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Hypergraph Partitioning in the Cloud

Foad Lotfifar

Abstract

The thesis investigates the partitioning and load balancing problem which has

many applications in High Performance Computing (HPC). The application to be

partitioned is described with a graph or hypergraph. The latter is of greater interest

as hypergraphs, compared to graphs, have a more general structure and can be

used to model more complex relationships between groups of objects such as non-

symmetric dependencies. Optimal graph and hypergraph partitioning is known to

be NP-Hard but good polynomial time heuristic algorithms have been proposed.

In this thesis, we propose two multi-level hypergraph partitioning algorithms. The

algorithms are based on rough set clustering techniques. The first algorithm, which

is a serial algorithm, obtains high quality partitionings and improves the partitioning

cut by up to 71% compared to the state-of-the-art serial hypergraph partitioning

algorithms. Furthermore, the capacity of serial algorithms is limited due to the rapid

growth of problem sizes of distributed applications. Consequently, we also propose

a parallel hypergraph partitioning algorithm. Considering the generality of the

hypergraph model, designing a parallel algorithm is difficult and the available parallel

hypergraph algorithms offer less scalability compared to their graph counterparts.

The issue is twofold: the parallel algorithm and the complexity of the hypergraph

structure. Our parallel algorithm provides a trade-off between global and local vertex

clustering decisions. By employing novel techniques and approaches, our algorithm

achieves better scalability than the state-of-the-art parallel hypergraph partitioner

in the Zoltan tool on a set of benchmarks, especially ones with irregular structure.

Furthermore, recent advances in cloud computing and the services they provide

have led to a trend in moving HPC and large scale distributed applications into the

cloud. Despite its advantages, some aspects of the cloud, such as limited network

resources, present a challenge to running communication-intensive applications and



i

make them non-scalable in the cloud. While hypergraph partitioning is proposed

as a solution for decreasing the communication overhead within parallel distributed

applications, it can also offer advantages for running these applications in the cloud.

The partitioning is usually done as a pre-processing step before running the parallel

application. As parallel hypergraph partitioning itself is a communication-intensive

operation, running it in the cloud is hard and suffers from poor scalability. The

thesis also investigates the scalability of parallel hypergraph partitioning algorithms

in the cloud, the challenges they present, and proposes solutions to improve the

cost/performance ratio for running the partitioning problem in the cloud.

Our algorithms are implemented as a new hypergraph partitioning package within

Zoltan. It is an open source Linux-based toolkit for parallel partitioning, load

balancing and data-management designed at Sandia National Labs. The algorithms

are known as FEHG and PFEHG algorithms.
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Chapter 1

Introduction

1.1 Motivations

1.1.1 Why Hypergraph Partitioning?

The partitioning problem is that of finding a way to decompose a set of interrelated

objects (or jobs, tasks or components) into smaller fragments or parts such that intra-

dependency between the objects in the same part is higher than inter-dependency

of objects in separate parts. This provides advantages in data processing. As an

example in distributed systems, the parts are dispatched into parallel machines for

processing. The intra and inter object dependencies correspond to local and remote

data accesses by processors, respectively. Minimising the object inter-dependencies

will result in more data locality and, consequently, provide higher performance and

speedup because the parts can be processed in parallel with less communication

between the machines.

On the other hand, the performance of parallel systems is often limited by the

response of the slowest system or responder. If a computer has more data to process

than the others, then the parallel system must wait for this computer to finish its

work while others stand idle. This causes not only performance degradation but

also wastes system resources and provides poor resource utilisation. The aim of load

balancing strategies is to assign the same amount of load to all machines in the

parallel system in order to avoid this issue.

2
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The partitioning problem with a load balancing constraint is to obtain an object

decomposition such that the size of the parts are limited to a specified range in

order to prevent load imbalance among the machines of the parallel system. Its

applicability is not solely limited to the parallel and distributed systems and it has

numerous applications in scientific and High Performance Computing (HPC), both

in academia and industry. Examples are: design and partitioning of Very Large Scale

Integrated (VLSI) systems [Len90], biology [MCS15], data mining [CJZM10], and

domain decomposition (in areas such as fluid dynamics [PRN+11] and computational

chemistry [Kim13]). Due to the importance of load balancing, whenever we mention

the partitioning problem in the thesis, we mean the partitioning problem with load

balancing constraint unless stated otherwise.

The partitioning problem requires defining the application workflow including

specifying object dependency patterns and quantifying them. Among different

approaches, graph and hypergraphs are two common data structures for this purpose.

1.1.2 Application Modelling

Following the discussion in the previous section, the application to be partitioned can

be represented as a graph or hypergraph. The hypergraph is a generalisation of the

graph model. Depending on the way the application is represented, the partitioning

problem is categorised into either the graph partitioning problem or the hypergraph

partitioning problem. In this section, we investigate each category and its advantages.

In the graph partitioning problem, the application is modelled with a graph that

is composed of a set of objects and one-to-one relationships among them. This

means that graphs only capture pair-object dependencies. In the graph model,

objects are called vertices and pair-relationships are referred to as edges. These

pair relationships provide some limitations. The limitations of graph partitioning in

the context of sparse-matrix vector multiplication1 is investigated by Hendrickson

[Hen98] as follows:

1Sparse-matrix vector multiplication is represented as y = A × x. Vectors x and y are input
and output vectors, respectively, and A is the sparse matrix.
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1. The graph can only model square, symmetric matrices and it is unable to

model non-square, non-symmetric matrices.

2. Graph partitioning can only provide symmetric partitions. Representing a

graph as a sparse matrix2, any partitioning on the rows of the matrix is

identical to the same partitioning on the columns. This enforces the same

partitioning on the input and output vectors. This restriction is not necessary

for non-symmetric solvers.

3. Graph partitioning ignores the preconditioning, which is one of the methods for

improving the performance of applications that include sparse-matrix vector

multiplication. Graph partitioning only optimises the multiplication process,

which itself is a small part of more complex operations in scientific computations.

In order to obtain better performance improvements, graph partitioning should

consider the whole process rather than only the multiplication part. For

example, if the partitioning knows what calculations come next, it can further

optimise the partitioning.

The other problem is that we can not always model object relationships as

pair relationships. In the social networks such as Facebook, we are dealing with

more complex relationships and interactions between a group of users can not be

represented with edges or pair-wise relationships [WXSW14]. As another example,

the graph model cannot fairly model the real inter-processor communication pattern

in sparse matrix-vector multiplication operation when processors access data that

resides on other processors [ÇA99].

A solution to some of the above mentioned problems related to graph modelling is

to model applications with hypergraphs [DBH+05]. A hypergraph is a generalisation

of the graph model in which object relationships are not limited to those that

are between pairs of objects and complex relationships can be represented. In

the hypergraph, objects are called vertices and group relations are referred to as

2A graph with N vertices is represented as a N ×N matrix. An item at row i and column j of
the matrix is one if there is an edge between vertex i and vertex j of the graph, otherwise zero.
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hyperedges3. Unlike edges, hyperedges can contain any arbitrary number of vertices.

Furthermore, hypergraphs have the ability to model non-symmetric matrices in a

sparse-matrix vector applications [ÇA99]. In addition, one can obtain a non-identical

partitioning on the rows or columns of the matrix by defining a partitioning on either

the vertex set or the hyperedge set [KPÇA12].

The price that is paid for these advantages is the slower processing time compared

to the graph partitioning problem. Although it is slower, employing hypergraph

partitioning to partition HPC applications can result in much better performance

[AK95]. The hypergraph partitioning is usually done as a pre-processing step

before processing the HPC application. The performance improvement in the latter

step compensates the longer processing time of the hypergraph partitioning. In

the end, one can get higher performance than graph partitioning based solutions

[ÇA99,TK08]. This has led to widespread usage and increased popularity of the

hypergraph modelling and the hypergraph partitioning in scientific applications

[Alp96,ÇA99,BJKT05,ZHS06,THK09,CJZM10,HC14,HLT+14,MCS15].

Optimal solutions to both graph and hypergraph variants of the partitioning

problem are NP-hard [MJ79], but a number of good heuristic algorithms have been

proposed to solve the problem sub-optimally [FM82,ÇA11,KK99,DBH+06,TK08].

1.1.3 Hypergraphs in the Cloud

The size of hypergraphs representing real applications is increasing. For example,

hypergraphs that model social networks such as Facebook and Twitter have millions

or billions of users (or vertices) with their interactions (hyperedges). The size of the

hypergraphs is too large to be processed by only one computer. Therefore, the perfor-

mance of serial algorithms limits the size of the problem that can be dealt with and

we need parallel and scalable algorithms and tools [JNWH04,WXSW14,DBH+05].

There are two main specifications for parallel hypergraph partitioning algorithms

in distributed multi-processor systems that need to be taken into account. The first

is the quality: the quality of the partitioning should be retained as the size of the

3The term “hyperedge” is used to make a distinction between many-to-many relations in
hypergraphs and one-to-one relations in graphs.
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distributed system, in terms of the number of processing cores, increases. The larger

the system is, the less the data locality among the processors is, and consequently,

the worse the partitioning of the objects may be. The second is the scalability of

the parallel algorithm. We are interested in a partitioning algorithm that is scalable

and gives better speedup as we increase the number of processors in the distributed

system. Achieving this is more difficult in hypergraph partitioning than in graph

partitioning 4.

Taking a step further, the interest in moving distributed and scientific applications

into the cloud has been increasing in recent years. The reason lies in the advantages

that the cloud offers to distributed applications such as elasticity, small start-up

and maintenance costs, dynamic resource allocation, and economies of scale and

use. On the other hand, some characteristics of the cloud cause performance

bottlenecks for running these applications such as hardware virtualisation, hardware

heterogeneity, and multi-tenancy [GKG+13,YCD+11,Wal08,MDH+12]. Above all,

the limited network resources of the cloud has made it a good candidate for running

computation-intensive applications while the communication-intensive applications

usually suffer from poor scalability [GKG+13]. In the latter, the scalability is

dependant on some design specifications such as the communication pattern inside

the application; for example, local and customised collective communications provide

better scalability than global communications with short messages [JRM+10]. In

addition, the structure of the application and how the application is designed both

affect the scalability [GKG+13].

While an important application of the hypergraph partitioning in distributed

systems is to decrease the communication volume and increase data locality, par-

titioning the application before running it in the cloud can provide considerable

performance improvement. Considering the large size of HPC applications, we need

4Both requirements (quality and scalability) are important for designing a parallel partitioning
algorithm. For more clarification, assume that the hypergraph partitioning is run as a pre-processing
step every time the application is run. First, the poor scalability of the partitioning algorithm itself
affects the application performance. On the other hand, if the algorithm does not give a quality
comparable to the serial algorithm as the system scales up, the lower partitioning quality that is
obtained by increasing the number of processors will result in higher communication overhead while
processing the application; this also gives poorer performance.
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a parallel hypergraph partitioner in the cloud.

This may be an issue when we run the partitioning process in the cloud. The

problem is that the parallel hypergraph partitioning is one of those communication-

intensive applications that not only provides challenges in the high performance

computer clusters, but also can suffer from poor scalability in the cloud. The scalabil-

ity problem, in either situation, is not only related to the partitioning algorithm itself

but also the structure of the hypergraph that may impose high network communica-

tion overhead. The structure of the hypergraph and object dependency models vary

from one application to another and make it difficult to define one framework that

works the best for all types of hypergraphs. Even so, there is no known hypergraph

partitioning algorithm that works well on all hypergraphs and there are always

trade-offs. The more general structure of the hypergraph model compared to the

graph model adds to the complexity [WXSW14]. Running the parallel hypergraph

partitioning in the cloud and proposing a scalable algorithm is a challenging task

and needs lots of provisioning and design techniques to make the problem feasible.

1.2 Thesis Objectives and Contributions

Our main objectives are summarized as follows:

1. To Propose a serial hypergraph partitioning algorithm that generates high

quality partitioning results on small hypergraphs (hypergraphs that can be

processed on one computing node). Our aim is to evaluate which design

parameters affect the performance and the quality of the serial partitioning

algorithm.

2. Considering the ever-increasing size of parallel and distributed applications, we

try to design a parallel scalable hypergraph partitioning algorithm that gener-

ates partitioning quality comparable to the serial algorithm. The scalability

is assessed based on achieved speedup over the serial hypergraph partitioning

algorithm. An algorithm is considered as more scalable if it gives better speedup

when the number of processors in the distributed system increases.
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3. Considering the trend for running scientific applications in the cloud, we target

the cloud as the testbed for parallel hypergraph partitioning. Considering

the characteristics of the cloud and its runtime limitations, we try to propose

algorithms and techniques to achieve scalability in the cloud. We also identify

design issues that exist for running parallel hypergraph partitioning in the

cloud.

4. To evaluate our algorithms against state-of-the-art hypergraph partitioning

algorithms and using real application data and benchmarks for this purpose.

The algorithms should be evaluated and compared based on two parameters:

the quality of the partitioning and the scalability.

5. To implement our algorithms as a part of an open source software tool that is

freely available.

The algorithms proposed in this thesis are of a type known as multi-level which

are composed of three distinct phases [Kar02]. They first construct a sequence of

approximations of the original hypergraph during the coarsening phase. The size

reduction is done using data clustering techniques and vertex matching. In the

second phase, which is called the initial partitioning phase, the partitioning problem

is solved on the smallest or the coarsest hypergraph. In last phase, which is also called

the uncoarsening phase, the coarsening stage is reversed and the solution obtained

on the coarsest hypergraph is used to provide a solution on the input hypergraph.

The coarsening phase is also known as the refinement phase.

Regarding the above objectives, the contributions of the thesis are as follows:

1. We propose a multi-level serial hypergraph partitioning algorithm that:

• gives significant quality improvements over state-of-the-art algorithms on

our evaluated benchmarks. It provides up to 71% improved partitioning

cut on hypergraphs with irregular structure compared to the state-of-the-

art serial algorithms.

• is based on rough set clustering technique which is a global clustering tech-

nique for finding vertex matches in the coarsening phase. The algorithm
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is designed based on removing unimportant and redundant information

from the hypergraph for making better clustering decisions.

• provides a trade-off between global and local clustering decisions by

categorising the vertices of the hypergraph.

2. We design a parallel hypergraph partitioning algorithm, developed from the

serial algorithm in case one, such that:

• it is based on the parallel rough set clustering techniques.

• proposes a parallel scalable algorithm for attribute reduction in the hy-

pergraph.

• proposes a synchronised-based parallel FM refinement algorithm. Due to

the serial nature of the FM algorithm, the refinement phase is the most

challenging phase in the multi-level paradigm to parallelise.

• as our partitioning algorithm is a recursive bipartitioning algorithm,

which is considered to be a divide-and-conquer algorithm, we proposed a

processor reconfiguration technique for each recursion of the algorithm.

We show that our reconfiguration algorithm is an effective and easy-to-

apply technique for providing a trade-off between the performance and

the partitioning quality.

• considering the ever-increasing scale of the current distributed systems,

the parallel algorithm is evaluated in the HPC cluster with up to 1024

processing cores and the scalability is investigated.

• the algorithm is evaluated in the cloud and the scalability is investigated.

Considering the growing application of the hypergraph partitioning in the

cloud, there is no prior work investigating the parallel hypergraph parti-

tioning and its scalability in the cloud. We have identified the challenges

on the way and propose solutions that will lead to a new approach to ob-

taining improvements in cost and performance when deploying distributed

applications in the cloud.
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3. We have implemented our parallel algorithm as a new library within the

Zoltan toolkit [San14b] from the Sandia National Labs that retains the Zoltan

interface. To date, there is no unified framework for hypergraph partitioning and

available tools use different interfaces and frameworks. This contribution is of

great importance because the increasing popularity of hypergraph partitioning

demands a unified framework and programming interface.

1.3 Thesis Structure

The rest of the thesis is organised as follows.

Chapter 2 provides the background and necessary definitions used in the thesis.

We start by providing the mathematical definition of the hypergraph partitioning

problem. Then, we introduce the rough set clustering technique that is a powerful

mathematical tool for data clustering and data analysis. Finally, we provide a brief

overview of cloud computing, its specification and core features, and how the cloud

can be employed for running HPC applications.

Chapter 3 is dedicated to the literature review. The chapter is divided into

four sections. The first section describes different algorithms for the hypergraph

partitioning problem. The proposed algorithms are categorised based on various

aspects. It also covers related work for the parallel hypergraph partitioning algorithms.

The second section provides an overview of the tools designed for hypergraph

partitioning. Section three introduces applications of hypergraph partitioning in

scientific computing. Finally, the last section concerns related work for transferring

HPC applications into the cloud and investigates the challenges and limitations.

Chapter 4 proposes our serial multi-level algorithm known as Feature Extraction

Hypergraph Partitioning (FEHG) algorithm. The algorithm makes novel use of the

technique of rough set clustering in categorising the vertices of the hypergraph in the

coarsening phase. FEHG considers hyperedges as the attributes and features of the

hypergraph and tries to discard unimportant attributes to make better clustering

decisions. The emphasis of the algorithm is on the coarsening phase of the multi-level

paradigm as it is considered the most important phase. The chapter evaluates the
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algorithm against the state-of-the-art hypergraph partitioning algorithms on a range

of hypergraphs from real applications with different specifications.

Chapter 5 proposes our parallel multi-level hypergraph partitioning algorithm

which is called the Parallel Feature Extraction Hypergraph Partitioning (PFEHG)

algorithm. The algorithm is designed for scalability. The chapter first proposes

the parallel coarsening phase that is based on the parallel rough set clustering

techniques. A parallel algorithm is also proposed for attribute reduction and removing

unimportant hyperedges which is based on constructing a bipartite graph from the

hypergraph. Later on, a parallel synchronised-based refinement algorithm is proposed

for the uncoarsening phase. This is the most difficult phase of the multi-level paradigm

to parallelise. The reason is that the refinement algorithm is inherently sequential

and vertex connectivities impose lots of network traffic during the refinement process.

The parallel refinement algorithm is designed considering the specification of the

refinement phase and using the lessons learned from the serial algorithm. The PFEHG

algorithm uses a new one-dimensional initial hypergraph distribution among the

processors and special processor reconfigurations in each recursion of the algorithm.

Finally, the algorithm is evaluated against the state-of-the-art parallel hypergraph

partitioner, Zoltan [San14b]. The evaluations are done in a HPC cluster as well as

in the cloud and the performance, scalability, and the quality of the algorithms are

compared. Algorithms are tested on a range of benchmarks from real applications

with different specifications.

Chapter 6 concludes the thesis by providing a summary of the work and the

evaluation results. It also proposes the opportunities for the future work.

Appendix A describes the set of benchmarks used in our thesis for evaluating the

partitioning algorithms. The list of the hypergraphs, their applications, and their

statistical specifications are proposed in more detail.

Appendix B provides the programming interface for using our hypergraph parti-

tioning algorithms. Our algorithms are implemented as a new hypergraph partitioning

package in the Zoltan tool from Sandia National Labs [San14b] and use the same

programming interface. It is implemented in C and MPI. Our algorithms have some

parameters that are user defined and they are used to control the runtime behaviour.
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The appendix describes the parameters and how they can be set. An example on

how to use our partitioning algorithm in Zoltan is also given in the end.

1.4 Publications

1. Lotfifar, F., Johnson, M., “A Multi-level Hypergraph Partitioning Algorithm

Using Rough Set Clustering”, In Euro-Par 2015: Parallel Processing, volume

9233 of Lecture Notes in Computer Science, pp.159-170. Springer Berlin

Heidelberg, 2015.

2. Lotfifar, F., Johnson, M., “A Scalable Multi-level Hypergraph Partitioning

Algorithm”, ready for submission.

3. Lotfifar, F., Johnson, M., “A Serial Multi-level Hypergraph Partitioning Algo-

rithm”, submitted to the Cluster Computing journal.

4. Masker, M., Nagel, L., Lotfifar, F., Brinkmann, A., Johnson, M., “Smart

Grid-aware Scheduling in Data Centres”, in Sustainable Internet and ICT for

Sustainability (SustainIT), pp.1-9, 14-15 April 2015. (Best paper award)



Chapter 2

Preliminaries

Hypergraph is a generalisation of graph in which edges can connect more than two

vertices; an edge in hypergraph is called a hyperedge. Hypergraph has the ability to

represent non-symmetric applications and provide a better connectivity model among

a set of objects compared to its graph counterpart. Hypergraph partitioning, which

is based on modelling the application with a hypergraph, is a recent improvement

over graph partitioning. Its application in scientific computing for data partitioning

has shown much better improvement than graph partitioning algorithms such as

better data localisation [ÇA99] and data distribution [SK06].

In this chapter, we provide necessary definitions and preliminaries used in the rest

of the thesis. These definitions are used for proposing our hypergraph partitioning

algorithms in later chapters. First, hypergraph and the hypergraph partitioning

problem are defined. Then we define the rough set data clustering technique which

is a powerful mathematical tool for data analysis and classification. This is the basis

of our vertex clustering algorithm that is used in both serial and parallel partitioning

algorithms proposed in the thesis.

Furthermore, we provide a brief overview of cloud computing, its specification

and core features, and how cloud computing can be employed for running scientific

and distributed applications. The chapter also introduces OpenStack as an open

source cloud operating system which enables the provision of a low-cost and scalable

cloud environment for running distributed applications.

13
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2.1 Hypergraphs

In mathematics and set theory, a multiset is defined as follows:

Definition 2.1 (Multiset) A multiset is a generalisation of a set in which an

element can occur several times. The multiplicity of an element is the number of

times the element occurs in the multiset. The cardinality of a multiset is the sum

of multiplicity of all elements in the multiset.

As an example assume the multiset {a, b, b, c, c, c}. The cardinality of the multiset

is 6 and multiplicities of a, b, and c in are 1,2, and 3, respectively. Accordingly, a

hypergraph is defined as follows:

Definition 2.2 (Hypergraph) A hypergraph H = (V,E) (or simply H(V,E))

is a pair consists of a finite set of vertices V with size |V | = n and a multiset E ⊆ 2V

of hyperedges with size |E| = m.

Let e ∈ E and v ∈ V be a hyperedge and a vertex of the hypergraph H(V,E),

respectively. The hyperedge e is said to be incident on v or contains v if v ∈ e

and it is shown as e ⊲ v. The pair 〈e, v〉 is further called a pin of H. The degree

of v, which is represented as d (v), is the number of hyperedges incident on v. The

size or cardinality of e, which is shown as |e|, is the number of vertices it contains.

According to this definition, a hypergraph is a generalisation of a graph in which

there is no limitation on the size of hyperedges. A hypergraph is reduced to a graph

if the cardinality of every hyperedge is two that is |e| = 2, ∀e ∈ E. Furthermore, the

number of pins of the hypergraph is calculated as pins(H) =
∑

v∈V d (v) =
∑

e∈E |e|.
In some literature, a hyperedge is also called a net ; therefore, we use hyperedge

and net interchangeably in the rest of the thesis1.

Definition 2.3 (Incidence Matrix) The Incidence Matrix of a hypergraph

H(V,E) with V = {v1, v2, · · · , vn} vertices and E = {e1, e2, · · · , em} hyperedges

is the n×m matrix Θ(H) = (θij) with the entries calculated as follows:

1The terminology originates from the application of hypergraph partitioning in VLSI circuit
partitioning in which a hyperedge is a net (a set of wires) that connects a number of circuit
components.
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θij =











1, if vi ∈ ej (or ej ⊲ vi)

0, otherwise

(2.1)

We represent the incidence matrix of H as Θ(H) or simply Θ. The number of

non-zeros in the incidence matrix is equal to the number of pins in H.

Similarly, the adjacency matrix of a hypergraph is defined as follow.

Definition 2.4 (Adjacency Matrix) The Adjacency Matrix of a hypergraph

H(V,E) with V = {v1, v2, · · · , vn} vertices is the n × n matrix A(H) = (aij) with

entries calculated as follows:

aij =











1, if ∃e ∈ E : e ⊲ vi and e ⊲ vj, i 6= j

0, otherwise

(2.2)

The diagonal entries of the adjacency matrix are zero. By convention, the adjacency

matrix of H is represented as A(H).

Let D be a diagonal matrix of size |V | × |V | whose entries are degrees of the

vertices. The adjacency matrix can be calculated as follow:

A(H) = ΘΘT −D (2.3)

in which ΘT is the transpose of Θ.

The incidence matrix of a hypergraph is non-symmetric while the adjacency

matrix is symmetric. In addition, Eq. (2.3) tells that the adjacency matrix of a given

hypergraph can be quite dense even if its incidence matrix is sparse. This is a typical

characteristic of hypergraphs that represent scientific applications. We will see in

later chapters that this can provide challenges for partitioning some hypergraphs

especially ones with very irregular structure.

Correspondingly, we define vertex and hyperedge adjacency as follows:

Definition 2.5 (Adjacent Vertices) Given a hypergraph H(V,E) and its adja-

cency matrix A(H), we say that two vertices v, u ∈ V are adjacent if, and only if,

its corresponding element in the A(H) is non-zero that is auv 6= 0.
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v1 1 0 0
v2 1 1 0
v3 1 1 0
v4 0 0 0
v5 1 0 1

v1 v2 v3 v4 v5




















v1 0 1 1 0 1
v2 1 0 1 0 1
v3 1 1 0 0 1
v4 0 0 0 0 0
v5 1 1 1 0 0

Figure 2.1: A sample hypergraph (left) with its incidence (middle) and adjacency (right)
matrices.

Definition 2.6 Given a hypergraph H(V,E) and its incidence matrix Θ(H), we say

that two hyperedges e, e′ ∈ E are adjacent if, and only if, there is a vertex v ∈ V
such that θve 6= 0 and θve′ 6= 0. Identically, e and e′ are adjacent if, and only if, both

contain v.

An example of a hypergraph with vertex set V = {v1, v2, v3, v4, v5} and hyperedges

set E = {e1, e2, e3} and its incidence and adjacency matrices are given in Fig. 2.1.

The hyperedges e1, e2, and e3 contain {v1, v2, v3, v5}, {v2, v3}, and {v5}, respectively.

The incidence matrix is of size 5× 3 with 7 non-zeros which is equal to the number

of pins in the hypergraph. The degree of a vertex vi is the number of non-zeros in

row i of incidence matrix, for example d(v1) = 1 and d(v3) = 2. All the vertices of

this hypergraph except v4 are adjacent. Furthermore, e1 is adjacent to both e2 and

e3, but e2 is not adjacent to e3.

2.2 Hypergraph Partitioning Problem

Given a hypergraph H(V,E), let ω : V 7→ N be a function that assigns positive

weights to the vertices of the hypergraph and let γ : E 7→ N be function that assigns

positive weights to the hyperedges.

Definition 2.7 (Hypergraph Partitioning) Let k be a non-negative integer and

let H = (V,E) be a hypergraph. A k-way partitioning of H is a collection of sets

Π = {π1, π2, · · · , πk} such that
⋃k

i=1 πi = V for which ∀πi, πj ⊆ V, 1 6 i 6= j 6 k and

we have πi 6= ∅ and πi ∩ πj = ∅.
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The hypergraph partitioning problem is called a bipartitioning or a bisection-

ing problem if k is equal to two2. We say that vertex v ∈ V is assigned to a part π

if v ∈ π. Furthermore, the weight of a part is defined as follows:

Definition 2.8 (Part Weight) Given a hypergraph H(V,E) and a partitioning Π

on the hypergraph, the weight of a part π ∈ Π is sum of the weight of the vertices

assigned to the part.

ω(π) =
∑

v∈π
ω(v). (2.4)

A hyperedge e ∈ E is said to be connected to (or spans on) the part π if e∩π 6= ∅.

Definition 2.9 (Connectivity Degree) For a given hypergraph H(V,E) and a

k-way partitioning Π, the connectivity degree of a hyperedge is the number of

parts connected to the hyperedge. The connectivity degree of a hyperedge e ∈ E is

denoted as λe(H,Π). A hyperedge is said to be cut if its connectivity degree is more

than one.

In the literature, hyperedges that are cut are said to be in the cut set of the

partitioning. For the sample hypergraph given in Fig. 2.1, a possible bipartitioning

Π1 can be obtained as π11 = {v1, v2} and π12 = {v3, v4, v5}. In this bipartitioning, the

connectivity degree of hyperedges e1, e2 and e3 are 2, 2 and 1, respectively; therefore,

hyperedges e1 and e2 are said to be cut.

In practical applications, we are interested in a partitioning of the hypergraph

that optimises a cost function and imposes a constraint on the size of the parts. The

first is called the partitioning objective and the the latter is called the partitioning

constraint according to Karypis [Kar02]. In this thesis, we also refer to them as the

partitioning cost and the balance constraint.

Alpert and Kahng [AK95] provide a survey of different partitioning costs. The

most common partitioning cost objectives are minimising the hyperedge cut and

2We will later see in Eq. 2.6 that the weights of the parts can differ slightly and this is defined
by introducing the imbalance tolerance to the hypergraph partitioning problem. In some literature,
the bisectioning is defined as a bipartitioning that the weight of the parts are exactly equal. This
means that the imbalance tolerance is zero. We avoid this distinction and use the bipartitioning and
bisectioning, interchangeably, for a 2-way partitioning with non-negative imbalance. We explicitly
mention the word exact whenever we refer to exactly equal part sizes in a 2-way partitioning.



2.2. Hypergraph Partitioning Problem 18

minimising the Sum Of External Degrees (SOED). The first tries to minimise

the sum of the weights of the hyperedges that are cut by a partitioning while

the latter tries to minimise the sum of the hyperedge connectivity degree times

their weights. The first objective mostly suits the graph partitioning problem (in

which the size of all edges is two and an edge spans at most two parts) or the

bipartitioning problem (the connectivity of the hyperedges are at most two). It

is not a objective for the hypergraph partitioning problem because it does not

consider the cardinality of hyperedges in the hypergraph (a hyperedge may spans

several parts). Consequently, the second objective is considered to be a better

for the hypergraph partitioning problem. There is a recently proposed objective

which is derived from SOED and referred to as (connectivity−1) objective. This

objective provides better modelling of the hyperedge cut in problems modelled with

hypergraph. This objective is being used in most of recently proposed works on

hypergraph partitioning [GL98,ÇA99,Kar13b,DBH+06,TK08]. In our thesis, we use

the connectivity−1 objective as default unless stated otherwise.

Definition 2.10 (Hypergraph Partitioning Cost) Given a hypergraph H(V,E)

and a partitioning Π on H, the partitioning cost is a cost function defined as follows:

cost(H,Π) =
∑

e∈E
(γ(e) · (λe(H,Π)− 1)) (2.5)

The objective of the hypergraph partitioning is to obtain a partitioning that minimises

the cost3.

The cost of partitioning is also referred as the quality of partitioning [DBH+06].

In the rest of the thesis when we compare partitioning algorithms, we refer to the

partitioning that gives smaller cost according to Eq. (2.5) as the partitioning with

the higher quality.

3The majority of the applications that use hypergraph partitioning try to minimise the cost
function. On contrary, there are some applications, such as data declustering, that are interested in
the partitioning with the maximised cost function. An example is the work by Liu and Wu [LW01].
In the thesis, we consider a hypergraph partitioning problem that minimises the cost function unless
stated otherwise.
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As mentioned earlier, the weight of parts are usually bounded to a specified range

in practical applications of the hypergraph partitioning. The constraint is referred to

as the balance constraint and enforces the parts to have equal weights. The degree of

freedom from the constraint is given by a real valued imbalance tolerance ǫ ∈ (0, 1).

Given an imbalance tolerance, the weight of the parts should be limited as follows:

W · (1− ǫ) 6 ω(π) 6 W · (1 + ǫ), ∀π ∈ Π (2.6)

where W =
∑

v∈V ω(v)/k.

In order to give and example of a partitioning with objectives we refer again to

the example given in Fig. 2.1. Assume unit weights for all vertices and hyperedges

in the hypergraph and a balance constraint ǫ = 0.2. The partitioning Π1 mentioned

above is balanced, but it is not optimised. The cost of Π1 is 2. A possible higher

quality partitioning, and also optimal, is Π2 = {{v2, v3} , {v1, v4, v5}} with unit cost.

In addition to the above single objective partitioning problem, there are some

works proposed a multi-objective formulation [SKK99]. A multi-objective partitioning

problem tries to optimise multiple objectives simultaneously. It can include both

local and global objective functions, for example, it may try to minimise the cut

while uniformly distributes cut set among the parts. In multi-constraint problem, a

vector of weights is assigned to each vertex and the partitioning is done in a way

such that the balance of the partitioning is preserved along each weight dimension

while trying to optimise the cut. A use case of the multi-constraint problem is in

VLSI circuit partitioning [Len90]. In addition to minimising the cut, the partitioning

may also try to balance parameters such as: the noise, pins in each part, power

consumption, and delay on the wires [Alp96].

Definition 2.11 (Hypergraph Partitioning Problem) The hypergraph parti-

tioning problem is finding a partitioning Π on the given hypergraph H(V,E) according

to Definition 2.7. This partitioning minimises the cost function that is given in

Definition 2.10 and satisfies the balance requirement in Eq. (2.6).

Finding an optimal solution to the hypergraph partitioning problem in Defini-

tion 2.11 above is shown to be NP-Hard [MJ79].
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2.3 Rough Set Clustering

Rough set clustering is a mathematical approach to deal with uncertainty and vague-

ness in data analysis. The idea was first introduced by a Polish mathematician

Zdzis law Pawlak in 1991 [Paw91]. The approach is different from statistical ap-

proaches, where the probability distribution of the data is needed, and fuzzy logic,

where a degree of membership is required for an object to be a member of a set

or cluster. The approach is based on the idea that every object in the universe

is tied with some knowledge or attributes. Objects that are described with the

same attributes are indiscernible and they can be put together in one category

[PPS05]. The theory extracts a set of attributes for each object (also called reduct

set) and performs classification and clustering based on these attributes [TP09]. It

has found a lot of applications in engineering and data classifications and can be

employed in applications such as feature selection and reduction, decision making

rule generation, and data reduction. Thangavel and Pethalakshmi use rough sets for

dimensionality reduction in high dimensional data sets [TP09]. In power engineering,

Lambert-Torres employs rough set clustering to classify the current state of a power

system [LT02]. Applications of rough sets in Artificial Intelligence (AI) and cognitive

science is reviewed in [PRR12]. Lingras and West apply rough set clustering to

classify web resources and web users for web mining [LW04]. Finally, Parmar et al.

employ rough set theory to cluster categorical data in data mining [PWB07].

In rough set clustering, the data to be classified are called objects and they are

described in an information system defined as follows:

Definition 2.12 (Information System) An information system is a system

represented as I = (U,A,V,F) where

• U is non-empty finite set of objects or the universe.

• A is a non-empty finite set of attributes.

• V is a multiset of attribute values such that Va ∈ V is a set of values for each

a ∈ A.

• F is a mapping function such that F(u, a) 7→ Va, ∀(a, u) ∈ A× U.
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Table 2.1: An example of an information system with eight objects and five attributes.
The value of each attribute is a non-negative integer number.

a1 a2 a3 a4 a5
u1 1 2 0 3 0
u2 2 0 0 1 3
u3 0 2 4 2 3
u4 1 2 0 3 0
u5 0 2 0 3 5
u6 1 2 0 3 0
u7 0 2 4 2 3
u8 2 0 0 1 3

Definition 2.13 (Decision Table) An information system is called a decision

table if A = AC ∪ AD, where AC and AD are sets of condition attributes and

decision attributes, respectively, such that AC ∩AD = ∅.

For any B = {b1, b2, · · · , bj} ⊆ A, an object u ∈ U can be denoted as a tuple
⇀
uB = 〈F(u, b1),F(u, b2), · · · ,F(u, bj)〉.

Definition 2.14 (Indiscernibility Relation) For any B ⊆ A there is an as-

sociated equivalence relation denoted as IND(B) and called B-Indiscernibility

relation such that:

IND(B) =
{

(u, v) ∈ U
2 | ∀b ∈ B, F(u, b) = F(v, b)

}

(2.7)

When (u, v) ∈ IND(B), it is said that u and v are indiscernible under B and this

is represented as an equivalence relation uRv.

Definition 2.15 (Equivalence Relation) An equivalence relation is a binary

relation R ⊆ U× U which is

• Reflexive: uRu.

• Symmetric: If uRv, then vRu.

• Transitive: If uRv and vRz, then xRz.

Furthermore, the equivalence class of u with respect to B is [u]B = {v ∈ U | uRv}.
The equivalence relation provides a partitioning of the universe and it is represented

as U/IND(B) or simply U/B.
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An example of an information system is represented in Table 2.1. The set of objects

is U = {u1, u2, u3, u4, u5, u6, u7, u8} and the set of attributes is A = {a1, a2, a3, a4, a5}.
The mapping function assigns integer values to objects per each attribute. Objects

u1 and u2 can be described as tuples 〈1, 2, 0, 3, 0〉 and 〈2, 0, 0, 1, 3〉, accordingly. For

the attribute set B = {a2, a3, a5} ⊆ A, the equivalence classes and the partitioning

of the objects are:

1. Part 1: [u1]B = [u4]B = [u6]B = {u1, u4, u6}

2. Part 2: [u2]B = [u8]B = {u2, u8}

3. Part 3: [u3]B = [u7]B = {u3, u7}

4. Part 4: [u5]B = {u5}

therefore, U/B = {{u1, u4, u6} , {u2, u8} , {u3, u7} , {u5}}.

Definition 2.16 (Information Set) For a subset of attributes B ⊆ A, the infor-

mation set with respect to B for any C ∈ U/B is defined as follows:

⇀

CB =
⇀
cB, ∀c ∈ C (2.8)

Following the above example, the information set for part C = [u1]B = [u4]B =

[u6]B = {u1, u4, u6} is
⇀

CB =
⇀
u1B =

⇀
u4B =

⇀
u6B = 〈2, 0, 0〉.

Definition 2.17 (Set Approximation) Let B ⊆ A be a set of attributes. Every

set X ⊆ U of objects can be approximated using the information in B by defining a

B-lower and B-upper set approximations. The lower approximation is represented

as BX and contains objects that definitely belong to X. The upper approximation is

denoted as BX and contains objects that possibly belong to X.

BX = {x | [x]B ⊆ X}

BX = {x | [x]B ∩X 6= ∅}
(2.9)

Furthermore, the boundary region is denoted as BX −BX. A set is said to be

rough if its boundary region is non-empty.
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Table 2.2: An example of a decision table which decides about whether a person has flue
according to her headache, cough, and body temperature as condition attributes.

Headache Cough Temperature Flu
u1 No No Normal No
u2 No Yes High Yes
u3 Yes Yes Normal Yes
u4 Yes No Fever Yes
u5 No Yes Normal No
u6 Yes Yes High Yes
u7 Yes No Normal No
u8 Yes No High Yes
u9 No No High No
u10 Yes Yes Fever Yes

As an example, consider the decision table depicted in Table 2.2 which decides

about whether a person has flu according to her/his headache, cough, and body

temperature as condition attributes. The attribute set B = {Headache,Cough}
partitions the universe into U/B = {{u1, u9} , {u2, u5} , {u4, u7, u8} , {u3, u6, u10}}.
Let X = {x | Flu(x) = Yes}. According to Definition 2.17, the lower and upper

approximations of X are:

BX = {u3, u6, u10}

BX = {u2, u3, u4, u5, u6, u7, u8, u10}

The example tells us that people having both cough and headache are definitely

recognised as having flu, otherwise we can not decide certainly. The boundary region

BX −BX = {u2, u4, u5, u7, u8} contains objects that we can not definitely say that

they are in X according to B.

The set of attributes can contain some redundancy. Removing this redundancy

could lead us to a better clustering decision and data categorisation while still

preserves the indiscernibility relation among the objects.

Definition 2.18 (Reduct) Let B ⊆ A be a set of attributes. B is said to be a

reduct of A if

1. IND(B) = IND(A).

2. B is minimal and no attribute can be removed from B without changing

indiscernibility relations.
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We refer again to the information system depicted in Table 2.1 as an example. The

attribute set B = {a4, a5} is a reduct and the attributes {a1, a2, a3} are redundant

and can be removed. We achieve the same partitioning of objects with respect

to B and it is minimal such that removing more attributes from B changes the

indiscernibility relations.

The reduct of an information system is not unique. It is shown that finding

a minimal reduct of an information system is an NP-hard problem [SR92b]. The

number of reducts of an information system with k attributes may equal to
(

k

⌈ k2⌉
)

.

Calculating the reduct is not a trivial task and it is one of computational bottlenecks

of rough set clustering. A number of heuristic algorithms have been proposed for

problems whose number of attributes is not very large. Examples are the work

by Wroblewski [Wro95,Wró98], which is based on genetic algorithms, and the work

by Ziarko and Shan [ZS95] that uses decision tables based on Boolean algebra.

These methods are not applicable to hypergraphs which are usually representing

applications with high dimensionality and very large number of attributes. In

addition, the process would be much complicated when these operations have to

be repeated several time during the partitioning process. We propose a method for

calculating an approximation of the reduct set of hypergraphs when proposing our

hypergraph partitioning algorithms.

2.4 Cloud Computing

Cloud computing has become a popular word nowadays. It refers, generally speaking,

to a collection of integrated hardware and network resources, software, and internet

infrastructures that provide a variety of services over the internet. In this model,

users can access their desired services on-demand regardless of where and how these

services are hosted or provided. This is usually described as pay-as-you-go computing

model in which users can subscribe to a cloud services, use them and pay only for

the time that the services have been used. In addition, users do not need to pay

any upfront or maintenance costs. The term “services” is better described in the

definition provided by Armbrust et al. [AFG+09]
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Definition 2.19 (Cloud Computing) Cloud Computing refers to both the appli-

cations delivered as services over the Internet and the hardware and system software

in the datacenter that provide those services.

They refer to services as Everything-as-a-Service. In their terminology, it is

referred as XaaS or X-as-a-Service. The most common examples are Software-as-a-

Service (SaaS), Infrastructure-as-a-Service (IaaS), and Platform-as-a-Service (PaaS).

A more precise definition of cloud computing is provided by U.S. National Institute

of Standards and Technology (NIST)4.

Definition 2.20 (Cloud Computing) Cloud computing is a model for enabling

ubiquitous, convenient, on-demand network access to a shared pool of configurable

computing resources (for example networks, servers, storage, applications, and ser-

vices) that can be rapidly provisioned and released with minimal management effort

or service provider interaction.

NIST categorises cloud services into three different categories in different layers

of service. The service layout which determines what is being provisioned is depicted

in Fig. 2.2. User can access these services through the internet using a client device

such as a web browser or a program interface. These services from bottom-up are:

Infrastructure-as-a-Service (IaaS) provides the physical infrastructure of cloud

computing. This category itself is divided into two subcategories: Hardware-

as-a-Service (HaaS) and Storage-as-a-Service. HaaS provides the processing,

memory, networking and all other fundamental things that the user can deploy

and run an arbitrary software on them. They are provided in the form of

Virtual Machine (VM) instances. User can create VMs of desired configuration

and install arbitrary software tools and interfaces on them. The latter provides

virtualised storage in the form of raw disk space or object storage. The network

is provided in the form of virtualised network that connects VMs to the internet

or a private network. User does not control the cloud infrastructure, but only

4http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf

http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf
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Clients

Internet

Software-as-a-Service
user-applications, scientific applications, photo editing

Example: Microsoft Office 365, Facbook, Google Apps, Flicker

Platform-as-a-Service
operating systems, programming language execution environments, databases, web servers

Example: Apache Hadoop, Hadoop, Google App Engine, Appache Stratos

Infrastructure-as-a-Service
Storage-as-a-Service

virtual-machine disk image

library, block and file-based storage

Example: Amazon S3, Google Drive, DropBox

Hardware-as-a-Service
Virtualised Servers, Network, IP addresses,

Virtual local area networks

Example: Amazon EC2, Google Compute Engine.

Figure 2.2: The general reference model of the cloud.

the operating system, VMs behaviour and software installed on them. She/He

has a limited access over the networking capabilities such as firewall settings.

Platform-as-a-Service (PaaS) offers services such as computing platform, run-

time environments, databases, and web servers. It provides a framework for the

software and application developers to be able to develop and customise their

applications and software. These services are backed by a core middleware

platform that is responsible for creating the abstract environment where ap-

plications are deployed and executed [BVS13]. It means that service provider

manages runtime environment, middleware, operating system, networking,

fault tolerance, storage, etc., but users only concentrate on their application

development and logic of their work.

Software-as-a-Service (SaaS) layer is build on the top of PaaS. It provides access

to software applications which are referred to as on-demand software. Common
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example are Adobe Photoshop, and Microsoft Office. Customers run these

application on the cloud instead of a local desktop computer. These applications

are usually shared among different users. Customers do not need to worry

about installation, maintenance and running of the applications and it is the

responsibility of the service provider. Users use a web interface program to

access these services.

Users pay for the cloud services. The pricing model for the above services are

described as dollar per hour and the cost is different based on the type of the service

requested.

NIST provides five essential characteristics of the cloud as follows:

1. On-demand self service: A consumer can access computing resources automati-

cally without requiring any human interaction.

2. Broad Network Access: Services and capabilities are available over the network

and can be accessed through standard mechanisms anywhere regardless of the

type of the device customers use.

3. Resource Pooling: The provider’s computing resources are pooled to serve

multiple consumers using a multi-tenant model. Different physical and virtual

resources are dynamically assigned and reassigned according to the consumer’s

demand. Consumers have no control over the exact location of the provided

resources, but they might be able to specify location at a higher level of

abstraction.

4. Rapid Elasticity: Resources can scale dynamically and rapidly both inward

and outward based on the demand. From the customer’s point of view, the

services are unlimited and can be requested at any time.

5. Measured Service: Cloud systems automatically control and optimize resource

use by leveraging a metering capability at some level of abstraction appropriate

to the type of service (for example storage, processing, bandwidth, and active

user accounts). Resource usage can be monitored, controlled, and reported
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that provides transparency for both providers and consumers of the utilized

service.

There are other characteristics such as productivity, in which multiple users can

work on the same data simultaneously, reliability, such that user data is backed up

on different places to guarantee that the data is not lost, security, in which the user

has the confidence that his/her data is well protected and secured and it can not be

accessed unauthorised users, and scalability, such that the resources can be scaled

both horizontally (the number of resources) and vertically (using more powerful

resources).

Furthermore, cloud systems can be categorised based their deployment model.

They are divided into three categories [BVS13] as follows:

Public/Internet Clouds This is the most common form of cloud computing which

is owned and operated by a third party organisation. Everybody can subscribe

and use its services based on pay-as-you-go pricing model. This type of cloud

is usually bigger in scale compared to others.

Private/Enterprise Clouds The cloud infrastructure is provided for exclusive use

of a single organisation. There are two types of this cloud: On-site private

cloud that is hosted within an organisation’s own datacentre. It is suitable for

organisations that need complete control of cloud configuration and security.

The other is externally hosted private cloud in which the cloud infrastructure

is hosted by a third party cloud provider.

Hybrid/Inter Clouds This type is a combination of both public and private clouds.

For example organisations can lease public clouds when the capacity of their

private cloud is insufficient. In another model, a company can store its sensitive

data, which needs high security, on its private cloud and use a public cloud for

other purposes.

As mentioned above, cloud services are offered in virtualised form. Virtualisation

plays an important rule in cloud computing and it is the enabling technology of the

cloud, because it allows a degree of customisation, configuration, security, isolation,
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Figure 2.3: Infrastructure-as-a-Service (IaaS) architecture and its components [BVS13].

and manageability in cloud systems [BVS13]. Virtualisation is built on top of

a physical computing node and separates it into one or more virtual instances.

Instances share physical resources but they are consolidated and isolated and can be

configured and controlled separately. Virtualisation in the cloud is mostly offered in

the form of virtualised hardware and storage in IaaS service layer. Programming

language virtualisation is offered as PaaS services. Virtualisation provides several

advantages for the cloud computing. Besides from the isolated execution and

manageable controllability of VM instances, portability is another important feature

of virtualisation that allows moving one VM to another place with respect of physical

systems. Furthermore, it provides efficient use of resources by sharing them. Examples

of the virtualisation technologies are Xen5, VMware6, and Microsoft Hyper-V7.

Virtualised resources are provided through IaaS solutions that is important for us

as we work with this layer for our simulations and evaluations in the thesis. Figure

5http://www.xenproject.org/
6http://www.vmware.com/
7http://www.microsoft.com/en-us/server-cloud/solutions/virtualization.aspx

http://www.xenproject.org/
http://www.vmware.com/
http://www.microsoft.com/en-us/server-cloud/solutions/virtualization.aspx
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2.3 shows a reference architecture model for IaaS implementation. It is composed

of three distinct layers: physical infrastructure, infrastructure management software

and the user interface [BVS13]. The top layer provides access to the services which

is based on Web 2.0 technologies. The middle layer is designed for management of

the infrastructure and includes several components:

• pricing/billing: calculates the cost of using VMs.

• monitoring: tracks the execution of the VM instances for reporting and

analysing purposes.

• reservation: manages the reservation of the VMs by the customers.

• QoS/SLA management: is responsible for the Quality of Service (QoS) and

Service Level Agreement (SLA) with the customers to ensure that a certain

level of agreed quality is met for the customers.

• VM repository: it has a database of VM images that customers can use for

creating their VM instances. Users can upload their specific VM image.

• VM pool manager: manages running VM instances.

The bottom layer provides the physical infrastructure for running VMs in the cloud.

Datacentres, which is a network of hundreds of thousands commodity hardware, is the

most common infrastructure for hosting the cloud. It is where computing resources,

storage and network are implemented and provided to the cloud in virtualised format.

Cloud computing is built on top of one or more datacenters. In datacenters, the

price/performance ratio is more important than performance alone, and the storage

and energy efficiency are more important than shear speed performance [HDF11].

The use of commodity hardware as a low-end computing element benefit from the

economies of scale and provides much better price/performance ratio compared to

high-end computing nodes [BDH03,HDF11].

The network connectivity in datacenters usually follows a hierarchical architecture.

In general, low-end commodity servers are packed together in a unit or rack and

they are interconnected using a local Ethernet switch. At a higher level, racks are
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Figure 2.4: Storage hierarchy in a distributed storage datacenter from programmers point
of view [BCH13].

connected using rack-level switches which themselves have upper links to cluster-level

switches. As an example, a rack with 40 servers with 1-Gbps port have 4-8 uplinks

to the cluster-level switch, which means 5 to 10 times degradation in inter-rack

communication bandwidth compared to the intra-rack communication bandwidth

[BCH13]. As a result, intra-rack communication is much faster than inter-rack

communications, and they are both much faster than inter-cluster communications.

This makes data locality an important factor of scalability and performance and it

should be considered by the programmers and software developers while developing

their applications in the cloud. This hierarchy of network connectivity can be a

bottleneck specially for running applications with high volume of communication

between servers.

Storage elements in datacenter can be connected to servers directly and managed

by a distributed file system or cluster-level switches [BCH13] as a part of Network

Attached Storage (NAS). The use of commodity hardware demands implementing a

fault-tolerant file system and the most common ways are replication based strategies

and error correction codes [CJZM10]. In a distributed storage architecture, storage

hierarchy follows a similar architecture as network hierarchy. The storage hierarchy

from the programmers point of view is depicted in Fig. 2.4. Barroso et al. [BCH13]

have quantified latency, bandwidth, and capacity of memory accesses in the storage
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Figure 2.5: Latency, bandwidth and capacity of storage access in the storage hierarchy
of a distributed storage datacenter [BCH13].

hierarchy as proposed in Fig. 2.4. Their model, despite being too simple, provides

an idea of storage accessibility in the cloud among different layers of hierarchy. They

assume a datacenter with 2000 servers, each with 8 GB of DRAM and two levels

of cache and four 1 TB disk drives. Servers are arranged in racks of size 40 and

they are connected to a 1 Gbps link to the rack-level switches. Each rack level

switch has additional eight 1 Gbps ports to connect to cluster-level switches. Their

evaluation is represented in Fig. 2.5. According to the results, cluster level storage,

albeit being much bigger than local server storage, provides much higher latency

and it can be a restricting factor of performance in the cloud (similar to the network

latency mentioned above).

Recently, there is a great interest for running High Performance Computing

(HPC) applications in the cloud [MAB+10]. Services are mostly offered in IaaS and

PaaS layers. The cloud provides lots of advantages for scientific computing such as

elasticity, virtualisation flexibility, low maintenance and setup costs, and dynamic

reallocation. It provides a cost-effective running environment for HPC applications

with faster turnaround time compared to private HPC clusters [YCD+11]. Despite

these advantages, limited network interconnection capacity and the overhead imposed
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by network and storage virtualisation are two major performance bottlenecks for

HPC on the cloud [YCD+11,MDH+12]. Consequently, the cloud providers have

decided to offer better cloud infrastructure for HPC applications such as Amazon

Elastic Compute Cloud8 (Amazon EC2), Magellan9: Cloud Computing for Science,

and IBM Platform Computing10. Cloud computing provides a new opportunity for

scientific applications and there is a great interest and effort for transferring these

applications into the cloud [ZG11,You11,GKG+13].

2.4.1 OpenStack Cloud Software

In this section, we introduce the architecture of the OpenStack cloud software

which provides cloud computing services mostly at IaaS level. It is an open source

cloud operating system that is released under Apache 2.0 license and manages cloud

resources in a datacenter. Users can can access their resources through a web interface

(also called dashboard), command line tools, and RESTful APIs. It was founded in

2010 as a joint project between Rackspace11 and National Aeronautics and Space

Administration (NASA) to provide an open source software for organisations to

create and offer cloud computing services on standardised hardware. OpenStack

started with a missions:

“Produce the ubiquitous Open Source Cloud Computing platform that will

meet the needs of public and private clouds regardless of size, by being

simple to implement and massively scalable.”

and a motto:

“OpenStack is open source, openly designed, openly developed by an

open community.”

Recently, more than 500 companies are working with the project and contribute

with its development. As depicted in Fig. 2.6, its design architecture typically has

the following components

8http://aws.amazon.com/ec2/
9http://www.alcf.anl.gov/magellan

10http://www-03.ibm.com/systems/platformcomputing/
11http://www.rackspace.com/

http://aws.amazon.com/ec2/
http://www.alcf.anl.gov/magellan
http://www-03.ibm.com/systems/platformcomputing/
http://www.rackspace.com/
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Figure 2.6: Architecture of the OpenStack cloud software.

• OpenStack Identity (keystone)

• OpenStack dashboard (horizon)

• OpenStack Compute (nova)

• OpenStack Object Storage (swift)

• OpenStack Block Storage (cinder)

• OpenStack Image service (glance)

• OpenStack Networking (neutron) or legacy networking (nova-network)

• OpenStack Orchestration (heat)

• OpenStack Database service (trove)

• OpenStack Data processing service (sahara)

Identity (keystone) is used to provide an authentication and authorization service

for other OpenStack services. Dashboard (horizon) is a web interface that allow users

to manage resources and services including OpenStack Compute cloud controller,
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nova, and neutron. Compute (nova) provides control over VM instances and networks,

and enables the user to manage access to the instances by defining users and project

groups. Object storage (swift) is a component for creating redundant and scalable

data storage using clusters of standardized servers to store big data. Block Storage

(cinder) enables users to add extra block-storage to VMs and manage them. This

service is similar to the Amazon EC2 Elastic Block Storage (EBS). Image service

(glance) is used for storing and managing VM images. Users can also upload their

own images. Networking (neutron) provides necessary API for defining network

connectivity and addressing in the cloud and enables users to leverage different

network technologies. It is used to manage VLAN, IP addresses to different VMs,

and firewalls. Orchestration (heat) is used for managing multiple cloud applications

by providing some APIs. Database service (trove) provides a scalable and reliable

Database-as-a-Service (DaaS) in OpenStack for both relational and non-relational

databases. Finally, data processing service (sahara) provides services to provision

Hadoop12 cluster in OpenStack by specifying parameters such as Hadoop version,

cluster topology, and hardware details.

Creating instances are an easy process that can be done from the dashboard.

Generally speaking, user first requests an VM instance from the console and she/he

determines the image (operating system) to be loaded for this instance. Horizon

passes the request to nova. Nova checks with keystone for identity checking and

authentication. If it is authorised, nova asks neutron to provision networking

and IP address for the instance. Finally, nova asks glance to load the requested

OS image for the instance then it mounts the image on the VM and performs

necessary configurations. On boot-up, the VM requests an IP address from the

DHCP component on neutron. In this stage, VM is ready and can be customised by

the user. The user can log into the node through services such as Remote Desktop

Control (RDC), ssh connection, and from OpenStack dashboard using local VNC

client.

12https://hadoop.apache.org/

https://hadoop.apache.org/
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Related Work

Finding an optimal solution to the hypergraph partitioning problem considering the

cost objective and balance constraint is known to be NP-Hard [MJ79], but a number of

polynomial time heuristics have been proposed to produce a near-optimal solution for

the problem. This chapter reviews the works related to the hypergraph partitioning

problem. The content of the chapter is divided into four sections. Hypergraph

partitioning algorithms are reviewed first. The proposed algorithms in the field can

be categorised according to their specifications and the characteristics of the input

hypergraph. In the second section, we review available software tools designed for

hypergraph partitioning and the state-of-the-art tools are introduced. Section 3

reviews some of the applications of hypergraph partitioning. The application to

be partitioned should be modelled first by a hypergraph. The modelling process is

application specific and depends on the objectives of the problem under investigation.

The aim of the chapter is to review algorithms, tools, and applications of hypergraph

partitioning and we do not study the works related to graph partitioning. Works

related to graph partitioning are studied whenever necessary, for example when a

specific idea originates from the graph partitioning context.

In the last section, we study the related work for transferring scientific applications

into the cloud and the challenges on the way. Despite the advantages that the cloud

provides for HPC applications such as elasticity, small startup times, and maintenance

costs, the transfer process is not straightforward and the specification of the cloud

and the application should be considered. The section investigates the issues and

36
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identifies the key characteristics of the cloud that can be problematic for this transfer.

3.1 Hypergraph Partitioning Algorithms

Heuristic algorithms for hypergraph partitioning can be categorised according to

different aspects and specifications. This section reviews different categories of

algorithms for the k-way hypergraph partitioning problem.

Graph partitioning is a well studied problem and efficient heuristic algorithms

have been proposed; therefore, some algorithms try to overcome the hypergraph

partitioning problem through graph partitioning. This needs the transformation of

the hypergraph into a graph representation. The transformation should be done

in a way to preserve the structure of the hypergraph. This is a hard task and

there is no known algorithm with this specification [IWW93]. For example, it is

difficult to define the weights of edges in the graph after transformation and the

contribution of cut hyperedges to the partitioning cut. To clarify the issues, we study

a bipartitioning on the hypergraph. One natural transformation of the hypergraph

to a graph representation is to model a hyperedge and the vertices it contains with

a clique with unit weight edges. In the bipartitioning problem, the contribution

of a hyperedge with unit weight to the partitioning cut is one, while a clique that

is evenly distributed on the cut contributes quadratically in the size of clique to

the cost of bipartitioning. Another solution is to assign the weight 1
|e|−1

to each

edge of the clique for a hyperedge e of size |e|. In this case, a bipartition with one

vertex on one side of partition and all other vertices on the other side gives unit cost

partitioning while the cost of bipartitioning with half of the vertices on each side

of partition is ≈ |e|/4. Lengauer [Len90] shows that no matter how we choose the

cost of each edge in the clique, the cost of bipartitioning always deviates Ω
(

√

|e|
)

from the desired unit cost of a hyperedge. The problem is also impossible if we use

different topologies other than clique for representing a hyperedge [Len90]. Due to

the lack of a correct transformation, partitioning algorithms that work directly on

the hypergraph are preferable for practical applications; therefore, we study this

types of algorithms. An extended study about modelling hypergraphs with graphs
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can be found in Alpert’s work [Alp96].

In the second classification, algorithms can be move-based (also known as flat

algorithms) [FM82] or multi-level (or hierarchical) [ÇA11]. Move-based algorithms

are those that try to improve the cost objective by directly working on the original

hypergraph. In constrast, multi-level algorithms provide a sequence of successive

approximation of the original hypergraph. The size of the hypergraph is reduced

with each approximation. The process continues until the smallest hypergraph has

only few vertices. At this stage, a partitioning of the hypergraph is calculated on the

smallest hypergraph and this partitioning is projected back to the original hypergraph

by going through the same number of approximation levels. While projecting back,

the cost function is further refined in each level.

In third classification, algorithms are recursive or direct. Recursive biparti-

tioning is a divide-and-conquer paradigm. First, the algorithm calculates a biparti-

tioning on the hypergraph. The hypergraph is then split into two sub-hypergraphs

(one for each part) according to vertex-to-part assignments and the algorithm con-

tinues with a bipartitioning of each sub-hypergraph independently. The recursion

stops when k parts are obtained. These algorithms are also known as recursive

bisectioning [KAKS99]. Some parameters such as balance constraint and imbalance

tolerance factor are changing and they should be re-adjusted after each bipartitioning

recursion for each sub-hypergraph. Direct k-way partitioning algorithms directly

calculate k-way partitioning and obtain k partitions without any recursion [KK99].

In the forth classification, algorithms are divided into serial [ÇA11] and parallel

[TK08] algorithms. Serial algorithms are those that run on a standalone computer.

However, the performance of serial algorithms are limited due to the limitation of the

hardware resources on a single computing node. For example, we may have a very

big hypergraph that can not fit into the computational capacity and the memory of a

standalone computing node; therefore, the need for parallel hypergraph partitioning

algorithms is inevitable.

Finally, there are some scientific applications in which the structure of the

problem changes over time. An example of these applications is adaptive mesh

refinement in which the structure of the mesh changes continuously. In parallel
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implementation using k processors, the problem is modelled with a hypergraph and

a k-way partitioning is calculated on the hypergraph and each parts is assigned

to a processor. Although the hypergraph is balanced at the beginning of the

process, structural changes generate unbalanced partitions over time. This results

in unbalanced load among processors such that some processors would have more

work to do compared to the others. This load imbalance provides performance

degradation. Therefore, we need to tune the partitioning again and balance the load

among processors by transferring some of the load from overloaded processors to

underloaded processors. One solution is to re-run the whole partitioning process

from the scratch and perform another run of the hypergraph partitioning to obtain a

new load distribution. The other way is to repartition the hypergraph dynamically

according to the current state of the partitioning. The algorithms of the second type

are known as dynamic algorithms [ÇBD+07] and the first type are called static

algorithms [TK08] that do not assume dynamic changes in the hypergraph under

investigation.

3.1.1 Move-Based Heuristics

Move-based heuristics are those algorithms that build a new problem solution based

on the neighbouring structure in the hypergraph. The neighbouring structure is

built over a set of feasible solutions and the previous history of the algorithm. It

is based on moves as an operator for transforming from one solution to the other.

The algorithm stops when moves do not make any further improvement to the

partitioning cost. By moves, we mean an operation that changes the state of a vertex;

for example, moving the vertex from one partition to the other. Algorithms of this

type are either memoryless such as Simulated Annealing (SA), which uses solely

the current problem state to move to another neighbouring state, or memory-based

that iteratively improves the problem solution using previous history of the moves.

Algorithms in the second category are known as iterative move-based algorithms.
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Iterative Move-Based Algorithms

Iterative move-based algorithms are a set of techniques that have been proved

to be successful in practice and generate quite good partitioning qualities in a

reasonable running time. They are applicable to all problem cases and various

graph/hypergraph partitioning problems with different specifications and structures

without any limitations. These algorithms start with an initial feasible solution of

the problem and iteratively move vertices between part boundaries to generate better

solutions. The algorithm stops when no further vertex move or further improvement

of partitioning cost objective is possible. These algorithms converge into the local

minima which depends on two factors: the initial distribution of the vertices and

neighbouring structure among them.

Initial distribution is usually done using a randomised algorithm. In general,

algorithms are composed of passes and all vertices are free to move at the beginning

of each pass. Then, vertices are moved one at a time in each step of an iteration.

The decision for selecting a vertex to be moved is based on the improvement that

vertices provide to the partitioning cut if they move from one part to another. The

degree of improvement for a vertex is usually expressed as the vertex gain. In each

step, the vertex that gives the highest gain is moved to another part. A vertex

is allowed to move at most once during a pass and it is locked after the move to

prevent further moves of the vertex in the current pass1. The algorithm stops when

no further improvement to the cost functions is possible.

Alpert [Alp96] gives several reasons why iterative move-based algorithms are

suitable for practical applications. First, they are intuitive; it is an obvious way of

improving a problem solution by iteratively making small improvements. Second,

they are simple and easy to implement. Third, they are fast and can easily provide

a trade-off between the running time and the quality of the partitioning by changing

some parameters of the algorithm. For example, when a higher quality of partitioning

is desired, the algorithm can be run several times with different initial distribution

of vertices. Each run gives a partitioning on the hypergraph. Among them, the one

1Vertex locking is done in order to prevent vertex thrashing that is a vertex continuously moves
in/out of a part while it does not make any improvement to the partitioning cut.
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that gives the highest quality is selected as the final partitioning solution. Finally,

they are independent of the partitioning objective while some other move-based

algorithms may need the partitioning objective to be of a special type.

The two well-known algorithms in this category are Kernighan–Lin (KL) [KL70]

and Fidduccia–Mattheyses (FM) [FM82] algorithms. These algorithms are basically

proposed for the bipartitioning problem but they are also extended for the direct

k-way partitioning such as direct k-way FM algorithm [San89]. We review these

algorithms due to their importance as they are also employed in our partitioning

algorithms proposed in later chapters.

Kernighan–Lin (KL)

KL algorithm is proposed for exact bisectioning2 on graphs. The algorithm starts

with an initial distribution of vertices. Then pairs of vertices are selected and

exchanged between the parts if the exchange improves the partitioning cut. Assume

a graph with n vertices and unit weight for each vertex. There are

1

k

(

n

p

)(

n− p
p

)

· · ·
(

2p

p

)(

p

p

)

solutions to a k-way partitioning of the graph in which p = n/k is the size of the

parts (n is divisible by k).
(

n

p

)

is the number of ways of choosing the first part,
(

n−p
p

)

is the number of ways of choosing the second parts, and so on. The expression yields

very large numbers even for small values of n and k. The random assignment is not

a satisfactory solution as it is very unlikely to generate a near-optimal partitioning

even on small graphs. It is shown that for graphs with incidence matrix of size

32 × 32, there are typically three to five optimal solutions among 1
2

(

32
16

)

available

solutions.

Given a graph G(V,E) on n vertices, KL starts with a arbitrary equally-sized

parts A and B each having n/2 vertices. It tries to improve the cut size by a series of

vertex interchanges between A and B. The algorithm stops when no further exchange

2As discussed in Chapter 2.2, the exact bisectioning is a bipartitioning on the graph such that
the size of the parts are exactly equal. This is achieved when the imbalance tolerance is zero.



3.1. Hypergraph Partitioning Algorithms 42

improves the cost function. Assume that A∗ and B∗ are an optimum bipartitioning

solution. There are subsets X ⊂ A and Y ⊂ B, with |X| = |Y | 6 n/2 such that

interchanging X and Y between A and B produces A∗ and B∗ that is:

A∗ = A−X + Y

B∗ = B − Y +X

KL tries to identify X and Y approximately by sequentially identifying their elements.

For every vertex in v ∈ A, the external (Cext(v)) and internal (Cint(v)) costs are

defined as follows:

Cext(v) =
∑

euv={v,u}∈E,u∈B

λ(euv)

Cint(v) =
∑

euv={v,u}∈E,u∈A

λ(euv)

Similar applies to the vertices in B. Subsequently, the gain of a vertex is defined as:

g(v) = Cext(v)− Cint(v).

The gain is technically the amount by which the cut is decreased if v is moved

from A to B. The decrease in the partitioning cut size for an exchange (v, u) would

be g(v) + g(u)− 2λ(euv), where λ(euv) is the cost of the edge connecting v and u, if

one exists; otherwise, it is zero. The algorithm starts by initially calculating the gain

of all vertices and proceeds in iterations. In each iteration, a pair of vertices that

gives the maximum exchange gain is selected and swapped among the parts. After

the move, the selected pair is locked to prevent further exchange and vertex thrashing

between the parts. Then the gain of adjacent vertices on the moved vertices are

updated accordingly. The number of iterations is n/2 for a graph with n vertices

to consider all pair permutations. After n/2 iterations, the partitioning goes back

to the initial state such that all vertices of A are now in B and vice versa. The

algorithm keeps track of the pair swaps and the partitioning cost. At the end, the

best cut size is calculated; all exchanges up to the point that gives the best cut size

are kept and the others are reversed. All pairs of the vertices are considered during

the partitioning cost minimisation process. The time complexity of the algorithm is
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O(n2 log n) if we keep a sorted list of best exchange pairs and a sorted list of vertex

gains3.

The algorithm, albeit simple and easy to implement, has some disadvantages.

Langauer [Len90] describes the disadvantages of KL algorithm as the following:

1. The algorithm only works with unit vertex weights which makes it inapplicable

to some problems such as VLSI circuit partitioning.

2. The algorithm is exact bisectioning, which is again not the case for most of

practical applications.

3. The algorithm cannot be applied on hypergraphs.

4. The complexity of a pass is high. In practical applications, we are interested

in linear time complexity in each pass.

5. The likelihood that the algorithm gets stuck in local minima is very high.

Furthermore, it is tied with too much indeterminism such that the quality of

the cut can vary dramatically according to the order we choose vertex pairs.

The algorithm encourages the introduction the FM algorithm on hypergraphs

and resolves the above mentioned limitations.

Fidduccia–Mattheyses (FM)

FM algorithm resolves limitations of KL algorithms mentioned in Section 3.1.1 and

it is applicable to hypergraphs. The logic of the algorithm stays the same except

that FM moves only one vertex at a time. Like KL, the algorithm stops when it

can not make any further improvements. Following the discussion about the KL

algorithm, external and internal costs of a vertex v ∈ A are defined as follows:

Cext(v) =
∑

e∈Eext,v

λ(e)

Cint(v) =
∑

e∈Eint,v

λ(e)

3All logarithms are base 2.
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Figure 3.1: Gain bucket data structure in Fidduccia-Mattheyses (FM) algorithm.

where Eext,v = {e ∈ E | e ∩ A = {v}} is the set of hyperedges that are incident on

v such that v is their only vertex in part A, and Eint,v = {e ∈ E | v ∈ e, e ∩ B = ∅}
is the set of hyperedges that have no vertex in B. By moving v to part B, all Eext,v

are removed from the cutset, but Eint,v are added to the cutset. The gain of the

vertex move is calculated similar to KL that is g(v) = Cext(v) − Cint(v). Unlike

KL, balance constraint is considered with each vertex move. In each iteration, a

vertex with the maximum gain is selected as a move candidate if moving the vertex

does not violate the balance constraint. Therefore, FM is not limited to unit vertex

weights. The pseudo-code of the algorithm is depicted in Algorithm 1. The input to

the algorithm is the hypergraph H(V,E) and it calculates a bipartitioning of H.

Line 6 of the algorithm chooses a vertex to be moved (denoted as cand). For this

purpose, the FM algorithm builds a gain bucket data structure depicted in Fig. 3.1 for

each part. In the figure, dmax = max {d(v) | v ∈ V } and λmax = max {λ(e) | e ∈ E}.
The size of each bucket is [−dmaxλmax,+dmaxλmax], where each cell i points to a list

of vertices in the hypergraph whose gain equals to i. MaxGain is a pointer that

always points to the first non-empty bucket whose vertices have the highest gain.

The vertex to be moved is selected from the maximum gain bucket. Ties are broken

by selecting a vertex from the maximum gain bucket that gives a more balanced

partition. The gain bucket is updated on each vertex move and MaxGain pointer

is updated accordingly if there is a change in maximum gain value. When a vertex
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Algorithm 1 Fidduccia-Mattheyses (FM)

1: procedure FM(H(V,E))
2: Calculate gain values for every vertex
3: Initialise gain buckets
4: ∀v ∈ V, state(v)← free
5: while vertex moves improves the cut do
6: cand ← a free vertex with the highest gain
7: MoveVertex(H(V,E),cand,source)
8: Update gain bucket data structure

Require: vertex v moves from source part πs to destination part πd.
9: procedure MoveVertex(H(V,E),v,πs)

10: Move vertex from πd to πd
11: Update part weights
12: state(v)← locked
13: Remove v from the gain bucket
14: for all hyperedges e ∈ E that are incident on v do

Phase 1 - Level 1 Update

15: pinss(e) = pinss(e)− 1
16: if pinss(e) = 0 then
17: for all {u | u ∈ e, u ∈ πd, state(u) = free} do
18: g(u) = g(u)− λ(e)

19: else if pinss(e) = 1 then
20: for all {u | u ∈ e, u ∈ πs, state(u) = free} do
21: g(u) = g(u) + λ(e)

Phase 2 - Level 2 Update

22: pinsd(e) = pinsd(e) + 1
23: if pinsd(e) = 1 then
24: for all {u | u ∈ e, u ∈ πs, state(u) = free} do
25: g(u) = g(u) + λ(e)

26: else if pinss(e) = 2 then
27: for all {u | u ∈ e, u ∈ πd, state(u) = free} do
28: g(u) = g(u)− λ(e)

29: Update gain buckets

is moved, the gain of its adjacent vertices may change depending on the status of

hyperedges incident on the vertex. The function MoveVertex updates the gains after

a move. The function needs two arrays pinsA and pinsB for this purpose. They are

arrays of length |E|. pinsA and pinsB keep the number of pins for each hyperedge

that are in part A and part B, respectively. Moving a vertex is done in two phases.
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First the vertex is removed from the source part in phase one, then the vertex is

added to the destination part in phase two. The complexity of FM algorithm is

shown to be O{dmax ·λmax +pins(H) ·λmax} [FM82,Len90]. In case of unit hyperedge

weights, it is O(pins(H)).

The FM algorithm described above is known as a first level vertex gain algorithm.

The most important hyperedges that have positive effect in calculating vertex gains

in the initialisation step are those which have only one vertex in either of the parts

and all of the other vertices fall into the other part. In addition, as described above,

the only tie breaking strategy among the vertices in the MaxGain bucket is choosing

a vertex that gives a more balanced partition. Based on these ideas, Krishnamurthy

[Kri84] proposes a look ahead strategy for calculating different levels of vertex gains.

Following the above definitions, he defines the number of free and locked vertices for

each hyperedge e ∈ E in a part. For part A, we have:

φA(e) = |{v | v ∈ A and v ∈ e and v is free}|

χA(e) = |{v | v ∈ A and v ∈ e and v is locked}|

and the binding number of the hyperedge e to part A is calculated as follows:

βA(e) =











φA(e) if χA(e) = 0

∞ if χA(e) > 0

The binding number shows how tightly a hyperedge is tied to a part. If the number

of locked vertices for a hyperedge becomes greater than one, the hyperedge will be

tied with that part for the rest of the pass. A hyperedge that gets locked vertices in

both parts, is tied with both and it is impossible to take it out of the cut for the rest

of the pass. Finally, level i gain of a vertex in part A is calculated as follow:

gi(v) =
∑

v∈e
βA(e)=i
βB(e)>0

λ(e)−
∑

v∈e
βA(e)>0
βB(e)=i−1

λ(e)

Having l gain levels, vertex gains can be represented as a tuple 〈g1, g2, · · · , gl〉. Ties

are broken based on first, second, ..., lth level gains during vertex moves. The



3.1. Hypergraph Partitioning Algorithms 47

algorithm increases the complexity of the original FM algorithm by O(l · pins(H)).

The FM algorithm, described above, calculates a bipartitioning of the hypergraph.

Sanchis [San89] extends the algorithm to direct k-way FM algorithm. She uses

k(k − 1) gain buckets in her algorithm, each for storing gains of vertices from part

i to part j, 1 6 i 6= j 6 k. Accordingly, the complexity of the algorithm increases

to O(l · pins(H) · k(log k + dmax · l)). She found that using higher gain levels gives

better results for larger number of parts. This algorithm is referred as the k-way FM

algorithm or the K-FM algorithm in the rest of the thesis.

The algorithms proposed above (KL, FM, and K-FM algorithms) are known as

the basis or original iterative move-based algorithms. Most of the other iterative

move-based algorithms are developed from the original algorithms and referred

as the modifications algorithms. As we have mentioned earlier, iterative move-

based algorithms are local optimisations problems and the common drawback of

these types of algorithms is that they are more likely to get stuck in local minima.

Consequently, some of the modification algorithms propose strategies to prevent the

local minima solutions in order to generate better partitioning solutions. Due to the

diversity of the modification algorithms, we review only few of them and we refer to

[Fjä98,AK95,Len90,Tri06] for further reading.

Modifications of FM/KL algorithm

In the FM algorithm introduced above, the algorithm stops when it can not make

any further improvement; this is when all the remained vertices have negative gains.

For hill climbing purposes and to get out of the local minima, some algorithms are

proposed that allow a specified number of moves with negative gains [Kar02]. This

strategy allows FM to makes a predefined number of negative moves, then it stops if

FM can not make any improvement after those moves. When the algorithm stops, it

looks back to the move history and the point that gives the best cut is calculated.

In the end, it finalises all vertex moves upto the point and other vertex moves are

reversed.

Cong et al. [CLL+97] propose an algorithm that is called Loose/Stable Net

Removal. In their modified version of FM algorithm, each hyperedge follows free −→
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loose −→ locked state transition. A net is free when all of its vertices are free. Then

it becomes loose as soon as one of its vertices is locked to a part and has free vertices

in the other part. Finally, the hyperedge is locked if it has atleast one locked vertex

in each part. When the state is loose, the part in which the hyperedge has locked

vertices is called the anchor and the other part, that contains some free vertices that

belong to the hyperedge, is called the tail. To motivate a hyperedge in the loose state

to free itself from the cut, we can intentionally drive the gain of the free vertices in

the tail part; for example, their gain values can be increased. When the gain of a

vertex is increased, the probability of selecting the vertex in subsequent moves is

increased accordingly. This strategy gets a loose hyperedge out of the cut and helps

the hyperedge to slide away from the cut.

Based on results reported by Shibuya et al. [SNK95], in which the authors report

that 80% of hyperedges in the final cutset are stable and these locked hyperedges

are the main reason for the FM algorithm to get stuck in local minima, Cong et

al. [CLL+97] provide a hill climbing strategy called Stable Net Transition to give a

chance to stable nets to get out of the cutset with the hope of getting better quality.

They apply a multiple run FM algorithm and the stable nets are detected from the

first run onward. Then some of them are chosen and all of their vertices are moved

to the part with lower weight4. Vertices are allowed to move only once. The next

run of FM is started using the output of the stable net removal. The evaluation of

their partitioning algorithm combined with a net clustering algorithm to improve

quality and speed of the partitioning process shows improvements to the original

FM algorithm.

Cong et al. [CL98] provide an extended version of k-way FM algorithm. In their

algorithm, parts are matched in pair, using different strategies, then a 2-way FM

algorithm is run on the pairs. Among all part pairing strategies, the gain based

strategy that pairs two parts, for which the cut size reduction is maximum during

previous passes of the algorithm, gives better partitioning results. Evaluation shows

up to 86.2% improvement on the k-way FM algorithm.

4They chose a predefined percentage of the hyperedges to be moved.
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In the context of VLSI circuit partitioning, there are terminals such as I/O chips

that are fixed and can not be moved; therefore, partitioning these circuits with

a hypergraph partitioning algorithm contains some vertices that are fixed to the

parts and can not be moved during optimisation process. Problems of this type are

easier and takes less running time. These kind of partitioning are considered by

some algorithms such as Alpert et al. [ACKM00], Çatalyürek and Aykanat [ÇA11],

Aykanat et al. [ACU08].

Other Move-Based Algorithms

In addition to the iterative move-based algorithms, there are some other move-based

algorithms that try to solve the hypergraph bipartitioning problem. An issue with

these algorithms is that they should be chosen carefully with extensive study when

applied to the partitioning problem because they do not exactly model the hypergraph

partitioning problem.

Simulated Annealing (SA) is one of those algorithms that has been applied to

graph bipartitioning such as the algorithm proposed by Johnson et al. [JAMS89].

Their algorithm does not exactly model the bipartitioning problem because it does

not put any restriction on the part sizes. Consequently, they provided a customisation

of the algorithm. An issue with SA-based is that the time taken by these algorithms

is very high and it is not always affordable in practical applications. In addition, the

partitioning quality is not always better than those generated by iterative move-based

algorithms, which are popular in practical applications and they known for generating

good partitioning quality in fastest time among other move-based algorithms. These

two drawbacks limit their applicability and their usefulness is application-dependant

[Len90].

Another set of algorithms are those model the bipartitioning problem with the

maxflow-mincut problem. An example is the algorithm proposed by Bui et al.

[BCLS87]. They put two distinguished vertices, one in each side, and bipartitioning

is obtained by calculating max-flow between these two vertices. Then they calculate

a bipartitioning by calculating max-flow between every pair of vertices. In their

formulation, they do not put any restriction on the size of the parts and it cannot be
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directly applied to the most partitioning problems in which the balance constraint

is a necessity. For some special types of uniformly distributed random graphs, the

algorithm can find optimum bisection with high probability but the probability

distribution for generating the random graphs should be chosen carefully [Len90].

Their applicability in practice is limited because it is difficult to guarantee a certain

probability distribution on the real graphs and, when it is found, it is more likely

non-uniform. Another attribute of the algorithm is that it can only generate very

good bipartitioning on graphs with small average vertex degrees [BCLS87]. When

the average vertex degree of graph increases, simple heuristics generate very good

results in less time.

Tabu search is another set of algorithms that keep the history of most recent

moves of the iterative move-based algorithms to find a feasible solution in the problem

space. The number of moves to be saved as history is given as an positive integer at

the start of the partitioning. Examples of this type are [AV00,AV03]. The proposed

algorithms mostly lack the comparison with the state-of-the-art algorithms in the

field and one can not decide about their performance [Tri06].

Considering all of the above-mentioned facts, these algorithms including SA,

maxflow-mincut, and Tabu search may give very good and close to optimal parti-

tioning solutions. The main issue is their applicability and their dependency on

the problem under investigation such that the effort needed to investigate those is

better to be spent on the partitioning problem itself. As mentioned earlier, iterative

move-based algorithms are preferred in practical applications and they have been

already implemented in all software tools for graph and hypergraph partitioning. A

big advantage of these algorithms is that they give very good partitioning quality

in the fastest time compared to other move-based algorithms [Alp96,Tri06,Len90].

We refer to Trifunovic [Tri06] and Lengauer [Len90] for further reading and more

related work on move-based algorithms.

3.1.2 Multi-level Hypergraph Partitioning

The main weakness of the move-based algorithms is their unpredictability. The

solution found is a locally optimum solution. Whether the solution is also globally
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optimum depends mostly on two factors: the density of the hypergraph and the

initial distribution of the hypergraph among the parts. As mentioned earlier, the

FM algorithm is usually run multiple times in practical applications; each time with

a different assignment of vertices to the parts. Then the best partitioning among all

runs is selected as the final partitioning result. The strategy tries to increase the

chance of catching the global minimum solution by increasing the number of runs.

However, this approach is too restrictive when the size of hypergraph is large. The

reason is that the probability of a local minimum to be also a global minimum is

decreasing as the size of hypergraph increases. In this situation, we need more runs

of the algorithm. The number of required runs increases as the size of the hypergraph

grows such that obtaining a globally optimum solution is almost impossible for very

large hypergraphs.

Alpert [AK95] shows that the partitioning cost obtained for a locally minimum

solution is only of the average quality of the globally minimum solution. Goldberg

and Burstein [GB83] show that getting stuck in local minima only happens for sparse

hypergraphs in which the average vertex degree of the vertices is low5. On the other

hand, Lengauer [Len90] reports that it is more likely to achieve globally minimum

solution on dense hypergraphs with large minimum vertex degree. As a result, the

quality of algorithms is directly dependant on the hypergraph density. Saab and Rao

[SR92a] show that the performance of the the KL algorithm improves as the graph

density increases and they give a performance bound for 1-optimal heuristics6 that

becomes tighter as the number of edges in the graph increases.

The above discussion motivates using an algorithm in order to increase the

hypergraph density for achieving a better partitioning quality. One solution is

using net clustering techniques with move-based algorithms. The approach yields

to advantages: increasing the hypergraph density and decreasing the problem size

[HB97,HK92]. One of those techniques, which is also called two-phase approach,

is to run move-based algorithm on the clustered hypergraph and use its output

5They claim that the average vertex degree of real VLSI circuits is between 1.8 and 2.5 that is
considered as low vertex degree and the FM algorithm gives poor quality.

6A bipartitioning is called r-optimal if exchanging r modules between the two parts does not
decrease the partitioning cost; therefore the KL algorithm is 1-optimal.
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as the initial distribution of the second run that is executed on the original (non-

clustered) hypergraph. Net clustering was a starting idea for introducing multi-level

or hierarchical hypergraph partitioning algorithms.

Multi-level algorithms composed of three phases. First, it generates a sequence

of hypergraphs each approximating the original hypergraph. The size of hypergraph

is decreasing after each approximation. This phase is called the coarsening phase.

It generates a sequence Hi = (Vi, Ei) , 0 6 i 6 c such that H = H0 and |Vi| < |Vj|
whenever i > j. The coarsening stops when the coarsest hypergraph Hc contains only

few vertices (for example fewer than 100 vertices). The process continues through the

second phase, which is called the initial partitioning phase. This phase calculates a

partitioning of Hc using a randomised algorithm or one of move-base algorithms such

as KL and FM. The final phase, which is called the uncoarsening phase, projects

back the partitioning on Hc to the original hypergraph H by going back through

the same coarsening levels that is Hc 7→ Hc−1 7→ · · · 7→ H1 7→ H0. In each level, a

refinement of the partitioning is usually performed. The refinement process tries to

move the vertices between the partitioning boundaries in order to further reduce the

cost function. Consequently, the third phase is also referred as the refinement phase

in literature. The multi-level bipartitioning process and its three phases are depicted

in Fig. 3.2. The two-phase clustering algorithm described above is considered as

one-level approximation. One-level approximation algorithms were first used on

graphs and applied by Bui et al. [BHJL89]. Later on, the multi-level approximation

graph algorithms are proposed such as the work by Hendrickson and Leland [HL95].

Karypis and Kumar [KK98a] show that a good partitioning of the coarsest

hypergraph also yields a good partitioning of the original hypergraph, hence we

need less effort during the refinement phase. This makes a multi-level algorithms a

sustainable approach. We go through the details of each phase in the rest of this

section.

Coarsening

Coarsening is described as the most important phase of the multi-level paradigm.

Karypis [Kar02] provides two key requirements for the coarsening phase. For two
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Figure 3.2: The multi-level hypergrapph bipartitioning paradigm and its three phases:
coarsening, initial partitioning, and uncoarsening.

successive levels i and i − 1, 1 6 i 6 c, the coarsening should have the following

specifications:

1. Any partitioning on the coarser hypergraph Hi should be easily projected back

to the finer hypergraph Hi−1.

2. The cost of the projected back partitioning on Hi is less than or equal to the

cost of the partitioning on Hi−1.

He describes the second case as a necessity of the refinement process to be

meaningful such that it decreases the cost progressively. The coarsening is done by

vertex clustering; it finds clusters of vertices, matches vertices inside each cluster,

and merges the matched vertices together to form coarser vertices in the coarser

hypergraph. Clusters should not have any overlap and their union is equal to V . For

example, when two vertices v, u are matched and form a cluster, the weight of the

coarser vertex w is the sum of the weight of v and u that is ω(w) = ω(v) + ω(u).
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Furthermore, the hyperedge set incident on w is the union of the hyperedges incident

on v and u. Vertices that do not find any match, which may happen for some of

vertices and depending on the coarsening approach, are simply copied to the next

level without any change. When we move on to the next level of coarsening, the

following are usually done to the hyperedge set:

1. Unit size hyperedges in the coarser hypergraph are removed because they do

not participate for calculating the partitioning cost.

2. Identical hyperedges, which are hyperedges incident on the same vertex set, are

identified; only one of them is kept in the coarser hypergraph and the others

are removed. The weight of the kept hyperedge is set to the sum of the weight

of all identical hyperedges.

As the coarsening proceeds, the average size of the hyperedges decreases but the

average vertex degree increases as we go from one level of coarsening to the next level.

Karypis [Kar02] further concludes that the coarser hypergraph should have fewer

hyperedges than the original hypergraph and hyperedge weights should decrease

quickly. These conditions are met when we remove unit size and identical hyperedges

while coarsening. In the rest of this section we review some of the available coarsening

methods.

One of the coarsening approaches is called Edge Coarsening (EC) in which pair-

matches of vertices are found according to the maximal matching problem. In this

approach, vertices are visited in random order. For each vertex, the algorithm visits

all unmatched adjacent vertices of the vertex and the one is chosen as a pair-match

that has the strongest connectivity with the vertex (maximal matching). In this

approach, the hyperedges are implicitly treated as graph edges [Len90]. Karypis

[Kar02] mentioned that this scheme can be further improved by giving priority to

the smaller hyperedges with bigger weights among others. Giving priority to these

hyperedges removes them from the hypergraph in the first few coarsening levels and

leaves the coarsened hypergraph with fewer hyperedges. In addition, the average

weight of the hyperedges decreases quickly.
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In another strategy, the number of hyperedges and their average weight decrement

is sped up by matching groups of vertices. The algorithm does not limit itself to

pair-matching. In Hyperedge Coarsening (HC), a set of independent hyperedges7

is calculated. Then all vertices in each hyperedge are matched together to form

a coarser vertex in the coarser hypergraph (multiple matching). Since hyperedges

in this set do not have any vertex in common, there is no matching conflict. In

order to choose this set, hyperedges are sorted in a list in decreasing order of their

weights. The sorting algorithm breaks the ties by putting hyperedges with larger

size in the list first. The list is traversed from the beginning and when the algorithm

sees a hyperedge that none of its vertices are matched, all of its vertices are matched

together. Although this approach speeds up the size decrement of the coarsened

hypergraph, it is not guaranteed. For example, in hypergraphs with high connectivity

(with large number of strongly connected components) most of the hyperedges are

overlapped and one can find very few non-overlapped hyperedges. There are two

drawbacks regarding this approach [Kar02]:

1. The size of some (or many) hyperedges do not change sufficiently (this causes

starvation). This makes the refinement process difficult with very little space

for optimisation.

2. As we proceed with the coarsening, the standard deviation of the vertex weights

increases. This changes the structure of the hypergraph, affects the quality,

and makes it hard to maintain the balance constraint.

Karypis [Kar02] improves the HC algorithm by traversing the hyperedge list

twice. In the second traversal, if the algorithm sees a hyperedge with unmatched

vertices, all of these vertices are matched.

The aim of the coarsening phase is to identify naturally existing clusters of

vertices in the hypergraph. The independence (or the maximality) requirement exists

in both EC and HC schemes, destroys these clusters and leads to less ideal coarse

representation of the original hypergraph as the coarsening proceeds [Kar02]. In

7Independent hyperedges are those that do not have any vertex in common.
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order to resolve this issue, the First Choice (FC) algorithm processes all adjacent

matched and unmatched vertices when tries to find a match for a given vertex.

The vertex is matched with the one that gives the highest connectivity. It means

that the FC algorithm is not limited to pair-matches. When there are more than

two adjacent vertices with the same connectivity, ties are broken by giving higher

priority to unmatched vertices. Again, there are two risks. First, the reduction in

the number of vertices from one coarsening step to another might be too high; this

might not preserve the structure of the hypergraph. Second, it may form vertices

with large differences among their weights (large vertex weight standard deviation)

as we proceed to the coarsening8.

Most of other coarsening algorithms in the literature propose a local measure of

connectivity between the vertices of the hypergraph and match vertices according

to this measure. Vertices are put in a list (in random order or sorted according

to parameters such as vertex degrees). The list is traversed from the beginning, a

vertex is selected, and a match is found according to the vertex connectivity metric.

We review some of the connectivity metrics proposed in the literature. Alpert et al.

[AHK98] propose a controlled vertex connectivity metric for two vertices v, u as:

connectivity(v, u) =
1

ω(v)ω(u)

∑

e⊲v,e⊲u,∀e∈E

1

|e|

where dividing by the vertex weights discourages building large clusters. Caldwell et

al. [AAI06] propose a vertex connectivity based on hyperedge bandwidth (denoted

as a function b(·)). The bandwidth is equal to two for hyperedges of size two, and

one for others (> 2). The connectivity metric is defined as follows:

connectivity(u, v) =
1

ω(v) + ω(u)

∑

e⊲v,e⊲u,∀e∈E

1

b(e)

8Having vertices with large differences among their weights makes it difficult to maintain the
balance constraint. This is a major issue especially in the multi-constraint partitioning problems.
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Catalyurek and Aykanat [ÇA99] defines the connectivity between a vertex and a

cluster of vertices C as

connectivity(v, C) =
|{e ∈ E | v ∈ e, ∀u ∈ C s.t. u ∈ e}|

ω(v) + ω(C)

where ω(C) is the weight of the cluster which is calculated as the sum of the weights

of vertices in the cluster.

The above algorithms only define a metric of connectivity between the vertices

and their performance highly depends on the structure of the hypergraph under

investigation. Calculating vertex connectivity requires searching in the hypergraph

adjacency matrix. As mentioned in Chapter 2 in Eq. 2.3, the adjacency matrix of

a hypergraph might be very dense despite having a sparse incidence matrix. This

is a case in scientific applications. This characteristic makes it difficult to define a

good metric of connectivity between vertices. This subject is further investigated in

Chapter 4 while proposing our serial hypergraph partitioner.

Finally, an advantage of the multi-level approach is that it provides a trade-off

between the quality and the speedup. The more coarsening levels get us better

partitioning quality but the algorithm runs slower with more memory consumption.

On the other hand, decreasing the coarsening levels gets better runtime. Karypis

[Kar02] defines the compression ratio between two levels of coarsening in a multi-

level approach with c levels as follows:

r =
|Vi|
|Vi+1|

, ∀i, 0 6 i < c (3.1)

There are two things that should be taken into account. First, if we do not go

through enough coarsening levels, the algorithm ends up with a big hypergraph in

which it is not possible to find a good partitioning compared to the partitioning

calculated on the original hypergraph. The performance may also decrease because

we spend some time going through more coarsening levels without making enough

improvement to the quality. Second, having lots of coarsening levels and obtaining

very small coarsest hypergraph leaves us with few feasible solutions which may not

result in a good partitioning quality. Karypis [Kar02] argues that a good trade-off
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can be achieved by limiting the compression ratio between 1.5 6 r 6 1.8. In the

algorithm proposed by Devine et al. [DBH+06], the partitioning stops when the

coarsest hypergraph has fewer than 100 vertices.

Initial Partitioning

The initial partitioning phase provides a partitioning on the coarsest hypergraph.

The most common algorithms used for this purpose are move-based algorithms. The

proposed heuristic algorithms usually execute multiple runs of different algorithms

and the one that gives the best cut and meets the balance constraint is selected

among them to be projected back to the original hypergraph. We should note that

the size of Hc is very small compared to the original hypergraph and its partitioning

can be calculated very fast in much less time. Some of the approaches are as follows:

1. Random assignment: Randomly assigns vertices to the parts.

2. Linear assignment: Linearly assigns vertices to the parts. It defines two

counters: one for vertices cV and for parts cπ. cV is initialised randomly between

zero and |V − 1| and cπ = 0. Vertex list is traversed starting from cV ’th vertex

and assigned to pπ’th part. After each assignment, counters are updated as

cV = ((cV + 1) mod |V |) and cπ = ((cπ + 1) mod k).

3. Breadth-First and Depth-First assignment: A vertex is selected ran-

domly and the hypergraph is traversed by either breadth-first or depth-first

algorithms and adjacent vertices are assigned to the same part.

4. FM based assignment: In bipartitioning, the approach selects a vertex

randomly and assigns it to part 1 and all other vertices to part 0. Then the

FM algorithm is run and the bipartitioning is calculated. In direct k-way

partitioning, k− 1 vertices are selected, one for each ith part 1 6 i 6 k− 1 and

all other vertices are assigned to part 0. Then a direct k-way FM algorithm

calculates a k-way partitioning.

These approaches are used in algorithms and tools such as

[DBH+06,AAI06,Kar07,ÇA11,RBT+13,San14b,Kar02,HB97]. Karypis et al.
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[KAKS99] suggest that the algorithm can project back not only one but also some

of partitions calculated in the initial partitioning phase to the original hypergraph.

This approach is not memory efficient and is computationally expensive.

Uncoarsening and Refinement

The purpose of the uncoarsening phase is to project back the partitioning calculated

on the coarsest hypergraph Hc to the original hypergraph by going through c levels.

At each level, the partitioning cost is further refined as much as possible to improve the

quality; therefore, this phase is also called the refinement phase. Another important

specification of the refinement phase is to keep the balance constraint. Enforcing the

balance constraint limits the movement of the vertices between partition boundaries

especially in early uncoarsening levels. In these levels, the algorithm deals with

clusters of vertices and the average vertex weights are higher such that moving one

vertex could violate the balance constraint by a large percentage.

A common and popular refinement algorithm is FM algorithm

[Kar07,ÇA11,RBT+13,San14b]. In each uncoarsening level, multiple passes

of FM are usually applied. In each pass, FM is run on the hypergraph and the

output of one pass is used as the initial partitioning of the next pass. It tries to find

subsets of vertices that their movement improves the partitioning quality.

Karypis et al. [KAKS99] argue that most of the cut improvements can be

achieved during the first and the second pass and the forthcoming passes improves

the partitioning quality only by a small percentage. This fact can be used to limit

the number of passes of FM algorithm in order to achieve a better runtime. They

have also found that only a few percentage of vertices contribute to the cut reduction

in the multi-level paradigm. In the original version of FM algorithm, the passes stop

as soon as the algorithm can not make any further improvement to the cut. In their

version of FM algorithm, moving vertices with negative gain is allowed in order to

help the algorithm gets out of the local minima. It is observed that the hill-climbing

after a large number of moves with negative gain is unlikely. Therefore, they stop the

pass after a predefined number of moves have been made that do not improve the

cost function. This strategy improves the runtime as well as the partitioning quality,
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although the improvement in runtime is much greater. The prescribed number of

moves is defined to be between 1% and 5% of the total number of vertices. This

algorithm is known as Early Exit FM algorithm and denoted as FM-EE.

Karypis [Kar02] discusses that the hill climbing capability of FM algorithm is

less important in multi-level paradigm. In the flat FM algorithm, the cost function

is increasing when a cluster starts to move over the partition boundary. The cost

decreases again when the whole cluster moves over. In the multi-level paradigm,

clusters are integrated into vertices as we coarsen the hypergraph; therefore, this

effect (increase and decrease in the cost function) does not happen. This means

that the hill-climbing property becomes less important 9. Considering this fact, the

performance of FM can be improved by removing hill climbing property, which is

removing the priority queues from FM algorithm. In this situation, vertices are

traversed in random order and they are moved if they give a positive gain. The order

is not important because vertices with large positive gains will be moved eventually

at some point. This can provide much greater runtime improvement especially for

direct k-way FM algorithm because the complexity of the algorithm is not dependant

on the number of parts. This algorithm is known as greedy refinement and it is

applied in hMetis hypergraph partitioning tool [Kar07].

Another variation of FM is known as the Boundary FM (BFM) algorithm

[ÇA99,ÇA11,San14b]. This algorithm categorises vertices as boundary and non-

boundary vertices. A vertex is called boundary if it is incident on at least one cut

hyperedge, otherwise it is called non-boundary. BFM adds only boundary vertices

to the gain bucket data structure; that is, only boundary vertices are moved. A

non-boundary vertex may become boundary if the state of its adjacent vertices

changes during the pass. Then, it is added to the gain bucket as soon as it becomes

boundary and will be considered to be moved.

A single call of the multi-level algorithm is called a V-cycle (capital ’V’). In a

multi-phase refinement algorithm, successive calls of the algorithm might be made

9In our opinion this is true if the coarser vertices represent natural clusters in the original
hypergraph. Its validity decreases as the coarsening algorithm does not capture these natural
clusters (as it happens in edge coarsening and hyperedge coarsening algorithms).
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while projecting back the results. The call can be made from any intermediate level

of the refinement. Each intermediate call is is a v-cycle10 (small ’v’). Calls to v-cycle

can stop if the last call did not provide any improvement to the partitioning cut

or a specified number of calls is made. The use of v-cycle is usually avoided in

parallel hypergraph partitioning algorithms because it limits the performance of the

algorithm and imposes two much overhead [Tri06].

3.1.3 Recursive Bipartitioning vs Direct k-way Partitioning

A k-way partitioning on the hypergraph can be calculated recursively or directly.

In recursive bipartitioning, the algorithm generates a bipartitioning of the original

hypergraph. Then it is recursively applied to both parts independently. The process

continues until we achieve k partitions. In direct partitioning, the algorithm calculates

k partitions by directly working on the hypergraph. An example of 6-way partitioning

using both methods is given in Fig. 3.3. In recursive bipartitioning, the algorithm

generates two equally sized parts at the first level. The part sizes are adjusted for

each level of recursion. The hypergraph is 6-way partitioned with three levels of

recursion or ⌈log2 6⌉.
There is a debate in the literature on which paradigm gives better partitioning.

Karypis [Kar02] reports some advantages of direct k-way partitioning over recursive

algorithms. First, the recursive algorithms do not allow direct optimisation of the

cost function such that it needs to know how hyperedges are cut among all k parts.

Second, direct algorithms impose stricter balance constraints while trying to optimise

the cost function, which is not possible in recursive bipartitioning algorithms. This

is important when the partitioning algorithm is multi-constraint. Finally, the quality

achieved by direct algorithms can be much better. Simon and Teng [ST97] report

that the recursive bipartitioning almost always generates solutions within constant

factor of the optimal solutions for well-shaped finite element/difference meshes. In

10The difference between v-cycle and V-Cycle is that the latter is the whole multi-level cycle that
is H0 7→ · · · 7→ Hc 7→ · · · 7→ H0, while the first can be called multiple times from any uncoarsening
level; for example, when it is called from uncoarsening level 0 ≤ i < c, the algorithm goes through
Hi 7→ · · · 7→ Hc 7→ · · · 7→ Hi levels.
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Figure 3.3: Recursive 6-way bipartitioning of the hypergraph vs direct 6-way partitioning

situations that the balance constraint is bounded by 2|V |/k, the solution is a factor

of O(log p) worse than the optimal solution.

Others report the superiority of recursive bipartitioning algorithms over direct

algorithms. Cong et al. [CL98] report that the quality of direct algorithms are

worse because they are most likely to get stuck in local minima. They propose a

modification of the K-FM algorithm. They improve the K-FM by pairwise matching

of parts and run 2-way FM on them. Their method improves K-FM by 86.2% and FM

by 17.3% on ISPD-98 [Alp98] and MCNC [Yan88] benchmarks. Karypis and Kumar

[KK00] show that recursive algorithms tend to be better than direct algorithms

because they have more relaxed balance constraint and do not get trapped in local

minima as easily as direct k-way FM algorithm. They propose a variation of direct

multi-level FM algorithm which has qualities competitive with recursive FM and has

lower execution time.

Wang et al. [WLCS00] compare two categories of algorithms on graphs. First,

algorithms that obtain k-way partitioning through all-way bipartitioning. Algorithms
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in this category start with an initial k-way partitioning. Then they select pair-wise

partitions and improve the cut between them. Second category is the recursive

bipartitioning algorithms. Assume that the optimal cost of a partitioning on a

given hypergraph is Costopt. They use δ−approximation11 bipartition heuristics.

They argue that the recursive bipartitioning algorithms have an upper bound of

δCostopt log2 k while the first category has an upper bound of δkCostopt. Furthermore,

the second approach obtains better partitioning quality and it is much faster. They

show that the partitioning cost at each level of recursive bipartitioning is no more

than δ times worse than the cost of optimal solution at that level. Generally speaking,

the cost of overall algorithm is no more than δCostopt log2 k for log(k) recursions.

Aykanat et al. [ACU08] investigate the comparison between direct k-way and

recursive algorithms when the hypergraph partitioning is multi-constraint with

fixed vertices. The results are reported for the PaToH hypergraph partitioning

tool [ÇA11]. The algorithms are denoted as kPaToH (direct k-way) and PaToH

(recursive bipartitioning). They found that kPaToH gets better quality and runs

faster compared to PaToH when k is large. The algorithms are evaluated on some

hypergraphs in the University of Florida Sparse Matrix Collection [DH11] benchmark.

For k = 32 and k = 256, kPaToH gives 4.82% and 6.81% better partitioning cuts,

respectively. The runtime is 1.7 times better on average. They show that the two most

time consuming operation in PaToH are matching and hypergraph construction

at each recursion, while the most time consuming operation of kPaToH is the

uncoarsening phase. The uncoarsening runtime is getting worse when k increases.

An exception happens when the average net size is low; in this case the increase in

uncoarsening time is smooth. When considering fixed vertices, they report better

average cut size 5.82% in single constraint case, 20.98% in two–constraint case,

and 40.02% in four–constraint case for kPaToH. In addition, kPaToH gives better

partitioning quality for partitioning with fixed vertices when k decreases while the

number of fixed vertices increases.

11Their analysis is not based on a specific algorithm; therefore, they refer to the bipartitioning
algorithm as δ−approximation and it means that the quality of partitioning generated by the
algorithm is no more that δ worse than the optimal solution.
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The question of which partitioning method is better is not completely known.

Their efficiency depends on the structure of the hypergraph and the problem under

investigation (for example, partitioning with fixed vertices or not). This is one of the

fields of the hypergraph partitioning which needs further investigation and research.

In practice, the recursive bipartitioning methodology tied with multi-level paradigm

is known to generate good partitioning qualities and gives reasonable performance

[Kar07,ÇA11,San14b,RBT+13,AAI06].

3.1.4 Serial and Parallel Partitioning Algorithms

The ever-increasing size of graphs and hypergraphs makes it impossible to fit them into

the memory of a standalone computer or process them with the existing computational

power of one computer. For example, graphs and hypergraphs representing social

networks such as Facebook and Twitter have billions of vertices and edges [HC14] and

needs terabytes of data to be saved. Bradley et al. [JNWH04] have investigated the

use of the hypergraph partitioning in iterative Laplace transform inversion algorithm

for analysing the response time of queueing systems. A hypergraph is used for

modelling sparse matrix decomposition. The authors report that the performance

of the application is limited by serial hypergraph partitioning algorithms and they

need a parallel algorithm to be able to process some practical models.

Consequently, we need parallel and scalable hypergraph partitioning algorithms.

There are two objectives for designing a parallel algorithm as follows:

1. The parallel algorithm should be designed in a way to generate partitioning

quality comparable to serial algorithms. No parallel algorithm can generate

partitioning quality better than serial partitioning algorithms. The reason is

related to the data locality issue in distributed systems. The input hypergraph

is distributed among a set of processors. Each processor knows about a

portion of the problem and makes some decisions locally. This deteriorates the

partitioning quality.

2. The parallel algorithm should be scalable in term of computations and memory

usage. This is also not an easy task because the scalability of the proposed



3.1. Hypergraph Partitioning Algorithms 65

parallel partitioning algorithm not only depends on the parallel algorithm itself,

but also the structure of the input hypergraph. An algorithm might be scalable

and work very well for some hypergraphs, but it might get bad scalability on

the others.

In this section we focus on parallelisation of multi-level algorithms and the

challenges on the way. In multi-level paradigm, the two phases that are difficult to

parallelise are the coarsening and uncoarsening phases. The initial partitioning phase

is not a problem because the coarsest hypergraph is small enough and can be processed

on one computer very quickly. The performance of these two phases (coarsening

and uncoarsening) depends on the way we distribute the input hypergraph on the

processors. Bad distribution can generate high network traffic, limit the scalability,

and interfere with vertex matching decisions. In the following, the palalellisation of

these three phases are discussed.

Hypergraph Distribution

An important decision in parallel hypergraph partitioning algorithms is how to

initially distribute the input hypergraph among processors in order to increase data

locality. There are mainly two strategies for this purpose which are encouraged by

parallel graph partitioning algorithms. We refer to them as one-Dimensional (1D)

and two-Dimensional (2D) initial hypergraph distributions. The input hypergraph is

represented as H(V,E), the number of processors is p, and the number of partitions

is denoted as k (or k-way partitioning of H on p processors).

The 1D distribution is the natural distribution of vertices on processors and it is

applied in Parkway parallel hypergraph partitioning tool [TK08]. The distribution is

previously used in parallel graph partitioning algorithms such as the work by Karypis

and Kumar [KK97]. In this configuration, each processor stores |V |
p

vertices and |E|
p

hyperedges. Vertices are assigned to processors in lexical order such that the first

portion is assigned to the first processor, the second portion to the second processor,

and so on. In this method, there might be some hyperedges whose vertices are stored

on different processors. Parkway calls these hyperedges frontier hyperedges. the 1D

distribution does not guarantee that hyperedges incident on a given vertex will be on
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the same processor who owns the vertex. Even if there is no frontier hyperedge, there

is no guarantee that all hyperedges incident on locally owned vertices by processors

exist on the same processor. While all hyperedges incident on a given vertex are

needed in order to process the vertex in the coarsening and refinement phases,

incident hyperedges are collected using an all-to-all communication in the beginning

of each coarsening level. The communication replicates the frontier hyperedges on

the processors. Replicated hyperedges are deleted at the end of current coarsening

level in order to save memory.

For the purpose of fast hyperedge comparison, Parkway uses hash functions.

Each hyperedge is hashed to an integer value based on the vertices contained in

the hyperedge. When the algorithm wants to compare two hyperedges (in order to

check if they are identical), the hash values are compared. Collisions may occur; the

probability of collisions using a 64−bit hash-keys for |E| = 108 is reported to be less

than 0.0003. In case of collision, the full content of hyperedges are compared.

The second distribution, the 2D distribution, is originally inspired by two-

dimensional graph to processor assignment similar to distribution of graph adjacency

matrix on the processor set by Grama [Gra03]. This distribution is employed by

Zoltan parallel hypergraph partitioner [DBH+06]. In this method, the processor

set is logically arranged in a grid p = px × py in which px and py are the number

of processors in rows and columns, respectively. The vertex set is distributed on

px processors each holding |V |
px

vertices. The hyperedge set is similarly distributed

on py processors. This provides a Cartesian distribution of the hypergraph on the

processor set such that each processor stores a subblock of the hypergraph. In this

distribution, only px or py processors need to contribute in collective communications.

The authors suggest that having px ≈ O
(√

p
)

gives the highest performance.

The authors show that the 2D distribution fits the hypergraph partitioning

context rather than than graph partitioning. In the parallel graph partitioning

algorithm proposed by Karypis and Kumar algorithm [KK98c], the processor set is

arranged in a
√
p×√p matrix and the vertex set is distributed into

√
p subsets and

assigned to processors in a cyclic mapping. Furthermore, the adjacency matrix is

distributed among all p processors such that processor pij (on row i and column j)
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stores the edge set between vertices in ith and jth vertex set. The matching decision

is made by the
√
p diagonal processors; this creates a bottleneck and restricts the

scalability of the algorithm to
√
p. For this reason, authors do not recommend 2D

distribution for parallel graph partitioning.

The evaluations report better scalability of Zoltan compared to 1D distribution.

In addition, analysing the algorithm shows that the natural way of distributing

vertices among processors and keep the full connectivity of vertices on all processors

(px = p, py = 1) gives the worst performance, while distributing the hyperedges among

processors and maintaining full vertex information for each hyperedge (px = 1, py = p)

is a better approach. The distribution with px > 1 gets better performance on average.

Parallel Coarsening

The initial distribution of the hypergraph affects how to find a pair-match for the

vertices. Conflicts may occur as the data is distributed and processors find pair-

matches for the vertices independently. Conflict means that a target vertex may

receive several matching requests from other vertices. As each vertex should end up

in exactly one cluster, conflicts should be resolved before proceeding with the next

step. We propose some of the parallel coarsening algorithms in this section.

The parallel coarsening algorithm proposed by Trifunovic and Knottenbelt in

Parkway, which uses the 1D distribution, is as follows [TK04]. In the beginning of

each coarsening step, the hyperedges incident to each vertex are collected with a

special all-to-all communication. Then processors visit their local vertices in random

order and find the best match for them using the FirstChoice(FC) vertex similarity

metric. If processor i finds vertex u that resides on processor j as the best match

for its local vertex v, u is put in request set Si,j of v on processor i. A local vertex

can request a match with only one remote vertex. The matching stops when a user

specified coarsening ratio is met. Later on, request sets are communicated among

processors and they decide about matching and breaking conflicts together. We

denote the set of vertices from remote processor i that requested to match with w

on local processor j by Mw
i,j . Processor j considers these sets for each local vertex

in turn and decides about them as follows:
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1. if w is unmatched, matched locally, or already matched remotely, then a match

with Mw
i,j is granted to the processor i if we do not exceed cluster weight

criteria.

2. If w has been sent to processor k 6= i as a part of a request, then processor j

informs processor i that the match with Mw
i,j has been rejected (only because

we may exceed the cluster weight criteria). When processor i is informed about

the rejection, it locally matches all vertices in Mw
i,j into a single vertex.

A special case may occur if processor i sends a matching request for its local

vertex v to vertex w on processor j and vice versa; that is a mutual match. This case

might be rejected by both. In order to resolve this, the following operations are done

before we perform the above-mentioned two cases to resolve mutual-matches with

one customised all-to-all communication. The communication is split into two steps.

First all Si,j are communicated if i < j, and in the next step all Si,j with j < i is

communicated. When all matching decisions are finalised, hyperedges are contracted

locally and identical hyperedges are removed. The removal of identical hyperedges is

done based on 64-bit hashing function that is explained in Section 3.1.4.

In Zoltan [DBH+06], which applies the 2D hypergraph distribution, the pre-

ferred connectivity metric between two vertices is the inner product of their incident

hyperedges. This is the same connectivity metric employed in tools such as Mon-

driaan [RBT+13] and hMetis [Kar07]. The inner product between two vertices is

the Euclidean inner product between their hyperedge incidence vectors with one

modification; instead of summing binary hyperedge incidence vectors, the weight of

hyperedges are added up. When a vertex is selected for finding a pair-match, the

inner product with all adjacent vertices are calculated and the vertex with the highest

non-zero value is selected as a match candidate. The matching process is split among

rounds. In each round, every processor selects a subset of its vertices as candidates.

Then candidates are broadcast to all other row processors. The receiving processors

compute the inner product of the received vertices with their local vertices. These

are only the partial products and the communication among column processors are

required to get the global inner products.
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At this point, the potential matches on processor columns are send to the

processors on the master row (processors at row 0). The master row, first greedily

decides about the local match for each candidate. Then they are locked which means

that they can not match with any other vertex in the current round12. Later on, a

global row communication decides about the global match for each candidate. The

conflicts are prevented by the locking mechanism which guarantees no conflict.

The authors argue that the matching is the most time consuming operation

during the partitioning process. In order to improve the run time, they rely on

partial matching solutions. One of those methods is that they limit the matching to

pair of vertices in the same processor column and no horizontal communication is

required. Using this method, the communication costs significantly drops but the

quality suffers as well.

The next step after the matching is the hypergraph contraction. Matched vertices

are merged together to produce coarser vertices. The weight of a coarser vertex is the

sum of the weight of the merged vertices. The union of the hyperedges incident on

any of the merged vertices is the set of incident hyperedges for any coarsened vertex.

Furthermore, hyperedges of unit size are removed from the coarsened hypergraph as

they do not contribute to the cut. Identical hyperedges are also detected and they

are collapsed into single hyperedges. Detecting identical hyperedges is done in the

same way as Parkway that is using hash functions. Hyperedges with different hash

values are not identical. In order to identify identical hyperedges, the hash values

are calculated locally. Then one horizontal communication followed by a vertical

communication is needed to identify identical hyperedges. When hyperedges are

collapsed, the weight of a new hyperedge is the sum of the weight of all hyperedges

it represents.

Initial Partitioning

In this stage, the size of the coarsest hypergraph is small and a partitioning on it

can be calculated much quicker than the original hypergraph. Because of the small

12This is done to prevent matching conflicts, because a vertex might be the best candidate for a
number of vertices.
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size of the hypergraph, it can be replicated on every processor. Each processor then

partitions the hypergraph using a number of randomised algorithms. Processors use

any of the randomised algorithms described in Section 3.1.2 or any flat move-based

partitioning algorithm for this purpose. Finally, the best partitioning amongst them

is selected to be projected back to the original hypergraph.

Parallel Uncoarsening

The parallel refinement algorithms is a challenging phase of the parallel algorithm.

The algorithm is inherently serial and make it work in parallel is difficult. As

mentioned earlier, the FM algorithm is shown to be successful in multi-level refinement.

We base our analysis on the 2-way FM algorithm but it can be also applied to other

iterative move-based algorithm. In the refinement phase, vertices are moved between

partition boundaries to further improve the cost function. The algorithm runs in

iterations and, in each iteration, a vertex with the maximum gain is selected to be

moved to the other part. When a vertex moves, the gain of all adjacent vertices

should be updated. Two problems may occur for each vertex move in the parallel

refinement algorithm and they are explained in the following.

First, the hypergraph is distributed among processors and each processor stores a

sub-hypergraph in which adjacent vertices may reside on different processors. When

a vertex is moved, updating the gain of all adjacent vertices that reside on other

processors creates lots of network communications and degrades the performance. In

the end, the time of the refinement phase can simply spoil the speedup of the parallel

algorithm. The data to be communicated for each vertex move includes the ID of

the vertex that is moved and the number of pins for each hyperedge in either parts

(that changes for every hyperedge incident on the moved vertex and it is explained

in Section 3.1.1).

The other issue is the conflicts that may occur when processors move their

vertices in parallel if processors decide about vertex moves independently. Consider

a situation in which a vertex v on processor pi is adjacent to a number of vertices on

another remote processor such as pj. Let say pi decides to move v to the other part

because it has the highest gain among all other vertices. Processor pi decides about
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Figure 3.4: An example of a conflict that happens in the parallel FM refinement algorithm
when processors decide about vertex moves independently. Processor p1 and p2 move v1
and v2 to the other part, respectively. This increases the cost of partitioning from 4 to 9.
The red line shows the boundary between two processors.

this move assuming that none of the adjacent vertices of v on pj change their parts.

The problem is, if pj moves one of those vertices we may end up in a configuration in

which the partitioning cut is got worse [KK96,Sch09]. An example of this situation

is depicted in Fig. 3.4 for a graph. White circles show vertices in the first part and

black circles represent vertices on the other part. In this example, the weight of

the edge connecting v1 and v2 is +4 and the weight of all other edges are unity.

Processors p1 and p2 independently decide to move v1 and v2 because they give the

highest gain. After the move, the cost of the partitioning changes from 4 to 9. Both

v1 and v2 are locked after the move to prevent further moves and thrashing between

the parts.

In order to prevent these two problems, parallel refinement algorithms use a

modification of the above mentioned algorithm [DBH+06,TK04]. To resolve the first

issue, processors make vertex move decisions only based on local information. This

means that only the gain of the vertices on the local processor is updated after a

move and no communication between processors is done.

To overcome the second issue, another restriction is added to the refinement

algorithm the algorithm. In each pass of the FM algorithm, vertices are only allowed

to move in one direction; for example, from part 0 to part 1 in the bipartitioning

of the hypergraph or from a higher part number to a lower part numbers in direct
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k-way partitioning. The number of passes is selected to be even and the direction of

the move alternates between the passes. This restriction guarantees that no move

conflict happens during the parallel refinement. Another benefit of this method is

that none of the hyperedges are locked into the cut because no vertex is moving in

the opposite direction.

These two modification come with an extra cost such that it is hard to meet the

balance constraint. While decisions are made locally and processors move vertices

independently, the balance constraint may be violated. For this purpose, the modified

algorithm converts the global balance constraint into a local balance constraint for

each processor based on the vertex-part distribution and the distribution of the

hypergraph on the processor set. Processors are obliged to satisfy the local balance

constraint but they may violate the global balance constraint while moving vertices.

In the end of each refinement pass, one processor is selected as the root processor

(usually processor with rank 0). If the partitioning does not meet the global balance

constraint, the root processor determines which processors should undo some of their

vertex moves in order to meet the balance constraint.

3.1.5 Other Hypergraph Partitioning Algorithms

Çatalyürek et al. [ÇBD+07] propose a dynamic hypergraph repartitioning algorithm

for problems in which the structure of the input hypergraph is changing dynamically

such as adaptive mesh refinement. When hypergraph changes, instead of performing

the whole partitioning from the scratch, they decide to repartition the hypergraph

by moving vertices from some parts to others in order to keep the balance constraint

and minimise the cost objective. They provide a unified model that combines both

communication and migration cost and tries to solve a multi-objective problem.

The cost function is defined as ttot = α(tcomp + tcomm) + tmig + trepart that is kept

at minimum when making decisions about the repartitioning. The algorithm is

divided into epochs such that the computation in all epochs is the same but the

structure of the hypergraph is different. The hypergraph in epoch j is denoted as

Hj. Parameter α in the cost function represents the number of iterations in each

epoch. The migration cost is modelled by adding Hj, k new vertices u1, u2, ..., uk,
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and some new hyperedges. For each vertex v in Hj and every ui, a net is added to

Hj that shows the migration cost of moving v to part i at the end of epoch j. Before

starting the repartitioning process, ui vertices are fixed to one of the parts and the

repartitioning is reduced to hypergraph partitioning with fixed vertices.

Aykanat et al. [ACU08] propose a multi-constraint hypergraph partitioning

algorithm with fixed vertices. In multi-constraint cases, the solution space is limited

and it is hard to find a globally optimum solution because the vertex movement is

further restricted. The multi-constraint is defined by assigning a weight vector to

each vertex or hyperedge. The support for fixed vertices is also provided with some

simple rules:

1. No two fixed vertices are allowed to match during coarsening if they are fixed

to different parts.

2. At the initial partitioning phase, first a temporary hypergraph H ′ is built that

is free from the fixed vertices. The nets in H ′ are only those nets in the coarsest

hypergraph Hc that have at least two non-fixed vertices. The partitioning of

H ′ gives a lower bound on the partitioning of Hc. Each net in Hc has the

potential to increase the cut size by its weight times the number of parts it is

connected to by fixed vertices. The latter is an upper bound on the cut size of

Hc. At this point, a relabelling of the fixed vertices is found. Then a bipartite

graph is formed with the fixed vertices of Hc on one side and the non-fixed

vertices on the other side. Each non-fixed vertex is connected with an edge

of weight zero to every fixed vertices on the other side (a complete bipartite

graph with all edges weights initialised to zero).

For every hyperedge e in Hc and for every possible pair of vertices (u, v), such

that u, v ∈ e, u is a fixed vertex and v is a non-fixed vertex, the algorithm

recursively increases the edge weight u, v in the bipartite graph by the weight

of e (γ(e)). Now, finding the maximum-weight matching in the bipartite graph

corresponds to finding a match between fixed vertices and non-fixed vertices

that has the minimum effect on the cut size when fixed vertices are added to

H ′.
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3. During the uncoarsening phase, fixed vertices are locked to their parts and

they are not allowed to move during the refinement process. Then refinement

is done like the normal refinement algorithm with no change.

Selvakkumaran and Karypis [SK06] propose an algorithm for multi-objective cut

minimisation that minimises the cut and the subdomain degree. The subdomain

degree of a part is defined as the sum of the weight of hyperedges that has at least

one vertex in the part13. The authors argue that despite the success of hypergraph

partitioning for minimising the cut, the cut hyperedges are not uniformly distributed

among the parts. For many VLSI applications, a partitioning is preferred that

minimises the cut and the subdomain degree. The latter is important in order to

avoid high density interconnect regions on the circuit board by evenly distributing

the interconnections across the physical device. They propose a family of multi-level

partitioning algorithms that are capable of minimising both the cut and the maximum

subdomain degree.

Hypergraph bipartitioning algorithms always concentrate on reducing the cut

hyperedges between the two parts without considering the previous history of the

partitioning. Additional information can propagate from upper layers of recursion to

inferior layers. However, algorithms following this strategy usually over-constrain the

problem. Authors suggest that direct k-way algorithms with the ability to consider

hyperedge cut over all parts are better candidates for these types of problems. A

number of solutions are proposed for reducing subdomain degree that are based

on, for example, sum-of-external-degree, absorption, scaled cost, and they use a

combination of recursive bipartitioning and direct k-way algorithms.

The proposed algorithms run as follows. First, the best partition is calculated us-

ing a state-of-the-art recursive bisection algorithm. Then, a direct k-way partitioning

with a different objective is applied to reduce subdomain degrees. The direct k-way

algorithm applies three rules. First, it explicitly minimises subdomain degrees of the

parts. Second, increasing the cut is inevitable, when reducing the subdomain degree.

How much the algorithm cares about minimising the maximum subdomain degree is

13Each subdomain is a part in our partitioning problem.
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a user defined parameter. Tighter restrictions provide more limited space for vertex

moves between the parts. Finally, the direct k-way algorithm always maintains the

balance constraint.

In multi-objective graph/hypergraph partitioning algorithms, objectives are usu-

ally assigned priorities. The objective with the highest priority is treated as the main

objective and the others as tie-breaking conditions. But this paper uses a weighted

cost function, that is Cost = α · (maximum subdomain degree) + β · (Cut), where

α and β are user defined parameters. The cost function assigns each objective a

weight and considers objectives according to the weight assigned to them. In direct

multi-phase refinement, a vertex is chosen randomly. If the vertex is internal to

the part then no move occurs; otherwise it is moved to one of the parts in which it

has some adjacent vertices such that the balance constraint is not violated and the

subdomain degree is decreased. The main drawback is that it cannot make large

perturbations to the initial partitioning because the hill-climbing capability of refine-

ment algorithms is often limited. In addition, it cannot make large improvements to

the subdomain degree if the cut objective has higher priority (β > α). In another

method, which is called aggressive method, every part is collapsed into 2l macro

parts (l is user defined). Then a 2l · k-way partitioning is performed on the macro

parts using the previous method. Finally, the 2lk macro parts are partitioned again

into k parts such that each parts has exactly 2l macro parts. The aggressive method

has better chance of escaping local minima and simulations show that it improves the

multi-objective cost compared to the direct multi-phase refinement. It is reported

that increasing l causes higher hyperedge cuts.

3.2 Hypergraph Partitioning Tools

In this section we provide a summary of the tools available for hypergraph partitioning.

To date, there is no unified framework for hypergraph partitioning and available tools

use different user interface and input formats. The need for a framework is necessary

like the one exists for graph partitioning tools. As mentioned in the beginning

of the chapter, we focus on the work related to the hypergraph partitioning (not
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graph partitioning tools and algorithms). We only name few graph partitioning

tools and the reader is referred to the tool manuals for further information about

them. Examples are: the serial graph partitioner METIS [Kar13a] and parallel

graph partitioner ParMETIS [Kar13b] from the Karypis lab, JOSTLE [WC07] that

is a parallel graph partitioning software for partitioning unstructed meshes (for

example, finite element or finite volume meshes), the scalable multi-level partitioner

KaPPa [HSS10], the Karlsruhe Fast Flow Partitioner KaFFPa [PC10], Karlsruhe

High Quality Partitioning KaHIP14 and the distributed graph partitioner JA-BE-JA

[RPG+13].

Zoltan data management services for parallel dynamic applications [San14b] is

a toolkit developed at Sandia National Laboratories. The library includes a wide

range of tools such as dynamic load balancing, graph/hypergraph colouring, matrix

operations, data migration, unstructured communications, distributed directories,

and graph/hypergraph partitioning. It follows a distributed memory model and

uses MPI for inter-processor communications. It is available in Trilinos which is

an open source software project for scientific applications [San14a]. It has a lot of

applications in large-scale experiments and simulations such as:

1. Interoperable Technologies for Advanced Petascale Simulations (ITAPS) for

the partitioning of their mesh databases [Sci15] in projects iZoltan, iMeshP,

and Scaling Unstructured Mesh Computations

2. Geometrical particle partitioning in 3D parallel finite-element simulations at

Scientific Discovery through Advanced Computing (SciDAC) [Sci08].

The source code of Zoltan is written in C with interfaces for C++ and Fortran.

It has no restriction on the input data format. Applications can use their own format

but they should tell Zoltan how the input should be interpreted; the application does

this by providing query functions. Zoltan queries the application for the necessary

information such as vertex IDs, hyperedge IDs, hypergraph incidence matrix, vertex

weights, hyperedge weighs, and object coordinates (in case of geometric partitioning).

14http://algo2.iti.kit.edu/documents/kahip/.

http://algo2.iti.kit.edu/documents/kahip/


3.2. Hypergraph Partitioning Tools 77

The runtime behaviour of the algorithm is controlled by providing a number of input

parameters. Input parameters are set by the user. Zoltan supports geometric, graph,

and hypergraph partitioning as well as static and dynamic hypergraph partitioning.

It also supports multi-criteria load balancing by assigning a weight vector to vertices

and/or edges/hyperedge. The heterogeneity of processors is supported by giving an

input vector that defines different sizes for the parts. Furthermore, unstructured

communication is supported by providing communication utility package.

The latest version of Zoltan is released in May 2015. Currently, there is a newer

version of Zoltan that is called Zoltan2. This is a new project and the developers

are rewriting the source code in modern templated C++. It is available in Trilinos

release 12.2.1. Currently, Zoltan2 only supports a few partitioning and ordering

methods but the package is actively developed. It supports arbitrary index types;

therefore, it solves problems with more than 2 billion elements (32-bit limit). Much

of Zoltan2 should be considered experimental code and the feature set is currently

small compared to Zoltan.

hMetis [Kar07] is the earliest tool for serial hypergraph partitioning developed

by Karypis and Kumar at the University of Minnesota. It is specially designed

for VLSI circuit partitioning. The algorithms are based on multi-level partitioning

schemes and support recursive bisectioning shmetis, hmetis, direct k-way partitioning

kmetis, and partitioning with fixed vertices. The license is free for educational

and research purposes by non-profit institutions and US government agencies. The

supported platforms are Linux, Mac OS, Windows, Sun, IBM AIX, and IRIX. It is

callable as a standalone program from the terminal with command line parameters.

There are a variety of supported coarsening schemes and the algorithms for the

initial partitioning and uncoarsening phases of the multi-level paradigm are modified

versions of FM algorithm. V-Cycle refinement is also provided. User can define

some input parameters in order to control the runtime behaviour of the algorithms.

Algorithms can also be accessed form a standalone library libmetis.a. The latest

stable version is released in November 2008.

PaToH [ÇA11] is a serial hypergraph partitioner developed by Ümit V. Çatalyürek

at the Bilkent University. It is a fast multi-level recursive bipartitioning based tool
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that supports partitioning with fixed vertices and multi-constraint objectives. The

supported platforms are Linux (32-bit and 64-bit), Mac OS, Sun Solaris, and IBM

AIX. An interface is also provided for Matlab. The binary distribution is available

free of charge for non-commercial and research purposes; commercial use of the

software needs a license. It supports a set of agglomerative (vertex clusters are

formed one at a time) and hierarchical clustering (several cluster of vertices can be

formed simultaneously) algorithms for the coarsening phase. The Greedy Hypergraph

Growing (GHG) algorithm is used for the initial partitioning which is an extension of

the GGGP algorithm in hMetis. Furthermore, a variety of KL-FM based refinement

algorithms are provided for the uncoarsening phase like Boundary FM (BFM)

algorithm. In addition to the library interface, the partitioner can be invoked from

the terminal. The tool includes direct k-way hypergraph partitioner kPaToH. The

latest Linux version is dated back to November 2008.

Parkway is a parallel multi-level hypergraph partitioner developed by Aleksandar

Trifunovic during his PhD research. It is the first parallel hypergraph partitioning

tool. It is written in C++ and is Linux-based. Interfaces are provided to hMetis,

PaToH, hypergraph partitioners and SPRNG libraries for parallel pseudorandom

number generator [Flo14]. The latest optimised version is 2.11. The algorithms

for each phase of partitioning are 1) Coarsening: parallel FirstChoice algorithm,

2) Initial Partitioning: generic recursive bisection or using interfaces to hMetis or

PaToH, and 3) Refinement: greedy k-way refinement algorithm; V-Cycle refinement

is also supported. The runtime behaviour of the partitioner is controlled by some

input parameters. The output is also returned in binary format. The latest version

is Parkway 2.11 from May 2008.

Mondriaan [RBT+13,VB05] is a sequential hypergraph partitioner especially

designed for rectangular sparse matrix-vector multiplications. It is recursive multi-

level hypergraph bipartitioning algorithm written in C. The first release of the

software was in 2002 and the last update is dated August 2010. It supports a variety

of platforms with interfaces to PaToH and Matlab since version 3.0. The input has

to be given in Matrix Market (MM) format and after the partitioning, several output

files are generated including distributed matrix, processor indices for each part,
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row/column permutations, input/output vector distribution, etc. The output of the

partitioning can be seen as an image and the whole partitioning process can be seen

as an animated GIF image. The user has the capability of setting runtime parameters

and partitioning methods before calling Mondriaan by setting some non-numerical

values. Furthermore, numerical options are used to fine-tune partitioning options.

The latest version is released in August 2013.

MLPart [AAI06] is a hypergraph circuit partitioner developed in UCLA. The

source code is written in C++ and the supported platforms are Intel Linux, Sun

Solaris 2.7, and Microsoft Windows (95/98/NT). The move-based algorithm is a

modification of the FM algorithm in which the algorithm uses a form of randomisation

for computing gains of the legal moves at the beginning of each pass in order to

escape local minima [PM07]. The algorithm also implements a slightly different data

structure for the gain bucket to manage fixed nodes. The algorithm is evaluated

against hMetis and it generates improved partition quality for some of the hyper-

graphs in IBM ISPD-99 circuit benchmarks [CKM99]. For the coarsening phase,

it implements a linear time clustering algorithm for the edge coarsening proposed

in hMetis library [Kar07]. This is followed by CLIP-FM [DD97] for the initial

partitioning and LIFO-FM [Kar07] for the uncoarsening phase. The implication of

the proposed algorithms is based on simplicity of design. It has also support for

fixed vertices. The last update is dated back to October 2004.

SCOTCH and PT-SCOTCH are projects developed by the Satanas team of the

Laboratoire Bordelais de Recherche en Informatique (LaBRI) in INRIA Bordeaux -

Sud-Ouest and they are designed for serial and parallel graph partitioning, respectively.

The tools are designed for graph algorithms with the divide and conquer approach

to scientific computing problems such as: graph and mesh partitioning, static

mapping, and sparse matrix ordering. These algorithms have applications in various

domains ranging from structural mechanics to operating systems and bio-chemistry.

It supports C and Fortran. The tool is not specifically designed for hypergraph

partitioning, but it provides algorithms to partition graph and mesh structures.

Because the mesh structure can be defined as a node-element bipartite graph, it can

represent a hypergraph. We consider this tool as a graph partitioner rather than a



3.3. Applications of Hypergraph Partitioning 80

hypergraph partitioner. The latest versions are released in December 2012.

3.3 Applications of Hypergraph Partitioning

There are lots of applications for hypergraph partitioning and we discuss some

of them in this section. The first and a long standing application of hypergraph

partitioning is netlist partitioning for the computer aided design of VLSI circuits

[Len90,She12]. As the size and complexity of today’s VLSI circuits are increasing,

partitioning the VLSI circuit into clusters with minimised interconnection among

them is important and critical. The circuit is composed of a number of pre-designed

components with input and output terminals. Each component is represented as a

vertex in the hypergraph. A net is a collection of interconnected input and output

terminals and it is represented as a hyperedge. The hypergraph partitioning can

be used in different design stages and for various purposes as reported by Alpert

[Alp96]:

1. The partitioning divides the system into smaller sub-circuits such that the

signals between these sub-circuits correspond to the interconnections between

them. The partitioning can be used to reduce circuit design complexity in

hierarchical design such that the design process will be more manageable and

feasible by automatic design tools and software.

2. Partitioning increases system performance. As the size of the VLSI circuits is

increasing, wire delays surpasses gate delays. In addition, long off-chip signal

delays are much bigger than on-chip signal delays and their power consumption

is higher. The partitioning is important in identifying the interconnect structure

and decreasing off-chip signals as well as long global wires.

3. It reduces layout area. In top-down hierarchical design, wires between sub-

circuits at top levels of hierarchy are longer than wires between sub-circuits

at lower levels of hierarchy. In this situation, the problem can be directly

expressed by the hypergraph partitioning problem with minimum cut objective

in order to reduce layout area and total wire length.
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Çatalyürek and Aykanat [ÇA99] apply hypergraph partitioning to sparse matrix-

vector multiplication. Iterative methods such as the conjugate gradient normal

equation error and residual methods (CGNE and CGNR) and the standard quasi-

minimal residual method (QMR) (that is used for solving unsymmetric linear systems)

need computations of the form y = Ax (or y = ATx). There is an unsymmetric square

coefficient matrix in each iteration. In parallel computation of this multiplication, the

sparse matrix A, the input (x), and the output (y) vectors are distributed among a

number of processors and multiplication is done in parallel. During the multiplication,

processors regularly access parts of the matrix that are stored on other processors.

This imposes lots of network communications and does not allow the problem to scale

up by increasing the number of processors. The communication volume also scales up

with increasing the problem size. The authors propose a decomposition of the sparse

matrix among the processor set based on hypergraph partitioning such that it also

balances the computational load. They propose two models of decomposition: column-

net and row-net that are used for row-wise decomposition (that needs processor

pre-communication to collect matrix data before calculation the multiplication) and

column-wise decomposition (that needs processor post-communication to finalise

multiplication results), respectively. In row-wise decomposition, the sparse matrix is

represented as a hypergraph in which rows and columns of the matrix correspond

to vertices and hyperedges of the hypergraph, respectively. Each hyperedge at

column j contains a vertex at row i if its corresponding item A[i, j] in the matrix is

non-zero. The column-wise decomposition is obtained similarly with rows of matrix

as hyperedges and columns as vertices. They achieved between 30% to 38% less

communication volume on average between processors compared to graph partitioning

models. There are similar works for modelling inter-processor communication in

parallel sparse matrix-vector multiplication such as Vastenhouw and Bisseling [VB05],

Uçar and Aykanat [UA04].

Curino et al. [CJZM10] proposes a workload-aware database partitioning and

replication strategy to improve the scalability of shared nothing relational databases
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in OLTP15 systems. The database is distributed among a number of computer nodes.

The workload is a set of transactions that access the database. The target of the

partitioning is to increase the scalability and improve the availability. The latter is

is achieved by insuring that the system still can answer transaction queries in case

of failure; when one partition fails the remaining partitions should be able to answer

some of the transactions. The traditional partitioning schemes, such as round-robin

and random hashes, fails to improve performance especially when transactions access

various parts of the database. Running distributed transactions are expensive and

the aim is to run them locally. In their model, they first characterise transactions

in the input workload and their access pattern. Then a hypergraph representation

of the database is built. Each tuple of the database is represented as a vertex.

Each hyperedge represents a groups of tuples that are accessed together in one

transaction. Hypergraph partitioning is then applied to partition the database.

After the partitioning, each part is assigned to one unique physical computer node.

The application manages tuple-level replication in the partitioned hypergraph by

exploding a vertex (that represents a tuple) into a star-shaped configuration. The

tuple is replaced by a star with n+ 1 nodes where n is the vertex degree (the vertex

degree is the number of transactions that access the tuple). A hyperedge is added

to the hypergraph which contains the vertex and all its replicas; the size of the

new hyperedge is n + 1. The new hyperedge has exactly one pin in each of the

hyperedges that are incident to the vertex. The n + 1th tuple only belongs to the

new hyperedge. Finally the k-way partitioning on the hypergraph is calculated

to distribute the hypergraph on k compute nodes. The evaluation results shows

up to 30% improvement on a set of benchmarks including Yahoo! Cloud Serving

Benchmark [CST+10] and a set of random generated benchmarks.

Agent-based simulation is a new technique for simulating dynamic complex sys-

tems and their behaviour. It is composed of a set of autonomous inter-acting agents

with the ability to adapt and modify their behaviours. It has lot of applications. Ex-

amples are: social simulation for social behaviour investigation and human movement

15OnLine Transaction Processing (OLTP).
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patterns, biological science for cellular and sub-cellular molecular behaviour, stock

market and supply chains for trade networks and supply chains, and traffic modelling

for traffic flow management [NM09]. The simulation space is divided into smaller

subspaces and each agent is responsible for processing a subspace. While processing

the subspaces, communication occurs between the agents. In parallel agent-based

simulation, subspaces are assigned to distributed processors. The aim is to assign

subspaces to processing nodes in such a way that the load on processors is balanced

and the communications between agents are minimised. In order to solve the problem

with hypergraph partitioning, the problem is modelled with a hypergraph in which

vertices are subspaces and hyperedges show inter-dependency among those subspaces.

A partitioning on the hypergraph provides a distribution with aforementioned specifi-

cations. Examples are the work by Márquez et al. [MCS15] that uses Zoltan dynamic

hypergraph partitioner for dynamic migration of the agents between processor nodes

in biological simulations, and the work by Xu et al. [XCAL14] that uses dynamic

graph and hypergraph partitioning for road network simulation.

In data classification, Zhou et al. [ZHS06] argue that the inter-dependency

between objects in the real world applications cannot be always illustrated as pair-

wise relationships (this is case in graphs). Pair-wise dependency causes loss of

information when it is used for representing complex relationships. Consequently,

they prefer to model those application with a hypergraph rather than a graph.

Each object stands for a vertex and each hyperedge shows a relationship between

a group of objects. The comparison result of their approach to graph methods

on machine learning and web text categorisation datasets shows that hypergraph

models can capture relationships much better than graph models and provides better

data classification. Dickenson [Dic86] tries to cluster data points using hypergraph

partitioning such that objects inside a cluster share common characteristics and

those in different clusters share less common characteristics. Other examples in the

field are the work by Yu et al. [YTW12] in image classification and the work by Han

et al. [HKKM98].

Other examples of the application of hypergraph partitioning are:

• Biology
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– Classifying gene expression data [THK09].

– The haplotype assembly problem for study of genetic variations among

individuals and gene disease diagnoses [CPH+14].

• Constructing mRNA and miRNA interaction networks [Kim13].

• Identify clusters of pixels which form an image such as colour image segmenta-

tion for managing complex relationships [DRBL09,Rit09]

• Managing multi-label data for information storage [TKV10] in database sys-

tems.

• High dimensional data clustering: [HLT+14].

• Social Networks analysis [Was94,HC14].

3.3.1 Comments on the Applications of Hypergraph Parti-

tioning

Although there are lots of applications for hypergraph partitioning in scientific

computing, the problem of modelling the application itself with a hypergraph is

a challenging task. The problem arises in representing group relationships that

define the hyperedges in the hypergraph. Heintz and Chandra [HC14] investigate

the challenges exist for modelling social network graphs with hypergraphs. In social

networks, a group is the fundamental building block for representing interactions

between entities such as groups of peoples interested in a movie, groups of friends, and

football club members [LPA+09]. Graph modelling, which only captures one-to-one

relationships, fails to provide a fair representation of group-level relations and it

highlights the need for using hypergraph modelling for this purpose [Was94].

Managing these groups and their interactions is a challenging task. Social networks

like Facebook and Twitter have become very popular recently and they are dealing

with billions of users and their groups interactions. This means that analysing

algorithms and tools need to be scalable in terms of computations and memory usage.

Heintz and Chandra [HC14] show that there are some redundancies in the hypergraph
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modelling that can be removed from the hypergraph representation without losing

important information. They investigate two hypergraph benchmarks as use cases:

1) DBLP authorship database (in which vertices are authors and hyperedges are

authors who contributed in writing a paper) and 2) Apache Subversion repository

(in which vertices are committers and a hyperedge represents a group of committers

who committed a file on the repository). They try to transform the hypergraphs into

a bipartite graph representation in order to save memory, simplify computations,

and remove redundant information.

The second issue arises in the structure of the hypergraphs. Hypergraphs have a

skew in vertex degree (like graphs) and a skew in edge cardinality (unlike graphs). This

causes more processing for some vertices and hyperedges because of different degrees

and sizes, respectively. The arbitrary size of hyperedges makes the partitioning

problem more challenging. In the same way that vertex-based partitioning heuristics

have shown to be inefficient in graphs with highly-skewed vertex degree [GLG+12],

high skew in hyperedge sizes is even a more challenging issue in the hypergraph

partitioning problem. In this situation, there may be a need for vertex-based and

hyperedge-based heuristics to deal with both skews.

Furthermore, average vertex degrees may be smaller than average hyperedge

sizes in some hypergraphs which means they need less processing. Similarly, the

opposite maybe true in other hypergraphs. Depending on the situation, we may

decide to switch between two problems and reduce one to the other in order to

improve the performance and overcome the problem easier. The problem type and

its specifications need careful analysis.

The other problem is about the characterisation of hypergraphs. The structure

of graphs such as those modelling social networks and internet topology is well

understood and there is an extensive research to study their distinctive structure.

For example, many natural graphs follow power-law degree distributions [FFF99]. In

addition, Kang [KTF09] shows that modelling social networks with graphs tend to

have small diameters that shrinks as new vertices or edges are added to the graph. The

problem is that we do not know how these facts are extended to hypergraph models;

the predictions are unknown and very different between practical hypergraphs [HC14].
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For instance, the vertices in a social network-based hypergraph may have limited

degree due to the limited capacity of humans to engage in social interactions, even

though some hyperedges are very large [HC14]. As another example, the reduction of

vertex degree is much higher in Apache SUV compared to DBLP when transforming

the hypergraph into bipartite representation, but the increase in hyperedge size is

much higher. On the other hand, the transformation needs more memory space

for saving in Apache SUV (because a larger number of subset relations) but lacks

a clear hierarchy structure. The transformation is intended to save memory. This

is achieved for DBLP while the characteristics of Apache SUV do not allow such

optimisations.

Finally, in case of programming models, there is no efficient and unified pro-

gramming model for hypergraphs like the one exists for graph models such as the

MapReduce [DG08] framework for large data processing and the Pregel [MAB+10]

for large graph processing. A similar programming model should be developed for

hypergraphs. Heintz and Chandra [HC14] believe that the model should be restricted.

Restricted models leave some room for optimisation while provide sufficient express-

ibility to the programmers. This a difficult task, because of two reasons. First, the

area of hypergraph algorithms is much smaller than graphs. Second, the are some

issues for modelling applications with hypergraphs such as those described above.

3.4 HPC in the Cloud

The interest in moving scientific applications into the cloud has been increasing

in recent years. The reason lies in the advantages that the cloud offers to HPC

applications such as elasticity, small startup and maintenance costs, dynamic resource

allocation, and economies of scale and use. On the other hand, some characteristics

of the cloud are becoming performance bottlenecks for running HPC in the cloud

such as hardware virtualisation, hardware heterogeneity, and multi-tenancy. Despite

having challenges on the way, there are lots of works that investigate the problem

and solutions have been proposed to ease the way for HPC in the cloud. This section

studies the related work about moving scientific applications into the cloud.
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Gupta et al. [GKG+13] address the questions of why and who should use the

cloud for HPC applications? What type of applications should be used in the cloud

and how? The answer to these questions are unclear. The cloud has been originally

designed for web and business applications that have different specifications and

requirements than HPC applications. The restricted network resources and the

overhead of virtualisation on network and storage are major performance hurdles on

the way of deploying the cloud for HPC [YCD+11,Wal08,MDH+12]. They propose

that the cost/performance-optimal execution platform varies from HPC clusters to

the cloud depending on the characteristics of the application. They test various HPC

applications with different characteristics on a number of testbeds including HPC

clusters (Ranger cluster that is an old HPC cluster, and new clusters such as Open

Cirrus, and Taub), and the private and public clouds. The selected benchmarks are

written in two different parallel programming environments: MPI and CHARM++

and they are as follows:

• NASA Parallel Benchmarks (NPB) class B (with MPI version, NPB3.3- MPI)

[Div15].

• Jacobi2D: a kernel which performs 5-point stencil computation to average

values in a 2D grid.

• NAMD: A highly scalable molecular dynamic application.

• ChaNGa: A highly scalable Charm N-body GrAvity solver that is used to

perform collisionless N-body simulation.

• Sweep3D: a particle in transport code which is widely used for evaluating high

performance parallel architectures.

• NQueens: a backtracking state space search problem.

• NPB: a small set of programs designed to help evaluate the performance of

parallel supercomputers and includes benchmarks for Integer Sort (IS), Lower-

Upper Gauss-Seidel solver (EU). Most of applications are communication-

intensive applications.
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The scalability test shows that even Ranger HPC cluster that uses old processors

and network interface outperforms both the private and public clouds for some

of the applications at around 32 processor cores. In addition, the performance of

communication-intensive applications usually start to degrade in the cloud (both

private and public) as soon as the number of cores exceeds the number of processing

cores per Virtual Machine (VM). This is more evident on the public cloud which has

VMs with 4 virtual cores. In this situation, there is no inter-VM communication up

to 4 cores and applications show good performance and scalability. The performance

suddenly degrades as soon as the communication starts across VMs. Most of

performance degradation comes from network and virtualisation overheads.

Furthermore, the authors notice a big variability in the execution runtime of

applications in the cloud compared to supercomputers. The variability increases

with increasing the number of processor cores, partially due to the decrease in

computational granularity. The major reason for variable runtimes is using shared

resources in the cloud. In another observation, they report that CPU is under-utilised

for almost half of time in the cloud. CPUs spend most of their time waiting for

receiving data from other processors and the network overhead plays an important

role in this. The magnitude of latencies and bandwidth in the cloud are worse

compared to supercomputers and this makes it very challenging for communication-

intensive applications such as IS, LU, NAMD and ChaNGa to scale up. Finally, OS

and the hypervisor interference in the cloud are very high and bring considerable

overhead in the amount of work done by processors in the cloud.

Gupta et al. [GKG+13] identify the network virtualisation as the primary bottle-

neck of the cloud. They argue that using light weight VMs provides performance

improvement in the cloud and imposes significantly lower communication overhead.

It also decreases shared resource utilisation and provides better network utilisation.

In addition, CPU affinity, which instructs the operating system to bind a process to

a specific CPU core, reduces the competition for shared resources among processes

on the same VM, increases cache locality, and prevents the operating systems for

inadvertently migrating a process. For the tested applications, they noticed that

virtualisation introduces a small amount of computation overhead and removing
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unnecessary I/O operations helps in achieving maximum performance.

The authors also investigate the cloud economies of use. A HPC cloud user ideally

wants dedicated resources. This means that the cloud provider can not use multi-

tenancy execution for HPC applications; therefore, the pricing should be increased

for HPC users to compensate the loss of dedicated resources. In addition, the

performance of most of HPC applications is very sensitive to network overhead which

makes it very difficult for those applications to benefit from the cloud. Virtualisation

overhead is another bottleneck. These facts restrict the number of HPC applications

to fit into the cloud. Consequently, if too many VM instances are needed to meet a

specific performance and depending on the pricing model, then the usage of HPC

in the cloud becomes uneconomical. In general, running HPC application in the

cloud for small and medium sized enterprises may provide savings to the company

[GKG+13]. Furthermore, they use different pricing models and they estimate that the

cloud can provides around 2-3 times more economical benefit than using on-premise

supercomputing resources.

They conclude that, identifying the characteristics of HPC application to estimate

the benefit of running the application in the cloud is crucial. These characteristics

are necessary for mapping HPC application into the cloud in order to achieve cost-

performance benefits. However, identifying them is not a trivial task for complex

applications. In general, they suggest that using a hybrid environment (the cloud

and on-premise supercomputing resources together) is the most beneficial paradigm

for both performance and economical reasons.

Juve et al. [JDV+09] study the use of Amazon EC2 cloud for running scientific

workflows and the performance is compared to HPC clusters. In their study, the

workflow is defined as “loosely-coupled parallel application that consist of a series

of computational tasks connected by a data- and control-flow dependencies”. They

describe the benefits of the cloud for workflow applications as follows:

• Infinite resource provisioning: Resources in the cloud are unlimited.

• Leases: Users are saving time in allocating resources to batch schedulers. In

the cloud, users directly allocate resources as needed which removes the time

needed for scheduling and results in increased performance.
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• Elasticity: Resources can be acquired and released on demand allowing the

workflow to easily scale up and down based on the computational needs of the

workflow.

They select three types of applications with different I/O, memory and CPU

resource usages: Montage from astronomy (high I/O, low memory and CPU re-

quirement), Broadband which is a seismology application (medium CPU and I/O

requirement and high memory needs), and Epigenomics from bioinformatics (low

I/O, medium memory, and high CPU requirement). All of them are loosely-coupled

applications with tasks communicate via the file system instead of directly through

the network. Amazon EC2 resource types are selected with different specifications

and they offer different price/hour values. Comparing the runtime of the applications

shows that HPC cluster gives the highest performance in all cases. By identifying

the characteristics of workflows, one can choose the best Amazon EC2 configuration

for running each application in order to achieve the best performance. For example,

m.xlarge configuration offers the highest memory per node. Using this configuration,

they they achieve the best performance for Montage in which the extra memory is

used for file system buffer cache to reduce the waiting time of tasks for I/O operations

in Linux. They find that the virtualisation overhead has the highest impact on

the performance of CPU bound applications. In addition, lack of high-performance

parallel file systems on Amazon EC2 can provide a major performance bottleneck

for I/O-intensive applications. Installing high performance file system is prohibitive

due to the need for high speed network interconnection in the cloud. The primary

costs, which are the costs of running resources and storage costs, are relatively small

in the cloud.

Napper and Bientinesi [NB09] investigate the cloud computing for numerical

applications and explore the cloud for HPC applications. They report similar

results as previous research that is the performance on Amazon EC2 using high end

computing nodes suffers from limited network inter-connectivity. They find that

using smaller cluster sizes for numerical application gives better cost/performance

benefit. The cost for solving a linear system increases exponentially with the problem

size which is in contrast to scalable HPC clusters. They conclude that the cloud
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computing is not yet ready to run HPC applications and they suggest better network

interconnection and more physical memory in the cloud to be suitable for running

scientific applications.

Jackson et al. [JRM+10] compare conventional HPC platforms to Amazon EC2

using real scientific applications and investigate how the communication pattern of

HPC applications can affect the performance. The performance on Amazon EC2 is

evaluated compared to three HPC clusters with different specifications from modern

HPC clusters (Carver system) to mid-range Linux clusters (Lawrencium system,

which is the slowest HPC cluster, and Franklin system, which has faster network

interconnection than Lawrencium but slower than Carver system). Applications are

chosen with different characteristics as follows:

• Community Atmosphere Model (CAM): A MPI application [CES].

• General Atomic and Molecular Electronic Structure System (Gamess): It needs

considerable memory access operations and there are two implementations

using MPI and socket communication.

• GTC [Lee87]: A fully self-consistent, gyrokinetic 3-D Particle-in-cell (PIC)

code with a non-spectral Poisson solver which is MPI-based. Communications

are dominated by the nearest neighbour exchange operations and it utilises

indirect address that stresses random access to memory.

• Integrated Map and Particle Accelerator Tracking Time (IMPACT-T): An

object-oriented Fortran90 code from computational tools. Its performance is

very sensitive to memory bandwidth and MPI collective performance.

• MAESTRO: Used for simulating astrophysical flows that has a very unusual

communication topology pattern that stresses simple topology interconnects;

furthermore, it stresses global communications and memory performance with

very low computation intensity.

• MILC: Represents Lattice Computations which are extremely dependent on

memory bandwidth and pre-fetching. It exhibits a high computational intensity.
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• ARAllel Total Energy Code (PARATEC): It is a MPI-based code from quantum

mechanics and stresses global communication bandwidth by relatively short

length point-to-point messages.

• High Performance Computing Challenge (HPCC) benchmark [LDK+05]: It has

seven synthetic benchmarks which combine computation and communication.

These benchmarks can be considered as very simple proxy applications.

Simulations show that HPCC benchmark runs significantly faster on EC2 than

Lawrencium system. The reason is that the AMD Opteron based systems in Amazon

EC2 are known to have better memory performance than Intel Harpertown-based

systems used in Lawrencium. Both system are significantly slower than the Carver

system. In order to test the network latency in the evaluated systems, they compare

the average ping-pong latency and bandwidth, and the randomly-ordered ring latency

and bandwidth on the systems. Evaluations show that the latency and bandwidth

measurements of the EC2 gigabit Ethernet interconnect are more than 20×worse

than the Lawrencium system. Using self-contention in ping-pong latency, EC2 is 13×
slower than the Lawrencium and 400× slower than the Carver. The low performance

network interconnection in EC2 has major impact on the performance on the very

simple application proxies for the HPCC benchmark.

In case of other applications, GAMESS and PARATEC run 2.7× and more than

50× slower on EC2 than Craver, respectively. The difference in performance simply

reflects the degree of dependency of these applications on the network. Applications

that stress global communications such as PARATEC (52×), MILC (20×), and

MAESTRO (17×) give the worst performance on EC2 compared to Carver. Other

applications that mostly include point-to-point and local communications, which

do not induce quite as much contention as global communication, are not highly

impacted by performance degradation; examples are CAM (11×), IMPACT (9×)

and GTC (6×).

In another evaluation, the performance of EC2 compared to other HCP systems

is evaluated using Integrated Performance Monitoring (IPM) framework [WPS09].

This framework is a profiling tool which uses MPI profiling interface to measure
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the time taken by an application in MPI operations on a task-by-task basis. This

tool is used to identify the amount of time taken by the application on computation

and communication as well as the type of MPI communication calls. This is useful

to determine which cloud configuration is mostly responsible for restricting the

performance16. Their results shows the more the time application spend on MPI

communications, the worse the performance is on EC2. An interesting result that is

found is about one application, which is denoted as CAM, that gets good relative

performance on EC2 despite spending more than 45% of its time on communication.

Analysing CAM shows that it is the only application that uses large MPI messages for

both point-to-point and collective communications. The reason relies in the difference

between the latency and bandwidth of communications in the cloud. Evaluating

HPCC benchmarks shows that EC2 ping-pong latency is 35× worse than Lawrencium

while its bandwidth is only 20× worse. Generally speaking, they found that any

application that spends time on communicating large messages via point-to-point

messages in the latency limit context would run slower in the cloud compared to

the one that performs collective communications in the bandwidth limit. CAM

application falls in the second category.

Furthermore, authors report significant variation of runtime in EC2. This mostly

comes from the heterogeneity of resources in EC2. In each run of the application,

they noticed different types of allocated resources, and the variability of network

congestion. This heterogeneity interferes with the load balancing and performance

tuning strategies. The other heterogeneity comes from shared virtualised hardware

such that the user has no control on discovering weather s/he uses a non-virtualised

hardware or not. For PARATEC application they see 42% runtime variability17.

Finally, the following important lessons are learned from this study:

1. An application communication pattern affects how it uses the cloud network

interconnect and, consequently, affects the performance. For example, those

applications that mostly perform collective communications and global commu-

16The overhead of running IPM framework is insignificant. Other studies show that IPM adds
only 2% overhead [WPS09].

17As we discussed above, Gupta et al. [GKG+13] also report runtime variation in the cloud. They
argue that the major reason for the runtime variation in the cloud comes from resource sharing.
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nications in the cloud get worse performance than those applications performing

local communications. This emphasises on the importance of the resource lo-

cality in the cloud.

2. Communicating large messages via collective MPI messages gives better per-

formance than point-to-point MPI communications. The reason lies in the

difference between the latency and bandwidth of network communications in

the cloud.

3. Heterogeneity of resources in the cloud is one of the main sources of performance

degradation. It also causes large variation of application runtime in the cloud.

Evangelinos and Hill [EH08] study the applications of the HPC standard bench-

mark tests on Amazon EC2 and they find that EC2 is suitable for running small

sized HPC applications. According to their study, on-demand capability of the cloud

is an interesting characteristic for batch processing queue-based systems in which

virtualised resources can be sequestered and customised for a specific scenario and

target. Investigating the network bandwidth in EC2 shows the availability of high

bandwidth among EC2 instances. In addition, I/O performance is tested with some

benchmarks that generate large read and write requests on both local disk and

remotely mounted home directory. The results show that there is big difference in

the performance of read and write operations to/from local disk. They report the

performance of EC2 to be comparable to low-cost HPC clusters by simulating a

atmosphere-ocean climate model.

Gupta and Milojicic [GM11] report that the cloud could be a suitable platform

for computation-intensive applications and communication-intensive applications

can get a certain level of speedup and scalability on the cloud; up to low processor

counts. For the evaluation, they have selected two benchmarks as follows:

• NAMD: A highly scalable molecular dynamics application that is used ubiqui-

tously on Supercomputers.

• NQueens: A backtracking search problem to place N queens on a N × N

chessboard so that they do not attack each other.
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The first is a computation-intensive application while the latter is a tree struc-

tured computation where communication only happens for load balancing (the load

balancing is done through work stealing). The results show that NAMD stops scaling

after 64 processor cores while NQueens offers high scalability in the cloud. Evaluating

cost effectiveness of both applications on EC2 compared to HPC cluster shows that

NAMD is better to run in the HPC cluster, while EC2 is a better environment for

NQueens.

Gupta et al. [GSKM13] propose a dynamic load balancer for improving the

performance of tightly-coupled iterative HPC applications in the cloud. They report

that heterogeneity of hardware resources and multi-tenancy characteristics of the

cloud are two problematic challenges. They try to resolve the issue by proposing an

HPC-aware cloud environment. Their method continuously monitors the cloud and

detects load imbalances among CPU cores. When the system is imbalanced, some of

the load is migrated from overloaded processors to underloaded cores. Using this

strategy, they achieve up to 45% performance improvement for HPC applications in

the cloud.

According to the above discussions, transferring HPC applications into the cloud

is very challenging. It requires understanding of the underlying structure of the

application and its specifications. In addition, one can not always get the required

standards and the expected performance by moving into the cloud. According to the

above discussion, the scalability issue is an interesting topic in the cloud. We refer

to a complete reference, “The Magellan Report on Cloud Computing for Science”,

proposed by U.S department of energy [YCD+11] that investigates the potential

role of the cloud computing for scientific applications. The scalability of parallel

hypergraph partitioning algorithms, considering the structure of the hypergraph

and they the algorithm does network communications, can suffer a lot in the cloud.

Consequently, the problem is twofold: the parallel hypergraph partitioning algorithm

itself and the structure of the hypergraph.



Chapter 4

Serial Hypergraph Partitioning

Algorithm

In this chapter, we propose our serial multi-level Feature Extraction Hypergraph

Partitioning (FEHG) algorithm. The algorithm makes novel use of the technique of

rough set clustering in categorising the vertices of the hypergraph in the coarsening

phase. FEHG considers hyperedges as attributes, which is also called features, of the

hypergraph (according to rough set clustering definitions in Chapter 2.3) and tries

to discard unimportant attributes to make better clustering decisions. It also focuses

on the trade-off to be made between local vertex matching decisions (which have

low cost in terms of the space required and time taken) and global decisions (which

can be of better quality but have greater costs). The emphasis of our algorithm

is mostly on the coarsening phase of the multi-level paradigm as it is the most

important phase such that better vertex clustering decisions can provide better

partitioning results [Kar02]. Furthermore, we evaluate our algorithm in comparison

to the state-of-the-art hypergraph partitioning algorithms on a range of benchmarks

from practical applications.

In the first section, we describe some of the problems of multi-level partitioning

that motivate our study. Then we define the concept of Hyperedge Connectivity

Graph (HCG) in the second section. The details of our algorithm are proposed in

the third section. Finally, the last section provides simulation results and compares

our algorithm to the state-of-the-art sequential hypergraph partitioning algorithms.

96
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4.1 Introduction and Motivations

As discussed in the last chapter, heuristics proposed for multi-level hypergraph

partitioning algorithms focus on finding clusters of vertices and merge vertices in

each cluster to form coarse vertices in the coarser hypergraph. This requires a

metric of similarity (which is also discussed as the connectivity metric in the last

chapter), the evaluation of which requires the recognition of similar vertices1. Some

method are described in Chapter 3 in Section 3.1.2 including Edge Coarsening (EC),

Hyperedge Coarsening, First Choice (FC), or the connectivity metrics proposed

by Alpert et al. [AHK98], Caldwell et al. [AAI06], and Çatalyürek and Aykanat

[ÇA99]. These algorithms only define a similarity measure between vertices of the

hypergraph and their performance highly depends on the structure of the hypergraph

under investigation. The reason is that the structure of hypergraph makes it difficult

to define this similarity measure in some practical applications. The reason lies

in the fact that finding a good similarity measure in high-dimensional data set is

very challenging when there are clusters with different sizes, shapes and densities

[ESK03]. This is a case in hypergraphs which are considered to be high-dimensional

datasets. While the problem is complicated in graphs with highly skewed vertex

degrees [GLG+12], the hypergraph partitioning has an extra degree of complication

namely variable hyperedge sizes [HC14].

The object connectivity metric is used for data classification in order to group

objects together and build clusters. Objects with the highest connectivity among

them are considered as the most similar objects and they are grouped into a cluster.

The reason that makes it difficult to define a connectivity metric between objects in

high-dimensional data sets is that similarity between objects are very non-uniform.

For example, an object may be more similar to another object in different cluster

than the objects in its own cluster [ESK03]. This situation happens in graphs and

hypergraphs when the mean and standard deviation of vertex degrees are high.

Considering Euclidean distance as one of those local similarity measures, Ertöz

et al. [ESK03] find that it does not give good clustering results when applied to

1In the thesis, we use the connectivity metric and the similarity measure interchangeably.
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high-dimensional datasets. Although other local similarity measures such as Cosine

measure and Jaccard distance address the issue and resolve the problem to some

extent, they are not completely reliable in high-dimensional datasets. For example,

Steinbach et al. [SKK00] evaluate these similarity measures and find that they fail to

capture similarity between text documents in document clustering techniques which

are used in areas such as text mining and information retrieval. Authors report

that the problem is not related to the lack of having a good similarity measure, but

originates from the lack of trust when measuring similarity among objects in low

similarity data space. The Cosine and Jaccard distances emphasise on the importance

of existing attributes for measuring the similarity and they ignore the attributes that

do not exist or are not common between two objects. Consequently, others move to

other clustering techniques to resolve the problem such as Shared Nearest Neighbour

(SNN) methods [ESK02] and global vertex clustering techniques.

On the other hand, decisions for vertex clustering are made locally and global

decisions are avoided due to their high cost and complexity though they give better

clustering results [Tri06]. All proposed heuristics reduce the size of the search domain

and try to find the vertices to be matched using some degree of randomness [DBH+06].

This degrades the quality of partitioning by increasing the possibility of getting stuck

in a local minimum. The quality of these methods are highly dependant on the order

the vertices are selected for matching. A better trade-off is needed between the low

cost of local decisions and the high quality of global ones.

Furthermore, there are some redundancies in modelling scientific applications

with hypergraphs. Removing these redundancies can help in some optimisations such

as improving clustering decisions, reducing the storage overhead, and optimising

the processing time. An example is in the paper proposed by Heinz and Chandra

[HC14] in which the hypergraph is transformed into a Hierarchical DAG (HDAG)

representation and they reduce the storage overhead for storing some hypergraphs.

Similarly, one can identify the redundancies in the coarsening phase for making better

vertex clustering decisions and achieving better partitioning on the hypergraph.

In the algorithm proposed in this chapter, we identify and remove redundancies

by using rough set clustering techniques. The algorithm provides a trade-off between
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global and local vertex clustering methods. First, it calculates sets of core vertices

(a global decision). Then it traverses these cores one at a time and find best matches

between the vertices inside each core (local decisions). The proposed algorithm is

called the Feature Extraction Hypergraph Partitioning (FEHG) algorithm. It is a

multi-level partitioning algorithm that obtains k-way partitioning through recursive

bipartitioning. This is the serial version of the algorithm that is proposed in this

chapter. The parallel version is proposed and discussed in the next chapter.

4.2 The Hyperedge Connectivity Graph

Before going through the details of our algorithm, we define the Hyperedge Connec-

tivity Graph (HCG) of a hypergraph. HCG is used as our main tool for reducing

superfluous and redundant information and making better clustering decisions in

the coarsening phase. For this purpose, we need to quantify the similarity between

a pair of hyperedges in the hypergraph. The similarity between two hyperedges is

represented as sim(·).

Definition 4.1 (Hyperedge Connectivity Graph (HCG)) For a given simi-

larity threshold s ∈ (0, 1), the Hyperedge Connectivity Graph (HCG) of a

hypergraph H = (V,E) is a graph Gs(V , E) where V = E and two vertices vi, vj ∈ V
are adjacent if, for the corresponding hyperedges ei, ej ∈ E we have sim(ei, ej) > s.

The definition is similar to the definition of the intersection graph [EGP66],

which is a graph representing the pattern of intersections of a family of sets, and

the line graph of a hypergraph, which is the graph whose vertex set is the set

of the hyperedges of the hypergraph and two hyperedges are adjacent when their

intersection is non-empty. The difference is the presence of the similarity function

that reduces the number of edges in HCG. Different similarity functions, such as

Jaccard Index or Cosine Measure, can be used for quantifying hyperedge similarity.

As the hyperedges of the hypergraph are weighted, similarity between two hyperedges

is scaled according to the weight of hyperedges. For two ei, ej ∈ E, the scaling

factor is
γ(ei)+γ(ej)

2×maxe∈E(γ(e))
. One of the characteristics of the HCG is that it partitions

hyperedges into non-overlapping clusters.
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Transfer the hypergraph into an information system

Find redundant attributes and remove them

Categorise vertices as core and non-core vertices

Traverse each core list and find best pair-matches

Traverse the non-core list and find best pair-matches

Figure 4.1: The coarsening phase at a glance. The non-core vertex list is processed after
all core vertices have been processed.

4.3 The Serial Partitioning Algorithm

As mentioned earlier, FEHG is a recursive multi-level serial bipartitioning algorithm

that is composed of three distinct phases: coarsening, initial partitioning, and

uncoarsening. The emphasis of FEHG is on the coarsening phase as it is the most

important phases of the multi-level paradigm [Kar02].

The algorithm works as follows. In the coarsening phase, FEHG transforms the

hypergraph into an information system and uses rough set clustering techniques to

find pair-matches of vertices (refer to Chapter 2.3 for rough set theory definitions).

This is done in a few steps. First, it finds the reduct of the information system

which reduces the size of the system and removes superfluous attributes. After the

reduction, vertices of the hypergraph are categorised into core and non-core vertices

using the definitions of the rough clustering. Cores are built using global vertex

information. Then, cores are traversed one at a time and searched locally to find

pair-matches of vertices inside each core. Vertices that are neither assigned to any

core nor find a pair-match in core traversals are stored in the non-core vertex list.

The non-core vertex list is processed later using a randomised algorithm. The whole

coarsening procedure is depicted in Fig. 4.1. The last step of the coarsening phase

is the hypergraph contraction in which vertices are merged with their pair-matches

and build coarser vertices in the coarser hypergraph.
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Figure 4.2: A sample hypergraph with 16 vertices and hyperedges. Vertices and hyper-
edges are represented as square and circular nodes, respectively. The weight of the vertices
and hyperedges are assumed to be unit.

The operation is followed by the initial partitioning phase. FEHG applies a series

of randomised algorithms to obtains the final initial partitioning. This partitioning

is then projected back to the original hypergraph through the uncoarsening phase.

A variation of the FM algorithm is used for the refinement phase.

We go through the details of each phase in the rest of this section. The hypergraph

to be partitioned is denoted as H(V,E) in our formulations for this section.

4.3.1 The Coarsening

The first step of the coarsening phase is to transform the hypergraph H into an

information system. The information system representing the hypergraph is denoted

as IH = (V,E,V,F) where V is the vertex set or objects, E is the hyperedge set

or attributes (also called features in our FEHG algorithm), V is the set of values,

and F is the mapping function. We define the set of values as V ∈ [0, 1] and the

mapping function is defined as follows:
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F(v, e) =
f(e)

∑

∀e′⊲v γ(e′)
, where f(e) = γ(e) if e ⊲ v and is otherwise 0.

Table 4.1: The transformation of the hypergraph depicted in Fig. 4.2 into an information
system. The values are rounded to two decimal places.

e1 e2 e3 e4 e5 e6 e7 e8 e9 e10 e11 e12 e13 e14 e15 e16
v1 0.33 0 0 0 0.33 0 0 0 0 0.33 0 0 0 0 0 0
v2 0.25 0.25 0 0 0 0 0.25 0 0 0 0 0 0 0 0.25 0
v3 0 0 0.33 0 0 0 0.33 0 0.33 0 0 0 0 0 0 0
v4 0 0.16 0.16 0.16 0 0 0 0.16 0 0 0 0.16 0 0 0 0.16
v5 0.33 0 0 0 0 0 0.33 0 0 0.33 0 0 0 0 0 0
v6 0 0 0.33 0 0 0 0 0 0.33 0 0.33 0 0 0 0 0
v7 0 0 0 0 0 0.33 0.33 0 0 0 0 0 0 0.33 0 0
v8 0 0.2 0 0.2 0 0 0 0.2 0 0 0 0.2 0 0 0 0.2
v9 0 0 0 0 0 0.25 0 0 0.25 0 0.25 0 0 0.25 0 0
v10 0 0 0 0 0.33 0 0 0 0 0.33 0 0 0.33 0 0 0
v11 0 0 0 0 0 0 0 0 0 0 0.5 0 0 0.5 0 0
v12 0 0 0 0.33 0 0 0 0 0 0 0 0.33 0 0 0 0.33
v13 0 0 0 0 0.5 0 0 0 0 0 0 0 0.5 0 0 0
v14 0 0 0 0 0 0 0 0 0 0 0 0 0 1.0 0 0
v15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.0 0
v16 0 0 0 0.25 0 0 0 0.25 0 0 0 0.25 0 0 0 0.25

An example of the sample hypergraph depicted in Fig. 4.2 that is transformed

into an information system is depicted in Table 4.1. As explained in Chapter 2,

the set of attributes in any information system can contain some redundancies and

removing these redundancies could lead us to better clustering decisions and data

categorisation. The remaining attributes after the reduction is called the reduct

attribute set as defined in Definition 2.18. The reduct of an information system is

not unique. Finding a minimal reduct of an information system is proved to be a

NP-hard problem [SR92b]. This is one of the computational bottlenecks of the rough

set theory. A number of algorithms have been proposed for problems in which the

number of attributes is not high such as the work proposed by Wroblewski [Wró98],

and Zirako and Shan [ZS95]. These methods are not applicable on hypergraphs for

two reasons. First, the number of hyperedges in hypergraphs representing practical

applications can be very high and may contain millions or even billions of hyperedges.

Second, finding the reduct set has to be done in the beginning of every coarsening

level. As we proceed with the coarsening phase and build approximations of the

original hypergraph in each level, the structure of the hypergraph changes and needs

recalculation of the reduct set in each coarser hypergraph. Consequently, calculating
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the reduct set is very expensive and computationally non-affordable for hypergraphs.

As a result, we have to rely on calculating an approximation of the reduct set and

this is resolved by calculating the Hyperedge Connectivity Graph (HCG) of the

hypergraph.

In order to calculate the HCG, we traverse hyperedges using the Breadth First

Search (BFS) algorithm. It builds clusters around a randomly chosen hyperedge. In

the beginning of the algorithm, hyperedges are not assigned to any cluster. A queue

is built and a random hyperedge is selected and assigned to a new cluster and pushed

into the queue. Algorithm runs in iterations and in each iteration of the algorithm

the first hyperedge from the head of the queue is extracted. Then, the similarity

of the current hyperedge with all adjacent hyperedges, which are not assigned to

any cluster, are calculated. The similarity measure is the one which is defined in

Definition 4.1. If the similarity of the current hyperedge with an adjacent hyperedge

is more than a pre-defined similarity threshold, the adjacent hyperedge is added into

the same cluster (as the current hyperedge) and it is added to the end of the queue.

If the queue is empty in an iteration and there are still hyperedges that are not

assigned to any cluster, one of them is chosen randomly and it is assigned to a new

cluster. This this hyperedge is pushed into the queue and the above operations are

repeated. In the end of the HCG calculation algorithm, each hyperedge is uniquely

assigned to one cluster. We refer the cluster set as edge partitions and denoted as

ER. The size and weight of each eR ∈ ER is the number of hyperedges it contains

and the sum of their weights, respectively. An example of the HCG for the sample

hypergraph in Fig. 4.2 and similarity threshold s = 0.5 is depicted in Fig. 4.3.

Hyperedges belonging to the same edge partition are considered to be dependant

or similar. All hyperedges belong to the same edge partition are removed from the

information system IH and replaced by their corresponding edge partition. This

operation, builds a new information system which has smaller size compared to

IH . The new information system is represented as IRH
(

V,ER,VR,FR
)

in which the

attribute set is replaced by ER. In the new information system, the set of values is

VR
eR
⊆ N. Furthermore, the mapping function for ∀eR ∈ ER is redefined as follows:
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Figure 4.3: An example of Hyperedge Connectivity Graph (HCG) of the hypergraph
depicted in Fig. 4.2. The similarity threshold is s = 0.5.

FR(v, eR) = |{e ⊲ v ∧ e ∈ eR, ∀e ∈ E }| . (4.1)

We can further reduce the set of attributes by going through the second phase of

size reduction. For this purpose, we define a clustering threshold c ∈ [0, 1] and

the mapping function is changed respectively and according to Eq.(4.2) below to

construct the final information system I f .

Ff (v, eR) =











1, if FR(v,eR)
|{e⊲v,∀e∈E}|

> c

0, otherwise.

(4.2)

An example of the reduced information system and the final table using the

clustering threshold c = 0.5 for the sample hypergraph, which is proposed in Fig. 4.2,

is depicted in Table 4.2. The final table is very sparse compared to the original table.

At this point, we use the definitions of rough set clustering proposed in Chapter 2.3.

For every vertex, we calculate its equivalence class as proposed in Definition 2.15.

Then, a partitioning U/IND(ER) on the vertex set is obtained using the equivalence

relations. We refer to parts in U/IND(ER) as cores such that each vertex belongs

to a unique core. For some of the vertices in the hypergraph, the mapping function

gives zero output for all attributes that is F f(v, eR) = 0, ∀eR ∈ ER. These vertices

are assigned to a list denoted as non-core vertex list.
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Table 4.2: The reduced information system that is built based on the HCG in Fig. 4.3
(left) and the final information system when the clustering threshold is set to c = 0.5
(right).

C1 C2 C3 C4 C5 C6

v1 3 0 0 0 0 0
v2 1 1 1 1 0 0
v3 0 0 1 1 0 2
v4 1 0 3 0 0 0
v5 2 0 0 1 0 0
v6 0 0 0 0 0 3
v7 0 0 0 1 2 0
v8 0 0 3 0 0 0
v9 0 0 0 0 2 2
v10 3 0 0 0 0 0
v11 0 0 0 0 1 1
v12 0 0 3 0 0 0
v13 2 0 0 0 0 0
v14 0 0 0 0 1 0
v15 0 1 0 0 0 0
v16 0 0 1 0 0 0

C1 C2 C3 C4 C5 C6

v1 1 0 0 0 0 0














Core 1
v5 1 0 0 0 0 0
v10 1 0 0 0 0 0
v13 1 0 0 0 0 0
v2 0 0 0 0 0 0
v3 0 0 0 0 0 1

}

Core 2
v6 0 0 0 0 0 1
v4 0 0 1 0 0 0















Core 3
v8 0 0 1 0 0 0
v12 0 0 1 0 0 0
v16 0 0 1 0 0 0
v9 0 0 0 0 1 1

}

Core 4
v11 0 0 0 0 1 1
v7 0 0 0 0 1 0

}

Core 5
v14 0 0 0 0 1 0
v15 0 1 0 0 0 0

}

Core 6

Cores are built using global clustering information. The final operation is to find

pair-matches of vertices. Cores are visited one after the other and they are searched

locally to find pair-matches. Inside each core, vertices are selected randomly one at a

time and the best pair-match among its adjacent vertex list is selected; only adjacent

vertices that belong to the same core is considered for finding the best match. As a

result, we need a local vertex connectivity metric for finding pair-matches. We use

the Weighted Jaccard Index defined as follows:

J (u, v) =

∑

{e⊲v ∧ e⊲u} γ (e)
∑

{e⊲v ∨ e⊲u} γ(e)
, v, u ∈ V , and ∀e ∈ E. (4.3)

This is similar to Non-weighted Jaccard Index in PaToH, which is called Scaled

Heavy Connectivity Matching. As we mentioned in Section 4.1, this measure captures

similarities in high-dimensional datasets better than Euclidean-based similarity

measures. Vertices that do not find any pair-matches in core searches are transferred

into the non-core vertex list, such as v15 in Table 4.2.

One of the issues that may happen is when the number of vertices in cores

constitute a small percentage of the whole number of vertices of a hypergraph.

This situation happens, for example, when the average vertex degree of vertices in
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a hypergraph is high such that we end up with big dominator in Eq. (4.2)2. As

explained in Chapter 3.1.2 regarding the multi-level partitioning algorithm, we can

provide a trade-off between the quality and runtime of the algorithm by controlling

the compression ratio in Eq. (3.1) between two successive coarsening levels. Referring

to that discussion, and to satisfy a certain compression ratio, we process the non-core

vertex list in the next step. The non-core list is traversed and vertices are selected

randomly one at a time. For every selected vertex, the algorithm finds a pair-match

among its unmatched adjacent vertices in the non-core list.

When pair-matches are found, the hypergraph is contracted to build a coarser

hypergraph for the next coarsening level. This is done by merging matched vertices.

The weight of a coarser vertex is the sum of the weight of two merged vertices and

its incident hyperedges are the union of the hyperedges incident on both merged

vertices. After building the coarser hypergraph, we perform two final operations on

the hyperedge list. First, hyperedges of unit size are removed as they do not have

any impact on the partitioning cut. Second, identical hyperedges, i.e. those having

the same vertex set, are identified and removed from the coarser hypergraph. The is

similar to the same strategy which is applied in both Parkway and Zoltan. Similarly,

this is done using hash functions. Hyperedge are hashed to integer values based

on their vertex list. Two hyperedges with the equal hash values are considered as

identical. If conflicts occur, the whole content of hyperedges are compared.

4.3.2 Initial Partitioning and Refinement

The coarsening phase stops when the number of the vertices in the hypergraph is

small enough. We stop coarsening when the coarser hypergraph has fewer than 100

vertices. Any partitioning on the coarsest hypergraph can be calculated very quickly

in much less time compared to the original hypergraph. We use a series of algorithms

for this purpose. The partitioning that gives the balance constraint and gives the

minimum partitioning cost is selected and it will be projected back to the original

hypergraph. Among the algorithms depicted in Chapter 3.1.2, the FEHG algorithm

2Or when the similarity between vertices is very low and we end up with a very small nominator
in Eq. (4.2 for most of vertices
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Table 4.3: Evaluated hypergraphs for sequential algorithm simulation and their specifica-
tions

Hypergraph Description Rows Columns Non-Zeros
CNR-2000 Small web crawl of Italian CNR domain 325,557 325,557 3,216,152
AS-22JULY06 Internet routers 22,963 22,963 96,872
CELEGANSNEURAL Neural Network of Nematode C. Elegans 297 297 2,345
NETSCIENCE Co-authorship of scientists in Network Theory 1,589 1,589 5,484
PGPGIANTCOMPO Largest connected component in graph of PGP users 10,680 10,680 48,632
GUPTA1 Linear Programming matrix (A× AT ) 31,802 31,802 2,164,210
MARK3JAC120 Jacobian from MULTIMOD Mark3 54,929 54,929 322,483
NOTREDAME Barabasi’s web page network of nd.edu 325,729 325,729 929,849
PATENTS MAIN Pajek network: mainNBER US Patent Citations 240,547 240,547 560,943
STD1 JAC3 Chemical process simulation 21,982 21,982 1,455,374
COND-MAT-2005 Collaboration network, www.arxiv.org 40,421 40,421 351,382

uses Random assignment, Linear assignment, and FM-based approaches.

As explained previously, partitioning algorithms refine the partitioning cut as

the hypergraph is projected back in the uncoarsening phase. Due to the success of

the FM algorithm in practice, we use a variation of the FM algorithm known as

Early-Exit FM (FM-EE) [Kar02] and Boundary FM (BFM)3 [ÇA11]. Furthermore,

the v-cycle refinement is avoided because of its high cost. It is also unnecessary.

As stated by Karypis [Kar02], a good coarsening algorithm needs less effort in the

refinement phase which is a case for the FEHG algorithm.

4.4 Experimental Evaluations

In this section, we provide the evaluation of our algorithm compared to the state-of-

the-art partitioning algorithms4 including PHG [San14b] which is Zoltan hypergraph

partitioner, PaToH [ÇA11] and hMetis [Kar07]. All of these algorithms are multi-

level recursive bipartitioning algorithms. Except PHG, which is a parallel hypergraph

partitioner, the other two are serial partitioning tools.

For the evaluation, we have selected a number of test hypergraphs from a variety

of scientific applications with different specifications. The hypergraphs are obtained

from the University of Florida Sparse Matrix Collection [DH11]. It is a large database

of sparse matrices from real applications. Each sparse matrix from the database

is assumed as the hypergraph incident matrix with the vertices and hyperedges

3Reader is referred to Chapter 3.1.2 for details about these algorithms.
4Reader is referred to Chapter 3.2 for details about these hypergraph partitioning tools.
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representing the rows and columns of the matrix, respectively. This is similar to the

column-net model proposed by Çatalyürek et al. [ÇA99]. The weight of vertices and

hyperedges are assumed to be unity. The list of test data used for our evaluation is

depicted in Table 4.3. The reader is referred to Appendix A for the full specifications

of these hypergraphs.

The simulations are done on a computer with Intel(R) Xeon(R) CPU E5-2650

2.00GHz processor, 8GB of RAM and 40GB of disk space and the operating system

running on the system is 32-Bit Ubuntu 12.04 LTS. Furthermore, we set the imbalance

tolerance to 2% and the number of parts are {2, 4, 8, 16, 32}. The final imbalance

achieved by the algorithms are not reported because the balance constraint is always

met by all algorithms.

4.4.1 Algorithm Parameters

Each algorithm in the above mentioned evaluated tools has different input parameters

that can be set by the user such as those for the coarsening, initial partitioning,

and refinement phases. We use default parameters for each tool. All algorithms use

a variation of FM algorithm (FM-EE and BFM) in their refinement phase. PHG

uses the agglomerative coarsening algorithm as the default coarsening method that

is based on the inner product as the measure of similarity between the vertices.

This also being used in hMetis and Mondriaan. This is a variation of Euclidean

inner product between the vertices based on their incident hyperedges and their

weights [DBH+06]. The default partitioning tools for hMetis is shmetis5. The default

coarsening scheme is Hybrid First Choice (HFC) scheme that is a combination of

the First Choice and Greedy First Choice schemes6. PaToH is initialised by setting

the SBProbType parameter to PATOH SUGPARAM DEFAULT. It uses the Absorption

Clustering using pins as the default coarsening algorithm that is an agglomerative

vertex clustering scheme. The similarity metric, which is known as Absorption Metric,

5The hMetis tool also has another partitioner that is called khmetis and it is a direct k-way
multi-level hypergraph partitioner.

6This is a variation of First Choice described in Chapter 3.1.2. Vertices are grouped based on
the First Choice algorithm in which the grouping is biased in favour of faster reduction in the
number of the hyperedges in the coarser hypergraph.
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of two vertices v and u is calculated as follows:

∑

{∀e∈E|v∈e and u∈e}

1

|e| − 1
.

The algorithm accumulates the absorption metric for every pin that connects u

and Cv. Cv is the cluster that vertex v is already assigned to. The reader is

referred to the manuals of these tools for the full description of the parameters

[San14b,ÇA11,KK98b].

The FEHG algorithm has two parameters that need to be set: similarity threshold

in Definition 4.1 for building the HCG and the clustering threshold in Eq. (4.2). In

this section, we discuss the automatic calculation of these two parameters.

Clustering Coefficient (CC) is a graph theory measure calculated by the

degree to which a vertex clusters with other vertices of graph or hypergraph. Methods

to calculate CC are categorised as local and global measures. The local measures are

usually applied for calculating the density of neighbourhood of vertices in a graph

or hypergraph and they capture local density. On the other hand, global measures

are used to calculate the overall clustering tendency in the network. CC has a

value in [0, 1]. The calculation of CC is more difficult in hypergraphs compared to

graphs. There are different measures proposed for calculating the CC in hypergraphs

including the works proposed by Klamt et al. [KHT09], Latapy et al. [LMDV08],

and Gavin et al. [GBK+02]. In these works, the calculation of CC between two

vertices is based on the intersection and union of their incident hyperedges. In

addition, the weight of the hyperedges is not a case in those applications and the

weight of the all hyperedges are assumed to be unit. In our hypergraph partitioning

problem, the CC of the hypergraph needs to be calculated for hyperedges instead

of vertices. Second, the weight of the hyperedges should be considered 7. Given a

hypergraph H = (V,E), we define CC for a hyperedge e ∈ E as follow.

7Although this is not a concern for designing our serial algorithm, the third requirement is that
we need a fast and scalable calculation of CC in our parallel FEHG algorithm that is proposed in
Chapter 5. Therefore, we consider this fact in our calculations.



4.4. Experimental Evaluations 110

CC(e) =















∑

{e′∩e6=∅}

((

|e∩e′|
|e|−1

)

·γ(e′)

)

∑

{v∈e}

∑

{e′′⊲v} γ(e
′′)

, ∀e′, e′′ ∈ E\e, if |e| > 1

0, otherwise.

(4.4)

The CC of the hypergraph is calculated as the average of CC over all its hyperedges

as follows.

CCH =
∑

e∈E

CC(e)

|E| . (4.5)

As we proceed to the next coarsening level, the structure of the hypergraph

changes and it changes the value of CC in the coarser hypergraph. Therefore, we

need to recalculate the CC in in the beginning of each coarsening level, which could

be a costly operation. To avoid this, we are interested in re-adjusting CC values.

Foudalis et al. [FJPS11] study the structure of social network graphs and they

identify several characteristic metrics including the clustering coefficient. Beside the

fact that social networks present a high clustering coefficient compared to random

networks, they report that the CC is inversely related to the degree of vertices.

Two vertices with low vertex degrees are more likely to cluster to each other than

two vertices with higher vertex degrees. In addition, Bloznelis [Blo13] theoretically

investigates random intersection graphs8 and they show that the clustering coefficient

is inversely related to the average vertex degree in the graph. Based on these results,

we readjust the value of CC from one coarsening level to the next successive level

based on the inverse of the average vertex degree. Finally, the similarity threshold

is set to be the CC of the hypergraph at the beginning of the coarsening phase.

In the next section, where we propose our evaluation results, we investigate how

our algorithm performs, in terms of partition quality and running time, when the

similarity threshold is calculate using different methods: readjusting the CC in each

coarsening level versus recalculating it in the beginning of each coarsening level.

8Random intersection graphs can be obtained from randomly generated bipartite graphs with
vertex set V ∪W . Each vertex vi in V = {v1, v2, · · · vn} selects a set Di ⊂ W as its neighbours
randomly and independently such that the elements of W have equal probability to be selected.
Considering the fact that a hypergraph is bipartite graph, the results of the paper are applicable
on hypergraphs.
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Figure 4.4: The variation of bipartitioning cut based on the clustering threshold for some
of the tested hypergraphs. Values are normalised with the best cut for each hypergraph.

According to the results, there i weak correlation between the partitioning quality
and the clustering threshold.

Regarding the automatic calculation of the clustering threshold, we first check

how the clustering threshold affect the quality of the partitioning. Figure 4.4 depicts

the quality of the 2-way partitioning of the hypergraphs in Table 4.3 and variable

clustering threshold values. The cut is normalised based on the best partitioning

cut for each hypergraph. The average correlation between the partitioning cut and

the clustering threshold over all hypergraphs is 0.2442; the average correlation value

decreases to 0.2096 when we exclude CNR-2000. This shows a weak correlation. The

standard deviation of the changes with respect to the average cut values is also

less than 4.2% over all hypergraphs. Therefore, changing the clustering threshold

has a very small effect on the partitioning quality. An exception occurs for the

CNR-2000 hypergraph such that the variation of change is very high. Hyperedges

with larger CC values (closer to 1) are those that more probably cluster with other

hyperedges and those with small CC values (close to 0) do not form any cluster and

build edge partitions in the HCG of size unity. Consequently, we can remove every

edge partition in HCG of unit size and set the value of clustering threshold to zero

in Eq. (4.2). As an example, edge partitions C2 and C4 can be removed from the

reduced information system in Table 4.2 without causing any changes in the cores.

Using this strategy, the partitioning cut for CNR-2000 is 29.9% better than the best
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bipartitioning cut reported in Fig. 4.4 that is achieved for the c = 0.6.

Table 4.4: Quality comparison of the algorithms for different part sizes and 2% imbalance
tolerance. The values are normalised according to the minimum partitioning cut for each
hypergraph; therefore, the algorithm that gives 1.0 cut value is considered to be the best.
Unit weights are assumed for both vertices and hyperedges.

Number of Parts
2 4 8 16 32

AVE BEST AVE BEST AVE BEST AVE BEST AVE BEST
FEHG 1.11 1.00 1.02 1.00 1.04 1.01 1.01 1.00 1.01 1.03

AS-22JULY06 PHG 2.90 2.46 1.77 1.56 1.64 1.36 1.43 1.34 1.37 1.32
hMetis 1.34 1.95 1.19 1.30 1.16 1.18 1.04 1.06 1.09 1.04
PaToH 1.00 1.43 1.00 1.03 1.00 1.00 1.00 1.00 1.00 1.00

Min Value 136 93 355 319 629 599 1051 995 1591 1529
FEHG 1.00 1.00 1.09 1.00 1.10 1.06 1.11 1.08 1.07 1.03

CELEGANSNEURAL PHG 1.07 1.00 1.04 1.03 1.02 1.00 1.06 1.00 1.00 1.00
hMetis 1.17 1.21 1.00 1.05 1.00 1.04 1.00 1.02 1.00 1.00
PaToH 1.01 1.04 1.00 1.06 1.03 1.07 1.03 1.06 1.05 1.05

Min Value 79 77 195 184 354 342 548 536 773 769
FEHG 1.37 1.00 1.71 1.07 1.59 1.41 1.53 1.45 1.63 1.51

CNR-2000 PHG 35.88 45.62 12.48 9.17 5.73 4.84 3.54 2.98 2.42 2.02
hMetis 12.19 18.82 8.24 8.43 5.08 4.71 3.46 3.29 2.66 2.50
PaToH 1.00 1.71 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Min Value 81 45 244 202 569 509 1014 911 1927 1830
FEHG 1.00 1.00 1.00 1.00 1.00 1.00 1.01 1.02 1.01 1.00

COND-MAT-2005 PHG 1.17 1.17 1.11 1.10 1.05 1.05 1.03 1.03 1.02 1.01
hMetis 1.05 1.07 1.11 1.12 1.11 1.12 1.11 1.10 1.01 1.01
PaToH 1.02 1.02 1.03 1.03 1.00 1.00 1.00 1.10 1.00 1.00

Min Value 2134 2087 5057 4951 8609 8485 12370 12150 16270 16150
FEHG 0 0 0 0 2 1.50 1.50 1.00 2.08 1.81

NETSCIENCE∗ PHG 0 0 0 0 1.50 1.00 1.40 1.00 1.87 1.5
hMetis 2.0 2.0 5.0 5.0 4.22 3.50 1.75 1.75 1.99 1.87
PaToH 0 0 0 0 1.00 1.00 1.00 1.00 1.00 1.00

Min Value 0 0 0 0 2 2 8 8 16 16
FEHG 2.12 1.27 1.00 1.00 1.04 1.00 1.00 1.08 1.00 1.00

PGPGIANTCOMPO PHG 13.23 1.83 1.44 1.04 1.25 1.04 1.02 1.00 1.08 1.00
hMetis 9.7 9.61 1.46 1.71 1.04 1.40 1.31 1.40 1.26 1.27
PaToH 1.00 1.00 1.04 1.27 1.00 1.04 1.02 1.15 1.08 1.06

Min Value 18 18 242 200 419 400 695 617 956 930
FEHG 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

GUPTA1 PHG 1.58 1.45 1.31 1.24 1.15 1.04 1.07 1.04 1.09 1.05
hMetis 1.73 1.82 1.61 1.69 1.58 1.64 1.60 1.57 1.51 1.48
PaToH 1.22 1.17 1.08 1.09 1.04 1.05 1.05 1.07 1.08 1.09

Min Value 486 462 1466 1384 3077 2893 5342 5134 8965 8519
FEHG 1.01 1.01 1.02 1.01 1.01 1.00 1.00 1.00 1.06 1.07

MARK3JAC120 PHG 1.00 1.01 1.02 1.02 1.02 1.00 1.00 1.00 1.72 1.78
hMetis 1.00 1.00 1.00 1.02 1.00 1.00 1.30 1.00 4.20 1.78
PaToH 1.00 1.02 1.00 1.00 1.00 1.00 1.26 1.20 1.00 1.00

Min Value 408 400 1229 1202 2856 2835 6317 6245 3142 2944
FEHG 0 0 1.00 1.00 1.12 1.12 1.09 1.03 1.06 1.07

NOTREDAME∗ PHG 4326 4326 158.56 288.69 13.82 16.78 2.09 3.06 1.72 1.78
hMetis 880 707 67.92 129.92 10.98 12.65 3.36 3.37 2.23 2.30
Patoh 24 22 1.90 3.31 1.00 1.00 1.00 1.00 1.00 1.00

Min Value 0 0 27 13 316 259 1577 1484 3142 2944
FEHG 1.20 1.00 1.03 1.01 1.05 1.03 1.00 1.00 1.00 1.00

PATENTS-MAIN PHG 12.49 13.19 2.52 2.30 1.79 1.65 1.42 1.38 1.23 1.18
hMetis 2.38 2.77 1.16 1.24 1.26 1.43 1.26 1.31 1.21 1.22
PaToH 1.00 1.02 1.00 1.00 1.00 1.00 1.00 1.00 1.01 1.00

Min Value 643 528 3490 3198 6451 6096 11322 10640 16927 16460
FEHG 1.01 1.00 1.00 1.03 1.00 1.00 1.00 1.00 1.00 1.00

STD1-JAC3 PHG 1.15 1.08 1.16 1.10 1.18 1.13 1.28 1.35 1.33 1.29
hMetis 1.05 1.00 1.52 1.03 1.54 1.23 1.70 1.53 1.71 1.51
Patoh 1.00 1.00 1.08 1.00 1.16 1.14 1.00 1.26 1.30 1.29

Min Value 1490 1371 3735 3333 7616 6167 13254 11710 22242 21200
∗ When the minimum cut for the average or best cases are zero, the values shown are actual cut values rather than normalised

values.
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Table 4.5: Comparing the Standard Deviation (STD) of the partitioning cut for algorithms
reported in Table 4.4. Unit weights are assumed for both vertices and hyperedges. The
values are reported for 20 runs for each algorithm.

Number of Parts
2 4 8 16 32

FEHG 34 32 25 30 28
AS-22JULY06 PHG 86 92 78 87 90

hMetis 0 7 12 23 27
PaToH 4 16 20 37 43
FEHG 2 9 15 16 17

CELEGANSNEURAL PHG 6 8 9 12 18
hMetis 0 5 0 2 6
PaToH 0 0 0 0 0
FEHG 63 131 226 218 217

CNR-2000 PHG 552 760 569 477 530
hMetis 74 163 240 238 231
PaToH 3 37 48 62 85
FEHG 28 58 87 88 82

COND-MAT-2005 PHG 37 84 94 112 105
hMetis 14 75 81 129 122
PaToH 39 193 98 153 178
FEHG 0 0 1 2 2

NETSCIENCE PHG 0 0 1 2 2
hMetis 0 0 1 0 2
PaToH 0 0 0 0 0
FEHG 8 23 18 16 18

PGPGIANTCOMPO PHG 48 65 45 53 46
hMetis 3 11 13 24 25
PaToH 0 0 7 2 5
FEHG 60 55 80 115 15

GUPTA1 PHG 67 146 204 253 58
hMetis 2 10 58 137 643
PaToH 32 43 84 95 120
FEHG 6 18 23 83 132

MARK3JAC120 PHG 4 15 27 53 106
hMetis 13 15 29 217 214
PaToH 0 11 17 248 267
FEHG 0 9 40 116 119

NOTREDAME PHG 0 124 67 75 78
hMetis 84 65 108 143 129
Patoh 1 8 27 52 62
FEHG 180 275 270 327 342

PATENTS-MAIN PHG 1286 1736 1749 1575 1602
hMetis 36 70 115 161 231
PaToH 70 145 217 220 306
FEHG 260 246 424 549 557

STD1-JAC3 PHG 227 377 748 768 801
hMetis 105 1649 2057 2330 2995
Patoh 125 506 700 827 945
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4.4.2 Comparison Results

In the first evaluation, we assume unit weight for both vertices and hyperedges of the

hypergraph. In this situation, a partitioning algorithm performs well if it can capture

strongly connected components of the hypergraph. A strongly connected component

is a group of the vertices that are tightly coupled together. In graphs, a strongly

connected component is a clique. Because the weight of all hyperedges are unit,

vertex connectivity is an important factor for generating high quality partitionings.

The aim of the partitioning algorithm is to take these strongly connected components

out of the cut as they are the major cause of increasing the partitioning cut. A

partitioning algorithm that identifies those components and merges their vertices to

build a coarser vertex is the one that will give better partitioning quality. In addition,

the clustering algorithm that captures those strongly connected components in the

first few levels of coarsening would likely obtain competitive partitioning qualities.

Each algorithm is run 20 times and the average cut is reported in Table 4.4 as well

as the best partitioning cut among all runs. The results in the table are normalised

with respect to the minimum partitioning cut among all algorithms. For example,

FEHG gives the minimum average cut for a bipartitioning on CELEGANSNEURAL

hypergraph that is 79. PHG, hMetis and PaToH give 1.07, 1.17, and 1.01 times

worse average bipartitioning cut, respectively. The results shows that FEHG performs

very well compared to PHG and hMetis and it is competitive with PaToH. As it

can be seen from the results, all algorithms give close partitioning cut when the

hypergraph has only few number of strongly connected components. In this situation,

even the local clustering algorithms can capture strongly connected components

and merge their vertices; therefore, the differences in partitioning cut for different

algorithms that are using different clustering methods (either global or local) is very

small.

As the number of strongly connected components increases, it gets hard to identify

them especially when the boundary between these components are not clear and have

overlaps. This situation happens in hypergraphs such as Notredame, Patents-Main,

and CNR-2000. As it is shown, FEHG achieves a superior quality improvement

compared to PHG and hMetis, but PaToH still generates very good partitioning
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with absorption clustering using pins. One reason that may explain this situation is

that PaToH allows matching between a group of vertices instead of pair-matching.

Therefore, the algorithm can merge strongly connected components of vertices in the

very first few levels of coarsening. Although hMetis allows multiple matches, but

its seems that the agglomerative clustering strategy of PaToH is doing much better

compared to the hybrid first choice algorithm in hMetis.

The standard deviation (STD) of the average cut is reported in Table 4.5. The

standard deviation shows the reliability of a partitioning algorithm when it is used

in practical applications. As each of the evaluated tools has a degree of randomness,

there are variations of the partitioning cut in each run of algorithms. We are

interested in a partitioning algorithm that generates partitioning cuts with small

variations among runs. The results show that FEHG and PaToH are the most

reliable algorithms with small variations among others while the worst values are

reported for hMetis and PHG. The standard deviation of the cut increases as we

increase the number of parts. This is due to the recursive bipartitioning nature of the

algorithms. The standard deviation of ith recursion is the sum of standard deviation

values for all previous (i− 1)th recursions plus the standard deviation of the current

recursion.

In some practical applications such as parallel distributed systems, the hypergraph

partitioning is employed to reduce the communication volume between processors.

In this situation, the weight of hyperedges represent the volume of communications

between a group of vertices. For these prolems, the objective of the hypergraph

partitioning is to reduce the number of messages communicated between processors

as well as the volume of messages9. In order to model this scenario, we set the weight

of the hyperedges to be their sizes. Despite all, the main reason for this simulation is

that we want to investigate the performance of the clustering algorithms in multi-level

9If we assume vertices as tasks of a parallel application, the weight of a vertex shows the amount
of computational effort each processor spend for the vertex (in a homogeneous system, while the
processing time for each vertex might be different on each processor in a heterogeneous system). In
our scenario, we assume that the computation time spent for processing all vertices is the same
(unit vertex weights) and the aim is to reduce both the number and the volume of communications.
An example of this situation is in large scale vertex-centric graph processing tools such as Pregel
[MAB+10].
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hypergraph partitioning tools when there are weights on the hyperedges.

When hyperedges have different weights, vertex connectivity is no longer the only

measure for making clustering decisions. Compared to the previous scenario, taking

a group of strongly connected components of vertices can not always result in cut

reduction. The vertex connectivity as well as how tightly vertices are connected to

each other are both important for making good clustering decisions. The simulation

results for this scenario are depicted in Fig. 4.5. In the evaluation results for FEHG,

we calculate the similarity threshold in the beginning of bipartitioning recursion and

its value is readjusted according to the inverse of the average vertex degrees.

According to the results, the FEHG algorithm gives the best partitioning cut

on most of evaluated hypergraphs. We identify three different types of hypergraphs

in our dataset and they are categorised into three groups. The first group includes

hypergraphs with very irregular structure and high variations of vertex degrees

and hyperedges sizes such as CNR-2000, GUPTA1, Notredame, AS-22JULY06, and

STD-JAC3. For this group, the FEHG algorithm gives the best partitioning qualities

compared to other algorithms. This shows that the FEHG algorithm with its rough

set clustering technique is the best candidate for these types of hypergraphs (those

with very irregular structure). Hypergraphs, which represent social networks, are of

this type.

The second group contains hypergraphs with less irregularity such as

COND-MAT-2005, PGPGIANTCOMPO, and CELEGANSNEURAL. These hypergraphs have

less variable vertex degrees or hyperedge sizes than the first group. Again, FEHG

gives the best partitioning results on these types of hypergraphs, but the difference

between partitioners, except hMetis, are small. On these types of hypergraphs, we

can get reasonable partitioning quality using local partitioners and the performance

of the algorithm is highly dependent on the vertex similarity measure, for example,

the one proposed by hMetis gives the worst quality.

The third group are those with regular structure and much smaller variability

of vertex degrees and hyperedge sizes than the other two groups. We have three

hypergraphs of this type: NETSCIENCE, PATENTS-MAIN, and MARK3JAC120. The

evaluations show that the quality of FEHG is worse than the other algorithms.
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In case of NETSCIENCE that has a very small size, all algorithms go through only

one level of coarsening. The difference between the cuts is less than 50 which is

a very small number. Due to regular structure of the hypergraphs in this group,

local vertex matching decisions give much better results than the global vertex

clustering algorithms. We notice that our rough set clustering algorithm identifies

very small cores for these hypergraphs. The overall number of vertices assigned to

cores constitutes a small fraction of the whole number of vertices of hypergraphs.

As most of the vertices end up in the non-core vertex list, the quality of the FEHG

algorithm mostly depends on the random local matching decisions which are based

on the Jaccard Index similarity measure. It seems that the Jaccard Index similarity

measure does not perform well compared to the other partitioners. The agglomerative

vertex matching algorithm of PHG gives the best quality results on this group of

hypergraphs.

The results show that PaToH, which was very competitive with our algorithm

in the first scenario with unit weight on all hyperedges, generates much worse

partitioning results compared to FEHG in this evaluation scenario (with non-unit

weights on hyperedges). This shows that FEHG is better than PaToH and it is more

reliable because it produces very good partitioning results than the other algorithms

in both evaluation scenarios. The evaluations show that PaToH and ,then, hMetis

generates the worst partitioning qualities. Some of the partitioning results are not

reported for hMetis because the algorithm terminates with an internal error on

some of the hypergraphs and for specific values of partition numbers. We could not

figure out where is the problem, but maybe the reason is that hMetis suits, more or

the less, to the partitioning on unit hyperedge size like the one in the VLSI circuit

partitioning. Assuming non-unit hyperedge weights generates an unexpected errors

in the algorithm.

The running times of the algorithms are reported in Table 4.6. The ranking of

algorithms in decreasing order of their running time is hMetis, FEHG, PHG, and

PaToH. We should consider the fact that PHG and FEHG, which is designed as a

part of Zoltan, are parallel algorithms and the reported times include some overhead

of the parallel code while hMetis and PaToH are serial hypergraph partitioner and
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do not include any parallel code overhead.

As the FEHG algorithm does give good runtime results compared to PHG and

PaToH, we were investigating some solutions to improve the runtime. We found

that allowing multiple matches of the vertices can provide better partitioning quality

compared to the pair-matching. In addition, it can improve the runtime of the FEHG

algorithm. The reason is that it provides a faster reduction in hypergraph sizes as

we go through the coarsening levels. We have tested our algorithm to see the effects

of multiple matching on the performance of our algorithm. For our evaluations, we

assume non-unit hyperedge weights in which the weight of each hyperedge is set

to its size. In our multi-match strategy, all vertices of a core are merged together

to form a vertex in the coarser hypergraph (as rough set clustering generates non-

overlapping clusters, this multi-match strategy does not generate any conflicts). The

only limitation is that we do not allow the weight of a coarser vertex to exceed the

size of a part because it makes it difficult to maintain the balance constraint. The

evaluation shows that using multi-match in our algorithm can improve the runtime

by up to 7% and the maximum improvement is observed for CNR-2000 that is up to

30% improvement in runtime.

In another evaluation, we evaluate the effect of the clustering coefficient cal-

culations on the FEHG algorithm. We investigate how readjusting the clustering

coefficient in each coarsening level affects the quality and performance of our algo-

rithm. Two situations are considered: in the first situation, the CC of the hypergraph

is calculated in every coarsening level, and in the second situation, the CC of the

hypergraph is readjusted based on the inverse of the average vertex degrees. Eval-

uations show that the first situation does not improve the partitioning quality on

all hypergraph; for example, the quality of the third types of the hypergraphs de-

scribed above are diminished by 1% in average. The best quality improvement is for

CNR-2000 that is 6% and it was between 0.2% to 1.5% on other hypergraphs. On

the other hand, the runtime of the algorithms is up to 16% higher on average for the

first situation compared to the second. This shows that readjusting the similarity

threshold works better in term of quality and runtime compared to recalculating it

in the beginning of each coarsening level.
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Finally, the detailed running time of the FEHG and the amount to time the

algorithm spends in each step of the algorithm is depicted in Table 4.7. The results

are reports for 2-way, 8-way, and 32-way partitioning on some of the hypergraphs.

In the table, the whole runtime is depicted in the first row. Build is the time for

building data structures and preparation time, recursion is recursive bipartitioning

time, Vcycle is the amount of time for reduction and hypergraph projection in the

multi-level paradigm10, HCG is for building HCG, matching includes the time for

rough set matching algorithm. Finally, coarsening, initPart and refinement are

the time taken for building the coarser hypergraph in the coarsening phase, initial

partitioning and uncoarsening phases of FEHG.

The most time consuming operation in the FEHG algorithm is building HCG that

is around 27% of the whole partitioning time. The rough set clustering takes only

13% of the runtime. Building the coarser hypergraph, and the initial partitioning each

takes around 20% of the whole runtime. One can reduce the initial partitioning time

by decreasing the number of algorithms in this phase. If the number of hyperedges

is much higher than the number of vertices, HCG build runtime constitute a large

fraction of the overall runtime. According to the data, we can optimise and reduce

the runtime of building HCG by applying faster algorithms and using better data

structures; this is planned as a future work. The refinement phase takes at most

6% of the whole running time. As the FEHG algorithm puts most of its effort in

the coarsening phase in order to generate high quality partitionings, it needs less

effort in the refinement phase. Increasing the number of passes of the FM algorithm

does not make considerable improvement to the partitioning cut. Furthermore, as

the time for the refinement phase is small compared to the whole partitioning time,

increasing the number of passes of the FM algorithm does not provide considerable

runtime improvement.

10The time stands for V-cycle with capital V letter.
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(a)

(b) Error on hMetis for 16-way and 32-way.

(c)

Figure 4.5: Comparing the cut variation for different partitioning numbers. The weight
of vertices are unit and the weight of hyperedges are their sizes.
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(d)

(e)

(f)

Figure 4.5: (Continued) Comparing the cut variation for different partitioning numbers.
The weight of vertices are unit and the weight of hyperedges are their sizes.
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(g) Zero cut on 2-way and 4-way partitioning and error on
hMetis on 32-way.

(h)

(i)

Figure 4.5: (Continued) Comparing the cut variation for different partitioning numbers.
The weight of vertices are unit and the weight of hyperedges are their sizes.
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(j)

(k)

Figure 4.5: (Continued) Comparing the cut variation for different partitioning numbers.
The weight of vertices are unit and the weight of hyperedges are their sizes.
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Table 4.6: Comparing the running time of the partitioning algorithms for variable number
of parts. Vertices have unit weights and hyperedge weights are equal to their size. The
times are reported in milliseconds.

Number of Parts
2 4 8 16 32

FEHG-ADJ 109 210 308 412 523
AS-22JULY06 PHG 157 274 413 522 634

hMetis 126 344 803 1370 5902
PaToH 82 212 336 422 514

FEHG-ADJ 8 15 21 27 33
CELEGANSNEURAL PHG 4 7 19 25 22

HMETIS 12 18 32 – –
PATOH 4 4 6 8 12

FEHG-ADJ 19480 30570 39720 50140 57560
CNR-2000 PHG 3035 5202 7317 9267 11060

HMETIS 22590 41680 50990 61190 68850
PATOH 2004 3960 6000 8084 10390

FEHG-ADJ 643 1137 1612 2210 2772
COND-MAT-2005 PHG 318 535 750 954 1178

HMETIS 3800 7038 9930 13740 20020
PATOH 162 284 370 500 584

FEHG-ADJ 5 10 17 27 34
NETSCIENCE PHG 4 6 10 22 32

HMETIS – – 14 20 –
PATOH 2 2 4 4 8

FEHG-ADJ 114 224 325 408 491
PGPGIANTCOMPO PHG 44 57 89 114 147

HMETIS 170 234 354 452 544
PATOH 12 20 32 46 62

FEHG-ADJ 1843 3014 4020 4918 6095
GUPTA1 PHG 937 1853 2648 3453 4285

HMETIS 994 4066 11990 43000 331000
PATOH 914 2140 3544 5370 7298

FEHG-ADJ 708 1304 1913 2546 3192
MARK3JAC120 PHG 318 588 891 1204 1592

HMETIS 1748 4570 7010 9410 11130
PATOH 128 272 416 604 796

FEHG-ADJ 1588 4071 6487 9095 11130
NOTREDAME PHG 2129 3673 5054 6203 7207

HMETIS 5442 12770 17190 23270 28060
PATOH 632 1262 1950 2626 3316

FEHG-ADJ 1933 3187 4430 5860 7514
PATENTS-MAIN PHG 1274 2156 2919 3610 4251

HMETIS 11850 24080 32860 38580 42630
PATOH 396 734 1024 1340 1648

FEHG-ADJ 4970 12270 19610 26710 32630
STD1-JAC3 PHG 1116 2005 2775 3451 4033

HMETIS 4086 11480 19610 57300 175500
PATOH 1720 3884 5372 8380 10830
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Table 4.7: The time that the FEHG algorithm spends in different partitioning steps.
Times are reported in seconds.
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Overall 0.1461 0.0080 0.0059 0.0831 1.5562 1.9312 7.3650 0.6155
Build 0.0230 0.0003 0.0014 0.0118 0.4568 0.3496 0.4181 0.0697

Recursion 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
2 Vcycle 0.0036 0.0000 0.0003 0.0025 0.0048 0.0604 1.7775 0.0203

HCG 0.0224 0.0034 0.0007 0.0257 0.0000 0.4512 3.6833 0.2475
Matching 0.0352 0.0000 0.0009 0.0071 0.0000 0.2275 0.1238 0.0638

Coarsening 0.0332 0.0000 0.0013 0.0181 0.0000 0.4377 1.1945 0.1108
InitPart 0.0190 0.0040 0.0003 0.0124 1.0467 0.3019 0.0466 0.0748

Refinement 0.0086 0.0000 0.0007 0.0051 0.0286 0.0868 0.1072 0.0260
Overall 0.3722 0.0218 0.0167 0.2456 6.2414 4.9619 18.2084 1.7036
Build 0.0235 0.0009 0.0006 0.0113 0.5750 0.3474 0.4182 0.0700

Recursion 0.0161 0.0008 0.0026 0.0081 0.2712 0.2091 0.4072 0.0562
8 Vcycle 0.0095 0.0009 0.0004 0.0088 0.1453 0.1625 4.8115 0.0604

HCG 0.0514 0.0023 0.0049 0.0727 1.7675 1.1641 8.7172 0.6657
Matching 0.0903 0.0005 0.0012 0.0184 0.7289 0.5581 0.3300 0.1749

Coarsening 0.0838 0.0013 0.0043 0.0470 1.3447 1.0932 3.0456 0.3349
InitPart 0.0650 0.0116 0.0002 0.0553 1.1754 1.1883 0.1084 0.2346

Refinement 0.0309 0.0033 0.0024 0.0230 0.2041 0.2150 0.3463 0.1017
Overall 0.6258 0.0360 0.0363 0.4007 9.8867 7.6629 28.5887 2.7925
Build 0.0233 0.0009 0.0010 0.0110 0.4578 0.3456 0.4173 0.0699

Recursion 0.0331 0.002 0.0027 0.0157 0.5302 0.3908 0.8082 0.112
32 Vcycle 0.0156 0.0013 0.0024 0.0159 0.2789 0.2547 9.6070 0.0992

HCG 0.0776 0.0023 0.0029 0.1059 2.9710 1.8239 11.8124 0.9619
Matching 0.1317 0.0004 0.0028 0.0292 1.1691 0.8517 0.4540 0.2597

Coarsening 0.1267 0.0012 0.0054 0.0771 2.5044 1.7197 4.3973 0.5536
InitPart 0.1372 0.0230 0.0133 0.0905 1.4581 1.8681 0.3006 0.4734

Refinement 0.0772 0.0045 0.0053 0.0535 0.4734 0.3724 0.7559 0.2545



Chapter 5

Parallel Hypergraph Partitioning

Algorithm

The rapid growth of size and complexity of scientific applications makes these

applications unsuitable for standalone computer systems. For example, graphs and

hypergraphs generated by social networks such as Facebook and Twitter have billions

of vertices and interconnections among them [HC14] and it is not possible to fit them

into the computational capacity and memory of one computer. This fact highlights

the need for a parallel and scalable hypergraph partitioning algorithm. There are

two objectives for parallel partitioners: 1) the quality that should not worsen as the

number of processors increases. No parallel algorithm generates partitioning qualities

better than serial algorithms. The reason lies behind the data locality such that

processors have less local data to access as the system scales and, consequently, the

quality suffers; 2) the scalability, which means that the algorithm should get improved

speedup as the number of processors increases. In order to measure scalability in the

thesis, we compare the speedup of algorithms. The speedup is defined as the ratio of

partitioning time on one processor to the time required to solve the partitioning on

the parallel system. An algorithm is considered to be more scalable if the speedup

improvement lasts longer as we increase the number of processors.

In this chapter, we propose our Parallel Feature Extraction Hypergraph Parti-

tioning (PFEHG) algorithm. The algorithm is the parallel version of the FEHG

algorithm proposed in Chapter 4. Similar to the FEHG algorithm, our parallel

126
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algorithm follows the multi-level paradigm and obtains a k-way partitioning by

recursive bipartitioning of the hypergraph. As discussed in Chapter 3.1.4, the two

phases that are difficult to parallelise in the multi-level paradigm are the coarsening

and uncoarsening phases. The performance of these two phases depend highly on

the way the hypergraph is distributed among processors such that a bad distribution

can generate high network traffic and limit the scalability and quality by interfering

with vertex matching decisions.

In our parallel algorithm, we propose a parallel vertex matching algorithm for

the coarsening phase based on parallel rough set clustering techniques. It defines

a similarity measure for finding similar vertices (the same similarity measure as

the FEHG algorithm, which is discussed in Chapter 4.3.1, is used) and provides

a trade-off between local and global vertex matching. Following the discussion in

Chapter 3.1.4, the refinement phase is the most challenging phase to parallelise as

the proposed refinement algorithms are inherently serial. We propose a modified

parallel FM refinement algorithm that is based on processor synchronisation.

In the rest of this chapter, we go through the details of the PFEHG algorithm.

The algorithm starts by distributing the hypergraph on the processor set which

is discussed in Section 5.1. Section 5.2 proposes our parallel coarsening, initial

partitioning, and parallel FM refinement algorithms. The PFEHG algorithm uses

two special processor reconfiguration in each bipartitioning recursion that are also

discussed in this section. The simulation results and the performance comparison

to the state-of-the-art hypergraph partitioner in the Zoltan tool, which is called

PHG, are reported in Section 5.3. The PHG algorithm is the most recent parallel

hypergraph partitioning algorithm that shows good scalability in HPC clusters.

Evaluations are done in our HPC cluster in Durham University.

Finally, the application of the hypergraph partitioning goes beyond scientific

applications and there are lots of cloud applications that can considerably benefit

from hypergraph partitioning and load balancing. Partitioning these applications

before running them in the cloud can provide better utilisation of the limited network

resources of the cloud and will provide performance improvement and scalability.

Consequently, Section 5.4 investigates the parallel hypergraph partitioning problem
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in the cloud and we evaluate the scalability and speedup of our PFEHG algorithm

compared to the PHG algorithm in the Zoltan tool.

In this chapter, we represent the input hypergraph to be partitioned as H(V,E)

and the number of processors of the parallel system is p. Furthermore, we assume a

k-way partitioning problem on the input hypergraph.

5.1 Hypergraph Distribution

Deciding on the initial distribution of the hypergraph H = (V,E) on p processors

is a significant challenge. A bad distribution may impose excessive inter-processor

communication overhead in the coarsening and uncoarsening phases which makes the

partitioning algorithm non-scalable. Following the discussion in Chapter 3.1.4, the

previously proposed parallel hypergraph partitioning algorithms use two common

ways for the initial distribution of the input hypergraph on p processors as follows:

• The one-dimensional (1D) approach is to equally distribute both vertices and

hyperedges on processors so that each processor stores |V | /p vertices and

|E| /p hyperedges. Parkway [TK08] applies this strategy.

• The two-dimensional (2D) approach, which is used by Zoltan [DBH+06], ar-

ranges processors in a logical grid with px rows and py columns and p = px×py.
Typically px ≈

√
p. The vertex set is distributed on px processors and each

processor holds |V | /px vertices. Similarly, hyperedges are distributed on py

processor and each processor holds |E| /py hyperedges. Each processor holds

a subblock of the hypergraph that provides a Cartesian distribution of the

hypergraph on the processor set. Most communications are reduced to row or

column communications.

In the 1D distribution, hyperedges with vertices on different processors are called

frontier hyperedges. This method is liable to excessive communication overheads as

processors may regularly access data stored on other processors. Parkway resolves the

issue by replicating frontier hyperedges at the start of each coarsening phase on the

processor set. An issue is that even if there is no frontier hyperedge, communications
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may occur because there is no guarantee that all hyperedges incident on a vertex

are present locally and they might be stored on other processors; therefore, some

hyperedges still need to be communicated in the beginning of the coarsening phase.

Because the number of frontier hyperedges can dramatically increase when the

number of processors increases and depending on the structure of the hypergraph,

the performance of this method is limited by its memory requirements [DBH+06].

The idea for the 2D distribution emerged from the parallel graph partitioning al-

gorithm proposed by Karypis and Kumar [KK98c]. In their algorithm, the matching

decision is made by
√
p diagonal processors and this creates a bottleneck and restricts

the scalability of the algorithm to O
(√

p
)

. The developers of Zoltan believe that the

2D distribution fits more into the hypergraph partitioning context than the graph

partitioning context. Although the 2D distribution can alleviate the communication

overhead by limiting most communication to row or column processors, some calcu-

lations need the whole vertex or hyperedge set to be communicated among column

or row processors. This may incur considerable network overhead. In addition, some

global decisions, such as finalizing matching decisions for the vertices, are delegated

to the processors on the master row (row 0). This may create a bottleneck. Although

evaluating the scalability of Zoltan is shown to be much better compared to the 1D

distribution, this might not scale well on all types of hypergraphs. On the other

hand, this distribution does not fit into the cloud. The reason is that that network

resources of the cloud are very limited compared to HPC clusters. We evaluate the

performance of the 2D distribution in the cloud in Section 5.4.

There is also a problem with unbalanced distribution of the input hypergraph

on the processors in both distributions. Although vertices and hyperedges are

distributed evenly among the processors in the 1D distribution, the replication of

the frontier hyperedges creates an imbalanced distribution of hypergraph pins on

the processor set; this causes imbalanced load among processors. The degree of

imbalance depends on the structure of the hypergraph and how hyperedge contents

are distributed among processors. This imbalance is not only the computation

imbalance but also creates communication imbalance because processors with more

pins may participate in more communications when interchanging its vertex and
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hyperedge sets. In case of 2D distribution, which uses Cartesian distribution of the

hypergraph on the processor set, some subblocks might be denser compared to others

and have more pins. Considering the fact that the communication pattern in 2D

distribution is somehow independent of the pin numbers on the processor set (a

vertex/hyperedge should participate in row/column communication even it has no

pin on some processors), the 2D distribution suffers from imbalanced computations

rather than imbalanced communications.

PFEHG follows a different 1D strategy, a combination of the above two dis-

tribution, and distributes the input hypergraph in such a way that the number

of pins assigned to processors is equal. A redistribution imbalance φd ∈ (0, 1)

is defined and the number of pins assigned to each processor is limited to
[

pins · (1− φd), pins · (1 + φd)
]

where pins =
(

pins(H)
p

)

. The algorithm is provided

with a hypergraph in any arbitrary distribution as an input. After reading the input,

PFEHG redistributes the hypergraph using a collection of hash functions. Every

vertex and hyperedge is assigned a globally unique ID. The processors concurrently

hash vertices to the processor set using their global IDs. The hash function that

satisfies the redistribution imbalance criteria and gives maximum number of internal

hyperedges (a hyperedge is internal if all of its vertices are assigned to a processor)

is selected for the initial distribution of the input hypergraph.

The hash functions used for the distribution are controlled via a user defined input

parameter. One can choose a specific hash function or a collection of them. Examples

are: 1) RS: Robert Sedgwick’s Algorithm [Sed02], 2) JS: bitwise hash function written

by Justin Sobel, 3) PJW: Peter J. Weinberger of AT&T Bell Labs [ASU86]. The

complete list of the hash functions supported by the PFEHG algorithm is proposed

in Appendix B. We do not use ghosting (replication of the frontier hyperedges on

several processors like Parkway) and the only additional data saved for hyperedges

are their global ID and size, a list that shows the processors on which a hyperedge is

distributed (each list is a bit vector of size p. If a hyperedge has pins on processor i,

the i’th bit of the vector is one; otherwise, it is zero), and a lookup table for the fast

lookup of hyperedges present on each processor.
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Consequently, each processor has a sub-hypergraph of the original hypergraph

which none of them share a pin. This means that each pin of the hypergraph is

uniquely owned by one processor. The processor with rank i holds a sub-hypergraph

Hi(Vi, Ei) where Vi’s are non-overlapping vertex sets and V = ∪p−1
i=0Vi. Ei is the

hyperedges incident on all vertices in Vi such that no two processors share a pin that

is Ei ∩ Ej = ∅, ∀1 6 i 6= j < p.

According to our distribution, we define some terms that will be used in the rest of

the chapter. In our terminology, a hyperedge all of whose vertices are assigned to one

processor is called internal ; otherwise it is external (or frontier as in the terminology

of Parkway). A hyperedge and a processor are said to be connected if the hyperedge

has at least one vertex on the processor. The internal di(v) and external de(v) degree

of a vertex v ∈ V is the number of internal and external hyperedges incident to

v, respectively. We have d(v) = di(v) + de(v). If d(v) = di(v), the vertex is called

internal ; otherwise it is external. Furthermore, internal and external connectivity of

a vertex is the sum of the weight of the internal and external hyperedges incident to

the vertex, respectively.

5.2 The Parallel Algorithm

Coarsening provides a sequence of successively smaller hypergraphs Hi = (Vi, Ei) , 0 6

i 6 c, where the original hypergraph H = H0 and |Vi| < |Vj| when i > j. The size of

Hc is small enough that it can fit into the memory and computation capacity of a

single processor. Hypergraph reduction is done by means of vertex matching. The

coarsening finds matching candidates for every vertex in the hypergraph Hi at the

i’th coarsening level. Then matched vertices are merged into coarser vertices in Hi+1.

Similar to the coarsening procedure proposed for FEHG in Chapter 4.3, the

PFEHG coarsening algorithm works as follows. We transform the hypergraph into

an information system and use rough set clustering techniques to find pair-matches

of vertices. This is done in several steps. First, we find the reduct of attributes

to reduce the size of the information system. After reduction, vertices of the

hypergraph are categorised as core and non-core vertices using rough set clustering
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techniques. A nice property of the rough set clustering is that this categorisation

can be done by processors for their local vertices independently. Cores are built

based on global information and distributed among the processors such that each

processor is responsible for a number of cores. Processors traverse their core vertex

lists one at a time and pair-matches are found for each vertex. Vertices that are

neither assigned to a core nor find a match are assigned to the non-core list and they

are processed later using a parallel randomised algorithm. Processors decide about

non-core vertex matchings together by going through a number of iterations. Match

conflicts are resolved by a collective all-to-all processor communication. In the end

of the coarsening phase, the hypergraph is contracted. Matched vertices are merged

to construct the coarser hypergraph and the coarsening proceeds to the next level.

We go through the details of each step in the rest of this section.

5.2.1 Parallel Attribute Reduction

Following the discussion proposed for FEHG and the rough set clustering definitions,

we need to calculate the reduct on the information system representing the hypergraph

(Definition 2.18). The set of attributes in any information system can contain

some redundancies. Removing these redundancies can provide better clustering

decisions. Finding the reduct of an information system is a NP-hard problem and

it is a bottleneck of the rough set clustering [SR92b]. Following the discussion in

Chapter 4.3.1, the problem is resolved by introducing the Hyperedge Connectivity

Graph (HCG) in Definition 4.1. HCG provides a partitioning of the hyperedges,

which are called edge partitions, such that hyperedges in the same edge partition

are considered to be dependant or similar. Replacing dependant hyperedges with

their representatives reduces the size of the information system and there are less

information than the original hypergraph to decide about vertex matchings.

Sequential calculation of Gs(V , E) for hypergraph H(V,E) can be done using

Breadth-First search. In each traversal of BFS, we need to calculate the intersection

between two hyperedges in order to calculate their similarity. Consequently, a parallel

BFS algorithm does not solve our problem because some of hyperedges information

are not available locally (some hyperedges are split among several processors and
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Algorithm 2 Parallel Hyperedge Connectivity Graph (HCG) algorithm

Require: Processor rank r, sub-hypergraph Hr(Vr, Er), number of processors p, and
the number of rounds rounds

1: procedure ParallelHCG(r, Hr(Vr, Er),p,rounds)
2: EP r ← LocalAggClustering(Hr(Vr, Er)) ⊲ call local agglomerative clustering

function on hyperedges

3: EP =
⋃p−1
i=0 EP i

4: Build bipartite graph B(X, Y,U) with X = E, Y = EP .
5: Assign Xr = |X|/p and Yr = |Y |/p vertices to processor r
6: Assign global IDs to X vertices in lexical order.
7: for all y ∈ Yi do ⊲ build a spanning forest on Y

8: Put y in a unique tree and set y as the root

9: for all x ∈ Xr do
10: priority(x)← the global ID of x
11: n(x)← sorted list of neighbours of x in Y

12: for i← 1 to rounds do
13: for all x ∈ Xi, |n(x)| > 1 do
14: rep← n(x)[0]
15: for j ← 0 to |n(x)| − 1 do
16: Build tuple 〈x, priority(x), rep, n(x)[j]〉 ⊲ 〈target, · · · , destination〉
17: Send tuples to processors that hold the destination vertices as in Figure 5.1
18: for all y ∈ Yi do
19: Collect received tuples
20: representative ← rep field of the tuple with the highest priority
21: Update the rep field of each tuple to the representative
22: Merge trees containing y and the representative

23: Return tuples to the processors holding the source vertex
24: for all x ∈ Xi, |n(x)| > 1 do
25: Update n(x) list and remove duplications

26: if |n(x)| = 1, ∀x ∈ X then
27: Break
28: Call FindRoots(Y ): Find roots in the spanning forest on Y
29: ER ← neighbours of vertex set X
30: Return ER

the PFEHG algorithm does not use ghosting or replication of hyperedges). We

rather need a parallel fast intersection algorithm for this purpose. Our parallel

algorithm is proposed in Algorithm 2. Processors calculate local HCG for their own

sub-hypergraph (refer to Section 5.1 for hypergraph distribution) based solely on

their local information and using either an agglomerative clustering algorithm or a

local BFS traversal. In each iteration of the local algorithm, we need to calculate

the intersection and union between a set of hyperedges. In our implementation, we
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Figure 5.1: An example of the first round of parallel HCG algorithm.

have used the agglomerative clustering algorithm as it gives better quality results

compared to the BFS algorithm. The algorithm starts by placing each hyperedge into

a unique edge partition. The hypergraph is then traversed, one hyperedge at a time,

and the similarity between the hyperedge and all adjacent hyperedges is calculated.

If the similarity between a pair is less than the given similarity threshold, their

corresponding edge partitions are merged and the new representative is appointed

for the new edge partition.

The similarity between hyperedge pairs is calculated using weighted Jaccard Index,

that is based on set intersection. According to the hypergraph distribution, the

intersection of an internal hyperedge with either internal or external hyperedges

can be calculated using only local data. A problem arises when calculating the

intersection of two external hyperedges for which processors need data stored on

other processors. For this purpose, we use a fast intersection method by hashing

hyperedges to a bit vector and instead of calculating the actual intersection, the

hash values are intersected. To calculate the hash values of the external hyperedges,

processors calculate the hash values of their external hyperedges locally and the

global hash values are calculated using a customised all-to-all communication, that

is a simple union operation over the bit vector. A 2-universal hash function is used

in our implementation.

In the end of the local phase, we end up with an edge partition set EP i of

size |EP i| = qi on processor i such that EP =
⋃

EP i and |EP | = q =
∑

06i<p qi.
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Figure 5.2: The two rounds of parallel HCG example in Fig. 5.1. Dashed, solid, and
red lines show network communications, stabilised X to Y partitions, and representative
dependency in Y , respectively. The algorithm stops after two rounds.

Local edge partitions are assigned a globally unique ID. Hyperedges straddling

more than one processor are assigned to different edge partitions on each processor.

According to the HCG definition, each hyperedge should be uniquely assigned to

one edge partition. Therefore, for those hyperedges that are assigned to different

edge partitions, the corresponding edge partitions should be unified to provide a

globally unique hyperedge-to-edge partition assignment. The unification is dealt

with in Algorithm 2 from line 4.

For a given hypergraph H = (V,E) and edge partition set EP we define a

bipartite graph B(X, Y,U) with vertex sets X = E of size |X| = m and Y = EP of

size |Y | = q, and edge set U where a hyperedge is adjacent to an edge partition if it

is assigned to the edge partition on any of the processors. The maximum degree of

the vertices in X is p. Algorithm 2 works as follows. Both vertex sets X and Y are

redistributed independently on the processors such that processor i holds |Xi| ≈ m/p

and |Yi| ≈ q/p of each, respectively, and new global IDs are assigned to them. Every

vertex in x ∈ X is assigned a priority. The priority is set to be the the global ID of

the vertex. A smaller global ID means higher priority. In addition, the neighbour list

of x in Y is stored in a list denoted as n(x). The algorithm builds a spanning forest

on Y vertices. Initially, each vertex in Y points to itself as the root (a vertex is in

a unique tree initially). The algorithm runs in rounds. In each round if the degree

of a vertex x ∈ X is more than one, it chooses the first vertex in its adjacency list

as representative and generates a tuple 〈x, priority, rep, t〉 per neighbour t ∈ n(x).

The priority is the priority assigned to x and rep is the representative among its

adjacency list (which is selected to the first vertex in n(x) list). Then, tuples are
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sent to the target processors who hold the target vertices in Y .

Processors collect tuples for their local Y vertices. For each y ∈ Y , it chooses the

representative with the highest priority amongst them and updates the root of y to

point to the representative in the spanning forest that is built on Y . The updates are

returned back to the vertices in X and the adjacency lists are updated accordingly

for the next round. The operations repeat until all X vertices are adjacent to only

one vertex in Y or a specified number of rounds is completed. Finally, each subtree

in the spanning forest on Y represents a unique edge partition. The root of each

tree stands for the representative of the edge partition. The function FindRoots()

in line 28 finds the root for each tree in the spanning forest. The roots of the trees

are returned to X vertices and finally, the neighbour of X vertices are updated.

An example of the first round of the algorithm is depicted in Fig. 5.1 that

shows how the spanning forest on Y vertices is built. The complete operations,

the whole two rounds, are depicted in Fig. 5.2. Dashed arrows show the network

communications while assigning hyperedges to the edge partitions and the thick lines

show finalised assignments (that means no communication is further done for these

links). The dependency between Y vertices are shown as red arrows. After the first

iteration, the connection between Y nodes does not change. The maximum degree

of the vertices in X is p, which is the number of processors. In our implementation,

we have an early exit condition such that we perform maximum p iterations. If the

degree of a x ∈ X vertex is still more than one after p iterations, we choose one of

its neighbour in n(x) randomly as the final representative. In the end, each vertex in

X uniquely points to one vertex in Y . For the example given in Fig. 5.2, all vertices

in X point to Y1 as their neighbour after calling the FindRoots() function. This

means that we end up with all hyperedges in one edge partition when the algorithm

finishes.

An example of the final edge partition set for a sample hypergraph is depicted in

Fig. 5.3. The edge partitions are depicted as EP 1, · · · , EP6 and their hyperedges

elements are represented as ui, 1 ≤ i ≤ 16.
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Figure 5.3: An example of the matching algorithm. The similarity threshold is set to
s = 0.5. Vertices are categorised into cores according to edge partitions EP i and rough set
clustering definitions.

5.2.2 Parallel Matching Algorithm

In this section, we find pair-matches of vertices. As proposed in the previous section,

HCG builds edge partitions ER on the hyperedges of H = (V,E) such that the size

of an edge partition is the number of hyperedges in it and its weight is sum of the

weights of its hyperedges. This information is used to build the reduced information

system IRH =
(

V,ER,VR,FR
)

by replacing hyperedges with their edge partitions. In

IRH , a vertex is incident to eR ∈ ER if at least one of its incident hyperedges is in eR

and the mapping function is redefined as

FR(v, eR) = |{e ⊲ v ∧ e ∈ eR, ∀e ∈ E }| . (5.1)

where VR
eR
⊆ N, ∀eR ∈ ER.
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Algorithm 3 Parallel Matching algorithm

Require: processor rank r, local sub-hypergraph (Hr(Vr, Er)), number of candidates nCand
1: procedure ParallelMatching(r,Hr(Vr, Er),p,nCand)
2: me ← r

3: EP ←ParallelHCG(Hr(Vr, Er),p,p)

Phase 1: Core Matching

4: Build the final information system I f for H
5: Categorise vertices into cores and non-core lists
6: for all c ∈ core vertex list do
7: Assign c to a processor by hashing

⇀

c ER

8: for all c ∈ cores that is assigned to me do
9: pair vertices in c randomly ⊲ Randomly pair-match vertices

Phase 2: Global Vertex Matching

10: candidates← {}
11: pl← the sequence {1, 2, · · · , p} except me

12: for all v ∈ non-core list do
13: if externalConn(v) > internalConn(v) then
14: candidates← candidates ∪ {v}
15: Randomly shuffle pl and move me to the end of list
16: extDest[v][i]← pl[i], ∀i = {1, 2, · · · , p− 1}
17: rounds← 0
18: repeat
19: lst← maximum nCand vertices from candidates

20: Send each v ∈ lst to processor extDest[v][rounds]
21: for every received vertex u on me do
22: Find best local match for u
23: Update 〈inmatch, outmatch〉 for u
24: Resolve mutual and length-2 matches and remove the matched vertices from lst

25: bestConn← 0
26: for all i ∈ {1, 2, · · · , p} do
27: state← randomly choose a state in {inproc, outproc}
28: if state is inproc then
29: cnn← ∑

∀v∈V

J(v, inmatch(v)) | state(proc(inmatch(v))) is outproc

30: else
31: cnn← ∑

∀v∈V

J(v, outmatch(v)) | state(proc(outmatch(v))) is inproc

32: cnntotal ← sum of cnn on all processes
33: if cnntotal > bestConn then
34: bestState[me]← state

35: MPI Allgather(bestState) ⊲ Collect bestState on all processors
36: if bestState[me] is inproc then
37: Match every vertex in lst with its outproc
38: else
39: Match every vertex in lst with its inproc

40: remove all matched vertices from candidates

41: until (rounds← round+ 1) < p− 1

Phase 3: Local Vertex Matching

42: for every unmatched vertex u on me do
43: Find best match for u locally
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Following the discussion in Chapter 4.4.1, edge partitions of unit size contain

less important information and they can be removed from the ER. The reason is

that unit size edge partitions are hyperedges with less similarity to other hyperedges

in HCG (as in Definition 4.1), so they do not provide important vertex matching

information. Thus the size of IRH is reduced by removing unit size edge partitions

and the final information system I f =
(

V,ER,VR,F f
)

is obtained by recalculating

the mapping function as follows:

Ff (v, eR) =











1, if FR(v,eR)
Deg(v)

> 0,

0, otherwise.

(5.2)

At this point, rough set clustering techniques can be employed to calculate vertex

equivalence classes in I f as described in Section 2.3. Vertices are then categorised

as core and non-core vertices such that those in the same V/ER partition belong

to the same core as they are in the same equivalence class. Vertices for which

F f (v, eR) = 0, ∀eR ∈ ER are non-core vertices. In order to prevent the algorithm to

build very big cores, we put a limit on the size of the cores in our implementation and

we do not allow a core size to grow bigger than a user specified size1. An example of

the vertex-core assignment is depicted in Fig. 5.3 for our sample hypergraph. In the

example, two vertices v2 and v15 are assigned to cores of size unity; therefore, we put

them in the non-core list.

A nice property of the rough set clustering is that the vertex equivalence class

calculation can be done in parallel and independently on all processors. Zhang et

al. [ZLR+12] propose a parallel framework for calculating rough set approximations

using MapReduce [DG08]. Following the definitions in their work, vertex to core

assignment can be done independently by all processors.

Definition 5.1 Given an information system I = (U,A,V,F), let S =
⋃b

i=1 Si

where Si = (Ui,A,V,F) such that U =
⋃b

i=1 Ui and Uj ∩ Uk = ∅, ∀j, k ∈
{1, 2, · · · , b}, j 6= k, then we say that S is divided into b information subsystems. Si

is called an information subsystem of S [ZLR+12].

1This value is chosen to be 500 by default and this is also used in our evaluations.
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Definition 5.2 Let B ⊆ A be a subset of attributes. The information set with

respect to B for any C ∈ U/B is denoted by
⇀

CB =
⇀
cB, ∀c ∈ C [ZLR+12].

Lemma 5.1 [ZLR+12] Let B ⊂ A be a subset of attributes, and C,D be two equiv-

alence classes with respect to B from two different information subsystems of S. One

of the following holds:

1. If
⇀

CB =
⇀

DD, then the two equivalence classes C and D can be combined into one

equivalence class G with respect to B, where G = C ∪D and
⇀

GB =
⇀

CB =
⇀

DB.

2. If
⇀

CB 6=
⇀

DD, the two equivalence classes C and D cannot be combined as one

equivalence with respect to B.

The parallel matching algorithm is proposed in Algorithm 3. The algorithm has

three main phases and begins with the processing of the core vertices in phase one.

Cores are hashed to the processor set using their equivalence classes. The hash

function uniformly distributes cores among processors such that each processor is

assigned a number of cores. As mentioned earlier (and in order to prevent load

imbalance among processors) we restrict the size of V/ER partitions and we do not

allow core sizes to grow freely. Then processors traverse cores one at a time and

randomly pair-match vertices inside each core. Vertices which do not find a match

are added to the non-core vertex list to be processed in the next step.

In Phase two, the algorithm proceeds with the processing of non-core vertices.

PFEHG finds a pair-match for a vertex using Weighted Jaccard Index as the serial

FEHG algorithm and restated here as follows:

J (u, v) =

∑

e⊲v ∧ e⊲u γ (e)
∑

e⊲v ∨ e⊲u γ(e)
, v, u ∈ V , and ∀e ∈ E. (5.3)

The matching of non-core vertices runs in rounds (line 18). In each round,

processors randomly select a subset of their unmatched external non-core vertices.

The selection criterion is based on the external connectivity of the vertices such that

a vertex is selected if its external connectivity is greater than its internal connectivity.

These vertices are sent to a remote processor to find a pair-match. The algorithm

provides a list of destination processors for each vertex such that the processors in
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the list are connected to at least one of the hyperedges incident on the vertex. In

each round, a processor is selected randomly from this list and the vertex is sent to

the processor to find a remote match.

After a customised all-to-all communication, processors traverse their received

vertices and find pair-matches for them locally. Then matched candidates are sent

back to the requesting processors. We only allow pair-matches and multiple matches

are not supported in our algorithm. Cyclic dependency conflicts may occur; a vertex

that is found as a match candidate for a remote vertex has been already been sent to

another processor and has found a pair-match there. We break conflicts as follows.

A pair 〈inmatch, outmatch〉 is built for every vertex (line 28). If a vertex v is sent to

another processor and it finds a match u on that processor, u is saved in outmatch

of v, and v is saved in inmatch of u. First, two cases are resolved before processing

with the iterations.

1. Mutual Matches : If the inmatch and outmatch of a vertex v point to the same

vertex u, then vertex v is definitely on the the inmatch and outmatch of vertex

u. The match is allowed without creating any conflicts.

2. Length-2 Matches: If two vertices u and v form a path of length two, the

match is allowed without creating any conflicts. For two vertices u and v, this

situation happens when either inmatch or outmatch of the vertices are set and

v is on the inmatch of u and u is on the outmatch of v or vice versa. This

situation is identified with a customised all-to-all communication between the

processors.

Then processors go through p iterations. In each iteration, a state is assigned to

each processor randomly. The state can be either inproc or outproc. Processor state

inproc means that the vertices (those have been sent to remote processors in order to

find an external match) will select inmatch candidates as the final match candidates

if the processor that contains the inmatch vertex has the outproc state (line 28). The

same applies to outproc processors. In each iteration, the sum of Jaccard Index for

the matched vertices based on processor states are calculated. If the sum is bigger

than bestConn, the bestConn is updated to the new value and processor states are
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Algorithm 4 Calculating vertex move gain to decide which processor should hold the
coarser vertex when two vertices are merged.

Require: Input is the vertex v matched with mv, the minimum number of vertices
on each processor redl

1: procedure VertexMoveGain(H(V,E),v,mv)
2: g1 ← 0 and g2 ← 0 ⊲ 2-level gain

3: p(v)← the processor containing v
4: p(mv)← the processor containing mv

5: if p(v) == p(mv) then ⊲ local match

6: Return
7: else if there is less than redl vertices on the local processor then
8: g1 ←∞ and g2 ←∞
9: Return

10: for all hyperedge e incident on v do
11: sg(e)← the global size of e
12: sl(e)← the local size of e
13: if e is local then
14: g1 ← g1 − 1
15: g2 ← g2 − 1
16: else if p(mv) is connected to e then ⊲ e has at least one vertex on p(mv)

17: if (sg(e) > 2) and (sl(e) == 1)) then
18: g1 ← g1 + 1

19: if (sg(e) > 4) and (sl(e) == 2)) then
20: g2 ← g2 + 1

21: Return g1 and g2

saved as the best processor states among all iterations in the bestState array. In the

end, the state of processors are set to the best states in bestState array.

Phase three finds pair-matches for the remaining unmatched vertices locally. Each

processor simply traverses its local unmatched vertices in random order and finds

pair-matches according to the Eq. (5.3).

When pair-matches are found, vertices are merged and new coarsened vertices

are built. The weight of a coarsened vertex is the sum of the weights of the two

merged vertices and its incident hyperedges are the union of the hyperedges incident

to both vertices. When a match is external, one of the processors should hold the

coarsened vertex. We follow Algorithm 4 for making this decision. According to the

algorithm, the coarsened vertex is saved on the processor that results in fewer number

of external hyperedges. The algorithm calculates move gains for both vertices. If a

vertex gets a higher gain, it is most likely to be moved because moving the vertex
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Figure 5.4: The variation of bipartitioning cut in different levels of uncoarsening. The
values are normalised in [0, 1] based on the minimum and the maximum cut.

gives fewer external hyperedges. The algorithm uses two level gains. The second

gain is for the tie breaking condition and it is denoted as g2. The algorithm does

not allow the number of vertices on any processor goes bellow a threshold (which is

denoted as redl). If the number of vertices on a processor is less than the threshold,

then the processor is selected to hold the coarsened vertex; if both processors have

this situation, the target processor is selected randomly. In our implementation, the

value of the threshold is set to be the same as the minimum number of vertices in

the coarsest hypergraph (refer to the next section for more information).

When the coarser hypergraph is built, three operations are done. First, the global

size of the hyperedges and their processor adjacency lists are calculated. Second,

hyperedges of unit size are removed as they do not contribute to the partitioning cut.

Third, identical hyperedges are identified and collapsed in the coarsened hypergraph.

The third operation is the same as the operation which is done in our serial algorithm

and in Zoltan’s hypergraph partitioner. This is done using hash functions. Hyperedge

are hashed to integer values based on their vertex list. Two hyperedges with the

same hash value are considered as identical. If conflicts occur, the whole content of

hyperedges are compared.
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Figure 5.5: The percentage of the locked hyperedges in different levels of uncoarsening.
The values are the average values over all passes of the FM algorithm in each coarsening
level.

5.2.3 Initial Partitioning and Uncoarsening

The coarsening phase ends when the coarsest hypergraph Hc contains a few tens

of vertices such that its bipartitioning can be done very quickly (this happens in

our implementation when Hc has fewer than 100 vertices). Hc is replicated on a

subset of the processors and each processor calculates a bipartitioning using a set

of randomised greedy algorithms. Among the algorithms depicted in Chapter 3.1.2,

PFEHG uses Random assignment, Linear assignment, and FM-based algorithms

(the same category of algorithms are selected as the serial FEHG algorithm). The

partitioning that preserves the balance constraint and gives the minimum partitioning

cut among all runs is selected as the best partitioning result and it is projected back

to the original hypergraph.

While uncoarsening, the partitioning quality is further improved. We use a

modified version of the FM algorithm known as Early-Exit FM and Boundary FM

which has been shown to be good in practice2 [Kar02,ÇA11]. As mentioned earlier,

the FM algorithm calculates a gain for each vertex. The gain simply shows the

improvement in the cost function if the vertex is moved from its part to the opposite

partition (in bipartitioning). When a vertex is moved, the gain of all adjacent vertices

2The reader is referred to Chapter 3.1.2 for details about these algorithms.
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should be updated accordingly. This is a challenging task because it may produce

lots of network communications if the algorithm runs in parallel. This phase is the

most difficult phase of multi-level paradigm to parallelise [LK13,DBH+06,TK08].

Consequently, the parallel bipartitioning algorithms use a modified version of the

FM Algorithm3. First, they split the refinement process into passes and only single

direction vertex move is allowed in each pass (that is, vertices are only allowed to

move from one part to the other). The direction of move is alternately changing

between the passes. Second, only the gain of local vertices are updated with each

vertex move. The strategy guarantees that parallel vertex moves by the processors

do not adversely affect the gain of vertices on other processors which is known as

parallel move conflict [Kar02]. Because processors locally decide about vertex moves

without any synchronisation, they need to translate the global balance constraint to

a local balance constraint.

This strategy, that is brought from parallel graph refinement algorithms, has

some disadvantages as follows:

1. Local balance constraints put tight restrictions on vertex moves and the par-

titioner has limited space for optimisation. As we have mentioned in Chap-

ter 3.1.4, the global balance constraint is translated into a local balance con-

straint on each processor. Local balance constraints are tighter than the global

balance constraint and, consequently, limit vertex moves between partition

boundaries and leave little space for optimisation.

2. Global balance constraint is sometimes violated locally and fixing this re-

quires synchronisation among processors [DBH+06], so it is not completely

synchronisation-free. Some of processors have to undo their vertex moves in

order to meet the global balance constraint.

3. Increasing the number of processors adversely affects the quality of the par-

titioning, especially in 2D hypergraph distribution. The reason is that the

processors have less local data, or fewer pins, as the number of processors

3The reader is referred to Chapter 3.1.4 for the details of the parallel FM refinement algorithm.



5.2. The Parallel Algorithm 146

increases. In 2D distribution, we have a smaller average number of pins on each

processors compared to the 1D distribution; therefore, increasing the number

of processors has greater negative impact on the quality.

4. Parallel move conflicts, which proposed in Chapter 3.1.4, are more challenging

on graphs and the problem on hypergraphs, although being more complicated,

is not as severe as in graphs.

There are two points to be made regarding the last case. First, because the

cardinality of hyperedges are not limited in hypergraphs, it is more difficult to take

a hyperedge out of a cut if its cardinality increases [Kar02]. Second, Shibuya et al.

[SNK95] report that almost 80% of hyperedges remain in the cut for the whole run

of an the FM algorithm. According to this research, there is only a limited number

of vertex moves between partition boundaries, and then most hyperedges are locked

into the cut. In hypergraphs, we have two variations: vertex degrees and hyperedges

sizes. We assume the first level gain for the FM algorithm in a bipartitioning problem.

A cut hyperedge is considered for calculating vertex gains only if all but one of its

vertices reside in one part. On the other hand, all edges of a graph participate in

vertex gain updates when the edge is cut4. This means that the hyperedge would

not participate in vertex gain update as long as it has more than one vertex in either

of the parts. Furthermore, if we know that a hyperedge is locked into the cut while

we move its vertices on other processors, we can make some decisions to decrease the

parallel move conflict effects.

We have observed the following when investigating multi-level serial hypergraph

partitioning algorithms:

1. Most improvements in the cut are done early in the uncoarsening phase when

there are clusters of vertices and most vertices have large positive gains. In

these early stages, moving a vertex gives a considerable improvement in the

cut.

4The cardinality of all edges are two in graphs. When a vertex is moved, all edges that have
their other end-point on another processor participate in vertex gain updates.
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2. Going through coarsening levels generates hypergraphs with larger |E|/|V |
ratio, higher vertex degrees, and smaller hyperedge sizes [Kar02]. This means

that the structure of the hypergraph is getting more closer to the graph model.

In this situation, vertex move conflicts create more problems because moving a

vertex on a processor would definitely impact the gain of its connected pairs

on other processors.

3. The necessary condition for two consecutive vertex moves to get a hyperedge

into the cut is that both vertices must belong to the same hyperedge. In

high dimensional data structures such as a hypergraph, the probability of the

hyperedges to get locked is inversely proportional to the average hyperedge size

and directly related to the average vertex degree [ESK03]. According to case 2,

we are dealing with low hyperedge sizes and high vertex degrees earlier in the

uncoarsening phase, Consequently, there is a higher probability for hyperedges

to get locked in the cut.

Figure 5.4 depicts the cut change in different uncoarsening levels when projecting

back the hypergraph. The results are proposed for some of the hypergraphs in

Appendix A. The cuts are normalised in [0, 1] based on the maximum (which is

the cut on the coarsest hypergraph) and the minimum (the final cut at level zero

of coarsening) partitioning cuts. According to the results, most of the cut change

happens in the first few levels of the uncoarsening and the reduction speed is higher.

After 50% of the uncoarsening levels, the cut reduction is between 48% and 89%

for the evaluated hypergraphs. This fact emphasises that more efforts should be

invested early in the uncoarsening phase.

Figure. 5.5 shows the percentage of the locked hyperedges for different uncoarsen-

ing levels. According to the figure, the highest values are for the first few levels of

coarsening where we are dealing with large vertex degrees and smaller hyperedge

sizes; therefore, moving two consecutive vertices more likely locks some hyperedges.

For hypergraphs such as AS-22JULY06 and COND-MAT-2005, the [mean vertex degree,

mean hyperedge size] in the coarsest hypergraph is [6.27, 11.21] and [27.76, 6.54], re-

spectively while in the original hypergraph the values are [2.03, 21.99] and [4.16, 9.04],

respectively. The ratio of mean vertex degree to the mean hyperedge size changes
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from 0.09 to 0.55 in the AS-22JULY06 and from 0.46 to 4.24 in COND-MAT-2005.

For these two hypergraphs we do not see big changes in the percentage of locked

hyperedges. On the other hand, we see big changes in the ratio of mean vertex

degree to the mean hyperedge size in DELAUNAY-N16 (0.74 to 9.53), STD1-JAC3 (0.94

to 32.37) and GUPTA1 (0.63 to 32.93). The changes in the mean vertex degrees and

hyperedge sizes are very high such that the change from the original hypergraph to

the coarsest hypergraph is: [2.82, 3.80] to [24.99, 2.62] in DELAUNAY-N16, [66.18, 69.80]

to [326.03, 10.70] STD1-JAC3, [31.06, 48.63] to [246.36, 7.48] in GUPTA1. For these

hypergraphs, we see big changes in the percentage of the locked hyperedges in early

levels of uncoarsening.

As a result, we conclude that most improvements can be done early in the

uncoarsening phase, while later (when we get closer to the original hypergraph) the

percentage of negative moves dominates the positive moves. In our synchronisation-

based refinement strategy, vertices are free to move to any direction in each pass. A

token is defined and the processor that holds the token is allowed to move its vertices.

The token is simply the number of vertex moves that processors can make. At the

beginning of the pass, the ratio of positive gains to negative gains on each processor

is calculated and the processor which gives the maximum value holds the token.

The token is then rotated amongst processors in a round-robin manner such that

each processor gets the same chance to move its vertices. When we move vertices,

gains are only updated locally. The token may take negative values: if the ratio of

positive gains to negative gains is less than a threshold, the token is negated and this

means that all processors can move |token| vertices concurrently. The global balance

constraint might be violated during concurrent moves, but it will be managed with a

synchronisation among processors when passing the token. FM passes continue until

a user-given pass limit is met or no further moves can be done.

According to the algorithm, it moves the vertices on all processors in a sequential

manner when the token is positive. While the size of hypergraph is small compared to

the original hypergraph in the first few uncoarsening levels, these sequential updates

do increase the runtime by a very small fraction. Furthermore, the negative token

may create move conflicts between the processors and may increase the cut size.
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This is against the conditions proposed by Karypis [Kar02] that says the cost of

the projected back partitioning on Hi should be less than or equal to the cost of

the partitioning on Hi−1. This is not important in our implementation because of

following reasons:

1. The increase in the cut size is quite small as the percentage of the vertices with

positive gains is very small and they cannot make big changes to the cut.

2. This provides a perturbation of the cut. As one of the problems of the FM

algorithm is that it easily gets stuck in local minima [Kar02,CLL+97], the small

perturbation might get the algorithm out of the local minima and provide

partitioning cut improvements in the later passes of the FM algorithm.

Furthermore, we hold a state for every hyperedge that could be free, loose, or

locked. At the beginning of each pass, all hyperedges are free. A vertex is locked

after a move to prevent thrashing. When a hyperedge has a locked vertex in only

one part, its state is updated to loose. The state is changed to locked when it

gets locked vertices on both parts; that is, it is impossible to move that hyperedge

out of the cut in later moves. When the token is positive, hyperedge states are

updated among processors with each synchronisation. In our implementation, we

only communicate the state of hyperedges with size two (or it is better to say edges

according to the graph terminology). When the state of these hyperedges changes,

we tell other processors about the changes (only the processors that are connected

to these hyperedges). Consider two vertices v and u on the local and the remote

processors, accordingly, that are connected by an edge e. If v moves between the

parts, the state of e changes to loose and the gain of u is updated as follows:

1. If u and v are in the same part before the move, the gain of u is increase by the

weight of e to push u to move to the other part and remove e out of the cut.

2. otherwise, the gain of u is decreased to prevent u from changing the part and

get e into the cut.

Furthermore, and for the other hyperedges of size greater than two, the state

can be used for calculating future move gains of the vertices such that a locked
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hyperedge will have no role in updating vertex gains for the future vertex moves.

In our evaluations, we have not used this option and only the state of the size two

hyperedges are communicated.

5.2.4 Processor Reconfiguration

PFEHG is a recursive bipartitioning algorithm and performs the following two

processor reconfigurations in each bipartitioning recursion:

Bisection processor splitting

At the end of each bipartitioning, the processors are split into two equally

sized separate subsets. Vertices in the first part and their incident hyperedges

are assigned to the first subset and the other vertices and their incident

hyperedges are assigned to the other subset. Each subset continues with the

partitioning of the hypergraph independently. This strategy is shown to be

practically successful and generates better partitioning quality and gives better

performance than alternative approaches [DBH+06,TK08,Kar13b]. The only

drawback of this strategy is that preserving the global balance constraint

needs some extra effort. In order to do that, we should apply stricter balance

constraint which adversely affect the partitioning quality.

Multiple Bisection

Given a hypergraph H = (V,E), a set of p processors, a replication factor ψ

such that (p mod ψ) = 0, and a minimum subgroup size pmin, PFEHG splits

the processor set into ψ subsets if p/ψ > pmin. The hypergraph H is replicated

on all ψ processor subgroups and Hψ
i =

(

Vψi , Eψi
)

represents ith replication of

H on ith processor set i = {1, 2, · · · , ψ}. Subgroups partition their assigned

replicated hypergraphs independently. In the end, the partitioning which

maintains the balance constraint and gives the minimum cost is selected as the

final partitioning for this bisection.

Both cases are tied with an extra reconfiguration overhead, but they increase

processor locality that will result in higher performance and provide better quality.
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As we will show in the evaluation section, the amount of time the algorithm spends

on hypergraph reconfiguration is less than the time that is spent on coarsening the

hypergraph. This strategy should be used with care as small replication factor will

cause the reconfiguration time degrade the performance. This strategy is also used in

our cloud evaluations because it provides better data locality. Our multiple bisection

reconfiguration considers the scarcity of networking resources in the cloud and, as

we will see in Section 5.4, it has a positive role in increasing the performance of the

PFEHG algorithm in the cloud.

5.3 Experimental Evaluation

The PFEHG algorithm is implemented as a new hypergraph partitioning library in

the Zoltan tool [DBH+06]. The communication is done in a BSP-like model using

Zoltan communication layer. PFEHG can be called by setting both LB METHOD and

HYPERGRAPH PACKAGE to FEHG. The algorithm has several parameters which can be

set by calling Zoltan Set Param function. The code for calling the partitioner and

the interface is exactly the same as Zoltan. We evaluate our algorithm against the

state-of-the-art Zoltan parallel hypergraph partitioner, that is known as PHG. The

algorithm is shown to have very good scalability in practice [DBR+09].

We select a set of hypergraphs from a variety of applications with different

specifications. They are used for the evaluations in this section and the cloud

evaluation in the next section. The benchmarks are obtained from the University

of Florida Sparse Matrix Collection [DH11]. Each matrix represents a hypergraph

in column-net model: rows and columns correspond to vertices and hyperedges of

the hypergraph, respectively [ÇA99]. The weight of the vertices and hyperedges are

assumed to be unity. The list of the test hypergraphs is depicted in Table 5.1. The

reader is referred to Appendix A for complete specification of these hypergraphs.

5.3.1 System Configuration and Algorithm Initialisation

We run our evaluations on the Linux-based Hamilton HPC cluster in Durham

University. The version of the operating system is CentOS release 6.5 and we use
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Table 5.1: Evaluated hypergraphs for parallel simulation and their specifications.

Hypergraph Description Rows Columns Non-Zeros
AMAZON0601 Web Indexing 403,394 403,394 3,387,388
BCSSTK32 Structural Problems 44,609 44,609 2,014,701
CNR-2000 Web Crawling 325,557 325,557 3,216,152
CAGE13 DNA Electrophoresis 445,315 445,315 7,479,343
CAGE14 DNA Electrophoresis 1,505,785 1,505,785 27,130,349
CH8-8-b5 Combinatorial Problem 564,480 376,320 3,386,880
COND-MAT-2005 Collaboration Network 40,421 40,421 351,382
LANDMARK Least Squares Problem 71,952 2,704 1,146,848
NOTREDAME Social Networks 392,400 127,823 1,470,404
RAIL4284 Linear Programming 4,284 1,096,894 11,284,032
GL7d15 Combinatorial Problem 460,261 171,375 6,080,381
GL7d16 Combinatorial Problem 955,128 460,261 14,488,881
GL7d17 Combinatorial Problem 1,548,650 955,128 25,978,098
GL7d22 Combinatorial Problem 349,443 822,922 8,251,000

OpenMPI version 1.8.2. There are three computer clusters overall and they are

represented as Hamilton 4 (ham4), Hamilton 5 (ham5), and Hamilton 6 (ham6).

They are different in architecture and the number of nodes they provide. We run our

algorithms in ham4 cluster. It has 228 computer nodes (1824) cores. Each computer

has:

1. 2 x quadcore Intel Xeon E5520/2.26 GHz Nehalem processors (total of 8 cores

per node)

2. 24 GB memory (3 GB per core)

3. 1 x 160 GB disk

4. 1 x QDR InfiniBand interconnect

An important parameter for PFEHG is the similarity threshold that can affect

both performance and the quality of the algorithm. We use the algorithm proposed

in Chapter 4.4.1 to calculate the Clustering Coefficient (CC) of the hypergraph. A

nice property of this calculation is that it can be easily parallelised by calculating the

CC of hyperedges locally with the global values being calculated by one customised

all-to-all communication. Then the similarity threshold is set to be the CC of the

hypergraph. As the structure of the hypergraph changes during the coarsening (when
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Figure 5.6: The cut reduction of our FM algorithm for a bipartitioning on CNR-2000

with variable number of processors.

the hypergraph is coarsened and a new hypergraph is built for the next coarsening

level), the CC of the hypergraph also changes. Instead of recalculating CC in each

level, it is calculated once at the beginning of each multi-level recursion and its value

is readjusted in each coarsening level based on the inverse of the average vertex

degrees.

The redistribution imbalance in Section 5.1 to 0.1 when initially distributing each

hypergraph on processors in the beginning of the algorithm. A collection of twelve

hash functions are used for hypergraph initial distribution. The list of used the hash

functions is depicted in Appendix B.3.2. The number of passes for the refinement

function is set to two (the same is done for PHG) and the token value is set to 16.

This means that processors can move a maximum of 16 vertices when holding the

token. The imbalance tolerance is set to 5%. The reported results are the average of

10 runs for each algorithm.

5.3.2 Parallel Refinement Performance

We have tested the performance of our synchronisation-based FM algorithm on

the bipartitioning of CNR-2000 hypergraph given in Table 5.1. The cut change at
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each level of coarsening for different number of processors is depicted in Figure 5.6.

Level zero contains the original hypergraph. As is shown in the figure, most of

the improvement of the cut is done early in the coarsening phase and the rate of

improvement decreases as we get closer to the original hypergraph. According to the

figure, the perturbation of the cut (negative token) that adversely affects the quality

of the partitioning is more obvious for 16 processors. The increase is observed on

levels 8 and 4 of the uncoarsening, but the increase has been compensated later in the

proceeding levels. In the end, we have more than 60% reduction in the partitioning

cut. These cases can be simply prevented in the algorithm; that is we save the part

numbers at the beginning of the FM refinement. If the cut increases in the end

of the current refinement pass, we do not change vertex part numbers and restore

the previous values. This option is not activated in forthcoming evaluations as the

advantages of cut perturbation were more than preventing it.

In the next evaluation, we investigate how our synchronisation-based FM algo-

rithm performs compared to the pass-based FM algorithm that allows one-direction

vertex moves in one pass. The number of processors are changed from one to 128

cores. We have not activated the multiple bisection for these evaluations. The

runtime of the refinement algorithms for a bipartitioning of some of the hypergraphs

are depicted in Fig. 5.7 and the percentage of the whole partitioning time that the

algorithms spend on the refinement phase are proposed in Fig. 5.8. On a single

processor that we do not have any conflicts and all data are local, our FM algorithm

performs very well and takes less time compared to the PHG algorithm. This is an

indication of the superiority of our rough set clustering algorithm compared to the

randomised local vertex matching algorithm of PHG. This is in accordance to what

has been reported by Karypis and Kumar [KK98a]; hence a good partitioning on the

coarsest hypergraph also provides a good partitioning of the original hypergraph and

we need less effort during the refinement phase. This is the reason why the refinement

phase in our serial algorithm takes much less time than PHG refinement phase. As

we have discussed in Chapter 3, the reason is the good clustering algorithm that is

used in the FEHG.

Furthermore, as the number of processors increases, there are two extra operations
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(a) FM runtime on single core.

(b) FM runtime on 32 cores.

(c) FM runtime on 128 cores.

Figure 5.7: The running time of the FM algorithm on different number of processors for
a bipartitioning of the hypergraphs. Two passes of FM are used for both algorithms and
times are reported in seconds.
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(a) FM runtime on single core.

(b) FM runtime on 32 cores.

(c) FM runtime on 128 cores.

Figure 5.8: The percentage of time that algorithms spend on the FM refinement on
different number of processors for a bipartitioning of the hypergraphs. Two passes of FM
are used for both algorithms and times are reported in seconds.
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that should be done in addition to refining the partitioning cut. First is calculating

the global gain of the vertex moves as hyperedges may reside on multiple processors

and the algorithm needs to know how the hyperedges spread among the parts on all

processors. Second operation is the processor synchronisation during the refinement

phase. Even if the refinement does not make any change to the cut, the first phase

is performed in the beginning of a pass; it is the most time consuming part of the

refinement phase in the PFEHG algorithm. According to the results, there is no

advantage for one of the refinement algorithms to the other in term of running time.

The runtime depends mainly on the performance of the parallel coarsening phase and

the number of coarsening levels. Similar to the serial algorithm, this shows that our

parallel coarsening algorithm performs very well that we do not need too much effort

for the refinement phase and we do not see an overhead for our synchronised-based

FM algorithm compared to the nonsynchronisation-based parallel FM algorithms.

5.3.3 Multiple Bisection Performance

In Section 5.2.4 we have introduced the multiple bisection reconfiguration and we

argue that it can provide a trade-off between the quality and performance. In this

section, we evaluate how the multiple bisection strategy impacts the performance

and quality of the PFEHG algorithm. We change the number of processors from 16

to 256 and, for each evaluation, we use different values of ψ. In our tests, we select a

value for the minimum subgroup size pmin and ψ is calculated based on the number

of processors and pmin. For example, if pmin = 32 then ψ would be 4 and 8 on 128

and 256 processors, respectively.

The results are proposed in Fig. 5.9 for some of the hypergraphs. Evaluations

show that pmin = 16 gives the minimum partitioning cut for most of the hypergraphs.

This is one of the advantages of multiple bisection such that each processor subgroup

calculates a bipartitioning of the hypergraph and the best partitioning is chosen

for the next bipartitioning recursion. Slightly different results are observed for

GL7D15 hypergraph, that is pmin = 32 gives better partitioning cut compared to the

pmin = 16. This can be explained by a drawback of the recursive bipartitioning

solutions compared to the direct k-way. Each recursion of the bipartitioning is
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(a) BCSSTK32 Cut (b) BCSSTK32 Speedup

(c) CAGE13 Cut (d) CAGE13 Speedup

(e) GL7D15 Cut (f) GL7D15 Speedup

(g) LANDMARK Cut (h) LANDMARK Speedup

Figure 5.9: The 256-way partitioning cut and the speedup of PFEHG algorithm for
variable Multiple Bisection (MB) values and different number of processors. The cut values
are normalised with the partitioning cut obtained by the serial algorithm that is FEHG.
pmin value is represented as MB.
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done independently without considering the forthcoming recursions and the global

status of the hypergraph. This is also reported in Karypis [Kar02] as a lack of direct

optimisation of cost function in recursive algorithms.

When evaluating performance, we observe the opposite results that is, generally

speaking, pmin = 16 gives the lowest speedup among others. The algorithm spends

more time on hypergraph reconfiguration for smaller values of pmin which has a reverse

effect on the performance. The idea of multiple bisection is that pmin processors have

enough memory to hold the hypergraph, and have much less communication (the

hypergraph is spread over fewer processors). On the other hand, the reconfiguration

time should take less time than going through the multi-level algorithm using the

whole processors in each recursion. For small pmin, the latter is not true and the

reconfiguration time overtakes the multi-level coarsening phase. In general, the

evaluation shows we could get almost the highest performance for ψ = 2. In addition,

when the number of processors goes beyond 256, choosing ψ = 4 gives the higher

performance; with ψ = 4, the algorithm spend less time on processor reconfiguration.

In general, this reconfiguration can provide between 2% and 48% performance

improvement on average and up to 87%. For LANDMARK and CH8-8-B5 we observe

7.5% and 2.1% performance degradation on 32 processors, respectively, and 10%

degradation for GL7D15 on 256 cores. In addition, the quality of the partitioning

degrades from 2% to 11% on average.

Consequently, the recursive bisection is an easy-to-apply technique for the PFEHG

algorithm. It can provides a trade-off between the performance and quality by easily

changing the replication factor. Applications that need high quality hypergraph

partitioning results, should use small values for the replication factor; others that

need higher performance, should use larger values of the replication factor.

5.3.4 Scalability

This section investigates the scalability of the algorithms on the Hamilton cluster.

As mentioned earlier, an algorithm is considered to be scalable if it gives improved

speedup when the number of processors increases. Among two algorithms, the one

that gives its maximum speedup on larger number of processors is considered to be
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(a) AMAZON0601. Normalised to best cut that is 275,632.

(b) BCSSTK32. Normalised to best cut that is 25,558.

(c) CAGE13. Normalised to best cut that is 784,941.

(d) CAGE14. Normalised to best cut that is 2,466,402.

Figure 5.10: The 256-way partitioning quality comparison up to 512 processor cores. the
values are normalised to the best partitioning cut among all evaluations of both algorithms
(the best cut is given for each figure separately).
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(e) LANDMARK. Normalised to best cut that is 8,076.

(f) CNR-2000. Normalised to best cut that is 16,587.

(g) COND-MAT-2005. Normalised to best cut that is 28,393.

(h) CH8-8-B5. Normalised to best cut that is 831,867.

Figure 5.10: (Continued) The 256-way partitioning quality comparison up to 512 processor
cores. the values are normalised to the best partitioning cut among all evaluations of both
algorithms (the best cut is given for each figure separately).
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(i) GL7D15. Normalised to best cut that is 2,508,940.

(j) GL7D16. Normalised to best cut that is 10,921,171.

(k) GL7D17. Normalised to best cut that is 3,224,224.

(l) GL7D22. Normalised to best cut that is 831867.

Figure 5.10: (Continued) The 256-way partitioning quality comparison up to 512 processor
cores. the values are normalised to the best partitioning cut among all evaluations of both
algorithms (the best cut is given for each figure separately).
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more scalable.

We run the algorithms on up to 512 processors and evaluate the quality and the

speedup. When we increased the number of processors to 1024, none of algorithms

give improved speedup and the performance degrades; therefore, we do not report

the results on 1024 processors. The results are reported for 256-way partitioning.

The quality of the partitioners are reported in Fig. 5.10. Both algorithms perform

very competitively for the quality. The results show that the PFEHG algorithm

performs better on the hypergraphs with more irregular structure, that is standard

deviation of the vertex degree or hyperedge sizes are high. Examples of these

hypergraphs are those in social networks such as hypergraphs representing friendship

on Facebook and Twitter. On the other hand, when we deal with lower values of

standard deviation, the PHG algorithm gives better quality. The same results are

reported for the our serial algorithm. The FEHG algorithm gives better quality

improvement in high dimensional data spaces with more irregularity compared to

PHG, PaToH, and hMetis. As discussed in the previous chapter, the reason is that

using local vertex similarity metric provides good clustering decisions in the coarsening

phase when the irregularity in the structure of the hypergraph decreases. Using global

clustering algorithms does not worth the effort; they just result in increased runtime

without making any improvement to the partitioning cut compared to the local

clustering algorithms. Consequently, employing algorithms such as PHG is preferable

if an application needs higher quality partitioning results and the hypergraph to be

partitioned has highly regular structure.

For example, PFEHG mostly generates better quality on LANDMARK and CNR-2000

that have very high standard deviation for the hyperedge sizes. For the CAGEXX group,

PHG generates slightly better results as these hypergraphs are more regular and they

have very small deviation in the hyperedge sizes. In the GL7DXX group, PFEHG gives

better quality on all except GL7D22 that have much smaller standard deviation, which

is equal to 2.2, compared to others. Furthermore, as mentioned in Section 5.3.3, a

better quality can be generated for PFEHG by using multiple bisection if the quality

has greater importance than performance. This is a solution for calculating higher

quality partitions on irregular hypergraphs; on evaluated hypergraphs with regular
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structure, the PHG algorithm still generates better partitioning cut.

In the next evaluation, the speedup of the algorithms are tested in the cluster.

The results are reported in Fig. 5.11 and Fig. 5.12. As we discussed earlier, the

scalability of parallel hypergraph partitioning algorithms is limited by two factors:

the structure of the hypergraph itself and the parallel partitioning algorithm. In

the first case, partitioning the hypergraph imposes lots of network overhead and

limits the scalability. This situation happens quite often for hypergraphs with very

irregular structure and high deviation of hyperedge sizes and vertex degrees such as

CNR-2000 and LANDMARK. Partitioning on these types of hypergraphs are difficult to

scale. According to the evaluations, PFEHG gives better quality and scalability for

these types of hypergraphs. While the scalability of PHG is in all cases are limited to

32 or 64 processors, PFEHG gives improved speedup for up to 256 or 512 processors.

On the second set of the hypergraphs including CAGEXX and GL7DXX, our algorithm

gives worse scalability compared to PHG. We have investigated the reasons. First,

we found that these hypergraphs have very small clustering coefficient, that is 0.07

for CAGEXX group and 0.04 for GL7DXX except GL7D22 which is 0.12. On the other

hand, these hypergraphs contain only one strongly connected component of vertices.

The main reason causing this issue is as follows. In the first level of the coarsening,

the clustering algorithm captures vertices in the strongly connected components and

pair-matches the vertices in it. Other vertices are matched using our parallel random

matching algorithm. Then the hypergraph should be coarsened and the identical

hyperedges should be found and collapsed. As mentioned earlier, the latter is done

using the hash functions. While similarities between hyperedges are very low (this

gives very small values for the CC of the hypergraph), then very few number of

identical hyperedges are found. In our implementation, we have an extra condition

for the coarsening phase; that is if the number of hyperedges does not decrease by a

specified percentage then the algorithm stops the coarsening phase. This causes an

early exit from the coarsening phase while we still have a large hypergraph. This

large hypergraph should be gathered on one processor for the initial partitioning.

While the size is too large, this limits the performance of the algorithm as the number

of processors increases such that the initial partitioning phase take more than 40%
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(a) AMAZON0601 (b) BCSSTK32

(c) CAGE13 (d) CAGE14

(e) CNR-2000 (f) CH8-8-B5

(g) COND-MAT-2005 (h) LANDMARK

Figure 5.11: Comparing the speedup of parallel algorithms on variable number of
processors. The results are reported for 256-way partitioning.
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(a) GL7D15 (b) GL7D16

(c) GL7D17 (d) GL7D22

Figure 5.12: Comparing the speedup of parallel algorithms on variable number of
processors. The results are reported for 256-way partitioning.

of the partitioning time. For this reason, the PFEHG produces worse speedup than

the PHG algorithm on the two largest hypergraphs including GL7D17 and CAGE14.

On the other hand, as we have shown, PFEHG performs quite well for hypergraphs

with very irregular structure in term of quality and scalability. The structure of the

CAGEXX hypergraphs are regular with low deviation of hyperedge sizes and vertex

degrees; therefore, PFEHG gets less performance on this group. The last reason is

due to the global vertex clustering decisions and its timing overhead. We will show

later in our cloud evaluations that the performance of parallel recursive partitioning

algorithms is higher on larger number of parts specially when the number of parts

is higher than the number of processors. The reason is that after a few number of

recursions, we have all processors concurrently partition the sub-hypergraph assigned

to them and there is no network overhead. For the global clustering decisions that

need more time, the performance would be much better on higher part numbers.

This topic will be investigated in the next section when evaluating the algorithms in

the cloud.

We have done some optimisations to resolve the above mentioned scalability issue.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.13: Comparing speedup of optimised PFEHG algorithm and the PHG algorithm
on CAGEXX and GL7DXX hypergraphs. The results are reported for 256-way partitioning.
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These optimisations are applicable when the hypergraph has very low CC such as

those reported above. First, the restriction on the number of hyperedges from one

coarsening level to the other is relaxed. Second, while hypergraphs are very regular

with a very few number of strongly connected components of vertices, we ignore the

rough set clustering and only perform local vertex matchings on processors. In this

situation, we notice that a good partitioning can be found using only the parallel

FM algorithm.

The results after this optimisations are reported in Fig. 5.13. For all of hyper-

graphs, the PFEHG speedup is up to 512 processors while the speedup of PHG is

limited to 128 and 256 processors. The results show that the performance improve-

ment is much better on GL7DXX hypergraphs than CAGEXX group such that GL7D15

and GL7D16 that have more irregular structure than the other two hypergraphs and

PFEHG gives very competitive scalability compared to PHG. Regarding GL7D17 and

CAGE14 hypergraphs, our evaluations show that the PFEHG algorithm spends most

of its time in the coarsening phase. While finding similar hyperedges in this phase

is based on the hashing, one solution for this could be using better hash functions

and a faster data structure for looking the hyperedges on the processors using their

global IDs5.

In our evaluations, we have used a collection of twelve hash functions to distribute

the hypergraphs once in the beginning of the algorithm in order to provide better

data locality. We have inspected the impact of the hashing on the performance as

the size of the hypergraph increases. We also evaluate the time that the PFEHG

algorithm spends in the initial distribution of hypergraphs. We evaluate how much

is the timing overhead for calculating using one hash function. For this purpose, we

select the internal hash function of Zoltan for the initial distribution and we compare

the performance to the previously proposed results that use all twelve hash functions

for the initial hypergraph distribution.

5The current implementation uses a Zoltan’s internal hash function for finding similar hyperedges.
Using complex hash functions is not a solution as the complexity of the hashing could be very time
consuming. Furthermore, the fast lookup is using unordered map for fast lookup of hyperedges on
the processors using their global IDs. This is also based on Zoltan’s internal hash function. We
have noticed that, as the number of hyperedges increases, this lookup could be very time consuming
as this is the case for the CAGE13 and GL7D17 hypergraphs.
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(a) (b) BCSSTK32

Figure 5.14: The speedup improvement of the PFEHG algorithm when only one hash
function is used for the initial hypergraph distribution. Improvements are only obtained
for small processor counts. The results are reported for 256-way partitioning.

On small hypergraphs, no performance degradation is observed. The only differ-

ences are observed for the GL7D17 and GL7D22 hypergraphs and their performance

changes are depicted in Fig. 5.14. According to the figures, the hash function has

higher impact on the performance when the number of processors is small. For

example, the hash time overhead is more than 130 seconds for GL7D17 hypergraph

when the number of processors is two. As the number of processors increases, the

average size of the sub-hypergraphs on processors decreases; therefore, calculating

the hash values for the initial distribution phase is done quicker as we increase the

number of processors and it gives only a tiny performance degradation if we use all

twelve hash functions. The major improvement is for the GL7D17 hypergraph, that

is between 2 and 64 processors and up to 40% higher speedup if we use only one

hash function.

Discussions

In the following we discuss the results of our evaluations regarding the parallel

algorithms.

1. Our evaluation shows that the scalability of the PHG algorithm is limited and

it generally saturates at 64 or 128 processors and so the scalability of PFEHG

is better on most of our test cases which is shown to give improved speedup

using up to 512 processors. We have shown that PFEHG demonstrates the

greatest advantage on hypergraphs with irregular structure such as those that
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represent social networks. It calculates partitionings with better partitioning

cut compared to PHG. On others, it is the case that PHG sometimes generates

better quality outputs. We note that PFEHG can be improved by increasing

the replication factor in our multiple bisection strategy (The quality improves

by up to 11 per cent).

2. While the algorithms are recursive bipartitioning algorithms, two processor

reconfiguration strategies are used in each recursion: bisection processor split-

ting and multiple bisection. The first is shown to provide better performance

on parallel hypergraph partitioners such as PHG. The latter, which is our

proposed strategy, executes multiple runs of the hypergraph partitioning in

parallel and on subgroups of processors independently. The strategy should

make sure that the hypergraph can fit into the memory of each processor

subgroup. There are two advantages of this method. First, it provides an

easy-to-implement trade-off between the quality and speedup (as discussed

in Section 5.3.3). Using more parallel runs, provides better quality but less

performance and scalability. Second, the strategy improves the scalability of

parallel hypergraph partitioners on irregular hypergraphs (parallel partitioning

algorithms do not scale well on these types of hypergraphs).

3. The only limiting factor of recursive bisectioning is the processor reconfiguration

time. In order to achieve performance improvement, the reconfiguration time

should be kept low. As we noticed, when we use large number of processors,

choosing a larger replication factor gives better performance improvement

in order to keep the reconfiguration time as low as possible. This situation

happened in our evaluations when we had more than 256 processors such that

choosing ψ = 4 gives better scalability than ψ = 2. In our implementations, we

use simple heuristics for the replication of hypergraph on processor subgroups.

Any investment in decreasing the reconfiguration time gives better performance

improvement and higher scalability and this is planned as future work.

4. As discussed earlier, the parallel refinement algorithm is the most difficult phase

of multi-level to parallelise as the proposed algorithms, such as FM algorithm,
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are inherently serial. We showed that any investment in the coarsening phase

(for making better clustering decisions) will leave less effort as well as less

restrictions in the refinement phase . This is opposite to the already proposed

parallel hypergraph partitioners such as PHG and Parkway that impose strict

limitations on the hypergraph in order to provide more speedup in the refine-

ment phase. For example, they allow only one-way move in each pass of the

algorithm and they avoid processor synchronisations. The idea for imposing

these restrictions comes from the parallel graph partitioning algorithms that

have a very different structure than hypergraph. By removing the restrictions

of previous algorithms (which are one-way moves and local balance constraints),

we showed that the new algorithm still generates good partitioning results

with comparable runtime. This idea is, in itself, something that merits further

research.

5. As discussed in Chapter 4, using global clustering decisions comes at a cost that

is increased running time. In the previous chapter, where we propose our serial

algorithm, we showed the superiority of FEHG and we identified the types of

the hypergraphs that can benefit the most from our serial algorithm. The same

results are reported here for the parallel algorithm. In Fig. 5.15 the runtime

of algorithms on different types of the hypergraphs is reported. The global

clustering decision is the main bottleneck. The difference in runtime between

PFEHG and PHG decreases by increasing the number of parts6. To solve

the issue, we suggest using multiple vertex matches instead of the pair-match

strategy. In Chapter 4, we showed that the multi-match strategy can improve

the runtime of the algorithm up to 30% on some of the hypergraphs. We expect

that the improvement should be higher in our parallel algorithm. The reason

is that matching cores in the first phase of our parallel matching algorithm

provides less cost than the second phase, which is global random matching.

6Our algorithm that is based on global vertex clustering decisions benefits more from increasing
the number of parts while other algorithms that are based on local clustering decisions, such as
PHG, benefit less.
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(a) LANDMARK (b) BCSSTK32

(c) CAGE13 (d) CH8-8-B5

(e) COND-MAT-2005 (f) GL7D15

Figure 5.15: The runtime of the parallel algorithms on HPC cluster. The results are
reported for 256-way partitioning. PFEHG gives higher runtime dues its global vertex
clustering algorithm and using pair vertex matches instead of the multi-match strategy.
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5.4 Hypergraph Partitioning in the Cloud

5.4.1 Why in the Cloud?

In Chapter 3.4, we discussed about the interest for moving scientific and distributed

applications into the cloud. The reason for this transition is the advantages that

the cloud provides for scientific applications such as elasticity, small start-up and

maintenance costs, dynamic resource allocation, and economies of scale and use

[MAB+10,YCD+11]. Cloud services are offered in virtualised form that is the enabling

technology of the cloud [BVS13]. Virtualisation, which is built on top of a physical

computing node, separates the node into one or more virtual instances and offered in

forms such as virtualised storage, and virtualised network. Despite these advantages,

the limited communication bandwidth of the cloud makes it less suitable for running

communication-intensive applications and they suffer from poor scalability in the

cloud [GKG+13].

The hypergraph partitioning with the load balance constraint provides an efficient

approach for reducing the communication volume and increasing the performance

of parallel applications [ÇA99,MAB+10,MLLS14]. These parallel applications can

benefit from hypergraph partitioning because partitioning an application before

running it in the cloud can lead to considerable performance improvements due

to savings in hardware and network resources usage. In this section, we discuss

the benefits of using hypergraph partitioning for running communication-intensive

applications in the cloud. We provide use cases and discuss why we need parallel

scalable hypergraph partitioners in the cloud.

The first use case is the parallel sparse matrix-vector (SpMV) multiplication,

one of the kernel operation in many scientific applications such as iterative solvers.

It is notorious for using a low fraction of peak processor performance [WOV+09].

The hypergraph partitioning can be employed to improve the performance of SpMV

operations because the hypergraph cut metric can exactly model the communication

volume between processors. It can effectively reduce the inter-processor communi-

cation volume between 30% and 38% on average [ÇA99]. As the limited network

resource of the cloud is the main scalability bottleneck [JRM+10], SpMV-based
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applications can gain considerable benefit from hypergraph partitioning. The same

argument can be made for all HPC applications modelled with hypergraphs.

As the second use case we discuss large-scale graph processing tools. Data is

often represented by large graphs that must be frequently analysed; for example,

Google’s PageRank calculations [BJKT05,LM11] or Facebook’s processing of its

friendship network (such as calculating the average number of friends for each

member). The graphs are distributed and processed between multiple systems and

there are scalable systems designed for processing them such as Pregel-like vertex-

centric large-scale graph processing tools [MAB+10] such Apache Giraph 7, which is

currently used at Facebook to analyse the social graph formed by users and their

connections. Partitioning the graph is shown to provide balanced resource utilisation

among processors and increases data locality with less network communication

[MLLS14,WXSW14]. While the first is important due to limited network resources

of the cloud, the second provides efficient resource utilisation of the shared resources

in the virtualised environment.

There are several graph partitioning algorithms for this purpose. Using the graph

partitioning tools such as Metis can provide considerable performance improvement

and scalability to these system compared to the random hash partitioning such as

works by Wang et al. [WXSW14], Chen et al. [CBL+14], and Ho et al. [HWL12].

These works are based on the serial graph partitioning. Two problems arise here.

First, the size of current graphs is very big and contain millions (or billions) of

vertices and edges and the capacity of serial algorithms is limited that emphasis the

need for parallel algorithms. Consequently, we need parallel graph algorithms such

as ParMetis. Second, as discussed in Chapter 3.3, there is a problem in modelling

group relations such that graphs cannot fairly capture group relationships and we

need a better representation of relations in big graph processing such as hypergraphs

[HC14]. To cover these issues, algorithms such as Spinner [MLLS14] are introduced

that is a parallel algorithm and is based on label propagation methods that provides

better results than Metis graph partitioner, but can not still capture and represent

7http://giraph.apache.org/.

http://giraph.apache.org/
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group relations as good as hypergraphs. It could be considered as a variant of the

hypergraph partitioner.

We summarise some of the advantages of hypergraphs that motivates using the

cloud for distributed applications as follows:

1. it provides less network utilisation while the hypergraph can exactly model the

communication model within a distributed application.

2. considering the network heterogeneity of the cloud and uneven communication

bandwidth, hypergraph partitioning employed with efficient mapping algorithms

can provide better network resource utilisation and performance optimisation.

3. the load balancing condition of hypergraph partitioning can deal with the

computational resource heterogeneity of the cloud including issues such as

multi-tenancy [GSKM13].

To sum it up, using the hypergraph partitioning, as discussed to be a much better

solution than the graph partitioning, provides lots of advantages for moving the HPC

and distributed applications into the cloud, those that have different characteristics

than web applications. The advantages can be summarised as follow.

1. Hypergraphs can exactly model the communication pattern in distributed

applications. Parallel applications can make better use of the limited network

resources of the cloud using hypergraph partitioning. The results are better

performance and scalability than random or graphs partitioners.

2. Considering the network heterogeneity of the cloud and uneven communication

bandwidth between computing nodes (for example: due to the hierarchical de-

sign of the cloud, there is higher communication bandwidth between computing

nodes in the same rack than the bandwidth available between two computing

nodes in two different racks [BCH13]). The hypergraph partitioning employed

with efficient mapping algorithms can provide better network resource utilisa-

tion and performance optimisation. It can be used to make better utilisation

of the uneven network heterogeneity in the hierarchical design. Example is the

work by Chen et al. [CYW+12].
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3. The load balancing condition of hypergraph partitioning can deal with the

computational resource heterogeneity of the cloud including issues such as

multi-tenancy [GSKM13]. This criteria provide a balanced distribution of the

work among the computing instances and better resource utilisation.

Partitioning the distributed application can be done in two ways: 1) before

transferring it into the cloud, and 2) in the cloud as a pre-processing step within the

application. While the first solution decouples the performance of the hypergraph

partitioning from the distributed application, it is not always feasible and practical

because it demands extra local resources (which is not always feasible). Therefore,

we focus on the second solution and investigate the challenge on the way. There is

an issue for the second solution. The overall runtime of the application is the sum

of the runtime of the distributed application and the hypergraph partitioning itself.

While the parallel hypergraph partitioning is a communication-intensive application,

running it in the cloud is challenging, suffers from poor scalability, and can increase

the overall runtime.

Due to the need for parallel scalable hypergraph partitioning algorithms in the

cloud, we investigate how our proposed algorithm scales up in the cloud compared

to the PHG algorithm. We identify challenges and problems on the way and provide

solutions. All of cloud’s limitations should be taken into account when we transfer

distributed applications into the cloud that is not a straightforward and easy task.

Sometimes the structure of the applications becomes a performance bottleneck. The

reader is referred to Chapter 3.4 for the details of the problems. Identifying the

characteristics of the distributed application before the transfer is crucial and they

are necessary in order to achieve cost-performance benefits. The same discussion

stands from algorithm design point of view. We will see in the next section how

these features are provisioned in our parallel algorithm.

5.4.2 System Configuration and Algorithm Parameters

We run our evaluations on a private cloud in the University of Mainz, Germany which

is controlled and managed by OpenStack. The cluster has 34 compute nodes in each
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rack. Each node has 2 PCPUs and each CPU has 8 cores, 64 GB of RAM and 250

GB of hard disk. The processor model of cores is Intel(R) Xeon(R) E5-2650 2.00GHz.

Nodes are connected by 1 Gbps Ethernet switches and networking is controlled with

OpenStack nova network management. Comparing to the Infiniband network in

Durham Hamilton cluster, this is much slower connectivity. For our evaluations, we

create a testbed with 16 Virtual Machine (VM) instances each having 4 cores, 8 GB

of RAM and 40 GB of hard disk. The operating system running on instances is

32-Bit Ubuntu 12.04 LTS. The Zoltan library is compiled and built with OpenMPI

version 1.8.2. To evaluate only the partitioning time without file system overheads,

we copy test data on the local file system of VMs.

The similarity threshold is calculated similar to the approach used for the evalua-

tions of algorithms in Durham HPC cluster with one difference; as network resources

are limited in the cloud, we calculate CC in the beginning of the algorithm and

its value is readjusted in each coarsening level. Furthermore, we use the history of

the CC for the upcoming recursions of the algorithm such that the average of the

CC over all coarsening levels is calculated. After each recursion, the CC for each

sub-hypergraph is the average CC history times the density of the sub-hypergraph8.

This way, we use less time in calculating CC in each recursion of the algorithm.

We set redistribution imbalance in Section 5.1 to 0.1 and a collection of twelve

hash functions are used for the hypergraph initial distribution (the same as our

configuration done in HPC cluster). The reader is referred to Appendix B.3.2 for the

details of the hash functions. The number of passes for the refinement function is set

to two (the same is done for PHG) and the token value is set to 16. This means that

processors can move a maximum of 16 vertices when holding the token. Minimum

subgroup pmin is set to 8 in multiple bisection. The value is selected because of the

slow network connectivity of the cloud compared to HPC cluster and in order to

have more data locality. The replication factor ψ is set according to the number of

processors and pmin. For example, for 16 and 32 processors, ψ would be 2 and 4,

respectively. PHG is initialised with default values using agglomerative clustering for

8The density is simply calculated as the number of pins divided by the number of hyperedges.



5.4. Hypergraph Partitioning in the Cloud 178

Table 5.2: PFEHG vs PHG runtime in the cloud for k = 256 with 1, 8, and 64 cores.
The values are reported in seconds.

cores=1 cores=8 cores=64

PFEHG PHG PFEHG PHG PFEHG PHG

NOTREDAME 37.25 22.84 14.53 9.26 44.49 392.3
AMAZON0601 104.6 36.27 23.3 10.67 85.83 283.9
BCSSTK32 9.54 4.05 1.97 1.21 26.41 14.95
CAGE13 134.76 80.45 32.55 18.54 78.7 209.2
CAGE14 613.1 349.72 196.34 87.74 267.34 466.95
CH8-8-B5 60.58 69.15 17.22 14.96 59.33 231.86
CNR-2000 67.81 15.05 20.77 8.5 126.42 421.13
COND-MAT-2005 4.6 2.16 1.89 0.98 17.02 12.89
GL7D15 137.88 139.74 27.3 35.94 69.51 528.84
GL7D16 431.62 411.06 96.38 94.73 136.7 575.75
GL7D17 1039.8 881.16 281.54 181.02 285.7 738.46
GL7D22 278.6 214.2 71.58 35.73 115.91 323.7
LANDMARK 9.87 12.32 1.72 4.98 8.13 124.83
RAIL4284 114.22 100.8 78.41 22.05 96.28 183.7

the vertex matching algorithm. The imbalance tolerance is set to 5%. Algorithms

are tested for 256 and 1024 part numbers and the reported results are the average of

10 runs for each algorithm.

5.4.3 Scalability

The scalability of algorithms in the cloud is evaluated on the test hypergraphs

depicted in Table 5.1. In order to measure scalability, we compare the speedup of the

algorithms. The speedup is defined as the ratio of partitioning time on one processor

to the time required to solve the partitioning on the parallel system. An algorithm

is considered to be more scalable if the speedup improvement lasts longer as we

increase the number of processors.

Tables 5.2 compares the runtime of PFEHG to PHG on 1, 8, and 64 processors

and 256-way partitioning. The complete evaluation results are depicted in Fig. 5.16

to Fig. 5.19. According to the results, the PHG speedup is achieved up to 4 and, in

some cases, up to 8 virtual machine cores. It achieves very poor speedup when the

number of cores exceeds the number of cores per virtual machine, that is four cores.
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After eight core, the runtime of PHG increases dramatically such that the run time

is incredibly higher than the runtime on one core. The increase in runtime for the

two largest hypergraphs are 34% for GL7D17 and the runtime increases by more than

2× for the CAGE13 hypergraph.

On the other hand, PFEHG gives much better results. On small-sized hyper-

graphs, it gets better results than PHG such that it gives improved speedup up

to 8 cores for all hypergraphs. The speedup starts to increase on 16 cores onward.

On most of hypergraphs, the algorithm gets better runtime compared to the serial

algorithms. Similar to PHG, the algorithm gets better performance and scalability

as the size of the hypergraph increases and it can be inferred from GL7DXX group.

The algorithm gets improved speedup for up to 32 cores on the GL7D17 hypergraph

that is 4.6×. The observed higher runtime for PFEHG on 8 cores compared to PHG

is the discussed in the previous section and a solution is proposed that is making

multi-match decisions instead of the using pair-matches. This strategy can improve

the runtime up to 30% in the serial FEHG algorithm, as discussed earlier, and the

improvement can be higher in the parallel algorithm.

As discussed earlier, serial hypergraph partitioning algorithms generate smaller

partitioning cuts compared to parallel algorithms. The reason is that processors

have less local data for making partitioning decisions as the number of processors

increases. In order to evaluate the quality, we are looking for algorithms that give

comparable quality as serial algorithms. The changes in partitioning cuts for different

number of processors are reported in the figures. Both PFEHG and PHG algorithms

give good stability of the partitioning cut with increasing the number of processors.

According to the results on our HPC cluster, PFEHG gets better partitioning quality

on irregular hypergraphs; for others, PHG sometimes gets better quality.

One interesting result is observed for RAIL4284 hypergraph that has average

vertex degree 2633 compared to the average hyperedge size 10 and in this situation,

PFEHG spends more than 95% of its time in calculating HCG. In this type of

hypergraph, a near optimal partitioning on the hypergraph can be calculated by

simply running FM algorithm on it without going through any coarsening levels.

As mentioned in Chapter 3.1.1, one of the targets of the multi-level approach is to
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(c) (d)

(e) (f)

(g) (h)

Figure 5.16: The quality and speedup of the algorithms in the cloud for k = 256. The
partitioning cut is normalised with the average best cut obtained for each algorithm.
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Figure 5.17: The quality and speedup of the algorithms in the cloud for k = 256. The
partitioning cut is normalised with the average best cut obtained for each algorithm.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 5.18: The quality and speedup of the algorithms in the cloud for k = 256. The
partitioning cut is normalised with the average best cut obtained for each algorithm.
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(a) (b)

(c) (d)

Figure 5.19: The quality and speedup of the algorithms in the cloud for k = 256. The
partitioning cut is normalised with the average best cut obtained for each algorithm.

increase the average vertex degree in the coarsened hypergraph. The reason is that

in high connectivity space, the iterative move-based algorithms can get near-optimal

solutions and the possibility of getting stuck in local minima is very low. Considering

this fact, we have optimised its running time by 95% from 1, 111 seconds to only

114.22 seconds on one processor. In the parallel algorithm, the runtime improves

more than 50%.

The proposed recursive bipartitioning algorithms are based on the divide-and-

conquer strategy for the partitioning and use bisection processor splitting in each

recursion as explained in Section 5.2.4. As the number of processors goes beyond four9,

the parallel partitioners start using network resources. The network resources is only

used for the first log(p/4) recursions if p > 4; then all communications are done locally.

Consequently, the partitioning process in the cloud can be divided into two epochs.

In the first epoch, which is first log(p/4) recursions for our cloud configuration, the

performance degrades due to slow network bandwidth of the cloud. In the second

9The number of processing cores per virtual machine is four.
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epoch, all communications happen locally and we expect performance improvement.

Overall, the parallel partitioning algorithm gives performance improvement if the

decrease in runtime in the second epoch compensates the increased runtime of the

first epoch. The PHG algorithm is shown to be unable to overcome the bottleneck

in the first epoch; therefore, the runtime starts to increase as soon as the number of

processors goes beyond four.

According to this discussion, increasing the number of parts should have positive

effect on the performance. To investigate this, we increase the number of parts from

256 to 1024 and we have evaluated the algorithms and their performance. We did

not observe any performance improvement for the PHG algorithm; therefore, only

results for the PFEHG algorithm is reported. For hypergraphs including BCSSTK32,

CH8-8-B5, and COND-MAT-2005, PFEHG gets 17%, 33%, and 5.5% performance

improvement on 8 cores, respectively. The other results are reported in Fig. 5.20.

On all large hypergraphs, the performance improvement is between 26% to 33% on

16 cores.

Finally, we investigate the effect of the vertical scalability on the performance

of the algorithms by using higher-end compute nodes in the cloud. Although

previous research reports variability of application runtime in the cloud [GKG+13],

we expect that this effect is smaller in the private cloud and low scale simulations.

We build a second testbed using eight VMs each having eight processing cores. In

this configuration, more MPI communication is managed through shared memory

communications and less network resources would be used. While in 2D distribution

network communications are independent, to some extent, from the vertex and

hyperedge distribution10, we can provide an approximate analysis of the performance

improvement.

Assume that we have 32 processor cores. In the first evaluation testbed, VMs

arrange in 2× 4 mesh each having 4 processor cores. In the second testbed, VMs

arrange in a 2× 2 mesh each have 8 processor cores. In the first, 33% and 28% of

row and column communications are local, respectively. In the latter, the percentage

10As we explained previously, a vertex/hyperedge still needs to take part in collective row/column
communications even if it has no pins on a specific processor
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(a) (b)

(c) (d)

(e) (f)

Figure 5.20: Comparing the speedup of the PFEHG algorithm in the cloud for 256-way
partitioning versus 1024-way partitioning.
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of local row communications does not change, but the percentage of local column

communications increases to 42% because we have less network barrier on the way.

It means that the column communications improves by 33.3%. Evaluating PHG

proves this fact. The performance of the algorithms improves between 1% to 53%

with the average improvement of 31.7% on all hypergraphs.

Conducting the same analysis on 1D would be difficult because the communication

patters depends on distribution of the hypergraph on the processor set. To simplify

the analysis, we assume that all 32 processors are arranged in one row and hyperedges

have at least one pin on every processor. With this simplified assumption, every

hyperedge and vertex will take part in collective communications. In this situation,

the percentage of local messages changes from 9% to 21% when we change the

number of VM cores from four to eight that is 57% improvement; this is the

maximum improvement that can be achieved. Among the tested hypergraphs, the

CAGEXX hypergraphs have more than 95% external hyperedges when distributed on

32 processors. We set pmin = 16 for multiple bisection and other parameters are

unchanged. The performance improvement for this group is shown to be 53% and

49% for CAGE13 and CAGE14 hypergraphs, respectively. The value is smaller on other

hypergraphs with the average value of 18.6%. The evaluation shows that higher

network usage for 2D distribution and employing higher-end processing nodes provide

more benefit for 2D configuration than 1D distribution.

5.4.4 Discussions

Although PFEHG gives much better speedup (up to 32 cores) compared to the PHG

algorithm (up to 8 cores), the scalability of the parallel hypergraph partitioning

algorithms is still limited in the cloud. There are two aspects of the PFEHG algorithm

that are promising: First, the scalability of the algorithm improves as the size of the

hypergraph increases so hypergraph partitioning could replace graph partitioning

algorithms and random load balancers in the cloud. In addition to the advantages of

the hypergraph partitioning that are discussed earlier, the hypergraph partitioning

provides better cost/performance ratio and better resource utilisation in the cloud

for large social graphs or HPC applications. This can make cloud more suitable
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for running large scale HPC applications which is previously showed to be non-

advantageous as reported by Evangelinos and Hill [EH08]. Second, the algorithm’s

performance improves as the number of parts increases. If the number of parts

is equal to the number of processors in the distributed system, the algorithm will

give better performance and support in exascale systems and match the horizontal

scalability of the cloud.

The biggest challenge of PHG is the 2D distribution. Although this can be

effective in HPC clusters with high speed networks, it performs poorly in the cloud

because of limited network resources.Communication patterns are independent of

the structure of the hypergraph during the partitioning; for example, if a hyperedge

does not have any pins on a processor block it still needs to participate in column

communications. The distribution is not suitable for the cloud and the algorithm

experiences increases in runtime as soon as it uses network resources.

According to our discussion in Chapter 3.4, applications that stress global com-

munications give the worst performance in the cloud and those applications that

communicate large messages (like BSP-like communication) give better performance

than those that communicate more regularly with short messages [JRM+10]. Al-

though the communication layer of Zoltan is done in BSP-like MPI communications,

which suits the cloud, and 2D distribution breaks the processor into row and column

processors, it still uses global network communications when the number of processors

is large. For example for 32 processors, PHG arranges the processors in an 8 × 4

mesh. In this arrangement, the row communications have a network barrier but

column communications are done locally. If the hypergraph has fewer hyperedges

than vertices, then swapping the columns and rows gives better performance; there-

fore, better strategies are required for processor distribution and the distribution of

hypergraph on the two-dimensional matrix

An advantage that PFEHG has over PHG is the multiple bisection strategy. First,

it provides an easy-to-apply trade-off between performance and quality. Second, the

poor scalability of hypergraph partitioning with increasing number of processors is

not only related to the algorithm itself but also to the structure of the hypergraph. It

breaks the problem into smaller subproblems and gives better data locality and less
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network communication. The only overhead is the processor reconfiguration time

and it give even better results by using superior heuristics to keep this overhead low.

Third, the performance for k-way partitioning improves as k increases as the worst

bottleneck is in the first few recursions of the algorithm. Passing this limit seems

to be impossible for PHG, while the multiple bisection strategy helps PFEHG to

overcome this bottleneck. Considering the characteristics of the cloud, the recursive

bipartitioning algorithms get better performance than direct k-way partitioning

algorithms as they successively break the problem into smaller subproblems and

the network communication becomes more localised. In addition, the optimisations

proposed for PFEHG are not applicable to direct k-way partitioning algorithms.

In addition, we argue that recursive bipartitioning algorithms could give better

speedup in the cloud than the direct k-way partitioning solutions for two reasons.

First, the problem is progressively break into smaller subproblems that runs indepen-

dently in parallel by smaller sets of processors. Second, network communications are

break into local messages as we proceed to the the partitioning. These optimisations

are not possible for direct k-way algorithms.

The last discussion is that relying solely on the hypergraph partitioning cannot

improve performance of distributed applications in the cloud. The structure of

the application that employs the hypergraph partitioning is also important; for

example, those using collective communications through large local messages gives

better performance than those global and short messages. We refer to the work by

Huber et al. [HBD+12] that investigates the scalability of the HYpergraph-based

Distributed Response-time Analyser (HYDRA) [DHK03] in the cloud. The operation

uses sparse matrix-vector multiplication as a core operation. Therefore it is a good

candidate for hypergraph partitioning. The HYDRA is using hypergraph partitioning

for distributing the sparse matrix on the processors. The evaluation in the HPC

cluster shows improved scalability and performance, but they report very poor

performance and scalability of HYDRA on the cloud. After analysing their work,

we found that the reason could be the use of non-blocking MPI communications

between the processors in order to decouple communication and computations. As

this kind of communication is not cloud-friendly, it could be the reason for poor
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performance. In contrast, the Pregel-like graph processing tools, which is based on

BSP-like communication using super-steps, show major performance improvement in

the cloud when the input data is partitioned using graph or hypergraph partitioners

[MAB+10,WXSW14,CBL+14,HWL12].



Chapter 6

Conclusions

In this chapter, we provide a summary of the thesis and discuss the evaluations of

previous chapters. The opportunities for the future work are also discussed at the

end of the chapter.

6.1 Summary of Achievements

Chapter 1 introduced the partitioning and load balancing problem, the advantages

of hypergraphs compared to graphs, the motivation of the thesis, and the summary

of objectives and contributions.

In Chapter 2, hypergraph and the hypergraph partitioning problem were defined.

In practical applications, the hypergraph partitioning problem requires two objec-

tives: the cost objective, which measures the quality of the partitioning, and the

balance constraint. Obtaining the optimum partitioning solution considering these

objectives is NP-Hard and we need polynomial time heuristic algorithms for practical

applications. The rough set clustering theory was also defined in this chapter. It

was discussed that not all information in the rough set theory, which are used for

data clustering, are important and one can remove redundancies to make better

clustering decisions. Removing redundancies is known to be NP-Hard and it is one

of the computational bottlenecks of the rough set clustering. The chapter finished

by introducing the cloud and its architecture, the specifications, and services. It is

discussed that some specifications of the cloud such as cost effectiveness, dynamic

190
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resource allocation, and economies of scales, are the reasons that make the cloud

useful for running scientific applications.

Chapter 3 was dedicated to the literature review. We categorised the hypergraph

partitioning algorithms according to different aspects. The specifications of each

category including their advantages and drawbacks were investigated. We used the

discussions in this chapter to build the framework for our partitioning algorithms

which are multi-level and recursive bipartitioning. The available hypergraph parti-

tioning tools were also introduced. We found that there is no general framework for

hypergraph partitioning and all the tools use different interfaces, various input for-

mats, etc., and there is a need for a consensus. Furthermore, we have investigated the

challenges for running scientific applications in the cloud, such as the virtualisation

overheads, and we studied how the structure of the parallel application is important

when run in the cloud such as the communication pattern, and data locality. The

discussions in this chapter are used for designing our parallel hypergraph partitioning

algorithm.

In Chapter 4, we proposed our serial multi-level hypergraph partitioning algorithm

based on feature extraction and attribute reduction. The algorithms is known as

Feature Extraction Hypergraph Partitioner (FEHG) algorithm. In the serial algorithm,

the hypergraph was first transformed into an information system according to the

rough set theory definition. Then the rough set clustering techniques were used

for finding pair-matches of the vertices during the coarsening phase. Because the

attribute reduction in the rough set clustering is a known NP-Hard problem, we

overcame the problem by introducing the Hyperedge Connectivity Graph (HCG) that

clusters the hyperedges using different similarity metrics and a similarity threshold.

The HCG removed less important attributes and features from the information

system representing the hypergraph. The FEHG algorithm provided a trade-off

between global and local vertex matching decisions by categorising the vertices into

core and non-core vertices.

We have evaluated FEHG against the state-of-the-art hypergraph partitioning

algorithms including hMetis, PaToH, and PHG in the Zoltan tool. We built the test

hypergraphs including different vertex and hyperedge weights (to model different
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scenarios in real applications). The simulation results showed very good partitioning

quality of our algorithm on the tested hypergraphs. Furthermore, FEHG showed

incredible quality improvement for partitioning hypergraphs with irregular structure.

One of the drawbacks of the local vertex matching decisions is that they perform

completely differently under various problem circumstances and their behaviour can

change based on the structure of the hypergraph under investigation. The worst

case was observed for PaToH that generated very good and competitive partitioning

quality compared to our algorithm when the hyperedge weights were assumed to be

unit, while it gave much worse quality when the hyperedge weights were driven by

the hyperedge sizes.

Evaluation of the runtime of the algorithms has shown that the FEHG, despite

using global clustering decisions, runs slower than PHG and PaToH, but it runs

faster than hMetis, the popular hypergraph partitioner. The runtime specification

of FEHG is controlled by the runtime parameters that can be set by the user. The

algorithm runs faster by fine tuning these parameters.

Chapter 5 proposed an extended version of the FEHG algorithm known as the

Parallel Feature Extraction Hypergraph Partitioner (PFEHG). The algorithm was

designed for scalability. The algorithm applied a new one-dimensional hypergraph

distribution among processors or the balanced pin distribution. The distribution

overcame the high memory requirement of previous 1D distributions by avoiding

hyperedge replication. It also reduced the communication overhead of collecting

information about external hyperedges in each coarsening level by employing hash

functions and fast intersection methods.

The parallel coarsening phase was composed of three phases. In the first phase, the

core vertices were found and matched using parallel rough set clustering techniques.

The rest of the vertices were matched using a randomised algorithm. First the

algorithm searched for global matches. If a vertex could not find a global match,

PFEHG would try to find a local match for it on the local processor. Furthermore, a

new parallel synchronisation-based FM algorithm was proposed for the refinement

phase. The algorithm was designed based on the observations, characteristics, and

the evaluation of the serial FM algorithm. Our analysis showed that the previously
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proposed parallel FM algorithm (which is based on parallel refinement algorithms

for graph partitioning) does not perform well on hypergraphs and it has several

limitations. By removing some restrictions of previous algorithms (such as one-

way moves and local balance constraints), we showed that the new algorithm still

generates good partitioning results with comparable runtime. This idea was, in itself,

something that merits further research.

As PFEHG is a recursive bipartitioner, two different processor reconfigurations

were provided in each recursion: bisection processor splitting and multiple bisection.

These reconfigurations have increased data locality in the cloud while preserving

the partitioning quality. The latter, multiple bisection, is our proposed strategy. It

had two advantages: it gave an easy-to-apply method to make a trade-off between

quality and scalability, and it improved the scalability of parallel partitioners on

irregular hypergraphs (parallel partitioning algorithms do not scale well on these

types of hypergraphs).

The algorithm was evaluated against PHG, the state-of-the-art parallel hypergraph

partitioner in the Zoltan tool. The tested hypergraphs were chosen from real

applications including very large hypergraphs. The algorithms were evaluated in

the high speed HPC cluster using up to 1024 processing nodes. The algorithms are

compared based on their partitioning qualities on different hypergraphs as well as

their scalability. We have shown that PFEHG demonstrates the greatest advantage

and generates better partitioning results on hypergraphs with irregular structure. On

others, it is the case that PHG sometimes generates better partitioning qualities. The

scalability of PFEHG was shown to be better on most of the evaluated hypergraphs.

We discussed that the PFEHG algorithm can be further improved and we have

made suggestions for further work. For example, we have provided solutions in

order to improve the runtime of PFEHG algorithm by using multi-vertex match

instead of pair-match in the coarsening phase. We have also identified a problem

with the hash-lookup of the hyperedges on the processors that prevents scalability

for very large hypergraphs. We suggested using better data structures that allow

faster lookup.

Due to the growing applications of hypergraph partitioning and the interest for
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transferring HPC and distributed applications into the cloud, we have evaluated

the performance of the parallel hypergraph partitioning algorithms in the cloud.

The evaluations showed that the performance of parallel hypergraph partitioning

algorithms suffers from the limited network resources of the cloud and the proposed

algorithms give much worse scalability in the cloud than the HPC cluster. We

showed that PFEHG can achieve much better scalability and on up to 32 processor

cores compared to 8 core scalability achieved by PHG. The main reason was using

customised one-to-one communication pattern in 1D dimensional distribution of the

hyeprgraph in PFEHG and our proposed multiple bisection processor reconfiguration

strategy. Despite the performance improvements that PFEHG provides, the scala-

bility of parallel hypergraph partitioning is still limited in the cloud. In addition,

it is investigated that the 2D hypergraph distribution strategy performs poorly in

the cloud and some optimisations should be done to make it more cloud-friendly. In

addition, the recursive bipartitioning algorithms get better performance in the cloud

than direct k-way partitioning algorithms.

The algorithms were implemented as a new hypergraph partitioning package in

the Zoltan tool. The details of the implementation are outlined in Appendix B of

the thesis. The algorithms were implemented to use the same programming interface

as Zoltan which makes it easy to compare them with other partitioning algorithms.

The source code of the algorithm was made available online.

6.2 Future Work

The outline for future work is summarised as follows. Some of the ideas in this

section regarding the parallel algorithm in Chapter 5 are discussed in the end of the

evaluation sections in the chapter.

1. In the coarsest level of the hypergraph partitioning tool, we used a limited

number of simple heuristics for the initial partitioning of the hypergraph.

Extending the partitioning package to have interfaces to other serial hypergraph

partitioning tools is planned.



6.2. Future Work 195

2. Our algorithms are recursive bipartitioning algorithms. Implementing algo-

rithms to support direct k-way partitioning is an ongoing work and it is under

implementation.

3. The initial distribution of the hypergraph on the processor set is very important.

A good distribution would save lots of network overhead in the later levels

of the partitioning process. Currently, we have resolved the problem with

a collection of hash functions. Giving a good distribution using hashes is

hypergraph dependant and increasing the number of hash functions would not

make any difference in general. We plan to find a better solution for this.

4. Similar to the previous case, the intersection of the hyperedges in the parallel

coarsening phase was calculated using fast intersection methods based on hash

functions. Selecting a good hash function that works well for all hypergraphs

which also give better intersection precision is difficult. Using other hash-based

algorithms such as Locality Sensitive Hashing (LSH) was not a good solution

as it is a runtime bottleneck (even using a small number of signatures for every

hyperedge would cause a major increase in the runtime). In addition, it did not

make any improvements to the quality. Improving this would have a positive

effect on the performance of the partitioning and it is planed as future work.

5. A 2D hypergraph distribution strategy, albeit having some drawbacks such

as decreased data locality and overhead in communications that are both

disadvantages in the cloud, is a promising solution for initial hypergraph

distribution. An interesting work is to evaluate how the multiple bisection

reconfiguration technique, which is being used in our algorithm, affects the

performance of two-dimensional distribution in the cloud.

6. The evaluation of the algorithms are done in the private cloud that provides

higher customisation and better performance than the public cloud. Evaluating

the algorithm on public clouds such as Amazon EC2 is planned.

7. Currently, parallel hypergraph partitioning algorithms are implemented using

MPI. Considering the structure of the recent cloud and HPC clusters, which
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have lot of support for shared memory programming, an interesting work

would be an implementation that is based on both MPI and shared memory

programming model. This implementation would provide better memory usage

and probably better performance as communication and computations can

overlap during the coarsening phase. We believe that the main problem would

be the refinement phase. The idea is worth further investigation.

8. In our evaluations in the cloud, we have copied the input hypergraph on the

local file system of virtual machines. As we have evaluated the algorithms for

the comparison purposes, it did not create a problem because the overhead

stays the same for both algorithms. A real evaluation is to consider the file

system overheads in the cloud and get a real estimation of running hypergraph

partitioning in the cloud.



Appendix A

Benchmark Specification

The list of hypergraphs used for simulation purposes in the thesis is depicted in

Table A.1. The data is collected from the University of Florida Sparse Matrix

Collection [DH11]. It is a large database of sparse matrices from real applications.

It provides a robust basis for experimental evaluations, while the simulation results

proposed by using random generated matrices are not always reliable as their structure

might be different from the structure of real applications. The database includes

sparse matrices from a wide range of applications such as structural engineering,

optimization, circuit simulation, computational fluid dynamics, network graphs,

social sciences, model reduction, electromagnetics, semiconductor devices, robotics,

etc. The matrices are provided in there different formats: Matlab, Rutherford/Boeing,

and Matrix Market (MM) formats. In our simulations we have used the Matrix

Market format. Each matrix includes a main file describing the matrix and it has

*.mtx extension. Some of the matrices have xyz coordinates file, which is not being

used in our work as the target of the thesis is not geometric hypergraph partitioning.

Each sparse matrix from the database is treated as the hypergraph incident matrix

with the vertices and hyperedges as rows and columns of the matrix, respectively.

This is similar to the column-net model proposed in [ÇA99]. The hypergraphs have

different specifications and they are chosen from variable applications with different

sizes, symmetrical structure and number of strongly connected components. The

description of the hypergraphs is as follow.

• AS-22JULY06 contains a symmetrized snapshot of the structure of the Internet

197
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at the level of autonomous systems, reconstructed from BGP tables posted at

archive.routeviews.org.

• CELEGANSNEURAL describes a weighted, directed network representing the neural

network of C. Elegans. The data were taken from the web site of Prof. Duncan

Watts at Columbia University, http//cdg.columbia.edu/cdg/datasets.

• NETSCIENCE contains a co-authorship network of scientists working on network

theory and experiments.

• PGPGIANTCOMPO is a graph of the largest component of the network of users of

the Pretty-Good-Privacy algorithm for secure information interchange.

• GUPTA1 is a graph from optimization problem and represents a linear program-

ming matrix A ∗ AT .

• MARK3JAC120 is Jacobian from MULTIMOD Mark3 from economical problems.

• NOTREDAME-actors is a bipartite co-stardom network with nodes of two types

actors and movies such that an actor and a movie are connected by an edge if

the actor was in the movie. NOTREDAME is a similar bipartite graph shows the

web page network of nd.edu. While the NOTREDAME hypergraph has smaller

size than the NOTREDAME-actors hypergraph, the first is used for evaluating

serial algorithms and the latter is used in parallel algorithm evaluations.

• PATENTS-MAIN is based on the The NBER U.S. Patent Citations Data File,

version 2001. These data comprise detailed information on almost 3 million

U.S. patents granted between January 1963 and December 1999, all citations

made to these patents between 1975 and 1999, and a reasonably broad match

of patents to Compustat (the data set of all firms traded in the U.S. stock

market).

• STD1-JAC3 comes from computer aided chemical simulation and shows the

graph of a chemical process simulation.

• DELAUNAY-N16 is from computational geometry and shows the triangulations

of random points in the plane.

archive.routeviews.org
http//cdg.columbia.edu/cdg/datasets
nd.edu
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• AMAZON0601 is a network created by crawling the Amazon website. It shows the

frequency by which items and features from Amazon are bought together by

customers. If an item (row number) is frequently co-purchased with a product

(column number), the corresponding item in the matrix contains a non-zero

value.

• BCSSTK32 is from structural engineering and shows the stiffness matrix for

automobile chassis.

• CAGExx is a model for DNA electrophoresis in which a matrix element aij

shows the probability that a polymer of length xx in state i moves to state j.

• CH8-8-b5 is a linear algebra problem and it is for simplicial complexes from

Homology from Volkmar Welker.

• CNR-2000 is a very small matrix generated by crawling the Italian CNR domain

which aims to gather large data sets to study the structure of the web domain.

• COND-MAT-2005 is the collaboration network of scientists posting preprints on

the condensed matter archive at www.arxiv.org.

• LANDMARK is a matrix for least square problems.

• RAIL4284 is a set covering problem on the Italian railroad network.

• GL7Dxx are differentials of the Voronoi complex of perfect forms of rank 7

mod GL-7(Z) equivalences, (related to the cohomology of GL-7(Z) and the

K-theory of Z).

The statistical specifications of the hypergraphs are depicted in Table A.2. Hy-

pergraphs have a skew in vertex degree (like graphs) and a skew in edge cardinality

(unlike graphs). The specification includes the number of isolated vertices, the mean

vertex degree and hyperedge size and their standard deviation. The number of

isolated vertices are the number of vertices that are not incident on any hyperedge.

The partitioning of these vertices is easy as they do not have any effect on the

partitioning cut. These vertices can be used to alleviate the balancing constraint

and generate better partitioning qualities.

www.arxiv.org
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Table A.2: The statistical specification of the hypergraphs depicted in Table A.1.

Hypergraph |V | ISO1 vDegree2 vDegree STD3 eSize4 eSize STD5

CNR-2000 325,557 82,615 9.46 18.47 16.36 287.24
AS-22JULY06 22,963 451 2.03 2.16 21.99 104.19
CELEGANSNEURAL 297 23 7.37 6.96 8.86 7.22
NETSCIENCE 1,589 556 1.48 1.88 4.13 3.42
PGPGIANTCOMPO 10,680 4,055 1.94 4.61 5.49 7.03
GUPTA1 31,802 12 31.06 13.23 48.63 403.36
MARK3JAC120 54,929 0 6.23 4.35 6.23 6.61
NOTREDAME 325,729 193,262 2.43 5.03 8.36 65.88
PATENTS-MAIN 240,547 71,743 1.97 2.77 4.98 5.15
STD1-JAC3 21,982 2 66.18 169.32 69.80 132.33
COND-MAT-2005 40,421 3,731 4.16 4.69 9.04 13.29
DELAUNAY-N16 65,536 8,760 2.82 1.82 3.80 1.64
AMAZON0601 403,394 1,002 8.26 2.81 9.56 16.13
BCSSTK32 44,609 0 23.08 10.10 23.15 10.39
CAGE13 445,315 0 16.80 5.13 16.80 5.13
CAGE14 1,505,785 0 18.02 5.37 18.02 5.37
CH8-8-b5 564,480 0 6 0 9 0
LANDMARK 71,952 0 16 0.01 431.17 140.63
NOTREDAME-actors 392,400 10,181 3.72 10.28 12.33 11.82
RAIL4284 4,284 4 2632.95 4209.25 10.33 1.79
GL7d15 460,261 2 13.21 2.37 35.48 14.24
GL7d16 955,128 1 15.17 2.11 31.48 11.37
GL7d17 1,548,650 1 16.77 1.98 27.20 8.87
GL7d22 349,443 0 23.61 9.01 10.03 2.22
1 ISO shows the number of isolated vertices.
2 vDegree is the mean vertex degree in the hypergraph.
3 vDegree STD is the standard deviation of the vertex degrees.
4 eSize is the mean hyperedge size in the hypergraph.
5 eSize STD is the standard deviation of the hyperedge sizes.



Appendix B

Programming Interface

B.1 Introduction

Our hypergraph partitioning algorithms have been implemented as a new library

package inside the Zoltan [San14b] tool from the Sandia National Labs. The library

is implemented in ANSI C with interfaces for C++ and Fortran (They are only a

wrapper around the C code). It is a toolkit developed for scientific computing and

includes the following packages.

1. Dynamic load balancing and parallel partitioning that includes geomet-

ric, hypergraph and graph partitioning methods.

2. Data migration tools for moving data from old partitions to new partitioning

when the partitioning is done.

3. Parallel graph colouring for 1-distance and 2-distance parallel graph colour-

ing.

4. Distributed data directories that is scalable and distributed directory

management.

5. Unstructured communication package for unstructured BSP-like MPI

communications between processors.

6. Dynamic memory management tool for dynamic memory allocations and

memory debugging.

202
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The complete reference about Zoltan programming interface and how to build the

library can be found from the developer’s web page at http://www.cs.sandia.gov/

zoltan/ug_html/ug_intro.html. The target of this appendix is not to propose

Zoltan in detail. The main focus of this appendix is to explain the implementation

details of our rough set clustering based hypergraph partitioning algorithm and the

runtime parameters of our algorithms. Consequently, when proposing Zoltan features

and functions, we depict only the function list that are necessary for our purpose.

Our algorithm is implemented as part of load balancing and parallel partitioning

package in Zoltan. The MPI communication between the processors in the parallel

algorithm is done through the unstructured communication package of Zoltan. The

other packages of Zoltan are not used in our implementation.

Zoltan is designed to run on parallel computers and clusters of workstations. The

most common builds and installations of Zoltan needs the following.

• ANSI C or C++ compiler.

• MPI library for message passing (version 1.1 or higher), such as MPICH,

OpenMPI or LAM.

• A Unix-like operating system (e.g., Linux or Mac OS X) and gmake (GNU

Make) are recommended to build the library.

• A Fortran90 compatible compiler is required if you wish to use Zoltan with

Fortran applications.

In the following, we provide a brief introduction on how to use Zoltan for hyper-

graph partitioning and then we describe algorithm specific parameters. Functions

are proposed in C or C++ syntax.

B.2 Zoltan at a Glance

A nice feature of Zoltan is that it does not impose neither any restriction on the

format of the data representation nor requires any specific data structure when the

input hypergraph is provided to the Zoltan. The user provides callback functions

http://www.cs.sandia.gov/zoltan/ug_html/ug_intro.html
http://www.cs.sandia.gov/zoltan/ug_html/ug_intro.html
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for the library. Zoltan queries the application for the required data; therefore, the

application should provide these query functions for the Zoltan. We refer to these

user provided functions as query functions.

Query functions return information about only on-processor data and they should

NOT contain processor communications as each processor can call a specific query

function several times; therefore, having communication inside the query functions

may cause Zoltan to halt because not all processors may contribute in the requested

MPI communication. There are two types of query functions in Zoltan, general

Zoltan query functions and migration query functions. The latter is not

explained here as we are not using the migration functions.

The query functions have a function type, describing their purpose. Function

can be registered by calling either Zoltan Set Fn or Zoltan Set <zoltan fn type> Fn.

The first function needs another argument, represented as fn type, that shows the

function type, while in the latter, the function type is implicit in fn ptr parameter.

Furthermore, a query function, when called by a processor, can return information

about a list of objects on the local processor (referred as list-based functions) or an

individual object. Users can provide either version of the query function and they

do not need to provide both. Zoltan calls the list-based functions with the IDs of

all objects needed; this approach often provides faster performance as it eliminates

the overhead of multiple function calls. List-based functions have the word MULTI

in their function-type name. If, instead, the application provides iterator functions,

Zoltan calls the iterator function once for each object whose data is needed. This

approach, while slower, allows Zoltan to use less memory for some data.

Many of the functions have both global and local object identifiers (IDs) in their

argument lists. The global ID is unique among all processors and used for global

identification of the objects. The local IDs are for the convenience of the application

and they are not used by the Zoltan library1. All of the functions have, as their

first argument, a pointer to data that is passed to Zoltan through Zoltan Set Fn or

1Zoltan assigns its own local ID to the objects while the program is run. The local ID is solely
for the application use. The user may provide both Global and local ID for each objects. The local
ID may save some time while reading the input data by Zoltan as the program does not need to
refer to a global list for accessing some information.
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Zoltan Set <zoltan fn type> Fn. This data is not used by Zoltan. A different set of

data can be supplied for each registered function. For example, if the local ID is an

index into an array of data structures, then the data pointer might point to the head

of the data structure array.

Every function returns an error code in Zoltan. The error handling in Zoltan is

local. When a processor returns an error, other processors might not be aware of

the error returned by the processor. Therefore, debugging of the parallel code is not

convenient and sometimes complicated. The error codes of Zoltan are described as

follows:

ZOLTAN OK

function returned without warnings or errors.

ZOLTAN WARN

function returned with warnings. The application will probably be able to

continue to run.

ZOLTAN FATAL

a fatal error occurred within the Zoltan library.

ZOLTAN MEMERR

an error occurred while allocating memory. When this error occurs, the library

frees any allocated memory and returns control to the application. If the

application then wants to try to use another, less memory-intensive algorithm,

it can do so.

The behaviour of Zoltan is controlled by several parameters and debugging-output

levels. These parameters can be set by calls to Zoltan Set Param. Reasonable default

values for all parameters are specified by Zoltan. Parameters are categorised as

general ad algorithm specific parameters. General parameters are used for whole

algorithms in Zoltan. Setting an algorithm parameter for other algorithms returns

an error. For example, we have a set of specific parameters for our algorithm that

that controls the runtime behaviour.
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B.2.1 General Functions

Functions for initialising Zoltan are described in this section. Only necessary function

are introduced. The details about each function can be found on the developers web

site at http://www.cs.sandia.gov/zoltan/ug_html/ug_interface_init.html.

Functions are proposed in C syntax. The list of functions is described as follows:

int Zoltan_Initialize(int argc , char **argv , float *ver)

struct Zoltan_Struct *Zoltan_Create(MPI_Comm communicator);

struct Zoltan_Struct *Zoltan_Copy(Zoltan_Struct *from);

int Zoltan_Set_Param(struct Zoltan_Struct *zz ,char *param_name ,char

*new_val);

int Zoltan_Set_Param_Vec(struct Zoltan_Struct *zz , char *param_name

, char *new_val , int index);

int Zoltan_Set_Fn(struct Zoltan_Struct *zz , ZOLTAN_FN_TYPE fn_type ,

void (* fn_ptr)(), void *data);

int Zoltan_Set_ <zoltan_fn_type >_Fn(struct Zoltan_Struct *zz , <

zoltan_fn_type > (* fn_ptr)(), void *data);

void Zoltan_Destroy(struct Zoltan_Struct **zz);

The details of functions are described as follows:

Zoltan Initialize

initializes MPI for Zoltan. If the application uses MPI, this function should

be called after calling MPI Init. If the application does not use MPI, this

function calls MPI Init for use by Zoltan. This function is called with the argc

and argv command-line arguments from the main program, which are used if

Zoltan Initialize calls MPI Init.

Zoltan Create

allocates memory for storage of information to be used by Zoltan and sets the

default values for the information. The pointer returned by this function is

passed to many subsequent functions. The pointer returned by this function is

referred as zz for the rest of the functions.

http://www.cs.sandia.gov/zoltan/ug_html/ug_interface_init.html
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Zoltan Copy

creates a new Zoltan Struct and copies the state of the existing Zoltan Struct,

which it has been passed, to the new structure. It returns the new Zoltan Struct.

Zoltan Set Param

is used to alter the value of one of the parameters used by Zoltan. All Zoltan

parameters have reasonable default values, but this routine allows a user to

provide alternative values if desired.

Zoltan Set Param Vec

is used to alter the value of a vector parameter in Zoltan. A vector parameter

is a parameter that has one name but contains multiple values. These values

are referenced by their indices, usually starting at 0. Each entry (component)

may have a different value. This routine sets a single entry (component) of a

vector parameter.

Zoltan Set Fn

registers an application-supplied query function in the Zoltan structure. All

types of query functions can be registered through calls to Zoltan Set Fn. To

register functions while maintaining strict type-checking of the fn ptr argument,

use Zoltan Set <zoltan fn type> Fn.

Zoltan Set <zoltan fn type> Fn

where <zoltan fn type> is one of the query function types, register specific

types of application-supplied query functions in the Zoltan structure. One

interface function exists for each type of query function.

Zoltan Destroy

frees the memory associated with a Zoltan structure and sets the structure

to NULL in C or nullifies the structure in Fortran. There is no explicit

Destroy method in the C++ interface. The Zoltan object is destroyed when

the destructor executes. As a side effect, Zoltan Destroy (and the C++ Zoltan

destructor) frees the MPI communicator that had been allocated for the
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structure. So it is important that the application does not call MPI Finalize

before it calls Zoltan Destroy or before the destructor executes.

B.2.2 Query Functions

In this section, we provide the list of query functions that should be defined and

provided by the user to Zoltan. As mentioned earlier, these functions tell Zoltan

how to read the input hypergraph. Functions are proposed in C and C++ syntax,

which is the same in Zoltan. Function specifications are taken from http://www.cs.

sandia.gov/zoltan/ug_html/ug_query_lb.html.

A hypergraph is supplied to Zoltan by either compressed edge or compressed

vertex2 formats. The two compressed formats are analogous to Compressed Row

Storage (CRS) and Compressed Column Storage (CCS) for matrices. The input

format is provided by the following two parameters:

ZOLTAN COMPRESSED EDGE

a list of global hyperedge IDs is provided then a list containing the hypergraph

pins is provided. A pin is identified by the global ID of the hyperedge and the

vertex that construct the pin.

ZOLTAN COMPRESSED VERTEX

a list of global vertex IDs is provided then a list containing the hypergraph

pins is provided. A pin is identified by the global ID of the vertex and the

hyperedge that construct the pin.

In both formats, there is a list that shows where pins of a specific hyperedge/vertex

starts. This list is referred as hyperedge index and vertex index lists in compressed

edge and compressed vertex formats, respectively. For the hypergraph given in

Fig. 2.1 the compressed edge and vertex formats would be as follow.

• Compressed Edge Format:

1. EDGE lst = {e1, e2, e3}

2This format is not yet supported by our algorithm. It is planned as the future work.

http://www.cs.sandia.gov/zoltan/ug_html/ug_query_lb.html
http://www.cs.sandia.gov/zoltan/ug_html/ug_query_lb.html
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2. PIN lst = {v1, v2, v3, v5, v2, v3, v5}

3. INDEX = {0, 4, 6}

• Compressed Vertex Format:

1. VERTEX lst = {v1, v2, v3, v4, v5}

2. PIN lst = {e1, e1, e2, e1, e2, e1, e3}

3. INDEX = {0, 1, 3, 5, 6}

The format should be provided to Zoltan by the ZOLTAN HG CS FN TYPE query

function.

typedef void ZOLTAN_HG_SIZE_CS_FN (void *data , int *num_lists , int

*num_pins , int *format , int *ierr);

The purpose of this query function is to tell Zoltan in which format the application

will supply the hypergraph, how many vertices and hyperedges there will be, and

how many pins. The actual hypergraph is supplied with a query function of the type

ZOLTAN HG CS FN TYPE.

data

Pointer to user-defined data. num lists) Upon return, the number of vertices (if

using compressed vertex storage) or hyperedges (if using compressed hyperedge

storage) that will be supplied to Zoltan by the application process.

num pins

Upon return, the number of pins (connections between vertices and hyperedges)

that will be supplied to Zoltan by the application process.

format

Upon return, the format in which the application process will provide the

hypergraph to Zoltan. The options are ZOLTAN COMPRESSED EDGE and

ZOLTAN COMPRESSED VERTEX.

ierr

Error code to be set by function.
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In the following we describe the other query functions of Zoltan.

typedef void ZOLTAN_HG_CS_FN (void *data , int num_gid_entries , int

num_vtx_edge , int num_pins , int format , ZOLTAN_ID_PTR

vtxedge_GID , int *vtxedge_ptr , ZOLTAN_ID_PTR pin_GID , int *ierr)

;

the function returns a hypergraph in a compressed storage (CS) format. The size

and format of the data to be returned must have been supplied to Zoltan using

a ZOLTAN HG SIZE CS FN TYPE function. When a hypergraph is distributed

across multiple processes, Zoltan expects that all processes share a consistent global

numbering scheme for hyperedges and vertices. Also, no two processes should return

the same pin (matrix non-zero) in this query function. (Pin ownership is unique.)

data

Pointer to user-defined data.

num gid entries

The number of array entries used to describe a single global ID. This value is

the maximum value over all processors of the parameter NUM GID ENTRIES.

num vtx edge

The number of global IDs that is expected to appear on return in vtxedge GID.

This may correspond to either vertices or (hyper-)edges.

num pins

The number of pins that is expected to appear on return in pin GID.

format

If format is ZOLTAN COMPRESSED EDGE, Zoltan expects that hyperedge

global IDs will be returned in vtxedge GID, and that vertex global IDs will be

returned in pin GIDs. If it is ZOLTAN COMPRESSED VERTEX, then vertex

global IDs are expected to be returned in vtxedge GID and hyperedge global

IDs are expected to be returned in pin GIDs.
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vtxedge GID

Upon return, a list of num vtx edge global IDs.

vtxedge ptr

Upon return, this array contains num vtx edge integers such that the number

of pins specified for hyperedge j (if format is ZOLTAN COMPRESSED EDGE)

or vertex j (if format is ZOLTAN COMPRESSED VERTEX) is vtxedge ptr[j+1]

- vtxedge ptr[j]. If format is ZOLTAN COMPRESSED EDGE, vtxedge ptr[j] *

num gid entries is the index into the array pin GID where edge j’s pins (vertices

belonging to edge j) begin; if format is ZOLTAN COMPRESSED VERTEX,

vtxedge ptr[j] * num gid entries is the index into the array pin GID where vertex

j’s pins (edges to which vertex j belongs) begin. Array indices begin at zero.

pin GID

Upon return, a list of num pins global IDs. This is the list of the pins contained

in the hyperedges or vertices listed in vtxedge GID.

ierr

Error code to be set by function.

typedef void ZOLTAN_HG_SIZE_EDGE_WTS_FN (void *data , int *num_edges

, int *ierr);

the function returns the number of hyperedges for which a process will supply edge

weights. The number of weights per hyperedge was supplied by the application with

the EDGE WEIGHT DIM parameter. The actual edge weights will be supplied with a

ZOLTAN HG EDGE WTS FN TYPE function.

data

Pointer to user-defined data.

num edges

Upon return, the number of hyperedges for which edge weights will be supplied.
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ierr

Error code to be set by function.

typedef void ZOLTAN_HG_EDGE_WTS_FN (void *data , int num_gid_entries

, int num_lid_entries , int num_edges , int edge_weight_dim ,

ZOLTAN_ID_PTR edge_GID , ZOLTAN_ID_PTR edge_LID , float *

edge_weight , int *ierr);

the function returns edges weights for a set of hypergraph edges. The number of

weights supplied for each hyperedge should equal the value of the EDGE WEIGHT DIM

parameter.

data

Pointer to user-defined data.

num gid entries

The number of array entries used to describe a single global ID. This value is

the maximum value over all processors of the parameter NUM GID ENTRIES.

num lid entries

The number of array entries used to describe a single local ID. This value is

the maximum value over all processors of the parameter NUM LID ENTRIES.

(It should be zero if local ids are not used.)

num edges

The number of hyperedges for which edge weights should be supplied in the

edge weight array.

edge weight dim

The number of weights which should be supplied for each hyperedge. This is

also the value of the EDGE WEIGHT DIM parameter.

edge GID

Upon return, this array should contain the global IDs of the num edges hyper-

edges for which the application is supplying edge weights.
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edge LID

Upon return, this array can optionally contain the local IDs of the num edges

hyperedges for which the application is supplying edge weights.

edge weight

Upon return, this array should contain the weights for each edge listed in the

edge GID. If edge weight dim is greater than one, all weights for one hyperedge

are listed before the weights for the next hyperedge are listed.

ierr

Error code to be set by function.

typedef int ZOLTAN_NUM_OBJ_FN (void *data , int *ierr);

the function returns the number of objects that are currently assigned to the processor.

data

Pointer to user-defined data.

ierr

Error code to be set by function.

typedef void ZOLTAN_OBJ_LIST_FN (void *data , int num_gid_entries ,

int num_lid_entries , ZOLTAN_ID_PTR global_ids , ZOLTAN_ID_PTR

local_ids , int wgt_dim , float *obj_wgts , int *ierr);

the function fills two (three if weights are used) arrays with information about the ob-

jects currently assigned to the processor. Both arrays are allocated (and subsequently

freed) by Zoltan; their size is determined by a call to a ZOLTAN NUM OBJ FN query

function to get the array size.

data

Pointer to user-defined data.
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num gid entries

The number of array entries used to describe a single global ID. This value is

the maximum value over all processors of the parameter NUM GID ENTRIES.

num lid entries

The number of array entries used to describe a single local ID. This value is

the maximum value over all processors of the parameter NUM LID ENTRIES.

(It should be zero if local ids are not used.)

global ids

Upon return, an array of unique global IDs for all objects assigned to the

processor.

local ids

Upon return, an array of local IDs, the meaning of which can be determined

by the application, for all objects assigned to the processor. (Optional.)

wgt dim

The number of weights associated with an object (typically 1), or 0 if weights

are not requested. This value is set through the parameter OBJ WEIGHT DIM.

obj wgts

Upon return, an array of object weights. Weights for object i are stored in

obj wgts[(i-1) * wgt dim:i * wgt dim-1]. If wgt dim = 0, the return value of

obj wgts is undefined and may be NULL.

ierr

Error code to be set by function.

typedef void ZOLTAN_PART_MULTI_FN (void *data , int num_gid_entries ,

int num_lid_entries , int num_obj , ZOLTAN_ID_PTR global_ids ,

ZOLTAN_ID_PTR local_ids , int *parts , int *ierr);

the function returns a list of parts to which given objects are currently assigned. If a

ZOLTAN PART MULTI FN or ZOLTAN PART FN is not registered, Zoltan assumes
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the part numbers are the processor number of the owning processor. Valid part

numbers are non-negative integers. The information for one object is provided with

ZOLTAN PART FN.

data

Pointer to user-defined data.

num gid entries

The number of array entries used to describe a single global ID. This value is

the maximum value over all processors of the parameter NUM GID ENTRIES.

num lid entries

The number of array entries used to describe a single local ID. This value is

the maximum value over all processors of the parameter NUM LID ENTRIES.

(It should be zero if local ids are not used.)

global ids

The global IDs of the objects for which the part numbers should be returned.

local ids

The local IDs of the objects for which the part numbers should be returned.

(Optional.) (Optional.)

parts

Upon return, an array of part numbers corresponding to the global and local

IDs.

ierr

Error code to be set by function.

Finally, the main partitioning and load-balancing functions of Zoltan are described

as follow. Refer to the developers website for more information and explanation

about the function arguments at [San14b].
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int Zoltan_LB_Partition (

struct Zoltan_Struct *zz ,

int *changes ,

int *num_gid_entries ,

int *num_lid_entries ,

int *num_import ,

ZOLTAN_ID_PTR *import_global_ids ,

ZOLTAN_ID_PTR *import_local_ids ,

int ** import_procs ,

int ** import_to_part ,

int *num_export ,

ZOLTAN_ID_PTR *export_global_ids ,

ZOLTAN_ID_PTR *export_local_ids ,

int ** export_procs ,

int ** export_to_part);

The list of the arguments are.

zz

Pointer to the Zoltan structure.

changes

Set to 1 or TRUE if the decomposition was changed by the load-balancing

method; 0 or FALSE otherwise.

num gid entries

Upon return, the number of array entries used to describe a single global ID.

num lid entries

Upon return, the number of array entries used to describe a single local ID.

num import

Upon return, the number of objects that are newly assigned to this processor

or to parts on this processor (i.e., the number of objects being imported from

different parts to parts on this processor). If the value returned is -1, no import

information has been returned and all import arrays below are NULL. The

RETURN LISTS parameter determines whether import lists are returned.
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import global ids

Upon return, an array of num import global IDs of objects to be imported to

parts on this processor.

import local ids

Upon return, an array of num import local IDs of objects to be imported to

parts on this processor.

import procs

Upon return, an array of size num import listing the processor IDs of the

processors that owned the imported objects in the previous decomposition (i.e.,

the source processors).

import to part

Upon return, an array of size num import listing the parts to which the

imported objects are being imported.

num export

Upon return, this value of this count depends on the value of the RETURN LISTS

parameter. Refer to the developer’s website for more information about this

parameter.

export global ids

Upon return, an array of num export global IDs of objects to be exported

from parts on this processor.

export local ids

Upon return, an array of num export local IDs associated with the global IDs

returned in export global ids.

export procs

Upon return, an array of size num export listing the processor ID of the processor

to which each object is now assigned (i.e., the destination processor).

export to part

Upon return, an array of size num export listing the parts to which the objects
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are assigned under the new partition.

Finally, user can set the size of the parts in Zoltan. These is done through

the Zoltan LB Set Part Sizes function. By default, Zoltan assumes that all parts

should be of equal size. Zoltan LB Free Part function frees the memory allocated by

Zoltan to return the results of Zoltan LB Partition. There are more functions that

can be called for load balancing and partitioning purposes and they can be seen in

http://www.cs.sandia.gov/zoltan/ug_html/ug_interface_lb.html. Here we

described only the functions that are necessary for our purpose and how to use our

hypergraph partitioner in Zoltan.

B.2.3 General Parameters

As mentioned previously, the behaviour of Zoltan is controlled with runtime parame-

ters. The parameters are set b calling Zoltan Set Param. The parameters that are

described here are general parameters. All of them have default values. The list of

general parameters are as follow.

IMBALANCE TOL

The partitioning imbalance tolerance.

NUM GLOBAL PARTS

The number of partitioning parts.

NUM GID ENTRIES

The number of unsigned integers that should be used to represent a global

identifier (ID). Values greater than zero are accepted. The default is 1.

NUM LID ENTRIES

The number of unsigned integers that should be used to represent a local

identifier (ID). Values greater than or equal to zero are accepted. The default

is 1.

DEBUG LEVEL

An integer indicating how much debugging information is printed by Zoltan.

http://www.cs.sandia.gov/zoltan/ug_html/ug_interface_lb.html
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Higher values of DEBUG LEVEL produce more output and potentially slow down

Zoltan’s computations. The least output is produced when DEBUG LEVEL =

0. DEBUG LEVEL primarily controls Zoltan’s behaviour; most algorithms have

their own parameters to control their output level. Values used within Zoltan

are listed below. The default is 1.

DEBUG MEMORY

Integer indicating the amount of low-level debugging information about memory-

allocation should be kept by Zoltan’s Memory Management utilities. Valid

values are 0, 1, 2, and 3. The default is 1.

OBJ WEIGHT DIM

The number of weights (to be supplied by the user in a query function)

associated with an object. If this parameter is zero, all objects have equal

weight. Some algorithms may not support multiple (multidimensional) weights.

The default is 0.

EDGE WEIGHT DIM

The number of weights associated with an edge. If this parameter is zero, all

edges have equal weight. Many algorithms do not support multiple (multidi-

mensional) weights. The default is 0.

TIMER

The timer with which you wish to measure time. Valid choices are wall (based

on MPI Wtime), cpu (based on the ANSI C library function clock), and user.

The resolution may be poor, as low as 1/60th of a second, depending upon

your platform. The default is wall.

Furthermore, some high debugging levels use processor synchronization to force

processors to write one-at-a-time. Therefore they need to be the same on all

processors.
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B.3 FEHG Algorithm Parameters

FEHG is a parallel multi-level hypergraph partitioning algorithms that achieves k-way

partitioning through recursive bipartitioning. It has three main phases: coarsening,

initial partitioning, and uncoarsening (refinement). In this section, we describe all

algorithm specific parameters for each phase separately.

B.3.1 Partitioning Parameters

In order to use FEHG hypergraph partitioning algorithm, LB METHOD and HY-

PERGRAPH PACKAGE parameters should be both set to FEHG. In addition, the

following parameters are defined for FEHG.

LB APPROACH

defines the load balancing approach. It can be set to either PARTITION

or REFINE. The first performs the hypergraph partitioning from the scratch

without taking into account the current vertex distribution. REFINE, refines the

current vertex partitioning without going through any multi-level partitioning.

Dynamic repartitioning is not supported yet.

FEHG MULTILEVEL

if the parameter is set, the algorithm does not go through any multi-level

partitioning and directly performs the refinement phase. The multi-level

approach generates higher quality partitioning but requires more execution

time and memory.

FEHG OUTPUT LEVEL

sets the level of verbosity in the output. Level zero generates no output. More

output about the runtime status of the algorithm can be seen by setting the

output level to higher values.

FINAL OUTPUT

if set, the final partitioning result are generated and returned to the user.

RETURN LISTS

The lists returned by calls to Zoltan LB Partition. The values are:
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IMPORT: returns only information about objects to be imported to a pro-

cessor .

EXPORT returns only information about objects to be exported from a

processor.

ALL returns both import and export information.

PARTS returns the new process and part assignment of every local object,

including those not being exported.

NONE returns neither import nor export information.

CHECK HYPERGRAPH

if set, the input format of the hypergraph is checked for the correctness.

FEHG USE TIMERS

The timing level of FEHG algorithm. The higher the value, the more detailed

timing would be generated.

FEHG CUT OBJECTIVE

if set to connectivity, the connectivity−1 cut objective is used; setting the

value to hyperedges, reduces the number of cutting hyperedges. The default

is connectivity.

B.3.2 Coarsening Parameters

The section describes the partitioning parameters for the coarsening phase.

FEHG HASH FUNCTION

The hash function used for hypergraph initial redistribution among processors.

It can be set to one the following values:

1. auto: selects the hash function automatically i.e. the one that gives the

best distribution. This is the default value.

2. zhash: Zoltan’s internal hash function.

3. rshash: Robert Sedgwick’s Algorithm [Sed02].
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4. jshash: Bitwise hash function written by Justin Sobel.

5. pjwhash: Peter J. Weinberger of AT&T Bell Labs [ASU86].

6. elfhash: The ELF hash function.

7. bkdrhash: The hash function proposed in the “The C programming

language book” by Kernighan and Ritchie [KRE88].

8. sdbmhash: The hash function from SDBM open source database man-

agement project.

9. djbhash: The hash function by Daniel J. Bernstein.

10. dekhash: The hash function proposed by Knuth [Knu98].

11. bphash: The BP hash function.

12. fnvhash: Fowler-Noll-Vo hash function proposed by Glenn Fowler, Lan-

don Curt Noll, and Kiem-Phong Vo.

13. aphash: The hash function proposed by Arash Partow.

FEHG COARSENING LIMIT

it tells when to stop the coarsening. if the number of vertices in the coarsest

hypergraph is less than this limit, the coarsening process stops and the algorithm

proceeds with the initial partitioning phase. The default is 100.

FEHG COARSENING METHOD

defines the coarsening method. There is only one option for this parameter

and should be set to rough that is rough set clustering based algorithm.

FEHG VERTEX VISIT ORDER

the order by which vertices of the hypergraph are visited for vertex matching

in the rough clustering algorithm. The values can be set to random (randomly

visit vertices), linear (linearly visit vertices in the order provided), and degree

(sorts vertices based on their degrees). The default is random.

FEHG ENABLE MULTI MATCH

whether to use multi-match vertex matching in the coarsening phase or only

perform pair-matches. The value is only supported by the serial algorithm and
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the parallel algorithm performs pair vertex matching. If the value is set to one,

multi-match is supported for the vertices that are incident on exactly the same

hyperedge set. If the value is set to two, FEHG matches all the vertices belong

to the same core3 to build a coarser vertex (as described in Chapter 4.4.2).

Vertex weight limitations is considered such that the weight of a vertex is not

allowed to grow more than a limit (the limit is defined as half size of a part).

The default is 0.

FEHG USE RANDOM MATCH

if set, the algorithm performs random matching as described in Chapter 4.3.1 to

meet a certain reduction level between two coarsening levels. The parameters

is only used in the serial algorithm. Setting this parameter gives higher quality.

The default is 1.

FEHG CORE SIZE LIMIT

an upper bound for the size of cores when categorising vertices to core and

non-core vertices. The default is 500.

FEHG MERGE EXTERNAL EDGES

if set, the algorithm identifies identical external hyperedges. Among a set

of identical hyperedges, one is kept and the others are removed from the

hypergraph. The weight of the kept hyperedge is the sum of the weight of

all identical hyperedges. Identical internal hyperedges are found and removed

from the hypergraph in either situation. The default is 1.

FEHG REASSIGN EDGE GNOS

reassigns hyperedge global IDs in the coarser hypergraph. The algorithm

is based on hash functions and uses global ID hashing for some hyperedge

operations. Setting this parameter would increase the performance and quality

of some hypergraph operations. The default is 1.

FEHG EDGE2PROC LOCALITY

if set, the algorithm considers hyperedge locality when performing global

3In our rough set clustering approach, vertices are categorised as core and non-core vertices.
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hyperedge operations such as calculating global edge sizes and edge-to-processor

adjacency list. A hyperedge is hashed to a processor that have a local copy

of the hyperedge. This cause less network communication but more load

imbalance among processors. The default is 1.

FEHG EDGE SIZE THRESHOLD

hyperedges greater than this size are not processed while finding matches for

the vertices. The default is 500.

FEHG USE FAST INTERSECT

if set, the algorithm uses a fast intersection method using hash functions

for calculating hyperedge intersection in the parallel Hyperedge Connectivity

Graph (HCG) algorithm. The default is 0.

FEHG HEDGE INTERSECT

if the fast intersection is not set, FEHG calculates the intersection between two

external hyperedges using one of the following methods set by this parameter.

The parameters determines how to calculate the intersection between two

hyperedges for the non-local data.

optimistic calculates the intersection locally and assumes that two external

hyperedges have the same vertex set on other processors.

pessimistic calculates the intersection locally and assumes that two external

hyperedges do not have any vertex in common on other processors.

approximate approximates the external intersection. This is the default

value.

ignore ignores off-processor data and calculates the intersection using local

data.

FEHG HCG SIMILARITY METHOD

the hyperedge similarity function while calculating the Hyperedge Connectivity

Graph (HCG). The values can be as follows:

jaccard the Jaccard similarity function. This is the default value.
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set cosine the set cosine similarity function.

dice the Dice similarity function.

FEHG HCG SIMILARITY THRESHOLD

the similarity threshold for calculating HCG.

FEHG SIM THRESHOLD AUTOADJUST

determines how to calculate the similarity threshold when the structure of the

hypergraph changes. The values are as follows:

0 no re-adjustment is done. The value of the similarity threshold is given by

FEHG HCG SIMILARITY THRESHOLD parameter.

-1 the similarity threshold value is calculated in the beginning of each biparti-

tioning recursion and it is readjusted in the beginning of each coarsening

level. This is the default value.

-2 the similarity threshold value is calculated in the beginning of the algorithm

for the original hypergraph. Then it is readjusted in each coarsening level.

When going through the coarsening levels, the history of the values are

saved. The history is used to calculate the similarity threshold for left

(sub-hypergraph assigned to part 0) and right (sub-hypergraph assigned

to part 1) sub-hypergraphs at the end of each recursion.

-3 the similarity threshold value is calculated in the beginning of each biparti-

tioning recursion as well as in each coarsening level.

FEHG CLUSTERING THRESHOLD

the clustering threshold in the rough set clustering algorithm. The default

is 0.0.

FEHG HCG LOCAL CLUSTERING

the local hyperedge clustering algorithm while building HCG. Either of agg

(agglomerative) or bfs (breadth first search) can be used. The first is slower

but gives better quality. The default is agg.
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B.3.3 Initial Partitioning Parameters

The section describes the partitioning parameters for the initial partitioning phase.

FEHG COARSEPARTITION METHOD

sets the initial partitioning algorithm. The possible values are.

random randomly assigns vertices to the parts.

linear linearly assigns vertices to the parts.

greedy in bipartitioning, it select a vertex randomly and assign it to part one

and all other vertices to part 0. Then a single run of the FM algorithm

calculates a bipartitioning on the hypergraph.

auto the algorithm is selected automatically. This is the default value.

FEHG NUM PROCESSOR FOR INIT PART

the percentage of processor that are participating in the initial partitioning

phase. The value is given in [0, 1]. At least one processor calculates the initial

partitioning. The default is 0.5.

B.3.4 Uncoarsening Parameters

The section describes the partitioning parameters for the refinement phase.

FEHG DIRECT KWAY

if set, FEHG uses direct k-way refinement otherwise recursive bipartitioning.

Direct k-way algorithm is under development. The default is 0.

FEHG REFINEMENT DOUBLE GAIN

if set, FEHG uses double gain FM algorithm, otherwise one gain is used for

every vertex. The default is 1.

FEHG REFINEMENT LOOP LIMIT

the number of passes of the FM algorithm. The default is 4.

FEHG FM EDGE SCALING

if set, hyperedge weights are scaled according to their edge partition in the
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Hyperedge Connectivity Graph (HCG). The higher the density of the edge

partition, the higher its hyperedges weights would be. The default is 0.

FEHG REFINEMENT MAX NEG MOVE

the maximum number of consecutive negative moves allowed by the FM

algorithm in each pass. The pass terminates if FM exceeds this limit. The

default is 250.

FEHG REFINEMENT TOKEN HOLD

The value of token in the synchronised based parallel FM algorithm. The

value should be positive. The default is 16.

FEHG REFINEMENT QUALITY

It is used in the parallel FM algorithm and the values are as follow.

> 1 The hyperedge status change are communicated among processors if their

size is two and the token value is positive. This is the default value.

> 2 Saves the vertex-part number in the beginning of the refinement phase. If

the cut increases at the end of the refinement phase, the part values are

restored. This operation is done if the balance criteria is ok.

B.3.5 Recursive Bipartitioning Parameters

The section describes the recursive bipartitioning parameters.

FEHG RUNS

The number of runs of the FEHG algorithm before proceeding to the next

recursive bipartitioning level. In each recursion of the algorithm, FEHG runs

the multi-level bipartitioning FEHG RUNS times and the best partitioning that

meets the balance constraint and gives the minimum cost is selected for the

next recursion. The default is 1.

FEHG RECURSIVE PROC SPLIT

if set, FEHG uses Bisection processor splitting. At the end of each bipartitioning,

the processors are split into two equally sized separate subsets. Vertices in the
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first part and their incident hyperedges are assigned to the first subset and the

other vertices and their incident hyperedges are assigned to the other subset.

Each subset continues with the partitioning of the hypergraph independently.

The default is 1.

FEHG MULTIPLE BISECTION

if set, FEHG uses Multiple Bisection as described in Chapter 5.2.4. This

option can be used when the number of processors is a power of two. Supporting

arbitrary number of processors is planned as the future work. The default is

1.

FEHG MULTIPLE BISECTION NGROUPS

the replication factor in the multiple bisection. If the value

is zero, FEHG calculates the replication factor according to the

FEHG MULTIPLE BISECTION MIN GSIZE parameter. The default is 0.

FEHG MULTIPLE BISECTION MIN GSIZE

The minimum subgroup size in the multiple bisection. The default is 8.

FEHG BAL TOL ADJUSTMENT

The balance tolerance readjustment in each recursion of the FEHG algorithm.

If the value is less than or equal to one, the balance tolerance is multiplied by

FEHG BAL TOL ADJUSTMENT after each recursion. Otherwise, the balance

is readjusted based on the number of global partitions, the level of recursion,

and the current imbalance tolerance of the partitioning that is obtained up to

this level of recursion.

B.4 Partitioning Example Code

In this section, we provide an example of the partitioning code written in the

following. After declaring the variables, the program starts by initialising the MPI.

The hypergraph is read from the input file and saved in hg object the is defined in

“Hypergraph.h”. The function read sparse rowFormat reads the hypergraph from the

input and then it is distributed among the processors by distribute function.
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In the next step, Zoltan is created and initialised. This must be done after

initialising the MPI. After that, the list of the query function is registered with

Zoltan. Here is the list of all functions that are needed for hypergraph partitioning.

All functions, such as get number of vertices, are defined in our hypergraph class.

The partitioning method is selected by setting LB METHOD to FEHG.

We have two categories of parameters. The general parameters such as the

imbalance tolerance and the number of partitions are set as 1.05 and 8, respec-

tively. The FEHG specific parameters are set in the next lines of codes. Af-

ter initialising all parameters, the partitioner function is called by invoking the

Zoltan LB Partition function. After the partitioning, the internal memory is freed by

calling Zoltan LB Free Part method.

The last step releases all resources including the MPI resources and destroys the

Zoltan data structure. The source code is proposed in the next page.
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#include "Hypergraph.h"

#include "mpi.h"

#include "zoltan.h"

using namespace std;

int main(int argc , char** argv) {

/* **************** */

/* Define variables

.

.

.

****************** */

Zoltan_Struct *zz=NULL; /* zoltan data structure */

Hypergraph* hg=NULL; /* hypergraph to be partitioned */

/* Define partitioning zoltan input lists */

ZOLTAN_ID_PTR importGlobalGids=NULL , importLocalGids=NULL ,

exportGlobalGids=NULL , exportLocalGids=NULL;

int *importProcs=NULL , *importToPart=NULL ,

*exportProcs=NULL , *exportToPart=NULL;

MPI_Init (&argc , &argv);

MPI_Comm_rank(MPI_COMM_WORLD , &rank);

MPI_Comm_size(MPI_COMM_WORLD , &size);

/* ********************* */

/* Read the hypergraph */

/* ********************* */

hg = new Hypergraph(rank , size);

hg ->read_sparse_rowFormat(ingraph);

hg ->distribute(MPI_COMM_WORLD);

/* ******************* */

/* Initialise Zoltan */

/* ******************* */

zz = Zoltan_Create(MPI_COMM_WORLD);

err_code = Zoltan_Initialize(argc , argv , &version);

/* ********************************* */

/* Register Zoltan query functions */

/* ********************************* */

Zoltan_Set_Num_Obj_Fn (zz ,get_number_of_vertices , hg);

Zoltan_Set_Obj_List_Fn (zz ,get_vertex_list , hg);

Zoltan_Set_HG_Size_Edge_Wts_Fn (zz ,get_number_of_hedges , hg);
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Zoltan_Set_HG_Edge_Wts_Fn (zz ,get_hedge_list , hg);

Zoltan_Set_HG_Size_CS_Fn (zz ,get_hypergraph_size , hg);

Zoltan_Set_HG_CS_Fn (zz ,get_hypergraph , hg);

/* ************************* */

/* The partitioning method */

/* ************************* */

Zoltan_Set_Param(zz , "LB_METHOD" ,"FEHG");

Zoltan_Set_Param(zz , "LB_APPROACH" ,"PARTITION");

Zoltan_Set_Param(zz , "HYPERGRAPH_PACKAGE" ,"FEHG");

/* ************************* */

/* set general parameters. */

/* ************************* */

Zoltan_Set_Param(zz , "IMBALANCE_TOL" ,"1.05");

Zoltan_Set_Param(zz , "NUM_GLOBAL_PARTS" ,"8");

Zoltan_Set_Param(zz , "RETURN_LISTS" ,"NONE");

Zoltan_Set_Param(zz , "NUM_GID_ENTRIES" ,"1");

Zoltan_Set_Param(zz , "AUTO_MIGRATE" ,"FALSE");

Zoltan_Set_Param(zz , "NUM_LID_ENTRIES" ,"1");

Zoltan_Set_Param(zz , "OBJ_WEIGHT_DIM" ,"1");

Zoltan_Set_Param(zz , "EDGE_WEIGHT_DIM" ,"1");

Zoltan_Set_Param(zz , "DEBUG_LEVEL" ,"0");

/* ********************** */

/* set FEHG parameters. */

/* ********************** */

Zoltan_Set_Param(zz , "FEHG_USE_FAST_INTERSCT" , "0");

Zoltan_Set_Param(zz , "FEHG_BAL_TOL_ADJUSTMENT" , "2.0");

Zoltan_Set_Param(zz , "FEHG_COARSEPARTITION_METHOD" , "auto");

Zoltan_Set_Param(zz , "FEHG_CLUSTERING_THRESHOLD" , "0.0");

Zoltan_Set_Param(zz , "FEHG_REFINEMENT_TOKEN_HOLD" , "16");

Zoltan_Set_Param(zz , "FEHG_OUTPUT_LEVEL" , "1");

Zoltan_Set_Param(zz , "FEHG_USE_TIMERS" , "2");

Zoltan_Set_Param(zz , "FEHG_EDGE2PROC_LOCALITY" , "8");

/* ********************** */

/* Call the partitioner */

/* ********************** */

err_code = Zoltan_LB_Partition(

zz , /* Zoltan data structure created by Zoltan_Create () */

&changes , /* 1 if partitioning was changed , 0 otherwise */

&numGidEntries , /* Number of integers used for a global ID */

&numLidEntries , /* Number of integers used for a local ID */

&numImport , /* Number of vertices to be sent to me */

&importGlobalGids , /* Global IDs of vertices to be sent to me */
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&importLocalGids , /* Local IDs of vertices to be sent to me */

&importProcs , /* Process rank for source of each incoming vertex */

&importToPart , /* New partition for each incoming vertex */

&numExport , /* Number of vertices I must send to other processes */

&exportGlobalGids , /* Global IDs of the vertices I must send */

&exportLocalGids , /* Local IDs of the vertices I must send */

&exportProcs , /* Process to which I send each of the vertices */

&exportToPart); /* Partition to which each vertex will belong */

/* ************************************* */

/* Free zoltan internal data structure */

/* ************************************* */

Zoltan_LB_Free_Part (& importGlobalGids , &importLocalGids ,

&importProcs , &importToPart);

Zoltan_LB_Free_Part (& exportGlobalGids , &exportLocalGids ,

&exportProcs , &exportToPart);

/* ******************** */

/* Finalise operations

.

.

.

********************** */

Zoltan_Destroy (&zz);

MPI_Finalize ();

delete hg;

return 0;

}
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