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ABSTRACT 

 
 Respiration affects the cardiovascular system significantly and the morphology of signals 

relevant to the heart changes with respiration. Such changes have been used to extract respiration 

signal from electrocardiogram (ECG). It is also shown that accelerometers placed on the body can 

be used to extract respiration signals. It has been demonstrated that the signal morphology for 

seismocardiogram, the lower frequency band of chest accelerations, is different between inhale 

and exhale. For instance, systolic time intervals (STI), which provide a quantitative estimation of 

left ventricular performance,  vary between inhale and exhale phases. In other words, heart beats 

happening in exhale phase are different compared to those in inhale phase. Thus, our main goal in 

this thesis is investigating feasibility of finding an automatic morphological based method to 

identify respiratory phases of heart cycles. 

In this thesis, forty signal recordings from twenty subjects were used. In each recording, the 

reference respiratory belt signal, three dimensional (3D) chest acceleration signals, and 

electrocardiogram signals were recorded. The first stage was is choosing a proper estimated 

respiratory signal. The second stage, was the automatic respiratory phase detection of heart cycles 

using the selected estimated respiratory signal. The result shows that among estimated respiratory 

signals, accelerometer-derived respiration (ADR), in z-direction, has a potential m  to identify 

respiratory phase of heart cycles with total accuracy of about 77%. 



1 

CHAPTER 1  

INTRODUCTION 

The global problem of disease has been flowing gradually from transmissible diseases in 

children to non-transmissible disease in adults [1]. Specifically, cardiovascular diseases have 

effects on an outsized range of individuals worldwide. For instance, globally 7,249,000 deaths due 

to cardiovascular diseases (12.7% of total deaths) were recorded in 2008 [2]. Cardiovascular 

diseases are the leading causes of death globally and in the United States. According to the 

American Heart Association 2013, the leading reason of 80000 deaths annually are related to 

cardiovascular diseases in the US [3]. Therefore, in USA alone, nearly $95 billion annually is spent 

on diagnosis and treatment of cardiovascular diseases [4]. Thus, cardiovascular diseases cause a 

significant financial and health burden [5]. In addition, the average life range has been increased 

by quality enhancement of life and advancement of health-care. Consequently, many developed 

nations considered to have aging population. Accordingly, the concern regarding elderly’s quality 

of health care in residential and nursing homes, and home healthcare has been raised [6].  

Today, the cardiovascular system and heart function are standard observation targets in 

humans. In the USA, a useful compelling cardiovascular observation framework has been 

proposed across the nation [3]. With respect to the performance of cardiovascular disease 

monitoring systems, the advancement of low-cost measurement tools is an important subject. 

Today the function of the heart and cardiovascular system can be observed by a variety of 
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techniques. Visual observation, palpation, and auscultation are some old and simple methods. In 

summary, in order to discover cardiac arrhythmias and other heart dysfunctions, by combining 

visual, auditory and sensory symptoms, an expert physiologist can diagnose a great number of 

cardiovascular abnormalities [5]. 

Generally, non-intrusiveness and non-invasiveness are the most important features of home 

healthcare. Thus, telemedicine techniques or remote monitoring of physiological or daily living 

signs should have these features: (a) they should not cause any pain for the patients and (b) they 

should not have unnecessary alteration to life style. [7]. In the cardiovascular monitoring area, 

non-obstructive techniques are preferred, mostly because of their cost efficiency and lower related 

risks [5].  

The observation and estimation of respiration is vital in many circumstances. Respiration is 

the most significant modulator of heart rate, and it is responsible for the short term heart rate 

variability (HRV). Understanding autonomic regulation of heart rate can be achieved by analyzing 

heart rate variability.  

Regarding cardiovascular monitoring, it has been demonstrated that the signal morphology 

for seismocardiogram, the lower frequency portion of acceleration signal recorded from the chest, 

is different between inhale and exhale. For instance, systolic time intervals (STI) ,which provide a 

quantitative estimation of left ventricular performance,  vary between inhale and exhale phases. In 

other words, heart beats happening in exhale phase are different compared to those  happening 

during inhale phase. In order to perform signal averaging and increasing the accuracy of diagnosis, 

the heart cycles related to inspiration should be discriminated from those related to the expiration, 

and this has been the major objective of this project.  
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Continuous respiratory monitoring methods can be classified to three different categories: (i) 

motion measurement devices, tissue or volume based monitoring such as trans-thoracic impedance 

techniques, inductance plethysmography, (ii) airflow-based measurements such as thermistors for 

measurement of oro-nasal airflow, and (iii) blood gas changes-based monitoring such as pulse 

oximetry, or end-tidal O2 measurement [8]. The respiratory signal is usually recorded with 

techniques like spirometry, pneumography, or plethysmography. These techniques require the use 

of cumbersome devices that may interfere with natural breathing, and are unmanageable in certain 

applications such as ambulatory monitoring, stress testing, and sleep studies. Nonetheless, the joint 

study of the respiratory and cardiac systems is of great interest in certain applications. As such, the 

use of methods for indirect extraction of respiratory information is particularly attractive to pursue 

[9].  

Therefore, first stage to identify respiratory phase of heart cycles of seismocardiogram is 

estimating respiratory signal from electromechanical signals such as ECG and SCG signals. The 

next stage, is the automatic respiratory phase detection of heart cycles using the selected estimated 

respiratory signal. 

Therefore, the first stage to identify respiratory phase of heart cycles of seismocardiogram is 

estimating respiratory signal from SCG and ECG signals. The next stage, is the automatic 

respiratory phase detection of heart cycles using the extracted respiration signal. 

This thesis is organized as follows. In the second chapter, the background regarding 

cardiorespiratory  physiology and non-invasive techniques for monitoring cardiac and respiratory 

functions are reviewed. In chapter three, methods and materials, which are used in this thesis are 

discussed. In chapter four, the acquired results and measurements from the volunteer subjects are 
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presented. Finally, the importance of the proposed technique and future studies are represented in 

chapter five.  

1.1 Study Objectives 

 
The objectives are this thesis are the followings: 

 Derive respiratory signals from electromechanical signals (e.g. electrocardiogram 

(ECG), 3D seismocardiogram (SCG) signals). 

 Find the most proper signal among the estimated respiratory signals. Define 

respiratory phases of heart cycles by using the selected estimated respiratory signal. In 

other words, defining which heart cycle occurs during inhale and which ones occur 

during exhale.
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CHAPTER 2                                                                                  

BACKGROUND 

 

In this chapter, first physiology of cardiovascular system including cardiac cycles phases, and 

respiration physiology will be described. As we mentioned in the previous chapter, our goal is 

discrimination of heart beats to inhale and exhale phase to improve estimating systolic time 

intervals using SCG signal. For this reason, an indirect derived respiratory signal from SCG is 

used to detect the beginning of respiratory phases. Section two of this chapter defined different 

non-invasive contact based respiratory monitoring measurement techniques to emphasize 

beneficial aspects of using an indirect derived-respiratory method instead of utilizing direct 

respiratory system measurement. Different non-invasive heart function monitoring methods were 

described in the third section including seismocardiography and electrocardiography. Finally, the 

last section of this chapter review previous studies regarding computing electrocardiogram-

derived-respiratory (EDR) signal and accelerometer-derived-respiratory (ADR) signal using 

different approaches. 
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2.1 Cardiovascular Physiology  

2.1.1 Cardiac cycle phases  

The cardiac cycle states to a complete pulse from its generation to the start of the next beat, 

thus contains the diastole, the systole, and the intervening pause (Figure 1). The heart rate is 

the frequency of the cardiac cycle, which is typically defined as beats per minute. Each heart 

cycle includes five main stages.  

The initial two stages, regularly viewed together as the "ventricular filling" stage, include 

the blood movement from the atria into the ventricles. The following three stages include the 

blood movement from the ventricles to the aorta (in the left ventricle) and the pulmonary 

artery (in the right ventricle) [10].  

Diastole, the initial stage, happens when the semilunar valves (the aortic valve, and 

the pulmonary valve) close, the atrioventricular (AV) valves (the tricuspid valve and 

the mitral valve) open, and the entire heart is relaxing. In the next stage, the atrium contracts, 

and blood flows from atrium to the ventricle which is called "atrial systole”. When the 

ventricles start to contract, the AV and semilunar valves close, and there is no change in 

volume. This is called "isovolumic contraction". In the "ventricular ejection”, fourth stage, the 

ventricles are contracting and draining, and the semilunar valves are open. During "isovolumic 

relaxation time", the final stage, pressure reduces, blood don’t come into the ventricles, 

contraction of ventricles stops and relaxation of ventricles starts, and the semilunar valves 

close because of the blood pressure in the aorta [10]. Decreasing and increasing blood 

pressure happen in the entire cardiac cycle. A series of electrical impulses that are generated 

by particular pacemaker cells originated in the sinoatrial node and the atrioventricular node 

produce a heartbeat. In normal condition, each heart cycle lasts for 0.8 seconds [10]. 
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2.1.2 Respiration physiology 

During the breathing, the oxygen (air) from the environment pulled toward the lungs and the 

carbon dioxide pulled away from the lungs and release into the atmosphere by the contraction of 

lungs. These two acts are named inspiration and expiration phases, respectively.  

 

Figure 1 Cardiac cycle phases [11]. 

As shown in Figure 2, the participation of the different organs in the respiratory system cause 

the inhale and exhale phases [12]. These organs divided into two section: upper and lower 

respiratory tract. Nostrils, Nasal Cavities, Pharynx, Epiglottis, and the Larynx are considered as 

upper respiratory tract and Trachea, Bronchi, Bronchioles, and the Lungs considered as lower 

respiratory tract.  

Change in volume level of the thoracic cavity causes pulled towards or away from the lungs. 

Diaphragm with its surrounded muscles (e.g. intercostal muscles) effect the lungs contraction to 

inhale the air into the lungs. In contrast, muscles contraction causes the passive action of exhalation 

[12]. 
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Figure 2 The anatomy of human respiratory system [13]. 

2.2 Non-invasive contact based respiratory monitoring 

One of the important tasks in vital sign monitoring is respiration rate observation and 

measurement. Techniques that compute respiration rate can be categorized by variety of ways 

depending on their application and their operation.  

Generally, contact respiration rate monitoring methods are based on measuring respiratory 

airflow, respiratory sounds, respiratory related chest or abdominal movements, oximetry probe 

SpO2, or respiratory CO2 emission [14]. The following techniques are the contact-based respiration 

monitoring systems.  

2.2.1 Acoustic based methods 

One common location for measuring breathing sounds is on the neck close to the respiratory 

airways or over the throat, like Figure 3 shows. In this case, placed microphone in the 

aforementioned places can detect the variation of sound [14]. These sounds are relatively large in 

amplitude and have a wider range of frequencies than sounds recorded at the chest wall, and also 
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have a close relation to the tracheal airflow [15]. Therefore, a frequency analysis and estimation 

of the loudness of the sound can be performed to estimate respiratory rate [14]. 

Recent studies proposed a miniaturized wearable respiration system that contains a 

microphone placed on the neck to record the largest breathing acoustic [16]. In addition, feasibility 

of detecting sleep apnea in infants using sound-based system has been proposed [17]. 

 

Figure 3 Example of acoustic based respiratory method [18]. 

2.2.2 Airflow-based methods 

In airflow-based respiratory systems, change in temperature, humidity and CO2 level can 

differentiate between inhale and exhale phase. In exhale phase, the air is warmer, humidity and 

level of CO2 are higher. There variation can be utilized to indicate the respiratory rate (RR). The 

most common place for this method is attaching sensor to the airway [19]. The sensor can be nasal 

thermistor which measure temperature variation during inhaled and exhaled air. Pressure sensor, 

more specifically, a nasal pressure transducer also can be used to detect RR and its results is more 
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accurate than other sensors [14]. The disadvantages of placing a sensor to the airflow is the 

discomfort felt by patients.  

2.2.3 Chest and abdominal measurements  

The common way to measure the respiratory rate based on movements of chest and the 

abdominal wall is either using impedance methods or mercury strain gauges. The principle of the 

strain gauge sensor is based on increase area of the conductor, and therefore, increase in the 

conductor resistance during the inspiration and expiration. As illustrated in Figure 4, in respiratory 

inductance plethysmography two bands compute the RR. The abdominal band which is placed 

over the abdomen at the level of the umbilicus and the other band is the thoracic band which is 

placed around the rib cage [20]. 

 

Figure 4 Example of chest and abdominal respiratory detection [21]. 

The inspiratory thoracic and abdominal expansion usually should be synchronous. However, 

in some conditions such as upper airway partial obstruction, the movements of the thorax and 

abdomen can become asynchronous [22]. This condition can be seen in infants that their chest wall 

compliance is greater [23]. 
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2.2.4 Transcutaneous CO2 monitoring 

Transcutaneous CO2 monitoring is based on overall CO2 variation rather than measuring 

changes in CO2 level minute by minute readings. This method contains a heated electrode (about 

428 °C) which is attached to the skin (usually an arm). In this sensor, electrode is bounded by a 

solution to provide conductivity. To avoid burning sensitive and neonatal skin, the procedure 

should be performed carefully [24]. The advantages of this method is its ability to measure 

consequences of abnormal ventilation instead of measuring only the RR [14]. 

2.2.5 Oximetry probe (SpO2) 

Oximetry probe-based method or pulse oximetry is a non-invasive method which measures 

blood oxygen saturation (SpO2). SpO2 is the percentage of blood saturation. When inhaled air come 

into the lungs, its oxygen binds to the hemoglobin in red blood cells. Then, the oxygen is moved 

throughout the body in arterial blood. A pulse oximeter passes two spectrum bands, the red and 

infrared frequencies, through the body part to a photodetector to estimate the percentage of 

hemoglobin in the blood that is loaded with oxygen. This percentage is called blood saturation 

[14]. 

 

Figure 5 Pulse oximetry [25]. 

Respiration rate can also be derived from the electromechanical signals such as ECG and 

SCG. Following sections will introduce these heart function monitoring techniques and how the 

respiration event can be extracted from them. 
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2.3 Non-invasive Heart Function Monitoring  

In addition to well-established methods such as cardiovascular system palpation and 

auscultation are both well-established techniques [26][27], technological developments have 

brought upon new windows to understanding heart functions. A variety of techniques have been 

proposed to comprehend cardiac functions throughout the 20th century (see Figure 6). Using more 

modern and advanced non-invasive cardiovascular function assessment techniques are required in 

addition to cardiac auscultation and palpation which are still routinely used in clinical practice [5].  

 

 

Figure 6 Modern and advanced non-invasive cardiovascular assessment techniques [5]. 

2.3.1 Echocardiography (ECHO) 

Echocardiography or cardiac echo (ECHO), is an imaging method based on ultrasound. ECHO 

is a sonogram of the heart. This method can utilized two-dimensional, three-dimensional or 

Doppler-based ultrasound to create heart images. The primary demonstrative endeavors utilizing 

ultrasound were made in a part of the late 1940s by Karl Theo Dussik [28]. At the present time, 

the ECHO are routinely utilized in diagnosis cardiovascular diseases and estimation of heart 

function such as cardiac output, ejection fraction and how well the heart is relaxing.  

2.3.2 Cardiovascular magnetic resonance imaging (cMRI) 

Cardiovascular magnetic resonance imaging (cMRI) or cardiac MRI is a medical imaging 

method for non-invasive assessment of the structure and function of the cardiovascular system 
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based on principles of nuclear magnetic resonance. Magnetic resonance imaging (MRI) was first 

introduced in the 1930s and 1940s. Clinical potential of cMRI was first broadly addressed in 1983. 

Today, the main application of cMRI is the investigation of cardiovascular disease such as 

congenital heart defects which is the most common type of major birth defect among children [29]. 

2.3.3 X-ray computed tomography (X-CT) 

X-ray computed tomography (X-CT) or CT scan, is an imaging modality where X-rays are 

used to create volume of data or slice images of a subject. CT scan are typically used for preventive 

medicine or screening for disease such as cancer or high risk heart disease. More specifically, it is 

used for coronary angiography and, the detection of coronary atherosclerosis [29]. 

2.3.4 Nuclear cardiology 

Nuclear cardiology is non-invasive method to measure the myocardial blood flow, assess the 

pumping capacity of the heart and in addition visualize the size and area of the heart attack by 

injecting radioisotopes into the vascular system and the emitted radiation. Myocardial perfusion 

imaging is the most widely used technique among nuclear cardiology techniques [30].  

2.3.5 Electrocardiography (ECG) 

In electrocardiography (ECG or EKG), the electrical activity of the heart over period of time 

is studied using electrodes located on the skin. Einthoven’s electrocardiogram [31] is broadly well-

thought-of to be the origin of ECG. In this method, electrodes detect every tiny electrical activity 

changes to show pattern of depolarization during each heartbeat. Today, ECG is commonly used 

as cardiology test and remote monitoring [32]. 
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2.3.6 Phonocardiography (PCG) 

Phonocardiography or PCG is a techniques to record sound and murmurs of the heart and 

blood flow during a cardiac cycle [ref]. Two main sound that can be recorded by PPG are sounds 

resulted from vibration created by closure of atrioventricular valve close at the start of systolic and 

the other when the aortic valve and pulmonary valve is closing at the end of systolic [10]. In 1894, 

Einthoven introduce the first applied PCG method [33]. Likewise auscultation, PCG is one of the 

most commonly measured non-invasively from the chest, but with a microphone. The advantages 

of using PCG is that it is adding inaudible frequencies to the observations and also, less dependent 

on the person performing during a trial [33]. 

2.3.7 Impedance cardiography (ICG) 

Impedance cardiography (ICG) uses the phenomenon that fluid content variation of the chest 

make variation in thoracic impedance. In other words, ICG is computing total electrical 

conductivity of the thorax and its variation to process important cardiac parameters. These 

parameters are heart rate (HR), stroke volume (SV), cardiac output (CO), pre-ejection period, 

ventricular ejection time (VET) [34][35]. 

2.3.8 Ballistocardiography (BCG) and seismocardiography (SCG) 

Seismocardiography (SCG) and ballistocardiography (BCG) are non-invasive techniques to 

study mechanical vibrations of the body which are created by cardiovascular movements, as SCG 

defined by Zanetti and Salerno [36]. Put it differently, SCG shows the local vibrations of the chest 

wall corresponding to the heartbeat, while BCG measures the cardiac reaction forces created by 

blood circulation affecting the entire body [37] [38]. SCG originally goes backed to the nineteenth 

century, when observing a heartbeat during standing on a scale was reported by Gordon [39].  
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In addition to Gordon’s measurements, Isaac Starr’s work starts new era in non-invasive 

measurement of cardiac vibration [40]. Starr worked on the reaction forces of cardiovascular 

activities on the whole body, BCG. Then Zanetti and Salerno [36] reintroduced the SCG and BCG 

respectively. Zanetti introduced SCG technique to clinical applications. More up-to-date 

utilizations of BCG incorporate implanting the measurement of cardiac vibration into everyday 

matters such as chairs [41], scales [42], and beds [43]. 

Gradually, the physical sizes of accelerometers and sensors to measure SCG have become 

small. Furthermore, at the time of Zanetti’s study, an acceleration sensor weight’s was about 0.8 

kilograms, which now is much lighter. Today’s technology offers smaller and less obtrusive 

transducers. For this reason, many research groups are now working on SCG. SCG has received a 

lot of attention, as shown in Figure 7?, and it is useful in observation and measurement of cardiac 

time intervals [38]. 

Currently, a tri-axial accelerometer components that are present in all three axes can be placed 

on the chest wall to show specific patterns [12][14]. However, majority of studies focus on SCG 

in z direction. In Figure 8, direction of SCG in x, y, and z has been shown [37]. Every time that 

heart is contacted, cardiac vibration can be measured by a BCG and SCG waveforms. 

Characterizing each waveform happen by several peaks and valleys which are representing precise 

heart activity. Figure 9 illustrates a general ECG, head-to-foot BCG, and 3D SCG signals [37]. 

Modern measurement techniques, ECG, PCG, ICG, SCG, and BCG, provide comprehensive 

information about the cardiovascular system. The type of information that they offer are the 

electrical phenomena, sounds, local vibrations, impedance variations, and recoil forces produced 

by the functions of the heart [5]. However, there are number of open issues that still remain to be 

addressed regarding using SCG and BCG, according to Inan et al. [37]: 
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1) Effects of respiration, posture, right ventricle, and sensor adherence on the signal 

waveform/quality. 

2) Identifying possible basic elements of SCG and BCG.  

3) Detecting more parameters resultant from the examination of the BCG and 3D SCG 

signals. 

4) Ways to encourage the utilization of these signs in clinical practice. 

5) Reference information for both healthy and unhealthy subjects with different conditions 

(e.g. ages, body size). 

 

 

Figure 7 Number of publications on SCG between 1961 and 2013. The databases used from PubMed and 

Scopus [5]. The keyword “Seismocardiogram” was used in the search. 
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Figure 8 Seismocardiogram in three direction [44]. 

 

 

Figure 9 Simultaneously acquired Lead II of ECG, three dimension SCG signal in z, x, and y direction 

respectively, BCG signal, impedance cardiogram (ICG), and finally arterial blood pressure (ABP) measured 

at the finger from one subject [37]. 
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2.3.9 Cardiac waveforms 

Opening and closing the heart valves cause the cardiac sounds. Two main cardiac sounds, the 

first heart sound (S1) and the second heart sound (S2), can be extracted using phonocardiogram 

(PCG) [12]. 

Sudden closure of the AV valves causes cardiac vibrations and acoustic waves, which can be 

identified as the first sound of the heart (S1). As the Wiggers diagram, illustrated in Figure 10, 

immediately after QRS complex in the ECG, S1 happens. In addition, at the start of the 

isovolumetric relaxation phase, the aortic and pulmonic valves are closing. During  this time, the 

S2 happens, and also partial of the T wave in the ECG [12]. 

 
Figure 10 the Wiggers diagram of the cardiac cycles through the left ventricular 

contractions [37].  
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According to the Figure 10, the cardiac cycle events over the PCG and ECG are found very 

near to each other. Moreover, an upgraded adaptation of Wigger diagram which is proposed by 

Tavakolain et al. [45], suggested that cardiac events across t he SCG and ECG are recognized 

greatly near one another.Derived-Respiratory Techniques using Electromechanical Signals. 

2.4 Derived-Respiratory Signals Using ECG and SCG Signals  

2.4.1 Electrocardiogram-derived respiratory (EDR) signal 

Numerous studies have developed techniques to derive respiratory data from the recorded 

ECG, which is called ECG-derived respiratory (EDR) information. Some methods are based on 

respiration-induced variations in beat-to-beat morphology, and some others try to derive 

respiratory information from the Heart rate [46]. 

Respiratory-affected changes in the ECG emerge because of a few components. To begin 

with, the electrical impedance of the thorax varies due to variation in lung volume [47]. Second, 

the heart vector varies because of variation in the movement and location of the heart related to 

the ECG electrodes [48]. Third, heart rate varies because of respiratory-induced differs to the 

autonomic nervous system [49]. These variables offer the morphological changes in ECG features 

with respect to the breathing phases [50].  

The first study on the impact of breath-induced heart movement was by Einthoven et al. [51] 

and measured in more details in [52][53]. In addition, heart rate is modulated by the respiration in 

the same sort of increasing during inhale phase and decreasing during exhale phase [54].  

Moreover, in 1974, a method based on morphologic variations was proposed by Wang et al. 

[55] This method is based on the heart mechanics related to breath volume of the lungs. Rotation 

of the fundamental components of the vector cardiogram (VCG) also has been used to get the 
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respiratory information [56]. Moody et al. [57] suggested a technique based on changes in the 

direction of the electrical axis. In addition, principal component analysis (PCA) was applied to 

ECG signal, and the first principal component carried the respiratory information [46]. 

There are three methods to extract respiratory signals from ECG in association with window; 

independent lead method with fixed QRS data window; independent lead method with variable 

QRS data window; finally, dependent lead method with variable data window [58]. Mazzanti et 

al. [59] suggested a method to select the best lead(s) from multiple ECG lead and compute the 

EDR signal from variation in the QRS-area. However, some studies investigate measuring the 

EDR signal from a single-lead EDR algorithms [60][61][62].  

In addition to previous studies, respiratory signal also can be derived based on HR information 

[63]. Bialon et al. developed a robust method based on the rotation angles of the heart’s electrical 

axis to drive respiratory information during stress testing, when ECGs contain highly nonstationary 

noise and exhibit changes in QRS morphology [46].  

Brien el al. [8] provide a numerical comparison some methods to estimate respiratory signal 

from ECG, and the published method Behbehani et al. [64] used. Their results shows that 

estimating respiratory signal using single lead are more robust than methods based on the mean 

electrical axis. 

In 2012, Langley et al. proposed an algorithm to analyze ECG morphology variation using 

principal component analysis (PCA). Their conclusion was that correlation and coherence of PCA 

method were significantly larger in comparison to the RR algorithms [65]. Figure 11 illustrates 

different respiratory surrogate derive from ECG signal [ref]. The third PCAs provide a better 

estimation of respiratory signal. 



21 

In addition to previous studies to find a proper techniques to drive respiratory signal from 

ECGs, Widjaja et al. [66] estimated respiratory signal using kernel PCA (kPCA). Orphanidou et 

al. [67] proposed a novel method for estimating respiratory rate from the ECG which fuses 

frequency information from the two methods, respiratory sinus arrhythmia (RSA) or the R-peak 

amplitude (RPA) modulation of the ECG. Labate et al. [68] proposed two techniques of 

decomposition of the ECG signal into suitable bases of functions, such as the empirical mode 

decomposition (EMD) and the wavelet analysis. Finally, recent study [69] utilized an adapted 

independent component analysis (AICA) algorithm to obtain EDR signal, and extend the normal 

linear PCA technique based on the best principal component (PC) selection (APCA, adapted PCA) 

to improve its performance further. The results yield a statistically significant improvement 

between reference respiration and AICA, APCA and KPCA, respectively [69]. 

2.4.2 Accelerometer-derived respiratory (ADR) signal 

In addition to EDR, current sensor technology allows the progress of new kinds of portable 

and suitable ways to extract respiratory information, such as smart shirts, which can be an efficient 

process in hospitals. Accelerometer sensor is one of these sensors. Many studies took advantages 

of this sensor to extract cardio-respiratory information which is a great deal of information in 

healthcare monitoring.  

Accelerometer placed on the chest changes due to the periodical movement of the thorax 

caused by breathing. In the rest position, the accelerometer sensor computes the acceleration of 

gravity and reveals these periodical variation as the respiration [71]. 

Castiglioni et al. [72] established that sternal SCG signals can be divided into different 

frequencies band, low frequency components (<20 Hz) which is related to the cardiac output, and 

higher-frequency components (>20 Hz) that is originated from the heart sounds [73]. 
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Figure 11 Respiratory surrogate derived from ECG signals [70]. 

The ultra-low frequency (<1 Hz) variations of the SCG signal caused by movement of the chest 

wall is related to the respiration information [74][75]. In 2008, Tavakolian et al. [76] investigated 

the morphological variation in the SCG signal produced by respiration in the context of improving 

the procedure for averaging SCG heartbeats. Reinvou et al. [75] investigated feasibility and 

reliability of a sensor belt with a high-resolution accelerometer (capacitive 

Microelectromechanical systems (MEMS)) and an EMFit (Electroactive Ferroelectret) pressure 

sensor to measure the respiratory rate. Results showed that the reliability of the MEMS-based 

sensors was 90%. Moreover, the results shows the importance of the position of the sensor module 

on the chest [75].  

https://www.emfit.com/electroactive-ferroelectret-film/
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Hung et al. [71] designed several experiments in normal, apnea, deep breathing status and in 

vertical (sitting, standing), or horizontal (lying down) positions to find a method using SCG signal 

to identify some respiratory malfunction, for example during the obstructive apnea automaticall.  

Their results illustrated that there was a constant phase shift between accelerometer-derived 

respiratory signal and the reference respiratory belt signal, as the Figure 12 shows. This phase shift 

is small during deep breathing while it is larger in case of normal breathing.  

 

Figure 12 Phase shift between reference respiratory belt signal and accelerometer derived-respiratory 

signal [71]. 

In addition to single axis accelerometer sensor, the tri-axial accelerometer is used during the 

respiratory movements. Jin et al. [77] used tri-axial accelerometer to extract respiratory 

information. The results demonstrated that Hybrid-PCA, which is a combination of derived-

respiratory PCA-based method and “selecting the best axis-based” techniques, performs 

comparable to PCA and is able to determine the respiratory rate accurately [77]. They fuse axes in 

order to obtain the final derived-respiratory signal, as shown in Figure 13. 

There are several other studies which took advantages of accelerometer signal to extract 

respiratory information and derived-respiratory signal [73][78].  
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Figure 13 The simulated respiratory effort (left), its projection to the three axes of the accelerometer 

(middle), and reconstructed respiratory effort information by axes fusion (right) [77]. 

 

Pandia et al. [79] indicated that in addition to the time-domain techniques to analyze and 

classify respiratory variations in the SCG signal, the frequency-domain methods could also make 

corresponding information related to the respiratory modulation of the SCG [79]. In another study, 

in order to achieve more high-quality respiratory signals and to compensate the weakness of using 

a single accelerometer, Yoon et al. [80] fused results of an accelerometer with gyro sensor by using 

a Kalman filter. Finally, in the latest study, Vahid et al. used a machine learning based techniques 

to identify respiratory phases of heart beats using SCG. The SVM-based method shows that it 

could correctly identify 88% respiratory phases of heart beats in the testing data [81]. 
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CHAPTER 3                                                                               

METHODOLOGY 

In this chapter, we are going to discuss human subject dataset that is used in this thesis. Then, 

in the signal processing section, first pre-processing methods will be discussed, and then six 

different methods will be introduced, which were used to derive thirty different respiratory signals 

from lead II of ECG signal and 3D SCG signals.  In order to identify respiratory phases of heart 

beats, first, we need to define the beginning of inhale and exhale phase from reference respiratory 

belt signal and derived-respiratory signals. For this reason, two approaches were used. First, 

manual annotation of respiratory phases to evaluate the feasibility of detecting respiratory phases 

of heart beats. The second approach, which is vital for practical applications, is implementing 

automatic annotation of respiratory phases. The techniques utilized in this part will be discussed 

at the end of this chapter. 

3.1 Human Subject Protocol 

Twenty healthy male subjects with no known pulmonary or cardiovascular disease were 

recruited for this study (age 24.9±3.01, height 180.7±5.55 cm, and weight 78.9±8.82 Kg). Data 

from one recording from one of the subjects was not used for the analysis due to poor reference 

respiration belt signal. The details characteristics of each subject are shown in Table 1. The trial 

was performed twice for each subject, and each trial took 10 minutes with 1 KHz sampling 

frequency (total of 40 trials). The accelerometer sensor (Model: SCA610-C21H1A, Murata 
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Electronic) was mounted on the sternum using double-sided adhesive tape along x, y, and z axes. 

The accelerometer system was positioned about one centimeter above the xiphoid process. The 

respiration signal was measured using a respiration belt sensor (BN-RESP-XDCR, BIOPAC 

Systems Inc., US). The belt sensor was tightened around the body so that it did not resist breathing, 

but still it was too tight for of breathing recording.  

All measurements of healthy individuals were performed at Aalto University School of 

Electrical Engineering, Espoo, Finland in the spirit of Helsinki declaration. The study did not 

contain any intervention in the physical integrity of the test subjects, or any other features, needing 

an ethical review as considered by the National Advisory Board on Research Ethics in Finland. A 

written consent was received from each subject. Overall forty recording from twenty subjects were 

used for this study. In each recording, the reference respiratory belt signal, 3D accelerometer, and 

electrocardiogram signals were recorded for ten minutes. 

TABLE 1 Human subject details. 

Subject number Age Height Weight 

1 27 170 78.5 

2 20 178 82.5 

3 26 183 79 

4 27 186 88 

5 25 177 81 

6 23 178 92 

7 25 182 91 

8 29 187 75 

9 22 181 73 

10 27 182.5 82.5 

11 26 176 77 

12 23 187 100 

13 28 186 74.5 

14 23 175 68.5 
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15 22 181 68 

16 23 170 72 

17 19 177 65 

18 26 181 77 

19 26 188 72 

20 31 188.5 82 

Average 24.9 180.7 78.93 

STD 3.01 5.55 8.82 

 

TABLE 2 Respiration rate (RR) and beats per minutes (BPM) of every subject. 

 
Respiration 

Rate (RR) 

Beats per minutes 

(BPM) 

Respiration Rate 

(RR) 

Beats per minutes 

(BPM) 

Subject Number ref1 ref1 ref2 ref2 

1 7.7 56.1 7.55 61.2 

2 14.8 58.4 13.55 57.3 

3 ----- ----- 15.9 56.4 

4 12.95 57.6 11.1 55.7 

5 13.6 64.1 11.7 66.6 

6 10.45 60.6 14.3 64.9 

7 13.65 72.8 10.45 54.5 

8 14.15 45 16.95 50.1 

9 11.2 74.8 12.05 77.3 

10 8.25 52.9 10.55 53.7 

11 6.55 44.2 6.7 46.2 

12 11.9 75.7 11.25 58.7 

13 7.5 52.6 6.8 56.1 

14 7.5 61.6 8.15 59.2 

15 7.35 56.3 8.65 62 

16 17.25 75 13.4 58.8 

17 13.65 69.1 11.65 74.7 

18 11.85 59.5 14.4 57.5 

19 14.35 53.5 13.6 56.5 

20 14.4 50.5 16.9 56.7 

Avg. 11.65 59.6   

STD ±3.09 ±8.37   
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3.2 Signal Pre-processing 

In the preprocessing stage, raw signals were normalized to zero mean and standard deviation 

of one. Moreover, to subtract offset or trend of the signal, proper de-trending method was applied 

to the signals. The phase detection of reference respiratory signal was accomplished manually by 

two specialists, and as a result of this inspection, one trial of one of the subjects was discarded. 

3.3 Electromechanical-Derived Respiratory Signals 

The Signal Processing Toolbox of MATLAB™ was used for the signal processing purposes.   

3.3.1 Moody’s method 

As discussed in the chapter 2, Moody’s method was used in this study as one the common EDR 

signals (Appendix E). Moody’s method computes EDR signal from a given single-lead ECG 

signal, based on the signed area under the QRS complex and computed derived-respiratory signal 

using is titled as EDR_Moody. 

3.3.2 Principal component analysis (PCA)  

PCA is known as one of the popular dimensionality reduction or manifold learning methods. 

PCA has been used in analyzing SCG [82], as well as estimating respiration signal from 

electrocardiogram signal in many studies using linear or non-linear kernel [83]. This method aims 

to illustrate as much as of the variance in the data as possible by using only a few principal 

components. In this study, first principal component was used. To derive respiratory signal from 

electrocardiogram using the principal component algorithm, first, heart beats were segmented 

utilizing the R peaks (Appendix D). In the next step, heart beats were collected in the form of m×n 
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matrix, where m is the number of beats and n is the number of samples per beat. In the final step, 

principal component analysis was applied to the matrix to produce m principal component [83].  

In order to evaluate how many principal components is needed to derive respiratory signals, 

all the principal components is plotted which is shown in the figure 14. According to the figure 14, 

only principal component is enough to derive respiratory from ECG and SCG signals, since first 

component illustrates general shape of one heart cycle. Total 12 different EDR and ADR signals 

were computed using PCA method with linear kernel and nonlinear kernel such as polynomial and 

Gaussian kernels. For instance, deriving respiratory signal from SCGz using PCA with Gaussian 

kernel is called ADR_z_Gauss_PCA signal. 

 

Figure 14 principal components. 

3.3.3 Envelope detection 

Upper and lower envelopes  electrocardiogram and seismocardiogram data were calculated 

based on moving time window secant method. The secant method is a numerical technique that 

can be used to find the maximum slope within each time window [84]. In this method, time window 
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size was the control parameter and was set to a value which covered dynamic range for respiration 

range of adult human. Two second windowing was used for envelope detection.  

An envelope of the signal mostly corresponded to its respiration component. ADR was 

obtained by applying envelope detection method to SCG. Figure 15(a) shows the reference 

respiration signal. Figure 15(b) illustrates the SCG signals and its corresponding upper and lower 

envelope. By applying PCA or envelope detection method to ECG and SCG signals, ADR and 

EDR were obtained. Figure 16 shows respiration, ECG, SCG and estimated signals. Total 12 

different derived-respiratory signals were calculated using lead II of ECG and 3D SCG signals. 

For example, estimating respiratory signal from upper envelope of SCGx is called 

ADR_x_upper_Env signal. In addition to single axis ADR, also ADR in z and x direction were 

fused using equation (2); moreover, ADR in x, y, and z direction were fused using equation (3) to 

gain ADR_xz and ADR_xyz signals. Appendix C contains codes to compute lower and upper 

envelope of a given signal. 𝐴𝐷𝑅𝑥𝑧 =  √𝐴𝐷𝑅𝑥2 + 𝐴𝐷𝑅𝑧2                                                  (2) 𝐴𝐷𝑅𝑥𝑦𝑧 =  √𝐴𝐷𝑅𝑥2 + 𝐴𝐷𝑅𝑦2 + 𝐴𝐷𝑅𝑧2                                         (3) 
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Figure 15 (a) SCG signal with its upper and lower envelope, (b) dashed line is reference respiratory signal 

and solid line is upper envelope of SCG signal. 

 

Figure 16 (a) Representation of ECG (Lead II), (b) SCG in z direction, (c) respiration signal, (d) ECG 

signal after applying envelope detection method (EDR), and (e) ADR signal. 
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3.3.4 Derived-respiratory signals through R-peak amplitude interpolation 

Another method to derived-respiratory signals from ECG signal is through interpolation of 

the amplitude values of the R-peaks, since the ECG is modulated as an effect of respiration. This 

process creates two discrete-indexed vectors: one is containing R-peak occurrence times and the 

other is the R-peaks amplitude. The obtained derived-respiratory signal is called EDR_r_amp. 

3.3.5 Derived-respiratory signals through Ao-peak amplitude interpolation 

Since the SCG is modulated as an effect of respiration, another method to derive respiratory 

signals from SCG signal is through interpolation of the amplitude values of the Ao peaks. This 

technique is very similar to the previous method, the difference is that instead of using amplitude 

of R-peaks in ECG signal, amplitude of Ao-peaks from SCG signals in in three different direction 

of x, y, and z were used. To compute ADR_Ao_x, ADR_Ao_y and ADR_Ao_z, first a fixed 

window size of 300 millisecond was defined around each R-peak of ECG signal (150 ms before 

and after each R-peak). Then, all the Ao-peaks were detected inside the defined windows. Final 

stage was, performing linear interpolation through Ao-peak amplitudes. Table 3 listed all the 

twenty-nine estimated respiratory signals. 

3.4 Manual Annotation: Respiratory phase detection 

In order to assess the possibility of detecting the timings of respiration phases, the reference 

respiration signal and the estimated signals were manually annotated. The challenge of this process 

is that maxima and minima of the respiratory signal were not necessarily corresponding to the 

beginning of the exhale and inhale phases, respectively. Appendix A contains all the MATLAB 

coeds related to the derived-respiratory signals using ECG and SCG signals. 
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TABLE 3 List of derived respiratory signals from SCG signals in x, y, and z directions, and ECG signal. 

index Signal index Signal 

1 EDR_Moody 16 ADR_y_Poly_PCA 

2 EDR_r_amp 17 ADR_z_Poly_PCA 

3 ADR_Ao_x 18 EDR_lower_Env 

4 ADR_Ao_y 19 EDR_upper_Env 

5 ADR_Ao_z 20 ADR_x_lower_Env 

6 EDR_lin_PCA 21 ADR_x_upper_Env 

7 EDR_Gauss_PCA 22 ADR_y_lower_Env 

8 EDR_Poly_PCA 23 ADR_y_upper_Env 

9 ADR_x_lin_PCA 24 ADR_z_lower_Env 

10 ADR_y_lin_PCA 25 ADR_z_upper_Env 

11 ADR_z_lin_PCA 26 ADR_xz_lower_Env 

12 ADR_x_Gauss_PCA 27 ADR_xz_upper_Env 

13 ADR_y_Gauss_PCA 28 ADR_xyz_lower_Env 

14 ADR_z_Gauss_PCA 29 ADR_xyz_upper_Env 

15 ADR_x_Poly_PCA   

 

Another challenging feature of this process is the existence of multiple local minima and 

maxima. Therefore, a simple algorithm is not adequate. For this reason, the annotations were done 

using “find peaks” MATLAB function to detect beginning of the inhale and exhale phases. All the 

detected points were then visually inspected. Those that were not detected by the “findpeak” 

function, manually were added manually. The annotation of estimated respiratory signals (ADR 

and EDR) was done in absence of original respiration signal (reference signal) to avoid any biased 



34 

detection. Approximately, a total of 2,391 respiration phases were manually annotated from the 

reference signal.  

Figure 17, illustrates the respiratory phases of detection from reference respiratory signal, and 

ADRz signal using the envelope method. Based on visual observation, envelope detection method 

is selected as a proper technique to derive the respiratory signal from SCG signals. 

 

Figure 17 Respiratory phases detection. Dashed and solid signals illustrate the reference respiration signal 

and the ADRz using the envelope detection method respectively. 

3.5 Automatic annotation: Quality Estimation of Signals  

3.5.1 Total harmonic distortion (THD)  

To find respiratory phases of the heart cycle, either the upper or lower envelopes of the SCG 

signal can be used. However, the quality of lower envelope and upper envelope are not the same. 

For instance, lower envelope of the SCG signal in a subject can demonstrate a decent correlation 

with reference respiratory signal; whereas, upper envelope may have poor correlation.  
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The correlation between the respiratory signal and SCG upper/lower envelopes may vary in 

different subjects. To select the most correlated envelope (upper/lower) to the reference respiration 

signal, the total harmonic distortion (THD) factor has been used as a quality metric to choose 

between upper or lower envelope of SCG signal. 

In this study, many methods and factors have been used, such as norm, signal to noise ratio 

(SNR), dynamic range, dynamic time wrapping (DTW), respiratory rate, cross correlation, and 

total harmonic distortion (THD). Amongst all, THD factor has shown acceptable results. 

Therefore, THD has been used as a quality metric to evaluate quality of lower and upper envelopes 

of SCG signals, which are denoted as respiratory signals ADRlower and ADRUpper, respectively.  

THD of a signal is defined as the ratio of the sum of all harmonic components to the power of 

fundamental frequency [85]. The THD concept was first used to characterize the quality of audio 

signals. For a given signal y the THD is defined by the following equation (1):  

𝑇𝐻𝐷 =  ∑ ℎ𝑎𝑟𝑚𝑜𝑛𝑖𝑐𝑠∞2𝐹𝑢𝑛𝑑𝑎𝑚𝑒𝑛𝑡𝑎𝑙 = 20 log (√∑ |𝑐𝑛|2∞𝑛=2|𝑐1|2 )                                      (1) 

where c𝑛 represents the harmonic content in an alternating signal, and 𝑐1 represents the 

fundamental frequency of the signal. First five harmonics utilizing a modified periodogram of the 

same length as the input signal was used. In bio-signals the lower THD means that the processed 

signal is a more accurate reproduction of the recorded signal [86]. Therefore, the curve with lower 

THD is more desirable. 

3.5.2 Machine Learning Approach 

Another method that has been used as a quality metric to select proper estimated respiratory 

signal is a method based on machine learning techniques. In this morphological-based application, 

the quality of estimated respiratory signals can be deteriorated due to body movements and other 
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artifacts; therefore, the derived respiration signals from 3D accelerometer and ECG sensors can 

vary from subject to subject. It was shown in the previous section that there is no solid feature as 

a quality metric that always can detect the best-estimated respiration signal in each segment of the 

recorded data. Therefore, we are investigating the possibility of using a properly trained 

classification method to classify the quality of estimated respiratory signals in each segment based 

on extraction of some specific features.  

3.5.2.1 Data segment length 

The first step is determining length of signal that need to estimated its quality. For this reason, 

the performance of respiratory heart identification of heart cycles was computed for various 

segment lengths of the each derived-respiratory signal. Segment sizes of thirty seconds, one 

minute, two minutes, 5 minutes and the 10 minutes (the complete data length) were been examined 

to determine the proper segment length. Thirty nine recordings from twenty subjects were used for 

this study. This means the total number of signals that need to determine their quality is 39 

(recording) × 5 (two-minute segment length data) × 29 (estimated respiratory signal) = 5655. The 

reason that two minute data segments were used, will be described in the result section. 

3.5.2.2 Labeling 

Accuracy of respiratory heart cycle detection was used to label all the 5655 signals to either 

zero or one. In other words, this is a binary classification. If the accuracy of respiratory phase 

identification of heart cycles in a signal is greater than 70%, that signal was defined as label 1; 

otherwise its label is zero. By utilizing this procedure, six electromechanical-derived respiratory 

signals were selected among twenty-nine signals for further processing. In other words, six signals 

were recognized as robust signals which their accuracy were higher than other signals. Now to 

estimate quality of these six selected derived-respiratory signal in each thirty-nine recording, the 
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proposed machine learning approach was used. Different steps of this techniques is described in 

the figure 18.  

 

Figure 18 Block diagram of proposed method using machine learning as a quality factor finder of estimated 

respiratory signals. 

3.5.2.3 Feature extraction and classification 

Several physiological-related features in time and frequency domains, including respiratory 

rate (RR), dynamic range, total harmonic distortion, and power spectral density, were extracted 

from each signal. Then support vector machine (SVM) was used as a multilevel signal quality 

classification algorithm to distinguish these signals.  

3.6 Automatic Annotation: Respiratory Phase Detection 

In Section 3.4, a manual annotation method was used to detect start of the inhale and exhale 

phases in reference respiratory, EDR, and ADR signals. However, in practice, where the 
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respiration signal is recorded for the minimum of 2 minutes, an automated phase detector is 

needed. Therefore, in this study, beginning of inhale and exhale phases of derived-respiratory 

signals were estimated automatically.  

Before phase detection, time lag of four signals, subject 17, 18, 19 in the first set of recordings, 

and subject 11 in the second set of recordings were computed with respect to the reference 

respiratory signal. Subsequently, the computed signal was shifted to be synchronized by the 

reference respiration. This was done because these signals had a constant delay in comparison to 

the reference respiratory signal. This delay might have happened due to not accurate 

synchronization process.  

In the first step, a MATLAB built-in function for automated annotation was used to find the 

maximum and minimum of the estimated respiratory signals. The peaks in a respiratory signal 

represents the start of the exhale phases and valleys represents start of inhale phases. In some cases, 

the local peaks/valley were also detected, which affected the accuracy of the analysis. Therefore, 

to improve the accuracy of the correlation, two criteria were used to remove the unwanted 

peak/valley points as follows:  

 Ignoring the peaks/valley points that were very close to each other. The acceptable peak-

to-peak separations were restricted to the values that are greater than N seconds (this value 

is equal to the window used to detect the envelope of SCG signal). In other words, the 

highest peaks in the signal that were separated by at least N seconds were chosen and all 

the peaks with less than N seconds separation were eliminated.  

 Removing signals that do not drop by M% of their maximum. Signals must decrease to at 

least M% of the peak on each side before the signal starts to increase again, Otherwise, 

the signal was removed.  
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In this thesis, based on the data set that is used, values of 2.0 and 40 were chosen for N and 

M parameter respectively.  By using these two criteria, many local minimum and maximum points 

are eliminated. 

In the second step, the flat peaks are corrected. In some cases, peaks are flat, where the peak 

value is repeated a few times. In this case, the starting point of the flat part of the signal is selected 

as a peak. To accomplish this process, the amplitude of all detected peaks was compared to their 

adjacent points. If the amplitude difference between two consecutive points is less than 0.1% (1 

mV in this work), then first detected point will be considered as the peak. This procedure will 

continue until the difference between amplitudes of all adjacent peaks is higher than 1 mV.  

To define the respiratory phases of heart cycles, two points are needed: (1) the beginning of 

inhale phase (or end of exhale phase) and, (2) end of inhale phase (or beginning of exhale phase). 

Sometimes, more than one valley is detected between peak-peak interval due to the morphology 

of estimated respiratory signal. Therefore, the third step is needed for valley point’s correction. To 

take the corrective action, one technique is to estimate the ratio of involuntary exhale duration 

versus involuntary inhale duration. In a rhythmic breathing pattern, this ratio is less than 2 and 

greater than 1; also in athletes this ratio could increase to 2 [87].  

All the peak-peak intervals were divided to three equal subinterval. In this procedure, based 

on the breathing physiology, the first priority is to find the points that are located in the middle 

segments, where the breathing ratio is more than 1 and less than 2. The second priority is to find 

valley in the last interval, where breathing ratio is more than 2. Finally, if we couldn’t find any 

valleys in those intervals, valleys of the first interval (breathing ratio of less than 1) will be 

considered. If in each interval, more than one valley were detected, mean of those valleys were 
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considered as the valley point. If no valleys were found between a specific peak-to-peak intervals, 

then the second peak was removed. Figure 19 illustrated this procedure.  

 

Figure 19 Block diagram of automatic respiratory phase detection. 

3.7 Respiratory Phase Identification of Heart Cycles 

After finding the beginning of the inhale and exhale phases manually or automatically, the 

heart cycles that are happening during the inhale and exhale phases must be identified. To achieve 

this, first R peaks of all heart cycles were detected using the simultaneously recorded lead II of 

ECG signal. In this procedure, the R peaks are selected as the surrogate of the complete heart 

cycles. The reason for this selection is that if a heart cycle lies between the inhale and exhale 

phases, the decision on the respiratory phase identification should be made based on the location 

of R peak.  

By continuing this procedure for all the other peaks and valleys, all the heart cycles will be 

labeled to either inhale or exhale phase. The peaks and valleys of reference respiratory signal were 

used to mark heart cycles as true labels. Finally, the label of heart cycles using derived-respiratory 

signal was compared to true labels, and accuracy of respiratory phase detection of heart beats was 

computed. Appendix B include codes related to this section.
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CHAPTER 4                                                                                               

RESULTS AND DISCUSSION 

 

In this chapter, the results were divided to results of manual and automatic annotations of 

respiratory phases, respectively. In the manual annotation section, results of detecting beginning 

of inhale and exhale phases from each derived-respiratory signal, the effect of window size around 

each phase of reference respiratory signal and the average accuracy of discrimination of heart 

cycles to inhale and exhale phases were described. In the last section of the manual annotation, 

results of fusing ADR and EDR signals, in decision level, were defined. Fusion were used in order 

to improve the performance of detecting the beginning of respiratory phases. These results 

consider ideal case, since fusion is performed in the presence of a reference respiratory signal; 

while, in the real application, all the procedure should be in the absence of reference signal. 

Therefore, for a practical reasons, we need an accurate automatic technique. Results of the 

proposed automatic method are described after results of manual annotation. 
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4.1 Manual Annotation  

4.1.1 Respiratory phase detection 

Respiratory phases (inhale and exhale) were identified in ADR and EDR signals by use of 

respiratory signal recorded using a chest band strain gauge. We defined a window around peaks 

and valleys of the reference signal, to find their corresponding on estimated signals. Depending on 

the width of this window, different detection accuracies were obtained. The “true positive” was 

defined as the number of peaks and valleys that were detected from estimated signal over total 

number of inhale and exhale phases in the reference respiration signal. Likewise, the “false 

negative” was defined as the ratio of number of start points that estimated signal did not recognized 

them over total number of inhale and exhale phases in the reference respiration signal.  

In this study we computed “sensitivity” for each subject for different window sizes to find a 

proper window size. Window sizes of 1.0, 1.5, 2.0, 2.5, 3.0, 3.5 seconds were examined. Average 

sensitivity for first recording of nineteen subjects (subject 1-20 except subject 3), is shown in the  

figure 20. 

 

Figure 20 Effect of window size on the respiratory phase detection from ADR signal in z direction using 

envelope detection. 
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4.1.2 Timing analysis 

Another factor to evaluate the performance of ADR and EDR is the error in timing of ADR 

driven breath cycles (inhale and exhale) in comparison to the breath cycles extracted using the 

respiration signal (respiratory signal recorded using a chest band strain gauge). In other words, 

how much of a typical breath cycle was wrongly associated to the adjacent breath cycle. 

Average heart rate, and breathing rate for all nineteen subjects were 60 and 12 per minute, 

respectively. Therefore on average there were five heartbeats per respiration cycle for the nineteen 

subjects. A typical breath cycle, corresponding cardiac cycles and time difference between 

reference peaks and detected peaks, from ADR signal, is shown in the figure 21. 

 

Figure 21 Cardiac cycles in each respiration phase. The solid line is the reference respiration signal and 

dashed line is the ADR signal. 

Timing analysis for the 3.0 second window size (1.5 second before and after the peak or valley 

point) was performed to establish truly identified (reliable) portion of breath cycles in the ADR, 

in z-direction. The reliable percentage of respiration phases were about 87.8% for the exhale 

phases, and 86.1% for the inhale phases.  

We also computed the accuracy of labeling heart cycles of the inhale or the exhale classes 

using estimated respiratory signals (ADR, EDR using envelope method). As table 4 shows both 
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up and down envelope methods were applied to the signals. Moreover, to compare our approach 

to previous studies [82], PCA method was performed for EDR, once with negative polarity and 

once with positive polarity. EDR signal with negative polarity is the inverted form of regular EDR 

signal using PCA method. 

Best result between up and down envelope was chosen for each subject, and then the average 

of these results was reported in the last column of table 4. Likewise, for EDR using PCA method, 

last column is showing the best result of positive and negative polarity. 

The reference respiration signal and the derived signals were hand annotated for respiration 

phase detection. Based on our initial observation, envelope detection method is a proper method 

to derive respiratory signal in addition to PCA method. Moreover; ADR can be an alternative way 

to detect and estimate breath cycles.  

TABLE 4 Average accuracy of discrimination of heart cycles to inhale and exhale phases in respiratory 

signal. 

Estimated Signal Up Envelope Down Envelope Best Result  

ADR_z 61.1% 69.9% 76.0% 

EDR 66.7% 46.1% 67.2% 

 Positive Polarity Negative Polarity Best Result 

EDR_PCA 56.9% 59.1% 61.3% 

 

The initial results suggest that ADR in z direction, using envelope method with a window size 

of 3.0 seconds has the sensitivity of about 85% for detection of breath cycles. About 87% of breath 

cycles extracted from ADR had acceptable time lag compared to the ground truth (respiratory 

signal recorded using a chest band strain gauge). This means that if on average 6% of initial and 

6% of final part of each detected respiration phase segment were removed the remaining is 

correctly assigned to the right respiration phase.  
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In addition, according to the table 4, ADR in z direction using envelope method achieved 76% 

accuracy to discriminate heart cycles to the inhale or exhale phases. Among data from 19 subjects, 

three of them showed poor performance in this classification. By excluding these three subjects an 

accuracy of about 80% can be achieved. In these three subjects we saw irregular time interval 

patterns and dynamic range was low. This could be due to the location of sensors or anatomy of 

subjects, since EDR signal using envelope method had better performance for these three subjects. 

Thus, fusion of ADR and EDR signals can be a solution for low amplitude signals, such as those 

from these subjects. We also can conclude that if the dynamic range of estimated signal is lower 

than a specific value (threshold), the performance will be unsatisfactory.  

The next step was to fuse ADR and EDR signals in decision level to improve performance of 

detecting beginning of inhale or exhale phases.  

4.1.3 Fusion of ADR and EDR Signals 

 In this techniques, to detect respiratory phases and find their corresponding peaks of 

estimated signals, we defined a window around each peak and valley of the reference signal. 

Depending on the width of this window, different detection accuracies were obtained. To fuse 

outputs (detected phases) of estimated signals, and to improve the overall robustness of the results, 

we defined four labels for four different conditions of phase estimation: 

 Label 3: when both ADR and EDR detected a respiratory phase inside the defined window;  

 Label 2: when only EDR detected the phase;  

 Label 1: when phase was found only from ADR;  

 Label 0: when neither the ADR nor EDR signals could estimate the respiration phase.  

Table 5, shows the mean accuracy of phase detection with 3.0 second window size (1.5 second 

before and after the start of a phase) for four different conditions. 
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Mean voting fusion, one of the most commonly-used methods for fusing different 

physiological signals [88], was used when the phase detection condition was labeled 3. In other 

words, if both ADR and EDR have a peak with distance of less than 1.5 second (3.00 window size) 

with a reference peak, which this condition is defined as label 3, we performed mean voting fusion 

to the estimated peaks from ADR and EDR. If only one of the ADR or EDR signals had the desired 

peak (a peak with distance of less than 1.5 second with a reference peak), which is defined as label 

2 or label 1, that single peak was considered as the detected peak. 

TABLE 5 Mean performance accuracy for four different phase detection. 

Respiratory Phase Label 3 Label 2 Label 1 Label 0 

Exhale (%) 73.05 12.64 12.67 1.63 

Inhale (%) 66.38 17.27 12.81 3.54 

 

Consequently, sensitivity of the phase detection was computed for each subject. Table 6, 

shows the mean sensitivity of phase detection using EDR, ADR, and fusing output of ADR and 

EDR signals. 

 

TABLE 6 Sensitivity of respiratory phases detection in individual estimated respiratory signals and fusion 

of them. 

Respiratory Phase ADR EDR Fusion of ADR and EDR 

Exhale (%) 85.94 85.93 98.37 

Inhale (%) 82.36 83.75 96.46 

 

As shown in the table 5, the mean sensitivity of respiratory phase detection by both ADR and 

EDR is 73.05% for exhale phase and 66.38% for the inhale phases. The sensitivity when only one 

of the estimated respiratory signals could detect the phase, was about 12.6% for the exhale phases. 
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This indicates that capability of ADR and EDR to estimate respiratory signal and detect inhale and 

exhale phases is similar. Therefore, to perform weighted averaging fusing to phases which were 

detected from ADR or EDR, weights for both should be 0.5. As table 6 illustrates, results of fusion 

of estimated signals outperformed the individual ADR or EDR signal. 

Since the reference respiratory belt signal was used in detection procedure, capability of fusion 

of ADR and EDR signals evaluated in ideal case. The main goal was to find a proper surrogate to 

detect the respiratory phases (inhale and exhale phases). Therefore, our next step is evaluation of 

fusing estimated signals in absent of reference respiratory signal by using proper quality estimator 

of estimated respiratory signals. 

4.2 Automatic Annotation 

4.2.1 Total harmonic distortion 

As explained in the Chapter 3, total harmonic distortion was utilized as a quality metric of 

envelope detection. This parameter is used in two different ways: global THD, and piecewise THD. 

In global THD, THD of whole ADR signal was computed, and in piecewise THD, in each 1-minute 

segment of ADR, THD was calculated. Then the average of all values was used as the quality 

metric. The accuracy of piecewise THD in the selection of correct envelope of SCG signal was 

84.6% while the accuracy of global THD was 71.8%. Therefore, piecewise THD was used to 

further processing.  

In five subjects, subject 10, 11, and 13 in the first trial and subject 7, and 17 in the second 

trial, ADR signals were not well correlated to the reference respiratory. In other words, their phase 

identification results were lower than chance level (50%). This caused to have an overall lower 

accuracy for respiratory phase identification. As shown in figure 22, to remove these subjects 
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before further processing, the values of piecewise THD in all subjects were observed. Resutls 

shows THD values of these signals was lower or equal to -5.0 in either ADRlower or ADRUpper 

signal. We used this threshold to remove undesired signals.  

 

 

Figure 22 Piecewise total harmonic distortion. The pattern dotted color is ADRlower and the solid color is 

ADRUpper. (a) THD values in all subjects in the first recording, (b) THD values in the second recording. 

4.2.2 Machine learning approach 

Another approach to estimate quality of derived-respiratory signal in each recording of each 

subject, is to use a proper classification method. To reduce the number of estimated respiratory 

signal from 29 to 6 signals in each segment, performance of respiratory phase identification of 

heart beats of all estimated signals were evaluated in each segment and the maximum accuracy in 

each segment was calculated. The histogram of all the maximum accuracies and label of maximum 
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accuracies that shows their corresponding estimated respiratory signals, are illustrated for different 

segment length of the data in the Figures 23-26. 

   

(a)           (b) 

Figure 23 (a) Maximum accuracy of respiratory phase identification of heart cycles in 30 seconds data 

segments, (b) index of signals that has maximum accuracy in part (a). 

 

(a)                  (b) 

Figure 24 (a) Maximum accuracy of respiratory phase identification of heart cycles in one minute data 

segments, (b) index of signals that has maximum accuracy in part (a). 
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(a)                          (b) 

Figure 25 (a) Maximum accuracy of respiratory phase identification of heart cycles in two minutes data 

segments, (b) index of signals that has maximum accuracy in part (a). 

 

(a)                          (b) 

Figure 26 (a) Maximum accuracy of respiratory phase identification of heart cycles in ten minutes data (the 

whole data), (b) index of signals that has maximum accuracy in part (a). 
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As can be seen form the figures 23-27, the minimum segment length required to find six robust 

derived-respiratory signal, is two minutes and the six robust derived-respiratory signals were 

shown in the Table 7. 

TABLE 7 Selected derived-respiratory signals for further processing. 

Selected derived-respiratory signal Index 

ADR_y_lower_Env 22 

ADR_y_upper_Env 23 

ADR_z_lower_Env 24 

ADR_z_upper_Env 25 

ADR_x_lower_Env 20 

ADR_xz_lower_Env 26 

 

In an ideal case, results of classification of the selected six signals to either zero or one is 

100%. Results show that in a perfect case, by using signals with predicted label 1 in each segment 

data, the overall performance of respiratory phase detection of heart cycles will be greater than 

90%. Therefore, the potential of using machine learning as a quality estimation of respiratory 

signals to detect respiratory phases of heartbeats is more than 90%. 

Several feature extraction methods were used, and many classification methods were 

considered, such as linear SVM, Kernel SVM, decision tree, and K-nearest neighbor (KNN). 

However, the best accuracy of classification was 72.6% using linear SVM, which indicates that 

current classification method is not a promising way to improve the morphological-based phase 

identification of heart cycles. 
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4.2.3 Respiratory Phase Identification of Heart Cycles 

The final step in our analysis is the automatic detection of respiratory phases of the selected 

ADR signal. By marking the beginning and the end of inhalation and exhalation phases, we defined 

which heart cycles happened in the exhale phase and which happened in the inhale phase. Table 8 

shows the result of defining respiratory phases of heart cycles.  

First column of the Table 8, which is defined as “Best Results”, is the results when proper 

envelope of SCG signal was selected manually. Second column is results when signal was selected 

using piecewise THD. As mentioned before, the piecewise THD technique was introduced as a 

quality factor to specify the quality of the lower and upper envelopes of the ADR signal, derived 

from SCG, and to select the superior ones. The last two columns are the results when we used 

either the lower or the upper envelope of SCG signal (ADRlower and ADRUpper). 

Results confirmed that the automated respiratory phase detection results in over 77% of 

accuracy in overall identification of heart cycles respiratory. The results show that there is a small 

difference between results of phase identification using piecewise THD, 77%, and “Best Results” 

which was 79%. 

 

Table 8 Respiratory phase identification of heart cycles using ADR signal. 

 Best 

Results 
Using Both Upper and 

Lower Envelopes 
Using Lower 

Envelope 
Using Upper 

Envelope 

Mean 79.19% 77.22% 63.52% 73.65% 

STD 10.25 10.88 18.39 16.62 
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CHAPTER 5                                                                                     

CONCLUSION AND FUTURE WORK 

In this thesis, feasibility of defining respiratory phases of heart cycles using electromechanical 

signals (ECG) and 3D SCG signals, were investigated. Total twenty-nine different derived-

respiratory signal were estimated using six different methods. Among them, the envelope detection 

method was selected to estimate surrogate of respiratory signal from the accelerometer. Manual 

and automatic techniques were used to detect respiratory phases of derived-respiratory signals. 

Fusion of ADR and EDR signal in presence of reference respiratory signal, the ideal case,  shows  

significant improvement, about 98% total accuracy in detecting beginning of respiratory phases.  

Recording different signals simultaneously with many electrodes and sensors, often suggests 

bad-contacts especially when using gel. These signals are so-called 'outliers'. In our study, among 

39 recording, five trials had low-quality ADR signal. In these trials, irregular time interval patterns 

and low dynamic range were observed. These could be due to the location of sensors or anatomy 

of subjects. THD thresholding was used to remove undesired signals from further processing. In 

addition, THD piecewise method was used as a quality metric to select between upper and lower 

envelope in each recording. By using aforementioned methods, THD thresholding and piecewise 

THD, the ability of accelerometer-derived-respiratory (ADR) signal to detect respiratory phases 
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of heart cycles is increased by about 4% compared to using only upper envelope (ADRUpper) and 

14% compared to using only lower envelope (ADRlower).  

To apply this morphological approach in practical application, first size of the buffer which 

shows recording time, needs to be defined. For example if the size of buffer is two minutes, 

analyzing acceleration signal to identify respiratory phases of cardiac cycles will be done every 

two-minutes, offline. In other words, there will be always short delay to show the results of 

recorded signal. This delay depend on the length of the recorded signal. During this delay, first 

ADR signal will be computed using envelope detection. THD thresholding will be used to estimate 

the quality of the signal, then piecewise THD will be used to select between ADRlower and 

ADRUpper. In the next step, beginning of respiratory phases of ADR will be defined automatically. 

Finally by having location and timing of R-peaks from ECG signal, we are able to discriminate 

heart-beats of inhale from exhale phase. 

The limitations and drawbacks of this study and suggestions as future work to resolve them, 

are as followings: 

 Using  data of only young male subjects. To assure that proposed method is working for 

different subjects in different conditions, testing the algorithm on  different male/female 

subjects with different health conditions is necessary. 

 Defining  window size for the envelope detection, covering dynamic range of respiration in 

each subject. To solve this limitation, first thirty seconds or first one minute of each recording 

from a subject can be used to annotate respiratory phases of ADR manually, then computed 

respiratory rate can assigned as the window size in envelope detection method.  

 Delay between ADR and the reference respiratory belt signal. This delay can be due to the 

location of sensors or anatomy of subjects. Regarding improving the quality of ADR signal, 
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we suggest placing single axis accelerometer sensor in z direction on the chest instead of three-

dimension accelerometer sensor.  

 Due to the sensitivity of accelerometer sensor to movements, the proposed method can be used 

only in supine resting position.  

 Another drawback is that accuracy of the proposed automatic respiratory phase detection is not 

100%. In other words, some peaks or valley points corresponding to the beginning of exhale 

and inhale phases respectively, can be missed and this yields lower accuracy in defining 

respiratory phases of heart cycles.   

 The THD assumes that most of the respiratory power is concentrated at fundamental frequency. 

In pathological conditions, like sleep disorders, this is not the case. Therefore, one future trend 

for this study is to find a quality metric and a technique to fuse ADR and EDR signals to 

improve detection of heart cycles related to inhale or exhale phases. Our collaborate at 

University of British Colombia (UBC), works on precordial acceleration signals analysis for 

identifying the respiratory phase of cardiac cycles using machine learning approach. In his 

approach, each heart cycle divided to some bins in both time and frequency domains and the 

task performed in three different scenarios: (i) Atlas based, (ii) patient-specific, and (iii) 

combination of them. Then, the results of classification compared with ground truth which 

computed using manual annotation described in the chapter 3. Although his results were higher 

than morphological approach, it needs to train the classifier with a big dataset including 

different subjects with different respiratory rate in order to have a sufficient performance.  
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5.1 My Contribution 

My contribution to this research was to develop an algorithms to estimate respiratory signal 

using SCG , automatic detection of respiratory phases of heart beats and determination of 

feasibility of identifying respiratory phases of seismocardiogram signal. As a result of research 

conducted in this thesis, the following scientific papers were published/prepared: 

 

1. Vahid Zakeri, Alireza Akhbardeh, Nasim Alamdari, Reza Fazel-Rezai, Kouhyar 

Tavakolian. "Precordial Acceleration Signals Analysis for Identifying the Respiratory 

Phase of Cardiac Cycles." Biomedical Engineering, IEEE Transactions on, 2016. 

(submitted) 

2. Nasim Alamdari, Kouhyar Tavakolian, Reza Fazel-Rezai, Mikko Paukkunen, Raimo 

Sepponen, and Alireza Akhbardeh. "Using electromechanical signals recorded from the 

body for respiratory phase detection and respiratory time estimation: a comparative 

study." Computing in Cardiology 2015. 

3. Nasim Alamdari, Alireza Akhbardeh, Kouhyar Tavakolian, Vahid Zakeri, and Reza 

Fazel-Rezai. "Fusion of electrocardiogram and accelerocardiogram derived respiration 

methods for estimation of respiratory phases," Journal of Medical Devices, vol. 10, no. 2, 

p.020928, 2016. 

4. Nasim Alamdari, Alireza Akhbardeh, Kouhyar Tavakolian, Vahid Zakeri, and Reza 

Fazel-Rezai. "A Morphological Approach to Detect Respiratory Phases of 

Seismocardiogram" 38th Annual International Conference of the IEEE Engineering in 

Medicine and Biology Society (EMBC). IEEE, 2016. (accepted for presentation)
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APPENDIX A  

Appendix A contains the MATLAB® of all methods to drive respiratory signals from ECG and 

SCG signals. 

function [All_Signals_dTrend, R_peak] = EstimatedSignals_All (ECG, SCG_x, 
SCG_y, SCG_z, resp,fs, envelopeWindowSize) 
  
  
%% G.Moody method to find the EDR  
% Beat Detection (R wave peaks) 
% Inputs:  S       ecg signal data 
%          fs      sample rate 
% OUTPUT: QRS     fiducial points of qrs complexes 
signal                                    = ECG; 
R_peak                                    = nqrsdetect(signal,fs); 
R_ams                                     = ECG(R_peak); 
RR_intervals                              = diff(R_peak); 
%*********************** 
  
% check if signal is upside-down 
if mean(ECG(R_peak))<mean(ECG) 
    ECG                                   = -ECG; 
end 
  
%*********************** 
r_peaks                                   = R_peak/1000; 
data_type                                 = 0; % 0 --> if Matlab file 
EDR_M                                     = 
edr_GMoody(data_type,signal,r_peaks,fs,[],[],[],[],[]); 
% EDR_Moody                               = EDR_M (:,2); 
EDR_Moody                                 = 
resample(EDR_M(:,2),length(ECG),length(EDR_M(:,2))); 
EDR_Moody                                 = EDR_Moody(:); 
EDR_Moody                                 = (EDR_Moody-
mean(EDR_Moody))/std(EDR_Moody); 
All_Signals(:,1)                          = -EDR_Moody; 
  
  
%% Beat Collection From ECG Signal 
numberOfBeats                             = size(R_peak,1); 
  
for no_dims= 2:numberOfBeats 
    RR_interval(no_dims-1)                = R_peak(no_dims) -  
R_peak(no_dims-1); 
end 
  
minRR_interval                            = min (RR_interval); 
if rem(minRR_interval,2) ~= 0 
    minRR_interval                        = minRR_interval+1; 
end 
windowSize_ecg                            = minRR_interval; 
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% Creating m*n Matrix which m corresponding to the number of beats and n 
% corresponding to the number of samples per beat. 
Matrix_pca_ecg                            = zeros (numberOfBeats, 
windowSize_ecg); 
for no_dims= 1:numberOfBeats 
    Matrix_pca_ecg (no_dims,:)            = ECG(R_peak(no_dims)-
(windowSize_ecg/2):(R_peak(no_dims)+(windowSize_ecg/2)-1))'; 
end 
  
%% %% R-amp based resp estimation 
gain = 10; 
timeVec                                     = 1:length(resp); 
polarity                                    = -1; 
%estimated_resp_R_amp                       = 
interp1(timeVec(R_peak),R_ams,timeVec); 
EDR_r_amp                                   = 
resample(R_ams,length(ECG),length(R_ams)); 
EDR_r_amp                                   = polarity*gain*(EDR_r_amp-
nanmean(EDR_r_amp)); 
EDR_r_amp                                   = EDR_r_amp(:); 
All_Signals(:,2)                            = EDR_r_amp; 
%% Beat Detection (Ao wave peaks in SCG signal) 
  
dir                                         = 1; 
for scgData                                 = [SCG_x, SCG_y, SCG_z]; 
    Ao_amp                                  = []; 
    Ao_Location                             = []; 
    for no_dims                             = 1:numberOfBeats 
        %window_scg (i)                     = scg_z ((R_peak(i)-150) : 
(R_peak(i)+(150)-1)); 
        [timePoint, value]                  = max (scgData ((R_peak(no_dims)) 
: (R_peak(no_dims)+(200)-1))); %window size is 300 ms, 150 ms before and 
after R peak 
        timePoint                           = timePoint + R_peak(no_dims); 
        Ao_amp                              = [Ao_amp, value]; 
        Ao_Location                         = [Ao_Location, timePoint]; 
    end 
    %%%%%% Beat Collection from SCG Signal 
    Ao_amps{dir}                            = Ao_amp; 
    Ao_Loc{dir}                             = Ao_Location; 
     
     
    numberOfBeats                           = size(Ao_Loc{dir},2); 
    for no_dims                             = 2:numberOfBeats 
        Ao_interval(no_dims-1)              = Ao_Loc{dir}(no_dims) -  
Ao_Loc{dir}(no_dims-1); 
    end 
     
    minAoAo_interval                        = min (Ao_interval); 
    if rem(minAoAo_interval,2) ~= 0 
        minAoAo_interval                    = minAoAo_interval+1; 
    end 
    windowSize_scg                          = round(minAoAo_interval); 
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    % Creating m*n Matrix which m corresponding to the number of beats and n 
    % corresponding to the number of samples per beat. 
    Mat_pca_scg                             = zeros (numberOfBeats, 
windowSize_scg); 
    for no_dims                             = 1:numberOfBeats 
        Mat_pca_scg (no_dims,:)             = scgData( (Ao_Loc{dir}(no_dims)-
(windowSize_scg/2)):(Ao_Loc{dir}(no_dims)+(windowSize_scg/2)-1))'; 
    end 
    Matrix_pca_scgZ{dir}                      = Mat_pca_scg; 
    dir                                     = dir+1; 
end 
  
%% %%%%% Ao-amp based resp estimation 
Ao_ADR_x                                    = 
resample(Ao_amps{1},length(SCG_x),length(Ao_amps{1})); 
Ao_ADR_x                                    = Ao_ADR_x(:); 
All_Signals(:,3)                            = Ao_ADR_x; 
  
Ao_ADR_y                                    = 
resample(Ao_amps{2},length(SCG_y),length(Ao_amps{2})); 
Ao_ADR_y                                    = Ao_ADR_y(:); 
All_Signals(:,4)                            = Ao_ADR_y; 
  
Ao_ADR_z                                    = 
resample(Ao_amps{3},length(SCG_z),length(Ao_amps{3})); 
Ao_ADR_z                                    = Ao_ADR_z(:); 
All_Signals(:,5)                            = Ao_ADR_z; 
  
%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Principal Component Analysis 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
no_dims                                     = 1; % use PC 1 for resp signal 
estimation; PCs 2, 3, etc are variant of resp but deformed. 
polarity                                    = -1; % resp signal provided in 
this example has opposite polarity compared to signal S: LeadII 
[mapped_ecg, mapping_ecg]                   = 
compute_mapping(Matrix_pca_ecg', 'PCA', no_dims); 
gain_pca                                    = 100; 
EDR_lin_PCA                                 = 
resample(mapping_ecg.M(:,no_dims),length(ECG),size(mapping_ecg.M,1)); 
EDR_lin_PCA                                 = polarity*gain_pca*(EDR_lin_PCA-
nanmean(EDR_lin_PCA)); 
All_Signals(:,6)                            = EDR_lin_PCA(:); 
  
  
% ECG drived respiration using Kernel(Gaussian) PCA: 
no_dims                                     = 1; % use PC 1 for resp signal 
estimation; PCs 2, 3, etc are variant of resp but deformed. 
polarity                                    = -1; % resp signal provided in 
this example has opposite polarity compared to signal S: LeadII 
[mapped_Kecg, mapping_Kecg]                 = 
compute_mapping(Matrix_pca_ecg,'KernelPCA',no_dims,'gauss'); 
gain_Kpca                                   = 100; 
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EDR_Gauss_PCA                               = 
resample(mapping_Kecg.V(:,no_dims),length(ECG),size(mapping_Kecg.V,1)); 
EDR_Gauss_PCA                               = 
polarity*gain_Kpca*(EDR_Gauss_PCA-nanmean(EDR_Gauss_PCA)); 
All_Signals(:,7)                            = EDR_Gauss_PCA(:); 
  
% ECG drived respiration using Kernel('Poly') PCA: 
no_dims                                     = 1; % use PC 1 for resp signal 
estimation; PCs 2, 3, etc are variant of resp but deformed. 
polarity                                    = -1; % resp signal provided in 
this example has opposite polarity compared to signal S: LeadII 
[mapped_Kecg, mapping_Kecg]                 = compute_mapping(Matrix_pca_ecg, 
'KernelPCA',no_dims,'poly'); 
gain_Kpca                                   = 100; 
EDR_Poly_PCA                                = 
resample(mapping_Kecg.V(:,no_dims),length(ECG),size(mapping_Kecg.V,1)); 
EDR_Poly_PCA                                = 
polarity*gain_Kpca*(EDR_Poly_PCA-nanmean(EDR_Poly_PCA)); 
All_Signals(:,8)                            = EDR_Poly_PCA(:); 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%*******************************
******************************************************** 
% Accelerometer (SCG_x) drived respiration (ADR_x_lin_PCA) 
no_dims                                     = 1; % use PC 1 for resp signal 
estimation; PCs 2, 3, etc are variant of resp but deformed. 
polarity                                    = 1; % resp signal provided in 
this example has opposite polarity compared to signal S: LeadII 
[mapped_scg, mapping_scg]                   = 
compute_mapping(Matrix_pca_scgZ{1}','PCA', no_dims); 
gain_pca                                    = 100; 
ADR_x_lin_PCA                               = 
resample(mapping_scg.M(:,no_dims),length(SCG_x),size(mapping_scg.M,1)); 
ADR_x_lin_PCA                               = 
polarity*gain_pca*(ADR_x_lin_PCA-nanmean(ADR_x_lin_PCA)); 
All_Signals(:,9)                            = ADR_x_lin_PCA(:); 
  
% Accelerometer (SCG_y) drived respiration (ADR_y_lin_PCA) 
no_dims                                     = 1; % use PC 1 for resp signal 
estimation; PCs 2, 3, etc are variant of resp but deformed. 
polarity                                    = 1; % resp signal provided in 
this example has opposite polarity compared to signal S: LeadII 
[mapped_scg, mapping_scg]                   = 
compute_mapping(Matrix_pca_scgZ{2}','PCA', no_dims); 
gain_pca                                    = 100; 
ADR_y_lin_PCA                               = 
resample(mapping_scg.M(:,no_dims),length(SCG_y),size(mapping_scg.M,1)); 
ADR_y_lin_PCA                               = 
polarity*gain_pca*(ADR_y_lin_PCA-nanmean(ADR_y_lin_PCA)); 
All_Signals(:,10)                           = ADR_y_lin_PCA(:); 
  
% Accelerometer (SCG_z) drived respiration (ADR_z_lin_PCA) 
no_dims                                     = 1; % use PC 1 for resp signal 
estimation; PCs 2, 3, etc are variant of resp but deformed. 
polarity                                    = 1; % resp signal provided in 
this example has opposite polarity compared to signal S: LeadII 
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[mapped_scg, mapping_scg]                   = 
compute_mapping(Matrix_pca_scgZ{3}','PCA', no_dims); 
gain_pca                                    = 100; 
ADR_z_lin_PCA                               = 
resample(mapping_scg.M(:,no_dims),length(SCG_z),size(mapping_scg.M,1)); 
ADR_z_lin_PCA                               = 
polarity*gain_pca*(ADR_z_lin_PCA-nanmean(ADR_z_lin_PCA)); 
All_Signals(:,11)                           = ADR_z_lin_PCA(:); 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%*******************************
******************************************************** 
%  ADR_x_GaussianKernel_PCA 
no_dims                                     = 1; % use PC 1 for resp signal 
estimation; PCs 2, 3, etc are variant of resp but deformed. 
polarity                                    = 1; % resp signal provided in 
this example has opposite polarity compared to signal S: LeadII 
[mapped_scg, mapping_scg]                   = 
compute_mapping(Matrix_pca_scgZ{1},'KernelPCA',no_dims,'gauss'); 
gain_pca                                    = 100; 
ADR_x_Gauss_PCA                             = 
resample(mapping_scg.V(:,no_dims),length(SCG_x),length(mapping_scg.V)); 
ADR_x_Gauss_PCA                             = 
polarity*gain_pca*(ADR_x_Gauss_PCA-nanmean(ADR_x_Gauss_PCA)); 
All_Signals(:,12)                           = ADR_x_Gauss_PCA(:); 
  
% ADR_y_kernel_PCA 
no_dims                                     = 1; % use PC 1 for resp signal 
estimation; PCs 2, 3, etc are variant of resp but deformed. 
polarity                                    = 1; % resp signal provided in 
this example has opposite polarity compared to signal S: LeadII 
[mapped_scg, mapping_scg]                   = 
compute_mapping(Matrix_pca_scgZ{2},'KernelPCA',no_dims,'gauss'); 
gain_pca                                    = 100; 
ADR_y_Gauss_PCA                             = 
resample(mapping_scg.V(:,no_dims),length(SCG_y),length(mapping_scg.V)); 
ADR_y_Gauss_PCA                             = 
polarity*gain_pca*(ADR_y_Gauss_PCA-nanmean(ADR_y_Gauss_PCA)); 
All_Signals(:,13)                           = ADR_y_Gauss_PCA(:); 
  
% ADR_z_kernel_PCA 
no_dims                                     = 1; % use PC 1 for resp signal 
estimation; PCs 2, 3, etc are variant of resp but deformed. 
polarity                                    = 1; % resp signal provided in 
this example has opposite polarity compared to signal S: LeadII 
[mapped_scg, mapping_scg]                   = 
compute_mapping(Matrix_pca_scgZ{3},'KernelPCA',no_dims,'gauss'); 
gain_pca                                    = 100; 
ADR_z_Gauss_PCA                             = 
resample(mapping_scg.V(:,no_dims),length(SCG_z),length(mapping_scg.V)); 
ADR_z_Gauss_PCA                             = 
polarity*gain_pca*(ADR_z_Gauss_PCA-nanmean(ADR_z_Gauss_PCA)); 
All_Signals(:,14)                           = ADR_z_Gauss_PCA(:); 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%*******************************
******************************************************** 
%  ADR_x_PolynomialKernel_PCA 
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no_dims                                     = 1; % use PC 1 for resp signal 
estimation; PCs 2, 3, etc are variant of resp but deformed. 
polarity                                    = 1; % resp signal provided in 
this example has opposite polarity compared to signal S: LeadII 
[mapped_scg, mapping_scg]                   = 
compute_mapping(Matrix_pca_scgZ{1},'KernelPCA',no_dims,'poly'); 
gain_pca                                    = 100; 
ADR_x_Poly_PCA                              = 
resample(mapping_scg.V(:,no_dims),length(SCG_x),size(mapping_scg.V,1)); 
ADR_x_Poly_PCA                              = 
polarity*gain_pca*(ADR_x_Poly_PCA-nanmean(ADR_x_Poly_PCA)); 
All_Signals(:,15)                           = ADR_x_Poly_PCA(:); 
  
% ADR_y_kernel_PCA 
no_dims                                     = 1; % use PC 1 for resp signal 
estimation; PCs 2, 3, etc are variant of resp but deformed. 
polarity                                    = 1; % resp signal provided in 
this example has opposite polarity compared to signal S: LeadII 
[mapped_scg, mapping_scg]                   = 
compute_mapping(Matrix_pca_scgZ{2},'KernelPCA',no_dims,'poly'); 
gain_pca                                    = 100; 
ADR_y_Poly_PCA                              = 
resample(mapping_scg.V(:,no_dims),length(SCG_y),size(mapping_scg.V,1)); 
ADR_y_Poly_PCA                              = 
polarity*gain_pca*(ADR_y_Poly_PCA-nanmean(ADR_y_Poly_PCA)); 
All_Signals(:,16)                           = ADR_y_Poly_PCA(:); 
  
% ADR_z_kernel_PCA 
no_dims                                     = 1; % use PC 1 for resp signal 
estimation; PCs 2, 3, etc are variant of resp but deformed. 
polarity                                    = 1; % resp signal provided in 
this example has opposite polarity compared to signal S: LeadII 
[mapped_scg, mapping_scg]                   = 
compute_mapping(Matrix_pca_scgZ{3},'KernelPCA',no_dims,'poly'); 
gain_pca                                    = 100; 
ADR_z_Poly_PCA                              = 
resample(mapping_scg.V(:,no_dims),length(SCG_z),size(mapping_scg.V,1)); 
ADR_z_Poly_PCA                              = 
polarity*gain_pca*(ADR_z_Poly_PCA-nanmean(ADR_z_Poly_PCA)); 
All_Signals(:,17)                           = ADR_z_Poly_PCA(:); 
  
%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Envelope Detection 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
% ECG drived respiration (EDR_env.) 
%no_dims                           = 2;  % use 2 second windowing for 
envelope detection. it might change subject by subject 
signal_pol                        = +1; 
EDR_lower_Env                     = 
detect_envelope(signal_pol*ECG,envelopeWindowSize*fs,'down'); 
gain_ecg                          = 100; 
polarity_ecg                      = +1; 
EDR_lower_Env                     = polarity_ecg*gain_ecg*(EDR_lower_Env - 
mean(EDR_lower_Env));  % make it zero mean and amplify it 
All_Signals(:,18)                 = -EDR_lower_Env(:); 
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% EDR_upper envelope 
%no_dims                           = 2;  % use 2 second windowing for 
envelope detection. it might change subject by subject 
signal_pol                        = +1; 
EDR_upper_Env                     = 
detect_envelope(signal_pol*ECG,envelopeWindowSize*fs,'up'); 
gain_ecg                          = 100; 
polarity_ecg                      = +1; 
EDR_upper_Env                     = polarity_ecg*gain_ecg*(EDR_upper_Env - 
mean(EDR_upper_Env));  % make it zero mean and amplify it 
All_Signals(:,19)                 = EDR_upper_Env(:); 
  
  
% SCG_x driven resp estimation (ADR_x) 
% Down Envelope 
%no_dims                           = 2;  % use 2 second windowing for 
envelope detection. it might change subject by subject 
ADR_x_lower_Env                   = 
detect_envelope(SCG_x,envelopeWindowSize*fs,'down'); 
gain_scg                          = 100; 
polarity_scg                      = 1; 
ADR_x_lower_Env                   = polarity_scg*gain_scg*(ADR_x_lower_Env - 
mean(ADR_x_lower_Env));  % make it zero mean and amplify it 
All_Signals(:,20)                 = -ADR_x_lower_Env(:); 
  
%  ADR_x with upper envelope  
%no_dims                           = 2;  % use 2 second windowing for 
envelope detection. it might change subject by subject 
ADR_x_upper_Env                   = 
detect_envelope(SCG_x,envelopeWindowSize*fs,'up'); 
gain_scg                          = 100; 
polarity_scg                      = 1; 
ADR_x_upper_Env                   = polarity_scg*gain_scg*(ADR_x_upper_Env - 
mean(ADR_x_upper_Env));  % make it zero mean and amplify it 
All_Signals(:,21)                 = ADR_x_upper_Env(:); 
% end 
  
% SCG_y driven resp estimation (ADR_y) 
% Down Envelope 
%no_dims                           = 2;  % use 2 second windowing for 
envelope detection. it might change subject by subject 
ADR_y_lower_Env                   = 
detect_envelope(SCG_y,envelopeWindowSize*fs,'down'); 
gain_scg                          = 100; 
polarity_scg                      = 1; 
ADR_y_lower_Env                   = polarity_scg*gain_scg*(ADR_y_lower_Env - 
mean(ADR_y_lower_Env));  % make it zero mean and amplify it 
All_Signals(:,22)                 = -ADR_y_lower_Env(:); 
  
%  ADR_y with upper envelope  
%no_dims                           = 2;  % use 2 second windowing for 
envelope detection. it might change subject by subject 
ADR_y_upper_Env                   = 
detect_envelope(SCG_y,envelopeWindowSize*fs,'up'); 
gain_scg                          = 100; 
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polarity_scg                      = 1; 
ADR_y_upper_Env                   = polarity_scg*gain_scg*(ADR_y_upper_Env - 
mean(ADR_y_upper_Env));  % make it zero mean and amplify it 
All_Signals(:,23)                 = ADR_y_upper_Env(:); 
  
  
% SCG_z driven resp estimation (ADR_z) 
% Down Envelope 
%no_dims                           = 2;  % use 2 second windowing for 
envelope detection. it might change subject by subject 
ADR_z_lower_Env                   = 
detect_envelope(SCG_z,envelopeWindowSize*fs,'down'); 
gain_scg                          = 100; 
polarity_scg                      = 1; 
ADR_z_lower_Env                   = polarity_scg*gain_scg*(ADR_z_lower_Env - 
mean(ADR_z_lower_Env));  % make it zero mean and amplify it 
All_Signals(:,24)                 = -ADR_z_lower_Env(:); 
  
%  ADR_z with upper envelope  
%no_dims                           = 2;  % use 2 second windowing for 
envelope detection. it might change subject by subject 
ADR_z_upper_Env                   = 
detect_envelope(SCG_z,envelopeWindowSize*fs,'up'); 
gain_scg                          = 100; 
polarity_scg                      = 1; 
ADR_z_upper_Env                   = polarity_scg*gain_scg*(ADR_z_upper_Env - 
mean(ADR_z_upper_Env));  % make it zero mean and amplify it 
All_Signals(:,25)                 = ADR_z_upper_Env(:); 
  
  
% SCG_xz driven resp estimation (ADR_xz) 
%no_dims                           = 2;  % use 2 second windowing for 
envelope detection. it might change subject by subject 
scg_xz                            = sqrt ((SCG_x.^2)+(SCG_z.^2)); 
ADR_xz_lower_Env                  = 
detect_envelope(scg_xz,envelopeWindowSize*fs,'down'); 
gain_scg                          = 100; 
polarity_scg                      = 1; 
ADR_xz_lower_Env                  = polarity_scg*gain_scg*(ADR_xz_lower_Env - 
mean(ADR_xz_lower_Env));  % make it zero mean and amplify it 
All_Signals(:,26)                 = -ADR_xz_lower_Env(:); 
  
  
% SCG_xz driven resp estimation (ADR_xz) 
%no_dims                           = 2;  % use 2 second windowing for 
envelope detection. it might change subject by subject 
scg_xz                            = sqrt ((SCG_x.^2)+(SCG_z.^2)); 
ADR_xz_upper_Env                  = 
detect_envelope(scg_xz,envelopeWindowSize*fs,'up'); 
gain_scg                          = 100; 
polarity_scg                      = 1; 
ADR_xz_upper_Env                  = polarity_scg*gain_scg*(ADR_xz_upper_Env - 
mean(ADR_xz_upper_Env));  % make it zero mean and amplify it 
All_Signals(:,27)                 = ADR_xz_upper_Env(:); 
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% SCG_xyz driven resp estimation (ADR_xyz) 
%no_dims                           = 2;  % use 2 second windowing for 
envelope detection. it might change subject by subject 
scg_xyz                           = sqrt ((SCG_x.^2)+(SCG_y.^2)+(SCG_z.^2)); 
ADR_xyz_lower_Env                 = 
detect_envelope(scg_xyz,envelopeWindowSize*fs,'down'); 
gain_scg                          = 100; 
polarity_scg                      = 1; 
ADR_xyz_lower_Env                 = polarity_scg*gain_scg*(ADR_xyz_lower_Env 
- mean(ADR_xyz_lower_Env));  % make it zero mean and amplify it 
All_Signals(:,28)                 = -ADR_xyz_lower_Env(:); 
  
% SCG_xyz driven resp estimation (ADR_xyz) 
%no_dims                           = 2;  % use 2 second windowing for 
envelope detection. it might change subject by subject 
scg_xyz                           = sqrt ((SCG_x.^2)+(SCG_y.^2)+(SCG_z.^2)); 
ADR_xyz_upper_Env                 = 
detect_envelope(scg_xyz,envelopeWindowSize*fs,'up'); 
gain_scg                          = 100; 
polarity_scg                      = 1; 
ADR_xyz_upper_Env                 = polarity_scg*gain_scg*(ADR_xyz_upper_Env 
- mean(ADR_xyz_upper_Env));  % make it zero mean and amplify it 
All_Signals(:,29)                 = ADR_xyz_upper_Env(:); 
  
  
RR_interval_interp                = -
interp1(R_peak(2:end),RR_intervals,R_peak(2):R_peak(end)); 
RR_interval_interp                = [repmat(0,R_peak(2), 1); 
RR_interval_interp(:); repmat(0, length(resp)-R_peak(end), 1)]; 
All_Signals(:,30)                 = RR_interval_interp(:); 
  
  
%% Normalization and Dtrending all the signals  
for i = 1:size(All_Signals,2) 
     
    signal_withTrend               = All_Signals(:,i); 
    [p,s,mu]                       = 
polyfit((1:numel(signal_withTrend))',signal_withTrend,6); 
    f_y                            = 
polyval(p,(1:numel(signal_withTrend))',[],mu); 
    All_Signals(:,i)               = signal_withTrend - f_y;        % Detrend 
data 
    All_Signals_dTrend(:,i)        = (All_Signals(:,i)-
mean(All_Signals(:,i))/std(All_Signals(:,i))); 
end 
  
resp                               = (resp-mean(resp))/std(resp); 
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APPENDIX B  

Appendix B contains MATLAB code of automatic respiratory phase detection of derived-

respiratory signals and then identifying respiratory phase of heart cycles and finally compute the 

performance accuracy. 

clc;clear;close all 
ref                                               = 2; 
segment_len                                       = 600 *1000 % 2 minute 
for envelopeWindowSize                            = 2.0; 
    for SubjectNumber                             = [1:20] 
        SubjectNumber 
        data_ref                                  = 
strcat('subject',num2str(SubjectNumber),'_ref',num2str(ref),'_SV','.mat'); 
        % Load the data 
        load(data_ref); 
        format long 
        %% Raw signals 
         
        if SubjectNumber == 3 | SubjectNumber == 4 | SubjectNumber == 11 
            ECG                                   = data (:,8); 
            SCG_x                                 = data (:,5); 
            SCG_y                                 = data (:,6); 
            SCG_z                                 = data (:,7); 
        else 
            ECG                                   = data (:,9); 
            SCG_x                                 = data (:,6); 
            SCG_y                                 = data (:,7); 
            SCG_z                                 = data (:,8); 
        end 
         
        % LeadI                                   = data (:,1); 
        % LeadIII                                 = LeadII - LeadI; 
        resp                                      = data (:,2); 
        fs                                        = 1000; 
        [sixSignals_dTrend, R_peak]               = 
EstimatedSignals_selectedSix (ECG, SCG_x, SCG_y, SCG_z, resp,fs, 
envelopeWindowSize); 
        resp                                      = (resp-
mean(resp))/std(resp); 
         
        %[All_Signals_dTrend, R_peak]             = EstimatedSignals_All 
(ECG, SCG_x, SCG_y, SCG_z, resp,fs, envelopeWindowSize); % Produce all the 
signals 
        %saveName1                                = 
strcat('AllEstimatedSignals_Subject',num2str(SubjectNumber),'_ref',num2str(re
f),'.mat'); 
        %save (saveName1,'All_Signals_dTrend', 'R_peak' ) 
        %saveName1                                = 
strcat('AllEstimatedSignals_Subject',num2str(SubjectNumber),'_ref',num2str(re
f),'.mat'); 
        %load (saveName1 ) 
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        for indexSignal                                 = 1:6; 
            indexSignal 
            signal                                      = 
sixSignals_dTrend(:,indexSignal); % chose the signal 
            %% plot in estimated signals to compare them with reference 
signal 
             
            %             time = (1:length(resp))/fs; 
            %             figure; 
            %             plot (time, resp, 'k', 'MarkerSize', 6, 
'LineWidth', 1), hold on 
            %             plot(time, signal, 'b', 'MarkerSize', 6, 
'LineWidth', 1); title('ADR-down v.s. Reference signal') 
            % 
            %% %% %% %% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Segmenting the 
data into 30 seconds segments 
            %         segment_len                                 = 600 *1000 
            numSegment                                  = 
floor(length(resp)/segment_len); % #Segments should be = 20 
            start_point                                 = 1; 
             
            inhale_Heart_beats_sensitivity              = cell(numSegment,1); 
            exhale_Heart_beats_specificity              = cell(numSegment,1); 
            inhale_Heart_beats_PPV                      = cell(numSegment,1); 
            exhale_Heart_beats_NPV                      = cell(numSegment,1); 
            total_heartCyc_accuracy                     = cell(numSegment,1); 
             
            for nn                                      = 1:numSegment 
                close all 
                clear signal_portion resp_portion max_locs max_val min_val 
min_locs mins_idx min_t index min_value alter_proper_min_idx 
alter2_proper_min_idx 
                clear max_loc ia peak_resp valley_resp max_iidx min_iidx 
resp_max_loc resp_min_loc resp_cycle find_valley_idx find_valley 
                clear  R_peak_idx_inhale R_peak_idx_exhale 
R_peaks_exhale_S_all R_peaks_inhale_S_all R_peaks_exhale_ref_all 
R_peaks_inhale_ref_all index 
                end_point                               = start_point + 
segment_len -1; 
                signal_portion                          = signal([start_point 
: end_point],:); 
                resp_portion                            = resp(start_point : 
end_point,:); 
                 
                % Normalization and Dtrending all the signals 
                signal_withTrend                        = signal_portion; 
                [p,s,mu]                                = 
polyfit((1:numel(signal_withTrend))',signal_withTrend,6); 
                f_y                                     = 
polyval(p,(1:numel(signal_withTrend))',[],mu); 
                signal_portion                          = signal_withTrend - 
f_y;        % Detrend data 
                %signal_portion                          = (signal_portion-
mean(signal_portion(:))/std(signal_portion(:))); 
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                signal_portion                          = 
zscore(signal_portion); 
                 
                %% finding peaks and valleys of the ADR signal 
                 
                fs                                      = 1000; %sampling 
freq. = 1000 Hz 
                % finding maximums 
                if indexSignal                          == 6 
                    [max_val,max_locs]                  = 
findpeaks(signal_portion, fs, 'MinPeakDistance', 3.0); 
                else 
                    [max_val,max_locs]                  = 
findpeaks(signal_portion, fs, 'MinPeakDistance', 2.0, 'MinPeakProminence', 
0.4); 
                end 
                 
                % finding minimums 
                if indexSignal                          == 6 
                    [min_val,min_locs]                  = findpeaks(-
signal_portion, fs, 'MinPeakDistance', 3.0); 
                else 
                    [min_val,min_locs]                  = findpeaks(-
signal_portion, fs, 'MinPeakDistance', 2.0,  'MinPeakProminence', 0.4); 
                end 
                %% The flat peaks Correction. 
                % Require a minimum amplitude difference of  10^{-4} between 
a peak and its neighbors. 
                figure; 
                plot(signal_portion); hold on; title('signal by applying 
envelope detection with W = 2.0 sec.') 
                plot( max_locs*1000,max_val,'ko'); 
                plot( min_locs*1000,-min_val,'ro'); 
                plot (resp_portion, 'k', 'MarkerSize', 6, 'LineWidth', 1); 
                 
                for k                                   = 1 : 
length(max_locs)-1 
                    num                                 = 1; 
                    flatPeak                            = 1; 
                    while flatPeak                      == 1; % suspect 
having a flat peak 
                        sample                          = 1000*max_locs(k)- 
num; 
                        sample_val                      = 
signal_portion(round(sample)); 
                        diff_samples                    = abs(max_val(k) - 
sample_val ); 
                        if diff_samples                 > 1e-3 
                            flatPeak                    = 0; % we don't have 
a flat peak 
                            % max_locs(k)                 = (1000* 
                            % max_locs(k)-num+1)/1000 ; % make the begining 
of flat part as peak 
                            max_locs(k)                 = (  (1000* 
max_locs(k)-num+1)+(1000*max_locs(k))  )/2000 ; 
                            if num          > 1 
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                                plot( max_locs (k)*1000 ,max_val (k),'rx'); 
                            end 
                        end 
                        num                             = num + 1; 
                    end 
                     
                end 
                 
                %% % correcting minimums 
                figure; 
                plot(signal_portion); hold on; title('signal by applying 
envelope detection with W= 2.0 sec.') 
                 
                if length(max_locs) >= 3 
                    for i                                    = 
2:length(max_locs); 
                        mins_idx                             = find(min_locs 
>= max_locs(i-1) & min_locs <= max_locs(i)); 
                        if isempty(mins_idx)                 == 1 %if we 
couldn't find the min in that interval, then what? 
                            %disp('check the maximums and decide what you 
should do!') 
                            max_locs(i)                      = max_locs(i-1) 
; 
                            max_val(i)                       = max_val (i-1); 
                        elseif length(mins_idx)              == 1; 
                            min_t (i-1)                      = 
min_locs(mins_idx); 
                            index                            =  mins_idx ; 
                            min_value (i-1)                  = -
min_val(index); 
                            plot( min_t (i-1)*1000,min_value (i-1),'ro',  
'MarkerSize', 6, 'LineWidth', 1); 
                        elseif length(mins_idx) > 1 % if more than one valley 
was found 
                            detected_mins                    = 
min_locs(mins_idx); 
                            interval                         = max_locs(i) - 
max_locs(i-1); 
                            proper_min_idx                   = 
find(detected_mins >= (max_locs(i-1)+ 0.5*interval) & detected_mins <= 
(max_locs(i-1)+ (2/3)*interval)); 
                            if isempty (proper_min_idx)      ~= 1 
                                min_t (i-1)                  = 
detected_mins(proper_min_idx); 
                                index                        = 
mins_idx(proper_min_idx); 
                                min_value (i-1)              = -
min_val(index); 
                                plot( min_t (i-1)*1000,min_value (i-1),'ro',  
'MarkerSize', 6, 'LineWidth', 1); 
                            else %if we couldn't find the min in that 
interval,then what 
                                alter_proper_min_idx         = 
find(detected_mins >= (max_locs(i-1)+ (2/3)*interval) & detected_mins < 
max_locs(i)); 
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                                if isempty (alter_proper_min_idx) ~= 1; 
                                    if length(alter_proper_min_idx) >1 
                                        alter_proper_min_idx = 
max(alter_proper_min_idx); 
                                    end 
                                    min_t (i-1)              = 
detected_mins(alter_proper_min_idx); 
                                    index                    = 
mins_idx(alter_proper_min_idx); 
                                    min_value (i-1)          = -
min_val(index); 
                                    plot( min_t (i-1)*1000,min_value (i-
1),'ro',  'MarkerSize', 6, 'LineWidth', 1); 
                                else %if we couldn't find the min in thoese 
two intervals, then what 
                                    alter2_proper_min_idx     = 
find(detected_mins > max_locs(i-1) & detected_mins < (max_locs(i-1)+ 
0.5*interval)); 
                                    if length(alter2_proper_min_idx) >1 
                                        alter2_proper_min_idx = 
max(alter2_proper_min_idx); 
                                    end 
                                    min_t (i-1)              = 
detected_mins(alter2_proper_min_idx); 
                                    index                    = 
mins_idx(alter2_proper_min_idx); 
                                    min_value (i-1)          = -
min_val(index); 
                                    plot( min_t (i-1)*1000,min_value (i-
1),'ro',  'MarkerSize', 6, 'LineWidth', 1); 
                                end 
                            end 
                        end 
                    end 
                    plot (resp_portion, 'k', 'MarkerSize', 6, 'LineWidth', 
1); 
                     
                    [max_loc, ia, ic]                       = 
unique(max_locs); 
                    max_val                                 = max_val(ia); 
                    plot( max_loc*1000,max_val,'co',  'MarkerSize', 6, 
'LineWidth', 1); 
                    meanCycle_maxPoint                      = 
mean(diff(max_loc)); 
                    meanCycle_minPoint                      = mean(diff(min_t 
)); 
                    % ADR_RR                      = mean([diff(ADR_max_loc); 
diff(ADR_min_t')])/2 
                    % ADR_RR                      = 
median([diff(ADR_max_locs); diff(ADR_min_locs)])/2 
                    % ADR_RR                      = mode([diff(ADR_max_locs); 
diff(ADR_min_locs)])/2 
                     
                    %%  peaks and valleys of the signal and Reference 
respiratory signals 
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                    peak_resp                               = 
load(strcat('resp','_Subject',num2str(SubjectNumber),'_ref',num2str(ref) 
,'_peaks','.txt')); 
                    valley_resp                             = 
load(strcat('resp','_Subject',num2str(SubjectNumber),'_ref',num2str(ref) 
,'_valleys','.txt')); 
                     
                    max_iidx                                = 
find(peak_resp(:,1)>= start_point & peak_resp(:,1) <= end_point); 
                    resp_max_loc                            = 
peak_resp(max_iidx,1)- ((nn-1)*segment_len); 
                    resp_max_val                            = 
peak_resp(max_iidx,2); 
                     
                    min_iidx                                = 
find(valley_resp(:,1)>= start_point & valley_resp(:,1) <= end_point); 
                    resp_min_loc                            = 
valley_resp(min_iidx,1) - ((nn-1)*segment_len); 
                    resp_min_val                            = 
valley_resp(min_iidx,2); 
                     
                    %                     figure; 
                    %                     plot(signal_portion); hold on; 
title('Signal by applying envelope detection once'); 
                    %                     plot( max_loc*1000,max_val,'ko', 
'MarkerSize', 6, 'LineWidth', 1); 
                    %                     plot( min_t*1000,min_value,'ro', 
'MarkerSize', 6, 'LineWidth', 1); 
                    %                     plot (resp_portion, 'k'); 
                    %                     plot (resp_min_loc, resp_min_val, 
'bo',  'MarkerSize', 6, 'LineWidth', 1); 
                    %                     plot (resp_max_loc, resp_max_val, 
'bo',  'MarkerSize', 6, 'LineWidth', 1); 
                     
                     
                    %% Comparing automatic peaks detection with manual peak 
annotation 
                     
                    % peak_ADR_manual           = 
strcat(num2str(signal_1),'_Subject',num2str(SubjectNumber),'_ref',num2str(ref
) ,'_peaks_manual',num2str(choice_ADR),'.txt'); 
                    % valley_ADR_manual         = 
strcat(num2str(signal_1),'_Subject',num2str(SubjectNumber),'_ref',num2str(ref
) ,'_valleys_manual',num2str(choice_ADR),'.txt'); 
                    % 
                    % inhale_ADR_manual         = load (valley_ADR_manual); 
                    % exhale_ADR_manul          = load (peak_ADR_manual); 
                    % 
                    % inhale_ADR_manual(:,2)    = 
ADR(inhale_ADR_manual(:,1)); 
                    % exhale_ADR_manul(:,2)     = ADR(exhale_ADR_manul(:,1)); 
                    % 
                    % figure; 
                    % plot(ADR); hold on; title('Comparing automatic peaks 
detection with manual peak annotation') 
                    % plot(exhale_ADR_manul(:,1), exhale_ADR_manul(:,2),'bo') 
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                    % plot(inhale_ADR_manual(:,1), 
inhale_ADR_manual(:,2),'go'); 
                    % plot( ADR_max_loc*1000,ADR_max_val,'ko'); 
                    % plot( ADR_min_t*1000,ADR_min_value,'ro'); 
                    % legend ('ADR signal','manual peak annotation', 'manual 
valley annotation','automatic peaks detection','automatic valley detection') 
                     
                    %% Phase detection 
                     
                    R_peaks_exhale_from_S                 = []; 
                    R_peaks_inhale_from_S                 = []; 
                     
                    max_loc                               = 1000* max_loc; 
                    min_t                                 = 1000* min_t; 
                     
                    for i                                 = 2:length(max_loc) 
                        resp_cycle(i)                     = max_loc (i) - 
max_loc (i-1); % resp cycle = exhale + inhale 
                        find_valley_idx                   = find(min_t > 
max_loc (i-1) & min_t < max_loc (i)); 
                        if isempty(find_valley_idx) == 1 | 
length(find_valley_idx) > 1 
                            disp('Error1!: Couldnt detect start of inhale 
phase'); 
                            max_loc (i); 
                        end 
                        find_valley(i-1)                  = 
min_t(find_valley_idx); 
                         
                        %Exhale Phase 
                        R_peak_idx_exhale                 = find(R_peak >= 
max_loc (i-1) & R_peak < find_valley(i-1)); 
                        if isempty(R_peak_idx_exhale)     == 1 
                            disp('Error2!:  Couldnt detect R-peak in exhale 
phase') 
                            R_peak(i); 
                        end 
                         
                        % Inhale Phase 
                        R_peak_idx_inhale                 = find(R_peak >= 
find_valley(i-1) & R_peak < max_loc (i)); 
                        if isempty(R_peak_idx_inhale)     == 1 
                            disp('Error3!: Couldnt detect R-peak in inhale 
phase') 
                            R_peak(i); 
                        end 
                         
                        R_peaks_exhale_from_S {i-1}       = 
{R_peak(R_peak_idx_exhale)}; 
                        R_peaks_inhale_from_S {i-1}       = 
{R_peak(R_peak_idx_inhale)}; 
                         
                    end 
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%****************************************************************************
******************** 
                    clear resp_cycle find_valley_idx find_valley 
R_peak_idx_exhale R_peak_idx_inhale 
                    R_peaks_exhale_from_ref               = []; 
                    R_peaks_inhale_from_ref               = []; 
                     
                     
                    for i                                 = 
2:length(resp_max_loc) 
                        resp_cycle(i)                     = resp_max_loc (i) 
- resp_max_loc (i-1); % resp cycle = exhale + inhale 
                        find_valley_idx                   = find(resp_min_loc 
> resp_max_loc (i-1) & resp_min_loc < resp_max_loc (i)); 
                        if isempty(find_valley_idx)       == 1 | 
length(find_valley_idx) > 1 
                            disp('Error4!: Couldnt detect start of inhale 
phase') 
                            resp_max_loc (i); 
                        end 
                        find_valley(i-1)                  = 
resp_min_loc(find_valley_idx); 
                         
                        %Exhale Phase 
                        R_peak_idx_exhale                 = find(R_peak >= 
resp_max_loc (i-1) & R_peak < find_valley(i-1)); 
                        if isempty(R_peak_idx_exhale)     == 1 
                            disp('Error5!:  Couldnt detect R-peak in exhale 
phase') 
                            R_peak(i); 
                        end 
                         
                        % Inhale Phase 
                        R_peak_idx_inhale                 = find(R_peak >= 
find_valley(i-1) & R_peak < resp_max_loc (i)); 
                        if isempty(R_peak_idx_inhale)     == 1 
                            disp('Error6!: Couldnt detect R-peak in inhale 
phase') 
                            R_peak(i); 
                        end 
                         
                        R_peaks_exhale_from_ref {i-1}    = 
{R_peak(R_peak_idx_exhale)}; 
                        R_peaks_inhale_from_ref {i-1}    = 
{R_peak(R_peak_idx_inhale)}; 
                         
                    end 
                     
                    %% gather all the heart beat detection 
                    k1                                       = 1; 
                    for i                                    = 
1:length(R_peaks_exhale_from_S) 
                        R_pks_len                            = 
length(R_peaks_exhale_from_S{i}{1,1}); 
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                        k2                                   = k1 - 1 + 
R_pks_len; 
                        R_peaks_exhale_S_all(k1:k2)          = 
R_peaks_exhale_from_S{i}{1,1}; 
                        k1                                   = k2 + 1; 
                    end 
                     
                    k1                                       = 1; 
                    for i                                    = 
1:length(R_peaks_inhale_from_S) 
                        R_pks_len                            = 
length(R_peaks_inhale_from_S{i}{1,1}); 
                        k2                                   = k1 - 1 + 
R_pks_len; 
                        R_peaks_inhale_S_all(k1:k2)          = 
R_peaks_inhale_from_S{i}{1,1}; 
                        k1                                   = k2 + 1; 
                    end 
                     
                    k1                                       = 1; 
                    for i                                    = 
1:length(R_peaks_exhale_from_ref) 
                        R_pks_len                            = 
length(R_peaks_exhale_from_ref{i}{1,1}); 
                        k2                                   = k1 - 1 + 
R_pks_len; 
                        R_peaks_exhale_ref_all(k1:k2)        = 
R_peaks_exhale_from_ref{i}{1,1}; 
                        k1                                   = k2 + 1; 
                    end 
                     
                    k1                                       = 1; 
                    for i                                    = 
1:length(R_peaks_inhale_from_ref) 
                        R_pks_len                            = 
length(R_peaks_inhale_from_ref{i}{1,1}); 
                        k2                                   = k1 - 1 + 
R_pks_len; 
                        R_peaks_inhale_ref_all(k1:k2)        = 
R_peaks_inhale_from_ref{i}{1,1}; 
                        k1                                   = k2 + 1; 
                    end 
                     
                     
                     
                    %% Compute the accuracy (inhale considered as the 
positive class and Exhale as the Negative class) 
                     
                    TP                                      = 0; 
                    for m                                   = 
1:length(R_peaks_inhale_ref_all) 
                        index                               = 
find(R_peaks_inhale_S_all == R_peaks_inhale_ref_all(m)); 
                        if isempty(index)                   ~= 1 
                            TP                              = TP+1; 
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                        end 
                    end 
                     
                    FN                                      = 
length(R_peaks_inhale_ref_all) - TP; 
                     
                     
                    TN                                      = 0; 
                    for j                                   = 
1:length(R_peaks_exhale_ref_all) 
                        index                               = 
find(R_peaks_exhale_S_all == R_peaks_exhale_ref_all(j)); 
                        if isempty(index)                   ~= 1 
                            TN                              = TN+1; 
                        end 
                    end 
                     
                    FP                                      = 
length(R_peaks_exhale_ref_all)-TN; 
                    inhale_Heart_beats_sensitivity{nn}      = (TP/(TP+FN)) * 
100; 
                    exhale_Heart_beats_specificity{nn}      = (TN/(TN+FP)) * 
100; 
                     
                    inhale_Heart_beats_PPV{nn}              = 
(TP/(TP+FP))*100; 
                    exhale_Heart_beats_NPV{nn}              = 
(TN/(TN+FN))*100; 
                    total_heartCyc_accuracy{nn}             = 
(((inhale_Heart_beats_sensitivity{nn}*m)+(exhale_Heart_beats_specificity{nn}*
j))/(j+m)); 
                     
                    start_point                             = end_point + 1; 
                else 
                    inhale_Heart_beats_sensitivity{nn}      = 0; 
                    exhale_Heart_beats_specificity{nn}      = 0; 
                     
                    inhale_Heart_beats_PPV{nn}              = 0; 
                    exhale_Heart_beats_NPV{nn}              = 0; 
                    total_heartCyc_accuracy{nn}             = 0; 
                     
                    start_point                             = end_point + 1; 
                end 
            end 
            close all 
            inhale_all_sensitivity(indexSignal,:)           = 
cell2mat(inhale_Heart_beats_sensitivity); 
            exhale_all_specificity(indexSignal,:)           = 
cell2mat(exhale_Heart_beats_specificity); 
            heartCyc_all_accuracy(indexSignal,:)            = 
cell2mat(total_heartCyc_accuracy); 
        end 
                saveName                                            = 
strcat('SensSpes_',num2str(segment_len/60000),'minute_',num2str(envelopeWindo
wSize),'W_Subject',num2str(SubjectNumber),'_ref',num2str(ref),'.mat'); 
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                save (saveName, 'inhale_all_sensitivity', 
'exhale_all_specificity', 'heartCyc_all_accuracy') 
    end 
end 
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APPENDIX C  

Appendix C contains the MATLAB® of detecting lower or upper envelope of a signal. 

function [env x_new data_new] = detect_envelope(data, window, direction)  
  
  
direction = strcmpi( {'up','down'}, direction ) * [ 1 ; -1 ]; 
x_data=1:length(data);  
data = data(:); 
L = length(data ); 
  
x_new = []; 
data_new = []; 
i = 1; 
while i < L 
    Ind = i+1:min( i + window, L ); 
    [ m, idx ] = max( ( data(Ind) - data(i) ) ./ (Ind-i)' .* direction ); 
    i = i + idx; 
    x_new = [ x_new x_data(i) ]; 
    data_new = [ data_new data(i) ]; 
end; 
  
% env = interp1( x_new, data_new, x_data, 'spline' ); 
env = interp1( x_new, data_new, x_data, 'linear', 'extrap' ); 
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APPENDIX D  

Appendix B contains the MATLAB® of the detecting R-peaks of ECG signal. 

function QRS=nqrsdetect(S,fs); 
% nqrsdetect - detection of QRS-complexes 
% 
%   QRS=nqrsdetect(S,fs); 
% 
% INPUT 
%   S       ecg signal data 
%   fs      sample rate 
% 
% OUTPUT 
%   QRS     fiducial points of qrs complexes 
% 
% 
% see also: QRSDETECT 
% 
% Reference(s): 
% [1]: V. Afonso, W. Tompkins, T. Nguyen, and S. Luo, "ECG beat detection 
using filter banks," 
%   IEEE Trans. Biomed. Eng., vol. 46, no. 2, pp. 192--202, Feb. 1999 
% 
% [2]: A.V. Oppenheim, R.W. Schafer, and J.R. Buck,  Discrete-Time Signal 
%   Processing, second edition, Prentice Hall, 1999, chapter 4.7.3 
  
% Copyright (C) 2006 by Rupert Ortner 
% 
%% This program is free software; you can redistribute it and/or modify 
%% it under the terms of the GNU General Public License as published by 
%% the Free Software Foundation; either version 2 of the License, or 
%% (at your option) any later version. 
%% 
%% This program is distributed in the hope that it will be useful, ... 
%% but WITHOUT ANY WARRANTY; without even the implied warranty of 
%% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the 
%% GNU General Public License for more details. 
%% 
%% You should have received a copy of the GNU General Public License 
%% along with this program; if not, write to the Free Software 
%% Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 
%% USA 
  
  
S=S(:); 
S=full(S); 
N=round(fs);   %Filter order 
%--------------------------------------- 
%Replaces filter bank in [1] 
Bw=5.6;     %filter bandwidth 
Bwn=1/(fs/2)*Bw;     
M=round((fs/2)/Bw); %downsampling rate 
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Wn0=Bwn;    %bandwidth of the first filter 
Wn1=[Bwn 2*Bwn];    %bandwidth of the second filter 
Wn2=[2*Bwn 3*Bwn]; 
Wn3=[3*Bwn 4*Bwn]; 
Wn4=[4*Bwn 5*Bwn]; 
  
h0=fir1(N,Wn0); %impulse response of the first filter 
h1=fir1(N,Wn1,'bandpass'); 
h2=fir1(N,Wn2,'bandpass'); 
h3=fir1(N,Wn3,'bandpass'); 
h4=fir1(N,Wn4,'bandpass'); 
  
%Polyphase implementation of the filters 
y=cell(1,5);     
y{1}=polyphase_imp(S,h0,M); %W0 (see [1]) filtered and downsampled signal 
y{2}=polyphase_imp(S,h1,M); %W1  
y{3}=polyphase_imp(S,h2,M); %W2 
y{4}=polyphase_imp(S,h3,M); %W3 
y{5}=polyphase_imp(S,h4,M); %W4 
%---------------------------------------------- 
  
cut=ceil(N/M);  %Cutting off of initial transient because of the filtering 
y1=[zeros(cut,1);y{1}(cut:length(y{1}))];   
y2=[zeros(cut,1);y{2}(cut:length(y{2}))]; 
y3=[zeros(cut,1);y{3}(cut:length(y{3}))]; 
y4=[zeros(cut,1);y{4}(cut:length(y{4}))]; 
y5=[zeros(cut,1);y{5}(cut:length(y{5}))]; 
%---------------------------------------- 
  
P1=sum([abs(y2) abs(y3) abs(y4)],2); %see [1] equation (13) 
P2=sum([abs(y2) abs(y3) abs(y4) abs(y5)],2); 
P4=sum([abs(y3) abs(y4) abs(y5)],2); 
  
FL1=MWI(P1); %Feature 1 according to Level 1 in [1] 
FL2=MWI(P2); %Feature 2 according to Level 2 
FL4=MWI(P4); %Feature 4 according to Level 4 
%-------------------------------------- 
%Level 1 [1] 
d=sign(diff(FL1)); 
d1=[0;d]; 
d2=[d;0]; 
f1=find(d1==1); 
f2=find(d2==-1); 
EventsL1=intersect(f1,f2); %Detected events 
%------------------------------------------------------- 
%Level 2 [1] 
meanL1=sum(FL2(EventsL1),1)/length(EventsL1); 
NL=meanL1-meanL1*0.1;   %Start Noise Level 
SL=meanL1+meanL1*0.1;   %Start Signal Level 
threshold1=0.08;    %Threshold detection block 1 
threshold2=0.7;     %Threshold detection block 2 
[SignalL21,Noise1,DS1,Class1]=detectionblock(FL2,EventsL1,NL,SL,threshold1); 
[SignalL22,Noise2,DS2,Class2]=detectionblock(FL2,EventsL1,NL,SL,threshold2); 
%--------------------------------------------------- 
%Level 3 [1] 
ClassL3=[];  
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for i=1:length(EventsL1) 
    C1=Class1(i); 
    C2=Class2(i); 
    if C1==1 
        if C2==1 
            ClassL3=[ClassL3 1];   %Classification as Signal 
        else 
            delta1=(DS1(i)-threshold1)/(1-threshold1); 
            delta2=(threshold2-DS2(i))/threshold2; 
            if delta1>delta2 
                ClassL3=[ClassL3 1]; %Classification as Signal 
            else 
                ClassL3=[ClassL3 0];  %Classification as Noise 
            end 
        end 
    else 
        if C2==1; 
            ClassL3=[ClassL3 1]; %Classification as Signal 
        else 
            ClassL3=[ClassL3 0];  %Classification as Noise 
        end 
    end 
end 
SignalL3=EventsL1(find(ClassL3));   %Signal Level 3 
NoiseL3=EventsL1(find(ClassL3==0)); %Noise Level 3 
%-------------------------------------------- 
%Level 4 [1] 
threshold=0.3; 
VSL=(sum(FL4(SignalL3),1))/length(SignalL3);  
VNL=(sum(FL4(NoiseL3),1))/length(NoiseL3);    
SL=(sum(FL4(SignalL3),1))/length(SignalL3);   %Initial Signal Level 
NL=(sum(FL4(NoiseL3),1))/length(NoiseL3);      %Initial Noise Level 
SignalL4=[]; 
NoiseL4=[]; 
DsL4=[];   %Detection strength Level 4 
for i=1:length(EventsL1) 
    Pkt=EventsL1(i);     
    if ClassL3(i)==1;   %Classification after Level 3 as Signal 
       SignalL4=[SignalL4,EventsL1(i)];  
       SL=history(SL,FL4(Pkt));        
       Ds=(FL4(Pkt)-NL)/(SL-NL);       %Detection strength 
       if Ds<0 
           Ds=0; 
       elseif Ds>1 
           Ds=1; 
       end 
       DsL4=[DsL4 Ds]; 
    else        %Classification after Level 3 as Noise 
       Ds=(FL4(Pkt)-NL)/(SL-NL);    
       if Ds<0 
           Ds=0; 
       elseif Ds>1 
           Ds=1; 
       end 
       DsL4=[DsL4 Ds]; 
       if Ds>threshold          %new classification as Signal  
           SignalL4=[SignalL4,EventsL1(i)];   
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           SL=history(SL,FL4(Pkt));      
       else                      %new classification as Noise 
           NoiseL4=[NoiseL4,EventsL1(i)]; 
           NL=history(NL,FL4(Pkt));       
       end 
   end 
end 
%------------------------------------------------ 
%Level 5   
%if the time between two RR complexes is too long => go back and check the 
%events again with lower threshold 
SignalL5=SignalL4; 
NoiseL5=NoiseL4; 
periods=diff(SignalL4); 
M1=100; 
a=1; 
b=1/(M1)*ones(M1,1); 
meanperiod=filter(b,a,periods); %mean of the RR intervals 
SL=sum(FL4(SignalL4))/length(SignalL4); 
NL=sum(FL4(NoiseL4))/length(NoiseL4); 
threshold=0.2; 
for i=1:length(periods) 
    if periods(i)>meanperiod*1.5     %if RR-interval is to long 
        intervall=SignalL4(i):SignalL4(i+1); 
        critical=intersect(intervall,NoiseL4);    
        for j=1:length(critical) 
            Ds=(FL4(critical(j))-NL)/(SL-NL);  
            if Ds>threshold         %Classification as Signal 
                SignalL5=union(SignalL5,critical(j));    
                NoiseL5=setxor(NoiseL5,critical(j)); 
            end 
        end 
    end 
end 
%--------------------------------------------------- 
%Umrechnung auf Originalsignal (nicht downgesamplet) 
Signaln=conversion(S,FL2,SignalL5,M,N,fs); 
%---------------------------------------------------- 
%Level 6 If interval of two RR-complexes <0.24 => go back and delete one of 
them 
height=FL2(SignalL5);    
Signal=Signaln; 
temp=round(0.1*fs); 
difference=diff(Signaln);  %Difference between two signal points 
k=find(difference<temp); 
for i=1:length(k) 
    pkt1=SignalL5(k(i)); 
    pkt2=SignalL5(k(i)+1); 
    verg=[height(k(i)),height(k(i)+1)];  
    [x,j]=max(verg);     
    if j==1 
        Signal=setxor(Signal,Signaln(k(i)+1)); %Deleting first Event 
    else 
        Signal=setxor(Signal,Signaln(k(i))); %Deleting second Event 
    end 
end 
QRS=Signal; 
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%------------------------------------------------------------------- 
%------------------------------------------------------------------- 
%------------------------------------------------------------------- 
%subfunctions 
  
function y=MWI(S) 
  
% MWI - Moving window integrator, computes the mean of two samples 
%   y=MWI(S) 
% 
% INPUT 
%   S       Signal 
% 
% OUTPUT 
%   y       output signal 
a=[0;S]; 
b=[S;0]; 
c=[a,b]; 
y=sum(c,2)/2; 
y=y(1:length(y)-1); 
%------------------------------------------------ 
function y=polyphase_imp(S,h,M) 
  
% polyphase_imp - polyphase implementation of decimation filters [2] 
%   y=polyphase_imp(S,h,M) 
% 
% INPUT 
%   S       ecg signal data 
%   h       filter coefficients 
%   M       downsampling rate 
% 
% OUTPUT 
%   y       filtered signal 
% 
  
%Determining polyphase components ek 
e=cell(M,1); 
l=1; 
m=mod(length(h),M); 
while m>0 
    for n=1:ceil(length(h)/M) 
        el(n)=h(M*(n-1)+l); 
    end 
    e{l}=el; 
    l=l+1; 
    m=m-1; 
end 
clear el; 
for i=l:M 
    for n=1:floor(length(h)/M) 
        el(n)=h(M*(n-1)+i);       
    end 
    e{i}=el; 
end 
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%Filtering 
max=ceil((length(S)+M)/M);  
Sdelay=S; 
for i=1:M 
    Sd=downsample(Sdelay,M); 
    a=filter(e{i},1,Sd);      
    if length(a)<max 
        a=[a;zeros(max-length(a),1)];  
    end 
    w(:,i)=a; 
    Sdelay=[zeros(i,1);S]; 
end 
y=sum(w,2); 
%---------------------------------------------------------- 
function [Signal,Noise,VDs,Class]=detectionblock(mwi,Events,NL,SL,threshold) 
  
% detectionblock - computation of one detection block  
% 
%   [Signal,Noise,VDs,Class]=detectionblock(mwi,Events,NL,SL,threshold) 
% 
% INPUT 
%   mwi         Output of the MWI 
%   Events      Events of Level 1 (see [1]) 
%   NL          Initial Noise Level 
%   SL          Initial Signal Level 
%   threshold   Detection threshold (between [0,1]) 
% 
% OUTPUT 
%   Signal      Events which are computed as Signal 
%   Noise       Events which are computed as Noise 
%   VDs         Detection strength of the Events 
%   Class       Classification: 0=noise, 1=signal 
  
Signal=[]; 
Noise=[]; 
VDs=[]; 
Class=[]; 
sumsignal=SL; 
sumnoise=NL; 
for i=1:length(Events) 
    P=Events(i); 
    Ds=(mwi(P)-NL)/(SL-NL); %Detection strength 
    if Ds<0 
        Ds=0; 
    elseif Ds>1 
        Ds=1; 
    end 
    VDs=[VDs Ds]; 
    if Ds>threshold     %Classification as Signal 
        Signal=[Signal P]; 
        Class=[Class;1]; 
        sumsignal=sumsignal+mwi(P); 
        SL=sumsignal/(length(Signal)+1);    %Updating the Signal Level 
    else        %Classification as Noise 
        Noise=[Noise P]; 
        Class=[Class;0]; 
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        sumnoise=sumnoise+mwi(P); 
        NL=sumnoise/(length(Noise)+1);  %Updating the Noise Level 
    end 
end 
%------------------------------------------------------------ 
function [pnew]=conversion(S,FL2,pold,M,N,fs) 
  
% conversion - sets the fiducial points of the downsampled Signal on the 
% samplepoints of the original Signal 
%  
%   [pnew]=conversion(S,FL2,pold,M,N,fs) 
% 
% INPUT 
%   S           Original ECG Signal 
%   FL2         Feature of Level 2 [1] 
%   pold        old fiducial points 
%   M           M downsampling rate 
%   N           filter order 
%   fs          sample rate 
% 
% OUTPUT 
%   pnew        new fiducial points 
% 
  
Signaln=pold;     
P=M; 
Q=1; 
FL2res=resample(FL2,P,Q);       %Resampling 
nans1=isnan(S); 
nans=find(nans1==1); 
S(nans)=mean(S);    %Replaces NaNs in Signal 
for i=1:length(Signaln) 
    Signaln1(i)=Signaln(i)+(M-1)*(Signaln(i)-1);     
end 
%------------------- Sets the fiducial points on the maximum of FL2 
Signaln2=Signaln1;   
Signaln2=Signaln2';      
int=2*M;    %Window length for the new fiducial point 
range=1:length(FL2res); 
for i=1:length(Signaln2) 
    start=Signaln2(i)-int/2; 
    if start<1 
        start=1; 
    end 
    stop=Signaln2(i)+int/2; 
    if stop>length(FL2res) 
        stop=length(FL2res); 
    end 
    intervall=start:stop;       %interval 
    FL2int=FL2res(intervall); 
    pkt=find(FL2int==max(FL2int));  %Setting point on maximum of FL2 
    if length(pkt)==0   % if pkt=[]; 
        pkt=Signaln2(i)-start; 
    else 
        pkt=pkt(1);  
    end 
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    delay=N/2+M; 
    Signaln3(i)=pkt+Signaln2(i)-int/2-delay;    %fiducial points according to 
FL2 
end 
%Sets the fiducial points on the maximum or minimum 
%of the signal 
Bw=5.6;    
Bwn=1/(fs/2)*Bw; 
Wn=[Bwn 5*Bwn]; 
N1=32; 
b=fir1(N1,Wn,'bandpass'); 
Sf=filtfilt(b,1,S);     %Filtered Signal with bandwidth 5.6-28 Hz 
beg=round(1.5*M); 
fin=1*M; 
for i=1:length(Signaln3) 
    start=Signaln3(i)-beg; 
    if start<1 
        start=1; 
    end 
    stop=Signaln3(i)+fin; 
    if stop>length(Sf) 
        stop=length(Sf); 
    end 
    intervall=start:stop;   %Window for the new fiducial point 
    Sfint=abs(detrend(Sf(intervall),0)); 
    pkt=find(Sfint==max(Sfint));    %Setting point on maximum of Sfint 
    if length(pkt)==0   %if pkt=[]; 
        pkt=Signaln3(i)-start; 
    else 
        pkt=pkt(1);  
    end 
    pkt=pkt(1); 
    Signaln4(i)=pkt+Signaln3(i)-beg-1; 
end 
Signal=Signaln4';   %New fiducial points according to the original signal 
  
cutbeginning=find(Signal<N);    %Cutting out the first points because of 
initial transient of the filter in polyphase_imp 
fpointsb=Signal(cutbeginning); 
cutend=find(Signal>length(S)-N); %Cutting out the last points 
fpointse=Signal(cutend); 
pnew=setxor(Signal,[fpointsb;fpointse]); 
%------------------------------------------- 
function yn=history(ynm1,xn) 
  
% history - computes y[n]=(1-lambda)*x[n]+lambda*y[n-1] 
% 
%   yn=history(ynm1,xn) 
  
lambda=0.8; %forgetting factor 
yn=(1-lambda)*xn+lambda*ynm1; 
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APPENDIX E  

function y= edr_GMoody(varargin) 
% 
% y = edr(data_type,signal,r_peaks,fs,pqoff, jpoff, gain_ecg, channel, show) 
% 
% ECG-derived Respiratory (EDR) signal computation from given 
% single-lead ECG signal based on the signed area under the QRS complex. 
% 
% Required Parameters: 
% 
% data_type 
%       A 1x1 integer specifying the file data_type 
%       0 --> if Matlab file 
%       1 --> if record in MIT format 
% 
% signal 
%       A Nx1 integer array containing the ECG signal in mV (if data_type=0) 
%       OR a char string containing record name (if data_type=1) 
% 
% fs 
%       A 1x1 integer specifying the sampling frequency in hz (for Matlab 
variables only) 
% 
% r_peaks 
% 
%       A Mx1 integer array containing locations of r peaks on signal in s 
%       OR a char string containing the extension of the annotation file 
%       with r peaks in samples (e.g. "qrs") (if data_type=1) 
% 
% optional parameters: 
% 
% gain_ecg 
%       A 1x1 integer specifying dig_max/phy_max (default=1) 
% 
% channel 
%       A 1x1 integer>1 (default=1) indicating ECG channel (if data_type=1) 
% 
% pqoff 
%       A 1x1 integer>0 specifying average distance between PQ junction and 
%       R peak, in samples 
% 
% jpoff 
%       A 1x1 integer>0 specifying average distance between R peak and 
%       J point, in samples 
% 
% show 
%       A 1x1 boolean if true, generates a plot of the estimated 
%       respiration signal (default = 0). 
% 
% 
% output: 
% 
% y 
%       A Mx2 integer matrix containing time in seconds and edr 
% 
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% This code was written by Sara Mariani at the Wyss Institute at Harvard 
% based on the open-source PhysioNet code edr.c 
% (http://www.physionet.org/physiotools/edr/) 
% by George Moody 
% 
% Author: Sara Mariani, 2014 
% Last Modified: November 17, 2014 
% 
% please report bugs/questions at sara.mariani@wyss.harvard.edu 
% 
% Example - Extract EDR signal from ECG in PhysioNet's Remote server: 
% signal='fantasia/f1o02'; 
% r_peaks='ecg'; 
% data_type=1; 
% channel=2; 
% show=1; 
% y=edr(data_type,signal,r_peaks,[],[],[],channel,show); 
% wfdb2mat('f1o02') 
% [~,signal,Fs,~]=rdmat('f1o02m'); 
% resp=signal(:,1); 
% resp=resp-mean(resp); 
% resp=resp*200; 
% sec=length(resp)/Fs; 
% xax=[.25:.25:sec]; 
% r=interp1(y(:,1), y(:,2), xax, 'spline'); 
% figure 
% plot(xax,r) 
% hold on 
% plot([1:length(resp)]/Fs,resp,'r') 
% legend('edr','respiratory signal') 
% xlabel('time (s)') 
% 
% see also: ecgpuwave, gqrs 
  
%endOfHelp 
  
  
  
%Set default pararameter values 
inputs={'data_type','signal','r_peaks','fs','pqoff','jpoff', 'gain_ecg', 
'channel' ,'show'}; 
show=0; 
Ninputs=length(inputs); 
if nargin>Ninputs 
    error('Too many input arguments') 
end 
if nargin<3 
    error('Not enough input arguments') 
end 
  
for n=1:nargin 
    eval([inputs{n} '=varargin{n};']) 
end 
for n=nargin+1:Ninputs 
    eval([inputs{n} '=[];']) 
end 
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% check format and obtain all the features I need 
if data_type==0 %matlab 
     
    if  isempty(gain_ecg) 
        gain_ecg=1; 
    end 
    ECGm=signal*gain_ecg; 
    if isempty(r_peaks) 
        error('R peaks locations not provided') 
    else 
        tqrs=round(r_peaks*fs); %samples where I have the R peak 
    end 
     
elseif data_type==1 %wfdb record 
    if isempty(channel) 
        channel=1; 
    end 
    % read the signal 
    wfdb2mat(signal); 
    pp=strfind(signal,'/'); 
    if ~isempty(pp) 
        signal2=signal(pp(end)+1:length(signal)); 
    else signal2=signal; 
    end 
    [~,sig,fs]=rdmat([signal2 'm']); 
    ECGm=sig(:,channel); 
    if numel(fs)>1 
        fs=fs(channel); 
    end 
    % read the header 
    signal 
    siginfo=wfdbdesc(signal); 
    siginfo=siginfo(:,channel); 
    gainstring=siginfo.Gain; 
    sp=strfind(gainstring,' '); 
    try 
        gain_ecg=str2num(gainstring(1:sp-1)); 
    catch 
        gain_ecg=1; 
    end 
    if strfind(gainstring(end-1),'m') 
        gain_ecg=gain_ecg*1000; 
    end 
     
    ECGm=ECGm*gain_ecg; 
    % read r_peaks if annotation file 
    if ischar(r_peaks) 
        [ann,ty]=rdann(signal,r_peaks); 
        tqrs=ann(ty=='N'); 
        r_peaks=tqrs/fs; 
    else 
        tqrs=round(r_peaks*fs); %samples where I have the R peak 
    end 
     
else error('format data_type must be 0 or 1') 
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end 
  
% check if signal is upside-down 
if mean(ECGm(tqrs))<mean(ECGm) 
    ECGm=-ECGm; 
end 
  
% EDR COMPUTATION 
% 1) filter the signal with a moving window of lpflen=25 ms 
lpflen=0.025; 
lp=round(lpflen*fs); 
w=ones(lp+1,1)./(lp+1); 
sample=filter(w,1,ECGm); 
% correct for the delay of lp/2 
sample(1:round(lp/2))=[]; 
% correct for the initialization 
for i=1:round(lp/2) 
    sample(i)=mean(ECGm(1:i+round(lp/2))); 
end 
% 2) find the baseline: moving window again of bflen=1 s 
bflen=1; 
b=round(bflen*fs); 
w2=ones(b+1,1)./(b+1); 
baseline=filter(w2,1,sample); 
% correct for the delay of b/2 
baseline(1:round(b/2))=[]; 
% correct for the initialization 
for i=1:round(b/2) 
    baseline(i)=mean(sample(1:i+round(b/2))); 
end 
  
% 3) find average boundaries of QRS interval 
if isempty(jpoff)||isempty(pqoff) 
    [pqoff, jpoff]=boundaries(sample, baseline, tqrs, fs); 
end 
  
% now estimate signed area under QRS complex 
sb=sample(1:length(baseline))-baseline; 
snar=zeros(size(tqrs)); 
  
for i=2:length(tqrs)-1 
    win=sb(tqrs(i)-pqoff:tqrs(i)+jpoff); 
    snar(i)=sum(win); 
end 
if tqrs(end)+jpoff>length(sb) 
    win=sb(tqrs(end)-pqoff:end); 
else 
    win=sb(tqrs(end)-pqoff:tqrs(end)+jpoff); 
end 
snar(end)=sum(win); 
  
% now start from signed area and estimate edr 
xm=0; 
xd=0; 
xdmax=0; 
xc=0; 
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x=snar; 
r=zeros(size(x)); 
for i=25:length(x) 
    d=x(i)-xm; 
    if xc<500 
        xc=xc+1; 
        dn=d/xc; 
    else 
        dn=d/xc; 
        if dn>xdmax 
            dn=xdmax; 
        elseif dn<-xdmax 
            dn=-xdmax; 
        end 
    end 
    xm=xm+dn; 
    xd=xd+abs(dn)-xd/(xc); 
    if xd<1 
        xd=1; 
    end 
    xdmax=3*xd/(xc); 
    r(i)=d/xd; 
end 
y=r*50; 
while (max(y)>127 || min(y)<-128) 
    y(y<-128)=y(y<-128)+255; 
    y(y>127)=y(y>127)-255; 
end 
  
if(show) 
    scrsz = get(0,'ScreenSize'); 
    figure('Position',... 
        [0.05*scrsz(3) 0.05*scrsz(4) 0.8*scrsz(3) 0.89*scrsz(4)],... 
        'Color',[1 1 1]); 
    ax(1)=subplot(211); 
    plot([1:length(sample)]/fs,sample) 
    hold on 
    plot([1:length(baseline)]/fs,baseline,'g') 
    plot((tqrs-pqoff)/fs,mean(ECGm)*ones(size(tqrs)),'*m') 
    plot((tqrs+jpoff)/fs,mean(ECGm)*ones(size(tqrs)),'*c') 
    legend('filtered ecg','baseline','window start','window end') 
    set(gca,'fontsize',18) 
    xlabel('time (s)','fontsize',18) 
    ylim([mean(ECGm)-5*std(ECGm) mean(ECGm)+5*std(ECGm)]) 
    ax(2)=subplot(212); 
    plot(r_peaks,y,'r') 
    title('edr','fontsize',18) 
    set(gca,'fontsize',18) 
    xlabel('time (s)','fontsize',18) 
    linkaxes(ax,'x') 
end 
 y=[r_peaks y]; 
end 
  
  
%%%% Helper function %%%%%% 
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function[pqoff, jpoff]=boundaries(sample, baseline, tqrs, fs) 
% estimate the noise level 
sb=sample(1:length(baseline))-baseline; 
nlest=mean(abs(sb)); 
display(['The estimated noise level is ' num2str(nlest) ' microvolts']); 
dlthresh=2*nlest; 
dlthmax=1200; 
dlthmin=140; 
if dlthresh>dlthmax, dlthresh=dlthmax; 
elseif dlthresh<dlthmin, dlthresh=dlthmin; 
end 
  
% determine if samples are baseline 
vwindow=100; 
twin1=0.033; 
twin2=0.067; 
% time of the 51st QRS 
last=tqrs(51); 
sample2=sample(1:last); 
bline=zeros(size(sample2)); 
% a sample is baseline if I have twin1 or twin2 consecutive samples 
% that vary in amplitude by no more than dlthresh 
for i=1:length(sample2)-twin1*fs 
    vmax=sample(i); 
    vmin=sample(i); 
    if abs(baseline(i)-vmax)<vwindow, twindow=twin1; 
    else twindow=twin2; 
    end 
    ww=sample(i:i+round(twindow*fs)); 
    if max(ww)-min(ww)<dlthresh 
        bline(i)=1; 
    end 
end 
% for first 50 beats, look for PQ junction and J point 
tlim2=0.060; 
tlim3=0.100; 
PQ=zeros(50,1); 
J=zeros(50,1); 
  
for j=1:50 
    % search to the left 
    try 
        w=bline(round(tqrs(j)-tlim2*fs):tqrs(j)-1); 
    catch 
        display(j) 
        w=bline(1:tqrs(j)-1); 
    end 
    f=find(w); 
    if numel(f)>0 
        PQ(j)=length(w)-max(f)+1; 
    else 
        PQ(j)=length(w); 
    end 
    % search to the right 
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    w=bline(tqrs(j)+1:round(tqrs(j)+tlim3*fs)); 
    f=find(w); 
    if numel(f)>0 
        J(j)=min(f); 
    else 
        J(j)=length(w); 
    end 
end 
  
% incremental average 
pqoff=PQ(1); 
for i=1:length(PQ) 
    if PQ(i)<pqoff 
        pqoff=pqoff-1; 
    elseif PQ(i)>pqoff 
        pqoff=pqoff+1; 
    end 
end 
jpoff=J(1); 
for i=1:length(J) 
    if J(i)<jpoff 
        jpoff=jpoff-1; 
    elseif J(i)>jpoff 
        jpoff=jpoff+1; 
    end 
end 
end 
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