai, "A Review of P300, SSVEP, and 

Hybrid P300/SSVEP Brain-Computer Interface Systems," in Brain- Computer 

Interface Systems, Brain-Computer Interface Systems - Recent Progress and Future 

Prospects, Ed. Dr. Reza Fazel-Rezai, InTech, Chapter 10, 2013. 
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3. S. Gavett, Z. Wygant, S. Amiri, and R. Fazel-Rezai,"Reducing human error in P300 

speller paradigm for brain-computer interface," In Engineering in Medicine and 

Biology Society (EMBC), 2012 Annual International Conference of the IEEE, pp. 

2869-2872. IEEE, 2012. 

4. S. Amiri, and R. Fazel-Rezai, “A Review of Hybrid BCI Systems,”  in Neural 

Interface Conference (NIC), The 40th Neural Interface Conference, Salt Lake City, 

UT, June, 2012. 

5. L. Azinfar, M. Ravanfar, E. Kim, S. Amiri, and R. Fazel-Rezai, “EEG Channel 

Optimization Based on Differential Evolutionary Algorithm for BCI Application.” in 

the Fifth International Brain-Computer Interface Meeting, DOI: 10.3217/978-3-

85125-260-6-152, June, 2013. 

4.3 Future Work 

Redesigning the hybrid speller to a sequential hybrid BCI can be considered as an 

approach for enhancing the performance of the speller. In this design, SSVEP system task can 

be considered as a  switch to on/off the P300 flashing. Another design can be utilizing SSVEP 

system for adding more options to the speller, such as the ‘backspace’ or ‘space’ keyboard. 

This proposed design is shown in the Figure 37. In this design, both P300 and SSVEP systems 

can be utilized simultaneously, and only using 2 LEDs as a SSVEP stimulus, make the task 

less complicated for users. Improving the decision making system based on each BCI system 

can  be considered as another approach as the future work of this study.  
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Figure 37. The proposed design for hybrid speller. 
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APPENDICES 

APPENDIX A – BIOMEDICAL RESEARCH INFORMED CONSENT FORM 
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APPENDIX B – BCI SUBJECT QUESTIONNAIRE 
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APPENDIX C – SUBJECT EVALUATION FORM 
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APPENDIX D – SSVEP TEST PLAN 
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APPENDIX E – BCI TEST PLAN 
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