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ABSTRACT 

This dissertation presents innovative approaches based on fuzzy logic in epileptic seizure 

detection and prediction from Electroencephalogram (EEG). The fuzzy rule-based 

algorithms were developed with the aim to improve quality of life of epilepsy patients by 

utilizing intelligent methods. An adaptive fuzzy logic system was developed to detect 

seizure onset in a patient specific way. Fuzzy if-then rules were developed to mimic the 

human reasoning and taking advantage of the combination in spatial-temporal domain. 

Fuzzy c-means clustering technique was utilized for optimizing the membership 

functions for varying patterns in the feature domain. In addition, application of the 

adaptive neuro-fuzzy inference system (ANFIS) is presented for efficient classification of 

several commonly arising artifacts from EEG. Finally, we present a neuro-fuzzy 

approach of seizure prediction by applying the ANFIS. Patient specific ANFIS classifier 

was constructed to forecast a seizure followed by postprocessing methods. Three 

nonlinear seizure predictive features were used to characterize changes prior to seizure. 

The nonlinear features used in this study were similarity index, phase synchronization, 

and nonlinear interdependence. The ANFIS classifier was constructed based on these 

features as inputs. Fuzzy if-then rules were generated by the ANFIS classifier using the 

complex relationship of feature space provided during training. In this dissertation, the 

application of the neuro-fuzzy algorithms in epilepsy diagnosis and treatment was 

demonstrated by applying the methods on different datasets. Several performance 
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measures such as detection delay, sensitivity and specificity were calculated and 

compared with results reported in literature. The proposed algorithms have potentials to 

be used in diagnostics and therapeutic applications as they can be implemented in an 

implantable medical device to detect a seizure, forecast a seizure, and initiate 

neurostimulation therapy for the purpose of seizure prevention or abortion. 
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CHAPTER Ι 

1. INTRODUCTION 

1.1. Background 

The brain is the most complex organ of the human body and it is the center of the 

human nervous system. Neurons (nerve cells) are the biological building blocks of the 

brain. In a typical human brain, over 100 billion neurons are interconnected. The brain is 

responsible for controlling the body as well as for the executive functions, such as 

reasoning, thought, and planning. Interestingly, it is the most complex organ of the 

human body. Science, to date, does not understand the whole mechanism or how brain 

works. Electrophysilogy and hemodynamic response are the two techniques that have 

been used to study the activities of the brain [1]. Electrophysiological techniques are used 

for studying electrical properties of biological cells and tissues. It involves the 

measurement of voltages or electric current from a single ion channel to the whole organ, 

for example, brain [1]. In neuroscience and neuroengineering, the electrophysiological 

techniques widely used to measure the electrical activities of neurons are 

electroencephalogram (EEG) and magnetoencephalogram (MEG). Typically, 

electrophysiological measurements are performed by placing electrodes or sensors on the 

biological tissue [1], [2].  Functional activities, such as blood oxygen level of the brain 

also provide very useful and important insight into brain activities.  
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The functional neuroimaging techniques based on hemodynamic principles are 

functional Magnetic Resonance Imaging (fMRI), functional Near-Infrared Spectroscopy 

(fNIRS), and Positron Emission Tomography (PET). EEG is the recording of the brain’s 

electrical activity which is caused by the firing of neurons. EEG has been primarily used 

as the most widely used tool in diagnosis of neurological disorders, such as epilepsy. It 

can be recorded in two ways: invasive and non-invasive as shown in Figure 1. Non-

invasive EEG recording is done by placing electrodes or sensors on the scalp. In invasive 

EEG recording, subdural (strip or grid) electrodes are placed in surgical procedure on to 

the cortex whereas depth electrodes are used to record electrical activities from deep 

inside the brain. The standard protocol used to place the electrodes on scalp is known as 

the 10-20 international system [2], [3].  

 
 
 

 
 

(a) (b) 
Figure 1. Non-invasive and invasive electrode placement patterns on brain: (a) The 10-20 

international system for EEG scalp electrode placement [3] (b) implanted strip electrodes [4]. 
 

EEG sensors placed on scalp or on cortical surface records brain activities which 

is a combination of neural activities. The recorded signals can be saved in many formats. 

The amplitude values typically range in the order of hundred micro volts (µV) [5]. EEG 
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signals can be seen as an output of a complex nonlinear system. Therefore, advanced 

signal processing tools and techniques are required to analyze EEG. With the 

advancement of technology, EEG is now being used not only in medical devices (which 

includes implantable medical devices and neuroprosthetics) but also in brain computer 

interface (BCI) or human computer interface (HCI) applications targeted to assist 

disabled people controlling a wheel chair, virtual keyboard application, as well as 

consumer electronics market for various recreational applications. A new area, known as 

neuroergonomics, is of growing interest where the relationship of brain and body is 

studied in an operational environment [6], [7]. 

The brain is susceptible to damage and diseases. The most common neurological 

disorders are Alzheimer’s disease, Epilepsy, Parkinson’s disease, sleep disorders etc. 

Epilepsy is a chronic neurological disorder characterized by two or more recurrent 

seizures. It is prevalent in significant number of (approximately 1-3%) world’s 

population. Epileptic seizures are due to the excessive firing of neural networks in the 

brain. The underlying mechanisms are described primarily as synchronous hyper 

excitability and hyper synchrony. However, the exact mechanism of how seizure 

generates remain largely unknown to date. 

Monitoring of epilepsy patients is usually performed in a clinical setting on a 

continuous daily recording basis. As a result, huge EEG data is generated which is 

tedious and monotonous for epileptologists to visually inspect and analyze seizures in 

such long recordings. Therefore, an automatic seizure detection tool is of high demand. 

However, such a tool requires detecting seizures with high sensitivity and very low 
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specificity to be considered for monitoring in clinical settings. An example of multi-

channel EEG recordings is shown in Figure 2. 

Figure 2. An example of multi-channel EEG recordings recorded using invasive electrodes. 
 

The primary goal of the epilepsy treatment is to prevent the seizure activity as 

early as possible with as few side effects as possible. Available anti-seizure medications 

are used by doctors and clinicians in treating epilepsy patients. Often, the epilepsy 

patients have to undergo surgery in special cases where medications do not work 

effectively. For surgical procedure, EEG (along with fMRI and MEG) has been used to 

localize the seizure focus region to identify the brain region candidate for surgery. In 

recent days, much focus has been put into developing implementable medical devices for 

offering an alternate form of treatment to ensure better life for the epilepsy patients. With 

the advancement of bio-sensors and digital technology, it is now possible to design and 

develop such devices. These types of devices are capable of monitoring brain electrical 
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activities, stimulating the brain by electrical impulse to reduce the seizure frequency, and 

performing automatic drug delivery. Automatic seizure detection and prediction 

algorithms can be integrated in such a device.  

1.2. Methods in EEG Signal Processing 

EEG signal processing consists of several steps. These steps include 

preprocessing of signals for removing baseline shift, DC components, reducing noise and 

artifacts, characteristics feature extraction, classification using the features. In post-

processing step, algorithms are optimized in achieving optimum performance in 

achieving specific goals. A typical block diagram of EEG signal processing pipeline, for 

both real-time and offline applications, are shown in Figure 3. 

Figure 3. Typical steps in EEG signal processing 

1.2.1. Preprocessing 

EEG signal amplitudes are in the range of ten to several to hundred micro volts 

(µV) when measured on the scalp. Higher amplitude EEG (about 10 - 20 mV) can be 

obtained using subdural (grid or strip) electrodes. Moreover, EEG is a band limited signal 

having useful information in the range of 0.5 - 100+ Hz. Inherently, EEG recordings from 

the human brain are noisy and susceptible to numerous artifacts, such as eye blinks, eye 

movements, muscle activities, and movement related artifacts. Interference from power 

line could also appear as a 50/60 Hz peak in EEG. The artifacts and noise could severely 

contaminate EEG recordings and make analysis very challenging. These artifacts are 

extremely detrimental in EEG-based clinical and other applications, for example, BCIs. 

EEG Preprocessing
Feature 
Extraction

Classification Postprocessing Output
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In preprocessing, EEG signals are investigated first to identify the presence of unwanted 

components. For further processing, these artifacts and noise components are required to 

be removed or reduced from the signals of interest. The artifacts rejection techniques 

include rejecting a portion of signal where the signal is badly corrupted with noise as well 

as by performing different available filtering operations on EEG segments.  

Temporal and spectral threshold techniques are widely used in detecting artifacts 

with some degree of success [8]. In standard threshold of amplitudes values, a fixed 

threshold is applied to EEG signals. The signals under observation exceeding the 

predefined threshold are labeled as artifactual. Other techniques include computing time 

domain features relevant to artifacts and application of a threshold. The threshold in this 

case is determined after normalizing the feature values to zero mean and unity standard 

deviation to optimize the sensitivity and specificity of detection. However, spectral 

threshold methods reported to have better performance [8]. Wavelet denoising has been 

explored by few researchers for artifacts removal with limited success [9]. Application of 

the threshold-based techniques with independent component analysis (ICA) is now 

widely accepted in the neuroengineering scientific community to detect, isolate, and 

remove artifacts from data. The ICA-based techniques allow simple and reliable 

subtraction of independent components related to unwanted components [8]. It has been 

reported in literature that methods utilizing ICA algorithms yield better performance in 

dealing with most of the artifacts [8].    

1.2.2. Feature Extraction 

EEG signals can be characterized in time-, frequency-, spatial- or a combined 

domain, such as time-frequency domain. Multi-sensor EEG recordings provide intuitive 
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information related to complex spatio-temporal cortical activities. Depending on the type 

of problem statement or hypothesis under investigation feature extraction methods are 

chosen to characterize the EEG. As introduced earlier, we have to consider a few 

assumptions to analyze EEG signals in order to translate useful information. Nonlinearity 

of the head/brain physiology and nonstationary nature of the recorded electrical activity 

are to name a few. In most of EEG-based applications, it has been found that linear 

feature extraction algorithms are capable of extracting useful information. On the other 

hand, in some specific applications, such as diagnosis of neurological disorders, analysis 

of brain dynamics may provide very useful information. In such applications, dynamical 

analysis can characterize the nonlinearity of EEG, however, with the cost of high 

computing power requirement. In this research, a wide variety of feature extraction 

methods including the comparatively new areas of chaos theory and nonlinear dynamical 

analysis based feature extraction methods were exposed. Interesting behavior of these 

feature extraction methods were found in revealing changes in brain dynamics.    

1.2.3. Classification 

In analyzing EEG signals, the classification of a feature space is usually required 

for most of the applications. For example, maximum amplitude, a time-domain feature 

extracted from epileptic EEG may be useful to classify whether the portion of data under 

investigation is epileptic or not. The main objective of classification is to determine the 

boundary between two or more classes [5]. To date, many types of classification 

techniques have been developed, such as linear classifier to nonlinear classifier. In the 

context of EEG signal processing, the application of wide variety of classifier algorithms 

are found. In the last four to five decades, the area or artificial intelligence, machine 



 

8 
 

learning, and pattern recognition have witnessed development of many classifier 

algorithms and clustering techniques. These can further be divided into two broad 

categories, namely: supervised and unsupervised. Among those, linear discriminant 

analysis (LDA), artificial neural network (ANN), support vector machines (SVM), 

hidden Markov model (HMM), k-means clustering, and fuzzy logic to name a few are 

very popular and have been widely used in many applications. In this study, fuzzy logic 

based classification techniques have been explored and applied in epileptic seizure 

detection and prediction in EEG. The advantage of fuzzy logic is that it provides a way to 

mimic human (expert’s) reasoning with significantly lower complexity relative to other 

classifiers, such as ANN and SVM.       

1.3. Applications of EEG Signal Processing: Literature Review 

1.3.1. Epileptic Seizure Detection 

Epilepsy is the most common neurological disorder with prevalence in 1 - 3% 

world’s population [10]-[12].  It is characterized by the occurrence of two or more 

unprovoked epileptic seizures which are due to abnormal rhythmic discharge of electrical 

activity of the brain [11]-[13]. A seizure is defined by sudden alteration of one or more 

neurological functions, such as motor, behavior, and/or autonomic functions. Epileptic 

seizures are episodic, rapidly evolving temporary events. Typically, the duration of an 

epileptic seizure event is less than a minute. Though the exact mechanism behind 

epileptic seizure generation and evolution is largely unknown to date, a seizure event can 

be described as the increased network excitation of the neural networks with synchronous 

discharge as well as variable propagation in the brain [10], [11]. In focal epilepsy, ictal 
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manifestations may localize in a specific brain region, whereas in generalized epilepsy 

the whole brain could be the candidate for seizure events to take place [1], [2].  

EEG is the most widely used electrophysiological measure for diagnosis of 

neurological disorders, such as epilepsy in clinical settings. Long term monitoring of 

EEG is one of the most efficient ways for diagnosis of epilepsy by providing information 

about patterns of brain electrical activities, type and frequency of seizures, and seizure 

focus area [11]-[13]. In long term monitoring, ictal EEG recordings are usually correlated 

with the clinical manifestation of seizure. If the recording site is where the seizure focus 

is located, the changes in EEG can occur before the clinical manifestations [11], [12]. On 

the other hand, when electrodes are placed in remote location from the seizure focus site, 

the clinical manifestations may occur before any visual changes in EEG. Therefore, the 

placement of electrodes is a determining factor in seizure detection or early detection 

[12]. The clinical experts who monitor the long term EEG recordings usually look for 

earliest visually apparent changes in EEG to identify ictal onset [10]. An illustration of 

the different EEG states related to brain transition is shown in Figure 4 [14].  

 

Figure 4. Illustration of the probable preictal, ictal, and postictal states relative to the interictal 
baseline in epilepsy EEG recording [14]. 

 
Seizure events are clinically termed as ictal event. Hypothetically, the state prior 

to seizure onset is termed as preictal. Similarly, the state following a seizure event is 

known as postictal. The baseline or regular EEG activities in between seizures are termed 

Ictal Preictal Interictal 

Seizure

Posteictal Interictal 

Recording Time (h)  
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as interictal. It is worth mentioning that these states may not be symmetrical. In seizure 

detection, correct classification of the ictal activities from the normal activities is the 

primary goal. In early detection or prediction, identification of the preictal state from the 

interictal baseline is the primary goal. An illustration of multichannel EEG recordings 

having recordings from two epileptic channels is shown in Figure 5. 

Figure 5. Multi-channel EEG recordings using invasive electrodes. Channels HRB2 and HRC2 
are located in the epileptic region of the brain. 

 
This information helps physician or caregiver to treat patients with the available 

medications. However, the visual inspection of long term EEG by clinicians is 

challenging as it is performed over several days to weeks due to the unknown nature of 

seizure occurrence. The visual inspection of this large amount of data to identify seizure 

(epilepsy diagnosis) is very time consuming and monotonous [12], [13], [15]. Therefore, 

an automatic seizure detection tool with high detection rate and considerably low false 

10 20 30 40 50 60

HRA1

HRA2

HRA3

HRA4

HRA5

HRB1

HRB2

HRB3

HRB4

HRB5

HRC1

HRC2

Time (s)

E
E

G
 C

h
a
n
n
e
ls

 (
V

)

 

Seizure evolution



 

11 
 

detection rate would have valuable application in clinical settings to help physicians and 

caregivers in epilepsy treatment [11]-[13], [15].   

During a seizure event, increased abnormal synchronous firing occurs in the 

involved neural networks of the brain. The pattern and shape of ictal EEG varies 

according to the brain region as well as types of recordings (intracranial or scalp EEG). A 

detection algorithm should be able to identify these dynamic changes in EEG with high 

sensitivity. One of the most common patterns found in ictal EEG is periodic sharp 

activity (6 - 8 Hz activity of a mesial temporal lobe-onset seizure) [11], [12]. The ictal 

onset and offset is also characterized by relatively high complexity signals. However, the 

ictal initiation patterns may vary from patient to patient. Though the patterns in different 

patients may vary depending on the types of seizures, proximity of the recording 

electrodes to the seizure focus, types of recordings, the ictal onset patterns, and early 

evolution of brain dynamics in a given patient are of similar types. Therefore, the 

algorithm parameters can be tuned in a patient specific way to increase the sensitivity and 

specificity of detections [12], [13].  

One of the applications of automatic seizure detection in clinical settings is to 

monitor patients and localize brain region for surgery. As for medically intractable focal 

epilepsies, brain tissue of seizure focus is candidate for surgery and the source 

localization information helps neurologists in surgical procedure. Moreover, to provide 

patients an alternative to currently available medication and surgical treatment, much 

focus has been put on early detection and prediction of epileptic seizure providing 

sufficient time of intervention prior to clinical onset, and ultimately preventing or 

controlling epilepsy [12]. Although the intervention time is crucial in designing a control 
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device, an early detection tool capable of detecting seizures several minutes prior to 

clinical seizure onset would help the patients in avoiding serious injuries by taking proper 

action or using available medications to reduce the intensity of seizure frequency [13], 

[15].   

Significant progress has been made in automatic detection of epileptic seizure 

from intracranial EEG (iEEG) recordings over the last couple of decades [12], [13], [15]-

[20]. Intracranial EEG is an invasive way of recording EEG where electrodes are placed 

onto the cortex or inside the brain. In both the types, surgical procedures are required. 

Gotman (1982) developed an automatic seizure detection method to detect various types 

of seizures in both surface and intracranial EEGs. It was based on decomposition of EEG 

into elementary waves and detecting paroxysmal bursts of rhythmic activities using 

relative amplitude, their duration, and rhythmicity [13]. Murro et al. (1991) developed a 

computerized method to detect complex partial seizures [15]. The method used three 

EEG features, relative amplitude, dominant frequency, and rhythmicity. Discriminant 

analysis was used for decision making [15]. In order to reasonably reduce the false alarm 

rate, Qu and Gotman (1995) developed a warning system based on template matching 

which relies on availability of one sample seizure for subsequent detections of similar 

seizures in scalp and intracerebral EEG recordings [18]. Following, Qu and Gotman 

(1997) proposed a patient-specific seizure onset detection system with high sensitivity 

and very low false positive rate [16]. Osorio et al. (1998) proposed an algorithm for real-

time detection, quantitative analysis of seizures, and prediction of the clinical onsets [17]. 

Grewal and Gotman (2005) proposed an automatic warning system based on EEG data 

filtering in multiple bands, spectral feature extraction, Bayes’ theorem, and spatial-
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temporal analysis [19]. This system requires training and it is tunable in a patient specific 

way to optimize the performance [19]. In a different approach, Adeli et al. (2007) 

performed wavelet sub-band analysis as well as nonlinear analysis of EEG for detecting 

seizures and epilepsy [20]. They used correlation dimension and largest lyapunov 

exponent to quantify nonlinear dynamics of EEG [20]. From the same group, a novel 

wavelet-chaos-neural network methodology was proposed by Ghosh-Dastidar et al. 

(2007) [21]. Srinivasan et al. (2007) proposed a neural-network-based automatic seizure 

detection system using approximate entropy (ApEn) as the input feature [22]. Gardner et 

al. (2006) discussed a one-class support vector machine (SVM) novelty detection for 

seizures in iEEG by classifying short-time, energy-based statistics [23]. The detector was 

validated on a sample of 41 interictal and 29 ictal epochs and yielded 97.1% sensitivity, 

and mean detection latency of -7.58 seconds, but false positive rate (FPR) of 1.56 false 

positive per hour [23]. Chan et al. (2008) proposed a patient-specific algorithm for 

accurate measurement of seizure onset time detection [24]. The algorithm makes use of 

spectral and temporal features, and support vector machine as classifier [24]. Ghosh-

Dastidar et al. (2009) presented a new supervised learning algorithm for Multi-Spiking 

Neural Networks (MuSpiNN) which was applied in seizure detection where they have 

demonstrated better accuracy of MuSpiNN over single-spiking Spiking Neural Network 

(SNN) model [25]. In a recent work, Zhang et al. (2010) proposed a novel incremental 

learning scheme based on nonlinear dimensionality reduction for automatic seizure onset 

detection [26]. Their study used continuous wavelet transform (CWT) for feature 

extraction and two stage decision making which makes use of nonlinear dimensionality 

reduction and incremental learning schemes [26].   
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Recently, much focus has been put in detection of seizures early in time or 

eventually predicting it. Interestingly, there have not been much significant works 

performed in the area of seizure detection or early detection based on fuzzy logic 

approaches. We realized this area requires careful investigation and innovative 

algorithms based on fuzzy logic might have useful application in epileptic seizure 

prediction. Subasi (2006) introduced the application of adaptive neuro-fuzzy inference 

system (ANFIS) for epileptic seizures detection and classification of epileptic patients 

from normal population [27]. This method combined the adaptive capabilities of artificial 

neural networks and qualitative approach of fuzzy logic. Relevant features were extracted 

using the wavelet transform [27]. Aarabi and Fazel-Rezai (2009) presented an automatic 

method which uses fuzzy rule-based system to detect seizures in iEEG [28]. Temporal, 

spectral, and complexity features extracted from iEEG were fed into two stage decision 

making system where they were spatial-temporally integrated. Intermediate decision 

making was performed in the first stage using rule-based fuzzy inference system [28]. 

Final decision was made using spatial combiner, feature combiner, and post-processor 

[28].  

1.3.2. Epileptic Seizure Prediction 

It is worth mentioning here that the boundary between early seizure detection and 

seizure prediction may be seen overlapping or blurry oftentimes. These two areas have 

two distinct objectives. In early seizure detection, an impending seizure is to be detected 

before onset from a few seconds to minutes. On the other hand, in seizure prediction, the 

hypothesis is that such an event could be detected in minutes to an hour or several hours 

before the event to take place. Thus the objective is to detect subtle changes in preictal 
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state corresponds to a seizure event to follow. These require correctly identifying the pre-

ictal states and discriminate it from interictal states. The definitions of these states are 

mentioned here for clarity. The data recording between seizures are termed as interictal 

states and recording before a seizure is hypothesized as preictal state. The time when 

seizure is actually happening is known as ictal state. Similarly, the recordings immediate 

past seizure events are termed as postictal. The whole idea of seizure prediction comes 

from the hypothesis that in most of the seizures, (widely accepted for focal seizures and 

partially accepted for generalized seizures) there are changes in terms of clinical 

demonstrations as well as electroencephalographic changes (may not be visible to naked 

eyes) in some patients before a seizure actually takes place. Therefore, the changes in 

brain dynamics are considered as smooth transition rather than abrupt. Current available 

medications are incapable for nearly 30% of the patients. Moreover, due to the sudden 

nature of seizure attack, a device capable of predicting seizures early would have huge 

impact in improving the quality of patient’s life and provide novel therapeutic treatment. 

To address this demand, last three decades witnessed a large number of seizure prediction 

algorithms were published and several patents were filed. However, almost all of these 

algorithms are retrospective in a sense that they fail in unselected or out of sample data 

and do not pass all the requirements to be considered in clinical applications. 

Mormann et al. (2007) described the state of seizure prediction research 

emphasizing the need for rigorous statistical validation [29]. Several pitfalls of the 

current methods have been identified which require to be addressed properly and 

carefully in order to make further progress in this challenging area [29]. In this research, 

a large number of articles proposing seizure prediction algorithms were reviewed. The 
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literature on seizure prediction is very rich and most of the proposed methods fall in 

several major categories as threshold-based methods, clustering-based techniques, 

machine learning-based techniques, spatio-temporal combination of multiple seizure 

prediction methods, and rule-based methods. Most of the methods available in literature 

make use of a single characteristic measure, commonly known as seizure prediction 

method, and apply a thresholding procedure to trigger an alarm [30]. These include the 

application of both linear and nonlinear characteristic measures. Nonlinear methods are 

popular among many researchers. However, most of these methods are sensitive to noise 

which may lead to wrong findings [23], [24]. Therefore, the advantages of nonlinear 

feature extraction methods over linear methods are yet to be justified. The selection of 

test dataset is also critical because direct comparisons of different studies or approaches 

are difficult unless those are applied to the same dataset [19]. Proper statistical validation 

remains another major concern [24], [25].  

To address one of these challenges, Feldwisch-Drentrup et al. (2010) described a 

method using logical “AND” and “OR” combinations in order to combine two epileptic 

seizure prediction methods [21]. The study showed improved performance for both the 

“AND”/“OR” combinations comparing to the performance of single method. The “AND” 

combination yielded better sensitivity comparing to the “OR” combination [21].  

A patient-specific rule-based seizure prediction system was proposed by Aarabi et 

al. (2011) [31]. Six nonlinear features, both univariate and bivariate, were extracted from 

overlapping EEG segments of 10 seconds duration. Finally, the features were integrated 

spatio-temporally to predict seizures with high sensitivity [31]. This method yielded an 

average sensitivity of 96.5% with an average false prediction rate of 0.055/h for 
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prediction horizon of 60 minutes. For prediction horizon of 30 minutes, their method 

yielded an average sensitivity of 90% with an average false positive rate of 0.06/h [31]. 

However, the presented results were for short sample size (two patients having 10 

seizures) [31]. Discussing one of the most recent articles, a novel method of 

discriminating preictal state from interictal state was proposed by Gadhoumi et al. (2012) 

by utilizing high frequency analysis of EEG [32]. The method computed energy and 

entropy from selected preictal and interictal epochs using wavelet transform [32]. The 

two measures were plotted in features space revealing a dynamics referring to the brain 

dynamics [32]. A reference dynamics was defined and discriminant analysis was 

performed two classify the EEG epochs [32]. The method yielded over 80% of sensitivity 

with false prediction rates from 0.09/h to 0.7/h [32]. 

1.3.3. Challenges of Understanding Brain Mechanisms 

EEGs, both invasive and non-invasive, are primarily being used as the tool for 

diagnosis of epilepsy. Novel treatment of epilepsy treatment, such as neuromodulation 

techniques are attracting great interest where the objective is to reduce the seizure 

frequency by an electrical pulse using a pacemaker like device. Feature extraction 

methods (characteristic measures) play a critical role in almost all seizure detection and 

prediction algorithms. The best choice of feature selection should be made based on the 

physiological phenomenon to be detected. Given the limited understanding of epilepsy, 

this is not a straightforward choice to make. Many feature extraction methods have been 

used so far with varying rate of success [33], [34].  

A significant number of researchers agreed on the point that during a seizure 

event, many neurons fire at the same time. In other words, many neurons fire in 
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synchrony. In order to measure this ‘synchronous firing of the neurons’, various features 

have been used which measure the synchronous activity [34]-[36].  

Often rhythmic discharges are visible in EEG during a seizure. Such discharges 

are identified as spikes (multiple spikes), described by Gotman (1982) [13]. These could 

be identified using morphological characteristics, such as amplitude, duration of the half 

waves. To study the rhythmic discharges many researchers have utilized frequency 

domain analysis based on frequency transform, time-frequency analysis, and wavelet 

transform. On the other hand, time-domain features are particularly popular among many 

researchers as temporal change in EEG is evident in seizure. These features represent the 

abnormal firing of the brain’s neural networks. Furthermore, these features are 

significantly different than baseline EEG or interictal EEG. As the electrical activities 

recorded at the electrodes are the mixing of the potentials of brain fields, many 

researchers choose to use mathematical methods to decompose EEG signals into its 

constituent parts and analyze the signals [12], [37].  

Finally, nonlinear dynamical analysis (chaos theory) based measures are 

particularly popular in seizure prediction [37]. Nonlinear measures are computed from 

EEG signals by utilizing time-delay embedding in space to reconstruct the phase space 

portrait [37]. The various nonlinear measures are then computed studying the properties 

of the reconstructed phase space trajectory [37].  

The idea of early detection of epileptic seizure or prediction established with 

acceptance of the hypothesis that the changes in EEG started earlier in time before 

clinical manifestations in EEG. The assumption is that brain dynamics evolve smoothly 
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towards epileptic stage rather than abrupt. Therefore, nonlinear dynamics and chaos 

theory-based methods are particularly important in early detection or prediction study.  

There are a number of reasons for which early detection or prediction of epileptic 

seizure remain a huge challenge to the scientific community. The exact underlying 

mechanism of seizure generation remains largely unknown [29], [30], [38]. From 

neuroengineering point of view, there is a lack of proper mathematical models of the 

brain, or brain circuits, which affects the understanding of neural diseases. Similarly, 

from neuroscience point of view, the understanding of the relationships among the 

neurons, the transmission of electrochemical signals (neurotransmitters, receptors) in the 

context of neural diseases, such as epilepsy is limited.  

In the data driven approach, one idea could advance this field further is to study 

differences and similarities among different types of seizures. Different EEG databases 

could be used with various feature extraction methods in an aim to identify new 

diagnostic indicators or bio-markers. The success of the patient specific algorithms has to 

be transformed somehow to the development of non-patient specific algorithms. 

The primary hypothesis inspiring the growing number of articles attempting early 

detection and/or seizure prediction in EEG is that the brain state transitions in focal 

epilepsies are smooth rather than abrupt. However, it is quite obvious that the predictive 

changes in EEG may vary in different types of epilepsy as well as in patients. The 

pathologies of underlying focal epilepsies may also vary. Obviously, better understanding 

of the complex spatio-temporal interactions between different brain regions is necessary.  
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Considering coupling in different brain regions, synchronization measures are 

likely the most sensitive features in detection preictal transitions in EEG. Moreover, 

previous researchers have reported that the bivariate features perform better over 

univariate features [39], [40]. Mormann et al. suggested that a combination of both 

univariate and bivariate features would be more appropriate in designing a reliable 

algorithm [38]. Therefore, an intelligent choice would be to use several bivariate features 

after proper investigation. Finally, a carefully designed decision making system, such as 

rule-based fuzzy inference system could be employed for identifying the preictal states 

from the interictal baseline. Evaluation of the proposed method should be done by 

statistical performance analysis in the form of sensitivity and false prediction rate per 

hour [29], [38]. 
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CHAPTER ΙΙ 

2. ARTIFACTS DETECTION AND NOISE REDUCTION 

2.1. Artifacts Detection 

2.1.1. Background 

Because of the low amplitude (~ 50 µV) EEG is susceptible to physiological and 

extra-physiological artifacts and noise as well as noise from environment. Typically EEG 

signal amplitude is in micro volts (μV) range and the frequency bandwidth of EEG range 

from zero to several hundred Hz. Fundamental EEG rhythms are below 100 Hz as 

described in chapter 1. Other physiological activities produce electrical activities in the 

low frequency region of EEG spectrum. Therefore, it not only records brain electrical 

activities but also other physiological activities, such as eye blinks, electrocardiogram, 

and muscle contractions. Electrical interference, for example, power line noise could 

appear as 50/60 Hz noise in EEG. In addition, electrode movements introduce movement 

related artifacts. Therefore, applications of EEG outside the controlled laboratory 

environment remain extremely challenging. Based on the characteristic properties of 

different types of artifacts and noise, it is possible to design filtering algorithms to reduce 

their effects. Before performing filtering or artifact rejection operations, it is required to 

investigate for the presence of artifactual components in a trial-like EEG segment under 

investigation.  
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2.1.2. Threshold-based Artifacts Detection 

Typically, a threshold based detection is applied to EEG signals to detect a 

portion of signals having artifacts or not in both clinical and event-related research [8]. 

Artifactual EEG signals usually have higher potential comparing to background EEG 

activities. By applying a pre-defined upper bound of potential it is possible to detect 

portion of contaminated signals for rejection [8]. This simple technique, however, does 

not work in case the artifact’s amplitude is less than the pre-defined threshold, for 

example, low amplitude eye blinks. Another type of common artifacts is produced by 

muscle activities having amplitude very close to background EEG activity but of higher 

frequency [8]. In detecting such high frequency artifacts, a standard threshold method can 

be applied to data spectra after transforming data to frequency domain [8]. 

In this study, several artifacts were encountered, such as saturation artifacts and 

electrode movement artifacts. Standard threshold based methods are applied to detect 

segments with artifacts and the detected segments were rejected from the analysis. The 

artifacts detection methods applied are discussed in details in the later chapter.  

2.1.3. Machine Learning-based Artifacts Detection 

Although threshold based techniques are widely used in clinical as well as event 

related potential (ERP) research, these are not highly reliable and efficient for all types of 

artifacts. The reason is that the morphology of the different movement related artifacts 

are of high variability. Threshold based methods utilize lower order statistical 

measurements, for example, maximum or minimum value. It is expected that higher order 

statistical measures as well as carefully extracted characteristics features are capable of 
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more reliable detection [8]. A similar threshold based procedure can be applied to these 

measures. In addition, many research groups are interested in developing machine 

learning based artifact detection algorithms in order to overcome the limitations of 

threshold based methods [41].  

In this study, in addition to standard threshold based methods, application of a 

more sophisticated neuro-fuzzy based machine learning technique was proposed. Three 

different types of common artifacts which appear in EEG, eye blinks, muscle artifacts, 

and electrode movement/displacement artifacts were simulated. These artifacts were 

modeled and were added to regular (artifacts free) EEG to obtain semi-simulated 

artifactual EEG signals [42]. Finally, ANFIS classifiers were designed and applied to 

detect the presence of the artifacts in semi-simulated EEG data.  

Three different types of artifacts commonly appear in EEG which could 

potentially contaminate EEG signals were modeled. These are eye blinks, muscle 

artifacts, and discontinuities in signals due to sensor displacement. The eye blinks were 

modeled by smoothing a low frequency sine wave using a moving average filter with 

window size of 37. This window size was chosen empirically to find the closest 

morphological shapes which resemble the eye blink activity. In order to model the muscle 

activities, random noise was band-pass filtered within 20 - 60 Hz [8]. Sampling 

frequency considered was 256 samples per second and two seconds or 512 sample points 

of artifacts as shown in Figure 6. 

The normal EEG and the simulated artifacts were normalized to unity as shown in 

Figure 6. The modeled artifacts were linearly added to normal EEG in order to simulate 
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artifacts EEG [42]. The artifacts were scaled twice the amplitude of EEG to make sure 

their dominant presence [9]. Semi-simulated EEG data corrupted with artifacts are shown 

in Figure 7. 

Figure 6. Modeled artifacts: (a) eye blinks, (b) movement related, (c) muscle activities; and (d) 
normal EEG activity. 

Figure 7. Semi-simulated EEG data affected by artifacts: (a) eye blinks artifacts, (b) sensor 
motion artifacts, (c) muscle noise.  
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The discrete wavelet transform (DWT) was used to extract features. Level four 

decomposition of artifacts EEG using discrete wavelet transform (DWT) was performed. 

Approximate and detail coefficients (cA1 - cA4 and cD1 - cD4) were computed. DWT 

actually performs sub-band decomposition of the original signals and the low 

frequency/high amplitude and high frequency/low amplitude patterns are localized in 

time-frequency domain. For dimensionality reduction, we computed three features: 

maximum value, standard deviation, and kurtosis of approximate coefficients (cA4 for 

eye blinks and electrode movement related artifacts, cA1 for muscle artifacts) [43]. 

ANFIS classifiers were designed to classify these artifacts correctly. The ANFIS 

is a Sugeno-type fuzzy inference system having neural-network adaptive learning 

capabilities [44], [45]. Therefore, it is more systematic to model ANFIS and it rely less 

on expert’s knowledge. An ANFIS model was designed with three input and one output 

nodes. For each input feature three membership functions were defined: Low (L), 

Medium (M), and High (H) as shown in Figure 8. Figure 8 illustrates the initial Gaussian 

membership functions and Figure 9 shows the optimized membership functions after the 

training procedure.  
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Figure 8. Initial Gaussian membership functions assigned to the feature inputs: (a) feature 1, (b) 
feature 2, and (c) feature 3. Three levels were assigned to the membership functions as low (L), 

medium (M), and high (H).    

Figure 9. Optimized fuzzy input membership functions after training (a) feature 1, (b) feature 2, 
and (c) feature 3. Three levels were assigned as low (L), medium (M), and high (H). 

1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8
0

0.5

1

Input 1

 F

0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

0.5

1

Input 2

 F

1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
0

0.5

1

Input 3

 F

 

 

Low

Medium

High

L M

H

H

M

M

L

L H

(a)

(b)

(c)

1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8
0

0.5

1

Input 1

 F

0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

0.5

1

Input 2

 F

1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
0

0.5

1

Input 3

 F

 

 

Low

Medium

High

M

M

M

H

H

HL

L

L

(a)

(b)

(c)



 

27 
 

 
The output node is assigned binary values for each class (‘0’ = regular; ‘1’ = 

artifactual). The fuzzy if-then rules are defined as following. 

௜ሻܽ݊݀ܤ ݏ݅ ݕ௜ሻܽ݊݀ ሺܣ ݏ݅ ݔሺ ݂ܫ ሺݖ ݏ݅ ݄݊݁ݐ௜ሻܥ ሺ ௜݂ ൌ ݔ௜݌ ൅ ݕ௜ݍ ൅ ݖ௜ݎ ൅  ௜ሻ (1)ݏ
 
where ݕ ,ݔ, and ݖ are the inputs, ܣ௜, ܤ௜, and ܥ௜ are the fuzzy sets, and ݌௜, ݍ௜, ݎ௜, and ݏ௜ are 

the linear design parameters [44], [45]. The linear parameters are determined from the 

input patterns presented. These parameters were optimized during the training using least 

squares method. The ANFIS architecture is shown in Figure 10. The system required 27 

fuzzy if-then rules. 

Figure 10. The ANFIS architecture designed for movement artifacts detection having three inputs 
with three membership functions. All the nodes in the middle layers 2, 3, and 4 were not shown.  

 
Fuzzification of input variables was performed in the first layer and all the nodes 

of the first layer are adaptive nodes. The outputs of the first layer are the fuzzy 

membership grades of the inputs. The membership grade parameters are used to 

adaptively estimate the membership grades during training to better map the input/output 
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relationships. The second layer nodes perform product operation to calculate the firing 

strength of each rule using the following equation [43]-[45]. 

௜ܱଶ ൌ ௜ݓ ൌ ,ሻݖ஼௜ሺߤሻݕ஻௜ሺߤሻݔ஺௜ሺߤ ݅ ൌ 1,2,3 (2) 
 

The third layer is responsible for data normalization. In the fourth layer, each 

node has the following function: 

௜ܱସ ൌ ௜ݓ ௜݂ ൌ ݔ௜݌௜ሺݓ ൅ ݕ௜ݍ ൅ ݖ௜ݎ ൅  ௜ሻݏ
 

(3) 

where ݓ௜ is the output of the previous layer and ሼ݌௜ , ௜ݍ , ௜ݎ ,  ௜ሽ is the first order polynomialݏ

parameter set [44], [45]. The polynomial parameters are for a first order Sugeno model 

[44], [45]. The fourth layer is also adaptive since the consequent parameters are 

modifiable. There would be a total of 27 nodes in each of the middle layers. The single 

node ܵ in the final layer performs the summation of all incoming signals. The final output 

is given by the following equation. 

௜ܱହ ൌ ෍ ௜ݓ ௜݂௜ ൌ ∑ ௜ݓ ௜݂௜∑ ௜௜ݓ  

 

(4) 

A total of 540 epochs (segments or windows) of EEG were generated with 180 

epochs for each type of artifacts. Among those 160 epochs were normal EEG and 20 

epochs were EEG affected by artifacts. The epochs were annotated as regular (“0”) and 

artifactual (“1”). Further details on the datasets used are given in Appendix B.  

Training and testing was performed using 10-fold cross validation technique [46]. 

During each fold the size of the training data sets were 162 epochs and test data sets were 

18 epochs. The training was performed using a hybrid learning algorithm which 

combines the least squares method and the backpropagation gradient descent method. 



 

29 
 

Initially, gradient descent method was used to train the network. Finally, with trial and 

error it was found that hybrid learning algorithm is more efficient in adaptively 

estimating the fuzzy membership parameters.   

2.1.4. Results and Discussion 

An ANFIS classifier was generated for each type of artifacts and the performance 

of the ANFIS classifier is reported for test segments only in a 10-fold cross validation 

scenario. A threshold procedure was applied to evaluate the classifier’s performance. The 

true positive ratio (TPR), false positive ratio (FPR), and detection accuracy (mean ± 

standard deviation) achieved are presented in Table 1. TPR was defined as the ratio of 

number of true positives divided by the number of one targets. Similarly, FPR was 

defined as the ratio of the false positives divided by the number of zero targets. Finally, 

accuracy was defined as the percentage of correct decisions being made.  

Table 1. Accuracy, true positives rates, and false positives rates (mean ± standard deviation) in 
detection of artifacts using adaptive neuro-fuzzy inference system (ANFIS). 

Artifacts type TPR (%) FPR (%) Accuracy (%) 
Eye blinks 85.56±11.62 42.73±1.94 96.67±3.88 

Sensor motion 78.06±22.66 44.08±3.27 96.67±4.68 
Muscle activities 79.95±14.74 44.00±1.15 90.56±6.44 

 
The system yielded 97% accuracy for eye blinks and sensor motion artifacts. 

These are of similar characteristics having very low frequency and comparatively higher 

amplitude than baseline EEG. Specially, sensor motion artifacts could appear as several 

times larger amplitude than baseline EEG. They are easy to detect even applying a simple 

threshold. The accuracy was lower in case of detecting muscle noise. Significant spectral 

overlap with the baseline EEG makes it particularly difficult in detecting this type of 

noise 
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The classical fuzzy inference system suffers the drawback of relying too much on 

expert’s knowledge and reasoning. Another drawback is that if offers no framework for 

optimization of the fuzzy membership grade parameters. One way to optimize the fuzzy 

membership function is by utilizing data mining techniques, such as fuzzy c-means 

clustering. The ANFIS overcomes this drawback by adopting neural learning capabilities. 

The membership function grades are optimized during the training process using gradient 

descent method [44]. The algorithms were implemented in MATLAB® (MATLAB® 

version 7.8 with wavelet toolbox and fuzzy logic toolbox). 

2.2. Filtering of EEG for Noise Suppression and Artifacts Rejection 

EEG is a band limited signals contains both transient and rhythmic activities. 

Filtering of EEG requires careful considerations of the source of noise and the 

information to be extracted from the signals. The signal to noise ratio (dB) should be high 

for extracting useful information. In this study, fourth order IIR (infinite impulse 

response) Butterworth bandpass filter was used to mitigate low frequency artifacts and 

high frequency noise. The filter cut-off frequencies were set at 0.5 Hz and 100 Hz. A 

second order IIR notch filter with cutoff 50 Hz (for EEG recorded in Europe) or 60 Hz 

(for EEG recorded in USA) was also used to suppress the power line noise. 

2.3. Summary 

In this chapter, an innovative approach based on adaptive neuro-fuzzy inference 

system (ANFIS) for detecting artifacts in EEG signals was proposed. Performance was 

evaluated on real EEG data. The algorithms yielded accuracies in the range from 90.56% 

to 96.67%. For muscle noise, the sensitivity and accuracy were the lowest. This was 
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expected since muscle noise is in the high frequency range of EEG band (20 - 60 Hz) and 

overlaps with the large bandwidth of regular EEG spectra. Therefore, detecting this type 

of noise is difficult and filtering and removing it is much more difficult. Spectral features 

were used to characterize the muscle noise. Other two types of artifacts due to eye blinks 

and sensor motion were relatively easy to characterize in feature domain. Similarly, those 

can be easily filtered out from EEG. The algorithms resulted in accuracies close to 97% 

for both of these artifacts.  As for filtering of EEG, since the main objectives was to 

develop fuzzy logic based algorithms in artifacts detection, seizure detection and 

prediction, traditional digital filters were used to reduce the affects of artifacts and noise 

in EEG as described above.  
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CHAPTER ΙΙΙ 

3. EPILEPTIC SEIZURE ONSET DETECTION 

3.1. Introduction 

In the context of epilepsy, EEG waveforms recorded from patient’s brain can be 

classified into two broad categories, epileptic and non-epileptic. Abnormal EEG activities 

associated with epilepsy can be classified as ictal (during seizures) or interictal (between 

seizures). When prediction of epileptic seizure is of primary interest, EEG activities 

before an impending seizure are termed as preictal hypothetically. For epileptic seizure 

detection, ictal patterns required to be differentiated from interictal baseline. This could 

be considered as a pattern recognition problem where classification of different patterns 

is the primary goal. Relevant features could be extracted from the EEG segments which 

later can be classified using different techniques. Similarly, to detect an epileptic seizure 

event earlier, the subtle changes in preictal state comparing to interictal baseline have to 

be detected. These changes in EEG are evident in various characteristics features. The 

feature extraction also helps in reducing the dimensionality of the data. In this research, 

wide varieties of characteristics features were studied. An adaptive rule-based fuzzy logic 

system was developed to detect seizure onset from iEEG recordings. 

In this study, a fuzzy rule-based adaptive seizure onset detection method was 

presented. Fuzzy algorithms were applied in combining more than two methods (four in 
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this study) for seizure onset detection. We utilized fuzzy “AND” combination instead of 

logical “AND” combination to study the feasibility of this method in early detection. The 

fuzzy product implication was utilized to realize the “AND” combination using fuzzy 

inference mechanism. The results showed that this approach could be a promising 

solution to address some of the challenges in the area of early seizure detection and 

eventually in seizure prediction. The overall method consists of several steps, pre-

processing, artifacts detection, feature extraction, decision making using fuzzy logic, and 

post-processing. Time domain, frequency domain, and entropy-based features were 

extracted from intracranial EEG (iEEG) segments. These features were combined using a 

set of fuzzy rules and another set of fuzzy rule was used to combine information spatially. 

Final decision was made by applying a threshold procedure to this spatial-temporal 

combination of multiple features. Artifacts detection algorithm was applied prior to 

feature extraction to identify segments corrupted with electrode movement and saturation 

artifacts as explained in the previous chapter. The information was stored to be used in 

post-processing step. False detections caused by artifacts and other activities were 

rejected in the post-processing step [47].  

The iEEG recordings were obtained from the Freiburg Seizure Prediction EEG 

(FSPEEG) database [47]-[49]. The database contains iEEG data from 21 patients with 

medically intractable focal epilepsies. The details of the database including patient’s 

information, seizure origin, seizure type, and average seizure duration are given in Table 

2. 
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Table 2. Summary of the iEEG data selected for analysis, including patient number, total data 
length, gender, age, seizure type, seizure origin, the number of analyzed seizures, and average 
seizure duration per patient. Acronyms: SP-simple partial seizure, CP-complex partial seizure, 

GTC-generalized tonic-clonic seizure, F-female, M-male. 

Patient Data 
length 
(hour) 

Gender 
F: Female 
M: Male 

Age Seizure Type Seizure origin Number 
of 

analyzed 
seizures 

Average 
seizure 
duration 
(seconds)

1 2.48 F 15 SP Frontal 3 15.10 
2 5.16 M 38 SP,CP,GTC Temporal 2 107.97 
3 5.10 M 14 SP,CP Frontal 4 88.67 
4 5.87 F 26 SP,CP,GTC Temporal 3 86.46 
5 3.81 F 16 SP,CP,GTC Frontal 2 14.72 
6 4.13 F 31 CP,GTC Temporo/Occipital 2 78.60 
7 3.91 F 42 SP,CP,GTC Temporal 2 70.71 
8 3.49 F 32 SP,CP Frontal 2 163.72 
9 8.83 M 44 CP,GTC Temporo/Occipital 5 113.02 
11 4.92 F 10 SP,CP,GTC Parietal 3 195.83 
12 7.87 F 42 SP,CP,GTC Temporal 4 55.06 
13 3.92 F 22 SP,CP,GTC Temporo-Occipital 2 158.30 
14 4.91 F 41 CP,GTC Fronto-Temporal 3 264.95 
15 5.92 M 31 SP,CP,GTC Temporal 2 202.39 
16 9.83 F 50 SP,CP,GTC Temporal 4 138.94 
17 14.59 M 28 SP,CP,GTC Temporal 5 86.16 
18 1.96 F 25 SP,CP Frontal 1 13.64 
19 5.92 F 28 SP,CP,GTC Frontal 2 15.32 
20 6.87 M 33 SP,CP,GTC Temporo-Parietal 3 122.51 
21 2.96 M 13 SP,CP Temporal 2 79.04 

Total/ 
Average 

112.45 7 M/13 F 29.9 - - 56 103.56 

 
In this study, we selected iEEG datasets obtained from 20 patients to evaluate the 

performance of the proposed method. The total length of the data analyzed was 112.45 

hours and total numbers of analyzed seizures were 56 [47]. The sampling frequency of 

the data is 256 Hz. The database contains six channels with common reference, three 

located in the epileptogenic zone and three in remote locations [47]-[49]. A typical 

seizure evolution profile is shown in Figure 11 [47]. 
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Figure 11. Typical seizure evolution profile in iEEG (patient 9 of FSPEEG database); seizure 
onset time is marked by red vertical line. Acronyms: CH1EPT-Epileptic channel 1, CH4RMT-

Remote channel 4. 
 

Although iEEG data are usually less corrupted with artifacts comparing to surface 

EEG, visual inspection confirmed the presence of saturation and electrode movement 

artifacts in some patients’ data. The data files obtained from the FSPEEG database also 

provide some information on artifacts, mostly movement artifacts. Visual inspection was 

performed based on that information. An artifacts detection algorithm was implemented 

to identify the EEG segments corrupted with these two types of artifacts: saturation and 

electrode movement. Each segment with artifacts was marked and the information was 

stored in memory to be used later in the postprocessing step. The artifacts detection 

algorithm steps are discussed in the following section [47]. 
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3.2. Preprocessing 

Although iEEG data are usually less corrupted with artifacts comparing to scalp 

EEG, visual inspection confirmed the presence of saturation and electrode movement 

artifacts in some patients’ data. The data files obtained from the FSPEEG database also 

provided some information on artifacts, mostly movement artifacts and visual inspection 

was performed based on that information. We implemented an artifacts detection 

algorithm to identify the EEG segments corrupted with these two types of artifacts: 

saturation and electrode movement. Each segment with artifacts was marked and the 

information is stored in memory to be used later in the postprocessing step. The artifacts 

detection algorithm steps are discussed in following sub-sections [47]. 

3.2.1. Saturation Artifact  

There were several cases of iEEGs corrupted with saturation artifacts. At the 

saturation time, iEEG signals have constant amplitude. The segments with saturation 

artifacts were identified by a derivative method. Every segment with zero derivatives was 

marked as segments with saturation artifacts [28]. A median filter of window size 5 was 

used to remove all single segment saturations [47]. This prevents false detection of 

artifacts in other EEG segments rather than in the region of saturation [47]. 

3.2.2. Sensor Motion Artifact 

This type of artifact is usually caused by patient’s head movement or 

displacement of the electrode box. This type of artifact is of high amplitude with an 

upstroke [28]. Analytical signal processing approach was utilized in order to detect 

envelope of iEEG segments using Hilbert transform [50]. Average absolute envelope (ܧஜ) 

was computed for each segment using the following equation. 
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ఓܧ ൌ ܰ|ሻݔሺܪ|  

 

(5) 

where |ܪሺݔሻ| is the absolute of the Hilbert transform [50] of iEEG segment and ܰ ൌ 640 

is the number of samples in each iEEG segment. The segments with artifacts were 

identified from the other EEG segments by applying a predetermined threshold (݄ܶ ൌ0.6) after normalizing ܧஜ within the interval [0 1] [47]. Threshold estimation is crucial 

since it is important not to label a seizure segment as a segment with movement artifacts. 

The threshold was determined by setting up a condition. The condition is the average 

absolute envelope of a segment has to be greater than the maximum of average amplitude 

of seizure segment to be considered as segment with artifacts. Therefore, it was 

confirmed that no seizure activities were falsely rejected as movement artifacts [47]. 

3.2.3. Filtering  

All iEEG segments were band-pass filtered between 0.5 Hz to 100 Hz using a 4th 

order IIR digital Butterworth filter to mitigate high frequency noise and low frequency 

artifacts. The iEEG segments were then notch filtered to remove 50 Hz power line noise. 

The notch filter cutoff frequency was set at 50 Hz since data analyzed were collected in a 

European hospital [47]. 

3.3. Feature Extraction 

Time domain, frequency domain features and entropy-based features were 

extracted from iEEG segments. The four features used in this study were average 

amplitude, rhythmicity (coefficient of variation of amplitude), dominant frequency, and 

entropy. These features are known to contain the most discriminant information for 
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detecting seizure events [13], [15]-[19], [28]. Feature extraction methods are described 

briefly in the following sub-sections. 

3.3.1. Average amplitude 

Average amplitude (AVA) is a good measure for temporal evolution of partial 

seizures [13], [16], [28], [47], [51]. During partial seizures, iEEG signals show rhythmic 

activity with a repetition frequency between 3 and 30 Hz [28], [47], [51]. Therefore, to 

compute average amplitude, iEEG segments were first high pass filtered above 3 Hz to 

remove low-frequency noise [28]. Then, a peak detection algorithm based on the zero-

crossings of the first derivative of iEEG signals was used to detect peaks [28]. The 

amplitudes of the peaks were computed by taking average of the amplitudes of their half 

waves. Finally, the AVA (μ௔௠௣) was computed by taking the average of the amplitudes 

of the detected peaks [28], [47], [51]. 

3.3.2. Rhythmicity 

Coefficient of variation of amplitude (CVA) is a measure of rhythmicity or 

regularities of ictal activities [28], [47], [52]. During seizure evolution, the regularity of 

the amplitude of EEG tends to increase slowly; this increase is characterized by the CVA 

[52]. In case of partial seizures, the signals exhibit strong rhythmic characteristics which 

likely to have regularity in amplitude [52].  The CVA quantifies the increased regularity 

observed during partial seizures [28], [47], [52]. The CVA is defined as the ratio of the 

standard deviation of absolute amplitude to the mean absolute amplitude as following 

[28], [47]. 

௖௩௔ߜ ൌ ఓܣఙܣ  
(6) 



 

39 
 

 
where ܣఙ is the standard deviation and ܣஜis the mean of each iEEG segment [28], [47], 

[52]. 

3.3.3. Entropy 

Entropy is a measure of ‘irregularity’ or ‘uncertainty’ and was initially introduced 

by Shannon in 1948 [53]. The Shannon entropy (η) is computed as: 

ߟ ൌ െ ෍ ௞௞݌݃݋௞݈݌  

 

(7) 

where ݌௞ are the probabilities of a datum in bin k [28], [47], [53]. Approximate entropy 

introduced by Pincus in 1991 is more appropriate to compute the entropy for short and 

noisy time series data [54]. A low value of the entropy indicates that the time series is 

deterministic, whereas, a high value indicates randomness. Therefore, a high value of 

entropy indicates the irregularities in the iEEG data. To compute approximate entropy, it 

is required to determine a run length and a tolerance window to measure the likelihood 

between runs of patterns [47], [54], [55]. The tolerance window, r and embedding 

dimension, m are the two important parameters. In this study, Sample Entropy which is a 

variant of approximate entropy to quantify entropy of iEEG was used considering its 

robustness over approximate entropy. Sample Entropy is the negative natural logarithm 

of an estimate of the conditional probability that segments of length m that match point 

wise within a tolerance, r also match at the next point [28], [47], [54], [55]. This measure 

is a useful tool for investigating dynamics of biomedical signals and other time series 

[47].  
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3.3.4. Dominant frequency 

Dominant frequency (fΔ) is defined as the peak with the maximum spectral power 

in the power spectrum of a signal [28]. This feature is particularly important in 

distinguishing ictal activities from interictal activities by quantizing the frequency 

signature information mostly found in partial seizures. This is characterized by a high 

frequency activity at seizure onsets and a low frequency activity at the end of the seizures 

[28], [47], [51]. In this study, parametric spectrum estimation method, autoregressive 

modeling (AR) approach, was used to estimate the spectral frequency band of the short 

iEEG segments [47]. The AR model order was chosen according to Akaike information 

criterion (20 in this study) [56]. The Burg method was used to for computing the AR 

coefficients for short iEEG segments [57]. Then, the spectral power of a given segment is 

estimated using these AR coefficients. For every spectral peak, the spectral frequency 

band was defined as [fl and fh] where fl and fh are frequencies at rising and falling slopes 

of the peak with half the amplitude of the peak [28]. The frequency of the peak with 

maximum spectral power is considered as the dominant frequency for the given segment 

[28], [47]. 

A typical epileptic seizure evolution profile along with revenant characteristic 

behaviors of the four extracted features as described above are shown in the following 

Figure 12 [47]. 
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Figure 12. Seizure evolution profile: (a) top subplot: an example of a seizure evolution in iEEG 
(b) bottom four subplots:  corresponding changes in characteristics features: average amplitude 
(AVA), coefficient of variation of amplitude (CVA), dominant frequency (DMF), and entropy 
(ENY). Seizure onset is marked by red vertical line. Early electrographic changes are visual in 

three of the four features. 

3.4. Fuzzy Rule-based Detection 

We designed a multi-stage fuzzy rule-based system for seizure onset detection. 

Decision making was performed in three steps [45], [47], [58]. We utilized the 

information obtained in spatial, temporal as well as feature domain to make the final 

decision [47]. Therefore, the fuzzy system was comprised of three sub-systems: (1) 

feature combiner, (2) spatial combiner, and (3) final decision making [47]. Figure 13 

shows the block diagram of the overall system which includes pre-processing, feature 

extraction, fuzzy rule-based decision making, and post-processing [47]. 
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Figure 13. Block diagram of epileptic seizure onset detection system in iEEG. The system 
comprises of pre-processing, feature extraction, fuzzy rule-based decision making, and post-

processing stages. 
  

The features discussed above (ܨ௜,௞; ݅ ݁ݎ݄݁ݓ ൌ 1,2,3,4 ܽ݊݀ ݇ ൌ 1,2, … , 6) were 

used as the inputs to the first fuzzy sub-system which is adaptive in nature (feature 

combiner): Entropy (ܨଵ: :ଶܨ) dominant frequency ,(ܻܰܧ  average amplitude ,(ܨܯܦ

:3ܨ) :ସܨ) ሻ, and coefficient variation of amplitudeܣܸܣ -ሻ. The second fuzzy subܣܸܥ

system (spatial combiner) was used to select four specified channels and to combine the 

feature output from first fuzzy sub-system across channels. In final stage, another fuzzy 

sub-system was used followed by a threshold parameter in order to classify an EEG 

segment as “normal” or “seizure”. The steps are discussed in detail in the following sub-

sections [47]. 

The adaptive version of the fuzzy inference system was implemented as described 

in the previous section. Four features were combined using a carefully designed fuzzy 

inference system. Before fuzzifying the feature variables, they were normalized into the 

interval of [0 1] using a min-max normalization method. The triangular and trapezoidal 

membership functions were assigned to the fuzzy input and output variables. Assigning 

membership functions to the fuzzy input variables which are the features are extremely 
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important and critical [59]. We utilized fuzzy clustering to adaptively estimate the 

parameters for membership functions [59]. Fuzzy c-means clustering was applied to each 

of the feature to generate cluster center for two classes: “normal” and “seizure” [59]. 

Then cluster centers were used to generate the membership function by placing the fuzzy 

sets at the corresponding cluster centers. Two membership functions or fuzzy sets were 

considered for each of the four input features: low (ܮ: ௜,௞ܨ ൏ ݄ܶ௛ሻ and high (ܨ :ܪ௜,௞ ൐݄ܶ௟ሻ as shown in the Figure 14 (a). ݄ܶ௟ and ݄ܶ௛ were obtained from the corresponding 

cluster centers. This way membership functions were estimated adaptively based on the 

characteristics of the feature sets and the fuzzy system works adaptively. For the fuzzy 

output variable (ܱ ଵܲ), three levels were assigned as high (ܪ: ܱ ଵܲ ൐ ݄ܶ௠), medium 

:ܯ) ݄ܶ௛ ൐ ܱ ଵܲ ൐ ݄ܶ௟) and low (ܮ: ܱ ଵܲ ൏ ݄ܶ௠) as shown in the Figure 14 (b). The 

values of threshold parameters chosen are ݄ܶ௟ ൌ 0.3, ݄ܶ௠ ൌ 0.5, and ݄ܶ௛ ൌ 0.7.  The ܱ ଵܲ is the final feature after combining the four features [47]. We used the triangular and 

trapezoidal membership functions for the ease of their implementation [47]. Fuzzy logic 

has been utilized to combine this information obtained in feature domain using the first 

set of rules. The qualitative approach of fuzzy logic is specifically suitable to combine the 

four features and map them onto a final feature time series [47]. 

 

 

 

Figure 14. Triangular and trapezoidal membership grades assigned to the extracted features and 
the fuzzy output variables: (a) two membership grades, low (L) and high (H), were assigned for 
the membership functions of the feature inputs, (b) three membership grades,  low (L), medium 

(M), and high (H), were assigned for the membership functions of output variable. 
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The fuzzy output variable (ܱ ଵܲ) will only be high “H” if and only if at least 3 

feature input variables are high “H” and ܱ ଵܲwill be medium “M” if two feature input is 

“H”. For all other cases, the times ܱ ଵܲwill be low “L” as shown in Table 3 [47]. The set 

of fuzzy rules for combining the features are listed in Table 3. 

Table 3. Fuzzy rules for combining features. ܨଵ ଶܨ ଷܨ ସܨ ܱ ଵܲ
H H H H H 
H H H L H 
H H L H H 
H L H H H 
L H H H H 
H H L L M 
H L L H M 
L L H H M 
L H L H M 
L H H L M 
H L H L M 
H L L L L 
L H L L L 
L L H L L 
L L L H L 
L L L L L ܨଵ~ସ= Feature 1 to Feature 4; ܱ ଵܲ= Output 1 

 
The imprecise boundaries of interictal EEG and uncertainty associated with the 

features were addressed using this approach. To better explain, the behavior of 

rhythmicity alone may not hamper the performance of the overall system. More 

importantly, if any of the features is not able to detect subtle changes during seizure 

onset, a combination of the features using the fuzzy rules would be able to detect unless a 

seizure is missed due to non specific patterns. Similarly, spatial combination allows 

prioritizing the importance of in-focus channels due to their higher sensitivity to ictal 

activities [47]. 
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For spatial combination, trapezoidal membership functions were assigned to the 

fuzzy inputs and output variable as shown in Figure 15. Two levels were considered for 

both the input (݄ܥ௞ where ݇ ൌ 1, 2, … , 4) and output (ܱ ଶܲ) variables: low (ܮ: ௜,௞ܨ ൏ ݄ܶ௛ሻ 

and high (ܨ :ܪ௜,௞ ൐ ݄ܶ௟ሻ [47]. 

 
 
 
 
 
 
 
 
 

 

Figure 15. Trapezoidal membership grades assigned for combining across multiple channels to 
the extracted features. (a) Fuzzy input variable. (b) Fuzzy output variable. Two levels: high (H) 

and low (L) were considered. 
 

Three channels in epileptogenic zone (݄ܥଵ, ,ଶ݄ܥ  ଷ) were combined with݄ܥ ݀݊ܽ

one channel chosen from remote area (݄ܥସሻ. These four channels were combined using 

another set of fuzzy rules based on expert’s reasoning as given in Table 4. The criteria 

was set based on the information that the channels in seizure onset area is more sensitive 

in detecting changes in EEG comparing to those from remote area. It is expected that in-

focus channels will detect earliest changes in EEG. In order to minimize the detection 

latency, we considered all three in-focus channels in drawing up the rules for spatial 

combination. However, there are interactions between different channels location in 

brain. Therefore, to have modularity of the detection algorithm we have also included one 

channel from the remote area [47]. The rules were set in such a way that the output will 

only be high when two or more channel inputs fall in high level. The set of fuzzy rules 

for combining the final feature output (ܱ ଵܲ) across channels are listed in Table 4.  
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Table 4. Fuzzy rules for combining channels. ݄ܥଵ ଶ݄ܥ ଷ݄ܥ ସ݄ܥ ܱ ଶܲ
H H H H H 
H H H L H 
H H L H H 
H L H H H 
L H H H H 
H H L L H 
H L L H H 
L L H H H 
H L H L H 
L H L H H 
L H H L H 
H L L L L 
L H L L L 
L L H L L 
L L L H L 
L L L L L ݄ܥଵ~ସ= Channel 1 to Channel 4; ܱ ଶܲ= Output 2 

 
The fuzzy rules were developed based on human (expert’s) knowledge and 

reasoning. In clinical settings, epileptologists or EEG technologists identify seizure 

activities based on some criteria of the signals under investigations. They look into 

different morphological patterns, amplitude variation and/or frequency variation with 

respect to baseline activities. In addition, a decision is being made upon agreement of 

multiple people’s opinion. The fuzzy rules were set to mimic human reasoning in 

detecting earliest change in EEG based on visual inspection. For feature patterns, higher 

probability assigned when three or more features fall in the same level. Similarly, 

medium probability was considered for two features in same level as combination of 

features for optimum performance was the primary objective. When only one feature 

level is high, the lowest probability was set. Similar ideas were implemented for spatial 

combination or the combination of the channels.  
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In final decision stage, averaging was performed for 5 consecutive segments using 

moving average method. Another fuzzy inference sub-system was utilized to combine 

channel combination (ܱ ଶܲ) and segment average (SA) information. This fuzzy system 

acts as a postprocessor. Taking average across segments were able to minimize shot 

length false detections. Four rules were defined based on human reasoning for mapping 

onto an alarm output space for preliminary decision making as shown in Table 5. The 

idea behind setting up the rules was, when output from previous system as well as 

segment average is high there is a high probability that the output will also be high. In 

case one of the inputs is high, medium probabilistic level was assigned for output. In the 

other scenario, when both the inputs are low, the output is assigned low fuzzy level. The 

Mamdani-minimum implication operator was used for fuzzy inference and centroid 

defuzzification method was used to defuzzify the fuzzy output (FOP) variables [45], [47], 

[58]. 

Table 5. Fuzzy rules for mapping onto an alarm output space. ܱ ଶܲ ܣܵ ܼܵ
H H H 
H L M 
L H M 
L L L ܱ ଶܲ= Output 2; ܵܣ = Segment average; ܼܵ = Final output 

Before making the final decisions, the system scans each iEEG segments for 

artifacts. In artifacts detection step, segments with artifacts were identified and the 

information was stored to be used in post-processing step. False detections caused by 

artifacts were filtered in this step. The iEEG segments corrupted with artifacts were 

assigned a value of ‘0’ which leaves the probability of detection to zero too.  Further 

analysis on false detections were carried on and false detection rates were labeled as 
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uninteresting and interesting [26]. In this study, the uninteresting false positives were 

mostly of short duration and caused due to residual artifacts and large amplitude rhythmic 

activities. These short length false detections were rejected by setting a minimum length 

detection criterion [28], [47].  

A threshold procedure was applied for final decision making. Whenever the alarm 

‘SZ’ crosses the threshold, a seizure event was detected. Each segment was assigned 

probability value of ‘0’ for normal segment and ‘1’ for seizure segment [47]. 

3.5. Performance Evaluation 

3.4.1. Sensitivity 

Since the objective of the system is to detect seizure onsets, sensitivity is an 

important statistical measure for event based performance evaluation. It measures the 

ability of a system to detect seizure onsets correctly. It is the measure of true positive rate 

and defined as the ratio of the number of correctly detected seizure onsets to the total 

number of seizures [22], [27], [47]. It is expressed in percentage as follows: 

ݕݐ݅ݒ݅ݐ݅ݏ݊݁ܵ ൌ ܶܲܶܲ ൅ ܰܨ ൈ 100 

 

(8) 

where TP and FN are defined as follows [47]:  

 True Positive (TP): The system detects a seizure that was annotated as seizure 

by the expert.  

 False Negative (FN): The system misses a seizure that was annotated as 

seizure by the expert. 
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3.4.2. False Detection Rate 

False detection rate (FDR/hour) is another important parameter for the system 

performance evaluation [28]. It was computed by counting the false positives and divided 

by the total data length analyzed in the experiment for a given patient [47]. To be 

successfully implementable in clinical settings, FDR should be considerably low so that 

neither the patient nor the caregivers have to wait too long under false alarms [47]. 

However, usually it is better to detect the onset patterns with longer detection latency 

rather than missing them [47].  

3.4.3. Detection Latency 

Detection latency or lag is the time delay between the system detected seizure 

onset and clinical seizure onset identified by experts [16]-[19], [28], [47]. Detection 

latency was computed as the difference between the clinical seizure onset (expert 

detected seizure) and system detected seizure onset [19], [28], [47]. For an automatic 

detection algorithm or in case of early detection, the detection delay time expected to be 

considerably low or negative for early detection [47]. FDR was presented as an 

alternative measure to specificity. 

3.5. Results and Discussion 

3.5.1. Changes in Characteristic Features 

Before designing the fuzzy logic system, visual inspection was performed to 

identify the types of changes in characteristic features at the time of seizure onset as well 

as offset. In most cases, the values of average amplitude increase after a few seconds on 

seizure onset. The values of rhythmicity gradually increase during seizure onset followed 
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by a decrease to a minimum then return to the interictal baseline level few seconds prior 

to seizure offset. In case of partial seizures, frequency activity increases right after the 

seizure onset up to a peak then gradually decreases to a low frequency activity. Entropy 

values showed increase which reaches the maximum after a few seconds of seizure onset 

and fall down to interictal baseline at seizure offset. This means the complexity of signal 

increases during seizure. However, it does not increase to maximum right after the onset. 

In some patients, the electrographic changes are identified before clinical onset. Such a 

seizure evolution profile and the behavior of the characteristic features are shown in 

Figure 12 (for data obtained from patient 9) [47]. 

3.5.2. Threshold Estimation 

A threshold procedure was applied to make the final decision and assigning 

probability value of ‘1’ to ictal iEEG segment and ‘0’ to normal iEEG segment. The 

threshold procedure was applied to preliminary results obtained at the output of the final 

fuzzy-subsystem where the spatio-temporal combination was performed. The threshold 

parameter was optimized in a patient specific way. The setting was optimized prioritizing 

higher sensitivity and lower false detection rate. It was determined by plotting the 

histogram of alarms generated for each patient. We used threshold values outside two 

standard deviations above mean. The range was 2 to 6 standard deviations above mean 

[47]. 

3.5.3. False Detections 

The false positives less than 9.5 sec was rejected except for patient 18 where the 

minimum length criteria was lowered to 4 sec due to the unusual short length of one 
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seizure onset pattern. After rejecting unusual short length false positives, the system 

yielded average false detection rate of 0.26 per hour [47]. 

3.5.4. Performance Evaluation 

A total of 112.45 hours of IEEG dataset having 56 seizures were used for system 

performance evaluation. The summary of the database used for testing of the algorithm is 

shown in Table 2 [47]. The results are given in Table 6. Out of 56 seizures analyzed, the 

system correctly detected 54 seizures whereas 2 seizures were missed. Therefore, the 

overall sensitivity achieved was 95.8%; the false detection rate was 0.26/hour and 

average detection latency was 15.8 seconds. Although, detection delays should be as low 

as possible, the obtained results are in the acceptable range and comparable to the other 

methods in literature. The results were compared in details with the other existing 

approaches in the later section 3.6. The data from patient no. 10 (of FSPEEG database) 

was not considered from in analysis due to the excessive presence of electrode movement 

artifacts [47].  

Event based sensitivity is reported in percentage. A seizure onset is considered as 

an event to detect. The average detection latencies are listed in seconds. Short length false 

detections could also be reduced using a median filter or considering spatial criteria. The 

median filtering approach was tried but it has been seen that it falsely reject some true 

detections which are unusually of short lengths. Also, it affects the detection latency. To 

address this, we utilized a post-processor to minimize the uninteresting false detections 

which are significantly shorter in length then average seizure duration for each patient as 

described in post-processing section. The overall results are presented in Table 6 [47].
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Table 6. Summary of the results: sensitivity in percentage, false detection rates per hour and 
average detection latencies in seconds. 

Patient No. of 
seizures 

Data 
Length 

(h) 

SEN 
(%) 

FDR/h 
(uninteresting)

FDR/h 
(interesting) 

Detection 
latency 

(s) 
1 3 2.48 66.67 4.40 0.40 7.21 
2 2 5.16 100.00 2.52 0.39 25.03 
3 4 5.10 75.00 0.19 0.19 8.72 
4 3 5.87 100.00 1.00 0.17 27.43 
5 2 3.81 100.00 0.26 0.26 23.97 
6 2 4.13 100.00 0.72 0.00 12.64 
7 2 3.91 100.00 1.02 0.00 17.46 
8 2 3.49 100.00 1.43 0.57 55.46 
9 5 8.83 100.00 1.24 0.34 -24.92 
11 3 4.92 100.00 1.01 0.40 -6.84 
12 4 7.87 75.00 2.16 0.50 21.04 
13 2 3.92 100.00 0.51 0.00 -37.69 
14 3 4.91 100.00 0.61 0.20 40.14 
15 2 5.92 100.00 0.00 0.00 27.37 
16 4 9.83 100.00 3.86 1.01 5.64 
17 5 14.59 100.00 0.06 0.00 23.52 
18 1 1.96 100.00 1.02 0.00 0.31 
19 2 5.92 100.00 0.33 0.00 1.33 
20 3 6.87 100.00 0.43 0.14 27.07 
21 2 2.96 100.00 4.72 0.67 61.42 

Total/Average 56 112.45 95.83 1.37 0.26 15.81 
 

Our method yielded average sensitivity of 95.8% with 0.26/h false detection rate. 

The average detection latency achieved is 15.80 seconds as shown in Table 6. The 

algorithm was developed in an unsupervised approach. We did not include the seizure 

free long-term interictal data for evaluation purpose since there is no training involved. 

Inclusion of long-term intracranial data could possibly lower the false detection rate and 

mimic the real-life application of a prospective seizure onset detection algorithm. The 

dataset we used were constructed from the “ictal” data files from Freiburg project which 

have seizures with at least 50 minutes of preictal data and postictal data with no specified 

duration. Therefore, the false detection rate per hour is little higher comparing to other 

methods in literature but reasonable considering the evaluation dataset [47]. 
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3.5.5. Advantage and Motivation of Using Fuzzy Logic-based Approach 

The motivation behind our fuzzy rule-based approach is that fuzzy logic uses a 

much simpler rule-based design using natural language. Clinical neurologists mostly look 

at different features of seizure onset patterns as well as different channels to identify a 

seizure correctly. This is however complex to model mathematically and implement in 

computer programs. Fuzzy logic, on the other hand, provides a simpler design of 

approximate reasoning which can mimic human reasoning efficiently. We have 

developed our method in such way to mimic the human reasoning in detecting seizure 

onset patterns. Furthermore, the system provides a possibility of lowering the detection 

latency by incorporating more sensitive features [47]. 

Fuzzy logic has been widely used in many signal processing and pattern 

recognition applications [34], [60]. Rule-base can be defined using expert’s knowledge 

for decision making which are simpler to implement and modular as well. Increasing the 

number of rules one can increase the accuracy of the model. Processing speed can also be 

improved significantly with less complex mathematical analysis and modeling. 

Moreover, fuzzy logic is a useful method for nonlinear input-output mapping which is 

effective in seizure detection or early detection applications. Other popular methods, such 

as artificial neural networks and support vector machines require training and complex 

mathematical analysis. In this study, we utilized adaptive version of fuzzy logic system 

with a novel approach of combining information in feature as well as spatial and temporal 

domain. A comparison of performance of the adaptive fuzzy logic system is shown over 

conventional hard threshold-based methods and non-adaptive fuzzy system in Table 7. 

Non-adaptive fuzzy system is where the membership functions were generated in a 
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heuristic way. Adaptive fuzzy system clearly out-performs other methods by 

demonstrating better performance in terms of better sensitivity and significantly reduces 

false positive rates [47]. 

Table 7. Performance of adaptive fuzzy system over single method with conventional hard 
threshold and non-adaptive fuzzy system. 
Method SEN (%) FDR/h 

Feature 1 (hard threshold) 96.25 1.93 
Feature 2 (hard threshold) 93.75 3.62 
Feature 3 (hard threshold) 98.75 1.16 
Feature 4 (hard threshold) 84.17 1.98 

 Non-adaptive Fuzzy system 91.49 0.35 
Adaptive Fuzzy system 95.80 0.26 

3.6. Summary 

In the last several years, many algorithms for epilepsy and seizure detection have 

been developed with different degrees of success [2]-[61]. Here, we discussed briefly 

some of these methods providing a scope of comparison with our method. In a recent 

study, Zhang et al. (2010) proposed an automatic patient-specific method for seizure 

onset detection using a novel incremental learning scheme based on nonlinear 

dimensionality reduction. Feature sets were extracted using continuous wavelet transform 

(CWT) [16]. Considering computation time and resources, the choice of discrete wavelet 

transform might have been better. Their method was evaluated on iEEG recordings from 

21 patients obtained from the Freiburg project with duration of 193.8 hour and 82 

seizures. They have reported average sensitivity of 98.8% with 0.25/h interesting false 

positive rate and average median detection delay of 10.8 sec. Aarabi et al (2009) 

introduced a fuzzy rule-based system for epileptic seizure detection which yielded 

sensitivity of 98.7% and false detection rate of 0.27/h with detection delay of 11 sec [28]. 

In this paper, different thresholds were used for different patients and a post-processor 
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was utilized to reduce the false detections in two steps, first short-length detections (less 

than 5 sec) and artifacts were rejected [28]. Secondly, two consecutive detections were 

unified given they are less than a pre-defined minimum time interval (set to 30 sec) [18]. 

Chan et al. (2008) presented a novel patient-specific algorithm for seizure onset detection 

and accurate onset time determination. The algorithm extracts spectral and temporal 

features in five frequency bands within a sliding window and the feature windows were 

classified as containing or not containing a seizure onset using support vector machine 

(SVM) [14]. Support vector machine is a popular classification paradigm for epileptic 

seizure detection and prediction being used by many researchers in this area. In order to 

accurately localize the seizure onsets in time, the method makes use of clustering and 

regression analysis [14]. Therefore, their algorithm yielded precise detection in time as 

reported in five of the six patients, at least 90% of the latencies were less than 3 sec 

resulting median detection latency less than 100 ms with standard deviation less than 3 

sec [14]. However, the method utilized user-adjustable parameters allow tuning to 

achieve high detection sensitivity, false positive rate and detection latencies. Standard 

cross-validation performance measures resulted sensitivities in the range of 80% to 98% 

and false positive rates from 0.12 - 2.8/h [14]. Gardner et al (2006) presented a detection 

latency which is negative in time (-7.58 sec); however, with a higher false detection rate 

of 1.56 false detections per hour [23]. The datasets used were selected from intracranial 

EEG recording of patients diagnosed with mesial temporal lobe epilepsy and described 

elsewhere [62]. Their system was evaluated on samples of 29 ictal and 41 interictal 

epochs and achieved 97.1% sensitivity [13]. Grewal and Gotman (2005) proposed an 

automatic warning system with high sensitivity and low false alarm rates for clinical use 
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[19]. They used spectral features extracted from multiple bands, Bayes’ theorem followed 

by spatio-temporal analysis [9]. The system required training and was tested on locally 

recorded datasets yielding 89.4% sensitivity with false detection rate of 0.22 per hour and 

mean detection latency of 17.1 sec with user tuning [9]. The datasets used for 

performance evaluation of the system were recorded at the Montreal Neurological 

Institute and Hospital [19]. 

The performance of our system is very much comparable to the other methods. It 

may not outperform the other methods in terms of all the performance measuring 

parameters. However, considering less mathematically complex design and lesser number 

of tuning parameters we have achieved similar results to other methods and in some cases 

better performance in terms of one or two performance measuring parameters [47]. 

In this chapter, adaptive fuzzy rule-based system was proposed for seizure onset 

detection from iEEG. Fuzzy rules were developed based on our knowledge and 

reasoning, obtained during visual inspection of data and features, for taking advantage of 

spatial-temporal combination of features and channels. To address the high inter-patient 

variability in feature space, we utilized fuzzy c-means clustering techniques for 

optimization of the fuzzy membership functions for features. Hence, adaptive fuzzy 

inference system was realized. The system yielded average sensitivity of 96% with 0.26 

FDR/h, and detection latency of 15.81 sec. To summarize, more sensitive features are 

required for designing an early detection or prediction system. 
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CHAPTER ΙV 

4. EPILEPTIC SEIZURE PREDICTION 

4.1. Introduction 

Epilepsy is one of the most common neurological disorders that affect 

approximately 3 million Americans according to the Epilepsy Foundation [63]. Every 

year approximately 200,000 new cases of epilepsy are diagnosed in the United States 

[63]. The estimated annual cost related to epilepsy and seizure is $17.6 billion [63]. 

Moreover, severe brain damage as well as death can be caused by uncontrolled seizure. 

Therefore, to improve the quality of life of epilepsy patient as well as minimizing the 

economical impact, new therapeutic solutions are of high demand. If it were possible to 

prevent or minimize seizure minutes to hour before clinical manifestations, the health risk 

could be minimized significantly by automatic drug delivery or issuing a warning to the 

patient.  Development of such a warning device requires availability of a reliable and 

efficient prediction algorithm. Growing number of algorithms proposed in literature 

demonstrates the possibility of designing a seizure prediction algorithm. However, none 

of the algorithms were successful in predicting seizures when applied to unseen or out of 

sample EEG recording leaving the research area still open for improvement and 

experimentation.  
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In this study, fuzzy rule based algorithms were developed based on nonlinear 

features extracted from EEG as a first step towards developing a prediction algorithm. 

We have demonstrated the applicability of fuzzy logic based approaches in seizure 

prediction. Since Fuzzy logic can accommodate human reasoning and machine learning 

capabilities it has the potential to have application in solving this problem. 

4.2. Seizure Prediction using Rule based Fuzzy Logic 

4.2.1. Background 

In the previous chapter, linear signal processing techniques along with adaptive 

fuzzy rule-based decision making system was applied in detecting epileptic seizure onset 

[47]. The detection delay was measured [47]. The combinations of multiple features 

using fuzzy logic based approaches were demonstrated. The combination showed 

improved performance over single feature extraction method. However, the features did 

not demonstrate enough sensitivity to be able to use in a prediction algorithm. To achieve 

the goal of prediction, sensitive feature extraction methods are required in identifying 

preictal states. During this study, a wide range of nonlinear dynamical systems based 

feature extraction methods were applied to EEG signals in attempt to quantify the pre-

epileptic changes in EEG. EEG signals collected both from animal and human model 

were used [47], [64]. For decision making, fuzzy logic based approaches were utilized. 

Chaos and fractal theory based nonlinear characteristic measures were applied to 

human invasive EEG recording in an attempt to predict seizures from EEG signals. A 

univariate feature, correlation dimension was computed after reconstructing a phase 

space trajectory from EEG signals. A fuzzy logic system was developed for decision 
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making which could be better described as a soft threshold method [65]. EEG data used 

in this study was obtained from the Freiburg Seizure Prediction EEG database as 

described in the previous chapter. 

The concept of seizure prediction horizon (SPH) is important in prediction studies 

considering its importance in evaluating performance of a prospective algorithm. A 

prediction horizon is a hypothetical time window defined as a period in which a seizure 

event may occur. If an alarm predicting an impending seizure is issued in a predefined 

prediction horizon and if seizure event takes place within this horizon, it is termed as a 

true prediction. On the other hand, when an alarm does not follow a seizure, the 

prediction is false. In such scenario, there is a high probability of missing an impending 

seizure if the seizure occurs when the prediction horizon ends. This is termed as a missed 

seizure or false negative. Typical values of prediction horizon are found to be in the range 

of several minutes to hours in literature. Although, theoretically seizure prediction can be 

as long as an hour, this may not be convenient for patients as they have to wait the whole 

hour. Hence, shorter prediction horizons are desirable from both the point of view of 

patients and caregivers. However, shorter length of SPH might minimize the prediction 

probability. The probable scenarios in a prediction algorithm as well as the impact of 

SPH on performance of a prospective algorithm are illustrated in Figure 16. 
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Figure 16. The concept of seizure prediction horizon and its impact on a prediction algorithm. 

4.2.2. Preprocessing and Segmentation 

In preprocessing step, EEG data was segmented using a moving window analysis 

technique. We chose 25 seconds of window length with 10 second overlap between the 

adjacent windows [65]. Data with such short lengths can be considered as quasi-

stationary. This assumption is important considering the stationarity requirement of 

nonlinear analysis [29], [38]. An infinite impulse response (IIR) band-pass filter (4th 

order) with cut-off frequencies at 0.5 - 100 Hz was applied to reduce high frequency 

noise and low frequency artifacts [65]. Zero phase digital filtering was performed to keep 

phase information intact. Further, a notch filter with cut-off frequency at 50 Hz 

(European) was applied to reduce the power line interference [65]. 

4.2.3. Feature Extraction 

In seizure detection, EEG data can be classified in two classes, epileptic (ictal) 

and non-epileptic (interictal or in between seizures). However, in seizure prediction 

problem, the widely accepted hypothesis is that there exists another state commonly 

termed preictal with significant overlap with ictal and interictal patterns. In this study, we 

hypothesized that identification of this preictal state is a pattern recognition problem. 
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A. Phase Space Reconstruction: It is now widely accepted in the scientific 

community that the brain dynamics transition towards epileptic seizure is not an abrupt 

rather a smooth one. To study these changes in brain dynamics, phase space trajectory is 

reconstructed from EEG using Taken’s theorem [66]. Nonlinear dynamical systems based 

measures quantify different properties of this state space trajectory which represent 

complex underlying brain dynamics. Figure 17 shows such trajectories reconstructed 

from normal and epileptic EEG segments showing the hypothetical state transitions. 

 Figure 17. Reconstructed phase space trajectories from baseline EEG and ictal EEG. 
 

B. Correlation Dimension Computation: In this study, correlation dimension was 

computed from iEEG segments [65], [67]. One of the main problems in estimating 

dimension from a chaotic time series, such as EEG time series is that the natural 

phenomena are usually corrupted by noise [65], [68]. These inaccuracies in measurement 

can be measurement noise and quantization noise resulted from the analog-to-digital 
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conversion [65], [68]. In some cases, experimental signals can also be corrupted by 

movement related artifacts and sensor displacement. 

The classical Grassberger-Procaccia approach of estimating dimension may not 

be accurate in the case of noisy EEG segments [68]. We utilized a robust method of 

estimating dimension based on the assumption that the data are samples from a low 

dimensional attractor with noise components which are strictly bounded in amplitude 

[68]. The method first computes correlation integral [67]. The correlation integral or 

correlation sum is defined as the probability that two points or pairs of vectors in phase 

space are closer than a given radius, ݈ [67], [68]. It is computed as following. 

ܿሺ݈ሻ ൌ 2ܰሺܰ െ 1ሻ ෍ ෍ ሺ݈߆ െ పሬሬሬԦேݔ||
௝வଵ െே

௜ୀଵ  ఫሬሬሬԦ||ሻݔ

 

(9) 

where ||. || indicates the Euclidean distance and Θ is is is the Heaviside step function as 

defined as following. 

ሻݏሺ߆ ൌ ൜1 ݂݅ ݏ ൒ 00 ݂݅ ݏ ൏ 0 

 

(10)

Correlation integral has been found to follow a power law with, ܿሺ݈ሻ ൌ ݈݇஽ [65], 

[67]. Therefore, correlation dimension can be estimated as following [67]. 

ܦ ൌ ݈݅݉௟՜଴ log ሺܿሺ݈ሻሻlog ሺ݈ሻ  

 

(11)

In the case of noisy EEG, the scaling behavior might get corrupted by noise and 

the log-log plot will no longer show a linear part [65]. Hence, the dimension estimation 

could be flawed. The method proposed by Schouten et al. considers that there exists a 

trajectory that represents the true dynamics of the chaotic systems and close to the 
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measured noise corrupted trajectory [65], [68]. The points of the noisy trajectory vectors 

are assumed to be composed of noise free trajectory plus noise as described below [65], 

[68]. 

௜,௞ݖ ൌ ௜,௞ݔ ൅  ௜,௞ݔߜ
 

௝,௞ݖ(12) ൌ ௝,௞ݔ ൅  ௝,௞ݔߜ
 

(13)

where zi,k and zj,k are the elements of noisy trajectory and xi,k and xj,k are the elements in 

the noise free part [65], [68]. The maximum norm distance between the noise-corrupted 

vectors can be found from the following equation [65], [68]. 

݈௭ ൌ ݈݅݉௠՜ஶ݉ܽݔ଴ஸ௞ஸ௠ିଵหݖ௜,௞ െ ௝,௞หݖ ൌ ݈௫ ൅ ݈௡ 
 

(14)

where ݈௭ is the noise-corrupted distance, ݈௫ is the noise free distance, and ݈௡ ൌ  ௠௔௫ isݔߜ

the maximum noise distance [65], [68]. The power law can be re-written as following. 

ሺ݈௭|݈௭ܥ ൐ ݈௡ሻ ൌ ݇ሺሺ݈௭ െ ݈௡ሻ஽ 
 

(15)

Furthermore, with the requirements that ܥሺ݈௭ ൌ ݈଴ሻ ൌ 0 and ܥሺ݈௭ ൌ ݈௡ሻ ൌ 1, we 

can obtain [65], [68]. 

ሺ݈௭ሻܥ ൌ ൬݈௭ െ ݈௡݈଴ െ ݈௡൰஽ , ݈௡ ൑ ݈௭ ൑ ݈଴ 

 

(16)

Again, by normalizing all the distance measure with respect to the maximum 

scaling distance, ݈଴, we can finally obtain [65], [68]. 

ሻݎሺܥ ൌ ൬ݎ െ ௡1ݎ െ ௡൰஽ݎ , ௡ݎ ൑ ݎ ൑ 1 

 

(17)

Finally, the correlation dimension can be estimated as following [65], [68].  
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ܦ ൌ ݈݅݉௟՜଴ log ሺܿሺݎሻሻlog ሺݎ െ  ௡ሻݎ

 

(18)

Alternatively, the correlation dimension can be estimated using the maximum 

likelihood method as following [68]. 

ெ௅,௡ܦ ൌ ൥െ1ܯ ෍ ݈݊ெ
௜ୀଵ ൬ݎ௜ െ ௡1ݎ െ ௡ݎ ൰൩ 

 

(19)

where ܦெ௅,௡ is the maximum likelihood dimension with ݊ ൑ ݅ ൑ 1 and ܯ is the sample 

size of inter point distance, ݎ௜ [65], [68]. In practical cases, the parameter, ܦ can be 

estimated from the non-linear least squares fit of the correlation integral function [66], 

[68]. We used the Levenberg-Marquardt least squares method to experimentally estimate 

dimension [65]. 

4.2.4. Rule-based Fuzzy Inference System 

A fuzzy rule-based system was designed as an alternate to the crisp threshold 

based methods. Threshold parameter estimation is critical in prediction problem to 

achieve high sensitivity and specificity. The fuzzy rule-based system developed can be 

better described as a soft threshold method for detecting preictal changes in predictive 

features. The system was designed in such a way that each fuzzy system takes one feature 

as input and makes a decision based on the feature level and segment counts to generate 

predictive alarms. The fuzzy system utilizes expert’s knowledge in the form of if-then 

rules for mapping of feature-segment input space onto an output alarm space. Although 

the exact behavior of correlation dimension prior to seizure onset is not defined, we 

considered that preictal segments exhibit significant change in dimension. This was the 

primary hypothesis in this study. The system counts the number of segments where the 
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feature level is below a specific level and uses this information to generate preliminary 

alarms [65]. The block diagram of the overall system is shown below in Figure 18 [65]. 

Figure 18. Block diagram of the fuzzy inference system designed based on changes in correlation 
dimension features. 

 
The fuzzy inference system consists of several sub-systems work on single feature 

and single channel basis. Each sub-system works on a single channel basis having two 

input variables: the feature values (ܨ௜,௞) and the number of consecutive segments ( ௌܰாீ) 

with equal feature level [65]. Feature values (ܨ௜,௞) were normalized to zero mean and 

unity standard deviation before fuzzification of the input feature variables [65]. A seizure 

free reference window of length 215 sec was considered as baseline activities [65]. 

Statistical measures mean and standard deviation was computed from this reference 

window and used in normalization method [65].  Triangular and trapezoidal membership 

functions were used to fuzzify the input variables considering their ease of 

implementation [28], [65]. Two levels were considered for both the feature and segment 

count [65]. Low and high feature membership functions were defined as Low (L:ܨ௜,௞ ൏݄ܶ௖), and High (H:ܨ௜,௞ ൐ ݄ܶ௖) respectively. Similarly, low and high segment count 

membership function were defined as Low (L: ௌܰாீ ൏ ௌܰ௖) and High (H: ௌܰாீ ൐ ௌܰ௖) 

respectively. The parameters ݄ܶ௖ and ௌܰ௖ were chosen based on the statistical properties 

(mean ± standard deviation) of the feature vectors [65]. Similarly, two levels were 

assigned for fuzzy output variable as “SZ” for patterns referring to preictal changes and 
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“NS” patterns not referring to preictal changes [65]. The fuzzy if-then rules developed 

considering all the possible combinations of the input variables are given below [65]. 

If (F is L) and (SE is H) then (Output is SZ) 
If (F is L) and (SE is L) then (Output is NS) 
If (F is H) then (Output is NS) 
 
where F stands for feature level, SE stands for segment level, L stands for low 

membership function, H stands for high membership function, SZ stands for higher 

probability of an impending seizure, and NS stands for lower probability of an impending 

seizure.  

Mamdani min implication operator was used for fuzzy inference and centroid 

defuzzification was used for defuzzyfying the fuzzy output variable to crisp output [65]. 

The output for each segments was assigned a value within the range of [0 1] [65]. The 

output ( ௜ܱ,௞) results were the preliminary prediction results [65]. 

4.2.5. Postprocessing 

A postprocessing method was applied to these primary results in order to generate 

final results. A temporal-spatial filter of size 5×6 (mask size) was applied to primary 

results and average was taken across this filtered channel sub-space data to generate the 

final alarm [65]. This filter size was chosen empirically in order to achieve the best 

results (highest true positive rate in percentage and lowest false prediction rate per hour). 

This required to be optimized in a patient specific way. This way, the information 

obtained in multiple channels (6 in this case) was combined spatial-temporally. 
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4.2.6. Results and Discussion 

Two nonlinear features, correlation dimension (ܦ஼) and maximum likelihood 

correlation dimension (ܦெ௅) were extracted from intracranial EEG segments. Cubic 

spline curve fitting method was used for smoothing of the feature time series profile for 

decreasing trend of correlation dimension. The overall method was evaluated on EEG 

datasets obtained from 10 patients from the Freiburg seizure prediction EEG database 

(patient 10 - patient 19). The feature time series plot for data obtained from patient 14 

(Freiburg Seizure Prediction EEG database) are shown in Figure 19 and Figure 20. 

Figure 19. Correlation dimension characteristics feature profile. InCH and OutCH refer to the 
channels located in the epileptic zone and remote locations respectively. Seizure onset and offset 

times are marked by red vertical lines. 

0 10 20 30 40 50 60
      

InCH1 

InCH2 

InCH3 

OutCH1

OutCH2

OutCH3

      

Time(m)



 

68 
 

Figure 20. Maximum-likelihood characteristics feature profile. InCH and OutCH refer to the 
channels located in the epileptic zone and remote locations respectively. Seizure onset and offset 

times are marked by red vertical lines. 
 

The fuzzy inference system takes one feature at a time as input and capable of 

making a seizure predictive decision. The output of the system after defuzzification 

provides the preliminary prediction results [65]. A post-processing method was applied 

before final decision making. A digital filter of size 5×6 was applied to the primary 

prediction results for reducing short length preliminary predictions across channels. 

Finally, average was taken across channels for issuing final alarms and a threshold 

procedure was applied. The threshold was optimized in a trial and error approach to 

maximize the performance (higher the prediction rate keeping the false prediction rate per 

hour least). The overall system makes use of spatial information in channels domain and 

temporal information in the feature domain. Exemplary prediction results obtained for 

feature 1 (correlation dimension) and feature 2 (maximum likelihood correlation 

dimension) are shown in Figure 21 and Figure 22 respectively. 
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Figure 21. Correlation dimension feature profile and corresponding prediction alarms issued by 

the system. Seizure onset and offset times are marked by red vertical lines. 

 
Figure 22. Maximum likelihood feature profile and corresponding prediction alarms issued by the 

system. Seizure onset and offset times are marked by red vertical lines. 
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The prediction results in terms of true positive rate in percentage and false 

prediction rate per hour for two different seizure prediction horizons are given in Table 8. 

Table 8. Seizure prediction in terms of true positive rate (%) and false prediction rate (/h) results 
obtained from the data sets for maximum-likelihood correlation dimension as input feature and 

for two prediction horizon of 30 and 60 minutes. 
Patient No. Data 

length 
(h) 

Seizure prediction horizon (min) 
30 60 

True 
positive 

(%) 

False 
prediction 
rate (/h) 

True 
positive 

(%) 

False 
prediction 

rate 
(FPR/h) 

10 4 50 0.5 100 0 
11 1 0 1 100 0 
12 1 100 0 100 0 
13 1 100 0 100 0 
14 2 50 1 100 0 
15 1 100 2 100 0 
16 2 0 1 100 0 
17 1 100 0 100 0 
18 1 100 0 100 0 
19 2 50 0.5 100 0 

Total/Average = 10 16 65 0.6 100 0 
 

It is worth mentioning that the prediction results largely dependent on the 

sensitivity of the characteristic features in detecting subtle preictal changes. If the feature 

is not sensitive enough the system will most likely fail to produce desired results. 

Although decrease in dimension on or before seizure onset was reported [69], this claim 

was not confirmed rather challenged in other studies [70]. In this study, we also could not 

find a definite pattern of correlation dimension changes prior to a seizure. This raises the 

question whether the prediction results presented in Table 8 are reliable. The results 

demonstrated the role of prediction horizon lengths in predictions. Long prediction 

horizons can improve the prediction performance in expense of longer wait time. The 

prediction rate of 100% is unrealistic for the sudden and unpredictable nature of seizure 

occurrence. For shorter prediction horizon, the prediction rates of 65% with false 
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prediction rate of 0.6 per hour are more realistic. Therefore, we reproduced the common 

flaws found in current prediction algorithms tested on short or pre-selected data sets. 

Methods presented in later sections were focused on overcoming such flaws.  

4.3. Recurrence Quantification Analysis of Rat EEG 

4.3.1. Background 

In the previous section, a fuzzy rule-based soft threshold method was proposed 

which can be applied to a seizure predictive feature for making prediction decision. The 

method was applied to correlation dimension, a nonlinear dynamical system based 

feature. However, the behavior of correlation dimension prior to seizure is unclear and 

the sensitivity of the same feature in detecting changes prior to an impending seizure is 

not proven yet [70]. On the other hand, one of the drawbacks of the nonlinear dynamical 

systems based features is their sensitivity to noise. Due to noise the reconstructed phase 

space trajectory from EEG signals may lead to wrong findings. To tackle this issue more 

robust data analysis methods are required. Therefore, we have applied a comparatively 

new method, Recurrence Quantification Analysis (RQA) proposed by Webber et al. and 

Marwan et al. [71]-[73]. The RQA based measures do not require the assumption of 

linearity, noiselessness, and stationarity which is advantageous considering their 

application in EEG signal processing. However, this method also requires the 

reconstruction of phase space trajectory using Taken’s theorem [66]. Hence, the optimum 

choice of embedding dimension and time-delay parameters plays an important role in 

computation process [74]-[76].  
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In this study, RQA measures were applied in studying dynamical changes in EEG 

in an animal rodent model of epilepsy. Xioli Li et al. introduced the application of RQA 

measures in analyzing rat EEG for preictal changes [77]. Preictal changes identified by 

RQA measures were reported. In our study, RQA measures were applied to study the 

earliest pre-epileptic changes in rat’s EEG collected in a rodent model of epilepsy [64]. 

EEG signal acquisition was performed from four adult rats. Three RQA measures, 

recurrence rate, determinism, and entropy were computed. A moving average filter was 

used to identify the decreasing trend towards status epilepticus.  

4.3.2. Experiment 

Epilepsy EEG data used in this experiment was collected from four adult 

Sprague-Dawley rats (each weighning 260 - 350 g.). Animals were housed individually in 

polypropylene cages at 22 ± 1 ºC. Food and water were provided ad libitum. To induce 

status epilepticus, Pilocarpine, a muscarinic cholinergic agonist, was used. Status 

epilepticus subsequently in due course of time results in chronic epilepsy. Each rat was 

injected with Scopolamine, an anticholinergic and antimuscarinic drug, half an hour prior 

to Pilocarpine injection. The purpose of Scopolamine injection was to suppress peripheral 

cholinergic effects. EEG data were collected with the sampling rate of 200 Hz from 

single channel where the electrode/sensor was placed in rat’s brain in a surgical 

procedure [64].  

The EEG recording prior to the Pilocarpine injection time was considered as the 

interictal baseline. Seizure start was identified by visual electropgraphic changes 

comparing to baseline activities by setting some criteria of amplitude and frequency 

change. The recording between the Pilocarpine injection and first electrographic change 
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was considered as preictal state hypothetically. The electrographic changes were became 

gradually dominant towards status epilepticus. Total lengths of 205 min of EEG 

recordings collecte from four adult rats were analyzed. The time lengths of each EEG 

recording data file and Pilocarpine injection time are given in Table 9 [64]. 

Table 9. Details on the EEG data collection experiments from rat. 
Subject No. Data length (min) Injection Time (min) 

1 40 11.93 
2 50 9.98 
3 35 11.63 
4 80 12.31 

 

4.3.3. Signal Processing 

The raw EEG signals were first passed through a 4th order digital IIR Butterworth 

band pass filter to reduce high frequency noise and low frequency artifacts. The low pass 

cutoff frequency was set at 40 Hz while the high pass cutoff was at 0.5 Hz. Since the low 

pass cutoff was below power line frequency (60 Hz), a notch filter was not applied. For 

continuous computation of RQA measures, data was segmented using a moving window 

analysis technique. The length of each EEG window was 5 seconds with 50% overlap 

between the adjacent windows. Data were normalized to zero mean and unity standard 

deviation before RQA measure computation. 

4.3.4. RQA Measures Computation 

Recurrence of states is a fundamental property of chaotic systems or deterministic 

dynamical systems [71], [74]. Eckman et al. proposed a method to visualize the 

recurrence property in a phase space by using recurrence plot (RP) [78]. This method is 

the quantitative analysis of RP. The computation of recurrence matrix is given by 
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ܴሺ݅, ݆ሻ ൌ ߝሺ߆ െ పሬሬሬԦݔ|| െ  ఫሬሬሬԦ||ሻݔ
 

(20)

where ݔԦ is the reconstructed phase space array, ||. || indicates the Euclidean norm, ε is the 

predefined cutoff, and Θ is the Heaviside step function. Heaviside step function Θ is 

defined as follows: 

ሻݏሺ߆ ൌ ൜ 1 ݂݅ ݏ ൒ 00 ݂݅ ݏ ൑ 0 

 

(21)

Three RQA measures, recurrence rate, determinism, and entropy were extracted 

from rat EEG data. These measures reveal important characteristics of the underlying 

dynamical systems, in this case epileptic brain. Recurrence rate quantifies the density of 

recurrence points in the phase space trajectory. Recurrence rate is computed by counting 

the black dots in the recurrence plot. Recurrence is computed as:  

ܴܴ ൌ 1ܰଶ ෍ ܴ௜,௝ே௜,௝ୀଵ  

 

(22)

In recurrence plot, deterministic behavior produces longer diagonals. On the other 

hand, stochastic behavior produces shorter diagonals. Determinism is defined by the ratio 

of the recurrence points on the diagonal structure to all the recurrence points. It is given 

by: 

ܶܧܦ ൌ ∑ ݈ܲሺ݈ሻே௟ୀ௟೘೔೙∑ ܴ௜,௝ே௜,௝  

 

(23)

where ܲሺ݈ሻ is the frequency distribution of the lengths of the diagonal structures in the 

recurrence plot, ݈௠௜௡ is the threshold which excludes the diagonal lines formed by the 

tangential motion of a phase space trajectory, and ܴ௜,௝ is all the recurrence points in the 

recurrence plot. 
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Entropy measures the complexity of the deterministic structure in a dynamical 

system [72]-[74]. The larger the entropy value, the more complex would be the 

deterministic structure [14]. The Shannon entropy that a diagonal line has exactly the 

length ݈ is given by [72], [73], [77]: 

ܴܶܰܧ ൌ െ ෍ ሺ݈ሻ݌ ln ሺ݈ሻே݌
௟ୀ௟೘೔೙  

 

(24)

Embedding dimension, m and time delay, τ are two important parameters in 

computing these measures [73], [74], [77], [78]. In this study, two different sets of these 

parameters were considered and results were presented in the following section. The 

analysis was performed in MATLAB® version 7.8.0.347 (R2009a) using the Cross 

Recurrence Plot (CRP) Toolbox [79]. 

4.3.5. Results and Discussion 

The characteristics changes of RQA measures prior to and during seizure events 

were studied. The changes were identified as decreased value during ictal state from 

interictal baseline. As mentioned above, RQA measures were extracted with two sets of 

parameters: 1) embedding dimension, ݉ ൌ 15, time delay, ߬ ൌ 11, and radius of size of 

the neighborhood, ܧ ൌ 1.5; 2) embedding dimension, ݉ ൌ 5, time delay, ߬ ൌ 5, radius 

or size of the neighborhood, ܧ ൌ 1.0. Size of the neighborhood was chosen in units of the 

standard deviation σ of normalized EEG [64].  

The results of the characteristics changes are illustrated in Figure 23 and Figure 

24. The top subplot plot shows the EEG recording and bottom three subplots show the 

corresponding behavior of Recurrence Rate (RR), Determinism (DET), and Entropy 
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(ENTR) [64]. Decreased dynamics in terms of decreasing trends were found during start 

of the first electrographic seizure for average REC and DET [64]. Entropy values were 

found to be decreasing slightly before electrographic seizure start [64]. Steady decrease 

in all three features values was dominant towards status epilepticus [64]. Similar changes 

with slight variation were observed for the data obtained from the other three subjects 

[64]. 

Figure 23. EEG data recorded from rat 1 and corresponding three average RQA measures for 
parameters, m = 15, τ = 11, and E = 1.5. The pilocarpine injection time is marked by the vertical 

line between 10 to 15 minutes. 
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Figure 24. EEG data recorded from rat 1 and corresponding three average RQA measures for 
parameters, m = 5, τ = 5, and E = 1.0. The pilocarpine injection time is marked by the vertical 

line between 10 to 15 minutes. 
 

The characteristic feature time series profiles represent another problem of pattern 

recognition. The existence of two distinct classes is apparent in this case (subject 1) and 

the classes are linearly separable as shown in Figure 25. However, we could not find a 

smooth preictal transition in this pilocarpine induced rodent model of epilepsy. Li et al. 

reported their finding of significant decrease in RQA measures in pre-epileptic EEG [77]. 

In their experiment, they used bicuculline i.p. injection to induce epileptic seizures [77]. 

On the other hand, pilocarpine injection was used in our experiment to induce seizures 

and status epilepticus. 
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Figure 25. Linearly separable interictal and ictal classes revealed from the two RQA measures 
extracted from EEG data obtained from the rat 1. 

  
In order to identify the trend in feature time series profile, a moving average filter 

with window size of 10 points was applied for smoothing. The trend identification, as 

illustrated in Figure 26, shows the gradual change in the RQA measures as EEG progress 

towards seizure. During status epilepticus, the feature values reach minimum. 

 

Figure 26. Trend identification of three RQA measures using a moving average filter. 
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This also facilitates application of a threshold procedure for decision making. 

Machine learning based methods can also be applied taking the features as inputs. Two 

sets of parameter values for delay time and embedding dimension were used for phase 

space reconstruction from EEG [64]. In practical applications, better results could be 

obtained while using optimum values of these parameters. The optimum embedding 

dimension can be found using false nearest neighbor method [66]-[68], [80]. Mutual 

information can provide optimum value of time delay for phase space reconstruction 

[66]-[68], [80]. 

4.4. Seizure Prediction Using Adaptive Neuro-Fuzzy Inference System 

4.4.1. Background 

The seizure prediction problem statement is introduced in previous sections. The 

importance of availability of a prospective seizure prediction algorithm is described. The 

current trend and past developments of research in this area has been discussed. There 

exist a large number of epileptic seizure prediction studies and/or algorithms leading to 

pacemaker like neurostimulation device in literature. These studies can be broadly 

classified in several categories. Firstly, most of the available algorithms apply a threshold 

based procedure on a single seizure prediction method or feature, such as phase 

synchronization [38]. In another approach, clustering based techniques were applied [34]. 

In machine learning based approaches, artificial neural network (ANN), support vector 

machine (SVM) have been used [81], [82]. These methods are capable of using multiple 

features extracted from EEG and require training in discriminating preictal state from 

interictal baseline. Recently, combining epileptic seizure prediction methods using 

Boolean “AND/OR” logic was proposed [83]. This method was shown having superior 
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performance over a single prediction method/feature based studies [83]. In another study, 

a patient-specific rule-based method was proposed taking advantage of spatial-temporal 

combination of multiple features [31]. All of these methods reported demonstrating 

limited degrees of varying success. The approach of combining multiple features could 

open new possibilities in seizure prediction.  

Fuzzy logic based approaches could be very useful considering multiple features 

can be combined unlike Boolean logic which allows only combination of two features. 

Similarly, machine learning-based methods are also advantageous for having similar 

capabilities. Regardless of the choice of classifiers, the choice of features with significant 

sensitivity in identifying preictal states is another important point to consider. Both linear 

and nonlinear feature extraction methods are found in literature. Though the advantage of 

linear feature extraction methods over nonlinear ones are not clearly proven, seizure 

prediction studies are biased towards exciting computational aspects of nonlinear 

dynamical systems or chaos based features in detecting preictal transition states from 

EEG [29], [30]. The results of application of nonlinear methods in literature justify the 

applicability in detecting subtle and rather smooth transition of brain dynamics prior to a 

seizure [29], [31], [39], [47], [83], [84].  

In this study, a seizure prediction algorithm using adaptive neuro-fuzzy inference 

system (ANFIS) is introduced building on the studies and results presented in the 

previous sections. The algorithm combines multiple nonlinear features, both univariate 

and bivariate. Univariate features are those extracted from single EEG channel whereas 

bivariate features are computed from two EEG channels. The ANFIS was trained to 

identify preictal state from interictal baseline [44], [45].   
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4.4.2. Methods and Materials 

A. EEG Datasets: The EEG datasets used in this study were obtained from the 

European Epilepsy Database, one of the most comprehensive databases dedicated to 

epilepsy research [85], [86]. The database contains long-term continuous EEG 

recordings, both noninvasive and invasive, from 30 patients. The database is annotated by 

expert clinicians and provides comprehensive description of each of the patients’ 

information, electrode montage descriptions, types of seizures, sub-clinical seizure 

activities etc [86]. Data obtained from one of the patients (patient id: FR_253) was 

selected for feature extraction, training, and testing of the ANFIS classifier. All 7 seven 

available seizures for this particular patient’s data was analyzed. A total of 36 hours of 

data were used for feature extraction. Since, performance evaluation of the algorithm on 

long-term continuous data was primary objective, it was made sure that at least 3 hours or 

more preictal recordings were used for each of the analyzed seizure. 

B. Preprocessing: Feature extraction was performed from continuous EEG using 

a sliding window analysis technique. The length of each window was 10 second with 

50% overlap with the adjacent windows. This segmentation satisfies the criteria of 

stationary assumption in EEG analysis. Each of these segments can be considered as 

pseudo-stationary. A fourth order digital Butterworth IIR filter with cutoff frequencies at 

0.5 - 100 Hz was applied to each of these segments to mitigate high frequency noise and 

low frequency artifacts. Moreover, a second order notch filter with cutoff frequency at 50 

Hz was applied to reduce the affects of power line noise. Zero phase digital filters were 

used for both the filters. MATLAB® function filtfilt implements this zero phase filtering 

operation. 
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C. Feature Extraction: Univariate and bivariate nonlinear features were extracted 

from EEG. One univariate and two bivariate features were extracted from the two EEG 

channels located in the epileptic focus region. Univariate feature is typically computed 

from a single channel whereas bivariate features are computed from two EEG channels. 

Dynamical Similarity Index (DSI) was the univariate feature we choose 

considering its sensitivity in detecting pre-epileptic changes as reported in previous 

studies [84]. This measure was applied to EEG signals successfully in identifying preictal 

state from interictal baseline [84]. In another study, this measure was applied to identify 

preictal state in rat EEG [87]. It was described by Le Van Quyen et al. in 1999 [84]. DSI 

quantifies the changes in dynamics of a test window relative to a constant reference 

window [84].  

Bivariate features are well known for their sensitivity in detecting preictal 

changes [29]. Two bivariate features, phase synchronization and nonlinear 

interdependence, were extracted from two channels located in the epileptic focus region. 

Mean phase coherence measures the phase synchrony between two EEG channels [39]. 

Nonlinear interdependence measures the generalized synchrony or dependencies between 

two EEG channels or regions of the brain. Extremely low dependencies between regions 

generating epileptic patterns prior to seizure onset were reported [88]. Similarly, 

significant decrease in mean phase coherence before a seizure event was reported [39].  

D. Application of ANFIS: ANFIS is a modified Sugeno type fuzzy inference 

system with added neural network learning capabilities proposed by Roger Jang in 1993 

[44]. The ANFIS uses a hybrid learning algorithm for optimization which includes least 
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squares method and gradient descent backpropagation learning algorithm. The antecedent 

or the premise part is linguistic in nature and perform the qualitative fuzzy reasoning in 

the form of if-then rules. The consequent part is a linear function of the input variables. A 

custom ANFIS architecture with four inputs ܨଵ, ܨଶ, ܨଷ, and ܨସ and one output ܱ was used 

in this study and shown in Figure 27. For simplicity, all the nodes in the three middle 

layers (layer 2, layer 3, and layer 4) were not shown. The square nodes are adaptive in 

nature whereas the circular nodes are fixed. The description of functions of each layer is 

provided below. The fuzzy if-then rules for this ANFIS architecture are as follows: 

݀݊ܽ ௜ሻܣ ݏ݅ ଵܨሺ ݂ܫ ሺܨଶ ݏ݅ ௜ሻܤ ܽ݊݀ ሺܨଷ ݏ݅ ௜ሻܥ ܽ݊݀ ሺܨସ  ௜ሻܦ ݏ݅
  ሺ ݄݊݁ݐ ௜݂ ൌ ଵܨ௜݌  ൅ ଶܨ௜ݍ ൅ ଷܨ௜ݎ ൅ ସܨ௜ݏ ൅  ௜ሻݐ

 

(25)

where ܨଵ, ܨଶ, ܨଷ, and ܨସ are the four feature inputs, ܣ௜, ܤ௜, ܥ௜, and ܦ௜ are the fuzzy sets or 

the sets defining membership functions, and ݌௜, ݍ௜, ݎ௜, ݏ௜ and ݐ௜ are the linear design 

parameters. Both the membership functions and the linear parameters are adaptable and 

optimized during training. The ANFIS architecture designed for seizure prediction with 

four inputs and one output is illustrated in Figure 27. 



 

84 
 

Figure 27. ANFIS architecture with four inputs having three fuzzy membership functions and one 
output. For simplicity, not all the nodes and the connections of the middle layers (layer 2, layer 3, 

and layer 4) were shown. There would be a total 81 nodes in the middle layers. 
 

Fuzzification of the input feature variables were performed in the first layer. 

Nodes in this layer are adaptive. Fuzzy input membership parameters were optimized 

during training using hybrid learning algorithm as described by Jang et al. [44]. The 

outputs of the first layer are the fuzzy membership grades of the input features are 

commonly referred as antecedent or premise parameters. Classical ANFIS model uses the 

bell-shaped membership functions. Since in previous studies trapezoidal and triangular 

functions were used in our study, Gaussian membership functions were used in this 

study. The nodes in the second layer, labeled ∏, performs the product implication 

operation (equivalent to logic operation “AND”) on the incoming signals. This computes 

the firing strength of each rule as following. 

௜ݓ ൌ μ஺೔ሺܨଵሻ ൈ μ஻೔ሺܨଶሻ ൈ μ஼೔ሺܨଷሻ ൈ μ஽೔ሺܨସሻ, ݅ ൌ 1, 2, … , 81 (26)
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The third layer is the normalization layer. The nodes in this layer computes the 

normalized firing strength of each as following. 

పതതതݓ ൌ ଵݓ௜ݓ ൅ ଶݓ ൅ ڮ ൅ ଵ଼ݓ , ݅ ൌ 1, 2, … , 81 

 

(27)

The nodes in the fourth layer are also adaptive and can be optimized for better 

input/output mapping. The nodes in this layer perform the following operation. 

ܱ݅4 ൌ തതത݂݅݅ݓ ൌ തതത݅ݓ ሺ1ܨ݅݌ ൅ 2ܨ݅ݍ ൅ 3ܨ݅ݎ ൅ 4ܨ݅ݏ ൅  ሻ݅ݐ
 

(28)

where ݓ௜ is the output from the previous layer and ሼ݌௜ , ௜ݍ , ௜ݎ , ௜ݏ ,  ௜ሽ is the first orderݐ

polynomial set. Parameters in this layer are also referred as consequent parameters. These 

are linear functions of the input variables. Finally, the single node labeled ∑ in the output 

layer performs the aggregation or summation operation over all the incoming signals 

from the previous layer. The fuzzy output variable is the mapped output for the patterns 

presented at the inputs. The overall output computed as the summation of inputs is given 

below. 

௜ܱହ ൌ ෍ పതതതݓ ௜݂ ൌ ∑ ௜ݓ ௜݂௜∑ ௜௜௜ݓ , ݅ ൌ 1, 2, … , 81 

 

(29)

The consequent parameter and the premise parameters are updated using the 

hybrid learning algorithm. In the forward pass, the functional signals flow until the layer 

4 and the consequent parameters are estimated using least squares method. Similarly, in 

backward pass, the error estimates propagate backward and the antecedent or premise 

parameters were updated using gradient descent method [44]. 
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Preparation of Training and Testing Datasets: A total of 36 hours of invasive EEG 

data having 7 seizures were used to evaluate the performance of the algorithm. The 

recordings were obtained from a patient’s data within the European Epilepsy EEG 

database (patient id: FR_253). Data were divided in three sets, training, checking, and 

testing. The length of the training and checking data sets were 4.74 and 5 hours 

respectively with each having one seizure. Hence more than 3 hours of preictal 

recordings were available for training and checking against over fitting of the ANFIS 

model. Training was repeated until the checking error was in the acceptable range in a 

trial and error procedure. The ANFIS network was then tested on rest of the data set. The 

testing data set contained 5 seizures with total length of 26.12 hours. Hence, the 

algorithm was evaluated on out-of-sample data as well on long-term EEG recordings. 

4.4.3. Results and Discussion 

The temporal patterns of the feature time series profile for the testing data sets are 

shown in Figure 28 and Figure 29. 
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Figure 28. The temporal profile of the three features, dynamical similarity index (DSI), mean 

phase coherence (MPC), and nonlinear interdependence, S (NIS) extracted from 22 hours of test 
data. The start and stop time of the seizures are marked by red vertical lines. 

 
Figure 29. The temporal profile of the three features extracted from the rest 4.12 hours of 

continuous recording which constituted the testing dataset. The start and stop time of seizure are 
marked by vertical lines in red. 
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Gaussian membership functions were used to fuzzify the input feature variables. 

Three membership levels were assigned are low (L), medium (M), and high (H). These 

membership grades in the antecedent part play an important role in fuzzy logic based 

decision making. The membership functions were optimized during training using the 

backpropagation gradient descent learning method [44], [45]. The initial and final 

membership functions are shown in Figure 30 and Figure 31 respectively. This procedure 

should be repeated in every training and testing cycle. Also, it could be done in a patient 

specific way to optimize the algorithm in order to address the inter-patient variability. 

 

Figure 30. Initial membership functions assigned to the input feature variables. 
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Figure 31. Final membership functions of the input variables after training. Three levels or sets 

were considered for fuzzification of the input variables: low, medium, and high. 
 

A threshold procedure was applied to the final fuzzy output to convert it to a 

seizure predictive alarm space. This results in the primary alarm time series. The 

threshold was optimized for better sensitivity and lower false positive rate as it is better to 

forecast a seizure than to miss it within the prediction horizon. However, there exists a 

trade-off between these two parameters. The SPH was varied from 15 to 45 minutes with 

15 minutes step size. 

In post-processing step, the primary alarm time series was processed in a minute-

by-minute basis. Short length predictions were minimized by setting up a criterion that 

the predictions with length less than 35 seconds duration would not be considered as true 

predictions. Also, within the prediction horizon when an alarm was issued, no further 

alarms were produced for the duration of the specified prediction horizon. When an alarm 

is followed by a seizure event, it is considered as a true positive and otherwise the alarm 
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was considered as a false positive. Three different lengths of seizure prediction horizon 

were considered which yielded average sensitivity in the range of 20 - 80% with false 

prediction rate from 1.15 to 0.46 per hour. However, in longer prediction horizon the 

patient have to wait more or the intervention time is extended which might not be 

convenient for the patients and the caregivers. The results are shown in Table 10. 

Table 10. Sensitivity and false prediction rate per hour with varying length of seizure prediction 
horizon for the testing data sets. 

SPH (min) Sensitivity (%) FPR/h 
15 20 1.15 
30 40 0.73 
45 80 0.46 

 
The results demonstrated the applicability of ANFIS in epileptic seizure 

prediction. The algorithm was tested on unseen data or out of sample testing data. 

However, the threshold parameter was determined statistically by fitting a normal 

distribution from a reference window from the fuzzy output variable. In future, the 

algorithm will be tested against the dataset obtained from rest of the 29 patients’ dataset 

from the European Epilepsy Database. Another important point to consider is if the 

algorithm is performing better than chance or not. To test this, the performance of the 

algorithm will be compared against a random predictor within the seizure prediction 

characteristic framework [49]. 

4.4. Summary 

In this study, an innovative adaptive neuro-fuzzy inference system (ANFIS) based 

algorithm for seizure prediction was proposed. The performance of the algorithm was 

tested on long-term EEG recordings and promising results were found. The algorithm 

was designed in such a way that it could be trained for patterns from multiple prediction 
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characterizing features. If designed properly ANFIS or similar custom designed neuro-

fuzzy algorithm would have the potential to be an effective alternative paradigm to other 

widely used machine learning algorithms, such as artificial neural network (ANN) and 

support vector machine (SVM). The advantages of ANFIS are that it is capable of 

utilizing human knowledge reasoning as well as machine learning capabilities. Also, 

ANFIS requires minimum training. The model overfitting can be avoided by finding 

optimum training epochs in a trial and error way as described in this study. In addition to 

a training data set, we utilized a checking data set as a safeguard against model 

overfitting. Performance of the algorithm was reported for the testing data sets only.  
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CHAPTER V 

5. CONCLUSIONS AND FUTURE WORK 

5.1. Summary 

In this dissertation, two types of fuzzy logic-based algorithms were developed and 

applied in movement related artifacts detection, epileptic seizure onset detection, and 

seizure prediction from EEG signals. A number of relevant linear and nonlinear features 

or characteristics measures were extracted from both human and animal EEG recordings. 

Nonlinear dynamical systems-based measures were utilized in characterizing the changes 

in states transitions in brain waves. These characteristic features were then used to 

develop fuzzy rule-based and neuro-fuzzy algorithms for the above mentioned objectives. 

Performance analyses of the developed algorithms were presented. 

Artifacts detection and noise reduction play an important role in EEG signal 

processing for both offline and real-time scenarios. A standard threshold based saturation 

and sensor movement related artifacts detection method was used in conjunction with the 

adaptive fuzzy inference system for seizure onset detection. This method was developed 

for iEEG which is less corrupted by artifacts. Hence, a simple threshold based method is 

good enough to reject those segments corrupted with electrode movement artifacts. 

Threshold based-methods are widely accepted due to the ease of implementation and 

effectiveness in practical applications. Although this method works for high-
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amplitude and low-frequency artifacts, it may miss those artifacts which are of smaller 

amplitude than the predefined threshold value, for example, low amplitude eye blinks. In 

an experimental effort, ANFIS model was applied in artifacts detection from EEG. 

Wavelet transform was used for feature extraction and ANFIS was trained and tested in a 

10-fold cross validation. The algorithms were found to be highly reliable in detecting the 

low frequency and high amplitude artifacts. Less accuracy was obtained for muscle noise 

detection. Spectral overlap of muscle noise makes it difficult to characterize it from 

normal EEG activities.  

An adaptive fuzzy logic system was developed for seizure onset detection from 

iEEG. The primary objective was to study the applicability of fuzzy rule-based system in 

combining multiple features as well as taking advantage of spatial combination across 

channels or electrodes. Since clinicians visually inspect the changes in EEG in order to 

identify the seizure events, the system was designed in a way so that it could mimic 

human reasoning. Four widely used linear features were used in seizure onset detection 

from iEEG. The obtained results were comparable with other methods in literature and 

showed improvements in terms of some parameters. It was shown that the combination of 

multiple features were better than a single method in most of the cases. Also, the adaptive 

fuzzy system yielded better performance justifying the patient specific approach of 

seizure detection. In the proposed algorithm, fuzzy c-means clustering was utilized for 

fuzzy membership function optimization to realize the adaptive system. However, the 

features were not significantly sensitive in detecting changes earlier than onset. This 

resulted in detection delays in most of the cases. It is worth mentioning that in a very few 

cases, earlier changes were found as reported in Table 6.  
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In search for finding robust and sensitive features in identifying preictal changes, 

nonlinear dynamical systems-based characteristic measures were studied and applied to 

both human and animal EEG recordings. A fuzzy rule-based seizure prediction algorithm 

was developed based on changes in correlation dimension features. The limitations of this 

study were the evaluation datasets were short in length (1 hour) having a seizure event in 

each of the test set. This introduced a prior probability of predicting a seizure when the 

prediction horizon is an hour. To counter this, the performance of the system was 

evaluated on the same datasets with prediction horizon of 30 min. This actually 

reproduced the largely discussed controversy and/or drawbacks in seizure prediction. The 

high sensitivity found was actually unrealistic for the sudden and unpredictable nature of 

epileptic seizures. The algorithm used only one feature at a time (either correlation 

dimension or maximum likelihood correlation dimension). To add here, the behavior of 

correlation dimension changes prior to a seizure is not well defined rather controversial. 

A prospective seizure prediction algorithm should produce a probability estimate taking 

as multiple features as inputs within a time frame. We also studied recurrence 

quantification analysis (RQA), a recent approach which is known to be robust against 

noise. RQA measures were applied to characterize animal EEG data in a rodent model of 

epilepsy. RQA measures were revealed to be capable of differentiating epilepsy and 

status epilepticus from baseline EEG. 

To achieve the goal of designing a prospective seizure prediction algorithm, a 

number of points were considered 1) the algorithm should be patient specific or tunable, 

2) it should utilize both univariate and bivariate nonlinear features, thus increasing the 

probability of prediction, and 3) it should keep the complexity in minimal level. Though 
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several fuzzy logic-based approaches were studied, the ANFIS model was chosen for this 

attempt as it is one of the most advanced and reliable neuro-fuzzy algorithms available. 

An ANFIS classifier was trained to differentiate preictal patterns from interictal baseline 

and performance was reported for varying lengths of predefined seizure prediction 

horizons. The result was found to be very promising as presented in Table 10, but there 

are scopes of improvement.  

5.2. Contributions 

This dissertation describes several contributions in the domain of seizure 

detection and prediction. The specific contributions are outlined here. 

 Development and Implementation of an innovative fuzzy rule-based adaptive 

system in seizure onset detection from iEEG. The algorithm was less complex 

yet showed comparable performance with the other available methods in 

literature. An article presenting the method and the results were published in a 

peer reviewed journal [47]. 

 Investigation of different nonlinear dynamical systems-based measures in 

characterizing EEG activities to find preictal changes with respect to interictal 

baseline [63]. Some of these features were later used to develop seizure 

prediction algorithms using neuro-fuzzy approaches. A fuzzy rule-based 

seizure prediction algorithm was proposed based on changes in correlation 

dimension [64]. 

 Finally, the application of ANFIS in seizure prediction was introduced. A 

prospective and innovative neuro-fuzzy seizure prediction algorithm was 
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proposed. The algorithm makes use of one univariate and two bivariate 

features as described in chapter 4, section 4.4.2. The performance of the 

algorithm was presented with discussion on the effect of varying lengths of 

seizure prediction horizons. A paper describing the algorithm and the results 

were accepted for presentation in the 35th annual international conference of 

the IEEE Engineering in Medicine and Biology Society.  

To conclude, the results obtained and discussion presented in this dissertation 

highlight the value of the application of neuro-fuzzy algorithms in epileptic seizure 

detection and prediction. The applicability of ANFIS was demonstrated in a complex 

problem like seizure prediction. The volume of fuzzy logic-based approaches in seizure 

prediction is very small in comparison to other methods in rich seizure prediction 

literature. These techniques have the potential to initiate a paradigm shift in artificial 

intelligence or machine learning research in medicine. 

5.3. Future Work 

In future, the performance of the neuro-fuzzy algorithm in seizure prediction 

needs to be analyzed against a random predictor within the seizure prediction 

characteristic framework [49]. The algorithm will be applied to the EEG recordings of the 

rest of the 29 patients data sets obtained from the European Epilepsy EEG database. This 

will provide more rigorous analysis of the performance of the algorithm and its 

applicability in clinical settings. False prediction rate per hour could be minimized by 

incorporating better post-processing methods. Another area could also be investigated is 

the subclinical seizures (SCS) and their impact on the performance of the prediction 

algorithms. It requires verification if the SCS patterns contribute in the false predictions.
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Appendix A 

List of Abbreviations and Acronyms 

ANFIS Adaptive Neuro-Fuzzy Inference System 
BCI Brain-computer interface 
CVA Coefficient of variation of amplitude 
CWT Continuous wavelet transform 
DWT Discrete wavelet transform 
EEG Electroencephalogram 
FDR False detection rate 
FIS Fuzzy inference system 
fMRI Functional magnetic resonance imaging 
FN False negative 
fNIRS Functional near infrared spectroscopy 
FP False positive 
FPR False positive ratio 
FPR False prediction rate 
HCI Human-computer interaction 
iEEG Intracranial EEG 
IIR Infinite impulse response 
MEG Magnetoencephalogram 
PET Positron emission tomography 
RQA Recurrence quantification analysis 
RR Recurrence rate 
SCS Subclinical seizures 
SPH Seizure prediction horizon 
TN True negative 
TP True positive 
TPR True positive ratio 
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Appendix B 

EEG Time Series 

The EEG recordings used in Chapter 2 were obtained from the data set freely 

available for research by Andrzejak et al. (2001) [89]. The data set consists of 100 TXT-

files consisting 4096 samples of EEG time series and were recorded in Europe. The data 

is available in ASCII code. MATLAB was used to read the data. 10 data files were used 

in this dissertation. Those are S001.txt - S010.txt. More detailed description of the EEG 

recordings has been provided by Andrzejak et al. (2001) [89]. Available from: 

http://epileptologie-bonn.de/cms/front_content.php?idcat=193&lang=3&changelang=3 
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Appendix C  

Freiburg Seizure Prediction EEG Database 

This EEG database, known as FSPEEG in short, has been widely used by many 

research groups around the globe as a common platform for performance comparison 

among various types of seizure detection and/or prediction algorithms. The database 

contains invasive EEG recordings from 21 patients suffering from medically intractable 

focal epilepsy [49], [48], [90]. The data were recorded at the Epilepsy Center of the 

University Hospital of Freiburg. However, with the introduction of the new European 

Epilepsy EEG database, the FSPEEG database has been discontinued. Available at: 

http://epilepsy.uni-freiburg.de/freiburg-seizure-prediction-project/eeg-database. 
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Appendix D 

The European Epilepsy Database  

The European Epilepsy Database is one of the largest and most comprehensive 

databases available to date for epileptic seizure detection and prediction research. The 

database described in the previous section has been discontinued after the introduction of 

this new database. The database authority made available two packages of datasets from 

30 patients each to the researchers. One of these packages was used in this study. 

Available at: http://epilepsy-database.eu/ 

The database was annotated by clinical experts and describes the necessary 

information required for the analysis which includes types of seizures, patient’s 

information, seizure onset and offset times, EEG sensors name and location, sub-clinical 

seizures details etc. To manage all these information a local database was set in PC using 

PostgreSQL, an open source database. The information was available in tabular format. 

Two snapshots of the local database are provided which show the relational tables in the 

local database “epilepsy” and one of the tables named “seizure”. 
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Figure D.1. A snapshot of the local database setup using the PostgreSQL software. 
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Figure D. 2. A snapshot of the table named “seizure” in the relational database named “epilepsy”. 
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