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Abstract

This thesis discusses the application of parallel computing in microwave to-
mography for detection and imaging of dielectric objects. The main focus
is on microwave tomography with the use of a parallelized Finite Differ-
ence Time Domain (FDTD) forward solver in conjunction with non-linear
stochastic optimization based inverse solvers. Because such solvers require
very heavy computation, their investigation has been limited in favour of
deterministic inverse solvers that make use of assumptions and approxima-
tions of the imaging target. Without the use of linearization assumptions,
a non-linear stochastic microwave tomography system is able to resolve tar-
gets of arbitrary permittivity contrast profiles while avoiding convergence to
local minima of the microwave tomography optimization space. This work
is focused on ameliorating this computational load with the use of heavy
parallelization. The presented microwave tomography system is capable of
modelling complex, heterogeneous, and dispersive media using the Debye
model. A detailed explanation of the dispersive FDTD is presented herein.
The system uses scattered field data due to multiple excitation angles, fre-
quencies, and observation angles in order to improve target resolution, reduce
the ill-posedness of the microwave tomography inverse problem, and improve
the accuracy of the complex permittivity profile of the imaging target.

The FDTD forward solver is parallelized with the use of the Common Uni-
fied Device Architecture (CUDA) programming model developed by NVIDIA
corporation. In the forward solver, the time stepping of the fields are com-
puted on a Graphics Processing Unit (GPU). In addition the inverse solver
makes use of the Message Passing Interface (MPI) system to distribute com-
putation across multiple work stations. The FDTD method was chosen due
to its ease of parallelization using GPU computing, in addition to its ability
to simulate wideband excitation signals during a single forward simulation.

We investigated the use of distributed Particle Swarm Optimization (PSO)
and Differential Evolution (DE) methods in the inverse solver for this mi-
crowave tomography system. In these optimization algorithms, candidate
solutions are farmed out to separate workstations to be evaluated. As fitness
evaluations are returned asynchronously, the optimization algorithm updates
the population of candidate solutions and gives new candidate solutions to
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be evaluated to open workstations. In this manner, we used a total of eight
graphics processing units during optimization with minimal downtime.

Presented in this thesis is a microwave tomography algorithm that does not
rely on linearization assumptions, capable of imaging a target in a reasonable
amount of time for clinical applications. The proposed algorithm was tested
using numerical phantoms that with material parameters similar to what one
would find in normal or malignant human tissue.
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1

Introduction

1.1 Electromagnetic Imaging

The use of electromagnetic radiation to for non-invasive imagery them has been a popu-
lar topic of research for many decades now. Electromagnetic imaging has a wide variety
of potential usage including non-destructive testing of building materials in the realm of
civil engineering [1], through-wall imaging [2], and medical imaging which shall be the
primary focus of this thesis.

The ability of non-invasively imaging of objects has been an immensely important
aspect of modern medicine since the discovery of X-ray imaging. Medical imaging has
evolved to use other modalities such as acoustic waves in the case of ultrasound, and nu-
clear magnetic resonance in the case of Magnetic Resonance Imaging (MRI). Expanding
this list to include microwave radiation presents a very worthwhile, yet difficult, chal-
lenge. While other imaging modalities can be thought to primarily detect differences in
mass density of the target, microwave imaging relies on the differences in the dielectric
properties of the target. With regards to medical imaging, this is attractive, due to the
relatively large contrast between tissues, including contrast between cancerous tissue
and normal tissue.

Current systems designed to image the body via sub-visible frequency radiation in-
clude microwave imaging (which includes microwave tomography and radar-based meth-
ods), electrical impedance tomography, diffuse optical tomography, MRI, etc. Of these,
MRI and electrical impedance tomography have been developed sufficiently enough to
be used in actual clinical settings. Of those two, MRI is the most developed technology
and has revolutionized the field of medical imaging, and medicine at large. Electrical
impedance tomography uses a collection of electrodes which are placed on the surface of
an imaging target. Measurements are taken by injecting a current from one electrode and
measuring the voltage caused by the resistivity of the target across the two electrodes.
Another way of taking measurements is to apply a voltage across two electrodes and mea-
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1.1 Electromagnetic Imaging

suring the resulting current [3]. This process is repeated across different electrodes until
the resistance between all pairs of electrodes are known. From the measurement data, a
map of the conductivity of the inside of the imaging target is constructed by a computer.
Electrical impedance tomography shows promise in imaging the respiratory system as
the conductivity of lung tissue changes based on the level of perfusion. Research into
electrical impedance tomography has progressed significantly enough for commercial de-
ployment, whereas a commercial system has been made available by Dräger Medical
capable of real-time lung imaging [4]. Diffuse optical imaging uses an infra-red laser as
its active element and optical fibres as its sensing elements. During measurement, the
laser sends a light signal, usually near infra-red, inside the imaging target [5]. The light
ray is scattered by the objects inside the target. Infra-red light is absorbed and scattered
mostly by water, haemoglobin, and oxygenated haemoglobin. Because of the differences
in the absorption rates of haemoglobin and oxygen haemoglobin, diffuse optical imaging
shows potential in functional imaging, where we can see how well biological structures
are operating based on their oxygenation levels. Diffuse optical imaging is also being
investigated for the purpose of cancer detection [6]. In MRI, a strong magnetic field
is applied to the imaging target which causes atoms inside the target to align them-
selves with the magnetic field. A radio frequency electromagnetic signal is applied to
the imaging target and the response is picked up by receivers on the MRI. MRI offers
the highest resolution among the previously mentioned imaging methods, with a finer
resolution than even X-ray imaging methods [7].

In microwave imaging, both the sensors and active elements of the system are an-
tennas designed to operate within the microwave spectrum. The hardware used for
microwave imaging is similar to the hardware used in telecommunications, and thus it
is relatively cheap. In microwave tomography (MWT), an imaging target (such as an
extremity or other biological structure) is illuminated with microwave radiation. As this
radiation penetrates through the imaging target it is refracted and scattered according
to the electrical material parameters (permittivity and conductivity) of objects inside
the imaging target. Other antennas situated around the imaging target sense this scat-
tered radiation and pass this information to a computer which reconstructs a map of
permittivity and conductivity inside the imaging target from the measured scattered
radiation. The reconstruction of the material parameters from a known scattered field
is a very difficult mathematical problem because it is ill-posed and ill-constrained as de-
scribed in Chapter 3 of this thesis. Research into functional microwave imaging systems
has historically been hamstrung by lack of sufficient computing power necessary to solve
the inverse problem. However, advances in computer hardware, such as GPU computing
and HPC clusters, offer tremendously increased speed in comparison to serial computer
systems.
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1.2 Microwave Tomography

1.2 Microwave Tomography

As opposed to similar electromagnetic imaging methods such as radar-based imaging, the
output of an MWT system offers quantitative information about the electrical material
parameters of whatever object is being imaged. In radar-based imaging, the presence
of contrast sources within the imaging target is sensed, although the actual material
parameters of these contrast sources are unknown. The availability of this quantitative
data of the electrical material parameters may aid diagnosis of certain pathologies. In
breast cancer diagnosis, for instance, malignant tumours are often classified based on
their irregular shapes, whereas benign structures have more regular shapes. In addition
to their shapes, malignant tumours also have very different electrical parameters than
the surrounding tissue. Microwave tomography also shows potential for diagnosis of
cardiac pathologies, as the electrical material properties of tissues change due to events
such as ischemia and infarction [8].

MWT is an attractive imaging modality due to the low cost of hardware needed
for such systems. The sensors used in MWT are simple microwave antennas which can
be manufactured relatively cheaply. Due to the proliferation of cellular telephone tech-
nology, microwave hardware is wide spread. The computational hardware may also be
inexpensive, as the large market for GPUs, capable of extremely fast parallel compu-
tation, has made these devices affordable. Microwave tomography measurement is also
comfortable for the patient and uses non-ionizing radiation.

MWT measurement hardware can use either multiple fixed antennas or two antennas
that can rotate around the imaging target. Using multiple fixed antennas precludes the
need for complicated mechanical systems required to rotate the observation antennas
with good accuracy, however, this method introduces the possibility of mutual coupling
between the antennas which may be difficult to deal with during image reconstruction.
Furthermore, using moving antennas can cause error in the phase of the excitation, as
well as errors in the excitation angle of the incident radiation. Phase error is com-
pounded by the use of high frequencies and wideband excitation signals. Given this, the
use of moving antennas is unsuitable for the frequencies of radiation our system uses. In
[9], two horn antennas were used which were rotated in space about the imaging target
which was a thorax of a diseased dog. The measurement stage of this system required
9 hours to complete, where the target was illuminated from 32 angles and measured
at 18 observation angles and at 16 different heights for each illumination angle. This
yielded 9216 points of data. Measurement methods using multiple antennas are able to
take measurements in a very short amount of time in comparison. An MWT system at
Dartmouth College [10] uses an array of monopole antennas at fixed locations located
around the imaging target. In the previous two examples the MWT enclosure is filled
with a matching fluid. This matching fluid has similar electrical characteristics as bio-
logical tissue and is used to reduce reflections of the radiation as it enters the imaging
target. The MWT systems used at the University of Manitoba use arrays of multiple
fixed highly directive and wideband Vivaldi antennas as the illuminating and sensing
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1.2 Microwave Tomography

elements [11]. These systems also do not use matching fluids, which cuts down on the
cost of building the measurement apparatus.

Figure 1.1: A map of permittivity of a dog thorax reconstructed using MWT methods

[22].

Much of the research done into MWT is in developing inverse solvers. Because the
MWT inverse problem is inherently ill-posed, mathematical methods must be employed
to resolve the image. Most MWT methods have used deterministic iterative solvers
in conjunction with linearization assumptions and regularizations. These linearization
assumptions and regularizations transform the non-linear MWT problem into a linear
one and ameliorate the ill-posedness thereof. Linearization techniques include the Born
approximation and Rytov approximation. The Born approximation can intuitively be
understood as the assumption that the total electric field inside the imaging target dur-
ing illumination can be modelled as equal to the incident field. This assumption is
appropriate for weak scatterers, but with stronger scatterers like highly conductive ma-
terials, the total field inside the imaging target can be expected to be very different from
the incident field. Tikhonov regularization is used to ameliorate the ill-posedness of the
problem [12]. A-priori information (such as information about the shape of the imaging

4
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1.2 Microwave Tomography

target) is also often used in the inverse solver. The MWT system proposed in [10] uses
a Tikhonov regularized inverse solver. In [9], the Newton iterative scheme was used in
conjunction with the standard Tikhonov regularization. An MWT image resolved using
the Newton iterative scheme with a moving antenna measurement apparatus is shown
in Figure 1.1. The use of Born [13] or Rytov [14] linearization allows the MWT inverse
problem to be solved without the use of iterative methods which cuts down on the run
time [15]. The system proposed in [16] use the Born approximation to solve the MWT
inverse problem directly.

By their nature, these methods of solving the MWT inverse problem introduce errors
into image reconstruction. The use of regularization methods manifests in a “smoothing
out” of the image. This image smoothing means that high levels of contrast (where
the permittivity and conductivity of materials changes rapidly with respect to location)
cannot be detected, and thus, may reduce the resolution of the reconstruction. The use
of linearization methods like the Born approximation can introduce significant modelling
error if t he weak scatterer assumption turns out to be incorrect for a given problem.
MWT inverse solvers that do not rely on these methods have seen little investigation as
such inverse solvers require global optimization methods coupled with full-wave forward
solvers which invariably result in long run times of the reconstruction algorithm. One
such system, however, has been developed and proposed in [17]. In that system, the
reconstruction algorithm used a Genetic Algorithm (GA) in conjunction with a numerical
Maxwell’s equations simulation program. Image reconstruction took a total of one week
for one image.

1.2.1 GPU Computing

In recent years, the speed of Central Processing Units (CPU) has stopped increasing as
fundamental properties of the universe limit increasing the frequency of processors. In
order to meet increasing demands for computational power, researchers look increasingly
towards parallel computation to satisfy the ever increasing computational needs imposed
by numerical simulation, medical imaging, computational finance, defence and intelli-
gence, and countless other applications. Multi-core CPUs have become the de-facto
standard computer architecture as single core CPUs become more and more obsolete.
Parallel computing has taken many forms, including the ubiquitous multi-core CPU,
volunteer computing, HPC clusters, and the titular general purpose GPU.

GPUs were originally developed to handle computer graphics processing. The ren-
dering of computer graphics is a very parallelizable task, involving a large amount of
instructions per frame rendered. As such, GPUs are inherently parallel devices. The
emergence of computer-based entertainment including desktop computer video games
has spurred the development of extremely powerful GPUs. Whereas currently available
CPUs can have four to eight cores, commercially available GPUs are equipped with
thousands of cores. As a result of this extreme parallel architecture, the theoretical per-
formance when measured in floating point operations per second (flops) vastly exceeds
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1.2 Microwave Tomography

that of serial central processors. Figure 1.2 illustrates the computing power of commer-
cially available GPUs vs. CPUs. The cores of CPUs, however, are much more complex
than those of GPUs.

Figure 1.2: Comparison of raw computing power of GPUs vs. CPUs. Sandy bridge and

the others are CPU architectures [18].

Given the exceptional computing power of GPUs it is no wonder that researchers
have turned their efforts to using GPUs for applications other than computer graph-
ics. The use of GPUs for applications other than computer graphics is known as Gen-
eral Purpose Graphics Processing Unit computing (GPGPU). GPGPU computing is
best suited for tasks that are highly parallelizable, namely tasks that involve minimal
communication between processors. Parallelizability is classified as either fine-grained
parallelization, coarse-grained parallelization, or embarrassingly parallelizable. In fine-
grained parallelization, data must be transferred often after a relatively small amount of
computation. Coarse-grained parallelization entails less frequent data transfers, wherein
data is only transferred after a large amount of computation. For an algorithm to be
embarrassingly parallel, there is very little communication between processors. Another
definition of embarrassing parallelizability is that data transfer for a computing node
is only limited to nearby computing nodes, such that any single computing node needs
only to communicate to a few other nodes.

6
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1.2 Microwave Tomography

The FDTD method which is used as the forward solver in our MWT system has
been described as an embarrassingly parallelizable algorithm [19]. Given that FDTD
explicitly models the electric field in space at discrete time steps and uses the differen-
tial form of Maxwell’s equations to update the fields, the embarrassing parallelizability
of the FDTD can intuitively be explained by the principle of locality. The principle of
locality states that objects in the universe are only effected by objects in their immediate
vicinity, thus the behaviour of the electric field at one location is only dependent on the
fields at adjacent locations.

When GPGPU computing first came into use, programmers were restricted to using
APIs (Application Programming Interfaces, functions developed to facilitate complex
software interactions) developed exclusively for graphics applications such as OpenGL.
In order to be used for general computation on GPUs, problems needed to cast in terms
of triangles, textures, and other objects commonly used in graphics rendering.

To meet the trend of GPGPU computing and increase the capabilities of GPUs for
traditional graphics processing hardware and software developers worked to expand the
capabilities of GPUs from being fixed-function devices to fully programmable comput-
ing platforms. Nvidia’s GeForce 8 series of GPUs are designed for computer video game
graphics acceleration and are thus wide spread. The GeForce 8 series of GPUs all come
with support for single precision floating point operations. GPGPU computing has be-
come widespread enough to warrant its own market for hardware. The Nvidia Tesla
series of GPUs was developed exclusively for general purpose computing. Early versions
of the Tesla, in fact, did not even support graphics display, although more recent Tesla
GPUs have this ability. The Tesla series most apparently diverges from standard GPUs
in that they devote much more chip space to double precision (64-bit) operations, al-
though seemingly this capability comes at the expense of raw computational throughput
as shown in Figure 1.2 and increased cost where the Tesla C2050 is capable of around
500 GFLOP/s and the GeForceGTX 480 is capable of more than 2500 GFLOP/s. In
addition to double-precision floating point support the Tesla also has increased memory,
faster communication from the GPU to the motherboard, and many other features that
optimize the Tesla for general purpose computing. Another recent interesting develop-
ment in graphics processing hardware comes from the company AMD in the form of
the AMD Accelerated Computation Unit (ACU) also known as AMD Fusion [20]. The
AMD APU combines the CPU and GPU on a single die where both the CPU and GPU
have access to a shared memory cache. Although developed for the consumer market,
the AMD APU shows quite a bit of potential for GPGPU applications. Whereas in tra-
ditional separate CPU/GPU architectures memory must be transferred over buses in a
very time consuming manner, the shared memory between CPU and GPU of the AMD
APU precludes the need for these memory transfers. In some algorithm the need to
transfer memory from CPU to GPU slows down the algorithm, resulting in a “memory
bottleneck”. In addition to this, AMD APUs support OpenCL, increasing the ease of
programming them for general purpose computation. For these reasons, the use of AMD
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1.3 Motivation

APU for general purpose computing is a research topic receiving much attention at the
time of writing this thesis [21].

1.2.2 High Performance Computing

A more common method of parallel computing is in the form of using multiple CPUs
that work in parallel. High Performance Computing (HPC) clusters are used to run par-
allel programs on homogeneous computing environments. In a computer cluster, mul-
tiple similar computers (called nodes) are connected to a Local Area Network (LAN)
to communicate with each other. The similarity of the computers aids in the running
of synchronous parallel programs. If one were to run a synchronous parallel algorithm
using computers of different speeds, the faster computing nodes would need to wait for
the slower nodes to catch up, thereby negating their increased speed. However, asyn-
chronous parallel algorithms are able to fully utilize the speed of all computing nodes
even with great differences in computing power.

Parallel programs written to be executed on HPC clusters use the Message Passing
Interface (MPI) to communicate between nodes of the cluster. MPI is a standardized
method of providing the synchronization and communication needed to run parallel al-
gorithms. Most implementations of MPI are designed for C, C++, and Fortran although
implementations exist for other languages such as Java. One popular implementation
of MPI is MVAPICH which is the implementation used in our system. In addition to
being used for computer clusters, MPI is also used to parallelize algorithms on multi-core
processors.

The University of North Dakota has a number of computing clusters for use in
research. Of these clusters, the Shale cluster is equipped with CUDA enabled GPUs.
Four computing nodes have two Tesla C1060 GPUs each, eight GPUs total. Our system
is able to fully utilize all eight GPUs of the cluster during image resolution, offering
increased speed in addition to the acceleration offered by GPU implementation of the
forward solver.

1.3 Motivation

The large amount of contrast between the dielectric properties of malignant, benign,
and normal tissue has made the development of a clinical microwave imaging system
a high priority among researchers. MWT has been considered for detection of cardiac
diseases [22]. The motivation for this is that during physiological events such as my-
ocardial ischemia or infarction, the electrical properties of the tissue change from their
normal state [23]. However, the use of MWT for diagnosis of breast cancer has received
the greatest amount of attention from researchers. While it is well known that early
detection of breast cancer is the biggest factor in successful treatment, current imaging
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1.3 Motivation

methods are imperfect, having relatively high false-negative and false-positive rates [24].
The measured ratio in permittivity of malignant to healthy fatty breast tissue has been
reported to be on the order of 10:1 [25]. With such a high contrast between healthy
and malignant tissue, MWT may have the potential to differentiate malignant tumours
and benign tumours based on their electrical material parameters. More recent research
indicates that the difference between the permittivity of tumour tissue and normal fi-
broglandular tissue is on the order of a mere 10% [26].

Current breast cancer detection methods, the most widely used among which is X-
Ray mammography, offer limited sensitivity in detection, where the failure to detect
malignant tumours using X-ray mammography has been reported to be from 4% up to
34% [27]. In addition to the failure to detect tumours, X-ray mammography and MRI
have fairly high false-positive rates [24]. The positive prediction value of X-ray mam-
mography, defined as the ratio of correctly diagnosed cases of malignant breast cancer
to the total amount of patients diagnosed with malignant breast cancer is 85.7% [26]. In
the case of MRI, however, this value decreases to 73.6%. In other words, as high as 26%
of patients who have been diagnosed with malignant tumours can expect their diagno-
sis to be a false-positive. From these statistics, the need for supplementary diagnostic
methods for breast cancer is apparent.

MWT has been proposed as such a method. Because MWT offers poor resolution
in comparison to X-ray mammography and MRI, a MWT system in clinical deployment
would most likely be used as a supplement to current breast imaging methods such as
X-ray mammography. By offering quantitative data about the material parameters of
the image, it may be possible to differentiate malignant tumours from benign ones. Cur-
rently malignant tumours are differentiated from other structures such as calcifications
based on their shapes since they often have highly irregular shapes. The difference in
permittivity and conductivity of malignant tumours in comparison to other breast tissue
offers another method to classify positive diagnoses.

Other considerations that make MWT an attractive diagnostic method for breast
cancer include the fact that the MWT does not use ionizing radiation and is comfort-
able for the patient. In MWT, usually Ultra-Wide Band (UWB) technology is used.
UWB covers frequencies from 1 GHz to 10 GHz and follows FCC’s low power regulation
[28]. The dosage of this radiation received during MWT measurement pales in com-
parison to the exposure to Wi-Fi signals, cell phone signals, and other signals emitted
from consumer electronics. Because of the non-ionizing nature of microwaves, there is
minimum risk of MWT screenings causing further cancer. MWT also requires no breast
compression, which is required for X-ray mammography and can cause discomfort. This
lack of discomfort may have the effect of encouraging women to have more frequent
breast screenings.

As stated in Section 1.2, most MWT systems in literature rely on regularization
and/or linearization assumptions in order to deal with the ill-posedness of the inverse
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1.3 Motivation

problem. These methods introduce error in the reconstructed images. Because the
contrast in permittivity between malignant and benign tissue may be as low as 10%,
this error may make MWT using regularization/linearization assumptions infeasible for
breast cancer detection. In a clinical setting, error in an image generated by MWT has
the potential for serious ramifications such as misdiagnosis. MWT systems in literature
that do not use these regularization techniques require inordinate amounts of time for
reconstruction, which also precludes the clinical deployment of MWT for breast cancer
diagnosis. Such systems require full-wave Maxwell’s equations forward solvers and global
optimization methods where the forward solver must be called several times per image
reconstruction. We have thus set out to create an MWT system that does not rely
on linearization or regularization assumptions while keeping reconstruction times more
manageable than previous similar systems. Parallel computing is employed in both
the inverse solver and forward solver of our system in order to meet the demands for
computing power required for such a system. Previous parallel MWT systems have
relied on MPI to parallelize both the forward and inverse solvers [29]. The availability of
low-cost GPUs has motivated us to implement a GPU parallelized forward solver which
does not require expensive HPC clusters.
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2

Microwave Tomography Forward

Solver

Traditionally, inverse problems are solved with a combination of a forward solver and
an iterative optimization technique. In the context of microwave imaging, the forward
problem is defined as finding the scattered-field produced by a known scatterer, whereas
the inverse problem is finding the complex permittivity profile of the scatterer, with the
scattered-field being known. The forward problem is, of course, much easier to solve than
the inverse problem. The forward problem is usually solved using numerical algorithms
based on Maxwell’s equations. Despite the heavy research done into forward problem
solvers, the computational load required for numerical Maxwell’s equations solvers is
high. This high computational cost of forward solvers has led researchers to explore
solutions that make no use of numerical forward solvers [30], or that use simplified, non
full-wave, forward solvers [31]. Inverse solvers that don’t rely on forward solvers invari-
ably use approximations such as the Born approximation or Rytov approximation [32].
These approximations rely on the assumption that, inside of a scatterer, the total electric
field can be approximated to be equal to the incident-field. This works well when dealing
with weak scatterers, but fails when there is a large amount of contrast within the target.
In the context of MWT for breast cancer detection, the use of these approximations may
be inappropriate. This is due to the fact that the measured difference in permittivity
of malignant tissue to can be as high as 10:1 [25]. Indeed, as mentioned earlier, the
high contrast between tumour tissue and background fatty breast tissue is one of the
primary motivations for using MWT as an imaging modality for breast cancer detection.

Full-wave solvers such as Method of Moments (MoM), FDTD, or Finite Element
(FE) are capable of modelling all electromagnetic phenomena inside of a chosen area of
interest. They are thus able to fully model the scattering of an arbitrarily complex imag-
ing target, with error chiefly coming from numerical approximation. This is favourable
for the purpose of breast cancer detection, given that breast tissue is highly heteroge-
neous and filled with strong scatterers. In particular, one phenomena that is hard to
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model with direct inverse solving is the existence of secondary scattering. That is where
scattered radiation from one source encounters another contrast source and is scattered
further. Full wave solvers can model this phenomena accurately. As mentioned before,
full-wave solvers have the disadvantage of being computationally intensive. This can be
ameliorated with parallelization. The FDTD method, in particular, is very amenable
to parallelization, with GPU parallelization in particular. The amenability of FDTD
towards GPU acceleration, in addition to the ability of FDTD to simulate wide-band
signals in a single forward solve, is the reason that we have chosen FDTD as our forward
solver in our proposed MWT system. The following sections will explain the FDTD
algorithm we used, the GPU parallelization of the FDTD algorithm, and the FDTD
forward solver’s integration into the large MWT inverse solver.

Our proposed MWT algorithm uses a stochastic optimization inverse solver which
works in conjunction with a full-wave forward solver. In the context of MWT, the
forward solver takes a candidate solution given by the inverse solver as input and returns
a fitness value. This fitness value is related to how closely the scattered-fields created
by the candidate image matches the known measured scattered-fields of one’s imaging
target which was interrogated during the initial measurement stage. The FDTD method
is used in our proposed system to provide the scattered-field of the candidate solution
that is proposed by the inverse solver. In our system, the scattered-field is calculated
across multiple observation points, for multiple incident angles of illuminating radiation,
for and multiple frequencies. Due to the ill-posedness of the inverse problem, inclusion of
this extra information aids the convergence of the inverse solver, both in the time it takes
to converge on a solution, and the correctness of the solution. Within the larger MWT
system, the forward solver is implemented as a function module which takes an array
of real numbers corresponding to the proposed image and returns a single real number,
the fitness value. This fitness value is the mean squared error of the electric field across
all observation points, all illumination angles, and all frequencies. The equation thereof
is given below in equation (2.1):

error =

Φmax
∑

Φ=Φ0

Θmax
∑

Θ=Θ0

fmax
∑

f=f0

(Emeas − Esimulated)
2 (2.1)

In equation (2.1), Φ is the incident angle of illuminating radiation, Θ is the observation
angle, f is the frequency, Φmax is the maximum incident illuminating radiation angle,
Θmax is the maximum index of the observation angle, fmax is the maximum frequency
taken, and error is the mean squared error of the radiation pattern of the candidate
solution versus the measured radiation pattern. Φ0 is the minimum incident illuminating
radiation angle, Θ0 is the minimum observation angle and f0 is the minimum frequency.
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2.1 Finite Difference Time Domain Forward Solver

2.1 Finite Difference Time Domain Forward Solver

FDTD, as its name would suggest, models the electric and magnetic fields in the time
domain. To elaborate, in FDTD, a region of space known as the problem space is
discretized into points. The electric and magnetic fields are defined only on these points
and are made to rigorously obey Maxwell’s equations in differential form:

∇× ~H =
∂ ~D

∂t
+ σ ~E (2.2)

∇× ~E = −µ
∂ ~H

∂t
− ~M (2.3)

∇ · ~D = ρe (2.4)

∇ · ~B = ρm (2.5)

~D = ǫ ~E (2.6)

~B = µ ~H (2.7)

In equations (2.2) - (2.7) ~H is the magnetic field intensity, ~E is the electric field
intensity, ~D is the electric displacement field defined in equation (2.6), ~B is the mag-
netic displacement field defined in (2.7), ρe is electric charge density, ρm is the magnetic
charge density, ~J is the electric current density, ~M is the magnetic current density, and
t is time. Although there is no such thing as magnetic current or magnetic charge in
physical reality, the two quantities are often used in solving equivalent electromagnetic
problems. Equation (2.2) is Ampere’s law, equation (2.3) is Faraday’s law, equations
(2.4) and (2.5) are Gauss’s law for both the electric and magnetic fields. Only (2.2) and
(2.3) are explicitly enforced in the FDTD method, as there is the assumption that there
are no free electric or magnetic charges in the area of interest. ǫ is permittivity where
the permittivity of free space, ǫ0 is 8.854× 10−12. µ is magnetic permeability, where the
permeability of free space, µ0 is 4π × 10−7. σ is conductivity.

The problem space is discretized according to the scheme put forth by Kane Yee [33]
called the Yee cell. In the Yee cell, two sets of points are defined, one for the electric
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2.1 Finite Difference Time Domain Forward Solver

field and one for the magnetic field. Points of the electric field are distanced from each
other in the x, y, and z directions by a constant and finite distance denoted ∆x, ∆y,
and ∆z. Recent improvements to the FDTD method have changed this paradigm by
allowing for adaptive meshing, and thus non-uniform ∆x,∆y,∆z values, but this won’t
be explored in this thesis [34]. The set of points where the magnetic field is defined is
set up in a similar manner, with constant finite distance in the x, y, and z directions
between points, however, the points of the magnetic field are displaced from the electric
field points by a factor of ∆x

2 , ∆y
2 , ∆z

2 . Figure 2.1 shows a visualization of the distribution
of points that comprise the problem space.

Figure 2.1: One cell of the Yee Grid used in FDTD

In order to apply Maxwell’s equations to our discretized problem space, the curl and
time derivative operators in equations (2.2), and (2.3) must be transformed from their
continuous forms to their discretized forms. In order to do that, we harken back to the
definition of the derivative given as follows:

∂f

∂x
(x) = lim

∆x→0

f(x+∆x)− f(x)

∆x
(2.8)

In the FDTD problem space the field components are always separated by a finite
distance so equation (2.8) is altered such that the quantity ∆x approaches, not 0, but
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2.1 Finite Difference Time Domain Forward Solver

a constant. This leads to a straightforward discretization the ∂
∂t

operator, and the curl

operator, defined such that ∇ × ~F = (∂Fz

∂y
−

∂Fy

∂z
)x̂ + (∂Fx

∂z
− ∂Fz

∂x
)ŷ + (

∂Fy

∂x
− ∂Fx

∂y
)ẑ is

discretized similarly.

Making these substitutions on the curl and time derivative operators in equation
(2.2) gives us equation (2.9).

En+1
x (i, j, k) − En

x (i, j, k)

∆t
=

1

ǫ(i, j, k)

H
n+ 1

2

z (i, j, k) −H
n+ 1

2

z (i, j − 1, k)

∆y

−
1

ǫ(i, j, k)

H
n+ 1

2

y (i, j, k) −H
n+ 1

2

y (i, j, k − 1)

∆z

−
σ(i, j, k)

ǫ(i, j, k)

En+1
x (i, j, k) +En

x (i, j, k)

2
(2.9)

ǫ = ǫ0ǫr

Similar substitutions made on Faraday’s Law give us the discretized version thereof.
These discretized Maxwell’s equations are manipulated further to give explicit updating
equations of the electric and magnetic fields. An example of the explicit updating equa-
tion for the electric field is shown in equation (2.10):

En+1
x (i, j, k) =

2ǫ(i, j, k) −∆tσ(i, j, k)

2ǫ(i, j, k) + ∆tσ(i, j, k)
× En

x (i, j, k)

+
2∆t

(2ǫ(i, j, k) + ∆tσ(i, j, k))∆y
× (H

n+ 1

2

z (i, j, k) −H
n+ 1

2

z (i, j − 1, k))

−
2∆t

(2ǫ(i, j, k) + ∆tσ(i, j, k))∆z
× (H

n+ 1

2

y (i, j, k) −H
n+ 1

2

y (i, j, k − 1))

(2.10)

The simulation space of FDTD can be greatly reduced by assuming a two dimen-
sional case. In a two dimensional FDTD, the fields are assumed to be constant in the z

direction. Two dimensional FDTD simulations can be either Transverse Magnetic (TM)
or Transverse Electric (TE). In the TM case, the electric field is assumed to be in the z

direction with the H field being oriented in the y and x directions (in the plane of the
2D FDTD simulation). Our system uses a 2D TM FDTD as the forward solver.

In equations (2.9) and (2.10), En
x (i, j, k) is the x component of the electric field at

time step n (corresponding to time n∆t) at coordinates i∆x, j∆y, k∆z. ǫ(i, j, k) is the
absolute permittivity at a point in space. ∆t is the difference in time between time
steps, which is a constant during the simulation. σ(i, j, k) is the electric conductivity
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2.1 Finite Difference Time Domain Forward Solver

at a point in the problem space, H
n+ 1

2

z (i, j, k) is the z component of the magnetic field
at a time step n + 1

2∆t, defined at the coordinate indices (i, j, k). A similar equation
exists for updating the magnetic fields of the problem space. Equation (2.11) shows the
magnetic field updating equation for a non magnetic medium.

H
n+ 1

2

z (i, j, k) = H
n− 1

2

z (i, j, k)

+
2∆t

(2µ0(i, j, k))∆y
× (En

x (i, j, k) − En
x (i, j − 1, k))

−
2∆t

(2µ0(i, j, k))∆z
× (En

y (i, j, k) − En
y (i, j, k − 1))

(2.11)

Unwrapping the discretized Maxwell’s equations into the form of equations (2.10)
and (2.11) is important, as these equations are used to explicitly update the electric
magnetic fields upon each time step of the simulation. Time stepping occurs until the
simulation reaches its maximum number of time steps, specified at the start of the sim-
ulation. In the course of one time step, the electric field is updated first. When all
electric field values are calculated (at t = n∆t), the magnetic field values are then up-
dated (at t = (n + 1

2)∆t). When the simulation is completed, we now have knowledge
of the electric and magnetic field values at all points of the problem space, at all time
steps. This information can be processed further to give any electromagnetic information
typically desired from simulations including scattered matrices, surface current density,
impedance information, and as we use in our system, scattered-fields and Radar Cross
Section (RCS) plots. Because output information is typically desired in the frequency
domain, the Fourier transform is used to extract frequency domain information from the
time domain data. The Fourier transform can be evaluated with either the Fast Fourier
Transform (FFT), or the Discrete Fourier Transform (DFT). Our system uses the DFT,
as its memory requirements are much lower than that of the FFT [35]. Whereas the FFT
requires storage of previous samples during simulation, the DFT does not need to store
data from previous samples. Instead, the DFT recursively calculates a running sum of
complex numbers, calculation thereof requiring only the current complex sum and data
from the current time step.

∆x,∆y, and ∆z must be chosen in order to satisfy the Nyquist sampling theorem
which states that the sampling rate must be twice that of the maximum frequency of a
signal for accurate modelling. In practice, the Nyquist rate is exceeded and ∆x etc. are
chosen such that there are 20 FDTD cells per wavelength of the maximum frequency in
the FDTD simulation. ∆t is governed by the Courant stability criteria. The Courant
stability criteria states that a wave should not travel more than one cell per time step.
Mathematically this is represented by equation (2.12).
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c∆t

√

1

(∆x)2
+

1

(∆y)2
+

1

(∆z)2
≤ 1 (2.12)

2.1.1 Scattered Field Formulation of FDTD

In order to use a far-field source such as a uniform plane-wave as the excitation for
an FDTD simulation, equation (2.10) must be modified to include this excitation sig-
nal. There are multiple methods of modelling plane-wave excitation in FDTD, notably
the total-field/scattered-field formulation and the scattered-field formulation. In the
total-field/scattered-field formulation, both the incident plane-wave and scattered-field
are modelled within the problem space. In the scattered-field formulation, only the
scattered-field is subject to time stepping and the incident-field is calculated analyti-
cally. The suitability of these methods defers based on application. Specifically, the
pure scattered-field formulation is unsuitable for shielding problems where there exist
regions of the problem space where the total-field is near zero [36]. In these regions the
scattered-field and incident should be near equal in amplitude but with opposite signs.
This unsuitability arises from subtraction error where the scattered and incident-fields
may not necessarily cancel out due to numerical error. The fact that the incident-field
is calculated analytically whereas the scattered-field is calculated during FDTD time
stepping exacerbates this subtraction error given that only the scattered-field is subject
to numerical error inherent to the FDTD simulation.

The pure scattered-field formulation, however, shines in its ease of implementation.
The total-field/scattered-field formulation divides the problem space into regions which
in which calculation of the updating equations differ in that there are two regions which
model the total-field in one and the scattered-field in another. The scattered-field for-
mulation is calculated much the same way as described previously in equation (2.10)
etc. throughout the whole problem space with some minor alterations. This simplic-
ity is especially important for implementation of FDTD on GPUs as code divergence
(the inclusion of control statements such as if statements or case/switch statements)
can slow program execution considerably. Given that in our problem (the modelling
of human tissue in the microwave band) does not include material of particularly high
conductivity, and thus, precludes the possibility of significant subtraction error, the pure
scattered-field formulation is used in our system.

The scattered-field formulation as described in [37] relies on the linearity of Maxwell’s
equations. In the scattered-field formulation the total-field is split up into incident-field
and scattered-field components. The incident-field is modelled in equation (2.13) and
assuming to be propagating through free space. The total-field is described in equation
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(2.14).

∇× ~Hinc = ǫ0
∂ ~Einc

∂t
(2.13)

∇× ~Htot = ǫ
∂ ~Etot

∂t
+ σ ~Etot (2.14)

Subtracting equation (2.13) from (2.14) gives, with some rearrangement, equation
(2.15).

ǫ
∂ ~Escat

∂t
+ σ ~Escat = ∇× ~Hscat + (ǫ0 − ǫ)

∂ ~Einc

∂t
− σ ~Einc (2.15)

Applying the discrete approximation of the derivative operator (2.8) and rearranging
to create the updating equation (2.16) [35].

En+1
x,scat(i, j, k) =

2ǫ(i, j, k) −∆tσ(i, j, k)

2ǫ(i, j, k) + ∆tσ(i, j, k)
× En

x,scat(i, j, k)

+
2∆t

(2ǫ(i, j, k) + ∆tσ(i, j, k))∆y
× (H

n+ 1

2

z (i, j, k) −H
n+ 1

2

z,scat(i, j − 1, k))

−
2∆t

(2ǫ(i, j, k) + ∆tσ(i, j, k))∆z
× (H

n+ 1

2

y (i, j, k) −H
n+ 1

2

y,scat(i, j, k − 1))

+
2(ǫ0 − ǫ(i, j, k)) − σ(i, j, k)∆t

2ǫ(i, j, k) + σ(i, j, k)∆t
En+1

inc,x

−
2(ǫ0 − ǫ(i, j, k)) + σ(i, j, k)∆t

2ǫ(i, j, k) + σ(i, j, k)∆t
En

inc,x

(2.16)

Notice that equation (2.16) is nearly identical to (2.10), the standard updating equa-
tion, with the addition of the last two terms. This updating equation is applied every-
where in the problem space, a boon for GPU implementation.

The primary purpose of our forward solver is to generate scattered-field information
for an object sampled at a high number of observation angles in the far-field of the target
across multiple frequencies and resulting from multiple excitation angles. The definition
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of RCS is shown in equation (2.17) where r is the distance from the antenna to the target,
Ss is the scattered power density seen at a distance r away from the target, and Si is the
incident power density illuminating the target. Figure 2.2 shows a visualization of the
RCS information generated by the forward solver for a single frequency and excitation
angle. This RCS pattern would then be compared to the measured data using the least
mean squared calculation shown in equation (2.1).

RCS(θ) = 4πr2
Ss

Si
(2.17)

The RCS data is obtained via a near to far-field transformation [37]. The near-to-far
field transformation used in FDTD relies on the surface equivalence theorem originally
proposed by Sergei Schelkunoff which is a formal version of Huygen’s principle [38]. The
surface current equivalence theorem states that for a given source of radiation, one can
enclose the radiator in an imaginary surface and calculate equivalent surface currents
that would create identical fields outside that imaginary surface. Given those surface
currents, the fields on the inside of the imaginary surface will be zero.
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Figure 2.2: An example RCS pattern of a forward scattering dielectric cylinder generated

by the FDTD forward solver
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2.1 Finite Difference Time Domain Forward Solver

Figure 2.3: A visual demonstration of the field equivalence principle. When equivalent

surface currents are placed on the surface of the imaginary boundary, there is a null field

condition inside the boundary, but the fields are identical from the original problem outside

the boundary [38].

As shown in Figure 2.3, the surface currents that create the equivalent outer fields
are calculated by equations (2.22) and (2.23). During post processing these currents are
found in the frequency domain via the DFT. Now equipped with the equivalent surface
currents, it is possible to find the far-field RCS pattern for a given scatterer. The far-
field pattern is obtained by calculating the magnetic and electric vector potentials ~A and
~F , respectively. ~A and ~F are calculated by equations (2.18) and (2.19) via numerical
integration. With knowledge of these vector potentials it is a simple matter to calculate
the electric and magnetic fields in the far-field, as shown in equations (2.20) and (2.21).

~A =
µ0e

−jkR

4πR

∫

S

~Je−jkr′cos(Ψ)dS (2.18)

~F =
ǫ0e

−jkR

4πR

∫

S

~Me−jkr′cos(Ψ)dS (2.19)

~H = −jω[F +
1

k2
∇(∇ · ~F )] +

1

µ0
∇× ~A (2.20)

~E = −jω[A+
1

k2
∇(∇ · ~A)] +

1

ǫ0
∇× ~F (2.21)

~J = n̂× ~H (2.22)

~M = −n̂× ~E (2.23)
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2.1 Finite Difference Time Domain Forward Solver

2.1.2 Frequency Dependant Finite Difference Time Domain

( (FD)2 TD )

Within the microwave band, biological tissue do not have constant permittivity and con-
ductivity across all frequencies. Models such as the Cole-Cole model [39], the Lorentz
model [40], and the Debye relaxation model [37] are used to describe the change in the
complex permittivity of materials over frequencies. Water is highly dispersive over the
band from 1 GHz to 10 GHz, the frequency band used in our system. Because bio-
logical tissue contains high amounts of water, they are also highly dispersive over the
microwave band. Lazebnik et al. studied the dispersive characteristics of human tissue
in [41]. Samples of breast tissue were divided into four groups, varying by adipose tissue
content. The groups included tissues with 0-30 % adipose content, 31%-84% adipose
tissue, 85%-100% adipose tissue and malignant tissue. The highest amount of dispersion
was found to be in tumor tissue, where the dielectric constant dropped from 57 at 1
GHz down to less than 30 at 20 GHz.

In our system the single-pole Debye model is used to characterize the dispersive
dielectric material located within breast tissue. The first order Debye relaxation model
for dispersive dielectric materials is given in equation (2.24). In equation (2.24) ǫ̂ refers
to permittivity values, ω is the angular frequency, ǫ∞ is the value of relative permittivity
of a medium as the frequency approaches infinity, ∆ǫ is defined as ǫs − ǫ∞ where ǫs is
the relative permittivity of the material at frequency zero, τ is the relaxation time of
the molecules in the dispersive material, and j is the imaginary unit. This equation is
in the frequency domain, yet for implementation in FDTD we require all calculations to
be performed in the time domain.

ǫ̂(ω) = ǫ∞ +
∆ǫ

1 + jωτ
(2.24)

The inverse Fourier transform allows implementation of equation (2.24) in FDTD.
A method of incorporating the Debye model into FDTD using the auxiliary differential
equation method is presented in [42]. A direct substitution of equation (2.24) into
Ampere’s equation (2.2) followed by an inverse Fourier transform gives Ampere’s law for
a Debye dispersive media shown in equation (2.25).

∇×H(t) = ǫ0ǫ∞
∂

∂t
E(t) + σE(t) + ǫ0F

−1{jω
∆ǫ

1 + jωτ
E(ω)} (2.25)

We define ǫ0F
−1{jω ∆ǫ

1+jωτ
~E(ω)} as ~Jp(t) which is called the polarizing current. Tak-

ing the inverse Fourier transform, we arrive at equation (2.26), which is known as the

21



2.1 Finite Difference Time Domain Forward Solver

Figure 2.4: A comparison between the permittivities vs. frequency charts of four types of

tissue studied by Lazebnik et al. (a) corresponds to 0-30% adipose tissue, (b) corresponds

to 31-84 % adipose tissue, (c) corresponds to 85-100% adipose tissue, and (d) corresponds

to malignant tissue [41]

.

auxiliary differential equation. ~Jp is defined at every cell of the FDTD problem space,
and so adds a small additional memory requirement to the FDTD algorithm.

∂

∂t
~Jp = ǫ0∆ǫ

∂

∂t
~E −

1

τ
~Jp (2.26)

Discretization of equation (2.26) gives us the updating equation for ~Jp to be per-
formed at every time step. Due to the inverse Fourier transform, there exists a convo-
lution operator involved in the calculation of ~Jp. Because straightforward convolutions

are unsuited for computational methods due to their large memory requirements, ~Jp is
recursively calculated using equation (2.27).
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2.2 GPU Parallelization of FDTD Forward Solver

Jn+1
p (i, j, k) =

βp

∆t
(En+1(i, j, k) − En(i, j, k) + kpJ

n
p (i, j, k) (2.27)

k =
1− ∆t

2τ

1 + ∆t
2τ

(2.28)

βp =
ǫ0∆ǫ∆t

τ

1 + ∆t
2τ

(2.29)

While the previous analysis is sufficient for implementation of a standard FDTD
with near-field excitation, we require the Debye model to be used in conjunction with
the scattered-field formulation. An analysis of dispersive materials for use in conjunction
with the pure scattered-field formulation is given in [43]. Therein, the updating equations
for Lorentz media and Drude media are derived, though the updating equations for Debye
media are omitted. Using similar analysis, we arrived at the explicit updating equation
for Debye dispersive media for the pure scattered-field FDTD formulation shown in
equation (2.30).

En+1
z,scat(i, j, k) =

2ǫ∞ǫ0 − σ∆t+ βp

2ǫ∞ǫ0 + σ∆t+ βp
En

z,scat(i, j, k)

+
2∆t

2ǫ∞ǫ0 + σ∆t+ βp
∇×H

+
−2(ǫ∞ − ǫ0)− σ∆t− βp

2ǫ∞ǫ0 + σ∆t+ βp
En+1

inc,z(i, j, k)

+
2(ǫ∞ − ǫ0)− σ∆t+ βp

2ǫ∞ǫ0 + σ∆t+ βp
En

inc,z(i, j, k) (2.30)

where (2.31)

∇×H =
1

∆y
(H

n+ 1

2

x (i, j, k) −H
n+ 1

2

x (i, j, k − 1))

−
1

∆x
(H

n+ 1

2

y (i, j, k) −H
n+ 1

2

y (i− 1, j, k)) (2.32)

In the explicit updating equation (2.30), βp is calculated as per equation (2.29). ~Jp
is also calculated iteratively during the simulation according to equation (2.27)

2.2 GPU Parallelization of FDTD Forward Solver

As is often the case with numerical simulations of physical phenomena, the FDTD
method suffers from incredibly long run times. A single FDTD simulation with a problem
space of 600 × 600 cells that runs for 1000 time steps requires a minimum of 360 million
floating point operations, in addition to an even greater amount of memory operations
required. Coupled with this, MWT systems that make use of global stochastic optimiza-
tion methods without approximations require upwards of 10,000 candidate solutions to

23



2.2 GPU Parallelization of FDTD Forward Solver

be evaluated by the forward solver [44]. Using only standard computing hardware, such
as one would find on a single high end desktop computer, this exorbitant computational
load alone would render MWT methods such as this infeasible. It is well known that
we cannot expect significant computing power increases from CPUs, even with Moore’s
law. The obvious solution to this is, rather than relying on a single processor, to use
many processors working in parallel. This is known as parallelization.

Graphics processing units, which were originally developed for the fast rendering of
graphics as their name would imply, are built based on the principle of parallel processing.
The reason for this is that graphics rendering techniques are extremely parallelelizable
algorithms. They are parallelizable due to the fact that, although they require a large
amount of computation, many parts of the algorithm can be completed without relying
on results from other steps of the algorithm. Due to this high degree of specialization,
GPUs are suitable only for problems that are very amenable to parallelization. Fortu-
nately, the FDTD method is one such problem. Indeed, the FDTD method has been
described as “embarrassingly parallel” in [19] in that during parallel computation a sin-
gle processor needs only limited information from other processors. This is important,
given the fact that a high number of memory accesses during a parallel process can slow
down the program significantly.

In order to implement the FDTD forward-solver on GPUs, NVidia’s CUDA was used.
CUDA was chosen due to its ease of programming. Before the advent of CUDA and
modern general purpose GPUs, GPU computing was tremendously difficult to imple-
ment, as early GPUs were only capable of specific graphics-based tasks. With CUDA,
high level languages such as C, C++, or Fortran are capable of sending instructions to
GPUs. This is in contrast to using OpenGL, which is specialized for graphics applica-
tions, or assembly languages. Our system in particular uses CUDA in conjunction with
C++.

GPU computation using CUDA uses a GPU computing paradigm wherein a function
launches a kernel on the GPU. The kernel is made up of a grid containing all processes
to be run in parallel embedded in which are multiple blocks. These blocks correspond
to separate streaming multiprocessors, each of which is physically isolated from other
streaming multiprocessors on the GPU card. Each of these blocks can support up to
512 threads. Each thread is a set of instructions to be executed in serial. All threads
within the kernel at large can be considered, from a programming perspective, to run
in parallel although in reality only a select number of threads are run concurrently at
a time. Figure 2.5 shows this arrangement. This computation hierarchy is not merely
an arbitrary grouping, but rather determines what types of memory a process can use.
In CUDA there exist multiple types of memory, namely shared memory, global mem-
ory, texture memory, register memory, and constant memory. Each of these types of
memory are suited for different applications and have unique scopes. Register memory
is the fastest type of memory but has very limited storage and, more importantly, is
only accessible by a single thread. Global memory is accessible by all threads in the
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kernel, even threads in different blocks, but accessing global memory is relatively slow.
Shared memory is much faster than global memory, but is only accessible by threads
within a single block. Texture memory is a type of constant memory that can store vast
arrays of constant float values and is optimized for accesses between nearby threads.
Finally, constant memory stores constant values and is optimized for values that need
to be accessed by a large amount of threads concurrently. Given these considerations it
is important to tailor one’s algorithm to the kernel paradigm in order to fully utilize the
high computational power of GPUs.

Figure 2.5: Visualization of the parallelization paradigm used in CUDA [18].

The FDTD forward solver used in our system is parallelized by assigning every Yee
Cell (shown in Figure 2.1) of the problem space to a single thread on the GPU. Each
of these threads is responsible for updating the electric and magnetic fields at one index
(x, y) when called upon by the forward solver. The updating of the magnetic and electric
fields are separated into two kernels, with one kernel responsible for updating the electric
field and one kernel responsible for the magnetic field. During one time step the electric
field updating kernel is called and then the magnetic field kernel is called. Other functions
are also used that are involved in processing the time domain fields into the RCS data to
be passed back to the inverse solver. The separation of the electric and magnetic fields
into different kernels is used to ensure that the all electric field values are updated before
proceeding to update the magnetic field in order to follow the leapfrogging scheme of
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2.2 GPU Parallelization of FDTD Forward Solver

FDTD. Currently there is no way to synchronize threads across different blocks using
commands within a kernel, but there exists an implicit synchronization between calls
such as copying memory to, or from, the GPU and consecutive kernel calls. Figure 2.6
illustrates the parallelization scheme used in assigning the cells of the problem space to
the GPU. In addition to updating the electric and magnetic field values, GPU kernels
are also used to initialize constant values and perform post processing, specifically the
near to far-field transformation, on the fly, yielding some performance increase.

Figure 2.6: The parallelization scheme used to implement the FDTD program on GPU.

2.2.1 FDTD GPU Acceleration Results

A successful forward solver for the purpose of MWT must be both fast and accurate. It
is important that GPU implementation of the FDTD algorithm does not introduce any
new error when switching from a CPU calculated FDTD to a GPU accelerated FDTD
simulation. To test if any error was introduced by GPU implementation, a CPU based
FDTD program was developed that was mostly identical to the GPU program. A single
point of the problem space was probed at every time step in both simulations and were
compared. It was found that both the CPU and GPU programs produced identical field
values at all time steps during simulation. While this does not necessarily guarantee
that there was no error at any points in the problem space, it does show that there is
no significant error introduced solely by GPU implementation, which could arise from
non-standard methods of handling floating point numbers.

The absolute accuracy of the system was also assessed. The absolute accuracy of the
algorithm is determined by how closely the output data matches what would happen in
physical reality. In order to test this, RCS values generated by our GPU accelerated
FDTD program were compared with RCS patterns generated by the commercial simula-
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2.2 GPU Parallelization of FDTD Forward Solver

tion software FEKOTM[45]. A dielectric cylinder with a relative permittivity of 10 and
a radius of 3.15 cm was used as a test case due to its ease of construction in both FEKO
and the FDTD forward solver. The cylinder was modelled as being infinitely long in
the z direction, to match the fact that our forward solver is a two dimensional FDTD
simulation. A TM plane-wave (with the electric field in the z direction) was modelled as
the excitation with a frequency of 5 GHz. RCS values were recorded on the azimuthal
plane from FEKO and our forward solver and compared by finding the MSE between
the RCS at all observation points. The results of this comparison are shown in Figure
2.7. One can see that there is a minute amount of error between the two methods. This
error may be attributed to numerical error, given that our forward solver uses only single
precision floating point numbers due to the limitations of the GPUs. The least mean
squared error was calculated in a similar manner as equation (2.1), except only summed
over the number of observation points. The MSE between the two methods was found
to be 6.2610 × 10−4. This error would seem acceptable, as any error introduced by our
FDTD forward solver would be vastly overshadowed by experimental error introduced
during the measurement stage of MWT in any real clinical deployment of our system.

The most important criteria for our forward solver, and indeed the onus for the
development thereof, is the speed at which it can take a candidate image and return
its fitness value. A test case of finding the RCS pattern of a dielectric cylinder was
used. The problem space contained 1000 × 1000 cells and marched through 2000 time
steps. A serial CPU-computed FDTD algorithm that was otherwise identical to the
GPU accelerated FDTD simulation was developed in order to compare the run times
of the two programs. The FDTD code was run on an NVidiaTMc1060 Tesla GPU and
compiled with CUDA 3.0, whereas the CPU program was tested on a 64 bit, 4 core
Opteron CPU with 8 cores total equipped with 16 GB of RAM. It was found that the
CPU program finished computation in 400 seconds, whereas the GPU accelerated FDTD
forward solver completed in a mere 4 seconds, yielding a 100 fold speed increase. We
also compared our algorithm to other parallelization attempts, specifically parallelization
using MPI. Guiffaut and Mahdjoubi presented an MPI parallelized FDTD program in
[46]. In this paper, an FDTD simulation that used a volume of 150×150×50 cells with
100 iterations was tested on a computer cluster using 1, 4, 8, and 16 processors. It was
found that using 16 processors decreased the run time of the FDTD simulation from 248
seconds to 23 seconds, which is around a 10:1 speed increase. Although the computer
hardware used in [46] is quite dated by today’s standards, we emphasize the ratios of
run times for the serial versus the parallelized simulations in both the MPI parallelized
FDTD simulation and the GPU accelerated FDTD simulation.
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Figure 2.8: Model used to compare the performance of FEKOTMto our forward solver.
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3

Microwave Tomography Inverse

Solver

The inverse solver of a microwave tomography system extrapolates the arrangement of
scattering sources with the scattered field assumed to be known. This problem is under-
constrained, and ill-posed. A problem is considered to be well-posed if it satisfies the
three following conditions [47]:

1. The Solution Exists: For a given input, a solution exists.

2. The Solution Is Unique: For a given input, there exists a total of one solution.

3. The Problem Is Stable: Small perturbations of the input value create boundedly
small variations in the solution.

With regards to the existence condition, in microwave tomography this would indicate
that for every set of measurement data, there would exist a map of permittivity such that
the MSE as calculated in equation (2.1) between the measured data and the simulated
data would be zero. Of course, we can never expect that the error would actually reach
zero, due to the finite precision used by computers during calculation, and due to the
fact that the forward solver cannot model reality with 100% accuracy. To get around
this we call the problem solved when we find the permittivity map that produces the
minimum amount of error, rather than when we have found the permittivity map that
produces zero error.

In theory Maxwell’s equations always have a unique solution [48]. Usually when dis-
cussing this uniqueness the forward problem is considered, where the fields are calculated
from a set of known boundary conditions and source terms. Based on the uniqueness
theorem the inverse problem, in theory, has a unique solution. The uniqueness of the
forward problem implies a bijection from the set of all boundary conditions and source
terms to the set of all possible field configurations which of course implies a bijection
of the inverse problem. In practice, however, we do not have total knowledge of the
electromagnetic field at all points in space, especially given that there would be no way
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to find the field inside of the imaging target. In reality, we have a finite amount of
observation points corresponding to the amount of antennas located around the imaging
target. Thus, we cannot guarantee that for a given set of measurement data there is a
unique permittivity map. In fact, very different distributions of complex permittivity
can create RCS patterns that are very close. This is illustrated in Figures 3.1 and 3.2. In
those images, areas coloured in red are regions of high permittivity whereas blue regions
are regions of low permittivity.

Figure 3.1: A permittivity map that produces an MSE of less than 0.25 from RCS data

created by the source image shown in Figure 3.2

The MWT inverse problem may also be unstable. For a small change in the permit-
tivity map of the target, there might be an arbitrarily large change in the scattered-field
picked up by the receivers. The stability of the MWT inverse problem using a Newton-
Kantorovitch reconstruction method was examined in [49]. In addition to this, the
presence of modelling noise and experimental noise can cause instability in the inverse
problem. Reconstruction is also highly affected by the arrangement of observation points
around the target, in addition to the frequency band used in measurements.

The majority of inverse solvers use iterative deterministic optimization methods to re-
construct images. Such optimization methods include the Newton method [22], contrast
source inversion and multiplicative regularized contrast source inversion [50], conjugate
gradient method [51], and many more. These optimization methods rely on the gradi-
ent, Jacobian, or other derivative values of the inverse problem. In order to deal with
the ill-posedness and non-linearity of the MWT inverse problem, inverse solver typically
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Figure 3.2: Permittivity map used to create the measurement data in simulation to recon-

struct Figure 3.1

make use of heavy regularization. This regularization causes distortions to the output
image, usually manifesting in smoothing of the permittivity profile. Stochastic optimiza-
tion methods have also been heavily researched for reconstruction, however these often
involve the same regularization assumptions [52]. For the purposes of breast cancer de-
tection, such regularization may hinder the detection of small tumours, as these tumours
would be smoothed out during reconstruction. These regularizations are necessary for
deterministic optimization methods to prevent convergence upon local minima of the
solution space (The solution space being the mapping of the points in Cartesian space
of the inputs to the forward solver to their fitness values). Stochastic, a.k.a global, op-
timization methods do not require such rigorous regularization as they have the ability
to escape local minima through randomization or other non-deterministic processes.

Explored in this thesis are the use of Particle Swarm Optimization (PSO), and Differ-
ential Evolution (DE). These optimization methods are population based evolutionary
algorithms that are designed to operate on non-convex, non-discrete domains. Both DE
and PSO perform very well across a wide variety of benchmarks, usually outperforming
other population based evolutionary algorithms such as GA in convergence time and
convergence to the absolute extrema of a function [53]. PSO has seen much use in the
field of microwave imaging. In [54] PSO that has been modified to include hybrid bound-
ary conditions has been used to reconstruct a dielectric target. PSO has been used in
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[55] to investigate weakly scattering dielectric objects with complex permittivity profiles.
DE has been used in [56] to electromagnetically investigate cylindrical conductive targets.

The populations in both DE and PSO are collections of “individuals” where each indi-
vidual represents a candidate map of permittivity for the imaging target. The individuals
are represented by an array of floating point numbers which dictate the parameters ∆ǫ,
ǫ∞, and σ as described in equation (2.30) of one region of the image. The shape of the
imaging target is assumed to be known, and in simulation is assumed to be circular with
a known radius. This radius is able to be changed to accommodate objects of different
sizes. The target is split into n × n regions of constant permittivity. These regions are
known as optimization patches as the inverse solver alters the material properties of
these patches during optimization. Figure 3.3 shows the layout of these patches with
n = 9 with a radius of 0.0315 m. Because we know the shape of the imaging target a
priori, the patches are truncated on the surface of the imaging target by the forward
solver. An example of the patch numbering is shown in Figure 3.3. In our encoding
scheme there is a total of n× n × 3 parameters to optimize on. Because the number of
optimization parameters increases with the square of the number of patches, convergence
time of the inverse solver is highly dependant on the resolution of the image. Equation
(3.1) shows how each individual candidate solution is encoded.

Individual = {ǫ∞,1,1, ǫ∞,1,2, ...ǫ∞,n,n,∆ǫ1,1...,∆ǫn,n, σ1,1..., σn,n} (3.1)

For any stochastic optimization method, there is a balance between exploration and
exploitation. Exploration is the tendency of an algorithm to more fully explore the op-
timization space which allows the optimization to escape local minima of the solution
space. Exploitation is the ability of the optimization algorithm to converge to a value
quickly. Too much exploration will cause an optimization method to never converge,
whereas too much exploitation will cause the optimizer to converge to local minima
with no chance of escape. Due to the ill-posedness of the unregularized MWT inverse
problem, it is important to carefully choose the appropriate input parameters to the
optimization methods so that they will be able to explore the problem space enough to
not converge to false solutions such as the one shown in Figure 3.1.

3.1 Inverse Solver Implementation

3.1.1 Toolkit for Asynchronous Optimization

Our system uses the Toolkit for Asynchronous Optimization (TAO) as its inverse solver.
TAO is a publicly available open-source project which can be found on the code repos-
itory Github [57]. TAO was developed to be used as a generic optimization package,
suitable for systems that depend on either deterministic optimization methods or global
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Figure 3.3: Image of an individual solution with 9× 9 optimization patches.

optimization algorithms. As opposed to other available global optimization toolkits,
TAO is especially suitable for large scale parallelization, whereas it is interoperable with
both MPI and CUDA. Currently implemented optimization algorithms include GA, DE,
PSO, an asynchronous Newton method, gradient descent, conjugate gradient, and a syn-
chronous Newton method. The DE optimization method can be modified at the user
side, namely the method of parent selection, and recombination selection scheme. TAO
is implemented in C++ in order to improve performance. Scalability assessments have
been performed at the University of North Dakota where it was found that increasing the
amount of worker nodes improved performance nearly ideally. Fitness evaluation time
during a cancer clustering simulation was found to be 99.99 %, indicating infinitesimal
idle times for the worker nodes [58]. Figure 3.4 illustrates the scalability of the TAO
framework. Our system uses the PSO and DE optimization methods.

3.1.2 Computational Hardware

The University of North Dakota is equipped with multiple high performance computing
clusters. Our system runs on the Shale Linux HPC cluster, given that it is equipped
with CUDA compatible GPUs. The Shale cluster includes 4 nodes, each equipped with
two NVidia c1060 Tesla GPU cards. During optimization all eight GPUs were used for
fitness evaluation. Analysis of one optimization session showed that the master process
(the process that affected the optimization algorithm) was idle 99.99% of the time.
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Figure 3.4: A plot of fitness evaluations per second vs. number of computing nodes. The

linear behaviour indicates minimal idle time on the worker nodes and high scalability [58].

Given this, it seems likely that a greater number of computing nodes would increase the
performance of our system greatly.

3.2 Particle Swarm Optimization

PSO is a stochastic optimization method initially introduced by Kennedy and Eberhart
[59]. PSO was originally developed to model the swarming behaviour of animals such
as flocks of birds, insects, or fish. In PSO, individuals are considered to be located at
points in optimization space. In our system, the particle’s would be located within an
n×n× 3 hyperspace. Each particle, in addition to its position vector, has an associated
velocity vector. At every iteration of the optimization method, the particles move along
their velocity vectors and their velocities are updated so that the particle’s move towards
both the point associated with greatest fitness that that particle has found and the point
associated with the greatest fitness that the swarm as a whole has found. The former
is called the “local best” position whereas the latter is called the “global best” point.
Figure 3.5 illustrates the movement of a particle through optimization space during up-
dating. Whereas other population based evolutionary algorithms use relatively complex
algorithms to update the individuals at each iteration, PSO uses only a simple velocity
updating equation (3.2) [60]. Once the velocity is calculated, the position is updated
according to equation (3.3) [60].

vi(n+ 1) = ω × vi(n) + c1 × rand()× (li − xi(t)) + c2 × rand()× (g − xi(n)) (3.2)

xi(n+ 1) = xi(n) + vi(n+ 1) (3.3)
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Figure 3.5: Visualization of the velocity and position updating scheme used in PSO [60].

In equations (3.2) and (3.3), vi(n + 1) is the velocity of the ith particle at iteration
n + 1. c1 and c2 are the local best weights and global best weights, respectively, as
shown in Figure 3.5. rand() is a random number between 0 and 1. li is the point with
greatest fitness that the ith particle has found, and g is the point of greatest fitness that
the whole swarm has found. xi(n) is the current position of particle i. ω is the inertia,
a term which was introduced later by Shi and Eberhart in order to further modulate
the exploratory and exploitive behaviour of PSO [61]. For a given PSO session, the user
must specify the local best weight c1, the global best weight c2, the inertia ω, and the
population size. Increasing the local best weight, increasing the inertia, and increasing
the population size can be thought of as increasing the exploratory behaviour of the
PSO, while increasing the global best weight is associated with increasing the exploita-
tive behaviour of the PSO.

3.2.1 Asynchronous Particle Swarm Optimization

In a parallelized PSO, multiple individuals of a population are evaluated at the same
time by a selection of worker nodes. The master node controls the updating of the pop-
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3.3 Differential Evolution

ulation and implements one’s choice of inverse solver. In the standard PSO, particles
are all updated in discrete iterations. For a parallelized PSO algorithm, this synchro-
nism could be problematic, especially in heterogeneous computing environments (where
some workstations are markedly faster than other worker nodes). During synchronous
updating, all fitness values of the population must be available before the population
can be updated and new work orders sent out. Should some worker nodes finish early,
they would have to wait until slower worker nodes are finished with calculation.

In the asynchronous PSO worker nodes are not assigned to any particular particle,
but rather are given evaluation assignments as they complete calculation. The master
node keeps track of the positions and associated best fitness values of the population
and sends candidate solutions to the worker nodes in a round robin method such that
all particles are eventually updated [60]. In the case that the number of worker nodes
is less than that of the number of individuals in the population, the asynchronous PSO
performs identically to the standard PSO, although it is much faster. When the number
of worker nodes increases beyond the number of individuals of the population, the PSO
takes a more exploratory nature. Rather than only calculating a single future position
for a given particle, the excess processors calculate additional future positions for a single
particle. These positions would not be the same due to the use of randomization in the
velocity updating equation (3.2). Future positions that are found to increase the global
best fitness or the local best fitness are kept.

3.3 Differential Evolution

DE was developed to be used for optimization on continuous domains by Storn and
Price [62]. During a DE optimization, a population is generated randomly throughout
the search space and their fitness values are calculated. Individuals are then combined
with other individuals according to a parent selection scheme and recombined according
to the recombination scheme selected. For a given DE optimization, one can select the
parent selection scheme, recombination scheme, number of pairs, parent scaling factor,
differential scaling factor, crossover rate, and population size. During optimization, in-
dividuals can only increase in fitness. If, during updating, an individuals new position
is found to have a lower fitness than it currently has, that position is discarded.

In DE, a parent is selected from the population. The difference between pairs of
random individuals is calculated and used to update the position of the individual.
The fitness value of this new position is calculated by the forward solver, and if it is
greater than the old position, it is used to update that individual. Parent selection
schemes include best, random, current-to-best, and current-to-random. Recombination
schemes include binomial, exponential, and differential. The number of pairs can be any
integer from 1 to the maximum amount of pairs possible in the population, although is
usually kept close to 1. In the “best” parent selection scheme, the individual with the
best fitness is chosen to be the parent for all other individuals. In the “random” parent
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3.3 Differential Evolution

selection scheme, a random individual is chosen to be the primary parent. Equation (3.4)
shows the updating algorithm for an individual with random or best parent selection
and binomial or exponential recombination selection. Equation (3.5) is the updating
equation for a differential optimization using random parent selection with differential
recombination. In equation (3.4), x(l + 1)j is the position x of the next iteration l + 1
along the jth optimization parameter. y is the chosen parent individual which could be
either the best individual of the whole population, or a randomly chosen individual. φ is
the parent scaling factor, which is specified at the start of the simulation. p is the number
of pairs which is specified by the user. The r(l) terms represent two randomly chosen
individuals of the population which are distinct from each other. r(0, 1) is a random
number between 0 and 1 and δ is the crossover rate, which is the probability that a
given parameter will be updated and is set at the beginning of the optimization. In
binomial recombination one or more optimization parameters (in our case an example
of this would be the conductivity of one patch) and updates them. In exponential
recombination, one parameters is selected at random, and all parameters following that
one are updated. There is also a differential recombination scheme wherein two random
individuals are chosen and the position of the worse individual is subtracted from the
position of the better individual of the pair. Figure 3.6 shows how individuals move
through space according to the placement of other individuals of the population.

Figure 3.6: Visualization of the position updating scheme used in DE [60].

x(1 + l)j =

{

y(l)j + φΣp
k=1[r(l)

1k
j − r(l)2kj ] if r(0,1)< δ

x(l) otherwise
(3.4)

x(l + 1)j = r(l)1j + φΣp
k=1[r(l)

1k
j − r(l)2kj ]wheref(r(l)1k) < f(r(l)2k) (3.5)
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3.3 Differential Evolution

Using “best” parent selection makes the optimization more exploitative, whereas
using random parent selection makes the algorithm more exploratory. Increasing the
number of pairs increases the exploratory behaviour of the optimization. It was found
that using random parent selection with two pairs and differential recombination per-
formed best across the average of difficult problems which were multi-modal and non
separable [60].

For the remainder of this thesis we will use the notation
DE/parent selection/number of pairs/recombination selection.
Thus, a DE optimization that uses best parent selection, two pairs, with exponential
recombination would be named DE/best/2/exp.

3.3.1 Asynchronous Differential Evolution

In standard DE implementations, individuals are updated in an iterative fashion, where
the algorithm waits for all individuals to be updated before proceeding to update other
individuals. During asynchronous optimization, evaluations of individuals may come
back at different times depending on the heterogeneity of the computing environment.
The asynchronous DE eschews strict iterative updating in order to fully utilize faster
workstations. As soon as an individual is evaluated by a worker node, the master
process applies the position updating algorithm and sends out a new work order for
that workstation. Due to this, during optimization some individuals would have been
updated more times than other individuals, breaking down the discrete iterations. The
introduction of this asynchronism introduces additional randomness into the process,
given that slower workstations invariably change how the individuals are updated. An
analysis of the effect of heterogeneous computing environments on global optimization
methods was performed in [63]. It was found that even much slower workstations have
positive contributions to the optimization.
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4

Microwave Tomography Image

Reconstruction Results

Our MWT system was tested entirely in simulation. Instead of a measurement stage
involving a physical phantom, a numerical phantom was developed and the measurement
data was acquired using an FDTD simulation. The numerical phantoms were assumed to
be cylindrical targets with infinite length in the z direction in order to match the two di-
mensional FDTD used as the forward solver. Multiple numerical phantoms were tested
with different resolutions and topologies. The numerical phantoms were constructed
similar to those found in Figures 3.1 and 3.2 where homogeneous square patches were
assumed truncated at the known radius of the imaging target. Resolution of the phan-
tom can be altered by varying the number of optimization patches located within the
target. Figure 4.1 shows a reconstruction target with a total of 9 optimization patches
used in the following reconstructions. Each optimization patch has an associated ǫ∞,
∆ǫ, and σ as described in Chapter 2.

For initial testing and calibration of the system, measurement data from a totally
homogeneous dielectric cylinder was obtained. The numerical phantom had the follow-
ing Debye parameters: ǫ∞ = 10, ∆ǫ = 10 σ = 0. The target was then reconstructed
using a resolution of 21 cm. This resolution corresponds to 3× 3 patches, yielding a
total of 27 optimization parameters. ǫ∞ was assumed to be between 1 and 20, ∆ǫ was
assumed to be between 0 and 20, and σ was assumed to be between 0 and 1.1 during
optimization. Setting correct maximum and minimum bounds cuts down the size of the
search space, and thus aids convergence. Figure 4.2a shows the map of both ∆ǫ and ǫ∞
used to create the measurement data. As it turns out, the optimizer had a tendency to
underestimate ǫ∞ values and overestimate values of ∆ǫ.

For this calibration case, both PSO and DE were tested. The PSO had inertia of
0.8, global best weight of 1.1, and local best weight of 1.8. It was found that inertia
values much higher than 0.8 precluded the PSO from converging. The variants of DE
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Figure 4.1: Diagram of the reconstruction scheme used.

used during this reconstructed included having “best” parent selection with one pair
with binary recombination, random parent selection with one pair with binary combi-
nation, random parent selection with two pairs with binary recombination, and random
parent selection with three pairs and binary recombination. Differential evolution using
random parent selection with three pairs and binary recombination had the best results.
Figure 4.2c shows a map of the reconstructed map of ǫ∞ and Figure 4.2d shows a map
of the reconstructed values of ∆ǫ. σ was also reconstructed correctly. The maximum
conductivity reconstructed was 4.195 × 10−11 where the measurement data was formed
with a target with zero conductivity everywhere. The MSE (equation (2.1)) in the scat-
tered field produced by most fit individual was found to be 1.4 × 10−4. This global
best individual was the 69,049th evaluation. The optimization took 201,050 seconds, or
approximately 56 hours, to reach this fitness value. It was found that a single fitness
evaluation for one worker node took an average of 24 seconds. This evaluation time
was more or less the same across all work stations. Furthermore, there was very little
time that the worker nodes were idle. During this optimization, the maximum amount
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of idle time for one of the workers was 0.758 seconds. The time that that worker node
spent probing was 20418 seconds, yielding more than 99.99% up time. Table 4.2 shows a
comparison between the two optimization methods used for this reconstruction. Figures
4.3 and 4.4 show the best fitness values achieved by the optimizations as a function of
fitness evaluations. Table 4.1 shows a quantitative comparison between the true image
and the reconstructed images for both PSO and DE. The image accuracy is quantified
using a value called the Peak Signal-to-Noise Ratio (PSNR). It is defined in equation
(4.1) where MAX is the maximum value that a pixel can take. In most image applica-
tions, MAX is defined based on how the pixels are stored, be they stored in an 8-bit
byte or double precision float. For the purpose of our calculations MAX is defined
based upon which material parameter is being imaged. For ∆ǫ, MAX is defined to
be 40, given that it is the maximum value of ∆ǫ one can expect to be found in breast
tissue. For ǫ∞ MAX is defined to be 7 and for σ reconstructions MAX is defined as
0.79. These values are taken from the measurements done by Lazebnik and all in [41].
These values can be seen in Table 4.7. m and n are pixel indices of the two images being
compared whereas M and N are the width and length in pixels. Generally PSNR values
of 30 or more are considered good, and the higher the PSNR value the better the image is.

PSNR = 10log10(
MAX2

MSE
) (4.1)

where

MSE =

M
∑

m=1

N
∑

n=1
(Pixeltrue(m,n)− Pixelreconstructed(m,n)2

M ×N
(4.2)
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(a) Actual image of ǫ∞ used in reconstruc-

tion of homogeneous imaging target.

(b) Actual image of ∆ǫ used in reconstruc-

tion of homogeneous imaging target.

(c) Map of ǫ∞ for the image reconstructed

using DE/rand/3/exp.

(d) Map of ∆ǫ for the image reconstructed

using DE/rand/3/exp.

(e) Map of ǫ∞ for image reconstructed us-

ing PSO.

(f) Map of ∆ǫ for image reconstructed us-

ing PSO.

Figure 4.2: Reconstruction of homogeneous target using DE/rand/3/exp and PSO
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Table 4.1: Peak Signal-to-Noise Ratio of Reconstructed Images from Figure 4.2

Optimization PSNR in ∆ǫ PSNR in ǫ∞

DE/rand/3/exp 40.750 dB 23.420 dB

PSO 35.327 dB 20.207 dB
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Figure 4.3: Fitness plot of the DE/rand/3/exp optimization used to reconstruct Figure

4.2d.

44

C:/Users/Michael/Dropbox/PhDtemplateLATEX/PhDtemplateLATEX/7/figures/FitnessplotDErand1expzoom.eps


4.1 Complex Target Reconstruction
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Figure 4.4: Fitness plot of the PSO used to reconstruct Figure 4.2f.

Table 4.2: Comparison of Optimization Methods Used to Reconstruct Figure 4.2d

Optimization Convergence Time Final Fitness Value

DE/rand/3/exp 1,657,176 seconds -0.00014

PSO 4,031,040 seconds -1.23e-5

4.1 Complex Target Reconstruction

The reconstruction of a homogeneous target presented above is a relatively easy inverse
problem to solve. Increasing the complexity of the target makes the reconstruction
thereof more difficult, impeding both the accuracy of the image and the run time of the
reconstruction. To test the capability of our system to resolve heterogeneous targets, a
numerical phantom was created to emulate a breast containing only fatty tissue and one
(unrealistically large) tumour. The regions of the target corresponding to fatty tissue
had ǫ∞ set to 3.14 and ∆ǫ set to 1.61, whereas, the tumour had ǫ∞ set to 6.75 with
∆ǫ set to 40. The relaxation time τ was assumed to be 13 ps for all types of tissues. σ
was assumed to be 0 for this reconstruction. These material parameters were chosen to
model breast tissue (albeit with zero conductivity) that was measured in [41].
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4.1 Complex Target Reconstruction

The inverse solver used for reconstruction was chosen as DE with one pair and an
exponential recombination given its performance in reconstructing Figure 4.2c and Fig-
ure 4.2d. At convergence, the forward solver converged to an image with an MSE in
the scattered field of -0.49. This took a total of 59,166 fitness evaluations, which corre-
sponds to a runtime of around 50 hours. The reconstructed images are shown in Figures
4.5c and 4.5d. Figures 4.6 and 4.7 show the best fitness values achieved by each of
these optimization methods during reconstruction as a function of the number of fitness
evaluations. Table 4.3 shows the PSNR comparison between the true images and the
reconstructed images.
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4.1 Complex Target Reconstruction

(a) Actual image of ǫ∞ used to generate

measurement data for reconstruction.

(b) Actual image of ∆ǫ used to generate

measurement data for reconstruction.

(c) Map of ǫ∞ Reconstructed Using

DE/rand/1/exp.

(d) Map of ∆ǫ Reconstructed Using

DE/rand/1/exp.

(e) Map of ǫ∞ Reconstructed Using

DE/rand/2/dir.

(f) Map of ∆ǫ Reconstructed Using

DE/rand/2/dir.

Figure 4.5: Reconstruction of inhomogeneous target using DE/rand/1/exp and

DE/rand/2/dir
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4.1 Complex Target Reconstruction

Table 4.3: Peak Signal-to-Noise Ratio of Reconstructed Images from Figure 4.5

Optimization PSNR in ∆ǫ PSNR in ǫ∞

DE/rand/1/exp 6.612 dB 9.438 dB

DE/rand/2/dir 6.612 dB 9.438 dB
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Figure 4.6: Fitness plot of the DE/rand/1/exp optimization used to reconstruct Figure

4.5d and Figure 4.5c.

As can be seen visually, the inverse solver did not converge to the correct image. An
optimization plot that shows the level of fitness achieved by the inverse solver as the
optimization ran is shown in Figure 4.6. From the plot, it is shown that the inverse
solver is able to rapidly increase the fitness during early stages of optimization. After
14,000 fitness evaluations, however, the fitness values stay around the same value. From
this it seems likely that the inverse solver has converged upon a local minima of the
MWT inverse problem space. Although the simulation was only run for 50 hours, it
seemed unlikely that it would escape this local minimum given that the fitness evalua-
tions stayed the same level for so many candidates.

It was reported in [60] that the DE parameters that provided the best performance,
generally, for hard optimization problems was a DE optimization with random parent
selection, two pairs, and directional recombination. Such an optimization was run using
our forward solver. An image was reconstructed with 3 × 3 × 3 optimization patches
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4.1 Complex Target Reconstruction
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Figure 4.7: Fitness plot of the DE/rand/2/dir optimization used to reconstruct Figures

4.5e and 4.5f.

for 217,729 fitness evaluations. The reconstructed image is shown in Figures 4.5e and
4.5f. Much like the DE/rand/1/exp (where this notation is described in section 3.3)
optimization, this reconstruction seemingly became stuck in a local minima of the MWT
inverse problem space. After 217,447 evaluations, a fitness of -0.4866 was achieved
which is very similar to that found by the DE/rand/1/exp simulation (Figure 4.5d).
Interestingly, a qualitative inspection of Figures 4.5f and shows that the two different
optimization methods converged to extremely similar images. The forward solver was
checked by inputting the correct image which was known beforehand to see if it gives
an error less than the error found with the reconstructed image. The error in scattered
field of the true image as evaluated by our forward solver was found to be 1.21× 10−21,
which indicates that the true image is, in all likelihood, the global minimum of the MWT
inverse problem. Table 4.4 shows a comparison between the two DE optimizations used
for this reconstruction.

Table 4.4: Comparison of Optimization Methods Used to Reconstruct Figure 4.5b

Optimization Convergence Time Final Fitness

DE/rand/1/exp 7397632 seconds -0.491485

DE/rand/2/dir 5218728 seconds -4.866

For analysis of the relationship between the PSNR and the fitness value of images, we
present some of the candidate images that were found created during the DE/rand/1/exp
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4.1 Complex Target Reconstruction

optimization used to reconstruct Figures 4.5c and 4.5d. These candidate images were
the global best images at some point during the optimization. This analysis also demon-
strates the ill-posedness of the MWT inverse problem in that to very different images
can have similar fitness values. Figure 4.8 and Table 4.5 show this data. From the data
we can conclude that for candidate images with relatively small (where more negative
numbers are defined to be smaller than less negative numbers) fitness values, fitness is
not strongly correlated with the PSNR of the associated image. An analysis of candidate
images with relatively large fitness values is done in Section 4.3.
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4.1 Complex Target Reconstruction

(a) Image of ǫ∞ with fitness of -0.49171. (b) Image of ∆ǫ with fitness of -0.49171.

(c) Image of ǫ∞ with fitness of -0.4925. (d) Image of ∆ǫ with fitness of -0.4925.

(e) Image of ǫ∞ with fitness of -0.4926. (f) Image of ∆ǫ with fitness of -0.4926.

Figure 4.8: Global Best Images Found During Optimization of Figure 4.5.

Because of randomization inherent in optimization techniques, different optimiza-
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4.2 Conductivity Imaging

Table 4.5: Peak Signal-to-Noise Ratio of Reconstructed Images from Figure 4.8

Associated Fitness PSNR in ∆ǫ PSNR in ǫ∞

-0.49171 6.471 dB 7.962 dB

-0.49251 6.314 dB 9.678 dB

-0.49262 6.112 dB 9.019 dB

tions with the same input parameters may converge on different images. A second
DE/rand/1/exp optimization with measurement data from the image shown in Figure
4.5b and Figure 4.5a was run to investigate this. The results of this reconstruction are
shown in Figure 4.9. The PSNR values of these images are given in Table 4.6.

(a) Image of ǫ∞ from second

DE/rand/1/exp reconstruction.

(b) Image of ∆ǫ from second

DE/rand/1/exp reconstruction.

Figure 4.9: Results of second DE/rand/1/exp Reconstruction of Figure 4.5b

Table 4.6: Peak Signal-to-Noise Ratio of Reconstructed Images from Figure 4.8

Associated Fitness PSNR in ∆ǫ PSNR in ǫ∞

-0.04650775 38.573 dB 19.826 dB

4.2 Conductivity Imaging

The reconstruction static conductivity remains a difficult problem for current determin-
istic optimization based MWT systems [29]. In order to test the proposed system’s
capability to correctly image the static conductivity of a target, a numerical phantom
was created with non-zero conductivity with Debye dispersion. Although the Debye
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4.2 Conductivity Imaging

model does account for some part of the imaginary component of complex permittivity
(and thus to lossiness of the material), real materials can also have non-zero values of σ.
With non-zero values of σ, ∆ǫ, and ǫ∞ the expression for the total complex permittivity
takes the form of equation (4.3).

ǫ = ǫ0{ǫ∞ +
∆ǫ

1 + jωτ
}+ j

σ

ω
(4.3)

A numerical phantom was created to match the material properties measured in
breast tissue by Lazebnik et al. [41]. Two types of materials were modelled, fatty tissue
and malignant tissue. The material parameters of these tissues are given in table 4.7.
For our reconstruction, the phantom was composed mostly of fatty tissue with one op-
timization patch being composed of malignant tissue. The results of this reconstruction
are shown in Figures 4.10a through 4.10f. The optimization plot of the reconstruction
is shown in Figure 4.11. The final fitness reached by this reconstruction attempt was
-0.316968. The optimization took a total of 4,914,768 to reach this fitness. Table 4.8
shows the PSNR comparison between the true imaging target and the reconstructed
image.

Table 4.7: Material Parameters of Tissue Used for Reconstruction of Target with Non-Zero

Conductivity

ǫ∞ ∆ǫ σ (S/m)

Fatty Tissue 3.14 1.60 0.036

Malignant Tissue 6.75 40.0 0.790
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4.2 Conductivity Imaging

(a) Actual image of ∆ǫ (b) ∆ǫ Reconstructed using

DE/rand/2/dir.

(c) Actual image of ǫ∞ (d) Map of ǫ∞ Reconstructed Using

DE/rand/2/dir.

(e) Actual image of σ (f) Map of σ Reconstructed Using

DE/rand/2/dir.

Figure 4.10: Reconstruction Inhomogeneous Target With Non-Zero Conductivity
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4.3 Non-Biological Imaging

Table 4.8: Peak Signal-to-Noise Ratio of Reconstructed Images from Figure 4.10

PSNR in ∆ǫ PSNR in ǫ∞ PSNR in σ

6.245 dB 10.559 dB 8.378
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Figure 4.11: Fitness plot of the optimization used to reconstruct Figure 4.10.

4.3 Non-Biological Imaging

While the numerical phantoms presented previously in this chapter have been modelled
to emulate malignant tumours embedded within normal breast tissue, MWT has many
more applications than medical imaging. One proposed use of MWT is in the field of
non-destructive testing for engineering materials such as high voltage insulators [64]. In
such applications one attempts to detect voids in otherwise strongly scattering media.
This is in contrast to the previous examples wherein we attempted to detect strongly
scattering tumours embedded within weakly scattering fatty tissue.

For testing of such a scenario, a numerical phantom was made with background
medium of ǫ∞ of 6.75 and ∆ǫ of 40. The target had a single discontinuity with ǫ∞ of
3.14 and ∆ǫ of 1.61. Figure 4.12 shows the numerical phantom and reconstructed image.
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4.3 Non-Biological Imaging

(a) Actual image of ǫ∞ used to generate

measurement data for reconstruction.

(b) Actual image of ∆ǫ used to generate

measurement data for reconstruction.

(c) Map of ǫ∞ Reconstructed Using

DE/rand/1/exp.

(d) Map of ∆ǫ Reconstructed Using

DE/rand/1/exp.

Figure 4.12: Reconstruction of inhomogeneous target using DE/rand/2/dir of non-

biological numerical phantom

As can be seen in Figure 4.12, ∆ǫ was reconstructed nearly exactly while ǫ∞ was
constructed with minimal error. The void was located successfully at the bottom center
of the image. The reconstruction process took a total of 69818 fitness evaluations to find
this image, which corresponds to 51 hours of computation. An optimization plot of the
reconstruction is shown in Figure 4.13. The PSNR comparison between the true and
reconstructed image is shown in Table 4.9.

Table 4.9: Peak Signal-to-Noise Ratio of Reconstructed Images from Figure 4.12

PSNR in ∆ǫ PSNR in ǫ∞

57.676 dB 42.553 dB

56

C:/Users/Michael/Dropbox/PhDtemplateLATEX/PhDtemplateLATEX/7/figures/GoodImagetrueepsinfty.eps
C:/Users/Michael/Dropbox/PhDtemplateLATEX/PhDtemplateLATEX/7/figures/GoodImagetruedeleps.eps
C:/Users/Michael/Dropbox/PhDtemplateLATEX/PhDtemplateLATEX/7/figures/GoodImageDErand2direpsinfty.eps
C:/Users/Michael/Dropbox/PhDtemplateLATEX/PhDtemplateLATEX/7/figures/GoodImageDErand2dirdeleps.eps


4.3 Non-Biological Imaging

0 1 2 3 4 5 6 7 8 9 10

x 10
4

−0.35

−0.3

−0.25

−0.2

−0.15

−0.1

−0.05

0

Fitness Evaluation Number

B
e

s
t 

F
it
n

e
s
s
 F

o
u

n
d

Optimization Plot of DE/rand/2/dir Reconstruction of Non−Biological Target

Figure 4.13: Fitness plot of the optimization used to reconstruct Figure 4.12.

To analyse the relationship between the PSNR of candidate images and their fitness
values when the optimization has found candidate images with high fitness (with MSE
near zero), we present candidate images that were found during the optimization that
yielded Figure 4.12. Their PSNR values and associated fitness values are given in Table
4.10 and the candidate images themselves are presented in Figure 4.14. It seems that
for candidate images with high fitness values, the fitness is strongly correlated with the
accuracy of the images measured by their PSNR values.
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4.3 Non-Biological Imaging

(a) Image of ǫ∞ with fitness of -5.279e-9. (b) Image of ∆ǫ with fitness of -5.279e-9.

(c) Image of ǫ∞ with fitness of -6.7178e-9. (d) Image of ∆ǫ with fitness of -6.7178e-9.

(e) Image of ǫ∞ with fitness of -7.083e-8. (f) Image of ∆ǫ with fitness of -7.083e-8.

Figure 4.14: Global Best Images Found During Optimization of Figure 4.12.
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4.3 Non-Biological Imaging

Table 4.10: Peak Signal-to-Noise Ratio of Reconstructed Images from Figure 4.12

Associated Fitness PSNR in ∆ǫ PSNR in ǫ∞

-5.279e-9 62.524 dB 48.607 dB

-6.7178e-9 56.795 dB 41.497 dB

-7.083e-9 55.259 dB 38.919 dB
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5

Conclusion and Future Work

In this thesis we have presented an MWT system which does not rely on either regu-
larization nor linearization assumptions to solve the inverse problem. Stochastic opti-
mization methods are used as the inverse solver for their ability to avoid convergence to
local minima of the MWT problem space through randomization. The proposed system
takes measurements of the scattered field of an unknown target as input and returns the
distribution of permittivity inside a cross section of the target. The system presented
herein is capable of modelling dispersive media (specifically dispersive media that can
be accurately described with the Debye model), such as biological tissue. The system
was tested with a resolution of 2.1 cm. In order to ameliorate long run-times necessary
for our method, a heavy parallelization is used in both the inverse and forward solvers.

In order to resolve images, the proposed system uses an (FD)2TD forward solver
to find the scattered field created by a proposed image and a stochastic optimization
method based inverse solver to search for the optimal image. The inverse solver begins
by generating a population of random images and sending them to the forward solver for
evaluation. The forward solver generates the scattered field that would be formed from
each of these random images and checks how closely they match the scattered field that
was measured from the true image. As fitness evaluations are returned to the inverse
solver, the inverse solver proposes new images according to its updating scheme. This
continues until the inverse solver has converged upon an image.

The (FD)2TD forward solver is implemented using CUDA such that the most compu-
tationally intensive process of the (FD)2TD, the time-stepping, is performed in parallel
on a GPU. The forward solver operates in two dimensions in the TM case (where the
electric field is oriented perpendicular to the plane that the simulation is in). The GPU
implementation of the forward solver cuts the computation time required for a fitness
evaluation approximately one hundred fold, and thus, cuts the time required for image
resolution heavily.

The inverse solver used in the proposed system is parallelized in the sense that it
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can farm out candidate image to multiple workstations to be evaluated in parallel. The
stochastic inverse solver operates asynchronously, wherein candidate images are gener-
ated and farmed out as soon as a workstation is free. This aids in keeping the idle time
of the work stations as low as possible, as well as increasing the robustness of the system
to worker unreliability and improving the scalability of the system. During the experi-
ments presented in Chapter 4, our system used a total of eight GPUs. These GPUs were
distributed across four worker nodes, each having two Tesla c1060 GPUs. Our system
can be easily scaled to use more GPUs, which would further decrease the time required
for image resolution. Stochastic optimization methods considered in our system include
PSO and DE. Similar systems have made use of the genetic algorithm [29]. We chose to
use PSO and DE because they have been observed to outperform the standard genetic
algorithm across a wide variety of problems [60].

Our system has shown to be capable of correctly reconstructing a simple homo-
geneous dispersive imaging target. The introduction of heterogeneity in the imaging
target drastically hampers reconstruction of the correct image, where the inverse solver
would be trapped inside of a local minimum of the MWT problem space correspond-
ing to an incorrect image. In order to image more heterogeneous targets, the inverse
solver ought to be altered to include more exploratory behaviour to escape local minima.

The author’s main contributions to this project were as follows:

• Development of GPU accelerated FDTD forward solver.

• Implementation of two dimensional parallelization within GPU accelerated FDTD
forward solver.

• Derivation and implementation of scattered-field Debye model dispersion (FD)2TD
using polarization current model.

• Integration of (FD)2TD forward solver with TAO library to create a full MWT
inverse solver.

From the simulations presented herein, we have found that for the limited cases we
have explored DE seems to offer superior accuracy and is more resistant to convergence
on local minima of the MWT inverse problem space than PSO. For a full analysis
of PSO vs. DE for the purpose of non-linearized MWT inverse solver, multiple PSO
reconstructions ought to be executed with different parameters of local best weight,
global best weight, and inertia. We found that DE optimizations with random parent
selection and exponential or exponential and directional, recombination with 400 or more
individuals were able to correctly reconstruct some images. Scalability analysis shows
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5.1 Future Work

that all eight GPU worker nodes were evaluating fitness values for 99.9%, meaning that
they spent very little time idle.

5.1 Future Work

While the proposed system shows promise as an imaging modality for dielectric and
conductive objects, significant improvements are necessary to image objects with good
reliability, accuracy and acceptable run-time. Further research is necessary in order to
create an economical and effective MWT system.

• Run-time can be decreased with the use of advanced computer hardware. Given
the large amount of memory transferred between the CPU and GPU in our algo-
rithm, implementation of the forward solver on AMD APU architecture may offer
significant speed increases.

• The stochastic optimization methods investigated herein would often converge on
local minima for some problems. Investigation into other optimization methods
such as hybrid stochastic/deterministic optimization methods may improve conver-
gence time and reliability. Optimizations we used may also be altered to increase
exploratory behaviour to avoid convergence to local minima.

• The FD2TD forward solver can be easily altered to use Lorentz or Drude disper-
sion models for materials that can be more accurately described by these models.

• Develop and implement proper stopping criterion for the stochastic optimization
methods.

• Given the scalability of our system, increasing the amount of GPUs available for
computation should drastically decrease the run-time required per image. Integra-
tion of our system with grid computing [60] may make MWT systems based on
non-linearized and non-regularized stochastic inverse solvers attractive despite the
high amount of computational power necessary for such systems.

• The optimization scheme used in the image reconstructions herein suffers severely
from curse of dimensionality, although it has the ability to theoretically reconstruct
an object with an arbitrary permittivity profile. As the resolution of our system
increases, the number of variables to optimize on increases by the square of the
reciprocal of the resolution. A priori information may be used to decrease the
search space drastically. In the context of MWT as an imaging modality for breast
cancer detection, the number of suspect objects contained within the breast would
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5.1 Future Work

be known from a mammography scan. This information can be used for imaging
resolution in order to drastically reduce the amount of acceptable candidate images.

• All results presented in this thesis were created purely in simulation. Future re-
search should integrate our system into a hardware apparatus. Measurement values
would then be received from real-world data, rather than those generated in sim-
ulation.

• The transition from two-dimensional imaging to three-dimensional imaging would
be fairly straightforward to implement, however it would present a drastic increase
in run-time and may hamper convergence to the correct image. For transition to
three-dimensional imaging, the robustness of the inverse solver as well as its speed
must be increased .

• The efficacy of MWT as an imaging modality for breast cancer detection (or other
usage) ought to be assessed upon development of a reliable, practical, and robust
MWT system. In the realm of breast cancer detection, MWT is attractive in
its potential to differentiate malignant structures from healthy tissue based on
electrical material parameters, rather than the shape of the structure as is detected
by mammography. This modality of differentiation may increase the specificity of
breast cancer screening. Research thereof needs to involve human trials.
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6

Appendix: Source Code For

FDTD Forward Solver

This source code can also be found on the code repository Github at

https://github.com/travisdesell/tomography.

6.1 FDTD GPU.cu

//#define GLEW_STATIC

//#pragma comment(lib,"glew32.lib")

//#include <windows.h>

//#include <gl/glew.h>

//#include <glut.h>

#include <complex>

#include <stdio.h>

#include <iostream>

#include <cmath>

#include <stdlib.h>

#include <fstream>

#include <cstdlib>

#include <fstream>

#include <cuda.h>

//#include "stdafx.h"

#include <iomanip>

#include <time.h>

//#include <cuda_gl_interop.h>

#include <cuda_runtime.h>

//#include <cuComplex.h>

#include <vector>

#include <math_functions.h>

//#include "EasyBMP.h"

//#include "EasyBMP_DataStructures.h"

//#include "EasyBMP_VariousBMPutilities.h"

#include "FDTD_common.hxx"

void __cudaCheck(cudaError err, const char* file, const int line);

#define cudaCheck(err) __cudaCheck (err, __FILE__, __LINE__)

void __cudaCheckLastError(const char* errorMessage, const char* file, const int line);
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#define cudaCheckLastError(msg) __cudaCheckLastError (msg, __FILE__, __LINE__)

void __cudaCheck(cudaError err, const char *file, const int line) {

if (cudaSuccess != err) {

fprintf(stderr, "%s(%i) : CUDA Runtime API error %d: %s.\n", file, line, (int)err, cudaGetErrorString( err ) );

exit(-1);

}

}

void __cudaCheckLastError(const char *errorMessage, const char *file, const int line) {

cudaError_t err = cudaGetLastError();

if (cudaSuccess != err) {

fprintf(stderr, "%s(%i) : getLastCudaError() CUDA error : %s : (%d) %s.\n", file,

line, errorMessage, (int)err, cudaGetErrorString( err ) );

exit(-1);

}

}

//#include <unistd.h>

//const cuComplex jcmpx (0.0, 1.0);

/*static void HandleError( cudaError_t err, const char *file, int line ) {

if (err != cudaSuccess) {

printf( "%s in %s at line %d\n", cudaGetErrorString( err ), file, line );

exit( EXIT_FAILURE );

}

}*/

/*

__device__ int dgetCell(int x, int y, int size) {

return x +y*size;

}

int getCell(int x, int y, int size) {

return x +y*size;

}

*/

struct cuComplex {

float r;

float i;

__host__ __device__ cuComplex( float a, float b ) : r(a), i(b) {}

__host__ __device__ cuComplex(float a): r(a), i(0) {}

float magnitude2( void ) { return r * r + i * i; }

__host__ __device__ cuComplex operator*(const cuComplex& a) {

return cuComplex(r*a.r - i*a.i, i*a.r + r*a.i);

}

__host__ __device__ cuComplex operator*(const float& a){

return cuComplex(r*a,i*a);

}

__host__ __device__ cuComplex operator+(const cuComplex& a) {

return cuComplex(r+a.r, i+a.i);

}

__host__ __device__ cuComplex operator+(const float& a){

return cuComplex(r+a,i);

}

__host__ __device__ void operator+=(const float& f){

r += f;

}

__host__ __device__ void operator+=(const cuComplex& C);

cuComplex();

};

__host__ __device__ cuComplex operator*(const float &f, const cuComplex &C)

{

return cuComplex(C.r*f,C.i*f);

}

__host__ __device__ void cuComplex::operator+=(const cuComplex& C)
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{

r +=C.r;

i += C.i;

}

__host__ __device__ float cuabs(cuComplex x)

{

return sqrt(x.i*x.i + x.r*x.r);

}

__host__ __device__ cuComplex cuexp(cuComplex arg)

{

cuComplex res(0,0);

float s, c;

float e = expf(arg.r);

sincosf(arg.i,&s,&c);

res.r = c * e;

res.i = s * e;

return res;

}

__device__ int isOnNF2FFBound(int x, int y)

{

if(x==NF2FFdistfromboundary||x==nx-NF2FFdistfromboundary||y==NF2FFdistfromboundary||

y==ny-NF2FFdistfromboundary)

{

return 1;

}

else

{

return 0;

}

}

__device__ int getxfromthreadIdNF2FF(int index)

{

int x=0;

if(index<(nx-2*NF2FFdistfromboundary-2))//yn

{

x = index+NF2FFdistfromboundary+1;

}

else if(index<(nx-4*NF2FFdistfromboundary+ny-2))//xp

{

x = nx-NF2FFdistfromboundary-1;

}

else if(index<(2*nx-6*NF2FFdistfromboundary+ny-4))//yp

{

x = nx-NF2FFdistfromboundary - (index-(nx-4*NF2FFdistfromboundary+ny-2))-2;

}

else if(index<(2*nx-8*NF2FFdistfromboundary+2*ny-4))

//xn notice 2*nx-8*NF2FFdistfromboundary+2*ny-4 is the max index term.

{

x = NF2FFdistfromboundary;

}

return x;

}

__device__ int getyfromthreadIdNF2FF(int index)

{

int y=0;

if(index<(nx-2*NF2FFdistfromboundary-2))

{

y = NF2FFdistfromboundary;

}

else if(index<(nx-4*NF2FFdistfromboundary+ny-2))

{

y = (index-(nx-2*NF2FFdistfromboundary-2))+NF2FFdistfromboundary;

}

else if(index<(2*nx-6*NF2FFdistfromboundary+ny-4))

{
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y = ny-NF2FFdistfromboundary-1;

}

else if(index<(2*nx-8*NF2FFdistfromboundary+2*ny-4))

{

y = ny-NF2FFdistfromboundary-(index-(2*nx-6*NF2FFdistfromboundary+ny-4))-1;

}

return y;

}

__device__ __host__ int isOnxn(int x)

{

if(x==(NF2FFdistfromboundary))

{

return 1;

}

else

{

return 0;

}

}

__device__ __host__ int isOnxp(int x)

{

if(x==(nx-NF2FFdistfromboundary-1))

{

return 1;

}

else

{

return 0;

}

}

__device__ __host__ int isOnyp(int x,int y)

{

if(y==(ny-NF2FFdistfromboundary-1)&&!isOnxn(x)&&!isOnxp(x))

{

return 1;

}

else

{

return 0;

}

}

__device__ __host__ int isOnyn(int x, int y)

{

if((y==(NF2FFdistfromboundary))&&!isOnxn(x)&&!(isOnxp(x)))

{

return 1;

}

else

{

return 0;

}

}

__global__ void calculate_JandM(float* f,int* timestep,float*dev_Ez,float*dev_Hy,float*dev_Hx,

cuComplex *cjzxp,cuComplex *cjzyp,cuComplex*cjzxn,cuComplex*cjzyn,cuComplex*cmxyp,cuComplex*cmyxp,

cuComplex*cmxyn,cuComplex*cmyxn)

{

float freq = *f;

int index = threadIdx.x+blockIdx.x*blockDim.x;

// should launch 2*nx-8*NF2FFdistfromboundary+2*ny-4 threads.

if(index<=size_NF2FF_total)

{

const cuComplex j(0.0,1.0);

int x = getxfromthreadIdNF2FF(index);

int y = getyfromthreadIdNF2FF(index);

float Ez;
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cuComplex pi(PI , 0);

cuComplex two(2.0,0.0);

cuComplex negativeone(-1.0,0);

cuComplex deltatime(dt,0);

if(isOnyp(x,y))

{

Ez = (dev_Ez[dgetCell(x,y+1,nx+1)]+dev_Ez[dgetCell(x,y,nx+1)])/2;

float Hx = dev_Hx[dgetCell(x,y,nx)];

cjzyp[index-(nx+ny-4*NF2FFdistfromboundary-2)] +=

-1*Hx*deltatime*cuexp((float)(-1)*j*

(float)2*pi*freq*(float)(*timestep)*deltatime);

//cjzyp and cmxyp have nx - 2*NF2FFBoundary -2 elements

cmxyp[index-(nx+ny-4*NF2FFdistfromboundary-2)] += -1*Ez*deltatime*

cuexp((float)-1.0*j*(float)2.0*(float)PI*freq*

((float)(*timestep)+0.5)*(float)dt);

}

else if(isOnxp(x))//X faces override y faces at their intersections

{

Ez = (dev_Ez[dgetCell(x,y,nx+1)]+dev_Ez[dgetCell(x+1,y,nx+1)])/2;

float Hy = dev_Hy[dgetCell(x,y,nx)];

cjzxp[index-(nx-2*NF2FFdistfromboundary-2)] +=

Hy*deltatime*cuexp(-1*j*2*pi*freq*(float)(*timestep)*(float)dt);

//cjzxp and cmyxp have ny-2*NF2FFBound elements

cmyxp[index-(nx-2*NF2FFdistfromboundary-2)] +=

Ez*(float)dt*cuexp((float)(-1)*j*(float)2.0*pi*freq*

((float)(*timestep)+0.5)*(float)dt);

// this is the discrete fourier transform, by the way.

}

else if(isOnyn(x,y))

{

Ez = (dev_Ez[dgetCell(x,y,nx+1)]+dev_Ez[dgetCell(x,y+1,nx+1)])/2;

float Hx=dev_Hx[dgetCell(x,y,nx)];

cjzyn[index] +=

Hx*(float)dt*cuexp((float)(-1)*j*(float)2.0*(float)PI*

freq*(float)(*timestep)*(float)dt);

//cjzyn and cmxyn need to have nx-2*NF2FFbound-2 elements

cmxyn[index] +=

Ez*(float)dt*cuexp((float)(-1)*j*(float)2.0*(float)PI*freq*

((float)(*timestep)+0.5)*(float)dt);

}

else if(isOnxn(x))

{

Ez = (dev_Ez[dgetCell(x,y,nx+1)]+dev_Ez[dgetCell(x+1,y,nx+1)])/2;

cjzxn[index-(2*nx+ny-6*NF2FFdistfromboundary-4)] +=

-1*dev_Hy[dgetCell(x,y,nx)]*(float)dt*

cuexp((float)(-1)*j*(float)2.0*(float)PI*freq*

(float)(*timestep)*(float)dt);

// cjzxn and cmyxn must have ny-2*NFdistfromboundary elements

cmyxn[index-(2*nx+ny-6*NF2FFdistfromboundary-4)] +=

-1*Ez*(float)dt*cuexp(-1.0*j*2.0*(float)PI*

freq*((float)(*timestep)+0.5)*(float)dt);

}

}

}

__host__ __device__ float fwf(float timestep,float x, float y,float Phi_inc,float l)

{

float ar;

float ky, kx;//k hat

sincosf(Phi_inc,&ky,&kx);

ar = (float)timestep*dt-(float)t0-(1/(float)c0)*(ky*y*dx+kx*x*dy-l);

//ar = timestep*dt-t0;
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//return exp(-1*(ar*ar)/(tau*tau));// gaussian pulse argument is k dot r,

return exp(-1*ar*ar/(tau*tau));

//return sin(2*PI*1e9*timestep*dt);

}

__global__ void H_field_update(float*dev_Hy,float*dev_Hx,float*dev_Ez,float*dev_bmx,

float*dev_Psi_hyx,float*dev_amx,float*dev_bmy,float*dev_amy,float*dev_Psi_hxy,float*kex)

{

float buffer_Hy;

float buffer_Hx;

float Chez = (dt/dx)/(mu0);

int x = threadIdx.x +blockDim.x*blockIdx.x;

int y = threadIdx.y + blockDim.y*blockIdx.y;

if(x<nx&&y<nx)

{

buffer_Hy = dev_Hy[dgetCell(x,y,nx)]+

Chez*(dev_Ez[dgetCell(x+1,y,nx+1)]-dev_Ez[dgetCell(x,y,nx+1)]);

buffer_Hx = dev_Hx[dgetCell(x,y,nx)]-

Chez*(dev_Ez[dgetCell(x,y+1,nx+1)]-dev_Ez[dgetCell(x,y,nx+1)]);

if(x<ncells)

{

buffer_Hy= dev_Hy[dgetCell(x,y,nx)]+

Chez*(dev_Ez[dgetCell(x+1,y,nx+1)]-dev_Ez[dgetCell(x,y,nx+1)])/kex[ncells-1-x];

dev_Psi_hyx[dgetCell(x,y,20)]=dev_bmx[ncells-1-x]*dev_Psi_hyx[dgetCell(x,y,20)]+

dev_amx[ncells-1-x]*(dev_Ez[dgetCell(x+1,y,nx+1)]-dev_Ez[dgetCell(x,y,nx+1)]);

buffer_Hy+=Chez*dx*dev_Psi_hyx[dgetCell(x,y,20)] ;

}

if(x>=(nx-ncells))

{

buffer_Hy=dev_Hy[dgetCell(x,y,nx)]+Chez*(dev_Ez[dgetCell(x+1,y,nx+1)]-

dev_Ez[dgetCell(x,y,nx+1)])/kex[x-nx+ncells];

dev_Psi_hyx[dgetCell(x-nx+20,y,2*ncells)]=

dev_bmx[x-nx+ncells]*dev_Psi_hyx[dgetCell(x-nx+20,y,20)]+

dev_amx[x-nx+ncells]*(dev_Ez[dgetCell(x+1,y,nx+1)]-dev_Ez[dgetCell(x,y,nx+1)]);

buffer_Hy+=Chez*dx*dev_Psi_hyx[dgetCell(x-nx+20,y,20)];

}

if(y<ncells)

{

buffer_Hx=dev_Hx[dgetCell(x,y,nx)]-Chez*(dev_Ez[dgetCell(x,y+1,nx+1)]-

dev_Ez[dgetCell(x,y,nx+1)])/kex[ncells-1-y];

dev_Psi_hxy[dgetCell(x,y,nx)]=dev_bmy[ncells-1-y]*dev_Psi_hxy[dgetCell(x,y,nx)]+

dev_amy[ncells-1-y]*(dev_Ez[dgetCell(x,y+1,nx+1)]-dev_Ez[dgetCell(x,y,nx+1)]);

buffer_Hx-=Chez*dy*dev_Psi_hxy[dgetCell(x,y,nx)];

}

if(y>=(ny-ncells))

{

buffer_Hx=dev_Hx[dgetCell(x,y,nx)]-Chez*(dev_Ez[dgetCell(x,y+1,nx+1)]-

dev_Ez[dgetCell(x,y,nx+1)])/kex[y-ny+ncells];

dev_Psi_hxy[dgetCell(x,y-ny+20,nx)]=

dev_bmy[y-ny+ncells]*dev_Psi_hxy[dgetCell(x,y-ny+20,nx)]+

dev_amy[y-ny+ncells]*(dev_Ez[dgetCell(x,y+1,nx+1)]-dev_Ez[dgetCell(x,y,nx+1)]);

buffer_Hx-=Chez*dy*dev_Psi_hxy[dgetCell(x,y-nx+20,nx)];

}

//__syncthreads();

if(isnan(buffer_Hx))

{

dev_Hx[dgetCell(x,y,nx)] = 0.0;

}

else

{

dev_Hx[dgetCell(x,y,nx)] = buffer_Hx;

}

if(isnan(buffer_Hy)) {

dev_Hy[dgetCell(x,y,nx)] = 0.0;

}

else

{

dev_Hy[dgetCell(x,y,nx)] = buffer_Hy;
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}

//dev_Hx[dgetCell(x,y,nx)] = buffer_Hx;

//dev_Hy[dgetCell(x,y,nx)] = buffer_Hy;

}

}

__global__ void E_field_update(int *i,float*dev_Ez,float*dev_Hy,float*dev_Hx,

float*dev_Psi_ezx,float*dev_aex,float*dev_aey,float*dev_bex,float*dev_bey,

float*dev_Psi_ezy,float*kex,float *Ceze,float*Cezhy,float*Cezhx,float*Cezeip,

float*Cezeic,float*Phi,float *dev_Jp,float *dev_Cezjp,float *dev_Beta_p)

{

int x=threadIdx.x+blockDim.x*blockIdx.x;

int y=threadIdx.y+blockDim.y*blockIdx.y;

// int offset = x+y*blockDim.x*gridDim.x;

float buffer_Ez;

//float Ceh = (dt/dx)/(eps0);

float Cezj = -dt/eps0;

float length_offset;

if(x<=nx&&y<=ny)

{

//if(x==0||x==nx||y==0||y==ny)

if(x==nx||y==ny||x==0||y==0)

{

buffer_Ez=0.0;

}

else

{

buffer_Ez = Ceze[dgetCell(x,y,nx+1)]*dev_Ez[dgetCell(x,y,nx+1)]+

Cezhy[dgetCell(x,y,nx+1)]*(dev_Hy[dgetCell(x,y,nx)]-dev_Hy[dgetCell(x-1,y,nx)])

-Cezhx[dgetCell(x,y,nx+1)]*(dev_Hx[dgetCell(x,y,nx)]-dev_Hx[dgetCell(x,y-1,nx)])

+Cezeic[dgetCell(x,y,nx+1)]*fwf((float)(*i)+0.5,x-nx/2,y-ny/2,*Phi,-breast_radius)

+Cezeip[dgetCell(x,y,nx+1)]*fwf((float)(*i)-0.5,x-nx/2,y-ny/2,*Phi,-breast_radius)

-dev_Cezjp[dgetCell(x,y,nx+1)]*dev_Jp[dgetCell(x,y,nx+1)];

dev_Jp[dgetCell(x,y,nx+1)] = Kp*dev_Jp[dgetCell(x,y,nx+1)] +

(dev_Beta_p[dgetCell(x,y,nx+1)]/dt)*(buffer_Ez - dev_Ez[dgetCell(x,y,nx+1)]

+ fwf((float)(*i)+0.5,x-nx/2,y-ny/2,*Phi,-breast_radius)

- fwf((float)(*i)-0.5,x-nx/2,y-ny/2,*Phi,-breast_radius));

//buffer_Ez is Ezs(n+1) dev_Ez is Ezs(n)

if(x<=ncells&&x!=0) //This is pml stuff.

{

buffer_Ez = Ceze[dgetCell(x,y,nx+1)]*dev_Ez[dgetCell(x,y,nx+1)]+Cezhy[dgetCell(x,y,nx+1)]*

(dev_Hy[dgetCell(x,y,nx)]-dev_Hy[dgetCell(x-1,y,nx)])/kex[ncells-x]

-Cezhx[dgetCell(x,y,nx+1)]*

(dev_Hx[dgetCell(x,y,nx)]-dev_Hx[dgetCell(x,y-1,nx)])/kex[ncells-x];

dev_Psi_ezx[dgetCell(x-1,y-1,20)] = dev_bex[ncells-x]*dev_Psi_ezx[dgetCell(x-1,y-1,20)]+

dev_aex[ncells-x]*(dev_Hy[dgetCell(x,y,nx)]-dev_Hy[dgetCell(x-1,y,nx)]);

buffer_Ez += Cezhy[dgetCell(x,y,nx+1)]*dx*dev_Psi_ezx[dgetCell(x-1,y-1,2*ncells)];

}

if(x>=(nx-ncells)&&x!=nx)

{

buffer_Ez = Ceze[dgetCell(x,y,nx+1)]*dev_Ez[dgetCell(x,y,nx+1)]

+Cezhy[dgetCell(x,y,nx+1)]*(dev_Hy[dgetCell(x,y,nx)]-dev_Hy[dgetCell(x-1,y,nx)])/kex[x-nx+ncells]

-Cezhx[dgetCell(x,y,nx+1)]*(dev_Hx[dgetCell(x,y,nx)]-dev_Hx[dgetCell(x,y-1,nx)])/kex[x-nx+ncells];

dev_Psi_ezx[dgetCell(x-nx+20,y-1,20)]=

dev_bex[x-nx+ncells]*dev_Psi_ezx[dgetCell(x-nx+20,y-1,20)]+

dev_aex[x-nx+ncells]*(dev_Hy[dgetCell(x,y,nx)]-dev_Hy[dgetCell(x-1,y,nx)]);

buffer_Ez+=Cezhy[dgetCell(x,y,nx+1)]*dx*dev_Psi_ezx[dgetCell(x-nx+20,y-1,2*ncells)];

}

if(y<=ncells&&y!=0)

{

buffer_Ez = Ceze[dgetCell(x,y,nx+1)]*dev_Ez[dgetCell(x,y,nx+1)]+

Cezhy[dgetCell(x,y,nx+1)]*(dev_Hy[dgetCell(x,y,nx)]-dev_Hy[dgetCell(x-1,y,nx)])/kex[ncells-y]
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-Cezhx[dgetCell(x,y,nx+1)]*(dev_Hx[dgetCell(x,y,nx)]-dev_Hx[dgetCell(x,y-1,nx)])/kex[ncells-y];

dev_Psi_ezy[dgetCell(x-1,y-1,nx)]

=dev_bey[(ncells-y)]*dev_Psi_ezy[dgetCell(x-1,y-1,nx)]+

dev_aey[(ncells-y)]*(dev_Hx[dgetCell(x,y,nx)]-dev_Hx[dgetCell(x,y-1,nx)]);

buffer_Ez-=Cezhx[dgetCell(x,y,nx+1)]*dy*dev_Psi_ezy[dgetCell(x-1,y-1,nx)];

}

if(y>=(ny-ncells)&&y!=ny)

{

buffer_Ez = Ceze[dgetCell(x,y,nx+1)]*dev_Ez[dgetCell(x,y,nx+1)]+

Cezhy[dgetCell(x,y,nx+1)]*(dev_Hy[dgetCell(x,y,nx)]-dev_Hy[dgetCell(x-1,y,nx)])/kex[y-ny+ncells]

-Cezhx[dgetCell(x,y,nx+1)]*(dev_Hx[dgetCell(x,y,nx)]-dev_Hx[dgetCell(x,y-1,nx)])/kex[y-ny+ncells];

dev_Psi_ezy[dgetCell(x-1,y-ny+20,nx)]=

dev_bey[y-ny+ncells]*dev_Psi_ezy[dgetCell(x-1,y-ny+20,nx)]+

dev_aey[y-ny+ncells]*(dev_Hx[dgetCell(x,y,nx)]-dev_Hx[dgetCell(x,y-1,nx)]);

buffer_Ez-=Cezhx[dgetCell(x,y,nx+1)]*dy*dev_Psi_ezy[dgetCell(x-1,y-ny+20,nx)];

}

}

// unsigned char green = 128+127*buffer_Ez/0.4;

/*ptr[offset].x = 0;

ptr[offset].y = green;

ptr[offset].z = 0;

ptr[offset].w = 255;*///OpenGL stuff

//__syncthreads();

if(isnan(buffer_Ez)) {

dev_Ez[dgetCell(x,y,nx+1)] = 0.0;

}

else {

dev_Ez[dgetCell(x,y,nx+1)] = buffer_Ez;

}

//dev_Ez[dgetCell(x,y,nx+1)] = buffer_Ez;

}

}

__global__ void Field_reset(float* Ez, float* Hy, float* Hx, float* Psi_ezy,float* Psi_ezx,

float* Psi_hyx,float* Psi_hxy,cuComplex*cjzyn,cuComplex*cjzxp,

cuComplex*cjzyp,cuComplex*cjzxn,cuComplex*cmxyn,cuComplex*cmyxp,cuComplex*cmxyp,cuComplex*cmyxn,float *dev_Jp)

{

int x = threadIdx.x + blockIdx.x*blockDim.x;

int y = threadIdx.y+blockDim.y*blockIdx.y;

int index = x + y*blockDim.x*gridDim.x;

if(x<=ncells&&x!=0)

{

Psi_ezx[dgetCell(x-1,y-1,20)] =0;

}

if(x>=(nx-ncells)&&x!=nx)

{

Psi_ezx[dgetCell(x-nx+20,y-1,20)]=0;

}

if(y<=ncells&&y!=0)

{

Psi_ezy[dgetCell(x-1,y-1,nx)]=0;

}

if(y>=(ny-ncells)&&y!=ny)

{

Psi_ezy[dgetCell(x-1,y-ny+20,nx)]=0;

}

if(x<ncells)

{

Psi_hyx[dgetCell(x,y,20)]=0;

}

if(x>=(nx-ncells))

{

Psi_hyx[dgetCell(x-nx+20,y,2*ncells)]=0.0;

}

if(y<ncells)

{

Psi_hxy[dgetCell(x,y,nx)]=0.0;

}
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if(y>=(ny-ncells))

{

Psi_hxy[dgetCell(x,y-ny+20,nx)]=0.0;

}

if(x<=nx&&y<=ny)

{

Ez[dgetCell(x,y,nx+1)] = 0.0;

dev_Jp[dgetCell(x,y,nx+1)] = 0.0;

}

if(x<nx&&y<ny)

{

Hy[dgetCell(x,y,nx)] = 0.0;

Hx[dgetCell(x,y,nx)] = 0.0;

}

if(index<size_cjzy)

{

cjzyp[index] = cuComplex(0,0);

//cjzyp and cmxyp have nx - 2*NF2FFBoundary -2 elements

cjzyn[index] = cuComplex(0,0);

cmxyp[index] = cuComplex(0,0);

cmxyn[index] = cuComplex(0,0);

}

if(index<size_cjzx)

{

cjzxp[index] = cuComplex(0,0);

cjzxn[index] = cuComplex(0,0);

cmyxp[index] = cuComplex(0,0);

cmyxn[index] = cuComplex(0,0);

}

}

float calc_radiated_power(cuComplex *cjzxp,cuComplex *cjzyp,cuComplex *cjzxn,

cuComplex *cjzyn,cuComplex *cmxyp,cuComplex *cmyxp,cuComplex *cmxyn,cuComplex *cmyxn)

{

int indexofleg1 = nx-2*NF2FFdistfromboundary-2;

int indexofleg2 = nx+ny-4*NF2FFdistfromboundary-2;

int indexofleg3 = 2*nx+ny-6*NF2FFdistfromboundary-4;

int maxindex = 2*nx-8*NF2FFdistfromboundary+2*ny-4;

int index;

cuComplex cjz(0,0);

cuComplex power = 0;

for(index = 0; index<indexofleg1;index++)

{ cjz = cuComplex(cjzyn[index].r,-1.0*cjzyn[index].i);//conjugation

//z x x = y dot -y = -1

power+=-1.0*cjz*cmxyn[index]*dx;

// the negative one comes from the dot product between JxM and the n hat vector

}

for(index = indexofleg1; index<indexofleg2;index++)

{

cjz = cuComplex(cjzxp[index-indexofleg1].r,-1.0*cjzxp[index-indexofleg1].i);

//making the conjugate

// z cross y = -x dot x = -1

power+= -1.0*cjz*cmyxp[index-indexofleg1]*dy;//positive x unit normal vector

}

for(index = indexofleg2;index<indexofleg3;index++)

{

// z cross x = y dot y = 1

cjz = cuComplex(cjzyp[index-indexofleg2].r,-1.0*cjzyp[index-indexofleg2].i);

power+= cjz*cmxyp[index-indexofleg2]*dx;//postive y unit normal vector

}

for(index = indexofleg3;index<maxindex;index++)

{

// z cross y = -x dot -x = 1

cjz = cuComplex(cjzxn[index-indexofleg3].r,-1.0*cjzxn[index-indexofleg3].i);

power += cjz*cmyxn[index-indexofleg3]*dy;// negative x hat n vector
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}

float realpower = power.r;

realpower *= 0.5;

return realpower;

}

__host__ __device__ int getOptimizationCell(int x, int y)

{

int x_coord,y_coord;

x_coord = (x-(nx/2-(int)(breast_radius/dx)))/(2*breast_radius/(numpatches*dx));

y_coord = (y-(ny/2-breast_radius/dy))/(2*breast_radius/(numpatches*dy));

return x_coord+numpatches*y_coord;//The max return should be, numpatches*numpatches-1, hopefully.

}

void N2FPostProcess (float* D,float* P,float f,cuComplex *cjzxp,

cuComplex *cjzyp,cuComplex *cjzxn,cuComplex *cjzyn,cuComplex *cmxyp,

cuComplex *cmyxp,cuComplex *cmxyn,cuComplex *cmyxn)

{

int indexofleg1 = nx-2*NF2FFdistfromboundary-2;

int indexofleg2 = nx+ny-4*NF2FFdistfromboundary-2;

int indexofleg3 = 2*nx+ny-6*NF2FFdistfromboundary-4;

int maxindex = 2*nx-8*NF2FFdistfromboundary+2*ny-4;

int x,y;

cuComplex L(0,0);

cuComplex N(0,0);

float rhoprime;

float Psi;

cuComplex E(0,0);

int Phi_index;

cuComplex Mphi(0,0);

float Phi;

float k = 2*PI*f/c0;

cuComplex negativeone(-1.0,0.0);

int index = 0;

cuComplex jcmpx(0,1);

//float Prad = calc_radiated_power(cjzxp,cjzyp,cjzxn

,cjzyn,cmxyp,cmyxp,cmxyn,cmyxn);

float Prad = calc_incident_power(f);

//std::cout<<"Prad = "<<Prad<<std::endl;

float flx, fly;

for(Phi_index = 0; Phi_index<numberofobservationangles;Phi_index++)

{

Phi = 2*PI/numberofobservationangles*(float)Phi_index;

for(index = 0;index<indexofleg1;index++)

{

x = CPUgetxfromthreadIdNF2FF(index);

y = CPUgetyfromthreadIdNF2FF(index);

flx = (float)x;//float x

fly = (float)y + 0.5;

rhoprime = sqrt(pow((dx*((-1.0*(float)nx/2)+1+flx)),2)+

pow((dy*(-1.0*(float)ny/2+1+fly)),2));

Psi = atan2(-1*((float)ny/2)+1+fly,-1*((float)nx/2)+1+flx)-Phi;

N+=-1.0*cjzyn[index]*cuexp(1.0*jcmpx*k*rhoprime*cos(Psi))*dx;

L+=-1.0*sin(Phi)*cuexp(1.0*jcmpx*k*rhoprime*cos(Psi))*cmxyn[index]*dx;

}

for(index = indexofleg1;index<indexofleg2;index++)

{

x = CPUgetxfromthreadIdNF2FF(index);

y = CPUgetyfromthreadIdNF2FF(index);

flx = (float)x+0.5;

fly = (float)y;

rhoprime = sqrt(pow((dx*(((float)nx/2)-1-flx)),2)+

pow((dy*(((float)ny/2)-1-fly)),2));

Psi = atan2(-1*((float)ny/2)+1+fly,(-1*((float)nx/2)+1+flx))

-Phi;
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N+=-1.0*cjzxp[index-indexofleg1]

*cuexp(1.0*jcmpx*k*rhoprime*cos(Psi))*dy;

L+=cos(Phi)*cmyxp[index-indexofleg1]

*cuexp(1.0*jcmpx*k*rhoprime*cos(Psi))*dy;

//L_phi = -Lxsin(phi)+Lycos(Phi) here we only have Ly

}

for(index=indexofleg2;index<indexofleg3;index++)

{

x = CPUgetxfromthreadIdNF2FF(index);

y = CPUgetyfromthreadIdNF2FF(index);

flx = (float)x;

fly = (float)y + 0.5;

rhoprime = sqrt(pow((dx*(((float)nx/2)-1-flx)),2)

+pow((dy*(((float)ny/2)-1-fly)),2));

Psi = atan2((-1*(float)ny/2+1+fly),(-1*((float)nx/2)+1+flx))

-Phi;

N+=-1.0*cjzyp[index-indexofleg2]*cuexp(jcmpx*k*rhoprime*cos(Psi))*dx;

L+=-1.0*sin(Phi)*cmxyp[index-indexofleg2]*cuexp(jcmpx*k*rhoprime*cos(Psi))*dx;

}

for(index = indexofleg3;index<maxindex;index++)

{

x = CPUgetxfromthreadIdNF2FF(index);

y = CPUgetyfromthreadIdNF2FF(index);

flx = (float)x+0.5;

fly = (float)y;

rhoprime =

sqrt(pow(dx*(((float)nx/2)-1-flx),2)+pow((dy*(((float)ny/2)-1-fly)),2));

Psi = atan2(-1*((float)ny/2)+1+fly,-1*(float)nx/2+1+flx)-Phi;

N+=-1.0*cjzxn[index-indexofleg3]*cuexp(jcmpx*k*rhoprime*cos(Psi))*dy;

L+= cos(Phi)*cmyxn[index-indexofleg3]*cuexp(jcmpx*k*rhoprime*cos(Psi))*dy;

}

D[Phi_index] =

(k*k*cuabs(L+(float)eta0*N)*cuabs(L+(float)eta0*N)

/((float)8*(float)PI*(float)eta0*Prad*33.329));

E = L+(float)eta0*N;

P[Phi_index] = atan2(E.i,E.r);

L = cuComplex(0,0);

N = cuComplex(0,0);

}

}

__host__ __device__ float del_X(float del_eps, int k)

{

return del_eps*exp(-1*(float)k*dt/relaxation_time)

*(1-exp(-dt/relaxation_time))

*(1-exp(-dt/relaxation_time));

}

//static void draw_func(void){

// glDrawPixels(nx,ny,GL_RGBA,GL_UNSIGNED_BYTE,0);

// glutSwapBuffers;

//}

using namespace std;

__global__ void scattered_parameter_init(float*eps_infinity,

float *sigma_e_z,float*Cezeic,float*Cezeip,float *Cezjp,

float* dev_Beta_p);

double FDTD_GPU(const vector<double> &arguments) {

// cout << "calculating FDTD GPU" << endl;

// cudaSetDevice(0);

vector<float> image;

//This is setting the material parameters of the optimization cells.

for (int lerp = 0; lerp < numpatches*numpatches; lerp++) {

//numpatches is the amount of optimization patches across.

image.push_back((float)arguments.at(lerp));
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/* if(lerp == numpatches/2){

image.push_back(6.75);

}

else

{

image.push_back(3.14); //eps_infinity of fat

}*/

}

for (int lerp = numpatches*numpatches; lerp < numpatches*numpatches* 2; lerp++) {

image.push_back((float)arguments.at(lerp));

/* if(lerp == numpatches/2 + numpatches*numpatches){

image.push_back(40);// del_eps

}

else

{

image.push_back(1.61);

}*/

}

for (int lerp = numpatches*numpatches*2 ; lerp<numpatches*numpatches*3;lerp++){

image.push_back((float)arguments.at(lerp));

/* if(lerp == numpatches/2 + numpatches*numpatches){

image.push_back(0);// sigma

}

else

{

image.push_back(0);

}*/

}

cudaError_t error;

float freq;

int grid_x = int(ceil((float)nx / 22));

int grid_y = int(ceil((float)ny / 22));

dim3 grid(grid_x, grid_y);

dim3 block(22, 22);

float *Ez = (float*)malloc(sizeof(float)*(1+nx)*(1+ny));

float *eps_infinity = (float*)malloc(sizeof(float)*(1+nx)*(1+ny));

float *Cezhy = (float*)malloc(sizeof(float)*(1+nx)*(1+ny));

float *Ceze = (float*)malloc(sizeof(float)*(1+nx)*(1+ny));

//Cezj later if using loop current source

//float *Cezj = (float*)malloc(sizeof(float)*(1+nx)*(1+ny));

// if using loop current source

float *del_eps = (float*)malloc(sizeof(float)*(1+nx)*(1+ny));

float *Beta_p = (float*)malloc(sizeof(float)*(1+nx)*(1+ny));

float radius;//tumor_radius,tumor_radius_2,tumor_radius_3;

float *sigma_e_z = (float*)malloc(sizeof(float)*(1+nx)*(1+ny));

/******************** Setting Material Parameters*************************/

for (int j = 0; j < ny + 1; j++) {

for (int i = 0; i < nx + 1; i++) {

Ez[getCell(i,j,nx+1)] = (float)0;

eps_infinity[getCell(i,j,nx+1)] = 1;

del_eps[getCell(i,j,nx+1)] = 0;

sigma_e_z[getCell(i,j,nx+1)] = 0;

radius = sqrt(pow( ((float)i-nx/2)*dx,2) + pow( ((float)j-ny/2)*dy,2));

//tumor_radius = sqrt(pow( ((float)i - target_x)*dx,2) + pow( ((float)j-target_y)*dy,2));

if (radius <= breast_radius) {
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eps_infinity[getCell(i,j,nx+1)] = (float)image.at(getOptimizationCell(i,j));

//This is the line that should be uncommented if using as forward solver

del_eps[getCell(i,j,nx+1)] =

(float)image.at(getOptimizationCell(i,j)+numpatches*numpatches);

sigma_e_z[getCell(i,j,nx+1)] =

(float)image.at(getOptimizationCell(i,j)+numpatches*numpatches*2);

//eps_infinity[getCell(i,j,nx+1)] = 10;

//if(tumor_radius <= tumor_nx+1)//delete this if using as forward solver

//{

// eps_infinity[getCell(i,j,nx+1)] = 60;

//}

}

Beta_p[getCell(i,j,nx+1)] =

eps0*del_eps[getCell(i,j,nx+1)]*dt

/(relaxation_time*(1+dt/(2*relaxation_time)));

Cezhy[getCell(i,j,nx+1)] =

(2*dt/dx)/(2*eps_infinity[getCell(i,j,nx+1)]*eps0

+ sigma_e_z[getCell(i,j,nx+1)]*dt + Beta_p[getCell(i,j,nx+1)]);

Ceze[getCell(i,j,nx+1)] =

(2*eps_infinity[getCell(i,j,nx+1)]*eps0 - sigma_e_z[getCell(i,j,nx+1)]*dt

+ Beta_p[getCell(i,j,nx+1)])

/(2*eps_infinity[getCell(i,j,nx+1)]*eps0 + sigma_e_z[getCell(i,j,nx+1)]*dt

+ Beta_p[getCell(i,j,nx+1)]);

}

}

/*******************************************************************/

/***********************************Setting up PML layer *************************/

float *sigma_e_pml = (float*)malloc(sizeof(float)*ncells);

float *sigma_m_pml = (float*)malloc(sizeof(float)*ncells);

//initialize

float sigma_max = (npml+1)/(150*PI*dx);

float rho;

for (int i = 0; i < ncells; i++) {

rho = ((float)i+0.25)/ncells;

sigma_e_pml[i] = sigma_max*sigma_factor*pow(rho,npml);

rho = ((float)i+0.75)/ncells;

sigma_m_pml[i] = (mu0/eps0)*sigma_max*sigma_factor*pow(rho,npml);

/*

cout<<"sigma_e_pml = "<<sigma_e_pml[i]<<endl;

cout<<"sigma_m_pml "<<sigma_m_pml[i]<<endl;

*/

}

float *kex = (float*)malloc(sizeof(float)*ncells);

float *kmx = (float*)malloc(sizeof(float)*ncells);

float *aex = (float*)malloc(sizeof(float)*ncells);

float *bex = (float*)malloc(sizeof(float)*ncells);

float *amx = (float*)malloc(sizeof(float)*ncells);

float *bmx = (float*)malloc(sizeof(float)*ncells);

float *alpha_e = (float*)malloc(sizeof(float)*ncells);

float *alpha_m = (float*)malloc(sizeof(float)*ncells);

//Initialize kex and kmx (formerly k_e_init and k_m_init)

//And alpha_e and alpha_m, and aex, bex, kex, amx, bmx, kmx

for (int i = 0; i < ncells; i++) {

rho = ((float)i+0.25)/ncells;

kex[i]=pow(rho,npml)*(kmax-1)+1;

alpha_e[i]=alpha_min+(alpha_max-alpha_min)*rho;

rho = ((float)i+0.75)/ncells;

kmx[i]=pow(rho,npml)*(kmax-1)+1;

alpha_m[i]=(mu0/eps0)*(alpha_min+(alpha_max-alpha_min)*rho);

bex[i]=exp(-1*(dt/eps0)*(sigma_e_pml[i]/kex[i]+alpha_e[i]));
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aex[i]=((bex[i]-1)*sigma_e_pml[i])

/(dx*(sigma_e_pml[i]*kex[i]+alpha_e[i]*kex[i]*kex[i]));

float argument = -1*(dt/mu0)*((sigma_m_pml[i]/kmx[i])+alpha_m[i]);

bmx[i]=exp(argument);

amx[i]=(bmx[i]-1)*sigma_m_pml[i]

/(dx*(sigma_m_pml[i]*kmx[i]+alpha_m[i]*kmx[i]*kmx[i]));

/*

cout<<"kex["<<i<<"]= "<<kex[i]<<endl;

cout<<"kmx["<<i<<"]= "<<kmx[i]<<endl;

cout<<"aex["<<i<<"]= "<<aex[i]<<endl;

cout<<"amx["<<i<<"]= "<<amx[i]<<endl;

cout<<"bex["<<i<<"]= "<<bex[i]<<endl;

cout<<"bmx["<<i<<"]= "<<bmx[i]<<endl;

cout<<"alpha_e = "<<alpha_e[i]<<endl;

cout<<"alpha_m = "<<alpha_m[i]<<endl;

cout << endl;

*/

}

float *Psi_ezy = (float*)malloc(sizeof(float)*ny*20);

float *Psi_ezx = (float*)malloc(sizeof(float)*nx*20);

float *Psi_hyx = (float*)malloc(sizeof(float)*ny*20);

float *Psi_hxy = (float*)malloc(sizeof(float)*nx*20);

/*

for (int i = 0; i < nx * 20; i++) {

Psi_ezy[i] = 0.0;

Psi_hxy[i] = 0.0;

}

for (int i = 0; i< ny * 20; i++) {

Psi_ezx[i] = 0.0;

Psi_hyx[i] = 0.0;

}

*/

/**********************************************************************/

float *D =

(float*)malloc(sizeof(float)*numberofexcitationangles*

numberofobservationangles*numberoffrequencies)

float *P =

(float*)malloc(sizeof(float)*numberofexcitationangles*

numberofobservationangles*numberoffrequencies);

float *Hy = (float*)malloc(sizeof(float)*nx*ny);

float *Hx = (float*)malloc(sizeof(float)*nx*ny);

//This are output values from the device

cuComplex *cjzxp, *cjzyp, *cjzxn, *cjzyn, *cmxyp, *cmyxp, *cmxyn, *cmyxn;

cuComplex *hcjzyp = (cuComplex*)malloc(sizeof(cuComplex)*size_cjzy);

cuComplex *hcjzyn = (cuComplex*)malloc(sizeof(cuComplex)*size_cjzy);

cuComplex *hcjzxp = (cuComplex*)malloc(sizeof(cuComplex)*size_cjzx);

cuComplex *hcjzxn = (cuComplex*)malloc(sizeof(cuComplex)*size_cjzx);

cuComplex *hcmxyn = (cuComplex*)malloc(sizeof(cuComplex)*size_cjzy);

cuComplex *hcmxyp = (cuComplex*)malloc(sizeof(cuComplex)*size_cjzy);

cuComplex *hcmyxp = (cuComplex*)malloc(sizeof(cuComplex)*size_cjzx);

cuComplex *hcmyxn = (cuComplex*)malloc(sizeof(cuComplex)*size_cjzx);

float *dev_freq, *dev_Phi;

float *dev_Ceze,*dev_Cezhy, *dev_bex, *dev_aex,

*dev_bmx, *dev_amx, *dev_kex, *dev_kmx;

//dev_Cezj if using loop current source

float *dev_Ez, *dev_Hy, *dev_Hx;

float *dev_Psi_ezy, *dev_Psi_ezx, *dev_Psi_hyx, *dev_Psi_hxy;
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float *dev_Cezeic, *dev_Cezeip;

float *dev_eps_infinity,*dev_sigma_e_z;

float *dev_Beta_p;

float *dev_Cezjp,*dev_Jp;

//dev_Jp is the polarization current term used in the Debye scattering (FD)2TD

cudaCheck( cudaMalloc(&dev_sigma_e_z,sizeof(float)*(nx+1)*(ny+1)) );

cudaCheck( cudaMalloc(&dev_eps_infinity,sizeof(float)*(nx+1)*(ny+1)) );

cudaCheck( cudaMalloc(&dev_Cezeic,sizeof(float)*(nx+1)*(ny+1)) );

cudaCheck( cudaMalloc(&dev_Cezeip,sizeof(float)*(nx+1)*(ny+1)) );

cudaCheck( cudaMalloc(&dev_Beta_p,sizeof(float)*(nx+1)*(ny+1)) );

cudaCheck( cudaMalloc(&dev_Cezjp,sizeof(float)*(nx+1)*(ny+1)) );

cudaCheck( cudaMemcpy(dev_eps_infinity,eps_infinity,sizeof(float)*(nx+1)*(ny+1),cudaMemcpyHostToDevice) );

cudaCheck( cudaMemcpy(dev_sigma_e_z,sigma_e_z,sizeof(float)*(nx+1)*(ny+1),cudaMemcpyHostToDevice) );

cudaCheck( cudaMemcpy(dev_Beta_p,Beta_p,sizeof(float)*(nx+1)*(ny+1),cudaMemcpyHostToDevice) );

scattered_parameter_init<<<grid,block>>>(dev_eps_infinity,dev_sigma_e_z,dev_Cezeic,dev_Cezeip,dev_Cezjp,dev_Beta_p);

cudaCheckLastError("scattered_parameter_init kernel failed");

//float *Cezeic = (float*)malloc((sizeof(float))*(nx+1)*(ny+1));

// float *Cezeip = (float*)malloc((sizeof(float))*(nx+1)*(ny+1));

//cudaMemcpy(Cezeic,dev_Cezeic,sizeof(float)*(nx+1)*(ny+1),cudaMemcpyDeviceToHost);

//cudaMemcpy(Cezeip,dev_Cezeip,sizeof(float)*(nx+1)*(ny+1),cudaMemcpyDeviceToHost);

cudaCheck(cudaMalloc(&dev_Phi,sizeof(float)));

cudaCheck(cudaMalloc(&dev_kex,sizeof(float)*10));

cudaCheck(cudaMalloc(&dev_kmx,sizeof(float)*10));

cudaCheck(cudaMalloc(&dev_Ez,sizeof(float)*(nx+1)*(ny+1)));

cudaCheck(cudaMalloc(&dev_Hy,sizeof(float)*nx*ny));

cudaCheck(cudaMalloc(&dev_Jp,sizeof(float)*(1+nx)*(1+ny)));

cudaCheck(cudaMalloc(&dev_freq ,sizeof(float)));

cudaCheck(cudaMalloc(&dev_Hx,sizeof(float)*nx*ny));

cudaCheck(cudaMalloc(&dev_Psi_ezy,sizeof(float)*20*(nx+1)));

cudaCheck(cudaMalloc(&dev_Psi_ezx,sizeof(float)*20*(ny+1)));

cudaCheck(cudaMalloc(&dev_Psi_hyx,sizeof(float)*20*(ny)));

cudaCheck(cudaMalloc(&dev_Psi_hxy,sizeof(float)*20*(nx)));

cudaCheck(cudaMalloc(&cjzxp,sizeof(cuComplex)*size_cjzx));

cudaCheck(cudaMalloc(&cjzyp,sizeof(cuComplex)*size_cjzy));

cudaCheck(cudaMalloc(&cjzxn,sizeof(cuComplex)*size_cjzx));

cudaCheck(cudaMalloc(&cjzyn,sizeof(cuComplex)*size_cjzy));

cudaCheck(cudaMalloc(&cmxyp,sizeof(cuComplex)*size_cjzy));

cudaCheck(cudaMalloc(&cmxyn,sizeof(cuComplex)*size_cjzy));

cudaCheck(cudaMalloc(&cmyxp,sizeof(cuComplex)*size_cjzx));

cudaCheck(cudaMalloc(&cmyxn,sizeof(cuComplex)*size_cjzx));

cudaCheck(cudaMemcpy(dev_freq,&freq,sizeof(float),cudaMemcpyHostToDevice));

cudaCheck(cudaMalloc(&dev_bex,sizeof(float)*10));

cudaCheck(cudaMalloc(&dev_bmx,sizeof(float)*10));

cudaCheck(cudaMalloc(&dev_amx,sizeof(float)*10));

cudaCheck(cudaMalloc(&dev_aex,sizeof(float)*10));

cudaCheck(cudaMalloc(&dev_Cezhy,sizeof(float)*(nx+1)*(ny+1)));

cudaCheck(cudaMalloc(&dev_Ceze,sizeof(float)*(nx+1)*(ny+1)));

cudaCheck(cudaMemcpy(dev_amx,amx,sizeof(float)*10,cudaMemcpyHostToDevice));

cudaCheck(cudaMemcpy(dev_kex,kex,sizeof(float)*10,cudaMemcpyHostToDevice));

cudaCheck(cudaMemcpy(dev_kmx,kmx,sizeof(float)*10,cudaMemcpyHostToDevice));

cudaCheck(cudaMemcpy(dev_aex,aex,sizeof(float)*10,cudaMemcpyHostToDevice));

cudaCheck(cudaMemcpy(dev_bex,bex,sizeof(float)*10,cudaMemcpyHostToDevice));

cudaCheck(cudaMemcpy(dev_bmx,bmx,sizeof(float)*10,cudaMemcpyHostToDevice));

cudaCheck(cudaMemcpy(dev_amx,amx,sizeof(float)*10,cudaMemcpyHostToDevice));

//cudaMalloc(&dev_Cezj,sizeof(float)*(nx+1)*(ny+1)); if using current source

Field_reset<<<grid,block>>>(dev_Ez, dev_Hy, dev_Hx, dev_Psi_ezy, dev_Psi_ezx,

dev_Psi_hyx, dev_Psi_hxy,cjzyn,

cjzxp,cjzyp,cjzxn,cmxyn,cmyxp,cmxyp,cmyxn,dev_Jp);

cudaCheckLastError("Field_reset kernel failed");
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//Field_reset is also good for making all these values zero.

cudaCheck(cudaMemcpy(dev_Cezhy,Cezhy,sizeof(float)*(nx+1)*(ny+1),cudaMemcpyHostToDevice));

cudaCheck(cudaMemcpy(dev_Ceze,Ceze,sizeof(float)*(nx+1)*(ny+1),cudaMemcpyHostToDevice));

int *dev_i;

cudaCheck( cudaMalloc(&dev_i,sizeof(int)) );

float test_Ez;

dim3 gridNF2FF((int)ceil(size_NF2FF_total/512.0));

dim3 blockNF2FF(512);

float test_Ez_2;

float Phi;

// ofstream measurement_data;

// measurement_data.open("Measurement_Phase_tumor.txt");

for(int Phi_index = 0; Phi_index < numberofexcitationangles; Phi_index++) {

Phi = Phi_index*2*PI/numberofexcitationangles;

cudaCheck( cudaMemcpy(dev_Phi,&Phi,sizeof(float),cudaMemcpyHostToDevice) );

for (int i = 0; i < number_of_time_steps; i++) {

cudaCheck( cudaMemcpy(dev_i,&i,sizeof(int),cudaMemcpyHostToDevice) );

H_field_update<<<grid,block>>>(dev_Hy,dev_Hx,dev_Ez,dev_bmx,dev_Psi_hyx

,dev_amx,dev_bmx,dev_amx,dev_Psi_hxy,dev_kmx);

cudaCheckLastError("H_field_updated kernel failed");

E_field_update<<<grid,block>>>(dev_i,dev_Ez,dev_Hy,dev_Hx,dev_Psi_ezx,dev_aex,dev_aex,

dev_bex,dev_bex,dev_Psi_ezy,dev_kex,dev_Ceze,dev_Cezhy,dev_Cezhy,dev_Cezeip

,dev_Cezeic,dev_Phi,dev_Jp,dev_Cezjp,dev_Beta_p);

cudaCheckLastError("E_field_updated kernel failed");

for(int freq_index = 0;freq_index<numberoffrequencies;freq_index++)

{

freq = startfrequency + deltafreq*freq_index;

cudaCheck( cudaMemcpy(dev_freq,&freq,sizeof(float),cudaMemcpyHostToDevice) );

calculate_JandM<<<gridNF2FF,blockNF2FF>>>(dev_freq, dev_i,dev_Ez,

dev_Hy,dev_Hx, cjzxp+size_x_side*freq_index, cjzyp+size_y_side*freq_index,

cjzxn+size_x_side*freq_index, cjzyn+size_y_side*freq_index,

cmxyp+size_y_side*freq_index, cmyxp+size_x_side*freq_index,

cmxyn+size_y_side*freq_index, cmyxn+size_x_side*freq_index);

cudaCheckLastError("calculate_JandM kernel failed" );

}

}

cudaCheck( cudaMemcpy(hcjzyn,cjzyn,sizeof(cuComplex)*size_cjzy,cudaMemcpyDeviceToHost));

cudaCheck( cudaMemcpy(hcjzxp,cjzxp,sizeof(cuComplex)*size_cjzx,cudaMemcpyDeviceToHost));

cudaCheck( cudaMemcpy(hcjzyp,cjzyp,sizeof(cuComplex)*size_cjzy,cudaMemcpyDeviceToHost));

cudaCheck( cudaMemcpy(hcjzxn,cjzxn,sizeof(cuComplex)*size_cjzx,cudaMemcpyDeviceToHost));

cudaCheck( cudaMemcpy(hcmxyn,cmxyn,sizeof(cuComplex)*size_cjzy,cudaMemcpyDeviceToHost));

cudaCheck( cudaMemcpy(hcmyxp,cmyxp,sizeof(cuComplex)*size_cjzx,cudaMemcpyDeviceToHost));

cudaCheck( cudaMemcpy(hcmxyp,cmxyp,sizeof(cuComplex)*size_cjzy,cudaMemcpyDeviceToHost));

cudaCheck( cudaMemcpy(hcmyxn,cmyxn,sizeof(cuComplex)*size_cjzx,cudaMemcpyDeviceToHost));

for (int freq_index = 0; freq_index < numberoffrequencies; freq_index++)

{

freq = startfrequency + deltafreq*freq_index;

N2FPostProcess(D + Phi_index*numberofobservationangles*numberoffrequencies+freq_index*numberofobservationangles,

P + Phi_index*numberofobservationangles*numberoffrequencies+freq_index*numberofobservationangles,

freq, hcjzxp+size_x_side*freq_index , hcjzyp+size_y_side*freq_index, hcjzxn+size_x_side*freq_index ,

hcjzyn+size_y_side*freq_index, hcmxyp+size_y_side*freq_index, hcmyxp+size_x_side*freq_index,

hcmxyn+size_y_side*freq_index, hcmyxn+size_x_side*freq_index);

}

//D is a 3-dimensional array. The x axis is observation angles, z axis is Excitation angles, y axis is frequencies.

//each N2FPostProcess Fills D(:,freq_index,Phi_index) where ":" is, as per matlab notation, all the elements of the x row.
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Field_reset<<<grid,block>>>(dev_Ez, dev_Hy, dev_Hx,

dev_Psi_ezy, dev_Psi_ezx, dev_Psi_hyx, dev_Psi_hxy,cjzyn,

cjzxp,cjzyp,cjzxn,cmxyn,cmyxp,cmxyp,cmyxn,dev_Jp);

cudaCheckLastError("Field_reset kernel failed");

}

// for(int index = 0;index < numberofobservationangles * numberoffrequencies * numberofexcitationangles ; index++)

// {

// measurement_data<<D[index]<<" , ";

// }

// for(int index = 0;index < numberofobservationangles * numberoffrequencies * numberofexcitationangles ; index++)

// {

// measurement_data<<P[index]<<" , ";

// }

float measurement[] = {/*insert measurement data created by same forward solver here*/};

/*

for (int i = 0; i < numberofexcitationangles*numberofobservationangles; i++) {

cout << "D[" << i << " ]: " << D[i] << endl;

}

*/

float del_Phi = 0;

float fit = 0;

for(int i = 0; i < numberofobservationangles*numberofexcitationangles*numberoffrequencies; i++)

{

fit -= pow(D[i]-measurement[i],2)/(numberofexcitationangles*numberoffrequencies);

del_Phi = P[i]-measurement[i+numberofobservationangles*numberofexcitationangles*numberoffrequencies];

if(del_Phi>PI)

{

del_Phi -= 2*PI;

}

else if(del_Phi<-1*PI)

{

del_Phi += 2*PI;

}

fit -= del_Phi*del_Phi/(10*PI*PI*numberofexcitationangles*numberoffrequencies);

// if(abs(D[index]-measurement[index])>0.01)

// cout<<index<<" D = "<<D[index]<<" measurement = "<<measurement[index]<<endl;

}

error = cudaGetLastError();

free(Ceze);

free(Cezhy);

free(Ez);

free(eps_infinity);

free(del_eps);

free(sigma_e_z);

free(Beta_p);

free(Hy);

free(Hx);

free(kex);

free(aex);

free(bex);

free(amx);

free(bmx);

free(alpha_e);

free(alpha_m);

free(sigma_e_pml);

free(sigma_m_pml);

free(Psi_ezy);

free(Psi_ezx);

free(Psi_hyx);

free(Psi_hxy);

free(kmx);
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free(D);

free(P);

free(hcjzxp);

free(hcjzyp);

free(hcjzxn);

free(hcjzyn);

free(hcmxyp);

free(hcmyxp);

free(hcmxyn);

free(hcmyxn);

cudaCheck( cudaFree(dev_Cezeic));

cudaCheck( cudaFree(dev_Cezeip));

cudaCheck( cudaFree(dev_eps_infinity));

cudaCheck( cudaFree(dev_sigma_e_z));

cudaCheck( cudaFree(dev_freq));

cudaCheck( cudaFree(dev_Phi));

cudaCheck( cudaFree(dev_i));

cudaCheck( cudaFree(dev_Beta_p));

cudaCheck( cudaFree(dev_Cezjp));

cudaCheck( cudaFree(cjzxp));

cudaCheck( cudaFree(cjzyp));

cudaCheck( cudaFree(cjzxn));

cudaCheck( cudaFree(cjzyn));

cudaCheck( cudaFree(cmxyp));

cudaCheck( cudaFree(cmyxp));

cudaCheck( cudaFree(cmxyn));

cudaCheck( cudaFree(cmyxn));

cudaCheck( cudaFree(dev_Cezhy));

cudaCheck( cudaFree(dev_Ceze));

cudaCheck( cudaFree(dev_bex));

cudaCheck( cudaFree(dev_aex));

cudaCheck( cudaFree(dev_bmx));

cudaCheck( cudaFree(dev_amx));

cudaCheck( cudaFree(dev_kex));

cudaCheck( cudaFree(dev_kmx));

cudaCheck( cudaFree(dev_Ez));

cudaCheck( cudaFree(dev_Jp));

cudaCheck( cudaFree(dev_Hy));

cudaCheck( cudaFree(dev_Hx));

cudaCheck( cudaFree(dev_Psi_ezy));

cudaCheck( cudaFree(dev_Psi_ezx));

cudaCheck( cudaFree(dev_Psi_hyx));

cudaCheck( cudaFree(dev_Psi_hxy));

cout << "fitness is: " << fit << endl;

return (double)fit;

}

__global__ void scattered_parameter_init(float *eps_infinity,float *sigma_e_z ,float *Cezeic, float *Cezeip, float *Cezjp,float *dev_Beta_p)

{

int x=threadIdx.x+blockDim.x*blockIdx.x;

int y=threadIdx.y+blockDim.y*blockIdx.y;

if(x<(nx+1)&&y<(ny+1))

{

Cezeic[dgetCell(x,y,nx+1)] = (-2*eps0*eps_infinity[dgetCell(x,y,nx+1)]

+2*eps0 - sigma_e_z[dgetCell(x,y,nx+1)]*dx - dev_Beta_p[dgetCell(x,y,nx+1)])

/(2*eps0*eps_infinity[dgetCell(x,y,nx+1)]

+ sigma_e_z[dgetCell(x,y,nx+1)]*dt + dev_Beta_p[dgetCell(x,y,nx+1)]);

Cezeip[dgetCell(x,y,nx+1)] = (2*eps0*eps_infinity[dgetCell(x,y,nx+1)] - 2*eps0 - sigma_e_z[dgetCell(x,y,nx+1)]*dt

+ dev_Beta_p[dgetCell(x,y,nx+1)])

/(2*eps0*eps_infinity[dgetCell(x,y,nx+1)] + sigma_e_z[dgetCell(x,y,nx+1)]*dt + dev_Beta_p[dgetCell(x,y,nx+1)]);

Cezjp[dgetCell(x,y,nx+1)] = ((1+Kp)*dt)/(2*eps0*eps_infinity[dgetCell(x,y,nx+1)]

+ sigma_e_z[dgetCell(x,y,nx+1)]*dt + dev_Beta_p[dgetCell(x,y,nx+1)]);

}
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}

6.2 FDTD common.cxx

#include <cmath>

#include "FDTD_common.hxx"

int CPUgetxfromthreadIdNF2FF(int index)

{

int x=0;

if(index<(nx-2*NF2FFdistfromboundary-2))//yn

{

x = index+NF2FFdistfromboundary+1;

}

else if(index<(nx-4*NF2FFdistfromboundary+ny-2))//xp

{

x = nx-NF2FFdistfromboundary-1;

}

else if(index<(2*nx-6*NF2FFdistfromboundary+ny-4))//yp

{

x = nx-NF2FFdistfromboundary - (index-(nx-4*NF2FFdistfromboundary+ny-2))-2;

}

else if(index<(2*nx-8*NF2FFdistfromboundary+2*ny-4))

//xn notice 2*nx-8*NF2FFdistfromboundary+2*ny-4 is the max index term.

{

x = NF2FFdistfromboundary;

}

return x;

}

int CPUgetyfromthreadIdNF2FF(int index)

{

int y=0;

if(index<(nx-2*NF2FFdistfromboundary-2))

{

y = NF2FFdistfromboundary;

}

else if(index<(nx-4*NF2FFdistfromboundary+ny-2))

{

y = (index-(nx-2*NF2FFdistfromboundary-2))+NF2FFdistfromboundary;

}

else if(index<(2*nx-6*NF2FFdistfromboundary+ny-4))

{

y = ny-NF2FFdistfromboundary-1;

}

else if(index<(2*nx-8*NF2FFdistfromboundary+2*ny-4))

{

y = ny-NF2FFdistfromboundary-(index-(2*nx-6*NF2FFdistfromboundary+ny-4))-1;

}

return y;

}

float calc_incident_power(float freq)

{

return (0.5/eta0)*pow(tau*sqrt(PI)*exp(-tau*tau*2*PI*freq*2*PI*freq/4),2);

// just gonna assume gaussian pulse. This is the fourier transform of the gaussian pulse.

}

float fitness(float* D,int max_index, float* measurement)

{

float fit = 0;

for(int i =0;i<max_index;i++)

{

fit -= pow((measurement[i]-D[i]),2)/(numberofexcitationangles*pow(measurement[i],2));

}
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return fit;

}

6.3 FDTD GPU.hxx

#ifndef FDTD_COMMON_H

#define FDTD_COMMON_H

#define PI 3.141592653589793238

#define alpha_max 0.01

#define alpha_min 0.000

#define eps0 8.85418e-12

#define sigma_factor 1.0

#define ncells 10

#define mu0 (PI*4e-7)

#define center_freq (5e9)

#define eta0 (sqrt(mu0/eps0))

#define c0 (1.0/sqrt(mu0*eps0))

#define dt (dx/c0/2)// dx/c0/2

#define domain_size 0.18

#define dx (0.001)

#define NF2FFdistfromboundary ((int)floor((3.2*breast_radius/dx)))

#define source_position 0.5

#define dy (0.001)

#define number_of_time_steps 2000

#define f1x (nx/2 - 150)

#define f2x (nx/2+150)

#define f1y (ny/2)

#define f2y (ny/2)

//#define nx ((int)ceil(domain_size/dx))

//#define ny ((int)ceil(domain_size/dy))

#define nx ((int)ceil(12.7*breast_radius/dx))

#define ny ((int)ceil(12.7*breast_radius/dy))

#define d (10*dx)

#define npml 2

#define kmax 10

#define numberofexcitationangles 4

#define isPW 1

#define isscattering 1

#define sigma_max_pml (3/(200*PI*dx))

#define size_NF2FF_total (2*nx-8*NF2FFdistfromboundary+2*ny-4)

#define startfrequency (1e9)

#define stopfrequency (1e10)

#define deltafreq ((stopfrequency-startfrequency)/(numberoffrequencies-1))

#define numberoffrequencies 10

#define size_cjzy ((nx-2*NF2FFdistfromboundary-2)*(numberoffrequencies))

#define size_cjzx ((ny-2*NF2FFdistfromboundary)*(numberoffrequencies))

#define size_y_side (nx-2*NF2FFdistfromboundary-2)

#define size_x_side (ny-2*NF2FFdistfromboundary)

#define numberofobservationangles 100

#define t0 (sqrt(20.0)*tau) // t0 = sqrt(20)*tau

#define l0 (nx*dx/2-breast_radius)

#define pwidth 10

#define nc 20 // 20 cells per wavelength

#define fmax (c0/(nc*dx))

// change if dy is bigger though now they’re the same fmax is the highest frequency this program can handle

#define tau (3.3445267e-11)

// float ta bu = sqrt(2.3)*nc*dx/(PI*c0*1/sqrt(eps_r_MAX)); from a calculation of fmax.

//#define tau (5.288161e-11)

#define target_x (nx/2+15)//105 is breast_radius / dx

#define target_y (ny/2-15)

#define source_x (nx/2) //(target_x-105-80)

#define source_y (ny/2)

#define breast_radius 0.0315 //87.535 mm . Sample size = 1.

#define tumor_size (0.01)

#define relaxation_time (7e-12)

#define Kp ((1-dt/(2*relaxation_time))/(1+dt/(2*relaxation_time)))

// Parameter for (FD)2TD. Using Polarization current formulation
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#define numpatches 3

/**

* I made getCell a macro which should speed things up

* a bit, and make the code simpler

*/

#define getCell(x,y,size) ((x) + ((y) * (size)))

#define dgetCell(x,y,size) ((x) + ((y) * (size)))

int CPUgetxfromthreadIdNF2FF(int index);

int CPUgetyfromthreadIdNF2FF(int index);

float calc_incident_power(float freq);

float fitness(float* D,int max_index, float* measurement);

#endif

#ifndef FDTD_COMMON_H

#define FDTD_COMMON_H

#define GL_GLEXT_PROTOTYPES

#define PI 3.141592653589793238

#define alpha_max 0.01

#define alpha_min 0.000

#define eps0 8.85418e-12

#define sigma_factor 1.0

#define ncells 10

#define mu0 (PI*4e-7)

#define center_freq (5e9)

#define eta0 (sqrt(mu0/eps0))

#define c0 (1.0/sqrt(mu0*eps0))

#define dt (dx/c0/2)// dx/c0/2

#define domain_size 0.18

#define dx (0.001)

#define NF2FFdistfromboundary ((int)floor((3.2*breast_radius/dx)))

#define source_position 0.5

#define dy (0.001)

#define number_of_time_steps 2000

#define f1x (nx/2 - 150)

#define f2x (nx/2+150)

#define f1y (ny/2)

#define f2y (ny/2)

//#define nx ((int)ceil(domain_size/dx))

//#define ny ((int)ceil(domain_size/dy))

#define nx ((int)ceil(12.7*breast_radius/dx))

#define ny ((int)ceil(12.7*breast_radius/dy))

#define d (10*dx)

#define npml 2

#define kmax 10

#define numberofexcitationangles 4

#define isPW 1

#define isscattering 1

#define HANDLE_ERROR( err ) err

#define sigma_max_pml (3/(200*PI*dx))

#define size_NF2FF_total (2*nx-8*NF2FFdistfromboundary+2*ny-4)

#define startfrequency (1e9)

#define stopfrequency (1e10)

#define deltafreq ((stopfrequency-startfrequency)/(numberoffrequencies-1))

#define numberoffrequencies 10

#define size_cjzy ((nx-2*NF2FFdistfromboundary-2)*(numberoffrequencies))

#define size_cjzx ((ny-2*NF2FFdistfromboundary)*(numberoffrequencies))

#define size_y_side (nx-2*NF2FFdistfromboundary-2)

#define size_x_side (ny-2*NF2FFdistfromboundary)

#define numberofobservationangles 100

#define t0 (sqrt(20.0)*tau) // t0 = sqrt(20)*tau

#define l0 (nx*dx/2-breast_radius)

#define pwidth 10

#define nc 20 // 20 cells per wavelength

#define fmax (c0/(nc*dx))

// change if dy is bigger though now they’re the same fmax is the highest frequency this program can handle

#define tau (3.3445267e-11)
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// float ta bu = sqrt(2.3)*nc*dx/(PI*c0*1/sqrt(eps_r_MAX)); from a calculation of fmax.

//#define tau (5.288161e-11)

#define target_x (nx/2+15)//105 is breast_radius / dx

#define target_y (ny/2-15)

#define source_x (nx/2) //(target_x-105-80)

#define source_y (ny/2)

#define breast_radius 0.0315 //87.535 mm . Sample size = 1.

#define tumor_size (0.01)

#define relaxation_time (7e-12)

#define Kp ((1-dt/(2*relaxation_time))/(1+dt/(2*relaxation_time)))

// Parameter for (FD)2TD. Using Polarization current formulation

#define numpatches 3

/**

* I made getCell a macro which should speed things up

* a bit, and make the code simpler

*/

#define getCell(x,y,size) ((x) + ((y) * (size)))

#define dgetCell(x,y,size) ((x) + ((y) * (size)))

int CPUgetxfromthreadIdNF2FF(int index);

int CPUgetyfromthreadIdNF2FF(int index);

float calc_incident_power(float freq);

float fitness(float* D,int max_index, float* measurement);

#endif
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